Thèse soutenue

Correction de données de séquençage de troisième génération
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Pierre Morisse
Direction : Thierry Lecroq
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 26/09/2019
Etablissement(s) : Normandie
Ecole(s) doctorale(s) : École doctorale mathématiques, information et ingénierie des systèmes (Caen)
Partenaire(s) de recherche : Etablissement de préparation de la thèse : Université de Rouen Normandie (1966-....)
Laboratoire : Laboratoire d'informatique, de traitement de l'information et des systèmes (Saint-Etienne du Rouvray, Seine-Maritime ; 2006-...)
Jury : Président / Présidente : Gregory Kucherov
Examinateurs / Examinatrices : Arnaud Lefebvre, Pierre Peterlongo, Hélène Touzet
Rapporteurs / Rapporteuses : Guillaume Blin, Christine Gaspin

Résumé

FR  |  
EN

Les objectifs de cette thèse s’inscrivent dans la large problématique du traitement des données issues de séquenceurs à très haut débit, et plus particulièrement des reads longs, issus de séquenceurs de troisième génération.Les aspects abordés dans cette problématiques se concentrent principalement sur la correction des erreurs de séquençage, et sur l’impact de la correction sur la qualité des analyses sous-jacentes, plus particulièrement sur l’assemblage. Dans un premier temps, l’un des objectifs de cette thèse est de permettre d’évaluer et de comparer la qualité de la correction fournie par les différentes méthodes de correction hybride (utilisant des reads courts en complément) et d’auto-correction (se basant uniquement sur l’information contenue dans les reads longs) de l’état de l’art. Une telle évaluation permet d’identifier aisément quelle méthode de correction est la mieux adaptée à un cas donné, notamment en fonction de la complexité du génome étudié, de la profondeur de séquençage, ou du taux d’erreurs des reads. De plus, les développeurs peuvent ainsi identifier les limitations des méthodes existantes, afin de guider leurs travaux et de proposer de nouvelles solutions visant à pallier ces limitations. Un nouvel outil d’évaluation, proposant de nombreuses métriques supplémentaires par rapport au seul outil disponible jusqu’alors, a ainsi été développé. Cet outil, combinant une approche par alignement multiple à une stratégie de segmentation, permet également une réduction considérable du temps nécessaire à l’évaluation. À l’aide de cet outil, un benchmark de l’ensemble des méthodes de correction disponibles est présenté, sur une large variété de jeux de données, de profondeur de séquençage, de taux d’erreurs et de complexité variable, de la bactérie A. baylyi à l’humain. Ce benchmark a notamment permis d’identifier deux importantes limitations des outils existants : les reads affichant des taux d’erreurs supérieurs à 30%, et les reads de longueur supérieure à 50 000 paires de bases. Le deuxième objectif de cette thèse est alors la correction des reads extrêmement bruités. Pour cela, un outil de correction hybride, combinant différentes approches de l’état de l’art, a été développé afin de surmonter les limitations des méthodes existantes. En particulier, cet outil combine une stratégie d’alignement des reads courts sur les reads longs à l’utilisation d’un graphe de de Bruijn, ayant la particularité d’être d’ordre variable. Le graphe est ainsi utilisé afin de relier les reads alignés, et donc de corriger les régions non couvertes des reads longs. Cette méthode permet ainsi de corriger des reads affichant des taux d’erreurs atteignant jusqu’à 44%, tout en permettant un meilleur passage à l’échelle sur de larges génomes et une diminution du temps de traitement, par rapport aux méthodes de l’état de l’art les plus efficaces. Enfin, le troisième objectif de cette thèse est la correction des reads extrêmement longs. Pour cela, un outil utilisant cette fois une approche par auto-correction a été développé, en combinant, de nouveau, différentes méthodologies de l’état de l’art. Plus précisément, une stratégie de calcul des chevauchements entre les reads, puis une double étape de correction, par alignement multiple puis par utilisation de graphes de de Bruijn locaux, sont utilisées ici. Afin de permettre à cette méthode de passer efficacement à l’échelle sur les reads extrêmement longs, la stratégie de segmentation mentionnée précédemment a été généralisée. Cette méthode d’auto-correction permet ainsi de corriger des reads atteignant jusqu’à 340 000 paires de bases, tout en permettant un excellent passage à l’échelle sur des génomes plus complexes, tels que celui de l’humain.