Geometric analysis of differential-algebraic equations and control systems : linear, nonlinear and linearizable

par Yahao Chen

Thèse de doctorat en Mathématiques

Sous la direction de Witold Respondek.

Le président du jury était Pierre Rouchon.

Le jury était composé de Witold Respondek, Claude Moog, Stephan Trenn, Philippe Jouan, Françoise Lamnabhi-Lagarrigue, Jean-Pierre Barbot.

Les rapporteurs étaient Claude Moog, Stephan Trenn.

  • Titre traduit

    Analyse géométrique des équations différentielles-algébriques : linéaires, non-linéaires et linéarisables


  • Résumé

    Dans la première partie de cette thèse, nous étudions les équations différentielles algébriques (en abrégé EDA) linéaires et les systèmes de contrôles linéaires associés (en abrégé SCEDA). Les problèmes traités et les résultats obtenus sont résumés comme suit : 1. Relations géométriques entre les EDA linéaires et les systèmes de contrôles génériques SCEDO. Nous introduisons une méthode, appelée explicitation, pour associer un SCEDO à n'importe quel EDA linéaire. L'explicitation d'une EDA est une classe des SCEDO, précisément un SCEDO défini, à un changement de coordonnées près, une transformation de bouclage près et une injection de sortie près. Puis nous comparons les « suites de Wong » d'une EDA avec les espaces invariants de son explicitation. Nous prouvons que la forme canonique de Kronecker FCK d'une EDA linéaire et la forme canonique de Morse FCM d'un SCEDO, ont une correspondance une à une et que leurs invariants sont liés. De plus, nous définissons l'équivalence interne de deux EDA et montrons sa particularité par rapport à l'équivalence externe en examinant les relations avec la régularité interne, i.e., l'existence et l'unicité de solutions. 2. Transformation d'un SCEDA linéaire vers sa forme canonique via la méthode d'explicitation avec des variables de driving. Nous étudions les relations entre la forme canonique par bouclage FCFB d'un SCEDA proposée dans la littérature et la forme canonique de Morse pour les SCEDO. Premièrement, dans le but de relier SCEDA avec les SCEDO, nous utilisons une méthode appelée explicitation (avec des variables de driving). Cette méthode attache à une classe de SCEDO avec deux types d'entrées (le contrôle original et le vecteur des variables de driving) à un SCEDA donné. D'autre part, pour un SCEDO linéaire classique (sans variable de driving) nous proposons une forme de Morse triangulaire FMT pour modifier la construction de la FCM. Basé sur la FMT nous proposons une forme étendue FMT et une forme étendue de FCM pour les SCEDO avec deux types d'entrées. Finalement, un algorithme est donné pour transformer un SCEDA dans sa FCFB. Cet algorithme est construit sur la FCM d'un SCEDO donné par la procédure d'explicitation. Un exemple numérique illustre la structure et l'efficacité de l'algorithme. Pour les EDA non linéaires et les SCEDA (quasi linéaires) nous étudions les problèmes suivants : 3. Explicitations, analyse externe et interne et formes normales des EDA non linéaires. Nous généralisons les deux procédures d'explicitation (avec ou sans variables de driving) dans le cas des EDA non linéaires. L'objectif de ces deux méthodes est d'associer un SCEDO non linéaire à une EDA non linéaire telle que nous puissions l'analyser à l'aide de la théorie des EDO non linéaires. Nous comparons les différences de l'équivalence interne et externe des EDA non linéaires en étudiant leurs relations avec l'existence et l'unicité d'une solution (régularité interne). Puis nous montrons que l'analyse interne des EDA non linéaire est liée à la dynamique nulle en théorie classique du contrôle non linéaire. De plus, nous montrons les relations des EDAS de forme purement semi-explicite avec les 2 procédures d'explicitations. Finalement, une généralisation de la forme de Weierstrass non linéaire FW basée sur la dynamique nulle d'un SCEDO non linéaire donné par la méthode d'explicitation est proposée...


  • Résumé

    In the first part of this thesis, we study linear differential-algebraic equations (shortly, DAEs) and linear control systems given by DAEs (shortly, DAECSs). The discussed problems and obtained results are summarized as follows. 1. Geometric connections between linear DAEs and linear ODE control systems ODECSs. We propose a procedure, named explicitation, to associate a linear ODECS to any linear DAE. The explicitation of a DAE is a class of ODECSs, or more precisely, an ODECS defined up to a coordinates change, a feedback transformation and an output injection. Then we compare the Wong sequences of a DAE with invariant subspaces of its explicitation. We prove that the basic canonical forms, the Kronecker canonical form KCF of linear DAEs and the Morse canonical form MCF of ODECSs, have a perfect correspondence and their invariants (indices and subspaces) are related. Furthermore, we define the internal equivalence of two DAEs and show its difference with the external equivalence by discussing their relations with internal regularity, i.e., the existence and uniqueness of solutions. 2. Transform a linear DAECS into its feedback canonical form via the explicitation with driving variables. We study connections between the feedback canonical form FBCF of DAE control systems DAECSs proposed in the literature and the famous Morse canonical form MCF of ODECSs. In order to connect DAECSs with ODECSs, we use a procedure named explicitation (with driving variables). This procedure attaches a class of ODECSs with two kinds of inputs (the original control input and the vector of driving variables) to a given DAECS. On the other hand, for classical linear ODECSs (without driving variables), we propose a Morse triangular form MTF to modify the construction of the classical MCF. Based on the MTF, we propose an extended MTF and an extended MCF for ODECSs with two kinds of inputs. Finally, an algorithm is proposed to transform a given DAECS into its FBCF. This algorithm is based on the extended MCF of an ODECS given by the explication procedure. Finally, a numerical example is given to show the structure and efficiency of the proposed algorithm. For nonlinear DAEs and DAECSs (of quasi-linear form), we study the following problems: 3. Explicitations, external and internal analysis, and normal forms of nonlinear DAEs. We generalize the two explicitation procedures (with or without driving variable) proposed in the linear case for nonlinear DAEs of quasi-linear form. The purpose of these two explicitation procedures is to associate a nonlinear ODECS to any nonlinear DAE such that we can use the classical nonlinear ODE control theory to analyze nonlinear DAEs. We discuss differences of internal and external equivalence of nonlinear DAEs by showing their relations with the existence and uniqueness of solutions (internal regularity). Then we show that the internal analysis of nonlinear DAEs is closely related to the zero dynamics in the classical nonlinear control theory. Moreover, we show relations of DAEs of pure semi-explicit form with the two explicitation procedures. Furthermore, a nonlinear generalization of the Weierstrass form WE is proposed based on the zero dynamics of a nonlinear ODECS given by the explicitation procedure...


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Institut national des sciences appliquées (Rouen Normandie).
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.