Thèse soutenue

Caractérisation multi-échelle de phases organiques concentrées

FR  |  
EN
Auteur / Autrice : Amaury Paquet
Direction : Laurence Berthon
Type : Thèse de doctorat
Discipline(s) : Chimie séparative, matériaux et procédés
Date : Soutenance le 06/02/2019
Etablissement(s) : Montpellier
Ecole(s) doctorale(s) : École doctorale Sciences Chimiques (Montpellier ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Institut de Chimie Séparative de Marcoule
Jury : Président / Présidente : Jean-François Dufrêche
Examinateurs / Examinatrices : Laurence Berthon, Jean-François Dufrêche, Fabienne Testard, Virginie Marry, Philippe Guilbaud, Gérard Cote
Rapporteurs / Rapporteuses : Fabienne Testard, Virginie Marry

Résumé

FR  |  
EN

Dans le cadre du développement de nouveaux procédés par extraction liquide-liquide pour le recyclage du combustible nucléaire usé, de nouvelles molécules extractantes sont à l’étude. Les molécules à fonction amide (monoamide, malonamide ou diglycolamide) sont particulièrement étudiées. Les objectifs de cette thèse sont d’étudier la spéciation moléculaire et supramoléculaire de solutions organiques représentatives des différents procédés en cours de développement. Cette spéciation a été réalisée en couplant des études expérimentales et théoriques. Après extraction de solutés, la composition des solutions organiques est déterminée expérimentalement. Des boites de simulation par dynamique moléculaire ayant la même composition que les solutions expérimentales sont ensuite construites. Après simulation, les trajectoires de dynamique moléculaire permettent de calculer les masses volumiques et les intensités diffusées aux petits angles théoriques des solutions simulées. Dès lors que les données calculées et les données expérimentales sont en accord, on estime que les simulations sont représentatives des solutions réelles. Ces simulations couplées à des caractérisations expérimentales supplémentaires (spectroscopie infra-rouge – IR – et spectrométrie de masse à ionisation par électrospray – ESI-MS –) permettent de décrire les structures en solution à la fois à l’échelle moléculaire et supramoléculaire. Cette méthodologie a été appliquée à l’extraction d’eau et de nitrate d’uranyle par les monoamides DEHBA et par le malonamide DMDOHEMA ainsi qu’à l’extraction d’eau et de nitrate de néodyme par des solutions à base de TODGA.L’extraction d’eau en phase organique est dépendante de l’organisation de la solution : les solutions de monoamides essentiellement constituées de monomères et dimères solubilisent peu d’eau contrairement aux solutions de DMDOHEMA ou de TODGA majoritairement constituées d’agrégats. L’extraction de nitrate d’uranyle a mis en évidence différents comportements dépendant de la structure de la molécule ou de la concentration d’uranyle. Des complexes UO2(NO3)2L2 sont observés à faible concentration d’uranium après extraction par les monoamides. Lorsque la concentration d’uranium augmente, des espèces polymétalliques sont observées et deviennent majoritaire en solution. Dans le cas du DMDOHEMA, des complexes monométalliques sont majoritaires mais n’ont pas une stœchiométrie unique. L’uranyle peut être coordiné à 1 ou 2 malonamides (monodenté ou bidenté), 2 nitrates et parfois une molécule d’eau. Le néodyme est extrait par le TODGA dans l’heptane sous forme de petits agrégats contenant 2 ou 3 cations liés par des nitrates pontants. Une augmentation de la concentration de néodyme entraine une augmentation de l’agrégation jusqu’à l’apparition d’une démixtion de phase. La présence d’octanol (0,3 mol/L) permet d’extraire une plus forte concentration de Nd sans séparation de phase. Les simulations ont montré que l’octanol se place dans la 1ère sphère de coordination du néodyme à la place des molécules d’eau ou de TODGA améliorant ainsi la solubilité des complexes et agrégats dans la phase organique. L’ajout de 0,5 mol/L de DMDOHEMA à une solution de TODGA permet également d’éviter la démixtion en structurant la solution. En présence de malonamide des agrégats plus petits sont observés.Pour les deux systèmes étudiés (mono et diamides), les phases obtenues après démixtion de la phase organique (phénomène de formation de 3ème phase) ont également été caractérisées.Ces travaux ont permis de déterminer l’organisation moléculaire et supramoléculaire dans des solutions d’extraction par l’utilisation d’une méthode couplant études expérimentales et simulations par dynamique moléculaire.