Thèse soutenue

Conception, élaboration et caractérisation d’emballages actifs absorbeurs d’O2

FR  |  
EN
Auteur / Autrice : Erland Modeste Kombaya Touckia Linin
Direction : Valérie Guillard
Type : Thèse de doctorat
Discipline(s) : Génie des procédés
Date : Soutenance le 29/01/2019
Etablissement(s) : Montpellier
Ecole(s) doctorale(s) : GAIA (Montpellier ; École Doctorale ; 2015-...)
Partenaire(s) de recherche : Laboratoire : Ingénierie des Agro-Polymères et Technologies Emergentes (Montpellier)
Jury : Président / Présidente : Francis Courtois
Examinateurs / Examinatrices : Valérie Guillard, Francis Courtois, Frédéric Debeaufort, Mélanie Auffan, Nathalie Gontard, Mia Kurek
Rapporteurs / Rapporteuses : Frédéric Debeaufort, Mélanie Auffan

Résumé

FR  |  
EN

Actuellement, on observe le développement de nouveaux matériaux, à savoir les matériaux actifs, au travers de divers processus et applications. Par exemple, l’utilisation de nanoparticules de fer (NanoFe) absorbantes d’O2 dans le cadre de l’emballage actif, implique la maîtrise de plusieurs paramètres pour une application en tant que matériau actif. En effet, il est indispensable d’avoir une très bonne compréhension des mécanismes d’oxydation et de consommation d’O2, de pouvoir quantifier les capacités d’absorption ainsi que la vitesse d’absorption d’O2. Bien que nécessaires, ces deux paramètres n’ont été jusqu’à présent que peu caractérisés et encore moins mis en relation avec les propriétés morphologiques (tailles, surface spécifique, etc) et physico-chimiques (tel que l’état du fer) des nanoparticules de fer mises en oeuvre.Dans le but de concevoir à façon un film d’emballage monocouche absorbeur d’O2, ce travail vise à combiner une barrière passive, liée au phénomène de tortuosité induit par la présence des lamelles d’argile dispersées dans une matrice polymérique et une barrière active, liée à l’absorption d’oxygène par les NanoFe synthétisées. Les Nano-Fe ont été synthétisées par réduction chimique au Borohydrure de sodium sur support d’argile Montmorillonite (MMT). La caractérisation MET a révélé la formation d'agrégats de nanoparticules de fer d'une taille moyenne de 57 ± 17 nm dispersées sur la surface des MMT. La cinétique Mössbauer sur la poudre MMT-Fe confirme que les différentes phases du fer (Fe0 et FeII) dans les nanoparticules de fer ne s'oxydent pas à la même vitesse. Cela a permis d’ajuster le modèle mathématique de prédiction des propriétés d’absorption de l’O2. L'étude de propriétés d'absorption d’O2 sur les poudres a montré que la constante de réaction (k), le coefficient de proportionnalité (n) et les capacités d'absorption d’O2 sont du même ordre de grandeur pour la poudre humide, séchée et stockée. Les films nanocomposites préparés à partir des poudres séchées de MMT-Fe synthétisées, incorporées dans un polymère de LLDPE ont montré une bonne capacité d’absorption, mais inférieure à celle de la poudre seule, lié à l’oxydation avancée du fer dans ces films, confirmée par la spectroscopie Mössbauer (les films sont oxydés à 60% contre 30% pour les poudres). Un modèle numérique utilisant la seconde loi de Fick couplée au système d’équations de cinétique chimique obtenue sur la poudre, a permis de prédire le phénomène de diffusion et réaction de l'oxygène dans des films réalisés. Ce modèle est comparé aux données expérimentales obtenues par oxydation de films. En parallèle, une étude de la cinétique d'absorption d’absorbeurs d’O2 commerciaux, couramment utilisés dans les emballages sous atmosphère modifiée, a été effectuée. Sur ces systèmes commerciaux, la cinétique d'absorption a été décrite aussi par une réaction de cinétique de second ordre avec un comportement de type Arrhenius pour l’effet de la température. Toutefois, la spectroscopie Mössbauer a révélé que, dans ce cas-là, seule l’espèce Fe0 était prépondérante pour décrire la cinétique (celle de FeII étant négligeable tant elle est rapide). Nous avons montré pour la première fois, que la spectroscopie de Mössbauer peut être couplée avec succès à la mesure de l'oxygène afin de caractériser in situ l’oxydation du fer, sa spéciation et la capacité d’absorption d’O2. Cette configuration associant spectroscopie de Mössbauer et mesure de l’oxygène ont fourni des informations précieuses sur les mécanismes réactionnels régissant les absorbeurs d’O2. Tous ces résultats auront des implications importantes pour la compréhension de l’absorption d’oxygène dans le système actif absorbeur d’O2.