Thèse soutenue

Apprentissage de représentations non supervisé pour la détection d'anomalies en neuro-imagerie. Application à la détection de lésions d’épilepsie en IRM
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Zaruhi Alaverdyan
Direction : Carole Lartizien
Type : Thèse de doctorat
Discipline(s) : Traitement du signal et de l'image
Date : Soutenance le 18/01/2019
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale Électronique, électrotechnique, automatique (Lyon)
Partenaire(s) de recherche : établissement opérateur d'inscription : Institut national des sciences appliquées (Lyon ; 1957-....)
Laboratoire : CREATIS - Centre de Recherche et d'Application en Traitement de l'Image pour la Santé (Lyon ; 2007-....) - Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé / CREATIS
Jury : Président / Présidente : Elisa Fromont
Examinateurs / Examinatrices : Carole Lartizien, Elisa Fromont, Jorge Cardoso, Diana Mateus, Gaëlle Bonnet, Julien Jung
Rapporteurs / Rapporteuses : Jorge Cardoso, Diana Mateus

Résumé

FR  |  
EN

Cette étude vise à développer un système d’aide au diagnostic (CAD) pour la détection de lésions épileptogènes, reposant sur l’analyse de données de neuroimagerie, notamment, l’IRM T1 et FLAIR. L’approche adoptée, introduite précédemment par Azami et al., 2016, consiste à placer la tâche de détection dans le cadre de la détection de changement à l'échelle du voxel, basée sur l’apprentissage d’un modèle one-class SVM pour chaque voxel dans le cerveau. L'objectif principal de ce travail est de développer des mécanismes d’apprentissage de représentations, qui capturent les informations les plus discriminantes à partir de l’imagerie multimodale. Les caractéristiques manuelles ne sont pas forcément les plus pertinentes pour la tâche visée. Notre première contribution porte sur l'intégration de différents réseaux profonds non-supervisés, pour extraire des caractéristiques dans le cadre du problème de détection de changement. Nous introduisons une nouvelle configuration des réseaux siamois, mieux adaptée à ce contexte. Le système CAD proposé a été évalué sur l’ensemble d’images IRM T1 des patients atteints d'épilepsie. Afin d'améliorer la performance obtenue, nous avons proposé d'étendre le système pour intégrer des données multimodales qui possèdent des informations complémentaires sur la pathologie. Notre deuxième contribution consiste donc à proposer des stratégies de combinaison des différentes modalités d’imagerie dans un système pour la détection de changement. Ce système multimodal a montré une amélioration importante sur la tâche de détection de lésions épileptogènes sur les IRM T1 et FLAIR. Notre dernière contribution se focalise sur l'intégration des données TEP dans le système proposé. Etant donné le nombre limité des images TEP, nous envisageons de synthétiser les données manquantes à partir des images IRM disponibles. Nous démontrons que le système entraîné sur les données réelles et synthétiques présente une amélioration importante par rapport au système entraîné sur les images réelles uniquement.