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Abstract

A problem of turbulence in a rapidly rotating channel is investigated. The rapid rotation means
that nonlinearity is dominated by rotation suggesting application of wave-turbulence theory.

The first part of the work is devoted to study of the wave-turbulence closure (WTC) model.
We express the velocity field as a combination of inertial waveguide modes. In its turn, confine-
ment implies discretization of the wall-normal component of the wave vector. The nonlinear
transfer is dominated by resonant interactions of wave-vector triads. Viscosity is present via
modal damping, which is the sum of two components: volumetric and wall damping. The
volumetric-damping rate grows as the square of the wavenumber inhibiting the energy cascade
below a certain scale.

The numerical implementation of the model uses a time-marching scheme ensuring the re-
alizability property of the model and explicit consideration of the spectral discontinuities pre-
dicted by the wave-turbulence theory. According to the results of numerical investigation of
the WTC model the time evolution of the turbulence occurs in two phases. During the first
phase wall damping dominates, but following an energy cascade to the small scales, volumet-
ric damping takes over during the second phase. Provided the volumetric-damping coefficient
is sufficiently small, the transition between the phases takes place abruptly at a time which is
insensitive to both wall- and volumetric- damping coefficients, but varies significantly with the
third parameter of the problem, which is the initial spectral width. Evolution of the spectra
reveals the development of an inertial range whose exponent is found to be almost independent
of the problem parameters. The transfer of energy parallel to the channel walls is found to be
more efficient than in the cross-channel direction.

To perform direct numerical simulations (DNS) an appropriate method for initialization of
the velocity field possessing the statistical properties prescribed by the model is developed.
Comparison of the DNS and WTC results requires construction of the spectral matrix at later
times. This involved the development of spectral analysis methods and their incorporation into
the existing DNS code. Despite running the DNS on a super-computer and using many proces-
sors in parallel, only three runs were feasible. Those runs used the same physical parameters
and different DNS spatial periods to check for convergence with respect to that numerical pa-
rameter. In an ideal world, many realizations would be performed and the ensemble average
taken to calculate the spectral matrix. Given one run, this is not possible, so we instead de-
veloped a method based on statistical isotropy in the directions parallel to the walls in which
averages are taken over annular regions in spectral space. Unfortunately, the results indicate
that nonlinearity is not small enough for the Rossby number used in the DNS. That is, further
reduction of the Rossby number would be needed to reach the regime of applicability of the
wave-turbulence theory. This is not achievable with the computer power available.
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Résumé

L’étude porte sur un problème de turbulence dans un canal mis en rotation rapide. Dans ce cas,
la non linéarité est dominée par la rotation, ce qui suggère d’utiliser la théorie de la turbulence
d’ondes.

La première partie de ce travail porte sur l’étude du modèle de fermeture pour la turbulence
d’ondes (WTC pour « wave-turbulence closure »). Nous exprimons le champ de vitesse comme
combinaison de modes de guide d’onde inertiels. Le confinement en canal implique aussi une
discrétisation de la composante du vecteur d’onde normale à la paroi. Le transfert non linéaire
est dominé par les interactions résonantes entre triades de vecteurs d’ondes. La viscosité, qui
se manifeste par l’amortissement des modes, est la somme de deux contributions : l’une vo-
lumique, l’autre due à la paroi. Le taux d’amortissement en volume croît comme le carré du
nombre d’onde, et inhibe la cascade d’énergie en-deçà d’une certaine échelle de longueur.

L’implémentation numérique du modèle utilise un schéma d’avancement en temps qui as-
sure la propriété de réalisabilité du modèle ainsi que la prise en compte des discontinuités
spectrales prédites par la théorie de turbulence d’ondes. Les résultats de notre étude numérique
du modèle WTC montrent que l’évolution en temps de la turbulence se produit en deux phases.
Pendant la première phase, l’amortissement dû à la paroi est dominant, mais à la suite de la
cascade d’énergie vers les petites échelles, l’amortissement volumique prend le dessus pendant
la seconde phase. Lorsque le coefficient d’amortissement volumique est suffisamment petit, la
transition entre les deux phases se produit brusquement à un instant qui est indépendant à la fois
des coefficients d’amortissement volumique et de paroi, mais qui varie significativement avec
le troisième paramètre du problème qu’est la largeur spectrale initiale. L’évolution du spectre
révèle le développement d’une zone inertielle dont la pente se trouve presque indépendante des
paramètres du problème. Le transfert d’énergie parallèlement aux parois du canal apparaît être
plus efficace que dans la direction normale.

En vue de réaliser des simulations numériques directes (DNS pour « Direct Numerical Simu-
lations »), il a fallu développer une méthode appropriée à l’initialisation d’un champ de vitesse
possédant les propriétés statistiques prescrites par le modèle. La comparaison des résultats de
DNS et de WTC nécessite la construction de la matrice spectrale aux temps ultérieurs. Ceci a
nécessité le développement de méthodes d’analyse spectrale et leur incorporation au sein du
code de DNS existant. Malgré l’utilisation d’un super-calculateur et du calcul massivement pa-
rallèle, seuls trois calculs de DNS ont été possibles. Ces calculs utilisent les mêmes paramètres
physiques mais différentes périodes spatiales pour la DNS, afin de vérifier la convergence en
fonction des paramètres numériques. Idéalement, de nombreuses réalisations devraient être lan-
cées et une moyenne d’ensemble prise pour calculer la matrice spectrale. Ceci n’étant pas pos-
sible avec un seul calcul, nous avons plutôt développé une méthode s’appuyant sur l’isotropie
statistique dans les directions parallèles aux parois, dans laquelle les moyennes sont faites sur
des domaines annulaires de l’espace spectral. Malheureusement, nos résultats indiquent que
la non linéarité n’est pas suffisamment faible au nombre de Rossby utilisé dans les DNS. Par
conséquent, un abaissement supplémentaire du nombre de Rossby serait nécessaire pour at-
teindre le régime d’applicabilité de la théorie de turbulence d’ondes. Ceci n’est cependant pas
envisageable avec la puissance de calcul à disposition.
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1. Introduction

Fluid dynamics is a very wide area of research due to the multiplicity of flow characteristics
that can be encountered in nature and in experiments. In addition, researchers can also think
of idealized flows that permit the advancement of theory in order to fuel models for actual
flow prediction. The general method is to consider a simplified flow in which phenomena can
be thoroughly studied separately. Some levels of complexity are nonetheless still difficult to
grasp due to extreme regimes, an illustration of which is often found in very large Reynolds
number flows. The goal of the present research thesis is therefore to address a specific regime
of nonlinear interactions in a flow confined between two parallel solid walls and placed in a
rapidly rotating frame. This regime of wave turbulence is yet to be fully understood, and the
starting point of the present work is the model proposed by Scott [27].

Our aim is to contribute to the prediction of the dynamics of flows such as found in geo-
physical contexts, in which waves can be present and contribute to the overall fluid behavior.
The present study is motivated by the significant effects of rotation and vertical confinement
on atmospheric and oceanic flows. This is not to say that the case of pure rotation studied here
is a particularly realistic model of such flows, because stratification also has important effects.
However, both stratification and rotation lead to waves which have an important influence on
the flow dynamics. The case of pure rotation is simpler than including both effects, which is
the reason we focus on this case here: it can be considered as a stepping stone towards the full
problem. Although we do not allow for stratification, it should be noted that the buoyancy force
in variable density flows can be responsible for kinetic energy production in unstably stratified
flows, but can also produce internal gravity waves in the case of stable stratification. This oc-
curs in the atmosphere and ocean’s thermocline and also in the case of salt-related stratification.
In the ocean, internal waves are thought to be a major mechanism of energy redistribution from
tidal forcing, and also to contribute to a large part of the overall energy dissipation necessary
to close the balance of energy in geophysics studies. Overall, these few examples illustrate the
importance of studying mechanisms of energy transport and cascade due to wave propagation,
and also in contexts with boundary conditions due to walls (the ocean’s bottom floor) or to
interfaces (the ocean’s surface) that constrain the flow geometry.

Inertial and internal gravity wave propagation is described in classical textbooks [19, 2].
The dispersion relation of inertial waves (and of internal gravity waves) depends only on the
angle formed by the wavevector k and the axis of rotation (or the vertical in the case of gravity
waves). As a result, the frequency of inertial waves is largest for wave vectors parallel to the
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1. Introduction

rotation axis and zero for wave vectors which are perpendicular to that axis. The latter are an
example of flow which is two-dimensional in the sense that it does not vary in the direction of
the axis. For such flows, the Coriolis force does not modify unbounded two-dimensional flow
dynamics at all. In three-dimensional rotating flows, columns of fluid can be induced to move
as a single structure parallel to the rotation axis, e.g. by forcing slow axial motion of a solid
sphere, as shown in several experiments, e.g. [22]. These Taylor columns illustrate the specific
axial coherence of rotating fluid motion, a phenomenon that can be explained by the Taylor-
Proudman theorem [14]. This theorem can also be invoked in rapidly rotating turbulent flows
to explain, to some extent and in an asymptotic limit, the appearance of structures elongated
along the axis of rotation. In the strongly nonlinear turbulent regime, turbulent homogeneous
flows submitted to uniform rotation can therefore have specific dynamics which concentrate
kinetic energy towards the spectral plane perpendicular to the rotation axis.

The wave-turbulence regime which we focus on in this work is rather different from, although
not entirely unconnected to, rotating strong turbulence. Wave turbulence is relevant when the
turbulence is weak, being dominated by rotation rather than nonlinearity. Such turbulence
consists of inertial waves, which evolve slowly under the small effects of nonlinearity and
viscous dissipation. Theory tells us that, in the absence of nonlinearity and viscosity, a single
wave can travel infinitely in an unbounded rotating ideal fluid at a given group velocity which
describes energy transport by the wave. In actual fluids, viscosity damps the wave amplitude,
and eventually kills its propagation. When considering several inertial waves, nonlinear energy
exchange between triads of waves occurs when a resonance condition is met: the three wave
vectors form a triangle, and a signed combination of their dispersion relations vanishes. In
that case, kinetic energy is efficiently transferred from one wave to another, thus redistributing
it in spectral space. In this way, energy is redistributed between different scales and wave-
vector orientations. From statistical considerations, in rotating turbulence Waleffe proposed
a triad instability principle resulting in an overall drain of energy towards the spectral plane
perpendicular to the rotation axis [30]. In the strongly turbulent regime, non-resonant nonlinear
interactions are important, as in the case of classical flows without rotation, so that the flow
dynamics is a mix between wave and vortical interactions. In wave turbulence, all interactions
are between resonant wave triads. This regime may be reached in different situations. For
instance, the destabilization of a single wave can lead to an initially small number of resonant
waves that start to populate the energy spectrum and finally lead to a broad-band distribution
of energy in spectral space, and to a cascade from large to small scales, until the dissipation
range is reached. A second route is via a specific forcing, with an increasing amplitude, of a
rapidly rotating flow, so that the initial linear regime of propagating waves becomes a weakly
nonlinear one, which can eventually become fully turbulent if sufficient energy is supplied
to the system. Conversely, an initially turbulent flow may reach the wave turbulence regime
after the dissipation of energy. In stably stratified turbulence, this intermediate state before
ultimate viscous decay is called ‘fossil’ turbulence [10]. In the present work, we choose to

2



1. Introduction

study the decay of turbulence from initial conditions which respect the wave-turbulence limit:
the initial velocity field is a random motion with a Gaussian spectrum, whose parameters are
chosen to comply with the wave-turbulence regime. The two parameters are the Ekman number
and the Rossby number. The wave turbulence regime is reached when the Rossby number is
sufficiently small — indicating the dominance of Coriolis effects over nonlinearity — and the
Ekman number is also small — so that viscous dissipation is small compared with rotation.
Quantitative estimates are discussed in subsection 6.2.1. Recent experimental work by Yarom
and Sharon [32] has small Rossby and Ekman numbers and is thus of considerable interest
in the present context. These authors measure the space-time Fourier energy spectrum as a
function of the wave-vector angle, and their results indicate a concentration of energy around
the inertial waves dispersion curve. However, only partial concentration is observed, and the
flow is far from being fully in the wave-turbulence regime, which is expected to require still
smaller Rossby and Ekman number. Thus, even the Coriolis platform in Grenoble may not
provide adequately small values for these parameters.

Obviously, the direct numerical simulation (DNS) of inertial wave turbulence is faced with
the same difficulty. Several authors have considered the simulation of rotating homogeneous
turbulence, (see references in Godeferd and Moisy [11]) with some success considering com-
parisons with experimental data. In the freely decaying case, one- and two-point statistics
obtained in simulations seem to match the values obtained in wind tunnels (with rotation pro-
duced by a rotating axial mean flow [15, 26]) or in tanks placed on a rotating platform and
forcing by a towed grid [18]. However, both DNS and experiments are faced with the issue of
limits of the fluid domain. In experiments, the flow is contained in tanks of size typically of the
order of less than one meter, so that the traveling time of waves within the tank is small with
respect to the rotation period, when considering standard experimental conditions of rotating
turbulence. Inertial-wave reflection by the solid walls thus occurs very quickly. In addition, sec-
ondary flows from global instabilities can introduce perturbations. In DNS, when considering
the most common Fourier spectral methods applied to three-dimensional periodic domains, the
periodic condition is not consistent with wave propagation at most wavelengths, again produc-
ing undesired numerical confinement. For these reasons, conducting relevant direct numerical
simulations in the wave-turbulence regime is difficult, an issue we will return to in section 6.5.

Faced with both these geometrical and dynamical regime constraints, one can turn to mod-
els for attempting to predict wave turbulence dynamics. This was done by Bellet et al. [3] in
the unbounded case. These authors propose a two-point statistical model, which is inspired by
previous quasi-Gaussian models developped during the last decades for homogeneous isotropic
turbulence predictions (DIA and EDQNM models by Kraichnan [16], Orszag [25]) for rotating
turbulence (Cambon et al. [8]), and for the evolution of random waves in a weakly nonlinear
regime [4]. The key feature of these models is to consider the two-point correlation spectra of
velocity or wave amplitude rather than the spectral coefficients themselves. An evolution equa-
tion is derived for the two-point correlation spectra, which is not closed due to nonlinearity. The

3



1. Introduction

two-point equation involves the three-point moments, whose evolution equation introduces the
four-point moments, and so on. The result is an infinite hierarchy of statistical moments, a
well-known issue in turbulence when deriving equations for the flow statistics from the Navier-
Stokes equations. This situation can be handled using a closure, the most common of which
expresses the fourth-order moments in terms of the second-order ones, assuming that the spec-
tral wave amplitudes are nearly Gaussian random variables. Although several previous authors
proposed closures of this kind (Holloway and Hendershott [13], Zakharov et al. [33], Galtier
[9]) the AQNM model by Bellet et al. [3] was the first one to be numerically implemented,
and used for predicting wave turbulence evolution and quantitative estimates of its statistics.
The numerical implementation of such models requires a robust time-marching scheme and the
accurate representation of the surfaces of resonant triads in spectral space. This work was used
as a starting point of the present study.

In this thesis, our goal is to consider two features of rotating flows which have never been
studied in the wave-turbulence regime.

The first one is confinement: we consider a flow enclosed within two rotating parallel walls,
without mean flow, the walls being perpendicular to the rotation axis. Studies of a rotating chan-
nel having a similar geometry were proposed both in experiments and numerical simulations
(Kristoffersen and Andersson [17]) but most of them were for spanwise rotation. It is worth
noting that Yang et al. [31] proposed a helical decomposition in a channel flow with streamwise
or spanwise rotation, not wall-normal, but which is similar in spirit to our analysis in terms of
helical — i.e. linear — mode decomposition, since linear modes in rotating turbulence match
the inertial waves modes. Another parallel with the existing literature is found in the model
proposed by Turner [29] for bounded turbulent rectangular channel flow, with free slip bound-
ary conditions. This statistical model is inspired by two-point Gaussian models of EDQNM
type, which, in the unbounded case, have been shown by Bellet et al. [3] to yield the wave-
turbulence closure, referred to as AQNM by these authors, in the small Rossby limit of rotating
turbulence. However, Turner’s model requires an ad hoc ’random phase’ approximation, which
is not required in wave-turbulence models since, in the latter, the small Rossby number limit
permits closure without this assumption (see Benney et al. [4], Bellet et al. [3], Scott [27]).

The second original feature of this work is the resolution of the three-dimensional, wave
turbulence part of the flow independently of the two-dimensional component. The two-
dimensional flow component consists of contributions from all wave vectors perpendicular to
the rotation axis. If the flow were exactly two-dimensional rotation does not appear explicitly
in its dynamics and the flow evolution can be described as exactly two-dimensional turbulence
[12]. However, for wave turbulence, Scott [27] showed that in the wave-turbulence limit the
two-dimensional flow decouples from the three-dimensional motion. The existence of energy
transfers between 2D and 3D motion, and their intensity, is an open question for rotating strong
turbulence. To our knowledge, no exact theory exists to quantify the extent to which the 2D
and 3D motions interact, although partial arguments have been suggested [20] in infinite (ho-
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1. Introduction

mogeneous) rotating turbulence. For bounded rotating flows such as the one we consider, only
numerical studies have been advanced, but they are challenged by the lack of resolution in the
neighborhood of the 2D spectral plane, so that the rapid local variation of the transfer term
is out of reach of DNS. Boundedness of the flow studied here at least allows a clear decom-
position into 2D and 3D components, whose dynamics and possible interactions can then be
studied. As noted earlier, in keeping with the results of Scott [27], the 3D component evolves
independently of the 2D one in the wave-turbulence limit. Thus, the wave-turbulence model
we use, whose derivation can be found in [27], concerns only the 3D component.

Our numerical resolution of the model proposed by Scott relies on a careful implementation
of numerical schemes that preserves the necessary symmetries and conservation properties of
the flow. The basic ingredients of the model are discussed in chapter 3. The implementation of
the model is described in chapter 4.

Logically, the most important original part of this work concerns the quantitative results for
inertial wave turbulence evolution that we report in chapter 5. We chose to explore a wide para-
metric range in terms of dependence on the initial conditions (the width of the initial spectrum)
and on the bulk dissipation and wall-induced dissipation. One of the most spectacular spectral
results is the emergence of spectral discontinuities, predicted by resonant waves theory, but
whose actual existence and amplitude had to be observed. The timescale at which this spectral
discontinuity appears can be estimated, but thanks to our simulations the exact scaling is avail-
able. Another highly awaited result is the way energy is redistributed in wavespace, or in other
terms the pace of the cascade both in the wavenumber, k, perpendicular to the axis of rotation
and in the inertial wave mode order n (which describes the discrete wave vector component par-
allel to the axis of rotation). Our time-evolving simulations show energy transfer from inertial
waves of low to high wavenumber, as well as from low order to larger order. Both redistribution
phenomena along k and n are therefore precisely demonstrated, until bulk dissipation kicks in
to limit the extension of the energy cascade, and form a dissipative sub-range in the energy
spectrum. From this time on, we assess the temporal power laws of energy evolution so that
we are able to quantify the efficiency of the wave-turbulence cascade in a close-to-stationary
similarity state.

The second important part of this PhD work was the design of a strategy aiming at the direct
numerical simulation of wall-bounded inertial wave turbulence, for a possible comparison with
predictions of the statistical model. The anticipated required effort is prodigious, but we de-
cided to give it a try. The simulation platform we have chosen is a highly parallelized spectral
code developed by Buffat and colleages at LMFA. This code has been used for studying the
transition over a plane wall in a rotating channel [6], and for transition of the boundary layers
[21], using a very high resolution of 4096× 512× 512 grid points. For simulating inertial wave
turbulence, the requirements are the following:

• in order to achieve proper boundary conditions as regards the propagation of waves out of
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1. Introduction

the computational domain, its horizontal extent has to be very large. It can be estimated
from the inertial waves group velocity in the horizontal, compared with the number of
wave-turbulence timescales required for a significant spectral evolution of the flow.

• Small scales have to be adequately resolved for the considered Ekman and Rossby num-
ber regime, and the inertial spectral sub-range ought to be observable, so that a very fine
resolution is required.

• The computation needs to be run for long enough to permit the observation of a signifi-
cant spectral evolution.

Altogether, these simulations are a considerable challenge. We must say that our final goal,
which was a close comparison between the model predictions and DNS results, has not been
reached. This is because, it turned out from DNS that, for the given (small) Rossby number,
nonlinear transfer took place more rapidly than we had expected. The dissipative range was
formed before enough rotation times had elapsed to allow wave-turbulence closure a chance of
working. This means that, in an ideal world, the Rossby number should be reduced still further,
but this has repercussions for the number of DNS Fourier modes that places the calculation
beyond the reach of the available compute power.

Nonetheless, the DNS code has been adapted to include rotation, the initialization and spec-
tral analysis routines required for comparison with the wave-turbulence model have been de-
veloped and DNS results were obtained. This work is described in section 6.5. We encountered
difficulties related to the need to revise our strategy to fit the simulation in the available com-
puter’s memory, to the specific design of an algorithm for generating initial conditions that
could be consistent with no-slip boundary conditions without triggering spurious waves, and
to the extraction of the necessary data in the right dimensioning from DNS simulations to be
compared with the model’s results.
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2. Inertial waveguide modes

Wave-turbulence analysis of decaying turbulence in a rotating channel, which is the subject of
the next chapter, is based on a description of the velocity field as a combination of inviscid
inertial waveguide modes. The main aim of this chapter is to explain these modes and their
associated two viscous damping mechanisms: wall and volumetric.

In a frame of reference rotating with angular velocity Ω (which will later be the rotational
velocity of the channel walls), we non-dimensionalize using a length scale L (which will later be
taken as the channel width) and the time scale (2Ω)−1, whereΩ = |Ω|. Velocity and pressure are
non-dimensionalized using 2ΩL and 4ρΩ2L2, where ρ is the fluid density. The incompressible
Navier-Stokes equations are

∂u
∂t

+ u · ∇u︸︷︷︸
Convection

+ Ω̂ × u︸︷︷︸
Rotation

= −∇Π + E∇2u, (2.1)

∇ · u = 0, (2.2)

where Ω̂ is a unit vector in the direction of Ω, the pressure variable Π incorporates the cen-
trifugal force, E = ν

/(
2ΩL2

)
is the Ekman number and ν the fluid viscosity. In this chapter we

consider waves whose amplitude is sufficiently small that the convective term can be dropped,
hence

∂u
∂t

+ Ω̂ × u = −∇Π + E∇2u. (2.3)

2.1. Plane waves

Equations (2.2) and (2.3) have solutions of the form(
u
Π

)
=

(
ũ
Π̃

)
exp(i(K · x − ωt)), (2.4)

where K is a real vector, while ũ, Π̃ and ω are complex. Such solutions are referred to as plane
waves and satisfy

K · ũ = 0, (2.5)

i
(
ω + iEK2

)
ũ − Ω̂ × ũ = iKΠ̃, (2.6)
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2. Inertial waveguide modes

where K = |K|. Let us adopt right-handed Cartesian coordinates, (x, y, z), such that the z-axis is
in the direction of K. (2.5) implies ũz = 0 and the x and y components of (2.6) give

i
(
ω + iEK2

)
ũx + Ω̂zũy = 0, (2.7)

i
(
ω + iEK2

)
ũy − Ω̂zũx = 0. (2.8)

The condition for a nonzero solution is(
ω + iEK2

)2
= Ω̂2

z , (2.9)

hence
ω = ±D(K) − iEK2, (2.10)

ũy = ∓iũx, (2.11)

where

D(K) =
K‖
K

(2.12)

is the usual dispersion relation for inviscid inertial waves, K‖ is the component of K parallel to
the rotation vector and we have used

Ω̂z =
Ω̂ ·K

K
=

K‖
K
. (2.13)

To obtain a physically meaningful velocity field, we take the real part of (2.4). Writing
ũx =

∣∣∣ũx

∣∣∣ eiφ and using (2.10) and (2.11), this gives

ux =
∣∣∣ũx

∣∣∣ e−EK2t cos(K · x ∓ D(K)t + φ), (2.14)

uy = ±
∣∣∣ũx

∣∣∣ e−EK2t sin(K · x ∓ D(K)t + φ), (2.15)

which describe a vector u in the x-y plane of norm
∣∣∣ũx

∣∣∣ e−EK2t and oriented at an angle

±K · x − D(K)t ± φ (2.16)

to the x-axis. This result can be visualised as follows. Imagine a line parallel to K and attach a
velocity vector to each point on the line. These vectors are perpendicular to the line and, at any
given instant, form helices according to (2.16). Depending on whether the upper or lower sign
is taken, the two helices corkscrew about the line with different senses. They rotate in the same
sense as t varies.
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2. Inertial waveguide modes

The above velocity fields are often referred to as helical modes [30]. They form the basis
for spectral modelling [5] of rotating turbulence in unbounded domains, in particular the wave-
turbulence analysis of [3]. However, there being no recognition of the effects of the walls, they
are inappropriate for wall-confined flows, such as the channel flow.

Before including wall effects, note that (2.14) and (2.15) imply exponential decay of the
wave due to viscous effects. This illustrates the dissipative mechanism which we refer to as
volumetric damping because it operates throughout the flow, rather than being confined to
boundary layers at the walls.

2.2. Waveguide modes

In the case of the rotating channel, there are bounding walls perpendicular to the rotation
axis and separated by the channel width, h, which is taken as the length scale for non-
dimensionalization. Thus, using a right-handed coordinate system, (x1, x2, x3), with the x3-axis
in the direction of Ω, the walls lie at x3 = 0, 1. Equations (2.2) and (2.3) give

∂u1

∂t
− u2 = −

∂Π

∂x1
+ E∇2u1, (2.17)

∂u2

∂t
+ u1 = −

∂Π

∂x2
+ E∇2u2, (2.18)

∂u3

∂t
= −

∂Π

∂x3
+ E∇2u3, (2.19)

∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3
= 0. (2.20)

Waveguide modes are solutions of (2.17)-(2.20) and boundary conditions at the walls (whose
detailed expression, given later, depends on whether we consider inviscid or viscous modes) of
the form 

u1

u2

u3

Π

 =


û1(x3)
û2(x3)
û3(x3)
Π̂(x3)

 exp
{
i
(
k1x1 + k2x2 − ωt

)}
, (2.21)

where k = (k1, k2) is a real vector parallel to the walls, while û1, û2, û3, Π̂ and ω are complex.
Equations (2.17)-(2.20) give (

E
(

d2

dx2
3

− k2
)

+ iω
)
û1 + û2 = ik1Π̂, (2.22)
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2. Inertial waveguide modes

(
E
(

d2

dx2
3

− k2
)

+ iω
)
û2 − û1 = ik2Π̂, (2.23)

(
E
(

d2

dx2
3

− k2
)

+ iω
)
û3 =

dΠ̂
dx3

, (2.24)

dû3

dx3
+ i

(
k1û1 + k2û2

)
= 0, (2.25)

where k =
(
k2

1 + k2
2

)1/2
.

2.2.1. Inviscid modes

Writing g(x3) = k−1û3(x3), (2.25) implies

k1û1 + k2û2 = ik
dg
dx3

. (2.26)

Defining h(x3) (not to be confused with the channel width, which does not appear in the rest of
this chapter) via

k1û2 − k2û1 = kh, (2.27)

(2.26), (2.27) and the definition of g(x3) give

û1 = k−1
(
ik1

dg
dx3
− k2h

)
, (2.28)

û2 = k−1
(
ik2

dg
dx3

+ k1h
)
, (2.29)

û3 = kg. (2.30)

Setting E = 0, (2.22) and (2.23) imply

iω
(
k1û1 + k2û2

)
+ k1û2 − k2û1 = ik2

Π̂ (2.31)

and
iω

(
k1û2 − k2û1

)
− k1û1 − k2û2 = 0. (2.32)

Hence, using (2.26) and (2.27),

ω
dg
dx3
− h = −ikΠ̂, (2.33)

and
dg
dx3
− ωh = 0. (2.34)
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2. Inertial waveguide modes

When E = 0, (2.24) and (2.30) give

ωkg = −i
dΠ̂
dx3

. (2.35)

Eliminating Π̂ between (2.33) and (2.35) yields

ω

(
d2g

dx2
3

− k2g
)
−

dh
dx3

= 0. (2.36)

Finally, elimination h between (2.34) and (2.36),

(
1 − ω2

)d2g

dx2
3

+ ω2k2g = 0. (2.37)

The inviscid boundary conditions are û3 = 0 at the walls, hence

g = 0 x3 = 0, 1 (2.38)

follows from (2.30).
(2.37) and (2.38) have solutions of the form

g = C sin nπx3, (2.39)

where C , 0 is an arbitrary constant, while n takes on integer values and is referred to as the
modal order. (2.37) and (2.39) imply

ω2 =
n2π2

k2 + n2π2 . (2.40)

When n = 0, ω = g = 0 and dh / dx3 = 0 according to (2.36). Thus, h is constant and
(2.28)-(2.30) give

û1 = −k2k−1h, û2 = k1k−1h, û3 = 0. (2.41)

The pressure follows from (2.33) as

Π̂ = −ik−1h. (2.42)

This is referred to as the two-dimensional mode because it does not depend on x3. For nonzero
n, (2.40) suggests a choice of signs for ω. It is simplest to allow negative n and use ω = ωn(k),
where

ωn(k) =
nπ(

k2 + n2π2
) 1/2 . (2.43)
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2. Inertial waveguide modes

That is, we associate the positive solution of (2.40) to positive n and the other solution to
negative n. (2.28)-(2.30), (2.33), (2.34) and (2.39) give

û1 = Cnπk−1
(
ik1 − ω

−1
n (k)k2

)
cos nπx3

= iC
(
k2 + n2π2

)1/2
k−1(k1ωn(k) + ik2

)
cos nπx3,

(2.44)

û2 = Cnπk−1
(
ik2 + ω−1

n (k)k1

)
cos nπx3

= iC
(
k2 + n2π2

)1/2
k−1(k2ωn(k) − ik1

)
cos nπx3,

(2.45)

û3 = Ck sin nπx3

= iC
(
k2 + n2π2

)1/2

−i
k(

k2 + n2π2
) 1/2 sin nπx3

, (2.46)

Π̂ = iCnπk−1
(
ωn(k) − ω−1

n (k)
)

cos nπx3

= iC
(
k2 + n2π2

)1/2
(
−

k

k2 + n2π2 cos nπx3

)
,

(2.47)

where we have used ω = ωn(k) and (2.43).
Let us compare the results with the modes given by equations (2.4)-(2.8) of [27]. When

n = 0, (2.41) and (2.42) are in agreement provided we take h = −i, as are (2.44)-(2.47) for
n , 0 if C = −i

(
k2 + n2π2

)1/2
. These values of the constants h and C provide a particular

normalisation of the modes, i.e. the one which agrees with that used in [27], which was chosen
according to equation (2.11) of that article. That choice was motivated by the desire to simplify
the analysis of the wave-turbulence closure.

It may be interesting to note that the inviscid waveguide modes studied here can be under-
stood in terms of plane waves. The n = 0 mode is a plane wave with wave vector K =

(
k1, k2, 0

)
.

Modes with n , 0 can be interpreted as a combination of two plane waves. Thus, writing

cos nπx3 =
1
2

(
einπx3 + e−inπx3

)
, sin nπx3 =

1
2i

(
einπx3 − e−inπx3

)
, (2.48)

the mode is the sum of plane waves with wave vectors K =
(
k1, k2, nπ

)
and K =

(
k1, k2,−nπ

)
.

Each of these waves is the reflection by the walls of the other. Hence the mode can be thought of
as the reverberant propagation of inertial waves along the channel. Compared to the unbounded
case, the component K3 is now discrete, taking on integer multiples of π. (2.43) is the plane-
wave dispersion relation.
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2. Inertial waveguide modes

2.2.2. Viscous modes

The no-slip conditions on the walls imply

û1 = û2 = û3 = 0 x3 = 0, 1. (2.49)

(2.22)-(2.25) and (2.49) form an eigenvalue problem with eigenvalue ω. Viscous dissipation
means the modes decay in time, hence a negative imaginary part for ω. For general values of
E this eigenvalue problem requires numerical solution. However, here we focus on the case
of small E for which we expect the viscous modes to approach inviscid ones, but with small
damping. It is this damping that we want to discuss.

Small E leads to thin boundary layers (referred to as Ekman layers) at the walls. These layers
have thickness of order O(E1/2 ) to make the viscous terms in (2.22) and (2.23) comparable with
the others. It is shown in [27] that small E modifies the frequency of an inviscid mode according
to

ω = ωn(k) − i
(
E1/2 Dn(k) + E

(
k2 + n2π2

))
, (2.50)

where Dn(k) is a complex damping coefficient given by equation (2.22) of that article. The
imaginary part of Dn(k) implies a small shift in the modal frequency, while the real part, which
is positive, leads to modal decay. The former effect is unimportant in the model, whereas, as
we shall see in later chapters, the latter can significantly affect the evolution of the turbulent
energy spectra.

Given the interpretation of the inviscid modes in terms of plane waves of wave vectors
K =

(
k1, k2,±nπ

)
, the term E

(
k2 + n2π2

)
= EK2 in (2.50) corresponds to the damping rate

of plane waves in an unbounded domain. This term is referred to as volumetric damping be-
cause it corresponds to viscous dissipation everywhere in the flow. On the other hand, the real
part of the term E 1/2 Dn(k) represents dissipation in the boundary layers and is referred to as
wall damping.

The relative importance of volumetric and wall damping depends on K =
(
k2 + n2π2

)1/2
. As

discussed in [27], E1/2 Dn(k) depends only on the orientation of the vector K =
(
k1, k2, nπ

)
rel-

ative to the rotation axis and is of O(E1/2 ) no matter how large K becomes. On the other hand,
the volumetric damping factor, EK2, increases with K. The two are comparable if K ∼ E−1/4 ,
with dominant wall damping below this range and increasing importance of volumetric damp-
ing as K is increased. At large enough K, volumetric damping replaces wall damping as the
dominant damping mechanism.

2.3. Summary

As discussed in section 2.1, plane waves are the basic building blocks in the theory of inertial
waves. They provide a dispersion relation and the helical modes, which form the basis of
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2. Inertial waveguide modes

spectral analysis of the effects of rotation on turbulence in an unbounded domain.
For wall-bounded flows, such as the channel with walls perpendicular to the rotation axis

which is the subject of this PhD, plane waves are insufficient because they do not allow for the
walls. In section 2.2, we considered the effects of the walls, starting with the inviscid case.
The resulting waveguide modes were determined and form the basis for the wave-turbulence
analysis of [27]. They are a combination of two plane waves having the same frequency and
wave vectors K with the same components, K1 = k1 and K2 = k2, parallel to the walls. On the
other hand, the normal component K3 changes sign, being K3 = nπ for one of the waves and
K3 = −nπ for the other, where the modal order, n, takes on integer values. Thus, an important
effect of boundedness is the discretization of K3 to be a multiple of π.

As we saw in section subsection 2.2.2, the effect of small viscosity (i.e. small E) is weak
damping of the modes resulting from a combination of wall and volumetric effects. The former
is dominant when K = O(1), but the latter increases in importance as K increases and takes
over as the dominant damping mechanism for large enough K

(
K � E− 1/4

)
.
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3. Wave-turbulence closure model

This chapter describes a wave-turbulence closure (WTC) model of the rotating channel flow,
which was derived in [27]. Wave-turbulence theory requires that linear terms are dominant,
which, in the present case, means small Rossby number. Thus, nonlinearity takes many rotation
periods to become effective. Wave-turbulence theory leads to the conclusion that nonlinear
effects are dominated by resonances, i.e. interactions between wave triads whose frequencies
sum to zero.

The unconfined, 3D case was studied in [3]. The resonant modes occur on a surface in
Fourier space and nonlinear effects are represented by an integral over that surface according
to wave-turbulence theory. In our case, confinement by the channel walls means that the turbu-
lence is inhomogeneous in the cross-channel direction. As a result, Fourier analysis is restricted
to the directions parallel to the walls and the wave vector is two-dimensional. Cross-channel
variations of the flow are represented by Fourier series, rather than Fourier integrals. More pre-
cisely, a basis set of inertial waveguide modes, parametrised by a 2D continuous wave vector,
k, and an integer n (the modal order) is used to express the flow field. Thus, the spectral de-
scription becomes discrete in the cross-channel direction. Owing to the 2D nature of the wave
vector, resonances are now associated with a curve, rather than a surface, and nonlinear effects
appear as an integral over this curve (and a sum over modal orders).

A slight subtlety arises because wave-turbulence theory requires the waves to be disper-
sive. However, as we shall see (and as discussed in [27]) there is a particular family of modes
(n = 0, referred to as 2D modes) whose group velocity is zero and which are consequently
nondispersive. The flow is separated into two components, the 2D one and the wave one, and
wave-turbulence analysis is only applied to the latter. Fortunately, it turns out (see [27] and
the further discussion in Appendix B) that the energetics of the wave component are unaffected
by the 2D component in the wave-turbulence limit, hence the wave-component spectra can be
analysed separately (the spectral evolution equations of the wave component are closed).

In section 3.1, we describe the main ingredients of the model, while section 3.2 concerns the
properties of the resonance curves. Some resonance curves can disappear as the wavenumber |k|
is reduced below a certain critical value. This leads to a striking result of confinement, namely
the appearance of discontinuous jumps in the spectra. This is the subject of section 3.3. The
prediction of discontinuities is an artefact of the model. In fact, wave turbulence theory does
not apply sufficiently close to a critical wavenumber and one expects rapid, but continuous
variations of the spectra of confined turbulence at small Rossby number.
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3. Wave-turbulence closure model

3.1. Governing equations

We study incompressible, decaying turbulence without mean flow confined between two in-
finite, parallel walls, x3 = 0, h, which rotate with angular velocity Ω = (0, 0,Ω), as shown
in Figure 3.1.

x3 = h

x3 = 0

h

x3
Ω

Turbulent flow

Figure 3.1.: Channel schema

The flow is governed by the Navier-Stokes equations in the frame of reference rotating
with the walls. We non-dimensionalize using the length, time, velocity and pressure scales,
h, (2Ω)−1, 2Ωh and 4ρΩ2h2, leading to

∂u
∂t

+ u · ∇u + Ω̂ × u = −∇Π + E∇2u, (3.1)

∇ · u = 0, (3.2)

where the pressure variable, Π, includes the centrifugal force, Ω̂ is a unit vector collinear to the
angular velocity and E = ν/(2Ωh2) is the Ekman number. Given the non-dimensionalization,
the velocity components, ui, scale with the Rossby number, which is denoted ε to suggest the
smallness required by wave-turbulence closure. Small ε can be interpreted as rapid rotation
and implies that the nonlinear term in (3.1), u · ∇u, is small compared with the Coriolis term,
Ω̂ × u. The wall boundary conditions which accompany (3.1) and (3.2) are

ui = 0, x3 = 0, 1. (3.3)

As noted above, we will consider the limit of small Rossby number in which nonlinearity is
weak and hence takes a long time to act (as we shall see later the evolution time scales as ε−2).
In order that viscosity does not kill the turbulence before nonlinearity becomes significant, the
Ekman number is also supposed small.

The turbulence is assumed to be statistically homogeneous and isotropic [1] in the uncon-
fined directions, x1 and x2, but confinement means that it is inhomogeneous with respect to
the third direction. In the case of 3D homogeneous turbulence, Fourier analysis in all three
directions is used, whereas here, there being only two directions of homogeneity, the basis set
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3. Wave-turbulence closure model

employed for the velocity and pressure fields has the form eik·x where k =
(
k1, k2, 0

)
is a two-

dimensional wave vector. Different choices for the basis set are possible, e.g. the linear viscous
modes of the channel, but the one employed here is the inviscid modes, solutions of (3.1), (3.2)
without the nonliear and viscous terms in (3.1) and subject to the inviscid boundary conditions
u3 = 0, x3 = 0, 1.

These modes have the form

ui = W (n)
i (x3; k) ei(k·x−ωn(k)t), (3.4)

Π = Φ(n)(x3; k) ei(k·x−ωn(k)t) (3.5)

and are parameterized by the wave vector k, of norm k = |k|, and by an integer n:

W (n)
1 (x3; k) =

k1ωn(k) + ik2

k
cos(nπx3), (3.6)

W (n)
2 (x3; k) =

k2ωn(k) − ik1

k
cos(nπx3), (3.7)

W (n)
3 (x3; k) = −

ik

(k2 + n2π2)1/2 sin(nπx3), (3.8)

Φ
(n)(x3; k) = −

k

k2 + n2π2 cos(nπx3), (3.9)

ωn(k) =
nπ

(k2 + n2π2)1/2 . (3.10)

These modes are referred to as inertial waveguide modes of order n. Regarding nπ as a
discretized wave-vector component in the x3 direction of the three-dimensional wave vector
K = (k1, k2, nπ) allows us to consider (3.10) as the usual dispersion relation for plane inertial
waves. Writing cos nπx3 and sin nπx3 in terms of einπx3 and e−inπx3 , (3.4)-(3.9) can be inter-
preted as indicating the waveguide modes consist of two plane inertial waves, the one being the
reflection by the walls of the other. Note that the mode −k, −n is the complex conjugate of k, n.

The waveguide modes form a complete set for solenoidal velocity fields in the channel. Thus,
we can write any velocity field satisfying (3.2) as a combination of waveguide modes:

ui(x, x3, t) =

∞∑
n=−∞

∫
ũn(k, t)W (n)

i (x3; k) eik·x d2k. (3.11)

As noted in [27], the modes are orthogonal in the sense that (2.11) of [27] is satisfied. This
leads to an expression, (2.13) of [27], for the coefficients ũn(k, t) in terms of ui(x, t) which is an
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inverse of the transform (3.11). Since the velocity, ui, is real and the modes −k, −n and k, n are
conjugates, the coefficients ũn possess the following property:

ũ∗n(k, t) = ũ−n(−k, t), (3.12)

where “*” denotes complex conjugation. That is, a mode must be accompanied by its conjugate
to make the velocity real. We suppress the modal oscillations by employing mode amplitudes
an(k, t) defined by

an(k, t) = ũn(k, t) eiωn(k)t . (3.13)

Note that, in the absence of nonlinearity and viscosity, an is time independent. Given small
Rossby and Ekman numbers, we expect slow evolution of an. According to [27], for small
Rossby and Ekman numbers, the evolution equation of the amplitudes is

∂an(k, t)
∂t

+ ∆n(k)an(k, t) =

∞∑
np,nq=−∞

∫
ei

(
ωn(k)+ωnp

(p)+ωnq
(|k+p|)

)
t
Nnnpnq

(k,p)a∗np
(p)a∗nq

(−k − p) d2p,

(3.14)
where Nnnpnq

(k,p) are nonlinear coefficients given in Appendix A, which are zero unless one
of the four conditions n ± np ± nq = 0 is met, and

∆n(k) = E1/2 Dn(k)︸     ︷︷     ︸
wall damping

+ E
(
k2 + n2π2

)︸         ︷︷         ︸
volumetric damping

(3.15)

is the overall viscous damping factor of the given mode. The first term of ∆n(k) describes
viscous dissipation due to the boundary layers at the walls and contains

Dn(k) =

(
1 − ω2

n(k)
)1/2

√
2

((
1 + ωn(k)

)3/2
+

(
1 − ωn(k)

)3/2

+ i
((

1 + ωn(k)
)3/2
−

(
1 − ωn(k)

)3/2
))
,

(3.16)

which depends only on the direction of the three-dimensional wave vector and has a maximum
when K is parallel to the walls. The second term represents volumetric damping and is propor-
tional to the wavenumber squared. This reflects the usual behavior of smaller scales to dissipate
energy faster then the large ones. Given the small Ekman number, E 1/2 << E which means that
wall damping dominates over volumetric dissipation for the large scales.

The statistical characterization of turbulence uses two-point correlations of velocity ampli-
tudes which are represented by a spectral matrix Anm(k, t). This matrix is defined via the statis-
tical average of products of the modes amplitudes of orders n and m:

a∗n(k, t)am(k′, t) = Anm(k, t)δ(k − k′), (3.17)
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3. Wave-turbulence closure model

where δ is the Dirac function. As noted in [27], Anm(k) is Hermitian, i.e.

Anm(k, t) = A∗mn(k, t) (3.18)

and positive definite. The diagonal elements (n = m) of this matrix are therefore real and
positive. One can obtain the statistically and x3-averaged kinetic energy using

1
2

∫ 1

0
uiui dx3 =

∞∑
n=−∞

∫ ∞

0
πkAnn(k, t) dk. (3.19)

Hence, the diagonal elements represent the distribution of energy over the modes n and hor-
izontal wavenumbers k. Because A−n−n = Ann(k), there are equal contributions to the energy
from −n and n when n , 0. The off-diagonal elements can be complex and express correlations
between modes of different orders. Our aim is to study the time evolution of Anm(k, t) in the
limit of small Rossby number. Henceforth, for simplicity’s sake, we omit the time variable in
the Anm parameters, but it should be borne in mind.

We will not get into the details of the derivation of the wave-turbulence closure, which can
be found in [27]. Here, we introduce only the overall ideas and give the resulting equation
describing the time evolution of the spectral matrix.

Wave-turbulence theory is applicable to dispersive waves only. From (3.10) it follows that
modes with n = 0 are not dispersive as their group velocity is zero. So, we separate the modes
n = 0 from the others contributing to (3.11). These two groups of modes divide the flow into
two components. The one, n = 0, is referred to as the two-dimensional component and the
second as the wave component.

The usual assumption of asymptotic statistical independence in the limit of infinite separa-
tions leads to the representation of four-order moments as the sum of their quasi-normal values
and a cumulant correction. The terms corresponding to cumulants are found to be negligible
due to rapid oscillations in k-space. Arguing in a similar way for the quasi-normal contri-
bution and neglecting terms with rapid time oscillations, the asymptotically important part of
the third-order moments is obtained using standard wave-turbulence techniques described by
Newell and Rumpf [24]. The result is the following evolution equation for the diagonal ele-
ments of the spectral matrix for n , 0, namely

∂Ann(k)
∂t

+ 2 Re(∆n(k))Ann(k)

=
∑

np,nq,0

∮
Cnnpnq

(k)

Anpnp
(p)

(
ηnnpnq

(k,p)Ann(k) + λnnpnq
(k,p)Anqnq

(|k + p|)
)

Γnpnq
(k,p)

| dp|, (3.20)
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3. Wave-turbulence closure model

where Re denotes real part of a complex number and the following notation is used for the
nonlinear coefficients

ηnnpnq
(k,p) = 8 Re

(
N∗nnpnq

(k,p)Nnqnpn(−k − p,p)
)
, (3.21)

λnnpnq
(k,p) = 4

∣∣∣∣Nnnpnq
(k,p)

∣∣∣∣2, (3.22)

and geometrical coefficient

Γnpnq
(k,p) =

1
π

∣∣∣∣∇pσnnpnq
(p,k)

∣∣∣∣ (3.23)

with
σnnpnq

(p,k) = ωn(k) + ωnp
(p) + ωnq

(|k + p|). (3.24)

The integral is taken around a curve which is defined as the locus of points in the p-plane for
which

σnnpnq
(p,k) = 0 (3.25)

for given k, n, np and nq, such that one of the conditions

n ± np ± nq = 0 (3.26)

is satisfied. We will omit the indices of σnnpnq
in what follows. This curve is referred to as

the resonance curve. It defines vector triads, (k, n), (p, np) and (−k − p, nq) such that the sum
of modal frequencies is zero. The resonance curve may not exist, in which case the integral
in (3.20) should be taken to be zero. Figure 3.2 shows the resonance curves for a particular
choice, n = 1, k = 10, and all np, nq satisfying n ± np ± nq = 0. As we shall see, each loop
corresponds to a particular choice of np, nq. The following section describes the properties of
such curves.

Recalling that the velocity is O(ε), Anm(k) is O(ε2). Hence, from equation (3.20) it follows
that the Ann(k) evolution time scale is O(ε−2). It is shown in [27] that the two-dimensional
component evolves independently1 on the usual large-scale turnover time, t = O(ε−1), and
makes the off-diagonal elements decay on a time scale asymptotically smaller then O(ε−2).

Two important results concerning realizability and energy conservation follow from equa-
tion (3.20). The former is that Ann(k) never become negative. The later is that, without viscous
dissipation, the n , 0 part of the energy is conserved. Moreover, one can show that the trun-
cated version of (3.20) respects equipartition in the absence of dissipation (see Appendix C for
the details).

Given A−n−n = Ann, we restrict attention to n > 0 from here on. We also use isotropy in the
horizontal directions by choosing axes, x1, x2, such that k = (k, 0).

1 In [27], the reasoning relies on various identities based on numerical evidence. Appendix B provides analytical
proofs of these identities.
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Figure 3.2.: Resonance curves in the p-plane for n = 1, k = 10

3.2. Properties of the resonance curve

The purpose of this section is to investigate the existence and topology of the resonance curve.
It should be borne in mind that np, nq , 0 and one of the four conditions (3.26) is satisfied.

First, note that, for given values of n, np, nq and k = (k, 0), the left-hand side of (3.25) is a
smooth function of p which tends to ωn(k) > 0 as p → ∞. Thus, the resonance curve does not
extend to infinite p. Note that there is no resonance curve if np, nq > 0 because ωn(k), ωnp

(p)
and ωnq

(|k + p|) are all positive. Thus, we assume np < 0 or nq < 0 below. Note also that σ,
and hence the resonance curve, is symmetric under the reflection p2 7→ −p2.

3.2.1. k = 0

When k = 0, (3.25) becomes
1 + ωnp

(p) + ωnq
(p) = 0. (3.27)

Unless np, nq < 0, there are no solutions of (3.27). On the other hand, if np, nq < 0, the left-hand
side of (3.27) increases monotonically from −1 at p = 0 to +1 at p = ∞. Thus, the resonance
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3. Wave-turbulence closure model

curve exists when np, nq < 0 and consists of a circle, p = rnpnq
, in the p plane, where rnpnq

is the
solution of (3.27) for these np, nq.

Having dealt with the case k = 0, we restrict attention to k , 0 in what follows.

3.2.2. k → ∞

As k → ∞ for given n, np and nq, if p remains finite, (3.25) cannot be satisfied because the first
and third terms in (3.24) tend to zero, whereas the second does not. Thus, p→ ∞. Likewise, if
|k + p| remains finite, the first and second terms approach zero, while the third does not. Hence,
p→ ∞ and |k + p| → ∞, so (3.25) takes the approximate form

n
k

+
np

p
+

nq

|k + p|
= 0. (3.28)

Without loss of generality, we assume np < 0. Otherwise, renaming np ↔ nq and p ↔ −k − p
make (3.25) still satisfied. If p goes to infinity faster then k, i.e. p/k → ∞, the left-hand side
of (3.28) multiplied by k tends to n > 0, whereas it approaches −∞ as p/k → 0. This implies
that the resonance curve always exists for big enough k. It is shown in Appendix D that the
curve consists of a single loop.

3.2.3. Finite nonzero k

As k varies, the number of loops of the resonance curve may change. This occurs if σ = 0 and
∇pσ = 0 leading to

nπ(
k2 + n2π2

)1/2 +
npπ(

p2 + n2
pπ

2
)1/2 +

nqπ(
|k + p|2 + n2

qπ
2
)1/2 = 0, (3.29)

and
npπp(

p2 + n2
pπ

2
)3/2 +

nqπ(k + p)(
|k + p|2 + n2

qπ
2
)3/2 = 0. (3.30)

Solutions, k, p, of (3.29) and (3.30) are referred to as critical points. Note that (3.29) and (3.30)
are invariant under the symmetry np ↔ nq, p ↔ −k − p. Thus, critical points with np , nq

occur in symmetric pairs having the same k.
Appendix E describes a procedure for solution of (3.29) and (3.30) allowing the determi-

nation of critical points. Numerical implementation of this procedure was carried out. Of
course, the infinity of possible n, np and nq cannot all be treated numerically, so the modal
orders were restricted to 0 < n,

∣∣∣np

∣∣∣, ∣∣∣nq

∣∣∣ ≤ nmax (nmax = 20). It was found that a single critical
point, kc, pc = (pc1, 0), exists provided np and nq have opposite signs, otherwise there are none.
Although we have no analytical proof of this result, we assume it to hold.
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3. Wave-turbulence closure model

Let kc and pc = (pc1, 0) represent a critical point. Taylor’s expansion of σ(p, k) gives

σ(p, k) ∼ κ(k − kc) +
1
2

2∑
i, j=1

Di j(pi − pci)(p j − pc j), (3.31)

where

κ =
∂σ

∂k
(
pc, kc

)
, Di j =

∂2σ

∂pi∂p j

(
pc, kc

)
. (3.32)

Writing

σ(p, k) = ωn(k) + ωnp

((
p2

1 + p2
2

)1/2
)

+ ωnq

(((
k + p1

)2
+ p2

2

)1/2
)

(3.33)

we obtain
κ = ω′n(kc) + sgn

(
kc + pc1

)
ω′nq

(∣∣∣kc + pc1

∣∣∣), (3.34)

Di j =

[
µ1 0
0 µ2

]
, (3.35)

µ1 = ω′′np

(∣∣∣pc1

∣∣∣) + ω′′nq

(∣∣∣kc + pc1

∣∣∣), (3.36)

µ2 =
∣∣∣pc1

∣∣∣−1
ω′np

(∣∣∣pc1

∣∣∣) +
∣∣∣kc + pc1

∣∣∣−1
ω′nq

(∣∣∣kc + pc1

∣∣∣), (3.37)

where ω′n and ω′′n are the first and second derivatives of ωn(k) .
(3.34), (3.36) and (3.37) were numerically evaluated for each of the critical points obtained

as described above. We found that κ < 0 and µ1, µ2 > 0. As k → ∞, we saw earlier that the
resonance curve exists and forms a single loop. As k decreases, a change in the number of
loops requires a critical point which, as we have seen, exists only if np and nq have opposite
signs. As k ↘ kc, (3.31) yields a resonance curve which approaches

µ1
(
p1 − pc1

)2
+ µ2 p2

2 = −2κ(k − kc). (3.38)

since κ < 0 and µ1, µ2 > 0, this implies that the resonance curve disappears via a small ellipse
as k decreases through kc.

We conclude that, when it exists, the resonance curve consists of a single loop. It is present
for all k if np, nq < 0, but only when k > kc if np and nq have opposite signs.

3.3. Spectral discontinuities

For given n and np, nq of opposite signs, let kc = (kc, 0) and pc = (pc1, 0) represent the associ-
ated critical point. The resulting contribution of the integral to (3.20) is zero if k < kc and we
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3. Wave-turbulence closure model

now evaluate it as k increases through kc. From (3.31) and (3.35),

Γnpnq
(k,p) ∼

1
π

(
µ2

1
(
p1 − pc1

)2
+ µ2

2 p2
2

) 1/2
(3.39)

in the neighborhood of the critical point. Appendix F demonstrates that the integral on the
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Figure 3.3.: Example of spectral discontinuities.

right-hand side of (3.20) approaches the limiting form

2π2(
µ1µ2

)1/2 Anpnp
(pc)

(
ηnnpnq

(kc,pc)Ann(k) + λnnpnq
(kc,pc)Anqnq

(∣∣∣kc + pc

∣∣∣)) (3.40)

as k ↘ kc. Thus, the integral in (3.20) has a discontinuous jump, from zero to (3.40), as k
increases through kc. As a result, spectral evolution according to (3.20) will introduce discon-
tinuous jumps in the spectra, Ann(k), even if the initial spectra are smooth. This is illustrated
by Figure 3.3, which shows a typical result of numerical solution of (3.20). Such jumps do not
occur in the unconfined 3D case studied in [3] because the equivalent of the integral in (3.20)
is over a (resonant) surface whose area goes to zero as critical point is approached sufficiently
rapidly that the limiting value of the integral is zero. The jumps are thus symptomatic of con-
finement.

The discontinuities of Ann(k) are an artefact of wave-turbulence asymptotics, which break
down in a small neighborhood, k − kc = O(ε2), of the critical point. In reality, we expect rapid,
but not discontinuous variation as k passes through kc, with wave-turbulence theory applying
outside k − kc = O(ε2).
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4. WTC implementation

As described in the previous chapter, wave-turbulence closure leads to evolution equations,
(3.20), for the energy density in spectral space. Nonlinear effects appear in these equations as
integrals over resonance curves. Numerical evaluation of these integrals constitutes the core
part of the implementation. Spectral discontinuities, discussed in section 3.3 and which reflect
the appearance/disappearance of resonance curves, also require some care.

In this chapter, we present the most important ingredients of the numerical implementation.
Section 4.1 provides a precise definition of the Rossby number, ε, and corresponding rescalings
of the spectra and time variable which lead to elimination of the Rossby number as a parameter
in the numerical problem to be solved. In section 4.2, symmetries are employed to reduce the
subsequent numerical cost of evaluating the integrals around the resonance curves. Spectral
discretization and truncation are introduced in section 4.3. Section 4.4 describes the numerical
evaluation of the integrals around the resonance curve. In section 4.5, the numerical scheme
used for time discretization is discussed. Section 4.6 describes the organisation of the program
resulting from the numerical implementation.

The code was first developed in FORTRAN in serial form, then parallelized using MPI.
Section 4.7 discusses parallelization and its scaling with the number of available processes.

Finally, section 4.8 concerns various checks on the accuracy of the code which were under-
taken to verify its correctness, as well as results which show that the truncated inviscid model
leads to equipartition of energy.

4.1. Rescaling and a precise definition of the Rossby
number

Since, as noted in the previous chapter, Ann(k) and its nonlinear evolution time scale are re-
spectively O(ε2) and O(ε−2), it is natural to introduce the O(1) variables Bn(k) = ε−2Ann(k) and
T = ε2t, leading to

∂Bn(k)
∂T

= αn(k)Bn(k) + τn(k) (4.1)

for n , 0, where
αn(k) = Jn(k) − 2ε−2 Re(∆n(k)), (4.2)
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Jn(k) =
∑
np,nq

∮
Cnnpnq

(k)

ηnnpnq
(k,p)Bnp

(p)

Γnpnq
(k,p)

| dp|, (4.3)

τn(k) =
∑
np,nq

∮
Cnnpnq

(k)

λnnpnq
(k,p)Bnp

(p)Bnq
(|k + p|)

Γnpnq
(k,p)

| dp|. (4.4)

Here, Re denotes the real part of a complex number and the sums in (4.3) and (4.4) are over all
np, nq , 0 such that one of the four conditions n ± np ± nq = 0 is satisfied. Because B−n = Bn,
equation (4.1) need only be applied for n > 0 and we assume this henceforth. For the same
reason, we replace Bnp

and Bnq
by B|np| and B|nq| in (4.3) and (4.4). The viscous damping factor

2ε−2 Re(∆n(k)) = βw

(
1 − ω2

n(k)
) 1/2

√
2

((
1 + ωn(k)

)3/2
+

(
1 − ωn(k)

)3/2
)

+ βv

(
k2 + n2π2

)
(4.5)

contains two parameters, βw = 2ε−2E1/2 and βv = 2ε−2E, which respectively measure the im-
portance of wall and volumetric damping. Since E is small, βv � βw and wall damping gen-
erally dominates for the large scales. However, volumetric damping becomes significant if
k−1

(
k2 + n2π2

) 3/2
is large, of order E− 1/2 . This happens at small scales, when k2 + n2π2 is large,

and also at small k/(|n|π) , i.e. when the three-dimensional wave vector is nearly vertical.
We choose to define ε such that the initial wave-component energy equals ε2, i.e.

2π
∞∑

n=1

∫ ∞

0
kBn(k, 0) dk = 1, (4.6)

which is obtained from (3.19) using B−n = Bn. The initial spectra are taken as

Bn(k, 0) = C exp
[
−

k2 + n2π2

Ξ
2

]
, (4.7)

where Ξ determines the spectral width and the constant C is calculated using (4.6) as

C =
1

πΞ2 ∑∞
n=1 e−n2π2

/
Ξ

2 . (4.8)

(4.7) implies that the large scales contain most of the energy. Note that the parameters of the
problem are βw, βv and Ξ.
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4.2. Consequences of symmetry

Cnnpnq
(k), λnnpnq

(k,p) and Γnpnq
(k,p) are symmetric under the transformation np ↔ nq,

p↔ −k − p. Thus, we can combine np < nq and np > nq to obtain

Jn(k) =
∑
np,nq

ζnpnq

∮
Cnnpnq

(k)

ηnnpnq
(k,p)B|np|(p) + ηnnqnp

(k,−k − p)B|nq|(|k + p|)

Γnpnq
(k,p)

| dp|, (4.9)

τn(k) = 2
∑
np,nq

ζnpnq

∮
Cnnpnq

(k)

λnnpnq
(k,p)B|np|(p)B|nq|(|k + p|)

Γnpnq
(k,p)

| dp| (4.10)

from (4.3) and (4.4), where ζnpnq
takes the value 1/2 if np = nq and 1 otherwise and the sums

are taken over all np, nq , 0, np ≤ nq such that one of the conditions n ± np ± nq = 0 is met.
Since the resonance curve only exists if np < 0 or nq < 0, terms in (4.9) and (4.10) with np > 0
are zero. Thus, we further restrict attention to np < 0.

Taking k = (k, 0), Cnnpnq
(k) and the integrands in (4.9) and (4.10) are symmetric under

reflection about the p1-axis, i.e. p2 ↔ −p2. Thus, we can restrict the integrals to the part of the
resonance curve in p2 ≥ 0, then multiply the results by 2.

4.3. Truncation and discretization

In the mathematical model, (4.1), the wavenumber, k, can take any real value in k ≥ 0 and the
modal order, n, any positive integer value. From a numerical point of view, truncation and dis-
cretization are needed. Thus, we work with the spectra, Bn(k), for 0 ≤ k ≤ kmax, 0 < n ≤ nmax

and discretize k to a finite set of points. For each 0 < n ≤ nmax, the discrete values
of k are written 0 = k0,n < k1,n < · · · < kNn,n

= kmax, where Nn is the number of dis-
crete values for the given n. These values are the amalgamation of two sets. The first,
0 = k0 < k1 < · · · < kN = kmax, is independent of n and given by

ki = χ
(
exp

[ i
N

ln
(
1 + kmax

/
χ
)]
− 1

)
, (4.11)

where χ is a user specified numerical parameter, comparable in magnitude to the initial spectral
width, Ξ. Observe that, for ki � χ, the term −1 in the above equation is negligible and the ki

follow an exponential law. This has the advantage over evenly spaced ki of reducing the number
of required wavenumbers, thus decreasing the calculation time.

The second set of wavenumbers varies with n. For any given n, it consists of all critical
kc ≤ kmax for −nmax ≤ np < 0 and 0 < nq ≤ nmax such that n ± np ± nq = 0. Recall from
the discussion in subsection 3.2.3 and section 3.3 that Bn(k) has a discontinuous jump at each
critical wavenumber. The limiting value as k ↗ kc is denoted by B<

n , while as k ↘ kc, it is B>
n .

27



4. WTC implementation

The appearance of these wavenumbers among those to which Bn(k) is discretized avoids inter-
polation across discontinuities when numerically evaluating the integrals in (4.9) and (4.10),
which improves the precision of the numerical approximation of these integrals.

Given the use of double precision throughout the implementation, it is highly unlikely that
there is a precise coincidence between a critical wavenumber and one of the ki. Thus, the two
sets, ki and all kc for the given n, are combined in order to produce the ki, n. The spectra are
represented by discrete values B<

n (ki, n) and B>
n (ki, n), where, since the spectra are continuous

when ki, n is other then a critical wavenumber, B<
n = B>

n for such ki, n.

4.4. Integration over a resonance curve

Numerical evaluation of (4.9) and (4.10) requires integration over a resonance curve for given
n, np, nq and k. To this end we first introduce a parametrization of the resonance curves.

4.4.1. Resonance-curve parametrization

Since (3.25) is unchanged by p2 7→ −p2 when k = (k, 0), the resonance curve is reflection
symmetric. Because it consists of a single loop, it crosses the p1-axis at just two points,
p1 = P−(k; n, np, nq) and p1 = P+(k; n, np, nq), these points being the solutions of

ωn(k) + ωnp
(
∣∣∣p1

∣∣∣) + ωnq
(
∣∣∣k + p1

∣∣∣) = 0, (4.12)

ordered as P− < P+. Like the resonance curve, these solutions exist only if np, nq < 0 or if
k > kc and np, nq have opposite signs.

The quantities P+ and P− are determined as follows. As noted earlier, the sums in (4.9)
and (4.10) can be restricted to np < 0. Thus, we suppose negative np in what follows. There
are two cases:

i) If nq < 0, the left-hand side of (4.12) is negative when p1 = 0 and positive as
∣∣∣p1

∣∣∣ → ∞.
Hence, P− < 0 and P+ > 0. Starting at p1 = 0, we step through increasing integer
values of p1 until the left-hand side of (4.12) becomes positive or zero. This provides an
interval in which P+ is to be found. Interval halving is then used to refine the solution
to a user-prescribed precision. A similar procedure (stepping downwards from p1 = 0
through integer values, then using interval having) yields P−.

ii) If nq > 0, there is a critical wavenumber k = kc with p1 = pc1 > 0. With this value
of p1, the left-hand side of (4.12) is a decreasing function of k ≥ kc, from its value of
0 when k = kc. Thus, the left-hand side of (4.12) is negative for p1 = pc1 in the range
k > kc for which the resonance curve exists. It follows that P− < pc1 and P+ > pc1.

28



4. WTC implementation

Marching upwards from pc1 in steps of 1, yields an interval containing P+ and interval
halving allows refinement to a required precision. P− is obtained similarly.

The resonance curve follows the differential equation

dp
ds

=
(
−Z2,Z1

)
, (4.13)

where s is a parameter and Z is the vector

Z = −∇pσ =
πnpp(

p2 + n2
pπ

2
)3/2 +

πnq(k + p)(
|k + p|2 + n2

qπ
2
) 3/2 . (4.14)

As p → ∞, σ approaches the positive value ωn(k). Thus, it is positive outside and negative
inside the resonance curve. Hence, ∇pσ yields an outward normal vector on the curve. It
follows from (4.13) and the first equality in (4.14) that increasing s corresponds to following
the curve in a clockwise sense. We use fourth-order Runge-Kutta integration of (4.13) to follow
p(s) along the resonance curve towards increasing s starting from p(0) =

(
P−, 0

)
. At each step,

the step length, ∆s, is first determined using

∆s = δ
P+
− P−

|Z |
, (4.15)

where δ is a small, user defined parameter. The idea is to keep |∆p| close to δ
(
P− − P+), a small

fraction of the overall perimeter of the resonance curve. Integration stops when p2 ≤ 0 and the
final values of p (which should be p = (P+, 0)) and s = smax are then refined to fourth-order
precision. Thus, we step along the upper half (p2 ≥ 0) of the resonance curve.

4.4.2. Calculations of Jn and τn

We now apply the above parametrization to the integrals in (4.9) and (4.10) with k = (k, 0),
using the previously noted symmetry p2 ↔ −p2. According to (3.23), (4.13) and (4.14),
| dp| = πΓnpnq

(k,p) ds. Thus,

Jn = 2π
∑
np,nq

K
nnpnq

1 ,

τn = 4π
∑
np,nq

K
nnpnq

2 ,

(4.16)
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where the sums are over all −nmax ≤ np < 0, np ≤ nq ≤ nmax, nq , 0 such that one of the
conditions n ± np ± nq = 0 is met and

K
nnpnq

1 = ζnpnq

∫ smax

0

(
ηnnpnq

(k,p)B|np|(p) + ηnnqnp
(k,−k − p)B|nq|

(
|k + p|

))
ds,

K
nnpnq

2 = ζnpnq

∫ smax

0
λnnpnq

(k,p)B|np|(p)B|nq|
(
|k + p|

)
ds.

(4.17)

Note the multiplicative factor 2 in (4.16), which arises from employing reflection symmetry.
At each step of marching along the resonance curve, the contributions to the integrals (4.17)

are calculated and added into running totals which yield numerical approximations to the in-
tegrals after the final step. If p = |p| or q = |k + p| cross one of the discrete spectral values,
ki, n, during the step, subintervals are used. The boundaries between subintervals are the points
where p or q cross a discrete wavenumber, determined by linear interpolation across the step.
Subintervals with p > kmax or q > kmax do not contribute to the integrals. The integrand is eval-
uated using linear interpolation at the midpoint of each subinterval and multiplied by the extent
of the subinterval in s to obtain the contribution to the integral, i.e. a trapezoidal-style rule is
applied. Interpolation across the entire step is used for the coefficients λnnpnq

(k,p), ηnnpnq
(k,p)

and ηnnqnp
(k,−k−p), while the spectra are determined by interpolation between two consecutive

discrete values of k, hence respecting spectral discontinuities.
The above procedure can be applied without further ado to calculate Jn and τn at all discrete

wavenumbers, ki, n, other then k0,n = 0 and critical wavenumbers. These special cases require
more care and are treated as follows.

4.4.3. k = 0

The problem with k = 0 is that it leads to division by zero in (A.2), which is used to calculate
the coefficients ηnnpnq

(k,p) and λnnpnq
(k,p). Thus, we consider the limit k → 0. Using the

results given in Appendix A, we find

Nnnpnq
(k,p)→

1
2

p−1(p2 − ip1
)
Λnnpnq

(p), (4.18)

Nnqnpn(−k − p,p)→
1
4

p−1(p2 − ip1
)
Ξnnpnq

(p), (4.19)

where Λnnpnq
(p) and Ξnnpnq

(p) (not to be confused with the spectral width Ξ) are real functions
given by (A.4) and (A.5). In particular, Λnnpnq

(p) possesses the property of antisymmetry with
respect to np ↔ nq.

As we saw in subsection 3.2.1, the resonance curve for k = 0 consists of the circle p = rnpnq
.

Thus, (3.21)-(3.23), (4.14), (4.18) and (4.19) yield

ηnnpnq
(k,p) = Λnnpnq

(
rnpnq

)
Ξnnpnq

(
rnpnq

)
, (4.20)
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λnnpnq
(k,p) = Λ2

nnpnq

(
rnpnq

)
, (4.21)

Γnpnq
(k,p) = rnpnq

γnpnq

(
rnpnq

)
(4.22)

on the resonance curve, where

γnpnq
(p) =

∣∣∣∣∣∣∣∣ np(
p2 + n2

pπ
2
)3/2 +

nq(
p2 + n2

qπ
2
) 3/2

∣∣∣∣∣∣∣∣. (4.23)

Given these results, evaluation of the integrals in (4.3) and (4.4) gives

Jn(0) = 2π
∑
np,nq

Λnnpnq

(
rnpnq

)
Ξnnpnq

(
rnpnq

)
γnpnq

(
rnpnq

) B|np|
(
rnpnq

)
, (4.24)

τn(0) = 2π
∑
np,nq

Λ
2
nnpnq

(
rnpnq

)
γnpnq

(
rnpnq

) B|np|
(
rnpnq

)
B|nq|

(
rnpnq

)
, (4.25)

where the sums are over np, nq < 0 such that rnpnq
≤ kmax and one of the four conditions

n ± np ± nq = 0 is satisfied. Note that the condition np, nq < 0 is required for existence of the
resonance curve at k = 0.

Symmetry considerations can be applied to (4.24) and (4.25). Antisymmetry of Λnnpnq
(p)

with respect to np ↔ nq means that the np = nq contributions are zero. Symmetry of rnpnq
and

γnpnq
and antisymmetry of Λnnpnq

(p) with respect to np ↔ nq yield

Jn(0) = 2π
∑
np,nq

Λnnpnq

(
rnpnq

)(
Ξnnpnq

(
rnpnq

)
B|np|

(
rnpnq

)
− Ξnnqnp

(
rnpnq

)
B|nq|

(
rnpnq

))
γnpnq

(
rnpnq

) , (4.26)

τn(0) = 4π
∑
np,nq

Λ
2
nnpnq

(
rnpnq

)
γnpnq

(
rnpnq

) B|np|
(
rnpnq

)
B|nq|

(
rnpnq

)
, (4.27)

where the sums are over −nmax ≤ np < nq < 0 such that rnpnq
≤ kmax and one of the four

conditions n ± np ± nq = 0 is satisfied.
Evaluation of (4.26) and (4.27) requires the values rnpnq

, which are the solution of (3.27)
with respect to p > 0. The left-hand side of (3.27) has the value −1 at p = 0. It is evaluated
at consecutive integer values of p, starting at p = 1, until it becomes positive or zero. This
provides an interval of length 1 in which the solution is to be found. Interval halving is then
used to obtain p to a prescribed tolerance. The quantities B|np|

(
rnpnq

)
and B|nq|

(
rnpnq

)
are obtained

by linear interpolation between consecutive discrete wavenumbers.
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4.4.4. Critical wavenumbers

Consider a critical wavenumber, kc. For k < kc, the corresponding resonance curve is absent
and the limiting values, J<n (kc) and τ<n (kc), as k ↗ kc can be obtained using (4.16), (4.17) and
numerical integration around the remaining resonance curves as described earlier. That is, the
np, nq associated with kc are excluded from the sums in (4.17). However, the critical resonance
curve contributes to J<n (kc) and τ<n (kc), the limiting values as k ↘ kc. The critical curve con-
tributions can be obtained by considering the limit, in the manner described in section 3.3 and
Appendix F. Thus we find

J>n (kc) = J<n (kc) +
2π2(

µ1µ2
) 1/2

(
ηnnpnq

(kc,pc)B|np|(pc) + ηnnqnp
(k,−k − p)B|nq|

(∣∣∣kc + pc

∣∣∣)), (4.28)

τ>n (kc) = τ<n (kc) +
4π2(

µ1µ2
)1/2 λnnpnq

(kc,pc)B|np|(pc)B|nq|
(∣∣∣kc + pc

∣∣∣). (4.29)

Note that (4.28) and (4.29) include contributions from both members of the pair of critical
points corresponding to kc.

4.5. Time discretization and associated numerical
scheme

Time is discretized to equally spaced values, Tm, with time step ∆T . (4.1) implies

Bn(Tm+1) = Bn(Tm) eθn(Tm+1) +

∫ Tm+1

Tm

τn(T ′) eθn(Tm+1)−θn(T ′) dT ′, (4.30)

where

θn(T ) =

∫ T

Tm

αn(T ′) dT ′. (4.31)

A first approximation (predictor step) is obtained by taking constant αn(T ′) = α∗n, τn(T ′) = τ∗n,
where α∗n and τ∗n are computed using the known spectral values, Bn(Tm), from the end of the
previous time step. Thus, (4.30) and (4.31) give the first approximation

B∗n(Tm+1) = Bn(Tm) eα
∗
n∆T +∆T

eα
∗
n∆T
−1

α∗n∆T
τ∗n. (4.32)

A second approximation (corrector step) follows from taking αn(T ′) = α∗∗n , τn(T ′) = τ∗∗n , where
α∗∗n and τ∗∗n are computed using the spectral values

(
Bn(Tm) + B∗n(Tm+1)

)/
2. Thus,

Bn(Tm+1) = Bn(Tm) eα
∗∗
n ∆T +∆T

eα
∗∗
n ∆T
−1

α∗∗n ∆T
τ∗∗n (4.33)
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completes the time step.
Since λnnpnq

(k,p), Γnpnq
(k,p) and the spectral values are positive, (4.4) implies that τn(k) ≥ 0.

Having this in mind, one concludes from (4.32) and (4.33) that initially positive spectra can-
not become negative, hence, the scheme does not spoil the realizability property mentioned
in section 3.1. That is the advantage of this scheme, compared with, say, use of second-order
Runge-Kutta.

To improve precision when α∗n∆T is small, (4.32) is written as

B∗n(Tm+1) = Bn(Tm) + ∆T
eα
∗
n∆T
−1

α∗n∆T
(
τ∗n + α∗nBn(Tm)

)
. (4.34)

for (say)
∣∣∣α∗n∆T

∣∣∣ ≤ 0.2 and the quantity
(
eX
−1

)/
X is evaluated using a power series in

X = α∗n∆T . The same method is employed for (4.33) when
∣∣∣α∗n∆T

∣∣∣ ≤ 0.2.
The above procedure is used for time stepping of all discrete wavenumbers. Critical

wavenumbers use the scheme twice: once for B<
n and once for B>

n .

4.6. Program description

In the current implementation there are eight numerical parameters. They are:

• nmax — maximum order of the inertial waveguide modes;

• kmax — maximum wavenumber value;

• N — number of ki, given by (4.11), in the range 0 ≤ k ≤ kmax;

• χ — parameter appearing in (4.11), of order Ξ;

• δ — parameter determining the step length, ∆s, for integration over a resonance curve;

• ε — tolerance used for the interval halving (not to be confused with Rossby number, ε);

• Tmax — maximum time;

• NT — number of time steps, which with Tmax define a time step ∆T = Tmax
/
NT .

nmax, kmax and N should be sufficiently large and δ, ε and∆T sufficiently small that the numerical
results have satisfactorily converged. The three physical parameters are:

• βv — the volume damping coefficient;

• βw — the wall damping coefficient;
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• Ξ— the initial spectral width.

We can divide the program into two stages — initialization and time evolution.
During the initialization stage all the required critical points are found using the method

described in Appendix E in order to construct the discrete wavenumbers, ki, n. Then, the points
of intersection of the resonance curves with the p1-axis, P− and P+, or radii rnpnq

, in the case
k = 0, are determined. Finally, the spectra are initialized as described in section 4.1.

The evolution stage consists of a loop over time steps until the desired maximum time is
reached. Each time step is divided into two stages, predictor and corrector. Both involve the
calculation of Jn and τn as described in section 4.4.

4.7. Parallelization

The purpose of parallelization is to improve performance by carrying out similar calculations
simultaneously. It is accomplished by dividing the problem into independent parts which are to
be calculated by different processes. It is important to balance the amount of work across the
processes for the sake of efficiency of the parallelization.

The most time-consuming part of the computations is the calculation of the integrals over
the resonance curves. It is therefore natural to allocate a subset of resonance-curve integrals to
each process. As the number of resonance curves differs with n and k, the idea is to distribute
resonance curves across processes in such a way that the number of curves treated by each
process is approximately the same. This allows us to calculate Jn(k) and τn(k) independently
on each process for its range of n, ki, n. The results are then shared across all processes when
applying the time-stepping scheme described in section 4.5.

4.7.1. Scalability

The fact that an algorithm can be subdivided into different tasks does not necessarily imply
that parallelization will be effective. It is often the case that intercommunications consume
a significant part of the computational capacity. In order to estimate the quality of a given
implementation measures such as speedup and efficiency are widely employed. The former
presents the ratio of the sequential-version runtime to the time taken by the parallel one. The
latter quantifies the fraction of time for which a processor is usefully utilized. For sake of
simplicity we compare the results of a one-process parallel version instead of the sequential
one. Formally, relative speedup, S p, and efficiency, Ep, for p processes are defined as follows

S p =
T1

Tp
, (4.35)
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Ep =
S p

p
=

T1

pTp
, (4.36)

where Tp denotes the computing time for p processes.
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Figure 4.1.: Left: the relative speedup, the slope is 0.98; right: the relative efficiency.

Figure 4.1 illustrates the relative speedup and efficiency of our implementation. These re-
sults were obtained using the numerical parameters: nmax = 10, kmax = 8000, N = 500,
ε = 10−13, δ = 0.01, NT = 2000 and Tmax = 0.2. The calculations were carried out on the
cluster P2CHPD (https://p2chpd.univ-lyon1.fr/) equipped with Intel(R) Xeon(R) E5-
2670 2.60GHz processors. The typical calculation time on 128 cores is about 7 minutes. The
above results show satisfactory efficiency of the parallelized implementation, at least in the case
of exploitation up to 128 processes.

4.8. Validation

In order to verify the correctness of our implementation, we checked the accuracy of particular
core functions and verified the properties of energy conservation and thermalization.

4.8.1. Tests of the core routines

To check correctness of the core routines of the WTC code we estimated their accuracy using
a number of measures of numerical error:

• ERRC — critical point determination;

• ERRR — determination of the resonance-curve radius in the case k = 0;
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4. WTC implementation

• ERRP — P− and P+ determination;

• ERRRC — integration of (4.13);

• ERRD — calculation of the spectral time derivatives;

• ERRT — energy conservation by nonlinear transfers in the absence of viscosity.

The first three measures, ERRC, ERRR and ERRP, are respectively defined as the maximum
deviation from zero of the left-hand sides of (3.29) and (3.30), (3.27) and (4.12). They are
supposed to be controlled by the parameter of interval-halving tolerance, ε, which is confirmed
by numerical results from Table 4.1.

ε ERRC ERRR ERRP
10−13 1.6 · 10−14 5.1 · 10−15 8.4 · 10−15

10−3 2.1 · 10−4 1.3 · 10−4 1.5 · 10−4

Table 4.1.: Tolerance-dependent accuracy measures.

To examine the accuracy of the integration of (4.13), we calculate ERRRC as the maximum
deviation from zero of the left-hand side of (4.12). As a fourth-order Runge-Kutta scheme is
employed, it is expected to behave asO(∆s4), where ∆s is a step length of the integration. Given
that ∆s is determined from δ using (4.15), we expect an error proportional to δ4. Figure 4.2
demonstrates the expected slope. Thus, we conclude that marching over the resonance curve is
properly implemented.

10-3 10-2 10-1

δ

10-13

10-11

10-9

10-7

10-5

10-3

δ 4

ERRRC

Figure 4.2.: ERRRC convergence, the slope is 3.95.

Consider the time derivative of spectra which is calculated using (4.1). To estimate the ac-
curacy of the calculation, the integral involved in Jn(k) and τn(k) are evaluated using a more
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precise method, namely, fourth-order Runge-Kutta, and compared to the one used in the code,
which employs a second-order trapezoidal-style rule. Note that the initial spectra, which have
no discontinuous jumps and are smooth, were used. This is the reason why we expect a fourth-
order integration to more accurate. However, once spectral jumps have developed under time
evolution, the trapezoidal-style integration with spectral discretization which respects the criti-
cal wavenumbers is preferable, hence its use in the code we have developed. ERRD is obtained
as the maximum difference between the second-order and fourth-order spectral time deriva-
tives, divided by the maximum absolute value of those derivatives.

At first sight it is perhaps natural to expect ERRD to converge as O(∆s2), i.e. proportional
to δ2, because of the second-order integration scheme. However, as discussed in section 4.4,
to evaluate the integrand in the middle of a subinterval, linear interpolation between spectral
values at two consecutive points k is used. This means that, besides the integration error, there
is another source of inaccuracy which is linear interpolation of the spectra. Hence, to make
the overall error converge as second order, we should decrease the integration step length, ∆s,
and also increase the number of discrete wavenumbers, N, in proportion. Results showing the
expected second-order accuracy are given in Figure 4.3.
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δ

10-5

10-4

10-3

δ 2

ERRD

10-3 10-2

δ

10-6

10-5

10-4

δ 2

ERRT

Figure 4.3.: Left: ERRD convergence, the slope is 1.95; right: ERRT convergence, the slope
is 1.99. The value of N = 7.8/δ .

The nonlinear transfer term on the right-hand side of (4.1) is

Tn(k) = Jn(k)Bn(k) + τn(k). (4.37)

Energy conservation means that the integral of Tn(k) over k, summed over n > 0, should be
zero. The energy conservation error is defined as

ERRT =

∑
n

∫
Tn(k)k dk∑

n

∫ ∣∣∣Tn(k)
∣∣∣k dk

. (4.38)
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If there was no discretization, ERRT would be zero. The numerical results, presented in the
Figure 4.3, show the expected δ dependence when δ and N are varied, keeping δN constant.

Thus, we conclude that the implementation respects the expected energy conservation of the
wave-component.

4.8.2. Accuracy following time evolution
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Figure 4.4.: Convergence as a function of NT .

One can also ask how well the time-stepping scheme represents the time solution of the
model. In reply to this question, we undertook a number of runs of the code with different NT .
The results at a given Tmax were compared with a reference case for which NT was so large
that convergence was guaranteed. Without going into the precise details, Figure 4.4 shows
the variation of the difference between the calculated and “true” spectra as a function of NT .
The straight line has a slope of −2, indicating that the time-stepping scheme has the expected
second-order accuracy.

4.8.3. Thermalization

As shown in Appendix C, the inviscid wave-turbulence model, truncated to kmax and nmax, re-
spects a state in which Bn(k) is independent of k and n, a state known as equipartition. In
classical statistical mechanics, such a state applies at thermodynamic equilibrium. It may be
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interesting to see whether the model developed here approaches equipartition under time evo-
lution.
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Figure 4.5.: Thermalization process.

In order to accelerate the process we truncated wavenumbers via a relatively small value of
kmax. The parameters used are: nmax = 5, kmax = 50, N = 500, ε = 10−13, δ = 0.01, NT = 20000,
Tmax = 2, Ξ = 5, βv = 0 and βw = 0. Figure 4.5 shows the evolution of energy density, Bn(k),
for modes n = 1, n = 2 and n = 5. Energy is first transferred to the small scales, reaching
the cut-off, then propagates backwards to the larger scales, eventually leading to equipartition
of the energy. Note that the final value is the same for all the waveguide modes. The fact
that the numerical scheme is able to capture this pile-up of energy in the small scales without
blowing up is a good indicator of its robustness. Needless to say, equipartition is an artefact of
truncation and does not occur in the untruncated problem.
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5. WTC numerical results

This chapter presents numerical results obtained using the wave-turbulence closure. We first
describe the overall energetics in section section 5.1. In the second part of this chapter, sec-
tion 5.2 gives a more detailed analysis in which the distribution of energy over k and n is
discussed.

5.1. Energy evolution

Because wave-turbulence theory limits us to work only with wave component, i. e. modes
n , 0, energy refers only to wave-component part. According to Bn(k) = ε−2Ann, A−n−n = Ann

and (3.19) we can write the total energy as

1
2

∫ 1

0
uiui dx3 =

∫ ∞

0
πε2B0(k)k dk︸                ︷︷                ︸

2D part

+ ε2E︸︷︷︸
wave-component part

, (5.1)

where

E = 2π
∞∑

n=1

∫ ∞

0
Bn(k)k dk (5.2)

represents the wave-component part of the energy.
An evolution equation for E (T ) can be obtained by multiplying equation (4.1) by 2πk, inte-

grating over k and summing over n ≥ 1. As discussed earlier, the nonlinear term, JnBn + τn,
represents energy transfer between modes and is energy conserving. Thus, it contributes zero,
hence

dE

dT
= −Dv − Dw, (5.3)

where

Dv = 2πβv

∞∑
n=1

∫ ∞

0

(
k2 + n2π2

)
Bn(k)k dk, (5.4)

Dw =
√

2πβw

∞∑
n=1

∫ ∞

0

(
1 − ω2

n(k)
) 1/2 ((

1 + ωn(k)
)3/2

+
(
1 − ωn(k)

)3/2
)
Bn(k)k dk (5.5)
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and we have used equation (4.5). Both Dv and Dw are positive and represent two contributions to
viscous dissipation, namely volumetric and wall damping. The energy decreases monotonically
according to (5.3). Although (5.3) does not directly involve the nonlinear transfer term, as
we shall see later, the latter has a profound effect on spectral evolution, producing an energy
cascade towards the small scales. The factor k2 + n2π2 in (5.4) is larger for such scales, so
nonlinear transfer tends to accentuate the volumetric dissipation. In any case, the time evolution
of the spectrum, Bn(k) in (5.4) and (5.5), due to such transfer has important consequences for
Dv and Dw and there is thus an indirect effect of nonlinearity on the energy dissipation.
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Figure 5.1.: Evolution of energy; Ξ = 5, βw = 2 and βv = 0.002.

Figure 5.1 and Figure 5.2 show results for the time evolution of E , Dv and Dw for a particular
choice of parameters. As will be seen, there are two phases of energy evolution. E initially
decreases rather slowly, following an approximately linear time-dependency. There is then a
quite abrupt transition to more rapid decay. The reason for this behavior can be seen from Fig-
ure 5.2. During the initial phase, wall damping is dominant and Dw is approximately constant.
However, volumetric damping increases rapidly as a certain time, referred to as the critical time
Tc, is approached and it takes over from wall damping as the dominant dissipative mechanism.
Nonlinear transfer to smaller scales is responsible for the rapid rise in Dv near the critical time,
where a dissipative range of wavenumbers is established.
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Figure 5.2.: Evolution of viscous-damping contributions to the energy dissipation; Ξ = 5,
βw = 2 and βv = 0.002.

5.1.1. Volumetric damping

The above results are for the case βv = 0.002 of a relatively small volumetric damping coeffi-
cient. Figure 5.3 shows the effects of increasing βv. The transition between the two phases of
evolution is less and less rapid and takes place at longer times. The latter conclusion may, at
first sight, be surprising because one expects the dissipative range to shift to lower wavenum-
bers. Hence, less time to establish the dissipative range. However, the energy at a given time
is reduced by the increased dissipation, which decreases the turbulence intensity. Thus, the
nonlinear transfer terms are reduced, leading to slower transfer. And it is the latter effect that
wins.

Figure 5.4 shows the volumetric dissipation using the same parameters Figure 5.3. The
decreasing sharpness of the peak with increasing βv corresponds to the less rapid transition
between the two phases of evolution noted above. Given the difficulty of visually identifying a
critical time for the larger values of βv, we decided to define it more precisely by the maximum
of Dv.

Table 5.1 shows the value of Tc · E (Tc) for different βv, Ξ = 5 and βw = 1. It is seen that
the value is very nearly constant, and thus despite significant increases in Tc for the larger βv

in the table (recall Figure 5.4). This supports the suggestion, made earlier, that the observed
increase of Tc with βv is due to slower nonlinear transfer because the higher dissipation has
made the turbulence less intense. E (Tc) is a measure of turbulence intensity and constant
Tc · E (Tc) suggests that the time taken for transfer is inversely proportional to the energy, not
an implausible suggestion given that the nonlinear term in the spectral equations is quadratic.
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Figure 5.3.: Changes of the energy-evolution plot when varying βv; Ξ = 5 and βw = 1.

βv Tc Tc · E (Tc)
0.005 0.061 0.0541
0.01 0.065 0.0546
0.02 0.075 0.0551
0.04 0.096 0.0558

Table 5.1.: Tc · E (Tc) for different βv; Ξ = 5 and βw = 1.
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Figure 5.4.: Evolution of the volumetric-damping rate; Ξ = 5 and βw = 1.
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5.1.2. Wall damping

Figure 5.5 shows the effects of varying βw on the time evolution of energy for a given (small) βv.
As βw increases the energy decays more rapidly in the initial phase. The limiting case βw = 0
shows that there is still some decay prior to the critical time, even though only the volumetric
contribution to energy dissipation is present. Following the critical time, the energy decay is
not greatly affected by βw.
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Figure 5.5.: Evolution of energy; Ξ = 5, βv = 0.005.

The critical time itself is shown as a function of βw for two values of βv in Figure 5.6.
Apparently it does not depend strongly on either βw or βv provided βv is small enough. It is
found to be an increasing function of either of the dissipation coefficients.

Figure 5.7 shows the evolution of Dv and Dw as log-log plots. The straight lines following
the critical time suggest power laws. The slopes of the lines imply exponents of −1 for E ,
−1.02 for Dw and −2.37 for Dv. Note that the exponents of E and Dw are very nearly the same,
whereas Dv decays more rapidly. The factor multiplying Bn(k)k in the integral of (5.5) is O(1)
for all modes and does not weight small scales more than large ones. Thus, like the energy,
Dw is dominated by the large scales and it is perhaps not surprising that E and Dw evolve in a
similar way. Indeed if, as a might approximation, the given factor is replaced by 1, the integrals
in (5.2) and (5.5) are the same. On the other hand, the factor k2 +n2π2 in (5.4) weights the small
scales more than the large ones and Dv is dominated by the former. It is thus to be expected to
show different behavior.
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5.1.3. Influence of spectral width on the critical time

Having studied the effects of varying βv and βw for a single value, Ξ = 5, of the spectral width,
one can ask the question: how do the results depend on Ξ? Figure 5.8 shows the critical time
using a log-log plot as a function of Ξ. It will be seen that Tc decreases with increasing Ξ,
presumably because increasing the energy of the smaller scales of the initial flow accelerates
the nonlinear transfer. A power law of exponent about −2.4 is found at larger Ξ, and another of
exponent about −0.4 at lower values of Ξ.
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Figure 5.8.: Influence of spectral width on the critical time; βw = 1, βv = 0.01.

5.2. Spectral evolution

Initialized using (4.7), the spectra, Bn(k), evolve according to the governing equations, (4.1).
This evolution is the subject of this section. As for the energy, two phases of evolution are
found. Firstly a spectral front propagates towards large k, forming an inertial range behind it.
This illustrates the turbulent energy cascade. Then, near the critical time, the spectral advance
ceases and a dissipative range is established. In the second phase the spectra decay and the
dissipative range retreats to smaller k. As expected, spectral discontinuities are found in the
inertial range. We also observe oscillations of the spectra which appear just prior to the critical
time and persist thereafter.
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5.2.1. The evolution of the Bn(k)
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Figure 5.9.: Evolution of Bn(k) for n = 1, n = 2, n = 6; Ξ = 5, βw = 2, βv = 0.005. The spectral
front moves to the right in (a), (b), (c) and retreats back in (c), (d). The straight
lines in (c) and (d) represent the power law k−3.67.

Figure 5.9 shows results for n = 1, 2 and 6 for a particular choice of the parameters Ξ, βw and βv.
As noted above, there are two phases: first a spectral front moves towards larger k. This reflects
nonlinear transfer between modes and forms an inertial range behind the front. This phase
lasts until volumetric dissipation becomes important and a dissipative range is established,
dissipation balancing the nonlinear transfer at larger times. In the second phase, which begins
at the critical time Tc = 0.0633, the front, now representing the dissipative range, retreats and
the spectra decay. There is also nonlinear transfer between different n. This is apparent in
the results for n = 6, which show increasing B6 prior to the critical time, followed by decay
thereafter. This transfer appears to go from smaller to larger n, as we might expect given a
cascade from large to small scales. The spectra in the inertial range roughly follow straight
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lines in these log-log plots, indicating power-law dependency of Bn(k) on k. However, the
existence of spectral discontinuities means such power laws are only approximate.
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Figure 5.10.: Evolution of B1(k); Ξ = 5, βw = 2, βv = 0.005. The straight line shows the power
law k−3.67.

Figure 5.11.: Contours of Bn(k) for T = 0; Ξ = 5.

Focusing on n = 1, Figure 5.10 shows B1(k) for more time instants than the previous figure. It
is apparent that the front accelerates in the first phase of evolution, its rate of advance becoming
very large as the critical time is approached. This rapid advance of the front is the reason for the
sharp onset of volumetric dissipation at small βv found in the previous section. It also requires
a small time step to avoid numerical instability. As βv is decreased, the dissipative range moves
to larger k and a smaller time step is needed. Thus, we cannot simply set βv = 0, but one might
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speculate that the spectral front goes to infinite k in a finite time in the absence of volumetric
damping. This would explain the insensitivity of Tc to variation of βv at small enough values.

Figure 5.12.: Contours of Bn(k) for time moments around T = Tc = 0.0649; Ξ = 5, βw = 1,
βv = 0.01. Note the change of scales relatively to Figure 5.11, which is indicative
of the transfer of energy to the smaller scales resulting from the energy cascade.

Figure 5.11 and Figure 5.12 show contours of Bn(k) in the (k, nπ) plane at the initial instant
and close to the critical time. The circular contours in Figure 5.11 are a reflection of the
isotropic nature of the initial spectra. The transfer of energy to smaller scales due to the energy
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cascade is reflected in Figure 5.12. The greater spectral extent in k than in nπ indicates more
efficient transfer in the directions parallel to the walls. It is also apparent that, following the
critical time, for given k, Bn(k) is largest for smaller nπ, having a maximum at n = 1. This is
not true just prior to the critical time.

Figure 5.13 illustrates the existence of discontinuities in the spectra. The initial spectra are
smooth, but time evolution according to the wave-turbulence closure causes discontinuities to
appear.
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Figure 5.13.: Spectral discontinuities for different n at T = Tc; Ξ = 5, βw = 1, βv = 0.01.

5.2.2. Energy distributions in k and n

The energy, given by (5.2), can be decomposed in two ways:

E =

∫ ∞

0
e(k) dk (5.6)

=

∞∑
n=1

en, (5.7)

where

e(k) = 2πk
∞∑

n=1

Bn(k) (5.8)
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and
en = 2π

∫ ∞

0
kBn(k) dk. (5.9)

Thus, e(k) gives the energy distribution as a function of k, taking into account all n, where as en

gives a similar description of the distribution of energy over n. Both are shown in Figure 5.14
for Ξ = 5, βw = 2 and βv = 0.005 and three values of T , including Tc. These results illustrate
the advance, then retreat, of a spectral front in both k and n. The also indicate an inertial range
in k and n to which power laws apply, but with somewhat different exponents for k and n.
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Figure 5.14.: en and e(k); Ξ = 5, βw = 2, βv = 0.005.

The effects of varying βw and βv on e(k) at the critical time are illustrated in Figure 5.15.
Although increasing βw diminishes the energy, because more has been dissipated, this is not as
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Figure 5.15.: e(k) at T = Tc for different βw and βv; Ξ = 5. Left: βv = 0.005. Right: βw = 1.

significant as the rapidly increasing dissipative wavenumber resulting from decreasing βv. The
log-log slope in the inertial range appears to be insensitive to both parameters.
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5.2.3. Influence of the initial spectral width

As we saw in section subsection 5.1.3, varying Ξ changes the critical time significantly: the
larger Ξ the more energy is initially present in the small scales and the more rapid the spectral
evolution. Figure 5.16 shows e(k) at the critical time for βw = 1, βv = 0.01 and various values
of Ξ. The spectral slope of the inertial range appears not to vary with Ξ. Given its insensibility
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Figure 5.16.: e(k) at T = Tc for different values of Ξ; βw = 1, βv = 0.01.

to changes in βw and βv noted earlier, the slope seems to have a nearly constant value.
The figure also reveals a striking effect of varying Ξ on the spectral discontinuities, which

become stronger when Ξ is decreased. As noted above, decreasing Ξ increases the critical time,
reflecting slower spectral evolution. It may be that the longer development time encourages the
appearance of discontinuities in the spectrum.

Figure 5.17 focusses on a single modal order, n = 1. It again shows that decreasing Ξ
strengthens the discontinuities.

5.2.4. Spectral oscillations

Figure 5.10 shows that the spectral slope of B1(k) is close to −3.67, at least for the particular
parameters used. Figure 5.18 shows B1(k), normalised by k−3.67 at various times before, close
to and after the critical time. Wavelike oscillations in both k and time appear near the critical
time and persist thereafter.
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5.3. Conclusion

In section 5.1, we studied the time evolution of the wave-component energy, E , which decays
due to viscosity according to two mechanisms: wall dissipation, Dw, in the boundary layers and
volumetric dissipation, Dv, throughout the flow. Wall and volumetric dissipations are charac-
terised by two parameters, βw and βv, of the model, while the initial conditions introduce one
more, the spectral width Ξ.

The results indicate two phases of evolution, clearly separated by a critical time Tc for small
enough βv. In the first phase, Dw is dominant, while Dv dominates in the second phase. The
transition between phases becomes more and more abrupt as βv is decreased. Prior to the critical
time, wall damping causes the energy to decay at a rate dependent on βw: the larger its value,
the faster the decay. Following the critical time, volumetric damping takes over and power-law
dependency on time is observed. The critical time is insensitive to βw and βv for small enough
βv, but depends strongly on Ξ. The larger the initial spectral width, the smaller Tc.

Section 5.2 presented results for Bn(k), which describe the energy distribution over different
modes, as well as e(k), which includes all modal orders n for a given k, and en, which takes all
k into account for a given n. Prior to the critical time, plots of Bn(k) as a function of k show
a spectral front which propagates towards larger k. This is symptomatic of an energy cascade
from large to small scales. An inertial range is left behind by the advancing front. In this
range the spectra have approximate power-law dependency on k. We say approximate because
discontinuities appear in the spectra. The spectral front accelerates, moving very rapidly as the
critical time is approached, which is why the transition to the second phase of evolution is so
abrupt. Near the critical time volumetric dissipation becomes important and a dissipative range
is formed in which volumetric dissipation balances energy transfer from larger scales. The
front can subsequently be identified with the dissipative range and gradually retreats to smaller
k as the turbulence decays in the second phase of evolution. Similar conclusions are reached
when examining the evolution of e(k), whose spectral slope in the inertial range, near to −2.2,
at the critical time appears insensitive to the parameters Ξ, βw and βv.

The energy cascade prior to Tc also takes place in n. This is apparent in the energy distri-
bution, Bn(k), in the (k, nπ) plane and also as an advancing spectral front of en, plotted as a
function of n. Thus, the cascade to smaller scales takes place in both wall-parallel and wall-
normal directions. Higher values of the maximum front location, which occurs at the critical
time, are reached for k than for nπ, which suggests that transfer in k is more effective than in n.

A striking effect of varying Ξ is that the spectral discontinuities become more apparent at
lower Ξ.

Finally, near the critical time, wavelike oscillations appear in the spectra. These oscillations
take place in both k and T .
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In this chapter, the generation of an initial velocity field consistent with the initial wave-
turbulence spectrum is described. The resolution of the full Navier-Stokes equations is per-
formed for a single set of physical parameters by direct numerical simulation. The choice of
the physical and numerical parameters are discussed as well as the evaluation of the statistics
(kinetic energy, matrix correlation spectrum, etc.). Results obtained are described at the end of
this chapter.

6.1. Numerical method

The direct numerical simulations were done with the NadiaSpectral code, developed in our
research group [6]. It solves the incompressible Navier-Stokes equations between two parallel
walls with a spectral method based on a Galerkin approximation of the velocity fields using
Fourier expansions in both directions parallel to the walls and Chebyshev polynomials in the
wall-normal direction. Incompressibility is ensured by working in an inherently divergence-
free basis set for the velocity, eliminating the pressure from the discrete solver [23]. The time
is discretized to equally spaced values and solved with a third-order Runge-Kutta scheme [28].
Performance in massive multi-cores platforms has been obtained with a hybrid MPI/OpenMP
parallelization [21] and the wall-time spent per time step has been measured as 1.3s for a
configuration of one billion modes on 8192 MPI processes of a BlueGene/Q. The solver is
written in C++ whereas python is used to embed analysis (initialization, I/O and calculation of
statistics, etc.) in the simulation, asynchronously to the solver [7]. This technique was used to
initialize the turbulence and to calculate the annular spectra during the simulation.

6.2. Choice of physical and numerical parameters

h

Ω

turbulent flow
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The physical geometry extends over the domain L1 × L2 × h in x1, x2, x3, where h is the channel
width. Given the non-dimensionalization of earlier chapters, h = 1, so the turbulence occupies
0 < x3 < 1. Here L1 = L2 ≡ L is the Fourier spatial period of the DNS. The wave-turbulence
regime requires small Rossby number ε, which corresponds to high rotating speed of the walls,
and small Ekman numbers E, to minimize the effect of the viscous force compared to the
Coriolis force. The choice of L and of the numerical resolution are actually a compromise
between several physical requirements and computational feasibility. The choice that has been
made in this study is explained in the remainder of this section. Note that, although the choice
is first described for the physical, then for the numerical parameters, in fact the two choices
interact with each other, as will appear in what follows, so the final choice is obtained by
iteration.

6.2.1. Physical parameters

The subject of this sub-section is the choice of the volumetric- and wall-damping parameters
(resp. βv and βw) of the wave-turbulence model and its consequences for DNS. From the WTC
analysis, the spectral width is chosen as Ξ = 4 to have distinguishable, but not dominant,
spectral discontinuities. βv and βw are defined by

βv = 2ε−2 E and βw = 2ε−2 E1/2

and T = ε2t is the time variable of the wave-turbulence model. It should also be recalled
that the time variable t is non-dimensionalized using the time scale (2Ω)−1 and that the highest
frequency modal oscillation (k = 0), has period 2π with respect to t. The Ekman and Rossby
numbers follow from the choice of βv and βw as

ε2 =
2βv

β2
w

and E1/2 =
βv

βw
.

The thickness of the Ekman layers is of order E1/2 [27], which should be small. Thus,
βv

/
βw � 1 is a requirement of the WTC theory as already discussed in the chapter 4.

Another requirement is that there be many modal oscillations before nonlinearity becomes
important. Let Tc be the critical time, taken as a measure of the time for significant nonlinearity.
The corresponding tc = ε−2Tc should be much larger than 2π. From a numerical point of view,
too large a value of tc would unnecessarily increase the calculation time, which we already
expected to be at the limits of feasibility. We chose tc ≈ 60, corresponding to about 10 periods
of the fastest oscillating mode.

A parametric study in which βv and βw were varied was carried out using the results of wave-
turbulence theory to determine Tc and the location of the dissipative range. Given tc ≈ 60,
there are two conflicting requirements: a) because the dissipative range wavenumber increases
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rapidly as βv is decreased, βv should not be too small, otherwise the required number of DNS
Fourier modes becomes excessive, and b) βw should not be so large that wall damping kills
the turbulence before nonlinearity has had a chance to express itself. The values βv = 0.019
and βw = 3.4 were judged to be satisfactory. These values correspond to ε = 0.0573 and
E = 3.12 · 10−5. The corresponding Ekman-layer thickness is E1/2 = 5.58 · 10−3.

In summary, the chosen physical parameters are ε = 0.0573, E = 3.12 · 10−5 and Ξ = 4.
According to the wave-turbulence model the critical time occurs at tc = 60.

6.2.2. Computational domain and numerical parameters

Requirements

Having chosen βv and βw, the DNS numerical parameters should be such that: a) the Ekman
layers are well resolved, b) the dissipative range of wavenumbers is captured, c) the spatial
period is large enough to avoid effects of periodicity, d) the time step is sufficiently small.

Condition (a) requires a large enough number of Chebyshev polynomials denoted as
Tb(x) = cos(bθ), where x = 2x3 − 1, cos θ = x and 0 ≤ θ ≤ π. Close to the wall at x3 = 1,
θ2
∼ 4(1 − x3), so that θ = O(E 1/4 ) in the Ekman layer. Thus, to resolve the Ekman layer, b

is required to be large compared with 2πE− 1/4 , which takes a value ≈ 84 for βv = 0.019 and
βw = 3.4. This means that, say, 840 polynomials are required to resolve the Ekman layers.

Condition (b) means that the maximum wavenumber of DNS should include the dissipative
range. The wave-turbulence closure gives kdis ≈ 225 for the given physical parameters. Thus,
the maximum DNS wavenumber should be larger than 225. We chose a value 2πNi

/
L = 452,

where Ni is the number of Fourier components in each of the directions x1, x2. Note that,
because of truncation and the resulting aliasing problems, we do not expect the DNS results to
be accurate all the way up to the maximum wavenumber. Here, we have taken the maximum
wavenumber to be twice the dissipative one.

Concerning condition (c), the group velocity of waveguide modes is given by

cn(k) = ∇kωn(k) = −
nπk(

k2 + n2π2
)3/2 ,

which is equation (4.1) of [27]. The maximum of
∣∣∣cn

∣∣∣(k), arising from n = 1 and k = π
/√

2,
is 0.12, hence modes propagate a maximum distance 0.12tc up to the critical time. Thus, a
spatial period of L >> 0.12tc is required to avoid effects of periodicity. Taking tc ≈ 60, the
spatial period should be larger than L ≈ 8. Taking L = 32 and 2πNi

/
L = 452, there should

be Ni ≈ 2300 Fourier components in both periodic directions. We carried out calculations for
different values of L, hence different Ni, to see how the results converged as L increases.

Finally, condition (d) requires that the time step be small compared with the rotation time.
The actual time step used was determined by numerical experimentation as explained in the
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next section. Numerical stability also plays an important role in this choice.

Time and space resolution

As indicated in Table 6.1, DNS runs were performed for three different values of L and Ni

determined by 2πNi
/
L = 452. 864 Chebyshev polynomials were used in all cases.

Case N1 × N2 L
DNS 576 576 × 576 8.0
DNS 1152 1152 × 1152 16.0
DNS 2304 2304 × 2304 32.0

Table 6.1.: DNS cases.

The time step is strongly constrained by numerical stability, described by a CFL number that
should theoretically remain lower than

√
3. The used time step was ∆t = 0.001, for which the

CFL number is always below 1.2. The maximum CFL number was found to occur near the
walls because it is there that the velocity gradients are large. It is the stable description of those
parts of the flow that places the strongest restriction on the time step.

To study convergence with respect to the time step, we compared the DNS results with
an exact analytical solution of the linearized Navier-Stokes equations in the rotating channel.
There is a family of such solutions:

u1

u2

u3

 = a exp
{
−El2π2t

}
sin lπx3


sin(t + φ)
cos(t + φ)

0

,
where a is an arbitrary amplitude, φ an arbitrary phase and l can take any positive integer value.
We chose the case E = 10−3, a = 0.2

√
5, l = 1, φ = π/6 and initialised the DNS using the above

velocity field. Figure 6.1 shows DNS results. Rotation is apparent via the oscillations, whose
non-dimensional frequency is very close to the value 1 of the analytical solution. Viscosity
leads to exponential decay at a rate which is also close to the analytical value.

Figure 6.2 shows the results of a comparison between DNS and the analytical solution. It
indicates that the time scheme is of the expected order, namely 3. The relative error is 10−6

for a time step of ∆t = 0.01, which one would think an adequate accuracy. However, as noted
above, stability imposes more stringent requirements than accuracy when we come to the full
problem and ∆t = 0.001 was used in the turbulence simulations. Note that these results verify
correctness of the implementation of rotation in the DNS code.
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Figure 6.1.: Time evolution of the velocity components at (x1/L, x2/L, x3) = (0.5, 0.5, 0.25);
∆t = 0.01.
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Figure 6.2.: Convergence of the DNS with respect to the time step.
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6.3. Initialization

This section describes the construction of the initial flow field consistent with the initial energy
spectrum used in the wave-turbulence simulations and with the velocity representation of the
DNS code. This field is based on the inviscid wave-guide mode, so that even though no-slip
conditions are imposed, at later times the initial condition involves slip. This means that the
DNS has subsequently to impose no slip by creating Ekman layers of growing thickness at the
walls.

6.3.1. Construction of the initial velocity field using the inviscid basis

The wave-turbulence model describes the time evolution of the energy spectra Bn(k,T ). Here
k =

(
k2

1 + k2
2

)1/2
where (k1, k2) is the two-dimensional wave vector parallel to the walls and n

the mode order associated with the wall-normal direction x3. The initial form of the spectrum
spectra is

Bn(k) = C exp
{
−

k2 + n2π2

Ξ
2

}
,

where Ξ is the spectral width and C a constant of normalisation ensuring that

2π
∞∑

n=1

∫ ∞

0
kBn(k) dk = 1.

The Bn are the diagonal elements of a spectral matrix, Anm(k, t), rescaled according to
Bn(k) = ε−2Ann(k). The initialization of the DNS consists in generating velocity components in
the physical space, building a flow field that is consistent with given Anm(k, 0).

Modal expression of the velocity field

In DNS, the velocity field is approximated as periodic in x1 and x2. For simplicity’s sake we
suppose equal periods in the two coordinates. Using the basis set of inviscid, inertial waveguide
modes and truncating the modal order to |n| ≤ N, the velocity components are defined in each
physical point (x1, x2, x3) by

ui(x1, x2, x3) =

N∑
n=−N

∑
k1,k2

αn(k)W (n)
i (x3; k) exp

{
ik1x1 + ik2x2

}
, (6.1)

where k = (k1, k2), αn(k) are modal coefficients and W (n)
i (x3; k) describes the modal structure

in the cross-channel direction. The inner sum is over k1 = 2πl1
/
L and k2 = 2πl2

/
L , where L is

the spatial period and l1 and l2 are integers. The complex modal coefficients αn(k) are random
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variables, whose construction forms the main subject of this section. When k , 0, W (n)
i (x3; k) is

given by (3.6)-(3.8) and (3.10). However (3.6) and (3.7) involve a zero-by-zero division when
k = 0 and the construction of W (n)

i (x3; 0) requires special treatment, which is described next.
Taking the limit k→ 0, equations (3.6)-(3.8) and (3.10) give

W (n)
i (x3; k)→ V (n)

i (x3; φ), (6.2)

where k = (k cos φ, k sin φ), k = |k| =
(
k2

1 + k2
2

)1/2
,

V (n)
1 (x3; φ) =

(
sn cos φ + i sin φ

)
cos(nπx3), (6.3)

V (n)
2 (x3; φ) =

(
sn sin φ − i cos φ

)
cos(nπx3), (6.4)

V (n)
3 (x3; φ) = 0, (6.5)

s0 = 0, sn = 1 when n > 0 and sn = −1 when n < 0. The angle φ represents the direction from
which k = 0 is approached. The quantity W (n)

i (x3; 0) in (6.1) is defined by

W (n)
i (x3; 0) =

1
√

4M

4M−1∑
r=0

V (n)
i (x3; φr) exp

{
iθr

}
, (6.6)

where φr = πr
/
2M and θr are random variables, uniformly distributed in [0, 2π). The variables

θr, 0 ≤ r ≤ 2M − 1 are statistically independent, while the remaining θr follow from

θ2M+r = −θr mod 2π 0 ≤ r ≤ 2M − 1. (6.7)

Equation (6.6) attempts to mimic the contribution to the integral in (3.11) from near k = 0 as
a sum over different directions of k in 0 ≤ φ < 2π. We have in mind a largish value of M, say
M = 32.

To summarise, when k , 0, W (n)
i (x3; k) is given by equations (3.6)-(3.8) is non-random,

whereas W (n)
i (x3; k)(x3; 0) is a random variable, given by (6.6). Equation (6.7) ensures that

W (−n)
i (x3;−k) = W (n)∗

i (x3; k) (∗ denotes complex conjugation) holds for k = 0, as it does for
k , 0. It remains to construct the αn(k) in (6.1), random variables which are chosen to be
statistically independent of the θr.

Required properties of the αn(k)

To obtain a real velocity field, αn(k) should satisfy α∗n(k) = α−n(−k) and, to ensure zero mean
velocity, αn(k) should have zero mean for k , 0. Otherwise, the statistics are chosen according
to a given spectral matrix, Anm(k). This matrix is Hermitian, positive semi-definite and has the
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property A−n,−m(k) = A∗n,m(k). The two-point velocity moments follow from (6.1) and statistical
independence of αn(k) and θr as

ui(x)u j(x
′) =

N∑
n,m=−N

n
∑
k1,k2
k′1,k

′
2

α∗n(k)αm(k′)W (n)∗
i (x3; k)W (m)

j (x′3; k′) exp
{
i(k′1x′1 − k1x1) + i(k′2x′2 − k2x2)

}
.

(6.8)

Statistical homogeneity with respect to x1 and x2 implies that these moments only depend on
r1 = x′1 − x1 and r2 = x′2 − x2, which is ensured by requiring

α∗n(k)αm(k′) = ℵnm(k)δk1k′1
δk2k′2

, (6.9)

where δ is the Kronecker delta. Thus (6.8) becomes

ui(x)u j(x
′) =

N∑
n,m=−N

ℵnm(0)W (n)∗
i (x3; 0)W (m)

j (x′3; 0)

+

N∑
n,m=−N

∑
k,0

ℵnm(k)W (n)∗
i (x3; k)W (m)

j (x′3; k) exp
{
ik1r1 + ik2r2

}
, (6.10)

where we have used the fact that W (n∗)
i (x3; k)W (m)

j (x′3; k) is non-random when k , 0. Equation
(6.10) should yield an approximation of equation (3.4) of [27]. To represent the integral in that
equation, the (k1, k2) plane is divided into small squares, each square being centred at one of
the discrete values of k and having sides of length 2π/L in both the k1 and k2 directions. The
first sum on the right-hand side of (6.10) represents the contribution from the square centred
at k = 0, whereas the second expresses contributions from all others. To obtain results that
correspond, we take

ℵnm(k) =
4π2

L2 Anm(k) − N ≤ n,m ≤ N (6.11)

for k , 0 and

ℵnm(0) =
4π2

L2 Anm(0) 0 ≤ n,m ≤ N. (6.12)

The latter also holds for −N ≤ n,m ≤ 0 because ℵ−n,−m(0) = ℵ∗nm(0) and A−n,−m(0) = A∗nm(0).
However, there is a significant difference with (6.11): there is no constraint on ℵnm(0) for
nonzero n and m having opposite signs. More details are given in Appendix G.

To summarise, the random coefficients αk(k) should be such that α∗n(k) = α∗−n(−k), αn(k) = 0
when k , 0 and (6.9) holds, where ℵnm(k) is given by (6.11) for k , 0 and (6.12) for k = 0. A
final requirement is that (6.1) should yield a velocity field which is statistically homogeneous
with respect to x1 and x2. This is ensured by (6.9) for the second-order moments, but the
requirement of full statistical homogeneity is stronger.
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Construction of the αn(k)

We first construct suitable αn(k) for k , 0. Since Anm(k)(−N ≤ n,m ≤ N) is Hermitian and
positive semi-definite, it has a complete set of 2N + 1 complex eigenvectors, X(p)

n (k), having
real eigenvalues λ(p)(k) ≥ 0. The X(p)

n (k) are orthogonal in the sense that

N∑
n=−N

X(p)∗
n (k)X(q)

n (k) = δpq. (6.13)

This relation expresses both orthogonality and normalisation of the eigenvectors. As shown at
the end of appendix G, the matrix Anm(k) can be expressed as a sum over its eigenvectors as

Anm(k) =
∑

p

λ(p)(k)X(p)
n (k)X(p)∗

m (k) − N ≤ n,m ≤ N (6.14)

Since A−n,−m(k) = A∗n,m(k), it can be shown that the eigenvectors may be chosen such that
X(p)
−n (k) = X(p)∗

n (k), which we assume is the case. The coefficients αn(k) are determined using

αn(k) =
2π
L

∑
p

√
λ(p)(k)X(p)∗

n (k) exp{iψp(k)} − N ≤ n,m ≤ N, (6.15)

where ψp(k) are random phases, uniformly distributed in [0, 2π). To ensure that
α∗n(k) = α−n(−k), we require that

ψp(−k) = −ψp(k) mod 2π. (6.16)

Apart from (6.16), the ψp(k) are statistically independent. Note that the eigenvectors and eigen-
values should be determined as described in Appendix G, otherwise there is no guarantee that
X(p)
−n (k) = X(p)∗

n (k).
Next consider the case k = 0. The approach used is similar to that for k , 0. Since Anm(0)

(0 ≤ n,m ≤ N) is Hermitian and positive semi-definite, it has a complete set of N + 1 complex
eigenvectors, X(p)

n (0), having real eigenvalues λ(p)(0) ≥ 0. The X(p)
n (0) are orthonormal in the

sense that
N∑

n=0

X(p)∗
n (k)X(q)

n (k) = δpq. (6.17)

Using reasoning similar to that employed to derive (6.14)

Anm(0) =
∑

p

λ(p)(0)X(p)
n (0)X(p)∗

m (0) 0 ≤ n,m ≤ N. (6.18)

Let

βn =
2π
L

∑
p

√
λ(p)(0)X(p)∗

n (0) exp
{
iτp

}
0 ≤ n ≤ N, (6.19)
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where the τp are random phases, uniformly distributed in [0, 2π) and statistically independent of
each other and of the ψp(k). If β0 = 0 we take αn(0) = βn, otherwise, writing β0 =

∣∣∣β0

∣∣∣ exp{iγ},
αn(0) = βn exp{−iγ}. This defines αn(0) for 0 ≤ n ≤ N, while α−n(0) = α∗n(0) for 1 ≤ n ≤ N is
used to complete the αn(0). Note that α0(0) is real, hence α−n(0) = α∗n(0) for all |n| ≤ N.

We now want to show that the αn(k), given by (6.15) for k , 0 and the above procedure for
k = 0 satisfy all the requirements described at the end of the previous section. It is evident from
(6.15) that the mean value of αn(k) is zero for k , 0, as it should be. Furthermore, (6.16) for
k , 0 and α−n(0) = α∗n(0) imply α∗n(k) = α−n(−k) for all k. Concerning statistical homogeneity,
using (6.15) in (6.1),

ui =

N∑
n=−N

αn(0)W (n)
i (x3; 0)

+
2π
L

N∑
n=−N

∑
k,0

∑
p

√
λ(p)(k) X(p)∗

n (k)W (n)
i (x3; k) exp

{
ik1x1 + ik2x2 + iψp(k)

}
.

(6.20)

The translation x1 7→ x1 + d1, x2 7→ x2 + d2 yields the velocity field

ui =

N∑
n=−N

αn(0)W (n)
i (x3; 0)

+
2π
L

N∑
n=−N

∑
k,0

∑
p

√
λ(p)(k) X(p)∗

n (k)W (n)
i (x3; k) exp

{
ik1x1 + ik2x2 + iψ̃p(k)

}
,

(6.21)

where
ψ̃p(k) = ψp(k) + k1d1 + k2d2 mod 2π. (6.22)

Given the definition of the ψp(k), the statistics of the ψ̃p(k) are the same as those of ψp(k),
hence the velocity field resulting from (6.20) is statistically homogeneous with respect to x1

and x2. Using (6.15),

α∗n(k)αm(k′) =
4π2

L2

∑
p,q

√
λ(p)(k)λ(q)(k′) X(p)

n (k)X(q)∗
m (k′)exp

{
i
(
ψq(k′) − ψp(k)

)}
(6.23)

for nonzero k and k′. Given the definition of the ψp(k), the average on the right-hand side
is zero unless k′ = k and q = p. Thus, using (6.14), we obtain (6.9) with ℵnm(k) given by
(6.11). Since the αn(k) for k , 0 are of zero mean and statistically independent of the αn(0),
α∗n(k)αm(0) = α∗n(0)αm(k′) = 0, i.e. (6.9) also holds when one of k and k′ is zero and the other
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nonzero. Finally,

α∗n(0)αm(0) = β∗nβm

=
4π2

L2

∑
p,q

√
λ(p)(0)λ(q)(0) X(p)

n (0)X(q)∗
m (0)exp

{
i
(
τq − τp

)}
(6.24)

for 0 ≤ n,m ≤ N. Given the definition of the τp, the average on the right-hand side is zero
unless q = p. Thus, using (6.18), we obtain (6.12).

Construction of the velocity field

Equations (6.1) and (6.6) imply

ui =
1
√

4M

N∑
n=−N

4M−1∑
r=0

αn(0)V (n)
i (x3; φr) exp

{
iθr

}
+

N∑
n=−N

∑
k,0

αn(k)W (n)
i (x3; k) exp

{
ik1x1 + ik2x2

}
.

(6.25)
Because

α−n(0)V (−n)
i (x3; φ2M+r) exp

{
iθ2M+r

}
=

(
αn(0)V (n)

i (x3; φr) exp
{
iθr

})∗
(6.26)

for 0 ≤ r ≤ 2M − 1 and

α−n(−k)W (−n)
i (x3;−k) exp

{
−ik1x1 − ik2x2

}
=

(
αn(k)W (n)

i (x3; k) exp
{
ik1x1 + ik2x2

})∗
(6.27)

for k , 0, (6.25) can be written as

ui =
1
√

4M

N∑
n=−N

2M−1∑
r=0

αn(0)V (n)
i (x3; φr) exp

{
iθr

}
+

N∑
n=−N

∑
k∈H

αn(k)W (n)
i (x3; k) exp

{
ik1x1 + ik2x2

}
+ c.c.,

(6.28)

where H represents k such that either k1 > 0 or k1 = 0, k2 > 0 and +c.c. denotes addition of the
complex conjugate. The result can be expressed as

ui =

N∑
n=−N

αn(0)

(

W (n)
i (x3) +

N∑
n=−N

∑
k∈H

αn(k)W (n)
i (x3; k) exp

{
ik1x1 + ik2x2

}
+ c.c., (6.29)

where

(

W (n)
i (x3) =

1
√

4M

2M−1∑
r=0

V (n)
i (x3; φr) exp

{
iθr

}
(6.30)

(6.29) has the advantage over (6.1) that we can forget about the constraints (6.7) and (6.16).
The required random variables, θr (0 ≤ r ≤ 2M − 1), ψp(k) (k ∈ H) and τp, are statistically
independent.
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Choice of spectral matrix

The diagonal elements of the spectral matrix, Anm(k), employed in the construction of the initial
velocity field, are taken to match the initial conditions of the wave-turbulence calculation, i.e.
Ann(k) = ε2Bn(k) for t = 0. However, this does not give A00(k), nor the off-diagonal elements of
Anm(k), which must be chosen such that Anm(k) has the required properties, i.e. it is Hermitian,
positive semi-definite and A−n,−m(k) = A∗nm(k). One such choice is

Anm(k) = aAnn(k)δnm + (1 − a)ζn−m

√
Ann(k)Amm(k), (6.31)

where ζp = 1 for even p and ζp = 0 for odd p. (6.31) provides a whole family of possible
spectral matrices, parameterised by 0 ≤ a ≤ 1. The factor ζn−m makes inertial modes of even
order independent of those of odd order, which ensures that the velocity field is statistically
symmetric under reflection (x3 7→ 1 − x3) about the channel centre plane. Note that the Anm(k)
given by (6.31) is diagonal when a = 1 and deficient (of rank 2 ) when a = 0. Hence, an
intermediate value, a = 1/2, has been used.

The wave-turbulence code uses the initial values

Bn(k) = C exp
{
−

k2 + n2π2

Ξ
2

}
, (6.32)

where Ξ determines the spectral width and

C =
1

πΞ2 ∑∞
n=1 exp

{
−n2π2

/
Ξ

2
} . (6.33)

This implies

Ann(k) = ε2C exp
{
−

k2 + n2π2

Ξ
2

}
(6.34)

for n , 0, which, for simplicity’s sake, is extended to n = 0. Using (6.34), (6.31) becomes

Anm(k) = ε2CΦnm(k) exp
{
−

k2

Ξ
2

}
, (6.35)

where

Φnm(k) = a exp
{
−

n2π2

Ξ
2

}
δnm + (1 − a)ζn−m exp

{
−

(n2 + m2)π2

2Ξ2

}
. (6.36)

6.4. Annular spectra, energy and volumetric dissipation

6.4.1. Approximation of the spectral matrix

DNS gives a periodic approximation of the turbulent velocity field of the form

ui =
∑
k1,k2

ŭi(x3; k) exp
{
ik1x1 + ik2x2

}
, (6.37)
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where k = (k1, k2), the sum is over k1 = 2πl1/L, k2 = 2πl2/L, L is the spatial period, and l1, l2

are integers. DNS provides the coefficients in the expansion

ŭi(x3; k) =

Nb∑
b=0

ûb
i (k)Tb(x), (6.38)

where x = 2x3 − 1 and Tb(x) are the Chebyshev polynomials.
According to (6.37), the two-point velocity correlations are

ui(x)u j(x
′) =

∑
k,k′

ŭ∗i
(
x3; k

)
ŭ j

(
x′3; k′

)
exp

{
i
(
k′1x′1 − k1x1

)
+ i

(
k′2x′2 − k2x2

)}
. (6.39)

Statistical homogeneity of the flow (which is preserved by DNS) implies that only terms with
k′ = k are nonzero, thus

ui(x)u j(x
′) =

∑
k

ŭ∗i
(
x3; k

)
ŭ j

(
x3; k

)
exp

{
ik1r1 + ik2r2

}
, (6.40)

where r1 = x′1 − x1 and r2 = x′2 − x2. Expressing the Fourier coefficients ŭi
(
x3; k

)
for k , 0

using the basis set W (n)
i (x3; k),

ŭi
(
x3; k

)
=

∞∑
−∞

v̆n(k)W (n)
i (x3; k), (6.41)

where

v̆n(k) =

∫ 1

0
ŭi
(
x3; k

)
W (n)∗

i (x3; k) dx3 (6.42)

follows from orthogonality, (2.11) of [27], of the W (n)
i (x3; k). Using (6.41) in (6.40),

ui(x)u j(x
′) = ŭ∗i

(
x3; 0

)
ŭ j

(
x′3; 0

)
+

∑
n,m

∑
k,0

v̆∗n(k)v̆m(k)W (n)∗
i (x3; k)W (n)

i
(
x′3; k

)
exp

{
ik1r1 + ik2r2

}
,

(6.43)

in which the first term on the right-hand side represents the k = 0 contribution.
The two-point moments can also be expressed using equation (3.4) of [27]. As in the last sec-

tion, the integral is approximated as a sum of contributions from small squares in the k-plane.
Identifying k , 0 terms in the resulting sum with those of (6.43) and using (3.6) of [27], gives
the approximation of the spectral matrix

Anm(k) =
L2

4π2 w̆∗n(k)w̆m(k), (6.44)

where w̆n(k) = exp
{
iωn(k)t

}
v̆n(k). Note that the factor exp

{
iωn(k)t

}
in the definition of w̆n(k)

suppresses the modal oscillations of linear, inviscid theory. As in the last section, the case k = 0
is singular because it gives rise to a zero by zero division in the definition of W (n)

i (x3; k). Rather
than trying to handle this special case, we simply do not calculate the spectral matrix for k = 0.

67



6. DNS

Calculation of the v̆n(k)

Equations (3.6)-(3.8) give W (n)∗
1 (x3; k) = Z(n)

1 (k) cos nπx3, W (n)∗
2 (x3; k) = Z(n)

2 (k) cos nπx3 and
W (n)∗

3 (x3; k) = Z(n)
3 (k) sin nπx3, where

Z(n)
1 (k) =

k1ωn(k) − ik2

k
, (6.45)

Z(n)
2 (k) =

k2ωn(k) + ik1

k
, (6.46)

Z(n)
3 (k) =

ik

(k2 + n2π2)1/2 . (6.47)

Writing x = cos θ (0 ≤ θ ≤ π) equations (6.38) and (6.43) yield

v̆n(k) =
1
2
σ(n)

i Z(n)
i (k), (6.48)

where it should be recalled that there is an implicit sum over i. The σ(n)
i are given by

σ(n)
1 (k) =

Nb∑
b=0

Hbnûb
1(k), (6.49)

σ(n)
2 (k) =

Nb∑
b=0

Hbnûb
2(k), (6.50)

σ(n)
3 (k) =

Nb∑
b=0

Gbnûb
3(k) (6.51)

with
Gbn =

∫ π

0
sin θ cos bθ sin(

1
2

nπ(1 + cos θ))dθ, (6.52)

Hbn =

∫ π

0
sin θ cos bθ cos(

1
2

nπ(1 + cos θ))dθ (6.53)

and we have used Tb(cos θ) = cos bθ. Note that

σ(−n)
1 (k) = σ(n)

1 (k), σ(−n)
2 (k) = σ(n)

2 (k), σ(−n)
3 (k) = −σ(n)

3 (k) (6.54)

can be used to treat negative n.
Implementation of the above procedure requires calculation of Gbn and Hbn, which in turn

involves the evaluation of the integrals appearing in their definitions. Rather than employing a
standard numerical integration rule, we used an analytic representation for the integrals as sums
over Bessel functions. We do not give details here, but the results are much more accurate and
robust to large values of n or b.

68



6. DNS

Annular averaging

Taken literally, the evaluation of the ensemble average in (6.44) would require a large number
of DNS runs with randomly varying initial conditions. This is not feasible and we use a method
that approximates the average using a single run of DNS, i.e. just one realisation of the ensem-
ble. Given statistical isotropy, the obvious method, adopted here, consists of averaging over
annular regions in the k-plane. Let 0 ≤ k− < k+ and define the average of w̆∗n(k)w̆m(k) over the
annulus k− < k ≤ k+: 〈

w̆∗n(k)w̆m(k)
〉

=
1
K

∑
k∈D

w̆∗n(k)w̆m(k), (6.55)

where K is the number of discrete k inside the annulus, denoted D . Note that K should be
nonzero, otherwise division by zero occurs. Note also that, because we have disallowed k = 0,
none of the annuli include this wave vector. The hope is that (6.55), which varies randomly from
one realisation to another in the statistical ensemble of flows, provides an approximation to the
ensemble average in (6.44). According to the general principles of statistics, this requires large
K, otherwise the statistical fluctuations in w̆∗n(k)w̆m(k) will be comparable with w̆∗n(k)w̆m(k) and
it will not yield an approximation of the ensemble average. Note that w̆n(−k) = w̆∗−n(k), hence
w̆∗n(−k)w̆m(−k) = w̆∗−m(k)w̆−n(k) and (6.55) can be written as〈

w̆∗n(k)w̆m(k)
〉

= Σnm + Σ−m,−n, (6.56)

where
Σnm =

1
K

∑
k∈Dh

w̆∗n(k)w̆m(k) (6.57)

and Dh represents half the wave vectors in D. Specifically, D is split into two disjoint subsets,
Dh and its partner, obtained via k 7→ −k. (6.56) and (6.57) are advantageous from a numer-
ical point of view because they reduce the calculation time. Note also that the matrix Σnm is
Hermitian, allowing a further improvement in numerical speed.

Taking the ensemble average of (6.55) and using (6.44),

L2

4π2

〈
w̆∗n(k)w̆m(k)

〉
=

L2

4π2K

∑
k∈D

w̆∗n(k)w̆m(k) =
1
K

∑
k∈D

Anm(k). (6.58)

Thus, the ensemble average of
〈
w̆∗n(k)w̆m(k)

〉
yields the annular average of the spectral matrix.

If k+ − k− is small, the result approximates Anm(k) at k = (k+ + k−)/2. On the other hand, as
noted above, we require a large number of k inside the annulus, so k+ − k− must not be too
small.

To be more specific, let us number the annuli 1 ≤ l ≤ Na, where Na is the total number.
Annulus l has k− = 2πrl−1

/
L and k+ = 2πrl

/
L, where 0 = r0 < r1 < · · · < rNa

= rmax define
the boundaries between neighbouring annuli. Thus, taken together, the annuli cover the range
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0 < k ≤ 2πrmax
/
L. Various choices of the rl may be envisaged. One such makes rl proportional

to l 1/2 , making the surface area the same for all annuli. Given the uniform distribution of
DNS wave vectors in the k-plane, this yields approximately constant K. More precisely, let
rl = βl 1/2 , then

K = πβ2, (6.59)

obtained by multiplying the annular surface area by the density of wave vectors, should be a
good approximation provided β is large (as it should be because we require large K). Another
possibility is to take rl proportional to l, in which case we expect K to increase with l in rough
proportion. The problem with the latter choice is that it tends to place very few wave vectors
in the first few annuli, thus calling into question the approximation of the ensemble average
by the annular one. On the other hand, the former choice tends to make the number of annuli
unnecessarily large because the annular width, k+ − k−, decreases as l increases. A third choice,
namely

r2
l

rl + α
= l, (6.60)

where α > 0 is constant, is a compromise between the two previous choices. When rl � α it
yields rl ∼ l 1/2 , whereas rl ∼ l when rl � α. (6.60) yields annuli whose surface area increases
with l, hence K also tends to increase. The number of wave vectors in the first annulus can be
estimated as πr2

1. Let Km denote the desired number of such wave vectors, then πr2
1 = Km gives

r1 and (6.60) implies
α = r1

(
r1 − 1

)
(6.61)

for the constant α.
Using the annular average to approximate Anm(k), the result has random fluctuations from

realisation to realisation. To obtain a good approximation, these fluctuations should be small
compared with Anm(k) itself. Figure 6.3 and Figure 6.4 show results of using annular averaging
at the initial time. The annuli were chosen according to rl = βl 1/2 , where β was calculated from
(6.59) with the desired value K = 50 for the number of wave vectors per annulus. The value
L = 16 was used. Figure 6.3 shows results of three independent realisations, as well as the
exact initial spectra. The fluctuations about the exact spectra are apparent, but are moderately
small (about 28%). The low-order modes tend to have smaller percentage fluctuations than the
higher-order ones. Figure 6.4 illustrates the effects of varying the desired K for the modal order
n = 3. For K = 10, the spectra cannot be calculated in some annuli because they contain no
wave vectors (this is shown with discontinuities of the corresponding line). In addition, the
fluctuations are unacceptably large for this value of K. As expected, the fluctuations decrease
with increasing K and, in keeping with our conclusions concerning Figure 6.3, are found to be
moderately small for K = 50.

In the DNS runs whose results are described in section 6.5, we used (6.60) and, to give
some breathing space, we choose Km = 200 for the desired minimal number of wave vectors.
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Figure 6.3.: The initial energy spectra obtained by annular averaging for three independent
realizations a, b and c. Also shown are the exact spectra.

The calculation of Anm(k) was performed during the simulation, asynchronously to the Navier-
Stokes solver.

6.4.2. Energy calculation

Let us define the energy as

E =
1
2

∫ 1

0
[uiui]dx3, (6.62)

where [] represents averaging with respect to x1 and x2. Thus, E (not to be confused with the
Ekman number, E) is the energy per unit area in the (x1, x2)-plane, averaged across the channel.
Using (6.1)

[uiui] =
∑
k,k′

ŭ∗i
(
x3; k

)
ŭi
(
x3; k′

)[
exp

{
i(k′1 − k1)x1 + i(k′2 − k2)x2

}]
=

∑
k

ŭ∗i
(
x3; k

)
ŭi
(
x3; k

)
= ŭ2

i
(
x3; 0

)
+

∑
k,0

ŭ∗i
(
x3; k

)
ŭi
(
x3; k

)
, (6.63)

where we have used the facts that ŭi
(
x3; 0

)
is real (by Hermitian symmetry) and that the x1 − x2

average of the exponential is zero if k′ , k and equal to 1 when k′ = k. Employing (6.41) and
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Figure 6.4.: Influence of the desired K on Ann(k, 0) for n = 3.

(2.21) of [27], ∫ 1

0
ŭ∗i

(
x3; k

)
ŭi
(
x3; k

)
dx3 =

∞∑
n=−∞

∣∣∣v̆n(k)
∣∣∣2. (6.64)

Summing over k , 0, we obtain the contribution

1
2

∑
k,0

∑
n

∣∣∣v̆n(k)
∣∣∣2 (6.65)

to E, where the summation over n is truncated to the finite range, n ≤ N, which is treated
numerically. Assuming the annuli used for averaging cover the range of nonzero wave vectors
which have significant energy, we can approximate (6.65) as∑

Dh

∑
k∈Dh

∑
n

∣∣∣v̆n(k)
∣∣∣2, (6.66)

where we have used
∣∣∣v̆−n(−k)

∣∣∣2 =
∣∣∣v̆n(k)

∣∣∣2. Since v̆n(k) has already been calculated for the
annular average, very little extra numerical work is required to compute (6.66).

Because we have restricted attention to k , 0, the k = 0 contribution is treated differently.
We have

ŭi
(
x3; 0

)
=

Nb∑
b=0

ûb
i (0)Tb(x), (6.67)
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hence
1
2

∫ 1

0
ŭ2

i
(
x3; 0

)
dx3 =

1
4

Nb∑
b,b′=0

Ibb′ û
b
i (0)ûb′

i (0) (6.68)

is the k = 0 contribution to E, where

Ibb′ = 2
∫ 1

0
Tb(x)Tb′(x) dx3

=

∫ π

0
sin θ cos bθ cos b′θ dθ. (6.69)

The integral can be evaluated as

Ibb′ =
1

1 − (b + b′)2 +
1

1 − (b − b′)2 (6.70)

if b and b′ have the same parity and Ibb′ = 0 otherwise.
Because the wave-turbulence model does not treat n = 0 modes, these modes must be ex-

cluded from the DNS energy calculation when comparing with WTC. This is achieved for the
nonzero k contribution, (6.66), by dropping the n = 0 contribution. However, there is no ob-
vious way of removing n = 0 modes from (6.68) so we simply neglect the k = 0 contribution
to the energy. Because k = 0 represents one Fourier component of many, the result should be
very close to what it would have been had k = 0 been included.

6.4.3. Dv calculation

Dv is defined by equation (5.4). It represents the volumetric viscous dissipation appearing in the
wave-turbulence model and only includes modes with n , 0. Thus, it represents only part of the
overall dissipation. The contribution to the integral in (5.4) from each annulus is approximated
by

πε−2βv

(
k2

+ − k2
−

) N∑
n=1

(
1
2

(
k2

+ + k2
−

)
+ n2π2

)
Ann, (6.71)

where Ann is the result of annular averaging. The sum of (6.71) over all annuli yields Dv.

6.5. Results

Appendix I compares DNS results for the three cases indicated in Table 6.1. It is found that
the case Ni = 576 differs from the other two, which are quite close, indicating convergence for
higher Ni.
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Figure 6.5.: Evolution of energy (excluding n = 0 and k = 0) with time, t.

Because WTC does not treat modes with n = 0, such modes are excluded when comparing
with DNS. Figure 6.5 shows the evolution of the energy, excluding n = 0 and k = 0 as described
earlier, as a function of time, t. Results are given for WTC, DNS and a version of DNS in
which nonlinearity is dropped. The WTC and DNS results differ noticeably by about t = 10.
Linear and nonlinear DNS have significant differences by about the same time, indicating that
nonlinearity is important at such times. Recalling that the critical time according to WTC is
t ≈ 60, this is the time required for nonlinear transfer to produce a full spectrum and for a
volumetric dissipative range to form according to WTC. DNS predicts the much more rapid
appearance of nonlinearity and greater dissipation.
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Figure 6.6.: Evolution of Dv with time.
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Figure 6.6 shows Dv(t). There are considerable differences between WTC and DNS. The
DNS equivalent of the critical time is about one third of the WTC one and the level of DNS
dissipation is higher. The departure of linear from nonlinear DNS again indicates a time for
significant nonlinearity of about 10.
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Figure 6.7.: Spectrum A00(k).

In summary, there are considerable differences between WTC and DNS which appear to be
due to stronger nonlinearity in the latter approach. The time, t ≈ 10, for significant nonlin-
earity in DNS is much too short for wave-turbulence theory to apply. That theory is based on
modal oscillations which are rapid on the nonlinear time scale. Given that the period of the
most rapidly oscillating modes (k = 0) is 2π, if nonlinearity occurs at t = 10, as in the DNS,
there are not enough periods to make WTC work. At such short times, the mechanism which
makes resonant triads dominant is ineffective and all triads can contribute to energy transfer,
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thus making the process more rapid. In any case, it is apparent that there is no point in detailed
comparison of WTC and DNS results because they differ significantly. This is not to say that
turbulence evolution according to DNS and WTC show no similarities, they appear to be qual-
itatively similar, but with different time scales. Thus, in what follows, we present DNS results
without direct comparison with WTC.
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Figure 6.8.: Spectra Ann(k) for n = 1, 2, 3.

Figure 6.7 shows the spectrum, A00(k), at different times. In [27] it was conjectured that this
component of the flow should evolve according to equations (4.10) and (4.11) of that article.
These are essentially the 2D Navier-Stokes equations, but with an additional term representing
wall damping. It is thus interesting to compare 3D DNS with a 2D DNS including wall damp-
ing. Figure 6.7 shows that they are quite close at smaller wavenumbers, but differ at larger
ones. In particular, 3D DNS appears to be less dissipative so the spectral levels are higher and
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the dissipative range occurs at larger k. Because A00(k) needs to be multiplied by 2πk to obtain
the usual 2D energy spectrum, the indicated slope of −4 corresponds to the k−3 spectrum of 2D
turbulence theory. Some additional results of 2D DNS are given in Appendix J.

Figure 6.8 shows Ann(k) for n other than 0 at different times. The results again indicate the
rapidity of nonlinear energy transfer with the formation of a full spectrum and a dissipative
range by about t = 20. They also show an inertial range for n = 1. Interestingly, the spectral
slope is not far from the value −3.67 which was found using WTC (recall Figure 5.9 and
Figure 5.10). Given the differences between the WTC and DNS results noted above, this may
well be coincidental.

Finally, it may be of interest to visualize the flow in physical space. Figures (6.9)-(6.12)
show gray-scale plots of the x3 component of vorticity in a plane parallel to the walls for
Ni = 576 and Ni = 1152 at different times. Given the qualitative character of these figures, the
vorticity has been normalized to lie between −1 and +1. However, the normalization respects
zero vorticity and is the same for all figures. Both 3D and 2D results are given. In the 2D plots,
only the n = 0 component of the flow is relevant. It will be seen that there are many vortices,
the number increasing with Ni because L is larger according to Table 6.1. More fine structure
is visible for 3D than for 2D DNS.

(a) t = 10 (b) t = 20 (c) t = 30

(d) t = 40 (e) t = 50 (f) t = 60

Figure 6.9.: Vorticity; DNS 576, x3 = 0.25
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(a) t = 10 (b) t = 20 (c) t = 30

(d) t = 40 (e) t = 50 (f) t = 60

Figure 6.10.: Vorticity; DNS 2D 576.

(a) t = 10 (b) t = 20 (c) t = 30

(d) t = 40 (e) t = 50 (f) t = 60

Figure 6.11.: Vorticity; DNS 1152, x3 = 0.25
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(a) t = 10 (b) t = 20 (c) t = 30

(d) t = 40 (e) t = 50 (f) t = 60

Figure 6.12.: Vorticity; DNS 2D 1152.
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This thesis describes results for decaying turbulence in a rapidly rotating channel, the axis of ro-
tation being perpendicular to the channel walls. The turbulence is homogeneous and isotropic
parallel to the walls, but their existence makes it inhomogeneous in the wall-normal direc-
tion. Rapid rotation means a small Rossby number for which the effects of rotation dominate
nonlinearity. This, in turn, suggests the use of wave-turbulence theory. The unbounded case,
homogeneous in all directions, was treated in [3]. The rotating channel was analysed in [27],
the wave-turbulence equations for the energy spectra being derived and some of their conse-
quences discussed. However, detailed results were not available at that stage because there was
no numerical implementation of the equations. The consequent objectives of this PhD were
to implement the spectral-evolution equations of [27], to determine their consequences and to
attempt a comparison with DNS.

Chapter 2 concerns the linear, inertial waveguide modes which are building blocks of the
wave-turbulence closure of [27]. Starting with the classical case of plane inertial waves in
an unbounded domain, the complex dispersion relation and helical modes were derived. The
former is important in two respects: the real part of the modal frequency follows the well-
known inviscid dispersion relation, while the imaginary part represents one of the two viscous-
damping mechanisms, namely volumetric damping, which later plays an important role in spec-
tral evolution according to wave-turbulence theory. The helical modes, i.e. the velocity fields
of plane waves, are often used in spectral analysis of unbounded rotating turbulence such as [3],
but are insufficient for the wall-bounded flows considered here because they take no account of
the walls.

The second part of chapter 2 allows for the walls, located at x3 = 0, 1 in the Cartesian system
(x1, x2, x3), which is used to describe the flow. The inviscid waveguide modes are derived.
These modes are essential to the wave-turbulence closure of [27] and their detailed analysis
in chapter 2 is intended to help the reader to understand the origin of equations (3.6)-(3.9)
of chapter 3, which may otherwise appear somewhat opaque. They can be interpreted as the
sum of two plane waves, the one being the reflection by the walls of the other. An important
consequence of confinement is the discretisation of the wall-normal component of the wave
vectors of these waves to be ±nπ, where n is an integer, referred to as the modal order. The
component parallel to the walls, k = (k1, k2), of the waves is the same, hence K = (k1, k2,±nπ)
are the three-dimensional wave vectors of the two waves. Thus, the inviscid waveguide modes
are parameterised by k and n.
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Viscosity leads to modal damping, which is the sum of two components: volumetric and
wall damping. The volumetric damping rate is EK2, just as for plane waves, whereas the wall-
damping rate depends only on the direction of K relative to the rotation vector and is thus
independent of K = |K|. Thinking in terms of different scales of a turbulent flow, volumetric
damping behaves in the usual manner and should thus stop any cascade to scales which are too
small, whereas wall-damping will not.

Chapter 3 describes the essentials of the wave-turbulence theory of [27]. The velocity field is
expressed as a sum over the inviscid waveguide modes, each having a modal amplitude an(k).
These amplitudes evolve in time according to equations which allow for the viscous effects
discussed above, but there are additional nonlinear terms representing interactions between
modes. A spectral matrix, Anm(k), is defined, whose diagonal elements represent the distribu-
tion of energy over the different modes. The velocity field is separated into a two-dimensional
component, n = 0, and a wave component, n , 0. The former is incompatible with wave-
turbulence analysis, because n = 0 modes are non-dispersive, whereas the latter has diagonal
elements which evolve according to equation (3.20), which is the wave-turbulence energy equa-
tion. According to the wave-turbulence closure, this equation governs the time evolution of the
energy spectra, Ann(k), for n , 0.

The linear term in (3.20) expresses the viscous damping mechanisms discussed earlier. The
nonlinear term consists of an integral and represents interactions with two other waveguide
modes, p, np and q, nq, which requires k + p + q = 0 and that one of the four conditions
n ± np ± nq = 0 be satisfied. The integral is over the resonance curve, Cnnpnq

(k), in the p-plane
defined by ωn(k) + ωnp

(p) + ωnq
(|k + p|) = 0, a condition for resonant triads which arises from

wave-turbulence theory. This condition expresses dominance of near resonant interactions in
the weak turbulence limit for which wave-turbulence closure applies.

One consequence of the dominance of resonant interactions arises because a resonance curve
with given n, np and nq can shrink to zero size, then disappear, as k is decreased. When that
happens, the integral in (3.20) drops from a nonzero limiting value to zero. Although the initial
spectra employed in this study are smooth functions of k, such discontinuous jumps in the
nonlinear transfer term lead to spectral discontinuities at later times. Of course, we do not
expect discontinuities in the real spectra, just rapid variations near the values of k for which
wave-turbulence theory predicts a discontinuity. These rapid changes in the spectra should
become more and more rapid the smaller the Rossby number.

Chapter 4 concerns the numerical implementation of (3.20) and its verification. Firstly,
a Rossby number, ε, is explicitly introduced by making the change of variables
Bn(k) = ε−2Ann(k), T = ε2t. This does not alter the form of (3.20), which implies (4.1) with
(4.2)-(4.5). It does however introduce the scaled time variable T = ε2t which is appropriate to
the slow spectral evolution at small ε. The viscous damping term in equation (4.2) is given by
(4.5). The coefficients βw and βv correspond to wall and volumetric damping. The initial spectra
are taken to have the Gaussian form (4.7), which is normalised using (4.6). This normalisation
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can be thought of as providing a precise definition of the Rossby number. The quantity Ξ ap-
pearing in the initial spectra is referred to as the spectral width. It completes the set of three
parameters, Ξ, βw and βv, of the problem.

For numerical purposes, k is discretised and the corresponding values of Bn(k) used to de-
scribe the spectra. The main numerical task is the evaluation of integrals over the resonance
curves. Small steps are taken along the curve and the contribution of each step to the integral
obtained by multiplying the step length by the value of the integrand at mid-step. The latter
involves interpolation of the spectra between adjacent discrete k. Another issue is the time
stepping scheme, which is second order and chosen so that the spectra cannot become negative,
a condition known as realizability.

The numerical scheme was tested in a variety of ways including accuracy of the resonance-
curve integrals and energy conservation by the nonlinear transfer terms. The numerical param-
eters were varied to verify that the expected orders of convergence were respected.

Chapter 5 gives results. Firstly, the time evolution of the overall energy, volumetric and wall
dissipation rates were presented. For small enough βv, there is an abrupt transition between two
phases of evolution at a time referred to as the critical time, Tc. Prior to the critical time, wall
dissipation dominates volumetric dissipation and there is a decay in the energy which becomes
more marked the larger βw. Following the critical time, volumetric damping takes over as the
dominant dissipative mechanism and power-law dependency on T is found. The critical time
is insensitive to βw and βv provided the latter is small enough, but it depends strongly on the
spectral width: the larger Ξ the smaller Tc.

Results concerning the time evolution of the spectra are described in the second half of
chapter 5. Again focussing on the case of small βv, prior to the critical time it is found that a
spectral front advances towards larger k, leaving an inertial range behind it. Evidently this is a
reflection of an energy cascade from large to small scales. Approximate power-law behaviour
occurs in the inertial range, the term approximate being used because the appearance of spectral
discontinuities muddies the picture. The front moves more and more rapidly as the critical time
is approached. At the critical time, the front comes to a halt and a dissipative range is formed
due to volumetric damping. Subsequently, volumetric dissipation balances transfer from the
larger scales. The rapidity of advancement of the front just prior to the critical time is the reason
that the transition between the two phases of evolution of the energy is so abrupt. Following the
critical time one can identify the dissipative range as a spectral front which gradually retreats.
Oscillations of the spectra in the inertial range are observed close to and following the critical
time.

Contour plots of Bn(k) in the (k, nπ) plane show that the energy cascade takes place
not only in k but also in n. This is not surprising because it is the overall wavenumber,
K =

(
k2 + n2π2

) 1/2
, which is inversely related to scale size. Thus, the cascade to small scales

generates large k, but also large nπ. However, the range attained in nπ before volumetric dis-
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sipation intervenes is found to be considerably smaller than that attained in k, which suggests
that the transfer in n is less efficient than that in k.

Bn(k) gives the energy distribution over both k and n. For given k, one can include all values
of n to get the distribution, e(k), over k. Likewise, including all k for a given n yields en, the
distribution over n. Not surprisingly, plotting e(k) as a function of k or en as a function of n
prior to the critical time shows an advancing spectral front, leaving behind an inertial range.
A dissipative range is then established and the front subsequently retreats. The inertial-range
power law of e(k) appears to have an exponent of −2.2 which is insensitive to changes in the
parameters of the problem.

As noted earlier, spectral discontinuities appear following spectral evolution. The strength
of these discontinuities has a striking dependence on Ξ. The smaller Ξ, the stronger the discon-
tinuities become.

Chapter 6 concerns DNS calculations, carried out using the NadiaSpectral code1, adapted
to include the effects of rotation, on various calculation clusters, including the supercomputer
Turing2 provided by IDRIS3. We knew from the start that such calculations were ambitious,
being at the limits of the available compute power. Thus, there could only be a few.

Before embarking on such calculations, we needed to define the physical and numerical pa-
rameters, a process described in section 6.2 and which leads to a definite choice of all physical
parameters and to the three DNS cases of Table 6.1. There was also an obvious need for initial-
ization of the DNS having spectra consistent with WTC, the development of which is discussed
in section 6.3. Section 6.4 concerns the methods used to extract the desired results, namely the
spectra, energy and volumetric dissipation rate, from the DNS results.

Finally, section 6.5 gives results of the DNS calculations. Unfortunately, it turns out that
nonlinearity is much stronger than predicted by WTC. This is no doubt because the time scale,
t ≈ 10, for significant nonlinearity given by DNS is too small to restrict the interacting wave
vector triads to be near resonant. This would require a yet smaller Rossby number, which is
not feasible given current computer resources.

1 Visit the home page of NadiaSpectral code, https://perso.univ-lyon1.fr/marc.buffat/NadiaSpectral/index.html.
2 Turing is an IBM Blue Gene/Q machine which has a remarkable energy efficiency (2.17 Gflops/W). For further

information visit http://www.idris.fr/eng/turing/turing-presentation-eng.html.
3 The Institute for Development and Resources in Intensive Scientific Computing. Find more information on the

following page http://www.idris.fr/eng/info/missions-eng.html.
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A. Expressions for the nonlinear
coefficients

According to (A.8) and (A.9) of [27],

Nnnpnq
(k,p) =

1
2

(
Innpnq

(k,p,−k − p) + Innqnp
(k,−k − p,p)

)
, (A.1)

where

Innpnq
(k,p,q) =

k1 p2 − k2 p1 + i k · pωnp
(p)

4kpq

(
δn−np−nq

+ δn+np−nq
+ δn−np+nq

+ δn+np+nq

)
×

(
k · q

(
1 − ωn(k)ωnq

(q)
)

+ i
(
k1q2 − k2q1

)(
ωn(k) − ωnq

(q)
))

+
kq

(
k1 p2 − k2 p1 + i k · pωnp

(p)
)

4p
(
k2 + n2π2)1/2 (q2 + n2

qπ
2)1/2

(
δn−np−nq

+ δn+np−nq
− δn−np+nq

− δn+np+nq

)
+

inπp

4kq
(
p2 + n2

pπ
2)1/2

(
δn−np−nq

− δn+np−nq
+ δn−np+nq

− δn+np+nq

)
×

(
k · q

(
1 − ωn(k)ωnq

(q)
)

+ i
(
k1q2 − k2q1

)(
ωn(k) − ωnq

(q)
))

+
inπkpq

4
(
k2 + n2π2) 1/2 (p2 + n2

pπ
2)1/2 (q2 + n2

qπ
2)1/2

×
(
δn−np−nq

− δn+np−nq
− δn−np+nq

+ δn+np+nq

)
,

(A.2)

and δ0 = 1 and δm = 0 for m , 0. Observe that Innpnq
(k,p,q), and hence Nnnpnq

(k,p), is zero
unless n ± np ± nq = 0. Note also that Nnnpnq

(k,p) has the following symmetry property under
the transformation np ↔ nq, p↔ −k − p

Nnnpnq
(k,p) = Nnnqnp

(k,−k − p). (A.3)

We also introduce two functions, Λnnpnq
(p) and Ξnnpnq

(p), which are later used in expressions
for Nnnpnq

(k,p) and Nnqnpn(−k − p,p) as k → 0:
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A. Expressions for the nonlinear coefficients

Λnnpnq
(p) =

nπ
4

p

 1 − ωnq
(p)(

p2 + n2
pπ

2)1/2

(
δn−np−nq

− δn+np−nq
+ δn−np+nq

− δn+np+nq

)

−
1 − ωnp

(p)(
p2 + n2

qπ
2) 1/2

(
δn−np−nq

+ δn+np−nq
− δn−np+nq

− δn+np+nq

), (A.4)

Ξnnpnq
(p) = −

nπp

2
(
p2 + n2

pπ
2)1/2

(
1 − ωnq

(p)
)(
δn−np−nq

− δn+np−nq
+ δn−np+nq

− δn+np+nq

)
−

1
2

p
(
1 − ωnp

(p)ωnq
(p)

)(
δn−np−nq

+ δn+np−nq
+ δn−np+nq

+ δn+np+nq

)
−

p3

2
(
p2 + n2

pπ
2)1/2 (p2 + n2

qπ
2)1/2

(
δn−np−nq

− δn+np−nq
− δn−np+nq

+ δn+np+nq

)
.

(A.5)
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B. Proofs of identities used in [27] to
show independence of the wave from
the two-dimensional component

This appendix is devoted to analytical proofs of the identities,

ηnnp0(k,p) = 0 (B.1)

for |p| = k and np = −n , 0 and

ηn0nq
(k,p) + 2λn0nq

(k,p) = 0 (B.2)

for |k + p| = k and nq = −n , 0. These identities were used in section 5.4 of [27] to show
that the 2D component of the flow does not influence the evolution of the wave component
according to wave-turbulence theory. That is, the contribution of np = 0 or nq = 0 to the sum
in (3.20) is zero, leading to closure of that equation. This remarkable conclusion was justified
in [27] by the numerical finding that the identities are satisfied to machine precision. Since
then, we have obtained analytical proofs of the identities and it is perhaps of interest to give
these proofs here.

First identity

To prove (B.1), from (A.2) for p = k (here p = |p|) and np = −n , 0 we obtain

I0npn(−k − p,p,k) =
1

2k2
|k + p|

(
k1 p2 − k2 p1 − iωn(k)p · (k + p)

)
×

(
k · (k + p) + iωn(k)

(
k1 p2 − k2 p1

))
,

(B.3)

I0nnp
(−k − p,k,p) =

1
2k2
|k + p|

(
k2 p1 − k1 p2 + iωn(k)k · (k + p)

)
×

(
p · (k + p) − iωn(k)

(
k2 p1 − k1 p2

))
.

(B.4)
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B. Proofs of identities used in [27] to show independence of the wave from the two-dimensional component

Using these results in (A.1),

N0npn(−k − p,p) =
1 − ω2

n(k)

4k2
|k + p|

(k1 p2 − k2 p1)(k · (k + p) − p · (k + p)), (B.5)

gives zero because k · (k + p) − p · (k + p) = k2
− p2 = 0. Thus, (3.21) yields (B.1).

Second identity

According to (A.3), (3.21) and (3.22)

ηnnpnq
(k,p) + ηnnqnp

(k,q) + 2λnnpnq
(k,p) =

8 Re
{
N∗nnpnq

(k,p)
(
Nnqnpn(q,p) + Nnpnqn(p,q) + Nnnpnq

(k,p)
)}
, (B.6)

where q = −k − p. Using (A.1) we write

Nnqnpn(q,p)+Nnpnqn(p,q) + Nnnpnq
(k,p) =

1
2

(
Inqnpn(q,p,k) + Inqnnp

(q,k,p) + Inpnqn(p,q,k) + Inpnnq
(p,k,q)

+ Innpnq
(k,p,q) + Innqnp

(k,q,p)
)
.

(B.7)

Integrating equation (F.1) of [27] over p gives

Innpnq
(k,p,q) = −Inqnpn(q,p,k). (B.8)

Cyclic permutation of (k,p,q) and (n, np, nq) leads to

Inpnqn(p,q,k) = −Innqnp
(k,q,p) (B.9)

and
Inqnnp

(q,k,p) = −Inpnnq
(p,k,q). (B.10)

These results indicate that (B.7) is zero, hence (B.6) gives

ηnnpnq
(k,p) + ηnnqnp

(k,q) + 2λnnpnq
(k,p) = 0. (B.11)

Taking q = k, nq = −n , 0, np = 0 and applying (B.1) to the second term of (B.11) give (B.2).
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C. Equipartition of energy

Dropping the dissipative term, (3.20) becomes

∂Ann(k)
∂t

=
∑

np,nq,0

∮
Cnnpnq

(k)

Anpnp
(p)

(
ηnnpnq

(k,p)Ann(k) + λnnpnq
(k,p)Anqnq

(|k + p|)
)

Γnpnq
(k,p)

| dp| (C.1)

for n , 0. Cnnpnq
(k), λnnpnq

(k,p) and Γnpnq
(k,p) are symmetric under the transformation np ↔ nq

and p↔ −k − p. Thus, (C.1) is equivalent to

∂Ann(k)
∂t

=
1
2

∑
np,nq,0

∮
Cnnpnq

(k)

[Ann(k)
(
ηnnpnq

(k,p)Anpnp
(p) + ηnnqnp

(k,−k − p)Anqnq
(|k + p|)

)
Γnpnq

(k,p)

+
2λnnpnq

(k,p)Anpnp
(p)Anqnq

(|k + p|)

Γnpnq
(k,p)

]
| dp|. (C.2)

Equipartition may occur if, in addition to neglecting dissipation, the ranges of n and k are
truncated. Thus, attention is restricted to Ann(k) for which k ≤ kmax, 0 < |n| ≤ nmax and (C.2)
only applied to these values. Furthermore, the sum in (C.2) is restricted to 0 <

∣∣∣np

∣∣∣ ≤ nmax,
0 <

∣∣∣nq

∣∣∣ ≤ nmax and the integral to that part of Cnnpnq
(k) for which p ≤ kmax and |k + p| ≤ kmax.

Equipartition means that Ann(k) has the same value for all k ≤ kmax and n ≤ nmax. In that case,
the right-hand side is zero, according to (B.11). Thus, the dissipationless wave-turbulence
equations, truncated in the above manner, respect equipartition.
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D. The resonance curve in the limit
k → ∞

Defining

p̂ =
p
k
, a =

np

n
, b =

nq

n
, (D.1)

(3.28) gives
a(

p̂2
1 + p̂2

2

)1/2 +
b((

p̂1 + 1
)2

+ p̂2
2

)1/2 + 1 = 0. (D.2)

The requirement np < 0 or nq < 0, necessary for the existence of the resonance curve, is
equivalent to a < 0 or b < 0 since n > 0. If a > 0, b must be negative and we rewrite (D.2) as

b(
q̂2

1 + q̂2
2

)1/2 +
a((

q̂1 + 1
)2

+ q̂2
2

)1/2 + 1 = 0, (D.3)

where q̂1 = −p̂1 − 1 and q̂2 = −p̂2. Swapping a with b and q̂ with p̂ we obtain equation (D.2)
with a < 0. Thus, we restrict attention to a < 0.

The condition (3.26) implies
b = s1a + s2, (D.4)

where s1 and s2 take one of the values ±1. According to their original definitions, a and b are
nonzero, rational numbers. The range of a and b is subsequently extended to all real values,
constrained by (D.4), a < 0 and b , 0. In so doing, it should be borne in mind that, when
s1 = s2, the limit a→ −1 implies b→ 0 and (D.2) yields the limiting resonance curve

p̂ = 1. (D.5)

Although the singularity at p̂ = (−1, 0) is absent when b = 0, it approaches the resonance curve
as b→ 0. This makes s1 = s2, a→ −1 a singular limit.

As a → 0, there are two cases: s2 = 1 and s2 = −1. In the case s2 = 1 it follows from (D.4)
that b→ 1. Hence, the only negative term in (D.2) is the first one, which must not tend to zero,
otherwise (D.2) cannot be satisfied. This requires that p̂→ 0. Thus, the sum of other two terms
tends to 2 and (D.2) gives

p̂ = −
1
2

a, (D.6)
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D. The resonance curve in the limit k → ∞

a small circle centered on p̂ = 0.
On the other hand, if s2 = −1, b→ −1 and (D.2) approaches((

p̂1 + 1
)2

+ p̂2
2

)1/2
= 1, (D.7)

a circle centred on p̂ = (−1, 0).
In either of the above cases, the curve arising from (D.2) has a single loop as a→ 0.
Let us examine the possibility that the number of loops changes as a varies in a < 0. Leaving

aside the singular case s1 = s2, a = −1, for this to happen, both the left-hand side of (D.2) and
its derivatives with respect to p̂1 and p̂2 must be simultaneously zero, i.e. (D.2),

ap̂1(
p̂2

1 + p̂2
2

)3/2 +
b
(
p̂1 + 1

)((
p̂1 + 1

)2
+ p̂2

2

)3/2 = 0, (D.8)

and

p̂2

 a(
p̂2

1 + p̂2
2

)3/2 +
b((

p̂1 + 1
)2

+ p̂2
2

)3/2

 = 0 (D.9)

all hold. (D.9) implies either p̂2 = 0 or

a(
p̂2

1 + p̂2
2

)3/2 +
b((

p̂1 + 1
)2

+ p̂2
2

)3/2 = 0. (D.10)

If (D.10) is satisfied, (D.8) gives

b((
p̂1 + 1

)2
+ p̂2

2

)3/2 = 0, (D.11)

hence a(
p̂2

1 + p̂2
2

)3/2 = 0 (D.12)

according to (D.10). (D.11) and (D.12) imply a = b = 0, but this is inconsistent with (D.4). We
conclude that p̂2 = 0 and so (D.2) and (D.8) become

a∣∣∣p̂1

∣∣∣ +
b∣∣∣p̂1 + 1

∣∣∣ + 1 = 0, (D.13)

ap̂1∣∣∣ p̂1

∣∣∣3 +
b(p̂1 + 1)∣∣∣p̂1 + 1

∣∣∣3 = 0. (D.14)

The solution of (D.14) is

p̂1 =
1

sgn(b)|b/a|1/2 − 1
, (D.15)
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D. The resonance curve in the limit k → ∞

which is used in (D.13) to obtain(
sgn(b)|b|1/2 − |a|1/2

)∣∣∣sgn(b)|b|1/2 − |a|1/2
∣∣∣ + 1 = 0. (D.16)

b can be determined using (D.4), hence the left-hand side of (D.16) is a function of a < 0 which

3.02.52.01.51.00.5

a

5

4

3

2

1

0

1

2

s1 = − 1, s2 = 1

s1 = 1, s2 = 1

s1 = 1, s2 = − 1

s1 = − 1, s2 = − 1

Figure D.1.: Plots of the left-hand side of (D.16) for all combinations of s1 and s2.

must be zero for a change in the number of loops. Figure D.1 shows plots of this function for
the four possible values of s1, s2. When s1 , s2, there are no zeroes and hence no change in
the number of loops. There being a single loop in the limit a → 0, this remains the case for
all a < 0. If s1 = s2, there is a zero at a = −1, the singular case excluded earlier. Recalling
the previous result, (D.5), the limiting curve consists of a single loop when a → −1. On each
side of a = −1, the left-hand side of (D.16) has no zeroes and the number of loops remains 1.
We conclude that, in the limit k → ∞, the resonance curve exists and consists of a single loop
(provided, of course, that np < 0 or nq < 0).
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E. Critical-point determination

Since k = (k, 0) , 0, (3.30) implies p2 = 0 and

npπp1(
p2

1 + n2
pπ

2
)3/2 +

nqπ
(
k + p1

)(
(k + p1)2 + n2

qπ
2
)3/2 = 0, (E.1)

while (3.29) gives

nπ(
k2 + n2π2

)1/2 +
npπ(

p2
1 + n2

pπ
2
)1/2 +

nqπ(
(k + p1)2 + n2

qπ
2
)1/2 = 0. (E.2)

We look for solutions of (E.1) and (E.2) in what follows. Given symmetry under the transfor-
mation np ↔ nq, p↔ −k − p, we restrict attention to

∣∣∣np

∣∣∣ ≥ ∣∣∣nq

∣∣∣.
Writing

X =

(
k + p1

)2

n2
qπ

2 + 1, (E.3)

(E.1) implies
4αX3

− 27X + 27 = 0, (E.4)

where

α =
27π4n2

pn2
qξ

2

4
(
ξ2 + n2

pπ
2
)3 (E.5)

and ξ =
∣∣∣p1

∣∣∣. As a function of ξ, α has a maximum of n2
q/n

2
p at ξ =

∣∣∣np

∣∣∣π/√2, hence α ≤ 1 since∣∣∣np

∣∣∣ ≥ ∣∣∣nq

∣∣∣. Because k > 0, (E.1) implies p1 , 0, hence ξ > 0. Thus, we can restrict attention to
ξ > 0, in which case 0 < α ≤ 1. (E.4) has two roots, X− < X+, in X > 1 for 0 < α < 1, which
merge as the double root X− = X+ = 3/2 when α = 1. As α → 0, X− → 1 and X+ → +∞. To
avoid problems near α = 0, it is better to work with

27Y3
− 27Y2 + 4α = 0, (E.6)

where Y = X−1. The two roots in Y > 0 are

Y− = 1 −
4
3

sin2 1
3
φ, (E.7)
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E. Critical-point determination

Y+ =
2
3

sin
1
3
φ

(
sin

1
3
φ +
√

3 cos
1
3
φ

)
, (E.8)

where 0 < φ ≤ π/2 is the solution of

sin φ = α1/2. (E.9)

Satisfaction of (E.1) implies one of the two values

k = g±(ξ) sgn(p1), (E.10)

where
g±(ξ) = −ξ − nqπ sgn

(
np

)(
X± − 1

)1/2. (E.11)

k > 0 requires g±(ξ) , 0 and that the sign of p1 be chosen to be the same as g±(ξ). (E.2) and
(E.10) give

h±(ξ)
def
=

nπ(
g±(ξ)

2 + n2π2
)1/2 +

npπ(
ξ2 + n2

pπ
2
)1/2 +

nqπ((
g±(ξ) + ξ

)2
+ n2

qπ
2
)1/2 = 0. (E.12)

Note that if g±(ξ) = 0, (E.12) becomes

npπ(
ξ2 + n2

pπ
2
)1/2 +

nqπ(
ξ2 + n2

qπ
2
)1/2 + 1 = 0. (E.13)

This is the same as (3.27) and, as show, earlier, requires that np, nq < 0. (E.11) then implies
the contradiction g±(ξ) < 0. Thus, (E.12) is incompatible with g±(ξ) = 0 and any solutions of
(E.12) lead to critical points with

k =
∣∣∣g±(ξ)∣∣∣, p1 = ξ sgn

(
g±(ξ)

)
. (E.14)

Note that, as ξ → 0, h+(ξ)→ sgn(np) and h−(ξ)→ 1 + sgn(np) + sgn(nq). These limiting values
can be used to extend the range of h±(ξ) down to ξ = 0.

To find critical points, the two functions h±(ξ) are numerically evaluated at closely and
equally spaced points covering the range 0 ≤ ξ ≤ ξmax. A change in sign indicates a crit-
ical point, which is then refined by interval halving. This procedure is carried out for all
0 < n ≤ nmax and np, nq , 0 such that

∣∣∣nq

∣∣∣ ≤ ∣∣∣np

∣∣∣ ≤ nmax and one of the four conditions
n ± np ± nq = 0 is satisfied. The case

∣∣∣np

∣∣∣ ≤ ∣∣∣nq

∣∣∣ ≤ nmax can be treated using the symmetry
np ↔ nq, p↔ −k − p.

The above procedure was carried out with nmax = 20, ξmax = 200 and 10000 points covering
the range 0 ≤ ξ ≤ ξmax. It was found that a single critical point existed provided np and nq are
of opposite signs. Although we are unable to provide a proof that this is true, we assume it to
hold.
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F. Jump of the spectrum at a critical
point

Considering a critical point kc = (kc, 0), pc = (pc1, 0) we examine the limit of the integral on
the right-hand side of the (3.20) as k ↘ kc. The coefficients ηnnpnq

(k,p) and λnnpnq
(k,p) are

smooth functions of k and p and can thus be approximated by their values at kc, pc. It seems
unlikely that jumps in Anpnp

(p) and Anqnq
(|k + p|) are situated precisely at pc and

∣∣∣kc + pc

∣∣∣, so
these quantities are also approximated by their values at kc, pc. Thus, using (3.39) the integral
has the limiting form

πIAnpnp
(pc)

(
ηnnpnq

(kc,pc)Ann(k) + λnnpnq
(kc,pc)Anqnq

(∣∣∣kc + pc

∣∣∣)), (F.1)

where
I =

∮
C

| dp|(
µ2

1
(
p1 − pc1

)2
+ µ2

2 p2
2

)1/2 , (F.2)

where C is the ellipse defined by (3.38). The position on the ellipse can be written as

p1 − pc1 =

(
−2κ(k − kc)

µ1

)1/2

cos θ, (F.3)

p2 =

(
−2κ(k − kc)

µ2

)1/2

sin θ, (F.4)

from which,

| dp| =
(

dp2
1 + dp2

2

)1/2
=

(
−2κ(k − kc)

)1/2
(
sin2 θ

µ1
+

cos2 θ

µ2

) 1/2

dθ (F.5)

and (
µ2

1
(
p1 − pc1

)2
+ µ2

2 p2
2

)1/2
=

(
−2κ(k − kc)

) 1/2
(
µ1 cos2 θ + µ2 sin2 θ

)1/2

=
(
−2κ(k − kc)

) 1/2 (µ1µ2
)1/2

(
cos2 θ

µ2
+

sin2 θ

µ1

)1/2

. (F.6)
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F. Jump of the spectrum at a critical point

Applying (F.5) and (F.6) to (F.2) gives

I =

∫ 2π

0

(
µ1µ2

)−1/2 dθ = 2π
(
µ1µ2

)−1/2 , (F.7)

which leads to (3.40).
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G. Determination of λ(p)(k) and X(p)
n (k)

for k , 0

The eigenvalue problem is
N∑

m=−N

Anm Xm = λXn. (G.1)

Writing Anm = Ar
nm + iAi

nm, Xn = Xr
n + iXi

n, (G.1) is equivalent to

N∑
m=−N

Ar
nm Xr

m −

N∑
m=−N

Ai
nm Xi

m = λXr
n, (G.2)

N∑
m=−N

Ai
nm Xr

m +

N∑
m=−N

Ar
nm Xi

m = λXi
n, (G.3)

where we have used the fact that λ is real since Anm is Hermitian. Furthermore, the property
A−n,−m = A∗nm implies

Ar
−n,−m = Ar

nm, Ai
−n,−m = −Ai

nm. (G.4)

Looking for solutions of (G.2) and (G.3) such that Xr
−n = Xn and Xi

−n = −Xi
n, the left-hand sides

of these equations become

N∑
m=−N

Ar
nm Xr

m−

N∑
m=−N

Ai
nm Xi

m

=
1
2

(
Ar

n,0 + Ar
−n,0

)
Xr

0 +

N∑
m=1

(
Ar

n,m + Ar
−n,m

)
Xr

m −

N∑
m=1

(
Ai

n,m + Ai
−n,m

)
Xi

m, (G.5)

N∑
m=−N

Ai
nm Xr

m+

N∑
m=−N

Ar
nm Xi

m

=
1
2

(
Ai

n,0 − Ai
−n,0

)
Xr

0 +

N∑
m=1

(
Ai

n,m − Ai
−n,m

)
Xr

m −

N∑
m=1

(
Ar

n,m − Ar
−n,m

)
Xi

m, (G.6)
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G. Determination of λ(p)(k) and X(p)
n (k) for k , 0

where we have used (G.4) and Xi
0 = 0 (which follows from Xi

−n = −Xi
n). Like Xr

n and Xi
n, the

right-hand sides of (G.5) and (G.6) are respectively symmetric and antisymmetric under the
transformation n 7→ −n. Thus (G.2) and (G.3) are satisfied if

1
2

(
Ar

n,0 + Ar
−n,0

)
Xr

0 +

N∑
m=1

(
Ar

n,m + Ar
−n,m

)
Xr

m −

N∑
m=1

(
Ai

n,m + Ai
−n,m

)
Xi

m = λXr
n 0 ≤ n ≤ N,

(G.7)

1
2

(
Ai

n,0 − Ai
−n,0

)
Xr

0 +

N∑
m=1

(
Ai

n,m − Ai
−n,m

)
Xr

m −

N∑
m=1

(
Ar

n,m − Ar
−n,m

)
Xi

m = λXi
n 1 ≤ n ≤ N.

(G.8)

Employing (G.4), Ar
mn = Ar

nm and Ai
mn = −Ai

nm, (G.7) and (G.8) give

A00 Xr
0 + 2

N∑
m=1

Ar
0,mXr

m − 2
N∑

m=1

Ai
0,mrXi

m = λXr
0, (G.9)

Ar
0,n Xr

0 +

N∑
m=1

(
Ar

n,m + Ar
−n,m

)
Xr

m −

N∑
m=1

(
Ai

n,m + Ai
−n,m

)
Xi

m = λXr
n 1 ≤ n ≤ N, (G.10)

−Ai
0,n Xr

0 −

N∑
m=1

(
Ai

m,n + Ai
−m,n

)
Xr

m +

N∑
m=1

(
Ar

n,m − Ar
−n,m

)
Xi

m = λXi
n 1 ≤ n ≤ N. (G.11)

Equation (G.9), (G.10), (G.11) can be rewritten in the matrix form
A00 χT

r χT
i

χr C D
χi DT E

Y = λY, (G.12)

where

Y =



2−1/2 Xr
0

Xr
1
...

Xr
N

Xi
1
...

Xi
N


, χr =


χr

1
...

χr
N

, χi =


χi

1
...

χi
N

, (G.13)

χr
n = 21/2 Ar

0,n, χi
n = −21/2 Ai

0,n, (G.14)
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G. Determination of λ(p)(k) and X(p)
n (k) for k , 0

Cnm = Ar
n,m + Ar

−n,m, Dnm = −Ai
n,m − Ai

−n,m, Enm = Ar
n,m − Ar

−n,m (G.15)

and the indices n and m run over the values 1 ≤ n,m ≤ N. Using symmetry of Ar
nm and the first

of equations (G.4)
Ar
−n,m = Ar

m,−n = Ar
−m,n (G.16)

implies symmetry of Cnm and Enm. It follows that the matrix in (G.13) is symmetric. There
are thus a complete set of real eigenvectors, Y (p), having real eigenvalues, λ(p), and which are
orthonormal in the sense that ∑

n

Y (p)
n Y (q)

n =
1
2
δpq. (G.17)

Each such eigenvector yields Xr
n for n ≥ 0 and Xi

n for n ≥ 1. Completing the Xr
n and Xi

n using
Xi

0 = 0 and Xr
−n = Xr

n, Xi
−n = −Xi

n for n ≥ 1, Xn = Xr
n + iXi

n(−N ≤ n ≤ N) provides a solution of
the original complex eigenvalue problem, (G.1). The complex scalar product between any two
of these solutions is

N∑
n=−N

X(p)∗
n (k)X(q)

n (k) =

N∑
n=−N

(
Xr(p)

n Xr(q)
n + Xi(p)

n Xi(q)
n

)
+ i

N∑
n=−N

(
Xr(p)

n Xi(q)
n − Xi(p)

n Xr(q)
n

)
. (G.18)

The second sum on the right-hand side is zero by symmetry of Xr
n and antisymmetry of Xi

n with
respect to n 7→ −n. The first sum can be written

N∑
n=−N

(
Xr(p)

n Xr(q)
n + Xi(p)

n Xi(q)
n

)
= Xr(p)

0 Xr(q)
0 + 2

N∑
n=1

(
Xr(p)

n Xr(q)
n + Xi(p)

n Xi(q)
n

)
= 2

∑
n

Y (p)
n Y (q)

n

= δpq, (G.19)

where we have employed (G.17), symmetry of Xr
n and antisymmetry of Xi

n. Thus, the complex
eigenvectors satisfy the orthonormality condition (G.13). The dimension of the problem (G.12)
being 2N + 1, there are the same number of complex eigenvectors, which are linearly inde-
pendent by orthonormality. Thus, the above procedure generates a complete set. The complex
eigenvectors satisfy X(p)

−n (k) = X(p)∗
n (k) by construction.

Finally, we derive (6.14). Using (6.13) and (G.1),
N∑

m=−N

Anm −
∑

p

λ(p) X(p)
n X(p)∗

m

X(q)
m = λ(q) X(q)

n −
∑

p

λ(p) X(p)
n δpq = 0 (G.20)

for any eigenvector X(q)
m . Since the eigenvectors form a complete set, the matrix in brackets on

the left of (G.20) must be zero, hence (6.14).

98



H. Details of calculations for the
initialization

Using equation (6.6)

W (n)∗
i (x3; 0)W (m)

j (x′3; 0) =
1

4M

4M−1∑
r,r′=0

V (n)∗
i (x3; φr)V

(m)
j (x′3; φr′)exp

{
i
(
θr − θr′

)}
. (H.1)

Given the definition of the θr, the average on the right-hand side is zero unless r′ = r, thus

W (n)∗
i (x3; 0)W (m)

j (x′3; 0) =
1

4M

4M−1∑
r=0

V (n)∗
i (x3; φr)V

(m)
j (x′3; φr). (H.2)

Using (6.3)-(6.5), the right-hand side of (H.2) can be written in terms of arithmetic averages
over 0 ≤ r ≤ 4M − 1 of sin2 φr, cos2 φr and sin φr cos φr. Given φr = πr/2M, these averages are
respectively 1/2, 1/2 and 0, hence

W (n)∗
i (x3; 0)W (m)

j (x′3; 0) =
1
2


1 + snsm −i(sn + sm) 0
i(sn + sm) 1 + snsm 0

0 0 0

 cos nπx3 cos mπx′3. (H.3)

Equation (6.9) implies ℵnm(0) = α∗n(0)αm(0), from which we deduce, using α∗n(0) = α−n(0),
that ℵ−n,−m(0) = ℵ∗nm(0). Writing ℵnm(0) = ℵr

nm(0) + iℵi
nm(0), this gives ℵr

−n,−m(0) = ℵr
nm(0) and

ℵ
i
−n,−m(0) = −ℵi

nm(0). Given the definition of sn, the right-hand side of (H.3) is zero if n and m
are nonzero and of opposite signs. Using these results, the definition of sn and (H.3), the first
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sum in (6.10) gives

N∑
n,m=−N

ℵnm(0)W (n)∗
i (x3; 0)W (m)

j (x′3; 0) =
1
2


ℵ

r
00(0) 0 0
0 ℵ

r
00(0) 0

0 0 0


+

N∑
n=1


ℵ

r
n0(0) ℵ

i
n0(0) 0

−ℵ
i
n0(0) ℵr

n0(0) 0
0 0 0

 cos nπx3 +

N∑
m=1


ℵ

r
0m(0) ℵ

i
0m(0) 0

−ℵ
i
0m(0) ℵr

0m(0) 0
0 0 0

 cos mπx′3

+2
N∑

n,m=1


ℵ

r
nm(0) ℵ

i
nm(0) 0

−ℵ
i
nm(0) ℵr

nm(0) 0
0 0 0

 cos nπx3 cos mπx′3. (H.4)

(H.4) should give the contribution to (3.4) of [27] from the small square centred on k = 0. We
approximate Anm(k) exp{ik1r1 + ik2r2} of [27] by its value at k = 0, namely Anm(0). Using (6.2)-
(6.5) to approximate W (n)∗

i (x3; k)W (m)
j (x′3; k) for small k, its average over the square is given by

the right-hand side of (H.4). Thus, we obtain∫ π/L

−π/L

∫ π/L

−π/L
Anm(k)W (n)∗

i (x3; k)W (m)
j (x′3; k) exp

{
ik1r1 + ik2r2

}
dk1 dk2

∼
2π2

L2 Anm(0)


1 + snsm −i(sn + sm) 0
i(sn + sm) 1 + snsm 0

0 0 0

 cos nπx3 cos mπx′3. (H.5)

Summing over −N ≤ n,m ≤ N and using A−n,−m(0) = A∗nm(0) gives the right-hand side of (H.4),
but with 4π2Anm(0)/L2 in place of ℵnm(0).

Finally, the requirement that the result should agree with (H.4) yields (6.12). It was noted
following (6.12) that, whereas (6.11) constrains ℵnm(k) for all n, m when k is nonzero, ℵnm(0)
is unconstrained if n and m are nonzero and of opposite signs. This is essentially because the
right-hand side of (H.3) is zero for such n, m. Thus, they contribute neither to the integral in
(3.4) of [27], nor to the first sum in (6.10).
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I. Comparison of DNS cases

This appendix compares the results of DNS for the three different cases summarised in Ta-
ble 6.1.

0 10 20 30 40 50 60
t

0.002

0.003

0.004

0.005

0.006 DNS 576
DNS 1152
DNS 2304

Figure I.1.: The total energy, E, as a function of time, t.

Figure I.1 shows the total (including n = 0, but not k = 0) energy as a function of time. The
results are almost identical for the three cases. Figure I.2 plots Dv as a function of time. Here,
the case Ni = 576 is rather different from the other two, which are reasonably close. Based
on these results, it would appear that Ni = 1152 gives acceptable results, though Ni = 2304
is of course better. Figure I.3 shows energy spectra at different instants of time. Once again,
Ni = 576 is somewhat different, while the other two cases seem to have reasonable convergence.

0 10 20 30 40 50 60
t

0.002

0.004

0.006

0.008

0.010
DNS 576
DNS 1152
DNS 2304

Figure I.2.: Evolution of Dv with time, t.
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I. Comparison of DNS cases
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n= 0

n= 1

n= 2

n= 3

DNS 576
DNS 1152
DNS 2304

100 101 102

k

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

(c) t= 5.0
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n= 0

n= 1

n= 2

n= 3

DNS 576
DNS 1152
DNS 2304

Figure I.3.: Ann(k).
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J. 2D DNS

This appendix gives results obtained using 2D DNS for Ξ = 4, ε = 5.73 · 10−2 and two values
of Ekman number, namely E = 3.12 · 10−5 and E = 0 (referred to as the inviscid case).

(a) t = 0 (b) t = 10

(c) t = 20 (d) t = 30
Figure J.1.: A00(k).

Figures (J.1)-(J.2) show A00(k) at different times. It will be seen that the inviscid and viscous
cases are quite similar, at low wavenumbers, though viscous dissipation lowers the spectral
level at larger times. This is mainly due to wall damping. It will also be seen that the inviscid
spectral slope in the inertial range approaches a value close to −4 at larger times. Because
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J. 2D DNS

A00(k) needs to be multiplied by 2πk to obtain the usual definition of the energy spectrum, this
corresponds to the expected k−3 behavior.

(a) t = 40 (b) t = 50

(c) t = 60 (d) t = 70

(e) t = 80 (f) t = 100
Figure J.2.: A00(k).
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