Thèse soutenue

Étude des mécanismes de migration du césium dans le dioxyde d'uranium stoechiométrique et sur-stoechiométrique : influence du molybdène

FR  |  
EN
Auteur / Autrice : Clémentine Panetier
Direction : Nathalie MoncoffreYves Pipon
Type : Thèse de doctorat
Discipline(s) : Physico-chimie des matériaux
Date : Soutenance le 20/11/2019
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale de Physique et Astrophysique de Lyon (1991-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : Université Claude Bernard (Lyon ; 1971-....)
Laboratoire : Institut de Physique des 2 Infinis de Lyon
Jury : Président / Présidente : Corinne Augier
Examinateurs / Examinatrices : Nathalie Moncoffre, Yves Pipon, Roland Ducher, Julien Morthomas, Thierry Wiss
Rapporteurs / Rapporteuses : Frederico Garrido, Marie-Amandine Pinault

Résumé

FR  |  
EN

Dans le combustible nucléaire UO2, utilisé dans les réacteurs à eau pressurisée (REP), le Cs, élément volatil compte parmi les produits de fission (PF) les plus abondamment produits. De plus, l’isotope 137Cs est connu pour être particulièrement radiotoxique. En cas d’accident, le relâchement de cet isotope est donc problématique et son étude est cruciale pour la sûreté nucléaire. En France, l’IRSN (Institut de Radioprotection et de sureté nucléaire) développe des codes de prédictions du relâchement des PF depuis le combustible, tels que MFPR (Module for Fission Product Release). Ces codes nécessitent d’être alimentés par des données fondamentales sur le comportement des PF. Ainsi, la connaissance des coefficients de diffusion de ces éléments dans la matrice combustible en fonction de la température et de l’atmosphère (pouvant oxyder le combustible en UO2+x) est primordiale. Dans ce contexte, l’objectif de cette thèse, menée en collaboration avec l’IRSN, est d’étudier la migration du Cs dans le dioxyde d’uranium stœchiométrique et sur-stœchiométrique, en conditions représentatives d’un fonctionnement normal et accidentel d’un REP, avec et sans la présence de Mo. Ce dernier est un PF abondamment produit qui agit comme tampon d’oxydation du combustible et est capable d’avoir des interactions chimiques avec le césium. De telles interactions pourraient affecter le comportement du Cs, et donc son relâchement depuis le combustible. Il a donc été nécessaire d’envisager les éventuelles interactions entre le Cs et le Mo dans le cadre de notre étude. La démarche expérimentale a consisté à simuler la présence de Cs et/ou Mo dans des pastilles d’UO2 ou d’UO2+x. par implantations ioniques des isotopes stables 133Cs et/ou 95Mo. Des recuits à haute température (950-1600°C) sous atmosphère contrôlée ou des irradiations en régime électronique couplées en température ont ensuite été réalisés, permettant d’induire la migration du Cs et du Mo. La spectrométrie de masse à ionisation secondaire (SIMS) a été utilisée pour suivre l’évolution des profils de concentration des éléments implantés, permettant d’extraire les coefficients de diffusion apparents du Cs dans UO2 et UO2+x en fonction des différents traitements. Une étude complémentaire de la microstructure a été réalisée par spectroscopie Raman et microscopie électronique en transmission (MET). Le Cs est très mobile dans UO2 sous atmosphère réductrice même si une partie et piégée sous forme de bulles à faible profondeur. Nous avons mis en évidence que la présence de Mo diminuait fortement cette mobilité. La même tendance est observée dans UO2+x sous atmosphère oxydante. Néanmoins les mécanismes d’immobilisation du Cs par le Mo diffèrent selon les conditions redox de recuit. En atmosphère réductrice, les expériences MET ont montré la formation de paires bulles de Cs-précipités métalliques de Mo dans les échantillons co-implantés. En atmosphère oxydante, l’absence de mobilité du Cs pourrait être liée à l’oxydation du Mo rendant possible des interactions chimiques Cs-Mo. Pour la première fois, des potentiels semi-empiriques ont été utilisés pour réaliser des calculs de dynamique moléculaire sur la diffusion du Cs et du Mo dans UO2 et UO2+x. Ces calculs nous ont aussi permis de caractériser les mécanismes de diffusion de l’oxygène dans ces matériaux en présence de ces deux PF