Thèse soutenue

Élaboration de formulations catalytiques optimisées pour la valorisation de la biomasse par une approche combinée Théorie/Expérience
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Youssef Berro
Direction : Sébastien LebègueFouad El Haj Hassan
Type : Thèse de doctorat
Discipline(s) : Chimie
Date : Soutenance le 22/11/2019
Etablissement(s) : Université de Lorraine en cotutelle avec Université Libanaise
Ecole(s) doctorale(s) : École doctorale C2MP - Chimie mécanique matériaux physique (Lorraine)
Partenaire(s) de recherche : Laboratoire : Laboratoire de Physique et de Chimie théoriques (Nancy ; Metz)
Jury : Président / Présidente : Émilie Gaudry
Examinateurs / Examinatrices : Sébastien Lebègue, Ahmed Naitabdi, Sébastien Royer, Fawaz El Omar, Karine Thomas
Rapporteurs / Rapporteuses : Ahmed Naitabdi, Sébastien Royer

Résumé

FR  |  
EN

La valorisation de la lignine par pyrolyse produit des bio-huiles à haute teneur en oxygène. Ces bio-huiles sont valorisées par hydrodésoxygénation (HDO) pour obtenir des molécules non-oxygénées. Notre étude vise à élaborer de nouvelles catalyseurs en combinant les calculs de la théorie de la fonctionnelle de la densité (DFT) et les études expérimentales. L'HDO peut se faire suivant l'hydrogénation du cycle aromatique avant la rupture C-O (HYD) ou la rupture directe du C-O, désoxygénation directe (DDO). Le Fe/silice montre une bonne activité et sélectivité en aromatiques. Ainsi, nous développons ce type des catalyseurs afin de favoriser la voie DDO, augmenter la production d’aromatiques et limiter la consommation d’H2. Les énergies d'adsorption du phénol et de molécules inhibitrices sur les surfaces de silice, ayant différentes densités et types de silanols, ont été obtenues par DFT. Trois modes d'interaction du phénol ont été étudiés: O-perpendiculaire, π-plat et O-plat. Sur la silice amorphe, des énergies d'adsorption plus élevées ont été mises en évidence pour le mode O-plat, et une interaction spécifique de 120 kJ/mol (liaison C-Si et déformation du phénol) est observée. La compétition du CO est négligeable sur toutes les surfaces, ce qui rend la silice plus attractive que les catalyseurs sulfurés. Par conséquent, ces résultats motivent la synthèse de catalyseurs sur silice avec une densité de silanol allant de 2 à 4 OH/nm2. Des "Single Atom Catalysts SACs" de Fe/silice ont été élaborés en utilisant des tensioactifs non-ioniques/métalliques. La distribution des atomes de fer dans les micelles mixtes P123/CTAF permet la dispersion fine de ces atomes sur les mésopores de la silice. L'absence d'agrégats de fer a été confirmée par les mesures synchrotrons PDF, RMN, magnétiques, et STEM. Les calculs DFT+U ont confirmé que ces atomes sont principalement du Fe(III) à haut spin. Cette méthode augmente le nombre de sites actifs, ce qui améliore la performance catalytique. Cependant, les résultats catalytiques n’ont pas été satisfaisants à cause de la difficulté à réduire le Fe(III).Les catalyseurs Fe et bimétalliques Fe-Cu synthétisés par imprégnation ou co-précipitation avec décomposition thermale d'urée ont été testés pour l’HDO du guaiacol. Fe-Cu/SiO2 présente une meilleure performance (90% conversion, 70% sélectivité) que les catalyseurs Fe car l’incorporation de cuivre facilite la réduction du fer.