Thèse soutenue

Contribution à la modélisation et à la caractérisation de générateurs thermoélectriques
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Soufiane El Oualid
Direction : Bertrand LenoirFrancis Kosior
Type : Thèse de doctorat
Discipline(s) : Sciences des matériaux
Date : Soutenance le 03/10/2019
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : École doctorale C2MP - Chimie mécanique matériaux physique (Lorraine)
Partenaire(s) de recherche : Laboratoire : Institut Jean Lamour (Nancy ; Vandoeuvre-lès-Nancy ; Metz)
Jury : Président / Présidente : Nicole Fréty
Examinateurs / Examinatrices : Daniel Bourgault, Eric Alleno, Daniel Champier
Rapporteurs / Rapporteuses : Daniel Bourgault, Eric Alleno

Résumé

FR  |  
EN

L'internet des objets (Internet of Thing, IoT) suscite de plus en plus d'attention dans l'industrie électronique. L'IoT est un concept selon lequel les objets de tous les jours pourront communiquer ensemble via Internet. La plupart des objets connectés utilisent des batteries qu’il faut changer régulièrement ou recharger. Face à la forte croissance annoncée, la recherche de sources d’alimentation autonomes et alternatives s’appuyant sur des systèmes qui capturent l’énergie ambiante et la convertissent en électricité devient primordiale. Parmi les technologies de récupération d’énergie, la thermoélectricité présente des avantages certains liés à sa simplicité, sa fiabilité et son absence de pièces mobiles et de pollution par émission de gaz à effet de serre. L’ensemble de ces caractéristiques favorables place les convertisseurs thermoélectriques comme des candidats possibles pour fournir aux objets connectés de demain les faibles quantités d’énergie nécessaire à leur fonctionnement ou pour recharger les batteries. Mes travaux de thèse s’inscrivent dans ce contexte et se sont déroulés en partie dans le cadre du projet Européen EnSO (Energy for Smart Objects). Des études numériques menées avec le logiciel commercial Comsol Multiphysics ont été réalisées sur des micro-générateurs planaires innovants développés par la société Mahle, partenaire du projet. L’objectif de ces travaux était de comprendre l’influence de nombreux paramètres (géométrie, conditions aux limites en terme de température ou de flux, propriétés électrique et thermique des matériaux actifs) sur leurs performances thermoélectriques (puissance électrique et rendement). Nous avons montré, en particulier, le rôle critique des résistances de contact électriques et thermiques sur la puissance électrique de sortie. Un second volet, plus expérimental, a été consacré au développement de générateurs thermoélectriques miniatures à forte densité de puissance intégrant des matériaux avancés à base de skutterudites. Plusieurs brasures ont été testées lors de l’assemblage des modules thermoélectriques. La caractérisation des performances des modules (25-500°C) couplée aux calculs numériques ont permis de guider les recherches et d’optimiser les procédés de fabrication. Ce travail a abouti à l’obtention d’une densité de puissance record (3,3 W/cm2 pour une différence de température de 450 K) par rapport à l’état de l’art.