Thèse soutenue

Locomotion Multi-corps : Structure du problème et résolution efficace

FR  |  
EN
Auteur / Autrice : Rohan Budhiraja
Direction : Nicolas MansardOlivier Stasse
Type : Thèse de doctorat
Discipline(s) : Robotique
Date : Soutenance le 29/11/2019
Etablissement(s) : Toulouse, INSA
Ecole(s) doctorale(s) : École doctorale Systèmes (Toulouse ; 1999-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'Analyse et d'Architecture des Systèmes - Laboratoire d'analyse et d'architecture des systèmes / LAAS
Jury : Président / Présidente : Adrien Escande
Examinateurs / Examinatrices : Nicolas Mansard, Olivier Stasse, Katja Mombaur, Serena Ivaldi, Jerome Bolte
Rapporteurs / Rapporteuses : Adrien Escande, Katja Mombaur

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Le problème de locomotion en robotique s'écrit généralement comme un problème d'optimisation de grande taille. Ce problème présente de nombreuses propriétés indésirables, telles qu'une grande dimensionnalité, des fonctions de coûts non-linéaires et non-convexes, des contraintes non-linéaires, etc. Ces caractéristiques diverses rendent larésolution directe difficile. Une approche classique consiste à simplifier l'optimisation numérique en résolvant desmodèles réduits, construits de manière heuristiques. En conséquence, ces modèles ont un domaine de validité réduit et sont difficiles à étendre. Notre travail explore une approche qui tente de résoudre ce problème de locomotion général, tout en exploitant pleinement sa structure pour obtention d'une solution efficace et réalisable. Notre objectif est de fournir une résolution efficace grâce à l'utilisation appropriée de la structure du problème. Pour cela, nous avons généralisé l'utilisation des modèles réduits classiques en locomotion dans une formulation qui permet de résoudre exactement leproblème initial. Notre contribution consiste en une méthode pour la génération de mouvements dynamiques pour le corps complet de l'humanoïde, par l'utilisation de méthode de descente alternée. Le problème complet est séparé en (i) sa partie centroidale, fortement contrainte et instable et résolue par un SQP à tir multiple, et (ii) sa partie lagrangienne, plusstable mais de grande dimension, résolue par Programmation Dynamique Différentielle (DDP) afin d'exploiter la parcimonie du problème. Une implémentation efficace du DDP 1 permet d'obtenir des performances permettant la mise en oeuvres! ur le robot réel, et une utilisation des contraintes de faisabilité ("proxy") permet d'assurer la faisabilité des modèlesréduits. Nos concepts ont été validés empiriquement en calculant et appliquants différents mouvements dynamiques pour le robot humanoïde HRP-2.