Étude de l'alliage de titane TA6V obtenu par fabrication additive : microstructure, élasticité et contraintes résiduelles - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2019

Study of the titanium alloy Ti-6Al-4V obtained by additive manufacturing : microstructure, elasticity and residual stresses

Étude de l'alliage de titane TA6V obtenu par fabrication additive : microstructure, élasticité et contraintes résiduelles

Résumé

Laser Beam Melting is an additive manufacturing process that reaches a sufficient industrialmaturity to start producing parts in series, even if some problems remain. One of the mostcommonly used materials in additive manufacturing but particularly difficult to use is Ti-6Al-4V, thetitanium alloy most commonly used on Earth. Indeed, the cooling kinetics of the parts producedprecipitate a particular microstructure in the material that is still poorly understood, particularly interms of elasticity. In addition, Ti-6Al-4V elaborated trough additive manufacturing suffers from theappearance of significant residual stresses that can cause cracks in the part. Currently, thesolution used to overcome the residual stresses consists of a heat treatment that allows thestresses to be relaxed, without solving the problem of their genesis. The first part of this work isfocused on the study of the microstructure of raw parts and stress released parts after a heattreatment. We were thus able to study the martensitic phase ' using different microscopy anddiffraction techniques. We were able to study the phase transformation from ' to (+) by thermodifferential analysis. In a second step, elasticity was studied experimentally at the macroscopicscale by tensile and acoustic vibration tests, locally by X-ray diffraction and by atomic calculation.These results on elasticity agree that the ' martensitic phase is less rigid and more anisotropicthan the phase. In the third part of this study, the effect of different additive manufacturingparameters on residual stresses was investigated. Residual stresses were determined by differentdiffraction methods, such as X-ray or neutron diffraction, and bridge curvature (BCM). It could beshown that the thermal conductivity of the substrate, the dwell time and the shape of the samplehad a significant effect on residual stresses while no clear effect of the position on the plate, thesample height or the energy density could be shown. These different results provide anunderstanding of the genesis of residual stresses in Ti-6Al-4V parts from the LBM and its elasticbehaviour. All these results provide a better understanding of the problems encountered in theindustrial sector. This work aims at improving the relevance of the choice of process parametersand thus to predict, or even stop, the arrival of blocking points in additive manufacturing
Les procédés de fabrication additive ont actuellement atteint une maturité suffisante pour produiredes pièces en série dans plusieurs secteurs industriels. Au cours de cette étude, nous nousfocalisons sur la fabrication par fusion laser sur lit de poudre d’alliages métalliques et en particulierl’alliage TA6V qui est l’alliage de titane le plus couramment utilisé. En effet, les cinétiques derefroidissement du matériau au cours de ce procédé induisent une microstructure martensitiqueparticulière dont les propriétés sont encore mal connues, notamment en termes d’élasticité. Deplus, les pièces en TA6V obtenues par fabrication additive souffrent de l’apparition d’importantescontraintes résiduelles pouvant provoquer leur distorsion voire leur fissuration. Actuellement, lasolution employée pour pallier à l’apparition de contraintes résiduelles consiste en un traitementthermique de détensionnement qui permet de relaxer les contraintes, sans comprendre leurgenèse. La première partie de ce mémoire de thèse est consacrée à l’étude de la microstructurede pièces avant et après un traitement de détensionnement. Nous avons ainsi pu étudier la phasemartensitique ’ qui précipite initialement dans le matériau ainsi que la transformation de phase de ’à (+) apparaissant au cours du traitement thermique. Dans un second temps, nous avons étudiél’élasticité des différentes phases expérimentalement et par calculs atomistiques (DFT). L’étudeexpérimentale a été menée à l’échelle macroscopique par essais de traction et vibrationacoustique et localement par diffraction de rayons X. L’ensemble des résultats indique que laphase martensitique ’ est moins rigide et plus anisotrope que la phase (des variations de moduled’Young de l’ordre de 15% sont obtenues). Dans la dernière partie de cette étude, l’effet deparamètres de la fabrication additive sur les contraintes résiduelles a été étudié. Les contraintesrésiduelles ont été déterminées par différentes méthodes telles que la diffraction de rayons X, deneutrons ou la courbure de ponts. Nous avons ainsi montré que la conductivité thermique dusupport, le temps de repos et la forme de l’échantillon avaient un effet important sur lescontraintes résiduelles tandis qu’aucun effet clair de la position sur le plateau, de la hauteurd’échantillon ou de la densité d’énergie n’a pu être mis en évidence. Ces différents résultatsapportent une meilleure connaissance des propriétés du matériau et permettent de mieuxcomprendre la genèse des contraintes résiduelles dans les pièces en TA6V élaborées par fusionlaser sur lit de poudre ; offrant ainsi la possibilité d’améliorer la modélisation et l’optimisation desparamètres de ce procédé de fabrication additive en vue d’une meilleure utilisation industrielle
Fichier principal
Vignette du fichier
DUMONTET_Nathan2.pdf (10.43 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-04169499 , version 1 (24-07-2023)

Identifiants

  • HAL Id : tel-04169499 , version 1

Citer

Nathan Dumontet. Étude de l'alliage de titane TA6V obtenu par fabrication additive : microstructure, élasticité et contraintes résiduelles. Matériaux. Institut National Polytechnique de Toulouse - INPT, 2019. Français. ⟨NNT : 2019INPT0099⟩. ⟨tel-04169499⟩
71 Consultations
66 Téléchargements

Partager

Gmail Facebook X LinkedIn More