Thèse soutenue

Modélisation, analyse et commande pour la récupération d'un aéronef en situation de décrochage : de la théorie des systèmes au pilote automatique

FR  |  
EN
Auteur / Autrice : Torbjørn Cunis
Direction : Laurent BurlionJean-Philippe Condomines
Type : Thèse de doctorat
Discipline(s) : Automatique
Date : Soutenance le 27/09/2019
Etablissement(s) : Toulouse, ISAE
Ecole(s) doctorale(s) : École doctorale Systèmes (Toulouse ; 1999-....)
Partenaire(s) de recherche : Equipe de recherche : Equipe d'accueil doctoral Commande des systèmes et dynamique du vol (Toulouse, Haute-Garonne)
Laboratoire : Office national d'études et recherches aérospatiales. Département Traitement de l’Information et Systèmes (DTIS)
Jury : Président / Présidente : Sophie Tabouriech
Examinateurs / Examinatrices : Laurent Burlion, Jean-Philippe Condomines, Sophie Tabouriech, Mazen Al-Amir, Peter J. Seiler, Mark Lowenberg
Rapporteurs / Rapporteuses : Mazen Al-Amir, Peter J. Seiler

Résumé

FR  |  
EN

Le travail effectué au cours de cette thèse tente d’apporter des solutions algorithmiques à la problématique de reprise au décrochage d’un aéronef. A travers de nombreux exemples d’application sur des modèles aérodynamiques, le lecteur pourra appréhender les concepts abstraits présentés dans cette thèse. Alors que la capacité pour un aéronef à revenir à une situation nominale après une sortie du domaine de vol est un élément clé pour les systèmes de transport aérien du futur, les recherches menées dans ce cadre sont encore peu nombreuses. Pourtant,un tel dépassement conduit généralement à une perte de contrôle (dénommée LOC-I), que l’Association du Transport Aérien International (IATA) a classé dans la catégorie des « risques les plus élevés pour l’aviation ». Dans un premier temps, nous avons montré que les modèles polynomiaux habituellement utilisés en théorie des systèmes ne représentent pas fidèlement l’aérodynamique d’un modèle d’avion sur l’ensemble de son enveloppe de vol. Nous avons donc tout d’abord montré qu’un modèle polynomial par morceaux représente avec exactitude les coefficients aérodynamiques pour les angles d’attaque faibles et élevés. Nous avons alors pu étendre à cette classe de systèmes, récentes d’étude de bifurcation et d’analyse de stabilité qui utilisent des techniques de programmation semi-définie basées sur la positivité de polynômes (SOS); nous avons notamment appliqué ces résultats au modèle d’avion de transport générique dénommé GTM. Dans le même esprit, nous avons développé un modèle pour un petit aéronef à voilure fixe basé sur des simulations numériques en mécanique des fluides (CFD). Les coefficients dynamiques n’étant pas déterminés en CFD, nous avons identifié le coefficient d’amortissement du tangage en comparant l’analyse de bifurcation et les données de vol, ce qui nous a permis d’étudier à la fois la dynamique et la stabilité du vol en cas de fort décrochage.Des résultats antérieurs ont montré que les techniques SOS étaient prometteuses pour la certification des lois de commande pour des systèmes non-linéaires, cependant sans avoir été appliqués à l’ingénierie aéronautique. En adaptant ces techniques aux modèles polynomiaux par morceaux,nous avons montré qu’il est désormais possible de les utiliser d’une manière précise mais réalisable sur le plan calculatoire. Ensuite, nous avons synthétisé des lois de commandes linéaires et polynomiales pour la récupération d’un fort décrochage. En outre, nous sommes désormais en mesure d’estimer des régions d’attraction pour des modèles polynomiaux par morceaux; pour cela, nous avons proposé un algorithme amélioré pour l’analyse de stabilité locale des systèmes à commutation, tels que ceux qui sont définis par des splines, rendant ainsi notre travail disponible pour l’analyse et la certification futures de modèles d’avion très fidèles.La commande prédictive basée modèle (MPC) s’est avérée être une approche très efficace lorsque la dynamique du système est fortement non linéaire et soumise à des contraintes d’état qui rendent difficile la récupération après le décrochage. Cependant, pour des systèmes réalistes,il est nécessaire de prendre des précautions afin de prouver rigoureusement la stabilité en boucle fermée. En utilisant la technique SOS, nous avons ainsi montré la stabilité d’une stratégie de récupération d’un fort décrochage visant à minimiser la perte d’altitude. Nous avons aussi montré qu’une telle stratégie de commande permet la récupération d’une spirale infernale en utilisant le simulateur GTM.Les résultats de cette thèse sont donc prometteurs et fournissent de nouvelles approches théoriques pour la modélisation, l’analyse de stabilité et le contrôle de la dynamique des futurs aéronefs ainsi que pour le développement et la certification de systèmes de commande de vol visant a prévenir les accidents dus à la perte de contrôle.