Thèse soutenue

Fonctionnalisation de nanofeuillets bidimensionnels de MoS2 comme blocs élémentaires pour la fabrication de membranes destinées au traitement de l'eau

FR  |  
EN
Auteur / Autrice : Lucie Ries
Direction : Philippe MieleDamien Voiry
Type : Thèse de doctorat
Discipline(s) : Chimie et Physico-Chimie des Matériaux
Date : Soutenance le 26/11/2019
Etablissement(s) : Montpellier, Ecole nationale supérieure de chimie
Ecole(s) doctorale(s) : École doctorale Sciences Chimiques (Montpellier ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Institut Européen des membranes (Montpellier) - Institut Européen des membranes / IEM
Jury : Président / Présidente : Florence Babonneau
Examinateurs / Examinatrices : Philippe Miele, Damien Voiry, Florence Babonneau, Aidan McDonald, Alain Pénicaud, Guillaume Maurin, Alessandro Siria
Rapporteurs / Rapporteuses : Aidan McDonald, Alain Pénicaud

Résumé

FR  |  
EN

Les technologies de séparation par membranes jouent un rôle important dans divers domaines tels que le traitement de l’eau, la séparation de produits chimiques et de gaz dans de nombreux domaines industriels ou encore l’industrie alimentaire. L’accent a récemment été mis sur les matériaux bidimensionnels(2D) pour les applications membranaires, car leur épaisseur atomique et leur espacement limité entre les couches pourraient théoriquement améliorer les performances de séparation. Les nanofeuillets eux-mêmes ou l’empilement de plusieurs feuillets peuvent former des membranes sélectives. L’empilement multicouche de monofeuillets sous forme de membrane nanolaminée crée des capillaires 2D (ou nanocanaux) capables de tamiser efficacement les espèces chimiques en fonction de leur taille. Des exemples récents ont été rapportés dans la littérature démontrant le potentiel des matériaux 2D en tant que membranes multicouches ou monocouches pour le tamisage moléculaire (222; 260; 466; 204), la séparation de gaz (219; 246; 190),la production d’énergie (467) et le dessalement de l’eau de mer (198; 194). Parmi les différentes membranes 2D nanolaminées, l’oxyde de graphène (GO) est le matériau le plus étudié, et le tamisage moléculaire au sein de sa structure est principalement dicté par la taille de ses capillaires 2D (222). Malheureusement,l’hydrophilie importante des nanofeuillets rend les membranes de GO instables en milieu aqueux, et la difficulté de contrôler la largeur des capillaires entre les nanofeuillets limite l’utilisation de ces membranes pour le traitement des eaux. D’autres matériaux 2D tels que les nanofeuillets exfoliées de dichalcogénures de métaux de transition (TMD) constituent des plateformes attrayantes pour la réalisation de membranes nanolaminées.Des travaux récents menés sur des membranes nanolaminées en disulfure de molybdène (MoS2) ont montré sa stabilité améliorée (3). Dans le cadre de cette thèse, nous avons étudié les performances d’un nouveau type de membranes nanolaminées en MoS2 pour lesquelles la chimie de surface des feuillets est précisément contrôlée (14). Afin d’évaluer le rôle de la chimie de surface,nous avons exploré l’impact de la fonctionnalisation covalente sur le tamisage moléculaire pour la purification de l’eau (plus particulièrement le dessalement et l’élimination des micropolluants) (14). Nos résultats ouvrent de nouvelles voies pour ajuster avec précision les capacités de séparation des membranes à base de matériaux 2D.