Experimental and numerical characterization of functional properties of sand molds produced by additive manufacturing (3D printing by jet binding) in a fast foundr

par Saptarshee Mitra

Thèse de doctorat en Mécanique-matériaux

Soutenue le 15-11-2019

à Paris, ENSAM , dans le cadre de École doctorale Sciences des métiers de l'ingénieur (Paris) , en partenariat avec Labratoire Mécanique- Surfaces- Matériaux et Procédés / MSMP (laboratoire) .

Le président du jury était Michel Bellet.

Le jury était composé de Liam Blunt.

Les rapporteurs étaient Liam Blunt.

  • Titre traduit

    Caractéristique expérimentale et numérique des propriétés fonctionnelles des moules sables produits par fabrication additive ( procédé d'impression 3D par projection de liant) en fonderie rapid


  • Résumé

    Les techniques traditionnelles pour la production des moules et des noyaux en sable utilisés en fonderie pour la coulée de métaux sont actuellement en cours de remplacement par des méthodes de fabrication additive, afin d'aider l’industrie aérospatiale/automobile à fabriquer des pièces de forme complexe d'une manière pratique. Le but de ce travail de recherche est d'étudier les propriétés fonctionnelles des moules imprimés en 3D utilisés lors de la coulée des pièces de forme complexe pour des applications d'ingénierie. Premièrement, le comportement mécanique des moules en sables imprimés en 3D a été analysé et caractérisé pour de différents paramètres du processus d'impression. Ensuite, les propriétés mécaniques et de transport de masse des moules en sable 3DP ont été étudiées. Les pièces imprimées en 3D pour la fonderie sont souvent fabriquées avec un type de technologie de fabrication additive appelé « powder-binder-jetting process » (processus de projection de liant de poudre). Des mesures sur trois points de la force de flexion, la densité, la porosité et la perméabilité, ont été effectués sur les moules fabriqués avec la technologie additive. En plus, l’influence de la température et de la fraction volumique du liant sur les propriétés mécaniques et de transport de masse a également été étudiée. Par ailleurs, la perméabilité des moules en sable imprimé a aussi été caractérisée par micro-tomographie de rayons X, permettant la modélisation avancée de la microstructure poreuse en suivant plusieurs étapes : 1) tomodensitométrie de petits échantillons de moules 3DP, 2) reconstruction volumétrique 3D de données, 3) simulation numérique pour la prédiction de la perméabilité à partir de volumes reconstruits et 4) modélisation du réseau de pores pour déterminer la distribution de la taille des pores et des constrictions. Des expériences ont également été conçues pour étudier les moules imprimés en 3D en termes de leur érosion lors de la coulée des métaux. Cela a permis d’identifier les paramètres optimaux du procédé d’impression 3D des moules, non seulement en termes de leurs propriétés mécaniques et de transport de masse, mais aussi pour minimiser l'érosion du moule durant la coulée métallique. Une méthode de détermination de la résistance à l'érosion des moules en sable a également été proposée, sur la base de la mesure du volume de la surface érodée à l'aide d'une technique d'ingénierie inverse moderne.


  • Résumé

    Nowadays, traditionally manufactured sand molds and cores for metal casting are being progressively replaced by additively processed sand molds in aerospace/automotive industry, facilitating the production of quality cast parts with complex shapes. The type of additive manufacturing technology used to manufacture 3DP parts in foundries is known as powder-binder-jetting process. In this technology, the molds are produced without the use of any kind of additive tools and in a completely automated way using the layer based construction method. One of the most popular binder systems used in the manufacturing of 3DP mold is a furan-based resin binder, which holds the grain particles together. Their amounts and ratios can influence significantly the 3D printed mold properties, affecting casting quality. Therefore, it is essential to characterize the effects process parameters on the functionality of the 3DP molds. In the present work, the mechanical behavior of 3DP sand molds with varying printing process parameters was first investigated, followed by mass transport properties. To do so, a series of three-point bending strength tests, density measurements, porosity measurements and permeability tests were performed on the 3DP molds. Furthermore, the influence of time, temperature and binder volume fraction on the mechanical and mass transport properties was also investigated. Advanced modelling of the pore space was performed by using the reconstructed images provided by X-ray computed tomography, following different steps: X-ray CT scanning of small 3DP mold specimen, 3D volumetric reconstruction of data, numerical simulations for the prediction of permeability from the reconstructed volume, and pore network modelling for the determination of the pore size distribution. Experiments were also designed to investigate the 3D printed molds in terms of mold erosion during metal casting, in order to select the molding parameters to print 3D printed parts not only with good mechanical and mass transport properties but also to minimize the mold erosion during metal casting. Furthermore, a reverse engineering method for determination of the erosion resistance of sand molds has been established, to study the volume of the eroded surface.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Arts et Métiers. Campus. Bibliothèque.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.