Thèse soutenue

Algèbre linéaire randomisée pour la réduction de l’ordre des modèles

FR  |  
EN
Auteur / Autrice : Oleg Balabanov
Direction : Anthony NouyNúria Parés
Type : Thèse de doctorat
Discipline(s) : Mathématiques et leurs interactions
Date : Soutenance le 11/10/2019
Etablissement(s) : Ecole centrale de Nantes en cotutelle avec Universitat politècnica de Catalunya - BarcelonaTech
Ecole(s) doctorale(s) : École doctorale Mathématiques et sciences et technologies de l'information et de la communication (Rennes)
Partenaire(s) de recherche : Laboratoire : Laboratoire de Mathématiques Jean Leray (Nantes) - Laboratori de Càlcul Numèric (LACAN)
Jury : Président / Présidente : Albert Henri Cohen
Examinateurs / Examinatrices : Anthony Nouy, Núria Parés, Albert Henri Cohen, Bernard haasdonk, Tony Lelièvre, Christophe Prud'homme, Laura Grigori, Marie Billaud
Rapporteurs / Rapporteuses : Bernard haasdonk, Tony Lelièvre

Résumé

FR  |  
EN

Cette thèse introduit des nouvelles approches basées sur l’algèbre linéaire aléatoire pour améliorer l’efficacité et la stabilité des méthodes de réduction de modèles basées sur des projections pour la résolution d’équations dépendant de paramètres. Notre méthodologie repose sur des techniques de projections aléatoires ("random sketching") qui consistent à projeter des vecteurs de grande dimension dans un espace de faible dimension. Un modèle réduit est ainsi construit de manière efficace et numériquement stable à partir de projections aléatoires de l’espace d’approximation réduit et des espaces des résidus associés. Notre approche permet de réaliser des économies de calcul considérables dans pratiquement toutes les architectures de calcul modernes. Par exemple, elle peut réduire le nombre de flops et la consommation de mémoire et améliorer l’efficacité du flux de données (caractérisé par l’extensibilité ou le coût de communication). Elle peut être utilisée pour améliorer l’efficacité et la stabilité des méthodes de projection de Galerkin ou par minimisation de résidu. Elle peut également être utilisée pour estimer efficacement l’erreur et post-traiter la solution du modèle réduit. De plus, l’approche par projection aléatoire rend viable numériquement une méthode d’approximation basée sur un dictionnaire, où pour chaque valeur de paramètre, la solution est approchée dans un sous-espace avec une base sélectionnée dans le dictionnaire. Nous abordons également la construction efficace (par projections aléatoires) de préconditionneurs dépendant de paramètres, qui peuvent être utilisés pour améliorer la qualité des projections de Galerkin ou des estimateurs d’erreur pour des problèmes à opérateurs mal conditionnés. Pour toutes les méthodes proposées, nous fournissons des conditions précises sur les projections aléatoires pour garantir des estimations précises et stables avec une probabilité de succès spécifiée par l’utilisateur. Pour déterminer la taille des matrices aléatoires, nous fournissons des bornes a priori ainsi qu’une procédure adaptative plus efficace basée sur des estimations a posteriori.