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Abstract
Hydraulic earthworks (e.g. earth-dams, levees and dikes), constructed for both protection
against floods and water retention, are subject to the risk of hydraulic failures. The latter
are predominantly triggered by erosion as reported in the literature. Accordingly, several
erosion tests have emerged to quantify soil’s erodibility, such as Jet Erosion Test (JET),
Hole Erosion Test (HET), and Erosion Function Apparatus (EFA). However, these tests are
based on not sufficiently reliable interpretation models, which require strong assumptions
and may, in particular, give different estimations of erodibility for a same soil. Despite
several experimental investigations that have been conducted on the subject, there is still
a lack of understanding of the erosion mechanisms taking place at the grain level.

From this assessment, the present work aims to study numerically the erosion phenom-
ena at the grain scale, for two different fluid flow configurations both in laminar regime.
To this end, the Lattice Boltzmann Method (LBM) is used for the fluid phase and the
Discrete Element Method (DEM) for the solid phase, with the addition of a cohesion rhe-
ology at grain bonding, including a time-dependent damage model. Taking advantage of
GPUs highly parallel compute capabilities, the first task is to improve significantly the
computational speed and the efficiency of the code.

Next, we focus on quantifying the threshold conditions for erosion onset for both cohesive
and cohesion-less granular samples. In this respect, impinging jet flow, similar to JET, is
first chosen as case study. After a preliminary analysis of impinging jet hydrodynamics,
we then focus on erosion conditions. The relevance of the classical Shields criterion for
cohesion-less samples is recovered while a generalization of this Shields criterion is proposed
for weakly cohesive soils with good agreement. Lastly, an adaptation of the classical
JET interpretation model is proposed for our 2D laminar situation and the erodibility
parameters thus obtained for our cohesive samples are quantified and critically discussed
for various inter-particle cohesive bond strength and hydrodynamic conditions.

Finally, a simpler shear-driven fluid flow (i.e. Couette flow) is alternatively studied,
enabling to impose a constant shear-stress along the entire upper surface of a sample and
therefore to derive more straightforwardly the erosion rate of the cohesive material. A
power law function is found to be best suited than the usual linear relation to account for
the erosion law at sample scale. A parametric study is then performed, by varying both
the inter particles cohesion strength and the particle size, to investigate the link between
erodibility obtained at sample scale and input parameters of the micromechanical model.

Keywords: LBM, DEM, erosion, cohesive soil, granular material, impinging jet flow,
GPU, numerical modelling.
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Résumé
Les ouvrages hydrauliques (digues, barrages, levées, etc.), utilisés pour des fonctions de
protection contre les inondations ou de rétention d’eau, sont soumis au risque de rupture
par ouverture de brèche. Des analyses statistiques ont montré que ces ruptures étaient
déclenchées de façon prépondérante par l’érosion hydraulique des sols constitutifs de ces
ouvrages. Plusieurs essais d’érosion ont ainsi été mis au point pour quantifier l’érodabilité
des sols, tels que l’essai d’érosion par jet (JET), l’essai d’érosion de conduit (HET) ou
encore l’essai d’érosion tangentielle (EFA). Cependant, ces tests reposent sur des modèles
d’interprétation qui, du fait d’hypothèses réductrices, restent relativement peu fiables et
peuvent, par exemple, amener à des estimations de l’érodabilité notablement différentes
pour un même sol. Malgré plusieurs études expérimentales menées sur le sujet, les mécan-
ismes d’érosion à l’échelle des grains restent encore mal compris.

Fort de ce constat, le travail réalisé au cours de cette thèse vise à analyser du point
de vue numérique le processus d’érosion de surface à l’échelle du grain, en étudiant deux
configurations différentes d’écoulement fluide en régime laminaire. A cette fin, la méthode
LBM (Lattice Boltzmann Method) est utilisée pour décrire la phase fluide et la méthode
DEM (Discrete Element Method) pour la phase solide, avec l’ajout d’une rhéologie de cohé-
sion au niveau des contacts entre grains, incluant également un modèle d’endommagement
dépendant du temps. La première tâche présentée ici consiste à tirer parti des capacités
de calcul parallèle sur GPU pour améliorer de manière très significative la vitesse de calcul
et l’efficacité d’un code existant.

Le travail s’attache ensuite à la quantification des conditions hydrodynamiques au seuil
d’érosion pour des matériaux granulaire, sans ou avec cohésion. Après une analyse préalable
de l’écoulement 2D d’un jet impactant laminaire permettant de caractériser au mieux ce
type d’écoulement, le seuil d’érosion a été étudié de façon systématique. La pertinence du
critère classique de Shields pour les échantillons sans cohésion est confirmée, tandis qu’une
généralisation de ce critère est proposée pour les sols faiblement cohésifs avec un accord
très satisfaisant. Enfin, le modèle d’interprétation classique de l’essai JET est adapté à
notre géométrie 2D et au régime laminaire. Les paramètres d’érodabilité ainsi obtenus pour
nos échantillons cohésifs sont analysés en fonction du degré de cohésion et des conditions
hydrodynamiques, puis discutés de façon critique.

Enfin, la dernière partie de ce travail explore une configuration hydrodynamique plus
simple, celle d’un écoulement tangentiel cisaillant, de type Couette laminaire, qui permet
d’imposer une contrainte de cisaillement constante sur toute la surface supérieure d’un
échantillon. Le taux d’érosion du matériau cohésif est ainsi mesuré directement à l’échelle
macroscopique puis analysé en fonction de la contrainte appliquée. Les lois d’érosion ainsi
obtenues apparaissent mieux décrites par une loi de puissance que par la relation linéaire
classiquement utilisée. Une étude paramétrique est finalement menée, en faisant varier à la
fois la force de cohésion entre particules et la taille de celles-ci, afin d’examiner le lien entre
érodabilité d’un échantillon de sol et paramètres d’entrée du modèle micromécanique.

Mots clés: LBM, DEM, érosion, sol cohésif, matériau granulaire, écoulement de jet
impactant, GPU, simulation numérique.
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Introduction

The actual Global Warming obviously induces a rapid climate change with dra-
matic consequences such as an intensification of natural disasters, massive ocean
and sea rises, increasingly heavy and frequent precipitation events, and subsequent
potentially catastrophic floods. Among others, a clearly identified risk concerns
the destruction of earthen hydraulic structures (e.g. earth embankment dams, lev-
ees, and dikes), which play an essential role in protection against floods or water
reservation. The main phenomenon underlying the breakage of such structures is
erosion, which is estimated to be responsible for about 95 % of failure cases, causing
major economic and social costs worldwide. Recent French examples of disastrous
erosional events induced by floods are the failure of several dikes of the Gard river
(South-East of France) in September 2002, which cost around a billion euros and
claimed the lives of five people. From an international perspective, the spectacular
failures of coastal levees in New-Orleans (USA) following the Katrina hurricane in
2005 will be remembered for long. Katrina has killed more than 1,000 people with
total damage cost around 100 billion dollars. There is consequently a growing social
demand for improving safety management of existing structures and constructing
more durable and resistant structures in the future.

However, such erosion induced failures of hydraulic infrastructures is a far complex
instability issue which has engendered a number of studies for many years but still
claims for a better understanding of both the elementary processes involved at small
scale and their progressive combination until global failure at large scale. Many
researches are being conducted for studying soil erosion, in particular to identify
parameters that trigger erosion or, rather the opposite, inhibiting factors. To this
end, several erosion tests have been developed along with their interpretation models.
The most common ones are the Jet Erosion Test (JET), the Hole Erosion Test
(HET), and the Erosion Function Apparatus (EFA). The main purpose of these
tests is to quantify the so-called erodibility of soils, which is basically given by two
parameters (an erosion coefficient and a critical shear stress). In practice, both
quantities are derived by fitting the experimental data based on a postulated linear
surface erosion law that links the soil’s erosion rate to the excess fluid shear stress.
The slope gives the erosion coefficient while the intercept is the critical shear stress.

The practical utility of soil erodibility can be understood as follows: the erosion
coefficient rules the kinetics and consequently allows quantifying the remaining time
to failure in times of crisis emergency; the critical shear stress predicts the threshold
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2 Introduction

at which erosion starts and can be used as a determining factor in construction or
remediation of a structure.

Nonetheless, there is still a scientific debate whether the two parameters are in-
trinsic to the soil or not. This postulate is indeed questionable since different erosion
devices usually give different estimations for the erodibility of a same soil. A first
possible explanation for this lies in the interpretation models which are often rather
crude and over-simplified by a set of assumptions and empirical correlations used
to circumvent the difficulty of measuring the local flow parameters. The relevance
of the postulated erosion law, namely the linear excess shear-stress, may also be
brought into question.

On the other hand, computational fluid dynamic (CFD) models have considerably
gained in accuracy and give now access to most of the local flow parameters that
are hardly measurable in the experiments, either in small or large-scale engineering
applications. Such methods can consistently model erosion of soils, the latter needing
for its part a proper modeling. At the scale of an hydraulic structure, the FEM
(Finite Element Method) is most commonly used but requires to define in advance
erodibility coefficients for the soil through a postulated erosion law or empirical solid
transport formulas. Alternatively, accurate numerical methods have been developed
during the last years to account at a much smaller scale for mutual interactions
between a fluid flow and a population of solid particles, either static or in motion.
Thus, efficient simulations are nowadays capable of modeling complex fluid-grains
situations for a representative elementary volume (REV) of granular material, by
considering the soil as a set of discrete particles and taking into consideration a
continuum fluid model (e.g. CFD). This approach is obviously more relevant for
studying soil’s erosion since no premise on erodibility coefficients nor erosion law is
assumed a priori. This is clearly the main motivation for the present study.
Hence, this thesis deals with the numerical modeling of the erosion of cohesive

granular soils induced by an incompressible fluid flow described by the Lattice Boltz-
mann Method (LBM) at low to moderate Reynolds numbers (i.e. laminar flow
regime). The soil is described locally, at the micro-scale, as set of discrete particles
and thus modeled by the Discrete Element Method (DEM), including an inter-
granular cohesion and a time-dependent sub-critical damage models. The main
purpose of this work is to conduct relevant numerical simulations, building on and
improving the numerical tools previously developed by J. Ngoma (2011-2014) during
his Ph.D. thesis and P. Cuéllar (2014-2015) during his Post-doc. The present simu-
lations are restricted to two practical cases: impinging jet erosion and shear-driven
(or Couette) erosion.

The scientific problems under question here are: to prove the accuracy and the
validity of our numerical modeling to simulate fluid flow erosion in a realistic way;
to test the relevance of several empirical erosion laws; to find a link between micro
parameters (e.g. the cohesive bond strength, particle diameter) and macro param-
eters (e.g. the erosion rate coefficient and the critical fluid shear stress) through a
parametric study. This work is divided into four chapters and organized as follows:

The first chapter presents a state of the art as regards soil erosion. It consists first
of a description of the general context underlying this study (i.e. erosion phenomena
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in hydraulic earthworks). Secondly, a brief review is proposed about several theo-
retical and experimental aspects of erosion of both granular and cohesive materials
(i.e hydrodynamics, onset of surface erosion, erosion test devices and their interpre-
tation models). Finally, some numerical methods from the literature are presented
for modeling soil erosion induced by a fluid flow.

We propose in the second chapter a detailed description of the numerical methods
that will be used in this study, namely the Lattice Boltzmann Method (LBM) and
the Discrete Element Method (DEM), along with the coupling technique between
both methods. Next, the GPU parallelization technique, as well as the validation of
the LBM/DEM coupling, is presented.

In chapter 3, the previous numerical tools are applied in the context of soil erosion
by an impinging jet. Two-dimensional laminar free jet is first simulated and validated
against the free jet theory. Then, from jet impingement on a smooth wall and a
fixed granular surface, we derive an empirical formula that correlates the fluid shear
stress at the impingement surface to the free jet self-similar model for laminar regime
in two-dimensional configuration. The second part of the chapter is dedicated to a
parametric study of impinging jet erosion, successively for cohesion-less and cohesive
soils, with a special focus on the erosion onset (erosion threshold) for both cases.
The results are plotted in the Shields diagram and favorably compared to previous
experimental results. For the case of cohesive soil, the erosion threshold is found to
be well described by an extension of the classical Shields criterion used for cohesion-
less materials to moderately cohesive soils. Furthermore, the subsequent scouring
process is investigated using image processing techniques, and we provide a 2D
analysis of the evolution of the scour depth (erosion rate) versus the fluid shear stress
at the upper bed surface. Then the mathematical model of the Jet Erosion Test
(JET) is adapted to our two-dimensional geometry and allows implicitly deriving
at the macro scale the erodibility parameters of soils (i.e. erosion coefficient and
critical shear stress) for different micro cohesion strengths.

The last chapter (Chapter 4) presents a study of an alternative erosion test which
consists of applying a shear-driven (or Couette) fluid flow at the upper surface
of a cohesive granular sample. Since the fluid shear stress is kept approximately
constant, the erodibility of the cohesive material is easily derived without the need
for an interpretation model. The additional use of the time-dependent damage model
allows extending the results to lower fluid shear stress values. Also, we found that
a power erosion law fits well our numerical data, still using the excess shear-stress
quantity. A parametric study is performed by varying the inter-particles cohesion
and the particle size to investigate the relationship between the erosion parameters
and the cohesive contact laws.

Finally, we close this work with a general conclusion and provide some perspectives
for future research.
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1.1 Introduction

The aim of this chapter is first to describe the general context of this thesis, whose
topic deals with erosion phenomena, more specifically applied to hydraulic earth-
works, and, second, to introduce the major factors responsible for erosion of either
cohesion-less or cohesive soils. Then, we compile a summary of the main devices
used to quantify soil’s resistance to erosion (e.g. JET, HET, EFA), including their
interpretation models, with a specific focus on impinging jet hydrodynamics. The
last section is finally dedicated to a review of some numerical methods previously
developed in the literature for modeling the coupling between fluid flow and grains,
which is at the heart of erosion of cohesive soils. A more detailed insight is proposed
for the methods that will be implemented in this study, namely Lattice Boltzmann
Method (LBM) and Discrete Element Method (DEM).

1.2 Erosion of hydraulic earthworks

Erosion, either internal or external, is far ahead the main cause of breakage for
earthen hydraulic structures (e.g. dikes and dams). Statistically speaking, it con-
tributes to 90 to 95 % of failure cases reported worldwide after (Foster et al., 2000).
For illustrative purpose, Figure 1.1 shows two recent failures of hydraulic structures
caused by erosion. As regards France, which accounts for more than 700 large dams,
ten thousand small dams (i.e. with height less than 15 m), nearly 8,000 km of dikes
for navigation channels, and 10,000 km of protective levees, erosion is usually re-
sponsible for an average of one dam and one dike breakage annually, most of these
ruptures occurring during floods. The damage costs are estimated to more than 100
million euros per year.

Fig. 1.1. Failure of the Algodões dam (Piau, Brazil, 2009) (left) ; Failure of the
Lianfeng dam (Urumqi, China, 2013) (right).

After Foster et al. (2000), the erosion mechanisms likely to trigger earthen hy-
draulic structure failures can be classified into two distinct categories: internal ero-
sion and external erosion. External erosion refers to hydrodynamic stresses at the
outer surface of the structure, usually due to an overflow (see Fig. 1.2a). If the
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soil’s sub-layer is not resistant enough to erosion, the overflow may cause substan-
tial degradation, possibly leading to the creation of a breach, and, eventually, to
the rupture of the structure. This type of erosion represents approximately 50 % of
reported earth dam failures Foster et al. (2000).

(a) External erosion

(b) Internal erosion

Fig. 1.2. Two types of erosion: (a) External erosion ; (b) Internal erosion.

Even though there is no overflow, almost the same proportion of failures, around
45 %, are due to internal erosion, a general term that includes all erosional processes
occurring inside the earthen embankment. Internal erosion is a generally much more
slower and far less apparent phenomenon, initiated by the water infiltration through
the structure or its foundations (see Fig. 1.2b). Four different initiation mechanisms
of internal erosion are reported (Fell and Fry, 2007), as summarized in Fig. 1.3:
concentrated leak erosion, backward erosion, contact erosion, and suffusion. Con-
centrated leak erosion may occur when there already exists a preferential path for
the flow through the structure. Such a pre-existing path can be caused for instance
by differential settlement, hydraulic fracture in clayey core walls, or desiccation in
voids adjacent to a concrete wall or conduits, as well as the presence of transverse
pipe, roots or animal burrows (Zhang et al., 2016). Backward erosion is first initi-
ated at the toe of the structure, where a seepage flow exits the foundations, either by
an uplift or a sand boil (i.e. granular soil fluidization ) depending on the nature (i.e.
cohesive versus granular) of the soil’s sub-layer. Once formed, such a cavity expands
backwards from downstream to upstream, in the opposite direction to the flow. Con-
tact erosion is a selective erosion of fine particles, at the interface between two layers
of different soil types and grain size, driven by a seepage flow through the coarser
layer. Suffusion is also a selective erosion of fine particles, which get transported by
the flow through the pores that pre-exist between the coarser particles.
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Note that these four initiation mechanisms, with initially relatively slow kinetics
(i.e. evolution over years), may progressively accelerate and, in combination with
others processes (settlement, sinkhole, collapse, etc.), lead ultimately to the fail-
ure of the structure by a piping flow passing through the entire structure. This
phenomenon, called piping erosion, usually corresponds to the final stage of an em-
bankment dam failure for which the remaining time before rupture can be counted
in hours rather than days (Bonelli and Benahmed, 2011).

Furthermore, piping erosion can be regarded locally as surface erosion and is
consequently comparable to external erosion even if the flow conditions are different,
namely open-channel versus closed-conduit flow. Thus the same surface erosion
laws can be applied in both cases. Moreover, many other internal mechanisms as
concentrated leak erosion, backward erosion, and contact erosion give rise to similar
situations where, at small scale, a soil is stressed by a superficial flow.

Suffusion Concentrated leak erosion

Contact erosion Backward erosion

Fig. 1.3. Four different initiation mechanisms for internal erosion: concentrated
leak erosion, backward erosion, contact erosion, and suffusion. Redrawn from (Zhang
et al., 2016).

As shown in Fig. 1.4, we can distinguish three kinds of necessary conditions to
trigger internal erosion: geometric, hydraulic, and mechanical conditions. At least
two of these conditions need to be simultaneously fulfilled to initiate internal erosion.
The inter-relations are multiple: a weaker hydraulic gradient is required for fine
particle erosion, compaction of soil improves the resistance to erosion, or the critical
gradient differs under different mechanical conditions (e.g stress states) (Zhang et al.,
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2016).

Material conditions
(Grain-size distribution, grain

shape, void size distribution, void
ratio, fines content, etc.)

Internal
erosion

Ease to
initiate
internal
erosion

Susceptible
to internal
erosion

Hydraulic conditions
(Hydraulic gradient, seepage
velocity, seepage direction,
etc.)

Trigger

Mechanical conditions
(Stress states, compaction
methods, etc.)

Fig. 1.4. Conditions that trigger internal erosion (Zhang et al., 2016).

1.3 Hydrodynamics involved in erosion of soils

Sediment transport consists of three main processes: erosion, transport, and deposi-
tion of sediment particles. The process of concern in this study is erosion, which can
be defined as the detachment of sediment particles from the soil mass (or matrix)
under the action of fluid flow. The erosion processes occur when the hydrodynamic
forces exceed the soil’s resistance forces and many researchers have investigated in-
cipient erosion criteria for decades. As will be detailed in forthcoming section 1.4, a
distinction must be drawn between cohesion-less materials (typically sand or gravel)
and cohesive soils (as clay or loam). In short, the quantitative determination of
erosion onset in the case of cohesion-less soils is usually based on the dimension-
less Shields number Shτ , which is the ratio of the critical bed shear stress to the
apparent weight of the particles. The empirical Shields curve almost collapses all
the experimental data together. For cohesive soils, several surface erosion laws have
emerged, relating surface erosion rate to some relevant hydrodynamic quantities.
Here again, bed shear stress is often used to account for a fluid flow acting on a soil.
Namely, a critical shear stress τc is found, corresponding to the soil’s resistance to
erosion, and the rate of soil particles detachment by the flow is given as a function
of the fluid’s excess shear stress, τ − τc. Whatever the sediment type (cohesion-less
versus cohesive), it is essential to gain accurate knowledge of the exact fluid flow
according to the different flow regimes.
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1.3.1 Flow regimes

Flow regimes are classified in terms of the dimensionless Reynolds number Re, which
represents the ratio of inertial to viscous forces and reads:

Re =
UL
ν

(1.1)

where L is a characteristic length of the flow (e.g. grain diameter or water depth),
U is a typical fluid flow velocity and ν is the fluid’s kinematic viscosity.

Based on the Reynolds number, three flow regimes can be distinguished (as shown
in Fig. 1.5): laminar flow for low Reynolds numbers Re < 102, transition flow when
102 < Re < 103, and turbulent flow for high Reynolds numbers Re > 103. Note
that the viscous forces are dominant when Re << 1, whereas the inertial forces
predominate for Re >> 1 .

Fig. 1.5. Flow regimes as a function of the Reynolds number Re. The hatched
zone represents the transition from laminar to turbulent regime for 102 < Re < 103.
Figure extracted from (Badr, 2014).

1.3.2 Fluid shear stress induced by steady uniform flow in
open channels

As mentioned, the estimation of the bed shear stress is essential for evaluating the
erosion onset or incipient of motion. In laminar regime, the flow can be viewed
as sliding layers, without any mixing between them, and the shear stress can be
described by Newton’s viscosity law.

τ = ρfν
du

dy
(1.2)

where ρf and ν are the density and kinematic viscosity of the fluid, respectively.
The bottom shear stress is often represented by a friction velocity u2

∗ defined as:

τ = ρfu
2
∗ (1.3)

Note that, in practice, it is nontrivial to deduce the friction velocity u∗, or equiv-
alently the shear stress. However, the shear stress can be alternatively estimated at
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the bottom from the measured average velocity U , thus τ will be:

τ = ρfu
2
∗ =

1

2
ρfCfU

2 (1.4)

where Cf stands for the friction coefficient of the bed that is a purely empirical
coefficient.

However, common flows are mostly turbulent in nature. The turbulence is gen-
erated by instabilities in the flow resulting in velocity fluctuations. Therefore, the
velocity field in turbulent flow can be decomposed into two parts as:

u = u+ u
′

(1.5)

where u is the time-averaged velocity, and u
′ the instantaneous velocity fluctua-

tion. The latter term can be significantly higher in amplitude for strongly turbulent
regimes, but its time average value tends to zero by definition.

The total shear stress τ is therefore decomposed into viscous τv and turbulent τt
shear components, as:

τ = τv + τt = ρf
du

dy
+ (−ρfu′xu

′
y) (1.6)

Based on the velocity profile ux = f(y) from the bottom surface (y being the
distance from the bottom position), several horizontal layers can be distinguished,
as shown in Fig 1.6. These flow layers, starting from the bottom, are successively:
(1) the viscous sub-layer, (2) the transition layer, (3) the turbulent layer, and finally
(4) the turbulent outer layer.

The viscous sub-layer corresponds to the usually very small zone, at the bottom
boundary, where the flow is laminar, of Couette type, and generates a constant
viscous shear stress τs, denoted bed or bottom shear stress, that can be calculated
from Eq. 1.4. In the transition layer, also called buffer layer, viscous and turbulent
forces are comparable in magnitude and the same global shear stress τs holds. Fi-
nally, within the turbulent logarithmic layer, the viscous forces become negligible
and, as derived from Prandtl’s mixing length concept, the mean velocity profile is
logarithmic and reads:

u(y) =
u∗
k

ln
y

y0

(1.7)

with k = 0.41 is the Von Karman constant, and y0 is an integration constant corre-
sponding to zero velocity (uy=y0 = 0). Finally, the mean velocity reaches an almost
constant value in the turbulent outer layer.
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ux(y)

x

y

Fig. 1.6. Velocity profile and layer classification for turbulent flow in open channels.

1.4 Onset of surface erosion for a soil layer

We now focus on the situation where such a tangential flow occurs at the upper
surface of a soil layer. Owing that a relevant characteristic diameter d is obtained
from the soil’s grain size distribution, then a particle Reynolds number Rep can be
introduced, by replacing the characteristic length L by d, and reads:

Rep =
Ud
ν

(1.8)

Additionally, a boundary or shear Reynolds number Reτ can be defined based on the
bed shear stress τs, or equivalently the friction velocity u∗ =

√
τs
ρf

defined previously.
This shear Reynolds number is:

Reτ =
u∗d

ν
(1.9)

1.4.1 Case of a cohesion-less soil

The erosion onset of cohesion-less sediment at the particle scale brings us approxi-
mately in the previous flow situation except the bottom boundary is now an hori-
zontal bed made of a grains, with a mean (or median) particle size d, and interacting
through friction at contacts. Consequently, the onset of erosion by the fluid flow is
here based on the incipient motion of an individual grain. From the pioneer work
of Shields (Shields, 1936), it has been demonstrated experimentally and analyti-
cally that a grain starts moving when the drag forces Fdrag induced by the flow
around the particle exceed the buoyant weight of the grain W . As Fdrag ∝ τsd

2

and W ∝ (ρg − ρf )gd3, with ρg and ρf the grain and fluid densities, respectively,
and τs the bed shear stress, Shields conveniently introduced a dimensionless group,
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denoted since that time Shields number, or Shields criterion, and given by:

Shτ =
τs

(ρg − ρf )gd
(1.10)

At the erosion onset (i.e. incipient motion), we can define a critical value of Shields
criterion Sh∗τ , based on the critical fluid shear stress τ ∗s . Shields proposed to use
a diagram where the critical Shields number is plotted versus the shear Reynolds
number Re∗τ (see definition in previous section 1.3.2) which is also a critical value
deduced from τ ∗s :

Re∗τ =

√
τ ∗b
ρf

d

ν
(1.11)

From this representation, Shields found roughly a unique curve for several data
obtained with different types of sediment and proposed the existence of a one-to-one
relation between both parameters, also denoted Shields curve:

Sh∗τ =
τ ∗s

(ρg − ρf )gd
= f(Re∗τ ) (1.12)

Nevertheless, it can be noted that, throughout history, many researchers failed
to reproduce the Shields curve. According to Buffington (1999), it appears that
the original results of Shields encounter some uncertainties and raise some flaws,
mainly in the method used to define the incipient motion by extrapolating stress-
transport curves to a zero transport level. Moreover, the results are significantly
scattered mixtures sized sediments are used instead of uniform ones. Furthermore,
using either mean or median grain size of the sediment seems to affect the results
for the same data set (Buffington, 1999).

Several empirical approximations have been subsequently proposed to fit the
Shields curve. Amongst them, the explicit formulation proposed by Guo (1997,
2002) will be used in the rest of this manuscript and reads:

Sh∗τ =
0.106

Re∗τ
+ 0.0545

[
1− exp

(
−0.158Re∗τ

0.52
)]

(1.13)
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Sh*τ

Re*τ

Fig. 1.7. Shields Diagram: Critical Shields number Sh∗τ as a function of the critical
shear Reynolds number Re∗τ . Figure extracted from Buffington (1999).

1.4.2 Case of cohesive soils

In contrast to the cohesion-less case, estimating erosion onset for cohesive soils is
nontrivial and far more complex. As substantial attractive forces now exist in-
between soil’s particles, there is no more a clear understanding of what is soil’s
mobilization by a fluid flow. Indeed, friction and buoyant weight are not the only
causes for soil’s resistance to erosion. On the contrary, these forces often become neg-
ligible compared to the soil’s cohesive strength. Consequently, the previous Shields
approach will no longer be valid, at least in its standard version, since the simple
picture of incipient motion of individual grains is no more relevant. Collective be-
haviors are indeed likely to predominate here, for instance through the entrainment
of soil’s particles by "flocs" (Righetti and Lucarelli, 2007).

Coleman and Nikora (2008) have shown the influence of the inter-particle forces on
the evolution of the critical Shields number. As can be seen in Fig. 1.8, Shc increases
with Rep (or equivalently the viscous diameter D∗) in the presence of adhesion or
cohesion forces between particles.

In nature, cohesive soils generally consist of fine-grained soils (silt and mineral
clay particles) where the grains interact, and possibly adhere together, by physical-
chemical forces. Attractive forces can also exist between larger grains in presence
of solid bonds or capillary bridges. In both cases, the soil’s mechanical strength
increases substantially, thus the material becomes more resistant to erosion or scour-
ing. More precisely, a distinction is often proposed between cohesion and adhesion
(Coleman and Nikora, 2008; Delenne, 2002; Righetti and Lucarelli, 2007; Jacobs
et al., 2011; Chen et al., 2018):
Adhesion: Adhesion stands for surface microscopic forces between two bodies

without the presence of a third one. These forces are susceptible to bring nearer the
two bodies or to maintain them in contact. Generally, these forces are very strong
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Fig. 1.8. Evolution of the critical Shields number as a function of , for steady
uniform 2D flows and with different sediment, fluid, and flow parameters (Coleman
and Nikora, 2008).

at short distance but quickly vanish beyond.
Cohesion: Cohesion is described at a macroscopic scale as the result of multiple

interactions and links between particles (including adhesive forces). Cohesion can
involve a third body as liquid capillary bridges in unsaturated soils, solid bridges
in cemented soils, or a mixed behavior related to the presence of particles and clay
"matrix". In soil mechanics, cohesion refers to the extrapolated shear strength under
zero normal stress, deduced from the intercept of a material’s failure envelope (as
Mohr-Coulomb) with the shear stress axis in the shear stress-normal stress space
(Lu and Likos, 2013).

As microscopic adhesion leads cohesive behavior at the macroscopic scale, we will
only focus in the following on cohesive granular soils under the assumption that
microscopic actions can be described by cohesive bonds in-between larger grains
which do not interact directly, physical-chemically speaking, except by friction.

It is known from a long time that both the onset and the kinetics of soils erosion
heavily depend on this internal cohesion. Specific erosion experiments have thus
been developed to estimate, either in the lab or in-situ, soils’erosion rate under
given hydraulic loadings. Among these erosion testing devices, the most common
ones are the Hole Erosion Test (HET), the Jet Erosion Test (JET), and the Erosion
Function Apparatus (EFA) (see further descriptions in sec. 1.5). Each device is
associated with its own interpretation model to quantify for a given soil the onset
and the kinetics of erosion, usually denoted "erodibility" parameters. To this end,
an assumption is required as regards local erosion law at the boundary between a
cohesive soil and a fluid flow. Most of the interpretation models are based on the
linear excess shear stress model, described hereafter. Tentative correlations between
these erodibility parameters and some geotechnical and physical-chemical properties
of the soils have also emerged (Fell and Fry, 2007), as will be discussed later.
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1.4.2.1 Surface erosion laws

To account quantitatively for erosion of a fluid flow at the boundary of a soil layer,
it is first needed to fix both space and time scales. Indeed, very different kinds
of erosion can be envisaged whether considering seconds or geological times, as
well as millimetres or kilometers. These scales prescribe notably how the amount
of eroded matter and the hydro-dynamical load exerted by the fluid flow can be
quantified. Here, we only focus on erosion in a soil mechanics perspective, typically
at centimetre scale over time periods of seconds to minutes. Even in this restricted
frame, erosion of a cohesive soil remains a rather generic term and only little is known
about the real processes at work at particle scale. Winterwerp and Van Kesteren
(2004) postulated the existence of four erosion modes: entrainment, floc erosion,
surface erosion and mass erosion. In particular, surface erosion process is defined as
follows: "when the mean flow- and/or wave-induced stresses are considerably larger
than the true critical shear stress for erosion, large layers of sediment are eroded
and mobilized"(Winterwerp and Van Kesteren, 2004). Soil’s erosion is described as a
complex combination of very specific, and always commonly accepted, sub-processes:
head-cut erosion, sidewall sloughing, tunneling and micro-piping, slaking, piping and
sapping (Bryan et al., 1989; Bryan, 1990; Zhu et al., 1995; Owoputi and Stolte, 1995;
Rapp, 1998).

Another issue deals with the relevance of a hydrodynamic quantity that is able
to account for the action of the fluid flow over the surface of a soil, particularly
for turbulent flows as is the case in most practical situations. For simplicity, a
time average value is often used although more realistic statistical approaches can
be proposed but are difficult to implement. Either flow-rate, pressure drop, shear-
stress, or energy have been used as actual hydrodynamic load. In coherence with
the Shields framework, the fluid’s mean shear stress appears as the most common
choice and will be used in the rest of this manuscript.

It should additionally be noted that the use of a unique set of parameters to
account for soil’s sensitivity to erosion is also problematic since resistance to erosion
is likely to vary from one location to another inside a given soil sample. Soils indeed
are often heterogeneous.

In practice, several empirical laws have been proposed in order to relate the soil’s
rate of erosion to the hydrodynamic load, quantified here by the fluid time average
shear stress. An excess shear stress was first proposed by Partheniades (1965) and
remains the most popular formulation. It is based on the assumption that the
erosion rate ṁ, i.e. the eroded mass per surface and time units (Kg m−2 s−1), varies
linearly with the fluid shear stress τ :

ṁ =

{
ker(τ − τc) if τ ≥ τc

0 if τ < τc
(1.14)

The linear relationship directly defines a critical shear stress τc (in Pa) while the
other parameter, ker (in s m−1), is called erosion coefficient. It can alternatively be
expressed as ker = ρgkd, with kd in m3 N−1 s−1, if the erosion rate is now defined as
an eroded depth per time unit: ε̇.
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The two parameters τc and ker, or kd, characterize the soil’s erodibility. More
precisely, τc predicts the erosion threshold at which the detachment of particles
occurs while the erosion coefficient ker (or kd) quantifies the kinetics of erosion when
the threshold is exceeded. Under some additional assumptions, the latter parameter
can be used to predict the remaining time to failure in emergency situation, when a
piping flow erosion occurs (Bonelli and Benahmed, 2011).

Note that a slightly more elaborate law is sometimes used, where the linear relation
is replaced by a power law. Rather similar formulations have been proposed, for
instance by Van Rijn (1984) or Foster (1982). It can read as follows:

ṁ =

{
ker(τ − τc)n if τ ≥ τc

0 if τ < τc
(1.15)

The previous expression is obviously recovered for n = 1. However, n can be higher
or lower than one, accounting either for a convex or concave shape. This exponent n
is merely a fitting parameter of experimental or numerical data and does not provides
relevant physical significance (Bonelli and Brivois, 2008). However, although the
linear law (Eq. 1.15) remains most commonly used for its simplicity, it is yet no
more suitable for high shear stress and long slopes whereas the power erosion law
gives better agreement of the erodibility parameters for low to medium shear stresses
(Zhu et al., 2001). Lastly, Knapen et al. (2007) stated that "no consensus on the
nature of the relation between ε̇ and τ exists and theoretical explanations for linearity
or non-linearity have not been tested yet".

Finally, some alternative laws can be cited. Foster and Meyer (1972) proposed
a power law formulation but without critical condition: ε̇ = kdτ

3/2. Also an expo-
nential law was introduced by Parchure and Mehta (1985): ε̇ = kdτc exp[α(τ − τc)β].
More recently, Walder (2016) developed several dimensionless erosion laws.

As will be presented in more detail in the following section 1.5, interpretation
models are used to estimate soil’s erodibility from one or several erosion tests. How-
ever, even if a same erosion law is assumed, the erodibility values obtained for a same
material are scattered. This is partly due to the type of erosion device that does
not systematically rely on similar fluid flows. In addition, as already mentioned, the
erosion laws are based on a time average value of the shear stress. As mainly turbu-
lent flows induce fluctuations in fluid pressure and velocity over time and space, the
local shear stress at the interface may therefore occasionally exceed the soil’s critical
threshold τc even if its time average value is far below. This results in intermittent
particle extraction and thus maintains a non-zero erosion rate over time (Philippe
et al., 2017). To address this issue, statistical approaches have emerged using prob-
ability density functions for both the flow hydraulics (e.g. shear stress or other)
and the soil’s erodibility parameters (Nearing, 1991; Sidorchuk, 2001, 2005). For
instance, Van Prooijen and Winterwerp (2010) proposed a statistical distribution of
the shear stress based on a Gaussian distribution of the average velocity. A similar
use of statistical distribution to account for space variability was implemented by
Beguin et al. (2013) in the context of contact erosion.
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1.4.2.2 Erodibility parameters (kd and τc)

Almost all erosion laws agree on involving the two empirical parameters kd and τc.
Consequently, the latter are traditionally considered as an intrinsic material feature
of a cohesive soil, called soil’s erodibility. Over the past decade, great effort has been
devoted to achieve a better understanding of the erodibility parameters, mainly by
systematic confrontation and interlinking with some of the typical properties of nat-
ural soils such as particle size, density, water content, and many other quantities
including consolidation time (Black et al., 2002; Parchure and Mehta, 1985; Kimi-
aghalam et al., 2014). In this sense, a very large variety of empirical relations has
been proposed in the literature (see e.g. (Grabowski et al., 2011; Winterwerp and
Van Kesteren, 2004; Zhu et al., 2008)), mostly regarding the critical shear stress
τc. However, the erosion rate parameter kd (sometimes also denoted ker when mass
loss is considered instead of volume loss) has received considerably less attention
since it is far more difficult to evaluate experimentally, especially in situ, even if a
theoretical derivation has already been proposed by Winterwerp and Van Kesteren
(2004).

Regardless of the direct dependencies with other soil properties, some authors
(Hanson and Simon, 2001; Karamigolbaghi et al., 2017) have also proposed the
existence of an intrinsic relationship between τc and kd in the following form: kd ∝
τ−γc . Even if an exponent of γ = 0.5, as initially suggested in Hanson and Simon
(2001), was consistent with a dimensional analysis (Andreotti et al., 2013), the
extremely larger range of exponent values subsequently proposed by other authors
(Daly et al., 2015; Julian and Torres, 2006; Karamigolbaghi et al., 2017; Karmaker
and Dutta, 2011; Konsoer et al., 2016; Layzell and Mandel, 2014; Nguyen et al., 2017;
Thoman and Niezgoda, 2008), from γ ≈ 0.4 to γ ≈ 2.4, appears to discourage any
attempt of generalization, particularly in view of the very strong scattering of these
erodibility data (see for instance (Kimiaghalam et al., 2014)) and considering the
significant impact of the test interpretation model (at least for JET measurements)
(Karamigolbaghi et al., 2017) as well as some contradicting analyses that show an
absence of correlation between τc and kd (Knapen et al., 2007). In this respect,
it merely appears appropriate to state, in a qualitative manner, that a less(more)
resistant soil is generally prone to suffer higher(lower) erosion rates in equivalent
hydrodynamic conditions.

1.5 Erosion test devices

1.5.1 Hole Erosion Test (HET)

The Hole Erosion Test (HET) is one of the most commonly used erosion tests. It
was first developed by Wan and Fell (2004) for modeling a controlled piping erosion
in the laboratory and characterizing the resistance against erosion of cohesive soils.
As regards hydrodynamics, the HET consists of applying a tangential flow along
an initially cylinder pipe within a soil specimen, under either constant flow rate or
constant pressure drop conditions. Note however that the second protocol is far more
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difficult to implement in practice. Before the start of the experiment, a cylindrical
hole is drilled across the soil sample to be tested. Then, the flow passes through this
pipe, inducing erosion, mass loss, and pipe enlargement. The HET device is shown
in Fig. 1.9.

Fig. 1.9. (a) Photograph of the experimental Hole Erosion Test device. (b) A
typical soil sample after erosion by HET.

The first HET interpretation was proposed by Wan and Fell (2004) and allows
determination of the erodibility parameters (kd and τc) based on a linear regression
of the erosion rate versus fluid shear stress curve, but making several questionable
assumptions, especially as regards hydrodynamics.

A second and more elaborate interpretation model was proposed by Bonelli et al.
(2006), still considering the linear excess stress erosion law and using now a more
realistic modelling of the pipe flow based based on the Navier-Stokes equations of
an incompressible fluid in cylindrical geometry. Assuming that the pipe keeps a
cylinder shape, the eroded mass allows for estimating the erodibility kd and the
critical fluid shear stress τc parameters of the tested materials as described below.
The radius evolution over time gives the erosion rate and can be expressed from

the linear excess shear erosion law in Eq. 1.15 with ρd the soil’s dry density:

ṁ = ρd
dR

dt
= ker(τ − τc) = ρdkd(τ − τc) (1.16)

Yet the fluid shear stress at the interface can be calculated based on both the pressure
drop ∆P and the pipe radius (supposed to evolve uniformly as already mentioned):

τ =
R(t)∆P

2L
(1.17)

where L is the pipe length and R(t) its mean radius that progressively increases over
time as erosion occurs.
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If a constant pressure drop ∆P is first considered, then, based on Eqs 1.17 and
1.16, one gets:

1

Rc

dR

dt
= kd

∆P

L
(
R

Rc

− 1) with Rc =
2τcL

∆P
(1.18)

After integration, the time evolution of the pipe radius is found to simply follow
an exponential law during the erosion test with constant pressure drop (Bonelli and
Brivois, 2008):

R(t) = R0 + (R0 −Rc)(e
t/ter − 1) (1.19)

with a characteristic time ter =
2L

kd∆P
=

Rc

kdτc
.

The erodibility parameters (kd, τc) are lastly determined by exponential adjust-
ment with experimental data. However, as previously mentioned, the protocol with
a constant pressure drop is quite difficult to implement experimentally as both pipe
radius and flow rate quickly diverge.

The second protocol with constant flow rate is consequently far more frequently
performed. Unfortunately, in this case, the fluid shear stress at the soil’s interface
can be only estimated in an empirical manner:

τ = f
ρfQ

2

2π2R4
(1.20)

where Q = πR2Ū is the constant flow rate, Ū is the mean flow velocity in the
pipe cross-section, and f is the so-called friction coefficient. This coefficient f is
estimated from semi-empirical and often implicit formulas, as a function of the
Reynolds number Re and, consequently, of the pipe radius R(t).
As a first approximation, the friction coefficient f can be assumed to be constant.

Then, based on Eqs 1.16 and 1.20, the pipe radius satisfies the following differential
equation:

1

Rc

dR

dt
=
kdfρfQ

2

2π2R5
c

[(
Rc

R

)4

− 1

]
with Rc =

(
fρfQ

2

2π2τc

)1/4

(1.21)

Next, an implicit solution is obtained for the evolution of the pipe radius with time
(Bonelli et al., 2006):

F

(
R(t)

Rc

)
= F

(
R0

Rc

)
+

t

ter
(1.22)

with again ter =
Rc

kdτc
and F (x) =

1

2
(tan−1 x+ tanh−1 x)− x.

Finally, the erodibility parameters (kd, τc) are determined by indirect adjustment
of the previous expression, as shown in Fig. 1.10.
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Fig. 1.10. Interpretation of a typical HET test results for the assessment of erodi-
bility parameters τc and kd (Benahmed and Bonelli, 2012).

1.5.2 Erosion Function Apparatus (EFA)

The EFA is shown in Fig. 1.11. It was developed by Briaud et al. (2001) to study
scouring of soils around a bridge pier and quantifying the related erodibility param-
eters. Contrarily to the HET which is restricted to substantially cohesive soils (silt,
clay), capable of holding a transverse pipe in a sample of soil, the EFA can also esti-
mate erodibility parameters of coarse grained soils (sand, gravel). The EFA consists
of a closed circuit with a channel of rectangular cross-section. The water is driven
through the channel by a pump and the flow is regulated by a valve to maintain
a constant mean velocity in the range 0.1 m/s to 6 m/s. A piston, placed at the
bottom end of the channel, is used to push upward the tested soil sample. Thus the
soil sample is maintained in a flush position, 1 mm above the inner surface of the
channel. This height adjustment is proceeded by the experimenter, manually and
visually through a plexiglass window. The time required for this 1 mm sub-layer of
soil to be eroded is recorded and used to determine the erosion rate as follows:

ż =
h

t
(1.23)

where δh = 1 mm is the length of soil sample depth eroded during the time t. The
sample is then lifted again 1 mm above the channel bottom for another measurement.

By the end, an average erosion rate is calculated for a given channel mean flow
velocity v. The formulation in terms of the fluid shear stress τ at the channel bottom
is based on the following empirical expression:

τ =
1

8
fρfv

2 (1.24)

where f is the friction factor obtained from the Moody chart and ρf is the water
density (1, 000 kg/m3).
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To plot the erosion rate against different shear stress values (Fig. 1.12), the ex-
periment must be repeated for several velocity values. First, the critical velocity is
determined when the soil begins to erode and the critical shear stress of the soil can
be derived directly from this velocity. Next, starting from the critical velocity, the
velocity is gradually increased. Figure 1.12 represents a typical erosion curve, i.e.
erosion rate versus fluid shear stress, for two different soil samples, namely coarse
and fine grained.

Fig. 1.11. EFA: (a) Conceptual diagram; (b) Photograph of the test section. Figure
extracted from (Briaud et al., 2001).

Fig. 1.12. Erosion curve obtained from EFA for: (a) Coarse sand; (b) Mixture of a
very fine sand with silt (Brazos River). Figure extracted from (Briaud et al., 2001).
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1.5.3 Jet Erosion Test (JET)

The Jet Erosion Test (JET), sketched in Fig. 1.13, was first introduced by Hanson
and Cook (2004). It has the great advantage that it can be used either in laboratory
or in-situ and requires a rather low fluid load. The in-situ condition is particularly
interesting as it can preserve intact the original structure of the soil, contrarily to the
HET. The JET consist of applying, in a large submerged circular tank, a downward
vertical jet flow, impinging the upper surface of a soil sample and progressively
forming a crater. The scour depth H is measured over time and used to quantify
the erosion rate ε̇ = dH

dt
.

Fig. 1.13. Sketch of the jet erosion test (JET).

The impinging jet flow is naturally complex and numerous simplifications are nec-
essary to achieve some analytical derivations and propose an interpretation model.
To clarify, the flow can be decomposed into three main parts: free jet flow up a
certain distance from the nozzle exit, tangential flow at the bed surface and far
from the jet center-line, and re-circulation flow inside the crater once it is formed.
The assumptions are mostly made for estimating the flow characteristics at the bed
surface. Nonetheless, the free jet theory (Schlichting, 1960; Bickley, 1937) and the
experimental results about bottom shear stress on a smooth wall (Beltaos and Ra-
jaratnam, 1977, 1974; Hanson et al., 1990) can be applied to quantify the hydraulic
shear stress on the soil surface. Finally, the soil’s erodibility paraemeters τc and kd
can be deduced from adjustment of the experimental data.

Note that the JET interpretation model proposed by Hanson and Cook (2004)
is based on the estimation of the velocity on the bed surface U using the free jet
self-similar model

U(H) =

{
U0 if H < Hp

U0
Hp
H

if H > Hp

(1.25)

where Hp = Cdb is the potential core length, U0 =
√

2g∆H is the mean jet inlet
velocity, Cd is the diffusion coefficient (see more details in the next section).
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Furthermore, the fluid shear shear stress reads:

τ =
1

2
ρfCfU

2 (1.26)

with Cf the bed coefficient of friction. Typical values of Cf around 4 × 10−3 and
Cd = 6.2 are used for turbulent flow conditions (Albertson et al., 1950).
At the equilibrium (i.e. for a crater depth at which the interface shear stress is no

longer sufficient to erode the soil), the final depth He is used to calculate the critical
stress through the following equation:

τc = τ0

(
Hp

He

)2

(1.27)

where the 0-index refers to the initial condition. The evolution of the scour depth
dH/dt can be given from the surface erosion law, as follows:

ε̇ =
dH

dt
= kd

[
τ0

(
Hp

H

)2

− τc

]
(1.28)

A relevant non-dimensionalization, initially proposed by Hanson and Cook (1997),
provides, after time integration of Eq. 1.28, the following implicit expression for the
scour depth versus time t:

t = ter

[
0.5 ln

(
1 +H∗

1−H∗

)
−H∗ − 0.5 ln

(
1 +H∗i
1−H∗i

)
+H∗i

]
(1.29)

where ter = He/(kdτc), H∗ = H/He, and H∗i = Hi/Hp. Then, the erodibility pa-
rameters τc and kd are obtained from the crater depth evolution with this analytical
expression by minimization of the sum of squared errors between the measured data
and the analytical solution of Eq. 1.29.

Note that, as He may not be reached in field testing due to the high time required
for equilibrium state, the excess stress τc can be alternatively predetermined from
He by fitting the scour data versus time to an hyperbolic function for predicting
the equilibrium depth, as proposed by Blaisdell et al. (1981). Then, kd can be
determined by curve-fitting measured values of H versus t for Eq. 1.29. However,
this method proposed by Hanson and Cook (1997) does not always converge to a
reasonable solution compared to the previous one as pointed out by Daly et al.
(2013).

1.6 Focus on impinging jet hydrodynamics

This section is dedicated to the state of the art as regards free and impinging jets
flows, with a closer scope on laminar regime and planar geometry. This specific focus
is motivated by the greater complexity of impinging flows in comparison with usual
tangential flows as presented in previous sections. Indeed, the jet flow, whether
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laminar or turbulent, is first perfectly vertical and can be described by a self-similar
free jet model. Then, as it gets closer to the impinged wall, the flow progressively
deviates tangentially and also creates a stagnation point at the apex of the jet’s
center-line. It was pointed out that the type of impingement surface can significantly
change the flow behavior.

The empirical interpretation model for Jet Erosion Test (JET) briefly described
in the previous section is based on both free jet theory and experimental results
of impinging jets on flat smooth surfaces. Consequently, in the following, we will
first focus on free jet, specifically on self-similar models in the laminar regime since
our numerical model is laminar and bi-dimensional, as will be detailed later, and
next present some data from the literature about jet impingement on a smooth wall,
particularly as regards the shear stress distribution.

1.6.1 Self-similar free jet models

Free jets are widely observed in the nature and often used in experiments. They
can be described as a fluid flow issued from a source into the same fluid at rest or
in motion. Shear stress at the boundary between the jet flow and the ambient fluid
generate instabilities and mixing to a certain extent according to the flow regime,
from laminar to turbulent. The main characteristic of the free jet is based on the
postulate that the momentum remains constant. Under this assumption, the jet
flow continues to develop in the downstream direction, with a regular decrease of
the center-line velocity and a lateral widening of the flow area in order to compensate
the extra mass that enters the flow. The self-similar model of turbulent round free
jet was briefly presented in the previous section. Here we focus specifically on the
bi-dimensional laminar case, which will be studied in detail in chapter 3.

Ideal jets The governing equations of the self-similar jet model are based on the
boundary-layer approximation. This free jet boundary-layer solution was first pro-
vided by Schlichting (1960) to describe a round jet through a numerical integration,
while Bickley (1937) gave an analytical expression for the two-dimensional case. The
latter relies on the assumptions that (i) the jet is issued from a point source with an
infinite velocity, (ii) the momentum flux M remains constant, and (iii) the jet flow
is self-similar according to x, the downstream distance from the point source. For
the remainder, we introduce the index (˜) to denote the theoretical variables and
distinguish them from the simulated ones presented later in chapter 3.

The self-similarity of a free plane jet implies that the longitudinal velocity u of
the fluid at any point downstream of the nozzle can be described by:

ũ(x, y) = ũm(x)f(η) (1.30)

where y is the coordinate transverse to the jet’s axis and ũm is the fluid velocity
along the jet axis, also denoted center-line velocity, and corresponds to the maximal
velocity at the horizontal position x. The function f reads:

f(η) = sech2(η) =
1

cosh2(η)
(1.31)
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Fig. 1.14. Sketch of a plane free jet with a virtual origin λ located above the nozzle
exit.

with the self-similar variable η = y/∆̃(x) and ∆̃(x) the jet’s half-width at the
downstream distance x (see Fig. 1.14).
Defining b̃u as the value of y where ũ = 1

2
ũm, the relationship between ∆̃ and b̃u

is simply given by:
b̃u(x) = argch(

√
2)∆̃(x) (1.32)

The analytical solutions for the jet’s center-line velocity and half-width are pro-
vided by Bickley (1937) and read, respectively:

ũm(x) =

(
3M2

32ρ2
fνx

)1/3

(1.33)

∆̃(x) =

(
48ρfν

2x2

M

)1/3

(1.34)

In the present case of 2D jet, the constant momentum flux M is defined by:

M =

∫ +∞

−∞
ρf ũ

2dy (1.35)

If a 2D Poiseuille flow is assumed at nozzle inlet, the constant momentum flux reads
M = (6/5)ρfu

2
jb, after integration of the velocity profile over the injection section.
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From the mass flux conservation, the center-line velocity ũm can be expressed at
any downstream location:

ũm(x) =
3

10
uj

(
5Rej
x/b

)1/3

(1.36)

where uj = 2
3
U0 is the mean jet velocity, with U0 the maximum jet injection velocity

in the nozzle and Rej = ujb/ν the jet Reynolds number.
Similarly, the jet’s half-width reads:

∆̃(x) = 401/3bRe
−2/3
j

(x
b

)2/3

(1.37)

Adaptation to real jets Practically, whether in experiments or numerical simu-
lations, the flow of a real jet deviates from the previous analytical solution. Such a
jet is indeed very sensitive to the boundary conditions and, even for a same Reynolds
number, the flow may differ from an experimental apparatus to another. To repro-
duce identical results can be rather challenging.

The main observed difference between real and theoretical jets concerns the center-
line velocity um(x) which does not start decreasing right after issuing from the jet’s
nozzle exit but it remains almost constant up to a certain distance downstream.
This region, called the potential core, depends on the flow regime, i.e. laminar,
transitional, or turbulent. It is noteworthy that the potential core region can be
extended up to around 6b for turbulent flows according to the literature (Hanson
and Cook, 2004; Beltaos and Rajaratnam, 1977). This potential core may also
require a slight modification in Eq. 1.36 by introducing a coefficient in order to fit
with the experimental data.

Moreover, the analytical solution features a singular point at x = 0, due to the
assumption that the jet flow emerges from a narrow source of infinitesimal width
(Bickley, 1937; Schlichting, 1960), while a real jet flow is injected from a finite
size nozzle. Consequently, the previous analytical equations need to be modified by
introducing a virtual origin λ̃ (see Fig. 1.14) in order to fit the theoretical predictions
with both the experimental and simulated data. This virtual origin corresponds to
the source point from which the jet appears to emerge when observed sufficiently far
from the outlet and has been estimated theoretically in previous works (Andrade and
Tsien, 1937; Andrade, 1939; Revuelta et al., 2002). Revuelta et al. (2002) gave for
instance a numerical estimation of λ̃ for both plane and round jets as a function of
Rej and b. Thus, in relation with the flow studied later in chapter 3, the expression
of λ̃ for a laminar plane free jet with a Poiseuille injection reads:

λ̃ = 0.029Rejb (1.38)

In practice, the virtual origin λ̃ can be obtained by extrapolation to 0 of either
the jet width ∆(x) or the inverse center-line velocity [um(x)]−1. The corresponding
x-intercept gives the value of the virtual origin λ̃ and is used to translate the x-axis
from x to x + λ̃. This method will be used in forthcoming chapter 3. So finally,
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after introduction of the virtual origin, the center-line velocity (previous Eq. 1.36)
and the jet’s half-width (previous Eq. 1.37) become:

ũm(x) =
3

10
uj

(
5Rej

(x+ λ̃)/b

)1/3

(1.39)

∆̃(x) = 401/3bRe
−2/3
j

(
x+ λ̃

b

)2/3

(1.40)

1.6.2 Impinging jets

The impinging jet is encountered in numerous natural and industrial applications,
such as heat transfer (heating, cooling and drying) (Martin, 1977; Jambunathan
et al., 1992) or head-cut erosion (Bennett and Alonso, 2005). As previously pre-
sented, it is also used to quantify the resistance against erosion of cohesive soils
(Hanson and Cook, 2004). This particular jet flow configuration has been profusely
studied in the past both from theoretical and experimental perspectives (Beltaos
and Rajaratnam, 1973, 1974; Rajaratnam, 1976; Hanson et al., 1990; Looney and
Walsh, 1984; Poreh et al., 1964; Ghaneeizad et al., 2014; Phares et al., 2000). These
studies focused on the evolution of the flow characteristics at the impingement sur-
face, notably the velocity and the fluid shear stress distribution. Obviously, the
presence of an horizontal plane surface downstream of the jet exit affects drastically
the overall behavior of the jet, separating the flow into three main regions sketched
in Fig. 1.15. Within each region, a particular fluid flow can be distinguished (see
e.g. Beltaos and Rajaratnam (1973)): a free jet region (zone I) where the flow re-
mains self-similar; an impingement region (zone II) in which the impinged surface
increasingly affects the jet flow; a wall jet region (zone III), where the flow becomes
parallel to the impinged surface.

Fig. 1.15. Schematic of the three distinct flow regions for an axi-symmetric im-
pinging (after (Ghaneeizad et al., 2014; Beltaos and Rajaratnam, 1974))

In the impingement region (zone II), the presence of the horizontal wall makes
the center-line velocity decrease down to zero at the impingement (i.e. stagnation
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point) and the flow be diverted laterally. Note that the distance from the impinging
wall from which the center-line velocity starts to deviate from the free-jet analytical
prediction until its final stagnation at the wall is rather short and represents approx-
imately only 15-20% of the total distance H between the jet’s outlet and the wall
(Badr, 2014). Beltaos and Rajaratnam (1974) predicted that the axial velocity of
the plane jet near the wall (i.e. for 0.75 ≤ x

H
≤ 1) varies according to the following

law:
um(x)

uj
= 5.5

√
1− x

H

√
b

H
(1.41)

Beltaos and Rajaratnam (1974) also gave a Gaussian-type distribution of the shear
stress for turbulent round jets, which is given by:

τ

τm
= 0.18(

1− e−114σ2

σ
)− 9.43σe−114σ2

(1.42)

where σ = r/H is the dimensionless distance from the jet center-line axis and τm is
the maximal shear stress on the plane surface.

The transverse component of the velocity generally follows a pattern known as
wall jet. The velocity profile in the wall jet region (zone III) can for instance be
described by the following self-similarity equation proposed by Verhoff (1963) for a
turbulent wall jet:

v

vm
= 1.48η1/7 [1− erf(0.68η)] (1.43)

where η = x1/b1 is the self-similar variable, x1 is the vertical distance from the
impinged wall and b1 is the wall jet’s half-width which corresponds to the distance
x1 from the wall where v = vm

2
.

Similarly to the self-similar free jet model, the present study will be restricted
to the case of 2D laminar jet impingement, as detailed later in chapter 3. To our
knowledge, there is no theoretical or empirical expressions in the literature for these
specific conditions.

1.7 Numerical modeling of fluid flow induced ero-
sion

Numerical models are nowadays gaining growing relevance for the study of small
to large-scale geotechnical engineering applications and enable some difficulties of
the experimental situations, where for instance several quantities can be hardly
measurable, to be overcome. In the context of fluid flow induced erosion, using such
customized numerical simulations can indeed provide a relevant insight into local
parameters of the flow and accurate values of all the hydrodynamic quantities. This
may considerably improve the interpretation models developed to estimate the soils
erodibility parameters which, as shown previously, are based on several assumptions
and use empirical or semi-analytical relations, as for JET or HET, respectively. By
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now, there is no universal interpretation model capable of working for any erosion
device or other real-life situations.

The challenge for numerical simulations is to accurately describe the erosion phe-
nomena and, more generally, saturated porous media, which are highly coupled
fluid-solid interaction problems. Appropriate numerical models are required, capa-
ble of modeling many interacting effects: the motion of the fluid and solid phases as
well as the interface between both phases, the action of the fluid (i.e. hydrodynamic
forces) on a solid which possibly moves or even deforms under fluid pressure, the
effect of a moving solid on the ambient fluid, and the inter-particle interactions,
with possibly cohesive interactions as in the present modeling of cohesive granular
materials subject to erosion. Such a complex phenomenon obviously requires fully
coupled hydro-mechanical models, where fluid-particle and particle-particle inter-
actions are taken into account. We give in this section an overview of different
numerical approaches that are capable of adequately describing the physical mech-
anisms of fluid-particle interactions in immersed granular materials and for which
two main approaches can be distinguished.

First, the continuum approach, where the fluid and solid are considered as contin-
uum phases. Three models can be envisaged: mono-phasic, bi-phasic, and tri-phasic
approaches. The mono-phasic approach consists of solving directly the Navier-Stokes
equations for the fluid flow alone, possibly using several different turbulence models.
Erosion and solid phase are only accounted for through the water/soil interface, con-
sidered as a Lagrangian boundary. In the bi-phasic approach, two separate phases
are defined (solid and fluid) and the interface is considered as singular. The Navier-
Stokes equations can be applied to model the fluid phase while, for instance, the
Darcy-Brinkman equation is assumed for the solid phase. Finally, in the tri-phasic
approach, a third fluidized solid phase is introduced to model the solid-fluid inter-
face, for instance again through the Darcy-Brinkman equation. For each phase, the
corresponding mass balance equations are established, a source term is introduced
to account for particle erosion and transport between phases (Vardoulakis et al.,
1996).

Second, a combined multi-scale approach (i.e. Micro-Micro or Meso-Micro ap-
proaches) can be also envisaged, where the soil is modeled as a collection of discrete
particles described by Newton’s second law of motion (e.g. with the Discrete Element
Method, or DEM) while the fluid flow calculation is based on suitable continuum
models. Such fluid models include classical computational fluid dynamics method
(CFD), solving the Navier-Stokes or the Boltzmann equations (see Fig. 1.16), or
specially developed scheme as the Pore-scale Finite Volume (PFV) model (Cata-
lano, 2012). Given that the pertinence and validity of the erosion law are the main
concerns here, the latter multi-scale approach has several advantages for simulating
the erosion phenomena since, in this case, no erosion law needs to be postulated a
priori.
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(a) (b) (c)

Fig. 1.16. Description scale for different fluid-solid coupling approaches: (a) LBM-
DEM; (b) CFD-DEM; (c) PFV-DEM.

1.7.1 Continuum approaches of fluid flow induced erosion

1.7.1.1 Mono-phasic method

Mercier et al. (2014) adapted an Eulerian-Lagrangian approach to simulate the
JET and HET configurations for turbulent flows. The Navier-Stokes equations are
directly solved for the fluid flow, the water/soil interface being thus considered as
a Lagrangian boundary which is regularly updated using a suitable erosion law.
This approach provides good precision at the interface, especially in the turbulent
regime, but requires in return frequent re-meshing of the calculation domain which
ultimately leads to a higher computational time.

1.7.1.2 Bi-phasic method

In the two-phase or bi-phasic approach, both the fluid and the solid (i.e. the soil’s
particles) are considered as continuum phases. Note that each phase alone is bi-
phasic in the sense that the soil contains a given water content and the water flow
includes the eroded soil particles in suspension. Both phases are separated by a
singular interface. The mass conservation equations of fluid/particle mixture and the
eroded particle phase, as well as the balance equation of momentum of the mixture,
is applied in order to model both phases. Closure laws are required to model the
fluid/solid interface, usually obtained by semi-empirical correlations. The classical
surface erosion law, i.e. the linear excess shear-stress law, can be introduced to
describe the movement of the fluid/cohesive soil interface (Lachouette et al., 2008).
Contrarily to the mono-phasic approach proposed by Mercier et al. (2014) which
requires frequent and costly remeshing, the bi-phasic model uses a fixed mesh but
the determination of the flow variables at the interface remains however difficult.

It is noteworthy that Lachouette et al. (2008) used a bi-phasic method for mod-
eling the HET of cohesive soils in a laminar flow regime. These authors found that
the quantity of eroded mass in the fluid phase is sufficiently small to be considered
as negligible. This is very likely due to an obvious separation of the velocity scales
as the flow velocity is several orders of magnitude greater than the erosion velocity
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prescribed by the erosion law. A mono-phase model (i.e. Eulerian approach with a
fixed mesh) for both solid and fluid phases was therefore developed by the authors,
where the movement of the interface, due to progressive change in the velocity field,
is tracked on the fixed mesh using the Level-Set method proposed by (Stanley and
James A., 1988).

1.7.1.3 Triphasic method

A numerical modeling of soil’s erosion was first proposed by Vardoulakis et al. (1996).
In addition to fluid and solid phases, these authors introduced a third phase, denoted
fluidized solid, for which the Darcy-Brinkman equations are implemented. The
erosion of the solid phase is described by introducing a source term in the mass
conservation equations, which ensures relevant mass exchanges between the soil and
fluid phases.

Later, Papamichos and Vardoulakis (2005) proposed another soil’s erosion model
in the specific context of sand production, a major process in oil industry. The
erosion of a granular soil by a laminar flow is modeled by use of the same three-
phase concept (Vardoulakis et al., 1996). The overall behavior of the solid matrix
(which is erodible, fluid-saturated, and stressed by a fluid flow) is described by mass
conservation equations for the three phases. The Darcy law models the poro-elastic
system (solid-fluid system) at the equilibrium while a constitutive law for the porous
solid medium allows taking into account the rate of eroded mass. The problem is
then solved numerically by a Finite element method.

Although this approach is rather relevant for describing the erosion of a saturated
granular medium, it is too restrictive to be applied to the erosion of cohesive soils.
The erosional mechanisms involved are indeed much more complex in the case of
cohesive soils than in the case of grains independent of each other (Mercier, 2013).

Bonelli and Marot (2011) adapted this approach to model the suffusion (one of
the internal erosion processes as presented earlier in this chapter), which can be
described, at the macroscopic scale, as a source term in the mass balance equations.
These authors introduced the previous surface erosion law with a threshold (i.e.
the so-called linear excess shear stress law) to take into account eroded mass under
the assumption that suffusion, at the micro-scale, can be viewed as a clay/water
interface erosion.

1.7.2 Micro/Meso-micro approaches of fluid flow induced ero-
sion

1.7.2.1 DNS/CFD-DEM

CFD-DEM is a computational approach used to model fluid-particle systems. In this
method, the particle behavior is modeled by the Discrete Element Method (DEM)
that will be extensively detailed in the next chapter. For its part, the fluid flow is
computed by solving the Navier-Stokes equations in general CFD (Computational
Fluid Dynamics) calculated.
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In this method, the Navier-Stokes equations can be volume averaged on a coarse
regular grid whose mesh size is mesoscopic, that is larger than the diameter of
the individual particles (i.e. a fluid cell usually holds many particles). The solid
properties (e.g. porosity, velocity, etc.) are averaged on each cell and introduced
as field variables for the continuum equations (i.e. volume averaged Navier-Stokes
equations). Note that an empirical correlation for drag and lift forces is required.
Among the studies that have been carried out using this approach, we can cite
Kuang et al. (2013) who presented a 3D two-way coupling CFD-DEM model of a
turbulent round air jet impinging on a granular bed, focusing mainly on the crater
formation induced by the air jet.

The CFD-DEM method can be alternatively used to simulate fully resolved fluid-
particle problem at the micro-scale for both fluid and particles, meaning that the
fluid cell sizes are now smaller than the particle sizes. This method is often referred
to DNS-DEM (for Direct Numerical Simulation) and shares some features of LBM-
DEM (for Lattice Boltzmann Method) that will be presented hereafter. This method
has the great advantage that the hydrodynamic forces acting on the particles are
directly calculated by integration of the fluid stresses on the surfaces of the particles
without any empirical correlation for drag and lift forces. However, compared to
CFD-DEM at meso-scale, it is extremely expensive in term of computational time
and resources (number of CPUs, memory consummations) due to the finer mesh
needed around the surface of the particles, in order to correctly integrate the fluid
stresses, and the frequent re-meshing of the grid to adapt to the new positions of
the particles.

Nonetheless, neither of these methods are capable to simulate large deformations
because the mesh endures huge distortions. It is for these reasons that particle-
based methods, with or without mesh, such as the LBM, the PFV (Pore-scale Finite
Volume), and the SPH (Smoothed Particles Hydrodynamics) methods, are preferred
for solving small scale problems. All of them can be coupled with other methods to
solve fluid-particle interaction problems, especially to the DEM as in the following
examples for the LBM-DEM (Cook et al., 2004), the SPH-DEM (Potapov et al.,
2001), or the PFV-DEM (Catalano, 2012). These approaches are particularly suited
for fluid-solid interface problems with account for large deformations.

1.7.2.2 PFV-DEM

The PFV-DEM coupling is a numerical method for the behavior of dense saturated
granular media (Catalano, 2012; Chareyre et al., 2012; Catalano et al., 2014). The
method consists of discretizing the pore domain (i.e. complementary to the granular
packing) into a connected pore network by a regular Delaunay triangulation and
their dual Voronoi graphs as shown in Fig. 1.17. This allows decomposing the pore
volume into tetrahedra (in 3D), whereas the centers of the Voronoi cells represent
the fluid paths between adjacent pores. In each pore, a linear system is solved
combining the continuity equations and the conductance equation, the latter being
obtained under the assumption of a linear relation between fluxes and inter-pore
gradient, as is the case for a laminar pipe flow. The hydrodynamic forces exerted
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on each particle derives from the pressure field through a momentum conservation
equation.

Fig. 1.17. Adjacent tetrahedra in the regular triangulation and dual Voronoi net-
work, in 2D (a,b) and in 3D (c) (Catalano, 2012).

Several applications of the PFV-DEM method can be cited as regards the simu-
lation of soil’s erosion. First, Tejada et al. (2016) used a fully coupled DEM-PFV
approach in order to investigate the transport of passive particles in porous media.
Next, the PFV-DEM method was adapted for describing suffusion, with a focus
on the internal instability of the granular media, respectively through a one-way
coupling (Aboul Hosn et al., 2018) and a two-way coupling (Wautier et al., 2017).

Despite the advantages offered by this method in decreasing the computational
cost by reducing the fluid’s degrees of freedom, it remains mainly restricted to sim-
ulate internal Stokes (or viscous) fluid flow within compact granular materials. The
method loses indeed accuracy whenever large pores exist in the system since it is
based on pores discretization. However, quite recently, localized fluidization of grains
was consistently modeled (Montellà et al., 2016).

1.7.2.3 LBM-DEM

In recent years, the Lattice Boltzmann Method (LBM) has become one of the most
commonly used Computational fluid dynamics (CFD) methods for solving fluid-solid
coupling problems. Moreover, when the solid phase is discrete (i.e. solid particles),
the LBM was successfully coupled with the discrete DEM approach to model the
behavior of granular materials subject to a great variety of fluid flows. Unlike tradi-
tional CFD methods, the LBM consists in solving the Boltzmann equation, instead
of the Navier-Stokes equations, to simulate the fluid behavior. This method will
be given full details in the next chapter. In a few words, the fluid domain in the
LBM is partitioned by a fixed regular grid where fictitious fluid particles are repre-
sented by probability distribution functions. The movement of these fluid particles
is discretized in a limited number of discrete velocity vectors for fluid particle pop-
ulations. The evolution of the fluid flow is characterized by two main steps (Sukop
and Thorne Jr, 2006): a collision step, defined as a process of relaxation towards
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an equilibrium state , and a streaming (or propagation) step, where information are
exchanged between adjacent cells in terms of momentum and energy.

The major strengths of the LBM lie in its implementation simplicity of the al-
gorithm, its great versatility in dealing with complex boundaries (whether fixed or
moving) present in the flow, and also its ability to simulate flows at high Reynolds
number. However, owing that the method is based on fluctuations in fluid density,
or equivalently fluid pressure since both are related via a state law, simulating in-
compressible fluid flows imposes the fluid velocity to be kept very small compared
to the lattice velocity, in order to reduce the compressibility effect (i.e. small Mach
number). Moreover. This method also requires large memory resources and high
computational cost, especially when dealing with 3D problems. The method is thus
usually limited to small scale applications. However, the LBM-DEM is easily paral-
lelizable and we propose in forthcoming section 2.5 a possible GPU parallelization
technique for LBM-DEM.

As regards implementation of the LBM-DEM in modeling geotechnical problems,
numerous works can be cited on several practical issues as for instance porous flows
(Han and Cundall, 2013), consolidation (Boutt et al., 2007), fluidization of soils
(Cui et al., 2014; Ngoma et al., 2018), immersed granular avalanches (Mutabaruka
et al., 2014), or hydraulic fracture (Boutt et al., 2007). Concerning more specifically
the surface erosion of cohesive soils, the LBM was coupled with the DEM for a 2D
modeling of the HET test in the laminar flow regime (Lominé et al., 2013) as well
as a micro-mechanical simulation of the 2D laminar impinging jet (Cuéllar et al.,
2015, 2017). The latter constitutes the basis for the present study where extended
scope and model are proposed.

Given the great advantages offered by the LBM to simulate fluid flows with com-
plex solid boundaries and by the LBM-DEM coupling to model the erosion phe-
nomenon at the grain scale (owing that a precise description of fluid-particle inter-
actions is provided), this approach was adopted in the present work and a far more
detailed description of both methods and of the coupling technique is given in next
Chapter 2.
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2.1 Introduction

As advocated in the previous chapter, the motivation behind the choice of LBM-
DEM to model the erosion phenomena of cohesive materials by a fluid flow are that
the fluid-particle coupling can be described at the scale of the particles (Micro-scale).
Moreover, it should be emphasized the possibility offered by the DEM to introduce
cohesive-adhesive contact laws, and the simplicity of LBM to model fluid behavior
even in presence of complex moving boundaries.

We provide in this chapter a detailed presentation of DEM for describing the
behavior of the granular materials with the possibility to include a solid cohesive
bond model. Then, LBM is displayed for describing the fluid phase. Following
that, the coupling method between LBM-DEM is explained, to account properly
for fluid-particle interaction, as well as the GPU parallelization technique for our
LBM-DEM code. Validation of the LBM-DEM coupling in the GPU version of the
code is finally implemented.

2.2 Discrete Element Method (DEM)

In the past years, the Discrete Element Method (DEM) has known great and reg-
ularly increasing popularity in terms of granular material modelings. This method
was introduced by Cundall and Strack (1979) in the 80’s, derived from Molecular
Dynamic (DM) algorithms. The DEM consists of describing the whole behavior
of solid particles by integrating Newton’s equations of motion for translation and
rotation via explicit numerical schemes. The interactions between particles are con-
trolled by contact models. Note that, in the Molecular Dynamic (DM) approach, a
slight penetration between particles is allowed in order to calculate the interaction
force. This interpenetration at the contact point can be viewed as a local deforma-
tion. On this basis, the contact forces can be determined from simple models such
as spring/dash-pot/mass systems.

The numerical integration of Newton’s equations for translation and rotation ac-
curately describes the evolution of each particle (positions, velocities, accelerations),
defining its instantaneous motion (translation and rotation) in the whole system:

mi
d2xi
dt2

= Fi, and Ii
dωi
dt

= Ti (2.1)

where mi and Ii are the mass and the moment of inertia, xi and ωi are the position
and the angular velocity of the grain i. Fi is the total force acting on the particle i
and reads:

Fi =
∑
j 6=i

Fij + F exti (2.2)

with Fij the interaction force applied by grain j on grain i, F exti the resulting
external force (e.g., gravity mig or hydraulic forces in the presence of fluid). The
interaction force at the contact between a pair of particles can be decomposed into
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two components, normal and tangential, as follows:

F ij = Fnn+ Ftt (2.3)

where n and t are normal and tangential unit vectors of the local origin (at the
contact), and can be calculated as:

n =
xi − xj
‖xi − xj‖

(2.4)

t = z ∧ n (2.5)

with xj and xi the position vectors of the grain i and j, respectively.
The contact forces (normal and tangential) plus the corresponding torque are

calculated as soon as two particles overlap, which means that δn ≤ 0, where the
overlap δn is calculated as follows:

δn = ‖xi − xj‖ − ri − rj (2.6)

x

y

xi
xj

δn

ri

rj

Fig. 2.1. Sketch of two particles at contact with an overlap δn. The particle radii
are ri and rj, respectively.

2.2.1 Frictional contact law

The normal force Fn is calculated based on a visco-elastic linear model (Fig. 2.2a):

fn = −knδn − γnvn, Fn =

{
0, fn ≤ 0

fn, fn > 0
(2.7)

where vn = (vi−vj) ·n is the relative velocity in normal direction, kn is the normal
stiffness and γn is the normal viscous damping.
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The tangential force at contact Ft is computed using a visco-elastic linear model
as well, except that the tangential "shear" force is limited by the Coulomb’s friction
law |ft| ≤ µsFn (Fig. 2.2b):

ft = −ktδt − γt
dδt
dt
, Ft =

{
sgn(Ft)µFn, |ft| ≥ µFn

ft, |ft| < µFn
(2.8)

where kt is the tangential stiffness, µs is the friction coefficient, γt is the tangential
viscous damping, δt is the cumulative relative shear displacement at the contact
given by:

dδt
dt

= vt = (vi − vj) · t− (riwi + rjwj)× n (2.9)

where vt is the relative tangential velocity.
The torque due to friction force is calculated by:

Ti = −(rin)× (Ftt) (2.10)

(a) Linear contact model (b) Coulomb friction model

Fig. 2.2. Normal and friction contact laws.

Rolling resistance
In reality, it is well known that if a sphere moves by rolling on a horizontal plate
with an initial translation velocity, it will stop after a certain distance due to the
gradual loss in its kinetic energy. However, this it is not the case in the simula-
tion for perfectly spherical (3D) or circular (2D) particles, which will continue to
move indefinitely since the friction force determined by Coulomb’s law is null. In
order to take energy dissipation during relative rotation into consideration, which is
important for dynamic flow conditions, and provide stability in packing particulate
system, which is important in static system (Ai et al., 2011), a rolling resistance at
the contact is often introduced (Zhou et al., 2001; Ai et al., 2011) as follows:
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Troll = − vr
|vr|

µrRefffn (2.11)

with vr = ωi − ωj the rolling velocity (ωi and ωj being the angular velocities of
grain i and j, respectively), Reff = (rirj)/(ri + rj) the corrected radius, and µr the
rolling coefficient.

2.2.2 Additional cohesive contact laws

The DEM rheology (i.e. contact model) introduced above only reproduces the me-
chanics of frictional contacts. However, there are several rheological models able
to introduce cohesion in the material, such as contact cohesion models (e.g. JKR
(Johnson et al., 1971) or DMT (Derjaguin et al., 1994)), capillary bridges (Urso
et al., 2002) or solid bonds (Delenne et al., 2004). A detailed description of these
models can be found in (Radjai and Dubois, 2010).

For the specific case of solid bonds, Delenne et al. (2004) have developed a 2D
model based on elastic rheology associated with three degrees of freedom: normal
translation δn (along normal unit vector n), tangential translation δt (along tangen-
tial unit vector t), and rotation angle γ as shown in Figure 2.3. δn is the same as in
the frictional case (in Eq. 2.6), the other two degrees of freedom can be expressed
as follows, with the notations and quantities defined on the sketch of Fig 2.3:

δt = I iIj · t (2.12)

γ = θi − θj (2.13)

where I i,j are the reference point of a cohesive solid bond of particle i and j at the
initial configuration (initial overlap). θi,j are the rotation angles of particle i and j.
The forces associated with these degrees of freedom are the normal force Fn,

the shear force Ft and the bending force M , respectively. These three forces can
be applied at the same time at the interaction point and can be calculated only
for small displacements and rotation via a linear elastic rheology. The traction-
compression, shear, and bending forces are indeed associated by normal, shear, and
moment stiffness: kn,b, kt,b and kγ,b. The solid bond law can be written as: Fn

Ft
M

 = −

 kn,b 0 0
0 kt,b 0
0 0 kγ,b

 δn
δt
γ

 (2.14)

To evaluate these forces, a list of cohesive bonds is initially created at t = 0, based
on the initial normal overlap δn < 0 between particles. The list holds all the cohesive
bond information. After exposure to external loads, some cohesive bonds may break.
The failure mechanism is based on a parabolic yield surface (ξu):

ξu =

(
Fn
Cn

)
+

(
Ft
Ct

)2

+

(
M

Mb

)2

− 1 (2.15)



Chapter 2. Numerical methods 41

Ii

j

i n

t

j

Ij
δn

δt

Ii

Ij

γi

(a)

(b) (c) (d)

x

y

Ii

j

Ij

i

Ii

i

j

Fig. 2.3. Degrees of freedom of the cohesive solid bond at the local scale: (a) Initial
state; (b) Normal displacement; (c) Tangential displacement; (d) Rotation (Delenne
et al., 2004).

Initially, the solid bond is intact and follows the elastic rheology. However, the
rupture only occurs when the bond solicitation reaches or exceeds the yield surface
(i.e. when ξu ≥ 0) and the contact becomes subsequently purely frictional.

It can be seen from the yield surface that the failure mechanism is a combination
of the three mechanisms: traction, shearing, and bending. Also, in compression
(δn < 0), no failure occurs and the normal stiffness is taken as in the purely frictional
model kn,b = kn (i.e. no cohesion).

It is worth emphasizing that this model was calibrated experimentally by Delenne
et al. (2004) using cylindrical rollers through a set of comparative numerical and
experimental tests (e.g. tension, compression, shearing, and moment, as well as
combined tests). Ultimately, the conducted parametric study allowed to fix the
threshold parameter values in normal, shear, and bending solicitations: Cn, Ct and
Mb, respectively. Moreover, these three thresholds are found to depend on a single
parameter C through Mohr-Coulomb failure criterion (Delenne et al., 2004). This
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parameter is adapted here to account for particle diameters and reads:

C = Cn = 2× Ct =
Mb

0.25× dmean
(2.16)

Fig. 2.4. Rheological model of solid contacts (left) and yield surface of cohesive
bonds in the space of interaction forces (right). Figure redrawn from (Delenne et al.,
2004).

This description holds many features as regards failure mechanisms and can model
complex behaviors, such as plasticity and damage at the local scale, through its abil-
ity to handle crack formation and propagation inside a cohesive material (Delenne
et al., 2004). Also, this model has the possibility to account for a large variety of
material behaviors, from brittle clustering materials (low Mb ratios) to "diffusive
de-cohesion" (remote debonding, with low Cs ratios) (Philippe et al., 2017).
The solid bond model may be considered as a “static” cohesion approach due to

its lack of transience beyond the binary state-disjunctive, where only intact and
fully broken bond states are possible, with sudden state transitions (Benseghier
et al., 2019). However, this model can be enriched to take into account a gradual
evolution, or damage, of the cohesive bond. Among the possibilities, we selected
a time-dependent damage model (Silvani et al., 2009), that introduces a damage
variable to ensure a progressive evolution of the cohesive bonds over time.

2.2.3 Enrichment with a time-dependent damage model

All the simulations that will be presented in chapter 3 are based on the standard
solid bond model detailed in the previous section. However, as will be demonstrated
in chapter 4, the addition of a time-dependent damage model was proved convenient
and useful to study erosion in moderate shear stress conditions.

This time-dependent damage model allows to degrade the yield surface ξu over
time to an ultimate interior damage surface ξ0 as shown in Figure 2.5. The displace-
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ment of both surfaces is ensured by a damage parameter d, whose time evolution is
given by:

ḋ =
〈ξ0(Fn, Ft,M, d)〉

ηC0

(2.17)

where 〈.〉 denotes the MacCauley brackets (i.e. 〈x〉 = x if x ≥ 0; 〈x〉 = 0 if x < 0),
η is a characteristic damage time, m > 0 is a softening parameter, and C0 is the
initial damage threshold.

Based on Figure 2.5 which illustrates the time-dependent damage model extended
to the cohesion model of Delenne et al. (2004) in the space of normal and shear forces
(the third moment space is not presented in the figure for clarity), three main regions
can be identified:

1 (ξ0 ≤ 0 and ḋ = 0) corresponds to a cohesive bond with no damage evolution.

2 (0 < ξ0 and ξu < 0) corresponds to a cohesive bond with a time-dependent
damage evolution.

3 (0 ≤ ξu) corresponds to an instantaneous break of the cohesive bond.

Fig. 2.5. Time-dependent damage model in the space of normal and shear forces.
The third dimension (i.e. rolling moment) has not been shown for the sake of
simplicity.

Silvani et al. (2009) studied the influence of the damage parameters (η, m, C0,
and Cn) on the evolution of the damage for a system composed of two bonded
particles under simple tension test as well as 2D rigid bonded particulate system
under oedometric compression test. The main finding for two bonded particles with
one parameter being fixed, and the other being varied are as follow:
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The characteristic time parameter η is inversely proportional to the evolution rate
of damage (i.e. the higher η the longer the breakage will be delayed). Moreover, η
is the relevant non-dimensional parameter when the other damage parameters (m,
C0, and Cn) are fixed. On this basis, this parameter will be varied therefore in our
study, more specifically in Chapter 4.

2.2.4 Integration scheme

Once all the contact forces and the external forces (e.g. hydraulic forces) are deter-
mined at a time t, integration algorithms are required in order to compute the new
kinematic variables of the grain i at time t + ∆t. The velocity Verlet integration
algorithm (Swope et al., 1982) is used in this study for its implementation simplicity
and its numerical stability.

The velocity Verlet integration algorithm for the case of translation and rotation
reads:

xi(t+ dt) = xi(t) + vi(t)dt+
1

2
ai(t)dt

2 (2.18)

θi(t+ dt) = θi(t) + ωi(t)dt+
1

2
ω̇i(t)dt

2 (2.19)

The translation and angular velocities are evaluated at an intermediate time step
t+ 1

2
dt:

vi(t+
1

2
dt) = vi(t) +

1

2
ai(t) (2.20)

ωi(t+
1

2
dt) = ωi(t) +

1

2
ω̇i(t) (2.21)

Afterward, the accelerations are obtained, based on Newton’s principle in Eq. 2.1.

ai(t+ dt) =
1

mi

F i (2.22)

ω̇i(t+ dt) =
1

Ii
T i (2.23)

Finally, the velocities at t+ dt are corrected as follows:

vi(t+ dt) = vi(t+
1

2
dt) +

1

2
a(t+ dt)dt (2.24)

ωi(t+ dt) = ωi(t+
1

2
dt) +

1

2
ω̇i(t+ dt)dt (2.25)
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2.2.5 Numerical stability

In order to obtain a stable simulation and correctly integrate the equations of motion
(Eq. 2.1), the time step ∆tDEM is chosen below a critical value ∆tcr which represents
the contact duration (half of the oscillation period) of two overlapping particles with
a linear elastic model at the equilibrium. The differential equation of an oscillating
mass around the point of contact is:

mδ̈n(t) + knδn(t) = 0 (2.26)
and the analytical solution of the normal oscillation is given by:

δn(t) = δmaxn sin(

√
kn
m

(t− tcr)) (2.27)

The contact duration corresponds to the time difference ∆tcr = π
√
m/kn between

two successive cancellations of the normal distance. Note that this is only an esti-
mation of the time step, since many contacts can be involved at the same time. In
practice, the time step should be chosen smaller than ∆tcr, thus a time step factor λt
is introduced to reduce the time step chosen with λt around 0.1. Additionally, ∆tcr
is calculated based on the smallest mass in the system mmin as ∆tcr = π

√
mmin/kn.

The DEM time step will finally be:

∆tDEM = λt∆tcr = λtπ
√
mmin/kn (2.28)

In the case of a system with a viscous damping, the critical damping coefficient
will be: γcr = 2

√
mkn. Note that only the under-damped regime is considered here,

when 0 ≤ γn < γcr. Generally, we introduce a coefficient λe ∈ [0, 1[ which control the
damping ratio compared to the critical damping, this coefficient can be calculated
can be determined from the coefficient of restitution e as (Ting and Corkum, 1992)

λe = − ln(e)√
π2 + ln(e)2

(2.29)

Thus the viscous damping coefficient γn will be:

γn = λeγcr = −
2ln(e)

√
knmeff√

π2 + ln(e)2
(2.30)

where the effective mass meff = mimj/(mi + mj) and the coefficient of restitution
e are chosen between 0 and 1. Note that the normal stiffness kn is taken sufficiently
high to avoid excessive overlap which could affect the overall behavior of the granular
assembly.

2.3 Lattice Boltzmann Method (LBM)

2.3.1 A brief history of the LBM

Before describing the Lattice Boltzmann Method, it is worth introducing the his-
torical background and the origin of the method. The LBM was first derived from
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the Lattice Gas Automata (LGA) method, also called lattice gas model and Boltz-
mann’s kinetic theory. The LGA is a simplified method to simulate fluid flows, the
fluid being described by a set of particles located on a regular lattice (hexagonal and
square lattices for FHP and HPP schemes, respectively). During a time step, the
fluid particles can solely move and propagate to the nearest nodes, with respect to
the lattice shape. Within these conditions, special collision rules are implemented in
a given site so that mass and momentum conservation is satisfied. Two main lattice
and collision rules were proposed to simulate a given fluid flow. First, a simple LGA
model with square lattice (i.e. HPP scheme) was introduced by Hardy et al. (1973).
Although, the model was able to ensure mass and momentum conservation, it suffers
in retrieving the symmetry of the Navier-Stokes equation. Then, Frisch et al. (1986)
introduced the FHP model with an hexagonal lattice to overcome the drawback of
HPP.

The motion of particles can be described as a Boolean function ni(x, t) that
describes, at time t, the occupation of a particle at a given site x (a particle is
whether present or absent):

ni(x+ ci∆t, t+ ∆t) = ni(x, t) + Ωi(x, t), i = 0, ...α, (2.31)

where ci is the discrete velocity of the particle, ∆t the time step, and Ωi(x, t) a
collision operator that includes all possible collisions. α stands for all the available
directions (e.g. four for HPP and six for FHP). Equation 2.31 is mainly solved in
two steps.

1/ Collision step:
n
′

i(x, t) = ni(x, t) + Ωi(x, t) (2.32)

2/ Streaming step:
n
′

i(x+ ci∆t, t+ ∆t) = n
′

i(x, t) (2.33)

The macroscopic fluid variables, such as density and velocity, can be derived from
the averages of the occupation functions fi = 〈ni〉:

ρ =
∑
i

fi, ρu =
∑

cifi (2.34)

It can be seen from the LGA equations that the implementation of the method
is straightforward and, since the basic equation rely on Boolean operations, the
round-off errors can be eliminated. Despite the advantages offered by the LGA, the
method suffers however dramatically from statistical noise due to the use of Boolean
variables.

Based on these limitations, the Lattice Boltzmann Equation (LBE) was first in-
troduced by McNamara and Zanetti (1988) in order to reduce the statistical noise
found in the LGA by replacing the Boolean variables ni by the distribution func-
tions fi, which takes a real-valued number between 0 and 1. Despite the effective
improvement, the collision operator used was still nonlinear. Afterward, Higuera
and Jiménez (1989) proposed a collision operator linearized around its equilibrium
and written in matrix form. However, the equilibrium distribution function was
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still derived from the LGA and not from kinetic theory. Finally, a simplified linear
collision operator was proposed by Chen et al. (1991); Koelman (1991); Qian et al.
(1992), based on the BGK model from kinetic theory. Therefore, the LBE gets
completely independent of the LGA and depends only on the Boltzmann equation.
Since then, the LBM has become a stand-alone method and has made significant
progress in the modeling of complex fluid dynamic problems.

2.3.2 Derivation of the LBE from the Boltzmann equation

We have shown so far that the LBM is no longer based on the LGA, but on the
discrete form of the Boltzmann equation. The Boltzmann equation without external
force can be written as follows:

∂f

∂t
+ c.∇xf = Ω(f) (2.35)

where f = f(x, c, t) represents the particle distribution function at time t, position
x and with a velocity c. Ω(f) stands for the collision operator. By introducing
the BGK approximation (Bhatnagar et al., 1954), which is based on the assumption
that the particle collisions can be described as a relaxation of the particles towards
an equilibrium state with a given relaxation time τ0, the collision operator reads:

Ω(f) = − 1

τ0

(f − feq) (2.36)

where feq is the Maxwell-Boltzmann distribution function at equilibrium.
From a numerical point of view, it is difficult to discretize the Boltzmann equa-

tion (Eq. 2.35) since a triple discretization is necessary (i.e. in space, velocity, and
time). Therefore, certain restrictions are needed. First, the velocity space c is dis-
cretized into a finite set of velocities ci (in a direction i). Hence, the discrete-velocity
distribution function can be derived from the distribution function by introducing
a weight parameter wi associated with the velocity ci as: fi(x, t) = wif(x, ci, t).
Secondly, simple lattice structures (or lattice velocity models) are introduced with
space dimension d and q velocity directions, generally denoted as DdQq models
(Qian et al., 1992). The models D3Q15, D3Q19 and D3Q27 are the most used for
3D simulation (see Fig. 2.6). For 2D simulations, the classical D2Q9 model is the
most common and will be used in this study.

By discretization of the Boltzmann equation (Eq. 2.35) we can write the Lattice
Boltzmann equation as follows:

fi(x+ ci∆t, t+ ∆t) = fi(x, t) + Ωi(x, t) (2.37)

There are many LBM collision models. The simplest one is the Bhatnagar-Gross-
Krook (BGK) operator already presented in Eq 2.36 and written as follows on a
lattice:

ΩBGK
i (x, t) = −1

τ
(fi(x, t)− f eqi (x, t)) (2.38)

where τ = τ0/∆t.
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The equilibrium distribution function f eqα is given as:

f eqα (ρ,u) = ρwα

[
1 +

u.cα
c2
s

+
(u.cα)2

2c4
s

− u.u
2c2
s

]
(2.39)

where cs = c/
√

3 is the speed of sound in the lattice system while c = ∆x
∆t

is the
characteristic lattice speed. The relation between the relaxation time τ and the
kinematic viscosity ν of the fluid reads:

τ =
ν

∆tc2
s

+
1

2
(2.40)

The density ρ and velocity u of the fluid, can be derived from the distribution
function as follows:

ρ =
∑
α

fα (2.41)

u =
1

ρ

∑
α

fαcα (2.42)

The fluid pressure is directly given by the following state equation:

p = c2
sρ (2.43)

As shown in Figure 2.7, in the D2Q9 model referring to two-dimensional space and
nine velocity vectors cα, the discrete velocities are defined as:

cα


(0, 0) α = 0

(1, 0), (0, 1), (−1, 0), (0,−1) α = 1, 2, 3, 4

(1, 1), (−1, 1), (−1,−1), (1,−1) α = 5, 6, 7, 8

(2.44)

where the weights are w0 = 4/9, wα = 1/9 for ||cα|| = 1, and wα = 1/36 for
||cα|| =

√
2 .

Eq. 2.37 with the BGK collision operator is classically solved in two main steps:
1/ Collision step:

f outα (x, t) = fα(x, t) + ΩBGK
α (2.45)

2/ Streaming step:
fα(x+ cα∆t, t+ ∆t) = f outα (x, t) (2.46)

where f outα represents the post-collision distribution function.
Note that the LB equation (Eq. 2.37) can retrieve the incompressible Navier-

Stokes equation when the Mach number is small compared to unity (Ma << 1).
The Mach number is defined as the ratio of the maximum velocity to the lattice
speed c = (∆x)/(∆t).

Notwithstanding the simplicity of the BGK collision model and its rapidness
for calculations, it suffers from well-known stability issues, particularly for high
Reynolds number or, equivalently, when τ approaches 0.5. However, these defi-
ciencies can be overcome using more complicated collision models such as two or
multi-relaxation collision models.
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Fig. 2.6. 3D lattice models.

Fig. 2.7. (a) Uniform structured grid. (b) D2Q9 lattice model.

2.3.3 More sophisticated collision operators

2.3.3.1 Two Relaxation Time (TRT)

The two-relaxation-time (TRT) collision operator was proposed by Ginzburg et al.
(2008). The probability distribution function is now decomposed into positive and
negative parts:

fα = f+
α + f−α f eqα = f eq,+α + f eq,−α

f+
α = fα+fᾱ

2
f eq,+α = feqα +feqᾱ

2

f−α = fα−fᾱ
2

f eq,−α = feqα −feqᾱ
2

where ᾱ stands for the opposite direction of the index α. The TRT collision operator
is therefore calculated as:

ΩTRT
α = −ω+

(
f+
α (x, t)− f eq,+α (x, t)

)
− ω−

(
f−α (x, t)− f eq,−α (x, t)

)
(2.47)



50 2.3. Lattice Boltzmann Method (LBM)

Fig. 2.8. Streaming step.

where ω+ = 1/τ and ω− is a constant to be tuned in order to find a stable condition
for a given simulation. However, it is often calculated based on the so-called "magic"
parameter Λ = (1/ω+ − 1/2)(1/ω− − 1/2). It was found indeed that the magic
parameter Λ = 1/4 provides the most stable simulations (Ginzburg et al., 2010). It
therefore will be used in the present work.

The LBE with the TRT collision model reads:

fα(x+ cα∆t, t+ ∆t) = fα(x, t)−ω+
(
f+
α (x, t)− feq,+α (x, t)

)
−ω−

(
f−α (x, t)− feq,−α (x, t)

)
(2.48)

2.3.3.2 Multi-Relaxation Time (MRT)

The idea of this model is that the moments m of the distribution functions can
be relaxed with different relaxation times. In contrast to the BGK and the TRT
operators, the collision step is carried out in the moment space instead of using the
distribution functions directly. The link between the distribution function vector
f = [f0, f1, . . . , f8]T and their moment vector m = [ρ, e, ε, jx, qx, jy, qy, Pxx, Pxy]

T is
ensured by the invertible transformation matrix M as:

m = Mf (2.49)

Note that the elements of the moment vector m consist of conserved and non-



Chapter 2. Numerical methods 51

conserved quantities. Eq. 2.49 can be defined in matrix form as:

ρ
e
ε
jx
qx
jy
qy
Pxx
Pxy


=



1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1





f0

f1

f2

f3

f4

f5

f6

f7

f8


(2.50)

where ρ is the fluid density, e is the energy, ε is related to energy square, jx = ρux
and jy = ρuy are the x and y components of momentum j, Pxx and Pxy are the
diagonal and off-diagonal components of the stress tensor, qx and qy are the x and
y components of the energy flux.

The multi-relaxation-time lattice Boltzmann equation can be written as:

fα(x+ cα∆t, t+ ∆t) = fα(x, t)−M−1S [mα(x, t)−meq
α (x, t)] (2.51)

where S is the diagonal relaxation matrix S = diag [s0, s1, s2, s4, s4, s5, s6, s7, s8].
For the D2Q9 model, the coefficients s1,2,4 are constants, to be chosen in the range
[0, 2] for stability reasons, and s7 = s8 = 1/τ , where τ is the relaxation time as in
the BGK scheme (Eq. 2.40). It should also be mentioned that s0,3,5 have no effect
on the calculation because these relaxation values are directly related to collision
invariants ρ and ρu. Practically, they are set equal to zero.
Note that, in this context, the BGK and the TRT collision models are particular

cases of the MRT scheme: all the coefficients on the diagonal of S are identical
(i.e, s0, s1, . . . , s8 = 1/τ) for BGK; all even-order moments (i.e, ρ, ε, qx, qy, Pxy) are
relaxed with ω+ and odd moments (i.e, e, jx, jy, Pxx) with ω− for TRT.

After Lallemand and Luo (2000), the following relaxation rates are used in the
rest of this manuscript: s1 = 1.63; s2 = 1.14; s4 = s6 = 1.92.

Finally, the equilibrium moment vector meq is defined as:

meq =



ρ
−2ρ+ 3(j2

x + j2
y)/ρ

ρ− 3(j2
x + j2

y)/ρ
jx
−jx
jy
−jy

(j2
x − j2

y)/ρ
jxjy/ρ


(2.52)

2.3.4 Nondimensionalization (Working with units)

For the sake of simplicity, the key implementation element of the LBM is to work
with Lattice units instead of using directly the real physical units. For example, the
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time and space steps in lattice units are equal to unity ∆̄t = ∆̄x = 1. Objectively,
it can be ambiguous to work with lattice units. However, some rules can be applied
to convert from lattice to physical units and vice versa. These rules are summarized
in Table 2.1.

Variables Physical Lattice Relationship
Density ρ ρ̄ = 1 ρ = ρ0ρ̄
Space stap ∆x ∆̄x = 1 -
Time step ∆t ∆̄t = 1 -
Lattice speed c = ∆x

∆t
c̄ = 1 -

Coordinates x x̄ x = x̄∆x
Time t t̄ t = t̄∆t
Velocity u ū u = cū
Kinematic viscosity ν ν̄ ν = ν̄c∆x
Force F F̄ F = ρc2∆xF̄
Torque T T̄ T = ρc2∆x2T̄

Table 2.1. Table illustrating the conversion from physical to dimensionless (i.e.
lattice) quantities.

2.3.5 Boundary conditions

In the LBM, the pressure or velocity boundary conditions can not be directly im-
posed, as they derive from the particle distribution functions fα. Thus, the unknown
distribution functions must be defined to set the desired values of the hydrodynamic
quantities at the boundary nodes.

Non-slip boundary conditions (Bounce-back) The so-called bounce-back scheme
imposes the non-slip boundary condition between the fluid and a stationary solid
wall. The wall is supposed to be located between solid and fluid nodes, exactly in
the middle. During the streaming step, the wall boundary nodes will reflect back
any incoming distribution of neighboring fluid nodes into the opposite direction.
Called half-way bounce-back, this scheme has proven to give a second order numer-
ical accuracy (Zou and He, 1997). The explicit form of the half-way bounce-back,
as illustrated in Fig. 2.9, is: f7 = f3, f8 = f4, f1 = f5. The general numerical form
reads:

fᾱ(xb, t+ ∆t) = f outα (xb, t) (2.53)

Pressure and velocity boundary conditions Pressure and velocity boundary
conditions can be set using the method proposed by Zou and He (1997), which is
based on the assumption that the non-equilibrium part of a distribution function
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f6

f7 f4 f8

f5f2

Boundary wall
Δx/2

xs

xb

Fig. 2.9. Bounce-back boundary condition at a bottom wall, where the boundary
wall is located in the middle between solid (solid circles) and fluid nodes (open
circles). The grey shaded domain is the wall region and the dashed line corresponds
to its boundary while xb and xs denote boundary fluid and solid nodes, respectively.
The dashed arrows represent the reflected distribution.

normal to the boundary is supposed to be constant. To find the unknown distribu-
tion functions at the boundary, a system of equations must be solved.

To explain the method, we consider, for example, a pressure BC at the top of
a domain as illustrated in figure 2.10. Therefore, the density needs to be specified

(ρ = ρ0 = P0/c
2
s) while the velocity reads u =

[
0
v

]
. From Eq. 2.41 and 2.42, the

following relations can be obtained, respectively:

f4 + f7 + f8 = ρ0 − (f0 + f1 + f2 + f3 + f5 + f6) (2.54)

f4 + f7 + f8 = ρ0v − (f2 + f5 + f6) (2.55)

0 = f1 + f5 + f8 − (f6 + f3 + f7) (2.56)

To solve this system of 3 equations with 4 unknowns (f4, f7, f8, and v), an additional
equation is needed. After Zou and He (1997), the gap from equilibrium of normal
functions (f2 and f4) at the boundary is supposed constant:

f2 − f eq2 = f4 − f eq4 (2.57)

Finally, by solving the system, one gets:

v = 1− (f0 + f1 + f3) + 2(f2 + f5 + f6)

ρ0

f4 = f2 −
2

3
ρ0v

f7 = f5 +
1

2
(f1 − f3)− 1

6
ρv

f8 = f6 −
1

2
(f1 − f3)− 1

6
ρv
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In this context, it is possible, by simply changing the control variable (i.e. u is
imposed and ρ is unknown), to impose velocity boundary conditions of Neumann
type (flux Boundary), with the presumption that the velocity component parallel
to the boundary is always zero. The unknown quantities: ρ, f4, f7, and f8 can be
derived after arranging the equations as below:

ρ =
(f0 + f1 + f3) + 2(f2 + f5 + f6)

1 + v0

f4 = f2 −
2

3
ρ0v

f7 = f5 +
1

2
(f1 − f3)− 1

6
ρv

f8 = f6 −
1

2
(f1 − f3)− 1

6
ρv

Despite the fact that the Zou & He boundary condition was found to be second-
order accurate, the method lacks in stability at high Reynolds numbers (Latt et al.,
2008). However, here again, many alternative methods are available to efficiently
impose pressure or velocity. Two methods are detailed below and were used in this
study, namely regularized and equilibrium methods.

Regularized method The regularized method is an alternative method for
imposing pressure or velocity boundary conditions, which was proposed by Latt
et al. (2008) for enhancing stability at the boundary without affecting the accuracy.
The particle populations on the boundary are split into two parts, equilibrium and
non-equilibrium, and their values are replaced by the following equations:

fα = f eqα (ρ,u) +
wα
2c4
s

Qα : Π(1) for α = 0, .., 8 (2.58)

where wα are the lattice weights and Π(1) is the reconstructed first order stress tensor
from the known off-equilibrium parts of the particle population fneqα = fα−f eqα (ρ,u):

Π(1) =
8∑
i=0

cαcαf
neq
α (2.59)

The unknown part of fneqα will take the value of the known parts in opposite direction
(fneqα = fneqopp(α)) while the tensor Qα is defined as: Qα = cαcα − c2

sI.
On the D2Q9 model and in the inlet boundary located at the top of the domain, as

shown in Fig. 2.10, the Π(1) can be reconstructed from the known non-equilibrium
populations:

Π(1)
xx = fneq6 + fneq2 + 2(fneq7 + fneq1 )

Π(1)
yy = 2(fneq1 + fneq8 + fneq7 )

Π(1)
xy = 2(fneq7 − fneq1 ) (2.60)
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f1f3

f4

f5f6

f7 f8

f2

Fig. 2.10. Inlet boundary located at a top boundary. The dashed vectors represent
the unknown populations.

Equilibrium boundary conditions It is possible to impose either pressure
or vVelocity directly by reconstructing all the particle populations (known and un-
knowns) by their equilibrium parts as follows:

fα = f eqα (ρ,u) for α = 0, .., 8 (2.61)

However, an extrapolation between the boundary nodes and the nearby fluid nodes is
required to obtain additional information at the boundary. Namely, we extrapolate
velocity when imposing pressure and vice versa. The equilibrium boundary was
found to be less precise than both the Zou & He method (Zou and He, 1997) and
the regularized method, as demonstrated in Figure 3.3b, but far much easier to
implement.

2.3.5.1 Wall shear stress

The wall shear stress exerted by the fluid on a given surface can be calculated using
the deviatoric shear stress tensor τxy, which, for a two-dimensional incompressible
flow, is given by:

τxy = ρν(∂xuy + ∂yux) (2.62)

To calculate the wall shear stress, a linear extrapolation is used to evaluate the
velocity gradient at the wall. For the case of horizontal wall (located at y = 0) and
if duy

dx
is supposed negligible, the wall shear stress will be:

τxy,w = ρν
dux
dy

∣∣∣∣
y=0

(2.63)

In the LBM, the shear stress tensor can be calculated from the non-equilibrium part
of the distribution functions as proposed by Mei et al. (2002):

τxy = (1− 1

2τ
)
∑
α

fneqα (x, t) (cα,xcα,y) (2.64)
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where fneqα = fα− f eqα while cα,x and cα,y are the x and y components of the velocity
vector α, respectively.

Since, in our case, the wall surface boundary is not located on a fluid node, we
linearly extrapolate the shear stress to the wall boundary as follows :

τxy,w = τ y=1
xy + ∆(τ y=1

xy − τ y=2
xy ) (2.65)

where y = 1 and y = 2 are the locations, in lattice units, of the two nearest neighbors
fluid nodes in the normal direction from the wall. ∆ is the relative distance from
the fluid node to the wall (see Fig. 2.11). Since the half-way bounce-back scheme is
used, ∆ is expected to be equal to 0.5.

Mei et al. (2002) found that using the non-equilibrium part of the distribution
functions to calculate the shear stress (Eq. 2.64) is more accurate than using directly
the velocity gradient.

ΔWall

y=0

y=1

y=2

Fig. 2.11. Illustration of the location of the wall

2.4 Fluid-Particle interaction

The main advantage of the LBM is its simplicity and robustness when it comes
to fluid-solid interactions, with simple but also complex shapes, while keeping the
numerical errors small with reasonable computational costs.

As presented previously, the LBM is based on a regular static grid in which the
nodes are regarded as fluid nodes. Furthermore, the boundary conditions presented
so far are either located exactly at the boundary node, or in the middle at the
adjacent cell, while the boundaries are rather stationary. On this basis, several
questions can be raised: How does the LBM deal with arbitrary shapes? What if the
boundaries move? How to couple the LBM with other different solvers?. However,
to answer these questions, several techniques and algorithms were developed in the
past years such as the Bouzidi scheme and the Partially Saturated Method (PSM) to
apply non-slip condition at moving and/or arbitrary-shaped solid boundary. What
they share in common is the idea to map the solid domain (i.e. the DEM particles)
into the fluid domain (i.e. the LBM nodes) by changing the state of the lattice
nodes: solid node if it is occupied by a particle and, oppositely, fluid node.
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2.4.1 Momentum exchange method with the Bouzidi scheme

The non-slip condition can be applied to fluid-solid interactions via the bounce-
back scheme in the restricted case of circular particles in our study. In addition,
for moving particles (or solids), the bounce-back scheme can be improved by some
adjustments proposed by Lallemand and Luo (2003). However, this condition con-
siders that the solid boundary is located in the middle between solid and fluid nodes.
Therefore, the exact boundary is represented by a staircase approximation shape. To
solve this issue, Bouzidi et al. (2001) has proposed a modified bounce-back scheme
to retrieve roughly the exact curvature of the boundary through linear interpolation,
involving post-collision distribution functions and using two-fluid nodes xf and xff ,
as shown in Fig.2.12. The Bouzidi scheme considers two interpolation situations

xc
U

ω

xw
xs

xf

xff

qΔx

Fluid node, Boundary Fluid node, Boundary solid node

Solid node, Fresh fluid node

Fig. 2.12. Representation of a moving particle where the dash line stands for the
previous position of the particle. As a consequence, fresh fluid nodes appear as
depicted by the open squares.

(Eq. 2.66), based on the relative distance q =
|xf − xw|
|xf − xx|

between the boundary fluid

node xf and the solid intersection point xw:{
fᾱ(xf , t+ ∆t) = 2qf outα (xf , t) + (1− 2q)f outα (xff , t) + 2wαρw

cᾱuw
c2s

, q < 1/2

fᾱ(xf , t+ ∆t) = 1
2q
f outα (xf , t) + (2q−1)

2q
f outᾱ (xf , t) + 1

q
wαρw

cᾱuw
c2s

, q ≥ 1/2

(2.66)
where cᾱ is the opposite direction of cα and uw is the wall velocity at the intersection
point xw. This velocity uw is computed from the particle velocity U , the angular
velocity ω, and the center of mass xc:

uw = U + ω × (xw − xc) (2.67)
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One of the issues associated with this scheme deals with the situation where the
solid boundary is in motion. As a consequence, some of the solid nodes may convert
to fluid nodes and the unknown distribution functions must therefore be recovered.
Several techniques were proposed by Lallemand and Luo (2003) to address this prob-
lem. In this study, the unknown distribution functions of the fresh fluid nodes are
simply approximated using the equilibrium distribution function f eqα (ρ,uw), com-
puted using the averaged fluid density in the system, that fluctuates around 1, and
the wall velocity at the specified node position just before it converts into a fluid
node (Mansouri et al., 2017).

The total forces acting on a given particle by the fluid are calculated by summation
of the momentum-exchange between the solid boundary nodes and the fluid nodes,
based on the momentum exchange algorithm (Ladd, 1994):

F =
∑
allxf

∑
α

[
f outα (xf , t) + fᾱ(xf , t+ ∆t)

]
cα (2.68)

The total torque reads:

T =
∑
allxf

∑
α

(xw − xc)×
[
f outα (xf , t) + fᾱ(xf , t+ ∆t)

]
cα (2.69)

2.4.2 Partially saturated method (PSM)

Another possible method, called the Partially Saturated Method (PSM) and pro-
posed by Noble and Torczynski (1998), is adapted in this study for applying the
non-slip boundary condition to moving solid boundary nodes. It is based on the
local solid fraction ε of each lattice cell that can be fluid (ε = 0), solid (ε = 1),
or mixed (i.e. partially saturated with 0 < ε < 1), as shown in Figure 2.13. Since
there is no interpolation used in this method and no explicit object mapping, the
parallelization is straightforward and makes the method best candidate to be used
in GPU (CUDA) as will be presented in forthcoming section 2.5. The PSM is based
on the following modified BGK equation:

fα(x+ cα∆t, t+ ∆t) = fα(x, t) + (1−B)ΩBGK
α +BΩs

α (2.70)

where Ωs
α is the additional collision operator for solid nodes that depends on the

solid fraction ε and reads:

Ωs
α = (fᾱ(x, t)− f eqᾱ (ρ,u))− (fα(x, t)− f eqα (ρ,us)) (2.71)

where u and us = up + ω × (x − xc) are the local fluid velocity and the particle
velocity at a given location x.

Ωs
α = f eqα (ρ,us)− fα(x, t) + (1− 1

τ
)(fα(x, t)− f eqα (ρ,u)) (2.72)

Noble and Torczynski (1998) proposed two possibilities to calculate the local
weighting parameter B as a function of the local solid fraction ε:

B(ε, τ) =
ε(x, t)(τ − 1/2)

[1− ε(x, t)] + (τ − 1/2)
(2.73)
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Fig. 2.13. Sketch of the Partial Saturation Method (PSM), redrawn from Wang
et al. (2017).

B(ε, τ) = ε(x, t) (2.74)

In the case of many particles, with s solid intersects with a given cell, the lattice
solid fraction will be ε(x, t) =

∑
s εs(x, t), thus B(ε, τ) =

∑
sBs(εs, τ).

Solid fraction calculation: As pointed out above, the PSM is highly dependent
on the evolution of the local solid fraction at each time step and for each cell. This
part can be very expensive (computationally speaking) for complex-shaped particles.
Fortunately, we are dealing here with circular particles where the intersection with
the square cell and the particle can be calculated analytically. Practically, the solid
fraction ε can be estimated in several ways. The simplest one, that will be used
here, consists in dividing the lattice cell into several small cells (sub-cells) and then
count the sub-cells that are solid thus the solid fraction will be the total number of
solid sub-cells divided by the number of sub-cells in the lattice cell n2

sub (in 2D) (see
Fig. 2.14).

Fluid-solid interaction force The force and torque acting on the boundary can
be computed as proposed by Cook et al. (2004):

F (t) =
∆x2

∆t

∑
xn

B(xn)
∑
α

Ωs
α(xn)cα (2.75)

T (t) =
∆x2

∆t

∑
xn

B(xn)(xn − xc)×
∑
α

Ωs
α(xn)cα (2.76)
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Fig. 2.14. (a) Distribution of the solid fraction ε represented by gray-scale values,
from white (ε = 0, fluid) to black (ε = 1, solid cells). The red dashed lines represent
two particles boundaries. (b) Zoom on a partially saturated cell where the solid
fraction ε is calculated via a cell decomposition method with 5 sub-slices (Yang
et al., 2018).

where xn stand for all the lattice nodes which are totally, or partially, solid (i.e. all
nodes with ε > 0) and xc is the location of the center of mass of the particle.

Further improvement As already mentioned, the BGK collision model has some
deficiencies and since the PSM method is based on the BGK model, we propose here
to use the TRT collision model instead. Thus Equation 2.70 becomes:

fα(x+ cα∆t, t+ ∆t) = fα(x, t) + (1−B)ΩTRT
α +BΩs

α (2.77)

As with the Lattice Boltzmann equation with the BGK scheme (Eq. 2.37), Eq. 2.70,
or equivalently Eq. 2.77, is solved in two main steps as follows: Collision step:

f outα (x, t) = fα(x, t) + (1−B)ΩBGK;TRT
α +BΩs

α (2.78)

Streaming step:
fα(x+ cα∆t, t+ ∆t) = f outα (x, t) (2.79)

2.4.3 Coupling approach for LBM-DEM

The LBM-DEM coupling technique used in this study is fully-resolved (or four-way
coupling), meaning that we take into account both the particle-fluid and the particle-
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particle interactions. As regards the effect of particles on fluid, it is modeled by
applying non-slip boundary conditions whether by the PSM or the Bouzidi scheme.
Therefore, the resulting total force and torque (Eqs. 2.68 and 2.69 for the Bouzidi
scheme or Eqs. 2.75 and 2.76 for the PSM scheme) are introduced in the DEM
calculation using Eq. 2.1 after conversion to physical units (see Table 2.1).

It should be noted that the buoyancy effect is also introduced by simply multi-
plying the gravitational acceleration by (1− ρ/ρg).

2.4.3.1 Space and time discretization

The LBM-DEM coupling imposes certain restrictions on both sides (fluid and solid),
such as the choice of space and time steps in order to maintain a stable simulation.
For the solid part, only the time step can be imposed. For the LBM calculation, the
situation is much complicated since space and time discretizations of fluid depend
on the physical phenomena to be modeled. As we have shown, the time and space
steps and the relaxation time τ for the LBM are directly related to the physical
kinematic viscosity ν (Eq. 2.40) while the space discretization is straightforwardly
linked to the particle diameter d/∆x. For the case of poly-disperse particles, d is
chosen as the smallest diameter of the particles dmin. The space resolution should
be fixed high enough to minimize the computational errors in the hydraulic force
calculation. The resolution ratio dmin/∆x is set at 10 in order to obtain an accurate
force evolution on a given particle as recommended by Yu et al. (2003). This ratio
sets the discretization parameter ∆x.

To correctly simulate an incompressible flow, it is required that the computational
Mach numberMa = |umax| /cs should be kept small compared to unity, which means
that the maximum velocity in the system umax should be smaller enough compared
to the sound speed cs. Usually the limit value is set toMa ≤ 0.1 after the literature.
However, once the lattice velocity c = ∆x/∆t is correctly fixed the Mach number
remains below 0.1.

From these values of the fluid viscosity ν and of the discretization parameter ∆x
from the known solid (particles) domain, ∆t is finally derived.

2.4.3.2 Sub-cycling

As we have shown above, the LBM and the DEM have different time steps and,
despite the restrictions in the fluid part, the DEM time step is often smaller than
the LBM time step. However, both approaches can always be combined with the in-
troduction of the sub-cycle concept for the DEM calculation (Han et al., 2007). This
concept allows to perform more than one DEM cycle before going to the next LBM
step. The number of the DEM cycles can be introduced by an integer parameter
np, which can be calculated as follows:

np =
∆tLBM
∆tDEM

(2.80)

In practice, the parameter λt introduced in section 2.2.5 is slightly modified for np
to be an integer. In the present study, np has a maximal value of 2.
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Fig. 2.15. Diagram illustrating the sub-cycling in the LBM-DEM time loop.

2.4.3.3 Hydraulic radius

A 2D densely packed disk sample under gravity has a very low porosity and prevents
the fluid to pass through pores, giving rise to a zero permeability. To address this
issue, a hydraulic radius rh for the grains is introduced in the LBM calculation
while the reference radius r is kept unchanged in the DEM part. This idea was first
introduced by Boutt et al. (2007) and Cui et al. (2012) who both recommended a
ratio rh/r equal to 0.8.
It is worth noting that this concept not only solves this problem, allowing a

finite non-zero permeability in the system but makes it possible also to correct the
interpolation of the post-collision distribution between fluid nodes in the Bouzidi
scheme and avoid high solid fraction calculations in the PSM scheme, when two
particles overlap.

Fluid	�low

Hydraulic	radius,	rh

Particle	radius,	r

Fluid	gap

Fig. 2.16. Illustration of the hydraulic radius solution.
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2.5 Gpu parallelization

In the previous sections, we have described the two different numerical methods, one
for simulating discrete particles (DEM) and the other for fluid flow (LBM), and the
coupling techniques between both methods. We have also shown that both methods
are explicit in time and easily "parallelizable".

The applications of the LBM-DEM are still restricted to small-scales academic
studies. This is partly due to the extremely high computational cost involved for
the discrete simulations of soils at a representative scale (e.g. millions of soil grains
interacting with a structure) in combination with the necessary high refinement
degree of the fluid mesh in order to fully resolve the flow around the solid particles
(around 10 to 30 fluid divisions per grain diameter depending on the application,
see (Tran et al., 2017)).

However, this limitation on modeling large scale engineering problems is being
gradually overcome by means of the high-performance parallel computation (HPC),
which addresses these issues by domain decomposition, efficient distribution of data
among the multiple processors, synchronization protocols, and local communication
between neighboring processors/domains. There are several parallelization tech-
niques that can be used such as OpenMP (Open Multi-Processing), which is based
on shared memory architecture, and Message Passing Interface (MPI) which allows
the program to run in several non-shared memory systems (CPU clusters). Regard-
less of the difference of both libraries, both are CPU based libraries (i.e. designed to
allow the code to run in multiple CPU processors). Due to the slow increase in the
CPU performance over the past years compared to the GPU performance, which
increases dramatically, and based on the advantages offered by the GPUs, we have
chosen the GPU parallelization technique.

Before diving into the parallelization chapter, it is worth clarifying the history of
the numerical code that will be used in this study. First, the serial LBM-DEM code
was developed during the PhD thesis work of J. Ngoma (2011-2014) (Ngoma, 2015;
Ngoma et al., 2018), written in C/C++ programming language. Next, P. Cuéllar
(Cuéllar et al., 2015, 2017) enriched the code with the cohesion and time-dependent
damage models during a one year post-doc position (2014-2015).

Concerning the new development made during this thesis, the Partially saturated
method (PSM) was first added into the code before the parallelization of the CPU
version of the code. The programming environment used is CUDA (Compute Uni-
fied Device Architecture) which allows NVIDIA GPUs to execute programs written
in C, C++, FORTRAN, and other programming languages. A typical CUDA code
comprises a set of kernels 1. The kernel execution is divided first into grid of blocks
(see Fig. 2.17). A block consists of a group of threads, each thread within a block
executes instantaneously the kernel in parallel. A unique ID is assigned to each
block and thread, thus the data in the GPU memory is easily accessible using block
and thread indices. Also, the data is stored in both CPU memory and GPU global
memory to allow transfer. Furthermore, CUDA programming is based on the idea

1Functions to be executed in parallel on the GPU
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that the main parts of the code that are parallelizable, or segments that are suscep-
tible to be computationally expensive (e.g. the collision step in LBM or collision
detection phase in DEM, etc), should be rewritten in separate kernels. Thus, in
this work, the main parts of the initial (serial) code are rewritten in CUDA in order
to exploit the full potential of the GPU: both DEM and LBM parts, as well as the
coupling technique, are rewritten in separate kernels. The implementation technique
will be explained in the following sections and the validity of the implementation is
briefly discussed in terms of classical benchmark cases, namely the drag coefficient
of a settling particle as well as the so-called DKT phenomenon (draft-kiss-tumble
trajectories) of a pair of settling grains.

Fig. 2.17. Blocks and threads in CUDA.

2.5.1 Parallelization of the DEM part

In this section, we explain the main parallelization technique of the DEM part of the
code. The method can be summarized in the time integration loop shown in Figure
2.18. The method can be divided into three main parts. First, the positions and
velocities of the particles are updated based on known forces. Then the contacts are
detected and the interaction forces computed. Note that this part is very expensive
in terms of computational time. However, several techniques can be used to speed-
up the calculation. Two different algorithms for contact detection are explained in
the following section. The last part deals with the calculation of acceleration and
subsequent velocity correction. In part 1 and 3 the parallelization is straightforward
since each thread will be assigned to one particle. The second part requires more
complex parallelization techniques.

2.5.1.1 Data structure

The CUDA programming requires that the data should be declared in memory in
a coalesced manner. Therefore, we adapted our data structure from an Array Of
Structure (AOS) to a Structure Of Array (SOA) to allow efficient memory access.
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Fig. 2.18. Illustration of the DEM algorithm. The collision detection part is showed
inside dashed rectangle.

In other words, all state variables (ID, positions, velocities, accelerations, etc) are
stored in arrays of size Np

2 and organized in a common structure as shown in Figure
2.19.

blockIdx.x=0

threadIdx.x

0 1 2 3 4 5 6 7 8 9 10 11

blockIdx.x=1

12 13 14 15 16Id

Particle

Id = blockIdx.x * blockDim.x + threadIdx.x

Extra block

Np

x

.......

.......

.......

.......

Fig. 2.19. Illustration of particle structure: Decomposition into blocks and threads
inside a CUDA kernel and data load from global memory.

2Np is the number of particles
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2.5.1.2 Collision Detection

Collision detection is a fundamental part of the DEM calculation and also the most
expensive one, since the DEM requires to evaluate the distance between particles
at each time step, or frequently, to check whether they overlap or not. In the case
of overlapping particles, the distance will be used later to calculate the interaction
forces. A naive inefficient approach, by evaluating all the distances between a par-
ticle i and all Np − 1 others, results in a great complexity of O(N2

p ). Therefore,
an efficient algorithm for neighboring search is needed to shorten this very expen-
sive process. Fortunately, there are several approaches to be used, based on the
restriction of the calculations to only a small number of pairs, listed hereinafter.

Verlet lists
The Verlet lists algorithm, as shown in Fig. 2.20(a), consists of storing for each
particle i a list of neighbors that are situated in a distance dv. The collisions are
performed on the stored pairs if there is an overlap. The neighboring list should
be updated frequently. This algorithm can reduce the computational costs up to
O(Np(Np−1)

2
) iterations and is much adapted for serial calculation in (CPU).

Linked-Cell list
The Linked-Cell list presented in Fig. 2.20(b) consists of dividing the computational
domain into cells (sub-domains). The particles IDs are assigned to the cells based
on their center point. The Linked-Cell list is much adapted for GPUs and it is
implemented here.

The Linked-Cell list algorithm can be summarized as follows. First, we go through
the particles inside the collision detection kernel then we get the cell ID that holds
the particle. The collision process will be performed only on the neighboring cells
(3 × 3 = 9) in total and for the particles that have smaller ID number (i < j),
since the contact forces between two overlapping particles are equal in magnitude
and opposite in direction (Fi = −Fj) 3. This algorithm reduces the calculation up
to O(Np) times. This method is much adapted to equal sized particles and for a
low polydispersity. However, for broad particle size distributions, an adaptive cell
division is required in function of the grain sizes.

For a low polydispersity, as is the case in the present study, the cells discretization
should be at least the size of the largest particle in the population. The grid resolu-
tion is set at ∆xDEM = 2.1× rmax and each cell will contain probably a maximum
number of particles set at 5, which is explicitly defined.
As in the Verlet list, the algorithm needs to be updated frequently, thus it is

scheduled every 100 time steps. Note that this value is set optionally, for the reason
that particles do not move that much inside the fluid and to avoid rebuilding the
grid at each time step and ultimately reducing the computational cost.

3It was observed that doing half of the collision we do not gain in overall performance as it
seems. This is maybe because of the atomic operation used to increment forces.
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Fig. 2.20. Alternative choices for neighboring search algorithms: (a) Verlet list;
(b) Linked-cell list, where the computational domain is divided into an additional
cell-grid for the DEM particles with a cell-size of 2.1 · rmax possible interactions for
a given particle i are only explored for the particles contained in the adjacent (grey)
cells

2.5.1.3 Mechanical behaviour of the contacts

After detecting the collision, a device (GPU) functions will be launched depending
on the two particles state whether cohesive "collideCohparticles" or dry "collideDry-
particles". For the cohesive case, the cohesive bond state will be checked first to
determine if it is active or not. Checking a cohesive bond state requires a special
data structure, which will be explained in the following subsection.

Cohesive bond data structure
The same procedure can be used for the identification of cohesive bonds in the case of
bonded granular sample, where the particular bond data (i.e. bond state, strength,
orientation, etc..) can be stored in the lower part of a symmetric matrix structure
with both dimensions equal to the number of particles. For further efficiency, the
storage of this big sparse bond matrix can be done using a Compressed Sparse Col-
umn format (CSC). The idea is to decompose the sparse matrix into three lists: the
first "indices" contains the row indices corresponding to the non-zero values (neigh-
boring bonded particles), the second "data" contains the non-zero values (cohesive
bond information), and the third "indptr" stores the indices where each column
starts. The format used is first explained by the following 11x11 matrix and the
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corresponding schematic as illustrated in Figs. 2.21 and Fig. 2.22. For symmetry
reasons, only the lower part of the sparse cohesive matrix is used to construct the
three lists (indices, data, and indptr) based on the initial overlap, before entering
into the time loop.
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Fig. 2.21. Schematic illustrating an assembly of particles. The red line represents
the cohesive bonds and the bonds are labelled from C1 to C8.

Fig. 2.22. (a) Illustration of the symmetric sparse bond matrix generated based on
the cohesion bonds as shown in Fig. 2.21. (b) Corresponding CSC matrix structure.

The following listing shows the function that gets the ID of the cohesive bond from
two pairs of particles i and j. If there is a cohesive link between the two particles,
the function will return an integer > 0 otherwise −1 will be returned. The function
can be used either in the host (CPU) or in the device (GPU).
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Listing 2.1. Function that get a bond Id
__host__ __device__ in t GetIdbond ( i n t i , i n t j , i n t ∗ indptr , i n t ∗ id ) {

i n t idbond=−1;
i n t nbcurgra in=indptr [ i +1]− i ndptr [ i ] ; //Number o f cohe s i v e bonds l i nked to i
f o r ( i n t k=0; k<nbcurgra in ; k++) {

i f ( nbcurgrain >0){
i f ( id [ indptr [ i ]+k]==j ){

idbond=k+indptr [ i ] ;
break ;

}
}

}
return idbond ;

}

2.5.2 Parallelization of the LBM part

As in the DEM part, the LBM steps are also divided into a set of kernels, which
are then executed by the threads. The implementation is designed so that each
thread operates at one location in the fluid domain (i.e. one thread for each lattice
node) Obrecht et al. (2013). In contrast to the DEM, the two-dimensional LBM
domain will be divided into a grid of two-dimensional CUDA blocks, each block
is divided into arrays of threads running the same tasks in parallel. The parallel
threads inside the blocks are fixed at (16× 16). Note that this value is optional and
it could be (Nthreads,X × Nthreads,Y < 1024) for most of the current graphic cards.
Moreover, there is an optimal value where the peak performance can be reached and
it is recommended to use a multiple of the warp size value (32 threads).

The total number of blocks are controlled by the LBM domain, Nx and Ny re-
spectively in the x and y directions. Extra blocks (or buffers) are added in case the
LBM domain would be larger than the GPU grid at the end of the domain in x and
y directions. A return condition is set when the thread is in the extra buffer (layer).
Doing so, we avoid access to non declared (undesired) memory location. Fig. 2.23
shows a two-dimensional example of threads and blocks. The division of threads
and blocks can be in one, two or three dimensions4.
The probability distribution functions fα(x, t) are then stored as a single array in

the GPU global memory and it can be addressed as:

f [i+ j ×Nx+ α×Nx×Ny] (2.81)

where i and j are the x and y location of the LBM grid, respectively. These locations
can be addressed from the GPU grid as shown in Eq. 2.82. Two copies of f are used,
one for post collision fout and the other for after streaming step fin. Using two copies,
we ensure that the data dependency is not violated.

i = blockIdx.x× blockDim.x+ threadIdx.x
j = blockIdx.y × blockDim.y + threadIdx.y

(2.82)

42D blocks and threads for the LBM, and 1D for the DEM.
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Threads

(threadIdx.x, threadIdx.y)
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Fig. 2.23. Part of the computation domain with the decomposition into blocks and
threads in CUDA. Each grid intersection represents a fluid (LBM) node and also
one thread.

The collision and streaming steps with the PSM scheme is summarized in Algo-
rithm 1.

2.5.3 LBM-DEM coupling

As explained in the previous chapter, the coupling between LBM and DEM can be
ensured in this context either with the PSM or the Bouzidi schemes. However, both
were implemented in the GPU version of the code and they need to be specified
optionally at the beginning, i.e. before compiling the code. The main GPU imple-
mentation of the LBM-DEM code is summarized in Flowchart 2.24 for the Partially
Saturated Method (PSM) and the Bouzidi scheme. Note that in the Bouzidi scheme,
the collision and streaming steps are separated into two kernels since synchronization
is needed in order to perform the bounce-back scheme, the latter being implemented
in the middle also as a separate kernel.

2.5.4 Code performance

The performance of the present parallel GPU (CUDA) code is compared to the
serialized CPU version. Keep in mind that the serialized CPU version is not well
optimized and the Verlet list algorithm is used for particles neighboring search.
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Algorithm 1 Collision and streaming kernel with the PSM scheme.
Get fluid node position i and j from Eq. 2.82.
if (i < 0) || (i > Nx − 1) || (j < 0) || (j > Ny − 1) then
return;

end if
Compute macro variables ρ and u, from Eq. 2.41 and 2.42 respectively.
Compute f eqα (ρ,u), from Eq. 2.39.
Get the solid fraction εs.
if εs > 0 then
Get particle ID then particle velocity, us.

end if
Compute Ωs

α from Eq. 2.71.
Apply PSM collision operator, Eq. 2.78
if εs > 0 then
Get particle ID.
Increment hydro forces on particle and torque Eq. 2.75 and 2.76 respectively 5.

end if
Stream to neighbors, Eq. 2.79

The Jet Erosion Test (JET) that will be described in Chapter 3 is chosen as a
benchmark test with 5000 particles and Nx = 1551 and Ny = 1001 lattices units in
x and y directions, respectively. A fixed space resolution ratio N = 2Rmin

dx
is set at

10 lattice nodes, the characteristic speed is c = 30 m s−1 and the kinematic viscosity
ν = 40× 10−6 m2 s−1.

The results are summarized in Fig. 2.25. Different GPU cards were used for the
benchmark test (see Table 2.2). Note that the calculation is done in single precision
floating point, this explains the high performance achieved. The speedup was mea-
sured as the ratio of the number of iterations per second of the GPU calculation to
the reference single CPU thread:

Speedup =
Iteration persecond (GPU)

Iteration persecond (CPU)
(2.83)

where the iteration per second is calculated every one "LBM+DEM+visualization"
cycle at each output frequency (OutFreq) set here at 4000. It is obvious to set a
higher value of OutFreq to minimize the memory transfer between GPU and CPU
for the visualization step, which takes, in this case, 0.02% of the overall performance.
It was found that, when the TRT collision model is used, the performance slightly
dropped about 0.97% compared to the BGK model. Moreover, it was observed that
using the cohesion model, or not, does not affect the overall performance in GPU
calculation.

The profiling of the test in GPU is shown in Fig. 2.26. We see that the collision
and streaming kernel takes the most part of the calculation with 84.28%, followed by
the particle mapping and solid fraction calculation kernel with 9.76%. Also, it is to
note that the DEM calculation part is negligible compared to the LBM one. From
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Fig. 2.24. Flowchart of general GPU implementation of the micromechanical
simulation model featuring both alternative coupling schemes in the frame of the
momentum-exchange (Bouzidi) and partial saturation method (PSM).

the profiling chart, we identified the bottlenecks that slow down the computations
and will therefore be optimized in further work.
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Fig. 2.25. Performance comparison between the GPU implementation of the code
and the single thread CPU version. Different Nvidia cards are used, whose spec-
ifications are summarized in Table 2.2. The CPU used is Intel(R) Xeon(R) CPU
E5-4617 @ 2.90 GHz with 129 GB memory.

Table 2.2. Graphic cards specifications used for the benchmark

GPU name GTX 1080Ti Tesla P100 PCIe Tesla K80 Tesla K40m Tesla k20xm
Architecture Pascal Pascal Kepler Kepler Kepler
Memory (MB) 11264 16384 12288 12288 6144
CUDA cores 3584 3584 2496 2880 2688
FP32* 11,340 9,526 4,373 4,291 3,935
FP64** 1:32 1:2 1:3 1:3 1:3

*FP32 (GFLOPS): single precision (float) performance.
**FP64 (GFLOPS): double precision (double) performance compared to FP32.
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Fig. 2.26. Profiling of the JET CUDA program, the kernels with higher time
consumption percentage are shown.
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2.6 Validation of the LBM-DEM coupling

2.6.1 Sedimentation of a single particle

In this section we are interested in validating the LBM-DEMGPU code as well as the
workability of the GPU implementation in terms of hydraulic forces. Sedimentation
of a single particle is chosen as a benchmark because of its simplicity and for the huge
number of experimental and theoretical data available in the literature for either a
settling particle (in 2D) or the flow past a circular cylinder. The drag coefficient CD
of the particle is related to its terminal settling velocity vp and is a function of the
particle Reynolds number Re = vpD

ν
:

CD =
π(ρg − ρf )gD

2ρfv2
p

(2.84)

where ν is the fluid kinematic viscosity.
The domain is a large rectangle of height H = 80D and width L = 50D and the

particle diameter D is set at 20 lattice units. The particle is placed at the center of
the width at a height of 72D from the bottom wall. Bounce-back (non-slip) bound-
ary conditions were applied at the four walls. To obtain different sedimentation
velocities, a series of simulations were conducted, by varying the fluid kinematic
viscosity in the range [0.2, 0.005] in lattice units, with a ratio between the particle
and fluid density fixed at ρg

ρf
= 1.01, and the gravity acceleration being g = 9.81

m s−2.
Figure 2.27 shows our simulation results for the drag coefficient CD versus the

particle Reynolds number Re, using the two collision models BGK (Bhatnagar et al.,
1954) and TRT (Ginzburg et al., 2008) for the PSM (with the magic number Λ =
1/4) and the MRT model with the Bouzidi scheme. For comparison, the results of
fluid flow past a circular cylinder from Tritton (1959) (experiments) and Fornberg
(1980) (theory) are also plotted. As can be seen from the figure, our results agree
nicely with that found in the literature, except for large Reynolds numbers (Re >
100). It is interesting to see that both collision models give close results, even
though there are slight fluctuations in the pressure fields around the particle in the
BGK collision model at low kinematic viscosity as shown in Fig. 2.28. However, the
fluctuations are eliminated using the TRT collision model.
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Fig. 2.27. Drag coefficient CD of a settling particle versus particle Reynolds number
Re.

Fig. 2.28. Pressure fields for ν = 0.025 in lattice units: (a) BGK collision model;
(b) TRT collision model.
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2.6.2 Sedimentation of two particles

To involve additionally inter-particle collisions, sedimentation of two particles in a
channel is now simulated. In order to validate the results obtained by our model,
the simulation conditions are similar to those presented previously in the literature
(Feng and Michaelides, 2004; Wang et al., 2014). The configuration of the numerical
test is given in Figure 2.29. The domain is rectangular with 2cm width and 8cm
height.

Fig. 2.29. Schematic for the sedimentation of two particles under gravity.

Initially, particle 1 (P1) and particle 2 (P2) are placed at the center of the channel
at a height of 7.2 cm and 6.8 cm, respectively. The particle P1 is shifted from the
center by one lattice unit. The density and the kinematic viscosity of the fluid
are ρf=1000 kg/m3 and ν = 10−6 m2/s, respectively. The particles have the same
properties with a density ρg=1010 kg/m3 and a diameter D=0.2 cm. The normal
stiffness is kn = 1.1× 105 N/m, the shear stiffness kt = 1.1× 105 N/m, the friction
coefficient µ = 0, and the gravitational acceleration g = 9.81 m/s2.
The grid size is set to 201 × 801, the relaxation time is fixed at τ = 0.65 with

∆t = 5× 10−4 s. The Bounce-back (non-slip) boundary conditions were applied at
the lateral and lower walls, while outlet with zero pressure is applied at the upper
boundary. Fig. 2.30 shows the velocity contours at three different times of the sim-
ulation, illustrating the so-called "drafting-kissing-tumbling" scenario. The results
are compared to the simulation of Wang et al. (2014), as shown in Fig. 2.31, through
the trajectories (transverse and longitudinal coordinates) of the two particles over
time. We can see that the behavior of the particles is accurately captured and the
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results are in close agreement, except a slight discrepancy for the final transverse
motion of particle P1.

(a) t=1.8s (b) t=2.5s (c) t=3.5s

Fig. 2.30. Snapshots of the velocity contours during the settling of two parti-
cles at three arbitrary times showing the so-called DKT-pattern (drafting-kissing-
tumbling).
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(a)

(b)

Fig. 2.31. Time evolution of the two particle coordinates: (a) transverse (x); (b)
longitudinal (y). The numerical results of Wang et al. (2014) are also plotted as
symbols for comparison purpose.

2.7 Summary

We have shown in this chapter the numerical methods that will be used in this thesis
work, which are the Discrete Element Method (DEM) and the Lattice Boltzmann
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Method (LBM), as well as the coupling technique between both methods.
Also, we have shown the pertinence of LBM-DEM coupling technique in dealing

with fluid-particle interactions. Moreover, the necessity of a robust parallelization
technique, since combining both methods are highly costly in terms of simulation
time, in this sense, a GPU parallelization approach is adopted to resolve this issue.

Once the numerical tool has been properly validated, it will serve for studying
soil erosion with two different configurations: impinging jets and Tangential flow
erosion.
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3.1 Introduction

The aim of this chapter deals with an adaptation of the numerical tools presented
in Chapter 2 for studying the impinging jet erosion process at the scale of a repre-
sentative elementary volume (REV) of the tested material. The goal behind is first
to quantity the flow characteristics at the granular surface, namely the maximum
shear stress and the maximum tangential fluid velocity, and discuss their relation
with the bi-dimensional free plane jet model in laminar regime. Then the onset
erosion is evaluated and plotted in the so-called Shields diagram. This part covers
a slightly more elaborate version of the work that has been accepted for publication
in Journal of Hydraulic Engineering (Benseghier et al., 2020).

The second part of this chapter is dedicated to impinging jet erosion of cohesive
material and aims to test the proposal by Brunier-Coulin et al. (2017) to extend
the classical Shields criterion used for cohesion-less materials to weakly cohesive
soils. Furthermore, the scouring process is investigated, using image processing
techniques, and a 2D analysis of the time evolution of the scour depth (i.e. erosion
rate). The latter is compared to an adapted version of the mathematical model for
the Jet Erosion Test (JET) experiment (Hanson and Cook, 2004), which includes
the expression of the fluid shear stress at the upper bed surface and the assumption
of an excess shear-stress erosion law. This model allows to derive implicitly, at
the sample scale, the erodibility parameters of our cohesive samples (i.e. erosion
coefficient and critical shear stress) for different micro cohesion strengths.

3.2 Numerical study of 2D jet flow

This section draws on simulation results, obtained for various jet flow conditions,
aiming to identify the possible relationship between the free jet self-similar theory
and the flow characteristics at the impinged surface in laminar regime, in terms of
the maximum velocity V and wall shear stress τm, as illustrated in Fig. 3.1. Firstly,
we analyze the free plane jet in laminar regime, for jet Reynolds numbers Rej
ranging between 20 and 130, and validate our results with the well-known analytical
self-similar solution Schlichting (1960); Bickley (1937). Afterward, we investigate
impinging laminar jets on both a smooth wall and a fixed granular layer. It is
noteworthy that the present study is restricted to plane (two-dimensional), laminar
and unconfined (i.e. no influence of the lateral boundaries) conditions.

The jet flow configurations selected for this study are illustrated in Fig. 3.2. On
the left, a free plane jet with a nozzle width b. On the right, an impinging jet with
two different impact surfaces: smooth wall (case W) and granular surface with fixed
particles (case G).

The boundary conditions are given as follows: the bounce-back boundary condi-
tion (Chen et al., 1996) is applied for the solid walls (i.e. for the nozzle boundaries
and, eventually, for the impinged surface), while we assume a Zou/He condition
with zero pressure (Zou and He, 1997) at the (outer) exterior boundaries. For the
velocity inlet (i.e. for the jet’s nozzle of width b), we implement a Poiseuille profile
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Fig. 3.1. Paradigm of free jet and impinging jet on a granular sample. The hy-
drodynamic variable ũm(H) represents the free jet center-line velocity at a distance
equal to the impingement height H, while V is the maximal fluid velocity over the
impinged surface.
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Fig. 3.2. Sketch of the different study cases for jet analysis. (a) Free jet configu-
ration. (b) Impinging jet on either a smooth wall (case W) or on a fixed granular
surface (case G), with distinction of the three characteristic jet flow regions: Zone
1 (free jet), zone 2 (impingement region), zone 3 (wall jet).

with both regularized and equilibrium methods as introduced in Eqs. (2.58) and
(2.61). The mean velocity of the Poiseuille jet injection at the nozzle width b reads
consequently uj = 2

3
U0 with U0 being the maximal inlet velocity. The jet Reynolds
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number is defined as: Rej = ujb/ν.
Note that, in the impinging jet configuration and more specifically for case (W),

the simulation procedure and conditions are the same as in the free jet case except
for the horizontal smooth wall which is added to the computational domain and
located at an axial distance H from the nozzle exit. While for case (G), the solid
smooth wall is replaced by a fixed granular surface at the same distance H (Fig. 3.2).
The granular surface is constructed with a uniform particle size distribution: dmin <
d < dmax and dmax/dmin = 1.5. An effective hydraulic radius factor εh = rh/r = 0.8
is introduced in the simulation as well.

The input parameters for the parametric study of the free jet are summarized
in Table 3.1, while the ones used for the impinging jet in both cases are given in
Table 3.2. In case (G), two different particle diameters have been used: d = 3 and
5 mm.

Table 3.1. Input parameters used for the free jet simulations

U0 b ν × 10−5 Rej
(m/s) (mm) (m2/s) (-)

0.37 5.2 3.30 38.9
0.37 5.2 6.60 19.4
0.185 10.8 1.65 80.7
0.185 5.2 1.65 38.9
0.185 10.8 3.30 40.4
0.185 5.2 3.30 19.4
0.74 5.2 3.30 77.7
0.37 10.8 3.30 80.7
0.37 6.8 3.30 50.8
0.37 8.4 3.30 62.8
0.37 12.4 3.30 92.7
0.62 5.2 1.65 130.3
0.53 5.2 1.65 111.4

3.2.1 Two-dimensional laminar free jet

Figure 3.3a and 3.3b present typical velocity contours and plots of the center-line
velocities um versus y, the distance from the nozzle exit, for a Poiseuille inlet velocity
profile with both regularized and equilibrium methods (see section 2.3.5). The free
jet characteristics are U0 = 0.37 m/s, ν = 33× 10−6 m2/s and b = 5.2× 10−3 m.
The numerical results are compared with the 2D analytical solution with the ad-

justment of the virtual origin (Eq. 1.38 and 1.39). It is clearly noticeable that the
profiles slightly deviates from the analytical solution, particularly for the equilibrium
method. However, it can be stated that the simulation results are in overall agree-
ment with the analytical solution, especially when using the regularized method.
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Table 3.2. Input sets used for the simulation of impinging jet

Case U0 b ν × 10−6 Rej H
(m/s) (mm) (m2/s) (-) (mm)

W, G 0.37 5.2 33 38.9 90.4
W, G 0.74 5.2 33 77.7 90.4
W, G 0.5 5.2 33 52.5 90.4
W, G 0.6 5.2 33 63.03 90.4
W, G 0.37 6.8 33 50.8 90.4
W, G 0.74 6.8 33 101.7 90.4
W 0.37 5.2 33 38.9 73.2
W 0.74 5.2 33 77.7 73.2
W 0.37 6.8 33 50.8 73.2
W 0.37 5.2 33 38.9 108
W 0.74 5.2 33 77.7 108
W 0.37 6.8 33 50.8 108
W 0.74 5.2 10 256.5 90.4
W 0.37 5.2 10 128.3 90.4
W 0.74 5.2 100 25.7 90.4
W 0.37 5.2 100 12.8 90.4

A typical transverse profiles of the vertical fluid velocity plotted in Fig. 3.4a
decreases continuously from its maximal value um at the center-line with lateral
distance y. As stated in Chapter 1, these profiles are supposed to follow a self-
similar pattern. Denoting bu the lateral distance where u = um/2, a normalized
plot of these profiles is drawn in Fig. 3.4b, where the vertical velocity, divided by its
maximal velocity um at center-line, is plotted as a function of the transverse distance
y divided by bu. It can be underlined that these normalized curves nicely collapse
all together. This confirms the analytical prediction of a self-similar velocity profile
described by ch−2[ach(

√
2)y/bu] up to x > 1.5b, i.e. up to the point where the free

jet exits from the potential core region.
Fig. 3.5a shows the variation of (uj/um)3 and (bu/b)

3/2 at various distances x/b
from the nozzle outlet for a jet Reynolds number Rej = 38.9. As expected from
Eqs. (1.39) and (1.37), the profiles are linear, with slopes denoted α and β, and x-
intercepts denoted A and B, respectively. Consequently, the proportional relations
between um and x−1/3 as well as between bu and x2/3 are clearly confirmed. Since the
x-intercepts are different from zero, it is also obvious that the jet is not originating
from the nozzle exit, but rather from a virtual point source located at a distance λ
above it (i.e. A,B < 0).
Up to this point, the results of only one simulation have been shown. Thus, in

the next investigation, a series of simulations was performed following the same
analysis shown above in order to confirm the validity of our simulation for various
flow conditions, i.e. by varying the jet Reynolds number.



86 3.2. Numerical study of 2D jet flow

(a)

0.00 0.05 0.10 0.15 0.20
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 

 

C
en

te
rli

ne
 v

el
oc

ity
, u

m
 (m

/s
)

Distance from the nozzle, x (m)

 Analytical 2D jet, Poiseuille inlet
 Regularized method
 Equilibrium method

(b)

Fig. 3.3. Simulation results of laminar 2-D free jet for U0 = 0.37 m/s and b =
5.2 × 10−3 m: (a) contours of velocity magnitude with Poiseuille inlet; (b) center-
line velocity um at different distance x from the nozzle with comparison between
analytical solution of 2-D laminar free jet and numerical results using the regularized
and equilibrium methods for Poiseuille inlet boundary condition.
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Fig. 3.4. Transverse profiles of the vertical fluid velocity u: (a) with u divided by the
injection velocity U0 versus the dimensionless distances x/b from the jet’s nozzle;
(b) with u normalized by its maximum value um (at the center-line) versus the
transverse distance y normalized by bu, the transverse distance where u(bu) = 1

2
um.

As specified in section 1.6.1, the theory predicts that the slopes α and β are
proportional to Re−1

j as expressed in Eqs. (1.39) and (1.37), respectively. This means
that a −1 slope is expected in a log-log representation. The analytical prediction
is well verified by the simulation for almost the whole range 37 < Rej < 120 as
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confirmed in Fig. 3.5b, which shows the variation of the slopes α and β for various
jet Reynolds numbers in a log-log plot. By linear regression, the slope of α and
β versus Rej are equal to −1.11 (with a correlation coefficient R2 = 0.9982) and
−1.04 (with a correlation coefficient R2 = 0.9998), respectively. Not surprisingly, a
slight difference with the analytical slope −1 is expected for α since there is some
departure in the center-line velocities (um) between the simulation and analytical
results, as shown in Fig. 3.3b. However, the relationships α, β ∝ Re−1

j suggested by
Eqs. (1.39) and (1.37), respectively, are almost confirmed by our numerical results.
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Fig. 3.5. (a) Variation of (uj/um)3 (filled circle) and (bu/b)
3/2 (open circle) with the

normalized distance from the nozzle x/b for Rej = 38.9. (b) Log-log representation
of the slopes α and β versus Rej. The lines represent the theoretical predictions in
Eq. 1.39 and Eq. 1.37, respectively.

We have shown so far that both the simulated jet’s center-line velocity and half-
width agree well with the analytical predictions given in Eq. 1.39, Eq. 1.37, and
Eq. 1.32, respectively, and that the jet is originated from a virtual source point
instead of the exact nozzle exit. One last point to be confirmed is thus the quanti-
tative value of this virtual origin λ. The dimensionless quantity λ/b can be simply
identified from the x-intercepts, A and B, of both linear profiles (uj/um)3 = f(x/b)
and (bu/b)

3/2 = g(x/b) (see Fig. 3.5a). In Figure 3.6, the two corresponding values
are plotted against the jet Reynolds numbers Rej and compared to each other. As
can be concluded, the two estimations of λ/b seem to agree fairly well, with a mean
relative error of 13%, and can be accurately fitted with a proportional relation (with
a correlation coefficient R2 = 0.995), that appears slightly higher than the existing
solution in the literature λ/b = 0.029Rej (Revuelta et al., 2002), and reads:

λ = 0.036Rejb (3.1)
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Fig. 3.6. Variation of the dimensionless virtual origin λ/b versus the jet Reynolds
number Rej obtained from the linear regression of the profiles (uj/um)3 = f(x/b)
(black filled dots) and (bu/b)

3/2 = f(x/b) (unfilled dots). The linear trend fitting
the data is shown as a dashed line and the black solid line is a plot of Eq. 1.38 as
predicted by Revuelta et al. (2002).

3.2.2 Jet impingement on a smooth wall and fixed granular
layer

As regards impinging jets, three main fluid flow regions can generally be distin-
guished (Beltaos and Rajaratnam, 1973) as sketched in Fig. 3.2: a free jet region
(zone 1) where the flow remains self-similar; an impingement region (zone 2) where
the impinged surface affects the jet flow, the center-line velocity decreasing down
to zero at the impingement (stagnation) point and diverting the flow to the lateral
directions; a wall jet region (zone 3) where the flow becomes parallel to the impinged
surface.

Many studies have examined in detail the velocity, pressure, and wall shear stress
fields in these different regions, e.g. Rajaratnam (1976). However, the quantification
of jet impingement for the prediction of soil erosion still remains largely empirical.
No simple analytical approach has been proposed so far for such prediction of flow
quantities at either the impingement region or at the wall jet region (zones 2 and
3, respectively). In this respect, most of the estimations proposed in the literature
are based on the free jet model (zone 1). We therefore address in this section
the influence of both the jet Reynolds number and the impingement height H on
the distributions of fluid velocity and shear stress on a smooth impinged surface.
Thereby, we explore firstly the relationship between the theoretical free-jet center-
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line velocity at the impingement height ũm(H) and the actual maximal velocity V
of the impinging jet near the wall surface in zone 3, turning afterward the attention
to the corresponding maximal shear stress τm.

Velocity field
Figure 3.7 shows the velocity magnitude and streamlines for an impinging jet over a
smooth wall, while the variations of the normalized center-line velocity um/U0 with
x/b for different impingement height H/b are shown in Figure 3.8a. The center-line
velocity follows the theoretical prediction of the free jet up to a distance around
0.6H, before starting to decrease with a greater gradient until reaching zero at the
impingement point. Despite the difference in flow regimes of the impinging jet,
namely laminar for our simulation versus turbulent for the experiments of Beltaos
and Rajaratnam (1973), the behavior of the impinging jet obtained in the present
simulation agrees well, in terms of the center-line velocity and the distance before the
deviation from the free jet curve, with the experimental results for plane turbulent
impinging jets, as can be seen in Figure 3.8b)

Fig. 3.7. Snapshot of the steady state velocity contours and streamlines for a jet
impinging on a smooth wall with H = 90.4 mm, U0 = 0.37 m/s, b = 5.2 mm, and
ν = 33× 10−6 m2/s.

Figure 3.9 shows the transverse profiles of the fluid velocity at different down-
stream distances x/H from the nozzle, normalized as in Fig. 3.4b. These velocity
profiles appear to remain self-similar up to at least x/H ≈ 0.75. For higher values
of x/H, the wall starts to influence increasingly the jet flow velocity as observed by
the impingement jet experiments.

Figures 3.10a and 3.10b present the profiles of the transverse velocity v at different
distances x1 from the impinged surface for case (W) and case (G), respectively. An
example of velocity contours for the impinging jet over a granular surface is also
shown in Figure 3.11. All profiles show a monotonic increase of the velocity up to
a maximum value vm and a subsequent continuous decrease with growing distance
y from the jet’s axis. The local maximum vm of the transverse velocity vm for each
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(a) (b)

Fig. 3.8. Normalized center-line velocity um/U0 versus x/b with Rej = 38.9 and for
different wall distances. (a) Our simulation results with H = 73 mm, H = 90.4 mm,
and H = 107.8 mm, the black solid line corresponds to the plane free jet simulation
case. (b) Experimental results of Beltaos and Rajaratnam (1973) for plane turbulent
impinging jets with: (Run 1) Rej = 3767 and H = 150.9 mm, (Run 5) Rej = 4733
and H = 97.5 mm, (Run 6) Rej = 3513 and H = 97.5 mm, (Run 7) Rej = 4647
and H = 69.2 mm, (Run 8) Rej = 3513 and H = 31.4 mm.
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Fig. 3.9. Transverse profiles of the normalized fluid velocity, u/um versus y/bu, of
an impinging jet for various downstream distances x/H from the nozzle.
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profile increases rapidly with x1, until reaching a global maximum V = max(vm),
and then decays slowly.

The global maximum of the fluid velocity V over the impinged surface can then be
extracted for different flow conditions and samples (i.e. different mean grain sizes),
and subsequently be plotted against the free-jet maximum velocity ũm(H+λ) at the
corresponding distance from the nozzle (Eq. 1.39) which is used here as a reference
velocity.
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Fig. 3.10. Profiles of transverse velocity v at different distances from the impinge-
ment surface x1: (a) smooth wall; (b) granular surface with mean grain size d = 5
mm. The other simulation parameters are here H = 90.4 mm, U0 = 0.37 m/s,
b = 5.2 mm, and ν = 33× 10−6 m2/s.

Fig. 3.11. Snapshot of the steady state velocity contours for a jet impinging on a
granular surface with mean grain size d = 5 mm. The simulation parameters are
here H = 90.4 mm, U0 = 0.37 m/s, b = 5.2 mm, and ν = 33× 10−6 m2/s.
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As shown in Figure 3.12, with additional comparison to the smooth-wall results,
we can appreciate a close agreement of the data for the low velocity range, with
slight growing deviations for higher fluid velocities and higher particle size due to
the irregular form of the bed surface. We notice also that the variation is almost
proportional with a slope equal to 0.821 in case (W) (with a correlation coefficient
R2 = 0.999), consistently for any given jet Reynolds number Rej and distance H
within the range of our simulation sets. We have considered thereby the virtual origin
found previously (i.e. replacing H by H + λ), namely λ/b = 0.036Rej, although
the effect of λ on the slope appears to be negligible. These results therefore confirm
that the maximum velocity near a smooth impinged surface can be consistently
estimated by means of the free jet theory. In this respect, it appears also reasonable
to approximate the maximum velocity near the granular surface using the smooth
wall case at least for the case of low Reynolds numbers.

In addition, the sensitivity to the impact point location was also tested for the
same inlet flow condition. To this end, several calculations were performed after
a slight lateral displacement of the nozzle (up to 3 times the minimal diameter)
in either directions. In all cases, the maximal velocity V was found consistent to
a mean value within a reasonable error bar estimated to less than 5% from the
standard deviation values. The same relative error is used for the other inlet flow
conditions.
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Fig. 3.12. Variation of maximum velocity V versus the free jet velocity ũm(H +λ)
at the corresponding downstream distance x = H for two grain sizes d = 3 mm and
5 mm and impingement on a smooth wall.

Figure 3.13 shows the velocity profiles at various distances y/H from the original
jet’s axis. These profiles are normalized using the maximum velocity vm, while the
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distance x1 from the wall is divided by b1, which corresponds to the distance from
the wall where v = vm/2. It can be seen on Fig. 3.13 that both simulated results
agree fairly well with Eq. 1.43 as well as with the experimental data of Ghaneeizad
et al. (2014). We notice that the velocity profiles appear here self-similar roughly
starting from a distance y/H ≥ 0.22, in contrast to the value of r/H ≥ 0.15 given
in the literature for turbulent round jets Ghaneeizad et al. (2014).
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Fig. 3.13. Self-similarity of the normalized velocity profiles v/vm versus x1/b1 in
the wall-jet region. The solid line corresponds to Eq. 1.43.

Wall shear stress

The estimation of the shear stress at the bed surface is essential to determine the
erodibility of soils, especially to specify the critical shear stress at which the onset
of erosion takes place.

A typical distribution of the dimensionless wall shear stress obtained from our
simulation is plotted in Figure 3.14 for different combinations of impingement height
H/b and jet Reynolds number Rej. It is also compared to the estimation by Beltaos
and Rajaratnam (1974) (see Eq. 1.42). Despite the difference in flow configurations
(2D laminar versus round turbulent jet), the dimensionless shear stress distribution
agrees quite well with the one given by Beltaos and Rajaratnam (1974). The profiles
start with a zero value in the impingement region then increase to a maximum value
τm before starting to decrease slowly.

The maximal value of the shear stress, denoted τm, is commonly assumed to be
proportional to the squared maximal velocity V as follows (Beltaos and Rajaratnam,
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Fig. 3.14. Distributions of the normalized wall shear stress versus y/H for different
combinations of normalized impingement height H/b and jet Reynolds number Rej.
The solid line stands for the estimation by Beltaos and Rajaratnam (1974).

1977):

τm =
1

2
CfρfV

2 (3.2)

where Cf is the local friction coefficient and ρf is the fluid density.
It is noteworthy that there are no estimations of Cf for laminar impinging jets

found in the literature. Thereby we can use our simulation results to estimate Cf
based on Eq. 3.2 for the different jet Reynolds numbers and impingement heights
H shown in Table 3.2.

A plot of the maximum shear stress τm versus ρfV 2/
√
Rej is shown in Fig. 3.15,

suggesting a proportional dependency that allows, from a linear regression (with a
correlation coefficient R2 = 0.9978), to estimate Cf as:

Cf =
1.53√
Rej

(3.3)

This way, Eq. 3.2 becomes:

τm =
0.765ρfV

2√
Rej

=
0.52ρf (ũm(H))2√

Rej
(3.4)

By introducing Eq. 1.39 and Eq. 3.1, it then reads:

τm =
0.137ρfu

2
jRej

1/6

(H/b+ 0.036Rej)2/3
. (3.5)
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Fig. 3.15. Maximum shear stress τm on a smooth impinged surface versus
ρfV

2/
√
Rej. The line stands for a proportional relation with a slope 0.765 and

a correlation coefficient R2 = 0.9978.

Surprisingly, we found that the simulation results give rather close results com-
pared to an estimation based on the Blasius friction law for laminar flows over a
flat plate: C̄f = 1.328√

Re
(Streeter and Wylie, 1975), where C̄f is the average friction

coefficient over a plate of length L and Re = U∞L/ν.

Summing up, these results show that the local friction coefficient at the maximum
shear stress seems to be almost proportional to 1/

√
Rej for laminar jet impingements

on a smooth wall, just as predicted by the laminar boundary layer theory on flat
plates at zero incidence. The maximum shear stress on a smooth wall can therefore
be estimated using the approximation given in Eq. 3.5 and based on our simulation
results.

Concerning the wall shear stress distribution at the granular surface, huge fluctu-
ations in shear stress are observed, most probably due to the irregularity of the im-
pinged surface, and preclude the appearance of smooth distributions such as shown
in Fig. 3.14.

Nevertheless, in absence of more specific estimations and regarding the strong
similarity observed as regards maximal velocity (see Fig. 3.12), it appears acceptable
to derive herein the wall shear stress using the previous approximation based on the
maximum velocity V found for the smooth-wall case (i.e. Eq. 3.4).
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3.3 Impinging jet erosion: cohesion-less soil

We now focus on jet erosion, i.e. detachment of solid particles under the action of an
impinging jet, starting with the case of a cohesion-less granular bed. In this section,
the solid particles are no more fixed and can move freely, only constrained by purely
frictional interactions (i.e. zero cohesion) and hydrodynamic stresses imposed by the
impinging jet. The aim of this section is first to compare our simulation results with
the experimental results of Badr et al. (2014) in their proposed "inertial" Shields
diagram (i.e. Shi vs Rep). Second, we present a way to plot both results in the
classical Shields diagram, using the approximation of the bed shear stress τb for
the 2D laminar impinging jet from Eq. 3.4, or equivalently Eq. 3.5, as found in the
previous section.

3.3.1 Erosion onset

In order to determine the erosion threshold (i.e. the minimum shear stress required
to mobilize the solid particles) for a given cohesion-less granular sample in our
micro-mechanical jet erosion test (JET) simulations, the maximal injection velocity
U0, or equivalently the mean inlet velocity uj, is progressively increased with time
until ultimately reaching a fully developed erosive state, as shown in Fig. 3.16.
Then, we identify the critical inlet velocity U c

0 based on the observation of the first
grain motion. This onset time is not easy to determine accurately. Typically, the
initiation of grain motion takes place in time sequences of varying duration, up to
10 images, giving this way a substantial uncertainty for the critical inlet velocity.
The corresponding error bars are reported in the following graphs. Consistently, the
initiation of grain motion can be alternatively detected by the evolution of the total
particle’s kinetic energy as shown in Fig. 3.17. It can be seen that this method is
more accurate than the direct observation of first grain motion by naked-eyes and
this method shows indeed a substantial delay time (hatched area) beyond which the
erosion progressively starts.

To provide a large range of variation within the Shields diagram this procedure
was repeated for various jet Reynolds numbers and three different granular samples:
dmean=2, 3, and 5 mm, respectively, with a uniform size distribution ranging from
dmin = 0.8dmean to dmax = 1.2dmean. The input parameters for this systematic study
are summarized in Table 3.3.

We observe that erosion first takes place at a certain distance from the impinge-
ment, that roughly corresponds to the location of the maximal shear stress predicted
in our previous analysis of jet impingement over a smooth wall, consistently with
the fact that there is a stagnation point at the intersection of the bed surface with
the jet’s axis. However, with increasing the inlet velocity, we observe eventually
lateral oscillations of the jet caused by the irregularities of the bed surface, which
also increase with the on-going scouring process. Due to both the jet’s oscillations
and the increasing depth of the crater, the location of the maximal shear stress
appears then to shift towards the jet’s axis, thereby creating a deeper crater right
at the impingement. This behavior is illustrated by the typical graphical sequence
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Table 3.3. Input parameters for our systematic study of the erosion threshold of
cohesion-less samples

Solid particles Fluid

Density ρg: 2230 kg/m3

Mean diameter dmean: 2, 3, or 5 mm
Normal stiffness kn: 1.10× 105 N/m
Shear stiffness kt: 1.10× 105 N/m
Friction coefficient µ: 0.30
Rolling friction µr: 0.1
Restitution coefficient e: 0.2
Gravitational acceleration g: 9.81 m/s2

Density ρf : 847 kg/m3

Kinematic viscosity ν:
30 to 50× 10−6 m2/s
Nozzle diameter b: 5.2 mm
Impingement height H: 90 mm

shown in Fig. 3.16 where a threshold in the particle’s kinetic energy (translation
plus rotation) has been introduced to highlight the eroded grains. The value of this
energy threshold Ec is set implicitly based on the observation of particles detach-
ment on previous simulations. A more in-depth explanation about the exact value
to be chosen for Ec will be given in Chapter 4.

3.3.2 Representation in the Shields diagram

Here it is worth noting that, for practical use, the Shields number (Eq. 1.12) is
sometimes rather inconvenient, especially in complex flow configurations such as the
impinging jet. Indeed, the bed shear stress τ actually appears in both x-axis (i.e.
Shields number) and y-axis (i.e. shear Reynolds number Reτ =

√
τ
ρf

d
ν
) variables

of the Shields diagram. However, this can be circumvented with the alternative
approach proposed by Badr et al. (2014) and later adopted also by Brunier-Coulin
et al. (2017), representing an equivalent form of the Shields number for the impinging
jet. The idea here is to assume an inertial expression for the bed shear stress
which is therefore simply proportional to ρfu2, regardless of the flow regime. Here,
the velocity u is the mean fluid velocity around the eroded particle, which can be
directly estimated from the free jet model ũm(H) instead of the shear velocity u∗
at the impinged surface which requires the exact value of the bed shear stress since
u∗ =

√
τ
ρf
.

As a first test, we can compare quantitatively our simulation results to the exper-
imental data of Badr et al. (2014) carried out with a plane jet, since their quasi-2D
configuration is closely consistent with the two-dimensional conditions of our model.
The equivalent Shields diagram proposed by Badr et al. (2014) relates the critical
value of the inertial Shields number, Sh∗u, to the critical particle Reynolds number
Re∗p = ud

ν
as follows:

Sh∗u =
ρfu

2

(ρg − ρf )gd
=

ρfu
2

∆ρgd
= f(Re∗p) (3.6)
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(a) t = 12.5 s, Rej = 40.21, U0 = 0.58 m/s (b) t = 15 s, Rej = 45.76, U0 = 0.66 m/s

(c) t = 17.5 s, Rej = 50, U0 = 0.72 m/s (d) t = 20 s, Rej = 55.47, U0 = 0.80 m/s

(e) t = 22.5 s, Rej = 61.01, U0 = 0.88 m/s (f) t = 25 s, Rej = 69.33, U0 = 1.00 m/s

Fig. 3.16. Time sequence of jet erosion for a frictional granular sample composed
of 3000 particles with dmean = 2 mm, ν = 50× 10−6 m2/s, and b = 5.2 mm. A color
scale is used for the fluid velocity magnitude from zero (blue) to the maximal inlet
velocity U0 (red). Solid particles with kinetic energy above a critical threshold value
Ec = 2.0× 10−4 J are classified as eroded (here depicted in red colour).

where ρg is the particle density and ∆ρ = ρg − ρf .
Sh∗u and Re∗p are therein evaluated for the equivalent free jet velocity u = ũm(H)

using the expression of ũm(H) given in Eq. 1.39, where uj is deduced from the
critical inlet velocity U c

0 obtained for each simulation at the onset of erosion, namely
uj = 2

3
U c

0 .
Here it is also important to note that, for a quantitative comparison, the expression

of the inertial Shields number Shu has to be modified for the simulated results to
account for the dimensional discrepancy of the solid particles, i.e. simulated disks in
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Fig. 3.17. Time evolution of the total kinetic energy of the grains during a jet
erosion for a cohesionless sample shown in Fig. 3.16.

a plane versus solid spheres in the quasi-2D experimental configuration of Badr et al.
(2014). The correction employed here is explained as follows. First, we assume that
the ratio of the hydrodynamic drag force to the buoyant weight for a given particle is
the same for both disks and spheres. This ratio reads τfS

∆ρgV
= ShSd

V
where S and V

are the cross-section and volume of the particle, respectively. For disks or cylindrical
particles, this expression leads to Sd

V
= 4

π
, while for the case of a sphere Sd

V
= 3

2
is

obtained. As a consequence, the inertial Shields number from the simulations needs
to be multiplied by 3π

8
to be quantitatively comparable to the experimental data.

Moreover, the reduced (hydraulic) diameter dh = 0.8d is also taken into account, as
explained in section 2.4.3.3.

Figure 3.18 shows that a fair agreement between numerical and experimental
data can be achieved this way. Our numerical values for Sh∗u are here in the range
1.16±0.33 and compares well with the results of Badr et al. (2014), which suggested
an almost constant value of Sh∗u = 1.2 ± 0.6 for a comparable range of Re∗p, from
laminar to turbulent flows. However, our numerical data are more compatible with
a slight but substantial decrease of Sh∗u with Re∗p.
In order to plot Badr et al. (2014) data in the classical Shields graph, namely

Sh∗τ vs Re∗τ , we start from their experimental results as presented in Figure 3.19
which is directly extracted from their article. Note that l∗ denotes the dimensionless
distance from the jet inlet: l∗ = l/b with b the jet’s width at injection. More precisely,
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Fig. 3.18. Critical values of inertial Shields number Sh∗u versus particle Reynolds
number Re∗p for the simulated jet erosion of frictional granular beds, as compared
to the experimental results of Badr et al. (2014). The simulations were performed
with different values of mean particle size d and fluid kinematic viscosity ν.

Fig. 3.19a is based on a viscous Shields parameter ShJv, calculated as: ShJv = ηUJ
∆ρgd2 .

From this graph, the critical inlet jet velocity UJc can then be easily deduced and,
next, the local velocity at the bed surface ulc using the expression from the free jet
theory. This way and as illustrated in Figure 3.20a, we obtain for each of the 7
sets of parameters (see caption of Fig. 3.19 for more detail) the critical values of
both the inlet velocity UJc and the local Shields number Shlc, based this time on an
inertial definition: Shlc =

ρfu
2
lc

∆ρgd
. In the particular case shown in Fig. 3.20b, a local

Shields Shlc ≈ 1.2 is found, corresponding to a local velocity ulc = 5.4± 0.4 cm/s at
the sediment bed surface. Note that Badr et al. (2014) systematically observed the
local Shields numbers to stagnate at a plateau value, either in laminar or turbulent
regime, and consequently stated that "the nature (turbulent or laminar) of the jet
does not have a significant influence on the erosion threshold".

However, Badr et al. (2014) were not able to relate locally, at the bed surface,
the fluid velocity and the flow shear stress needed to calculate the usual Shields
number Shτ . But, based on Eq. 3.4 obtained in Section 3.2.2, that is to say under
the assumption that the same expression holds for the fluid friction coefficient Cf
(i.e. Eq. 3.3), this difficulty can be now circumvented and both previous results
can be plotted in the classical Shields diagram through Eq. 1.10 (see Chapter 1).
The corresponding values of the critical Shields numbers Sh∗τ for both experimental
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and numerical results are shown in Figure 3.21 as a function of the shear Reynolds
number Re∗τ together with the explicit formulation by Guo (1997) given in Eq. 1.13.

(a) (b)

Fig. 3.19. Shields parameter versus the non-dimensional nozzle-sediment distance
l∗ = l/b. (a) Viscous Shields number ShJv = ηuJ

∆ρgd2 and (b) inertial Shields number

ShJi =
ρfu

2
J

∆ρgd
, with different fluids kinematic viscosities ν and glass beads of different

diameters d: d = 0.1 mm (0), d = 0.25 mm (2), d = 0.35 mm (6), d = 0.5

mm (1), and d = 1 mm (3) in water (ν = 10−6 m2/s) and d = 0.25 mm in in
water-glycerol mixing of viscosity (4) ν = 1.6× 10−6 m2/s and ν = 4× 10−6 m2/s

(E). Data from Badr (2014)

In contrast to previous Fig. 3.18 using the inertial Shields number Sh∗u and the
particle Reynolds number Rep, the comparison between numerical and experimental
results is less in agreement when using the usual Shields parameter (Eq. 1.10) and
the shear Reynolds number. Nevertheless, both data sets appear however relatively
close to the explicit Shields curve by Guo (1997) (Eq. 1.13), with the simulated data
laying slightly above it and the experimental ones slightly below. Furthermore, a
small decrease of Sh∗τ with Re∗τ can now be more clearly observed for this range of
Reynolds number Re∗τ , almost consistent with the trend shown by the Shields curve.
In summary, the threshold condition for erosion by impinging jets of a granular

sample can be rather satisfactorily described by the non-dimensional Shields param-
eter, based either on inertial or complete expression of bed shear stress. The Shields
parameter Shτ based on the actual fluid shear stress is a priori more suitable for
describing particle detachment at the onset condition than the inertial Shields, espe-
cially since the inertial representation of Shields is roughly a constant value whatever
the jet regime (laminar or turbulent) and restricted for a particle Reynolds number
Rep greater than unity and less than 100 (Badr et al., 2014). Moreover, the classi-
cal Shields representation takes into account the fluid friction coefficient at the bed
surface, thus much accurate representation of the flow, and can be easily extended
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(a) (b)

Fig. 3.20. (a) Critical jet velocity UJc versus the non-dimensional distance l∗ + λ∗

(including the dimensionless virtual origin λ∗) for glass beads of diameter d = 0.25
mm immersed in a water-glycerol mixture (ν = 4×10−6 m2/s). The red solid line is
a fit from the self-similar laminar model of free jet. (b) Local Shields number Shl at
erosion threshold versus the non-dimensional distance l∗ + λ∗, both for (×) laminar
model and (+) turbulent model. Data from Badr et al. (2014).

to turbulent flow regime, since the corresponding values of Cf are well known in the
literature, at least empirically.
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Fig. 3.21. Critical Shields number Sh∗τ versus shear Reynolds number Re∗τ . The
solid line stands for the explicit formulation of the Shields curve by Guo (1997)
(Eq. 1.13). The symbols are the same as those used in Fig. 3.18.

3.4 Impinging jet erosion: cohesive soil

3.4.1 Erosion onset and Shields diagram

In this section, we are interested in quantifying the erosion threshold by jet erosion
test (JET) in presence of cohesion between particles.

In order to determine the erosion threshold for a given cohesive granular sample,
the same protocol is used, progressively increasing the mean inlet velocity uj over
time until reaching a fully developed erosive state, as shown in Figure 3.22. The
velocity growth rate is linear and fixed at 0.05 every second, and the ultimate velocity
is fixed at Uf = 2.5 m/s. The simulation duration is fixed at 20 s. Then, we identify
the critical inlet velocity U c

0 based on the observation of the initiation of bonds
breakage at the bed surface (at time around t = 4.86 s in the illustrative sequence
shown in Fig. 3.22). This velocity will subsequently be used to estimate the critical
shear stress of the cohesive sample. Contrarily to the cohesion-less case, the onset
is more easily determined here and, as can be seen in Fig. 3.23 showing the time
evolution of the total kinetic energy of the grains, an uncertainty below ±0.03 s (i.e.
one picture before or after) can be estimated for the critical time, inducing an error
of ±3.0×10−3 m/s on the corresponding critical velocity. In practice, the error bars
are smaller than the size of the symbols and are consequently not plotted in the
following graphs.

Here again a systematic study was carried out with rather similar ranges for the
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fluid and granular parameters as shown in Table 3.4.
The critical inlet velocities at the erosion threshold U c

0 for different bond strength
C are shown in Figure 3.24. Obviously, the critical inlet velocity increases with the
bond strength. It is also observed that the lower the mean diameter, the higher the
critical inlet velocity required to erode the particles. In other words, particles having
lower sizes become more sticky and thus more difficult to be eroded. This is most
probably due to the fact that the cohesive forces are more significant compared
to the submerged particle weight in the case of fine particles compared to larger
ones. However, the cohesion strength C used in our bond model could be scaled
explicitly to account for particles sizes, especially if broad grain size distributions
are considered, which is not the case here but could be envisaged in future works.

Table 3.4. Input parameters for our systematic study of the erosion threshold of
cohesive samples

Solid particles Fluid

Density ρg: 2500 kg/m3

Normal stiffness kn: 1.10× 105 N/m
Shear stiffness kt: 1.10× 105 N/m
Friction coefficient µ: 0.30
Rolling friction µr: 0.1
Restitution coefficient e: 0.2
Gravitational acceleration g: 9.81 m/s2

Density ρf : 1000 kg/m3

Kinematic viscosity ν:
5× 10−5 to 1× 10−4 m2/s
Nozzle diameter b: 5− 6.7 mm
Impingement height H: 70 mm

As already mentioned several times, the critical Shields number, as defined for
cohesion-less sediments, is calculated from the fluid shear stress, Sh∗τ = τ∗

∆ρgd
, and is

assumed to be a function of the shear Reynolds number Re∗τ as given in Eq. 1.10.
Then, from the critical values of the inlet velocity, the corresponding critical values
of the fluid shear stress τ ∗ can be estimated using here again the formula in Eq. 3.5
obtained for a laminar impinging jet over a smooth wall.

In presence of cohesion, the forces between particles are substantially larger than
the submerged particle weight, keeping the particles together and forming a global
matrix. When subjected to erosion, or scouring, to a sufficient level, the particles
start to detach under the hydrodynamic forces from this matrix, possibly forming
clumps of soil rather than individual particles, and the time required for the first
grain detachments is larger compared to the cohesion-less case. In the present situa-
tion, it is not only the weight of the particle, with additional contribution of friction,
that determines the threshold condition, but also, and mostly, the cohesion forces
between particles.

As a consequence, the classical Shields number will no longer be valid for describ-
ing the erosion onset for the case of cohesive samples and a huge deviation from
the cohesion-less curve is indeed observed on the Shields diagram as shown in Fig-
ure 3.25. More precisely, the classical critical Shields number Sh∗τ (open symbols in
the figure) increases almost linearly with Re∗τ , gradually and drastically departing
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(a) t = 2.56 s, Rej = 126, U0 = 1.51 m/s (b) t = 4.86 s, Rej = 136.5, U0 = 1.64 m/s

(c) t = 5.12 s, Rej = 137.7, U0 = 1.65 m/s (d) t = 5.89 s, Rej = 141.2, U0 = 1.69 m/s

(e) t = 6.4 s, Rej = 143.6, U0 = 1.72 m/s (f) t = 8.96 s, Rej = 155.4, U0 = 1.87 m/s

Fig. 3.22. Time sequence of a jet erosion on a cohesive granular sample, of cohesion
strength C = 1.2 N, composed of 5000 particles with dmean = 2 mm, ν = 40× 10−6

m2/s, and b = 5 mm. A color scale is used for the fluid velocity magnitude from
zero (blue) to the maximal inlet velocity U0 (red). Solid particles with a kinetic
energy above a critical threshold value Ec = 2.0 × 10−4 J are classified as eroded
(here depicted in red colour). The cohesive bond network is displayed in orange.

from the Shields curve. in addition, the data do not collapse on a unique trend as
expected.

With the aim of overcoming this problem, a tentative approach to account for
cohesion consists in a generalization of the cohesion-less Shields number. Such a



Chapter 3. Numerical simulation of impinging jet erosion 107

0 5 10 15
0.00

0.05

0.10

0.15

0.20

To
ta

l k
in

et
ic

 e
ne

rg
y 

(J
)

Time (s)

Fig. 3.23. Time evolution of the total kinetic energy of the grains during a jet
erosion for a cohesive sample as shown in Fig. 3.22.

generalized shields parameter for cohesive particles has been previously introduced
by several authors, as for instance Ternat et al. (2008) who suggested the multipli-
cation of the Shields number by a cohesion function fc defined by:

fc = 1 +
Fc

∆ρgd3
(3.7)

where Fc is the mean resultant cohesion force acting on a particle.
More recently, Brunier-Coulin (2016) proposed to add to the buoyant weight stress

σbw the extra contribution of the cohesion stress σcoh, the latter being taken directly
proportional to the macroscopic yield tensile stress τt. Dimensionally, one gets
σbw ∝ ∆ρgd3 while τt ≈ 1.25Fc/d

2 as suggested by Brunier-Coulin (2016) from
Rumpf equation (Pierrat and Caram, 1997).

By analogy, in our 2D configuration, this latter proportionality would read σcoh ≈
Fc/d. Note that this cohesion stress is expressed abusively in N/m instead of Pa,
since we are dealing here with a 2D geometry. More precisely, in the following, the
cohesive force Fc is chosen equal to the yield value of the normal tensile force C
used in our cohesive bond model (see section 2.2.2). Shearing and bending failure
of the cohesive bonds are not directly taken into account for simplicity reasons.
However, in most cases, these thresholds in shearing and bending will be chosen
simply proportional to the one in traction (i.e. C). The three failure modes are
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consequently considered in the following dimensional analysis and their inclusion
allows for aggregates of cohesive bonds to be detached from the cohesive matrix
rather than solely pairs of bonded particles. Furthermore, some numerical traction
tests were implemented, aiming to find a link between macro tensile stress and micro
cohesive force, as presented with more detail in Appendix. A.

Next, denoting Shcoh the corresponding cohesive Shields parameter, we can pro-
pose the following generalized definition for Shcoh:

Shcoh =
τb

∆ρgd+ ασcoh
=

Shτ
1 + αBog

(3.8)

where Bog is the granular Bond number, already introduced in the literature
(Castellanos, 2005; Claudin and Andreotti, 2006; Anand et al., 2009), which com-
pares cohesion and buoyant weight, and reads:

Bog =
σcoh

∆ρgd
=

C

∆ρgd2
. (3.9)

A high level of cohesion is reached when Bog � 1 while, in the cohesion-less case,
Bog tends to zero and the cohesive Shields number Shcoh coincides in Eq. 3.8 with
the usual definition Shτ . Note also that the constant α, which comes from the
dimensionless coefficients in the expression of the two contributing resistant stresses
(namely cohesion and buoyant weight), is unknown and will consequently be used
hereafter as a free parameter. A value of the order of 1 is consistently expected.

The pertinence of the generalized cohesive Shields number Shcoh in the present
2D configuration and for our cohesive granular samples is tested in Fig. 3.25 where,
in addition to the usual critical Shields number which is further and further away
from the Shields curve as already discussed above, the generalized cohesive Shields
number is also reported (red solid symbols in the figure) with the coefficient α being
fixed to the value 2.7. This particular choice is obtained by direct comparison of
the usual critical Shields number Sh∗τ with the Shields curve, here approximated by
the explicit formulation by Guo (1997) denoted Sh∗Guo and given by Eq. 1.13. To
this end, the value of

(
Sh∗τ
Sh∗Guo

−1
)
is plotted in Figure 3.26 versus the granular Bond

number Bog, calculated from Eq. 3.9. As expected from Eq. 3.8, an almost linear
relation is found and the corresponding slope α can be accurately estimated by linear
regression, namely α = 2.69 ± 0.06 with a correlation coefficient R2 = 0.977. Note
that, coherently, α is indeed rather close to unity.
From Fig. 3.25 and Fig. 3.26, it can be concluded that the generalized Shields

number is fairly relevant to describe the erosion onset for cohesive granular samples
contrarily to the classical Shields number. The generalized Shields number can thus
be used as a reference value for predicting the critical shear stress of our cohesive
materials.

Then, the corresponding expression of the critical shear stress τc, deduced from
the generalized Shields number, thus reads:

τc = ∆ρgd× Sh∗τ × (1 + αBo) (3.10)
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Fig. 3.24. Critical values of the inlet velocity U c
0 versus bond strength C for the

simulated jet erosion tests of cohesive granular beds performed with the different
values in mean particle size d and fluid kinematic viscosity ν as specified in Table 3.4.

where the classical Shields number Sh∗τ can estimated from the explicit expression
of Guo (1997), with α = 2.7 and Bo = C

∆ρgd2 .
Finally, τc can also be written in the initial form of two distinct contributions to

the resistance to erosion:

τc = ∆ρgd× Sh∗τ︸ ︷︷ ︸
buoyant weight + friction

+
α× Sh∗τ × C

d︸ ︷︷ ︸
cohesion/adhesion

(3.11)

Note that, in this expression, the hydrodynamics aspects are included implicitly in
Sh∗τ (Reτ ).
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Fig. 3.25. Critical values of the usual Shields number Sh∗τ and of the generalized
Shields number Shcoh versus shear Reynolds numberRe∗τ for the simulated jet erosion
of cohesive granular beds with the different values in mean particle size d and fluid
kinematic viscosity ν as specified in Table 3.4. The open symbols, which represent
Sh∗τ , are the same as those used in Fig. 3.24 while the red solid symbols for Shcoh are
calculated from Eq. 3.8 with α = 2.7. The solid line represents the explicit Shields
equation by Guo (1997) (Eq. 1.13).
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Fig. 3.26. Plot for all data of Sh∗τ
Sh∗Guo

− 1 versus the granular Bond number Bog,
where Sh∗τ is the critical Shields number obtained in the simulation and Sh∗Guo is
given by the implicit formulation by Guo (1997) in Eq. 1.13. The solid line represents
a linear fit where the slope α is equal to 2.69 ± 0.06 with a correlation coefficient
R2 = 0.977.
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3.4.2 Scour kinetics and erosion law

In this section, we provide an insight into the cohesive soil erosion and scouring
induced by impinging jets in the laminar regime. Moreover, a JET interpretation
model for the two-dimensional case is provided, aiming to estimate the erodibility
parameters (i.e. kd and τc) for our cohesive granular samples.

3.4.2.1 Adaptation of the JET interpretation model

Based on the classical interpretation of the JET presented in section 1.5.3, we pro-
pose here an adaptation to our particular situation of a 2D jet in laminar regime.
As sketched in Fig. 3.27, it is here again assumed that the scour depth evolution
dx
dt

(i.e. erosion rate) is given by the excess shear stress erosion law (Partheniades,
1965), with addition of a power law exponent n for a widespread applicability:

ε̇ =
dx

dt
= kd(τ − τc)n (3.12)

Note that the fluid shear stress at the impingement surface τ can be deduced from
the previous impinging jet analysis (Sec. 3.2), and reads:

τ = τm = 0.137ρfu
2
jRe

1/6
j

(
x+ λ

b

)−2/3

(3.13)

where Rej =
ujb

ν
is the jet Reynolds number and λ the virtual origin given by Eq. 3.1.

The exponent n is usually set equal to unity (n = 1) in JET experiments. However,
we add the exponent as a free parameter since, in the range 0.7 < n < 1.2, it was
found to correctly fit our numerical results presented in the forthcoming Chapter 4.

At equilibrium (dx
dt

= 0), as the final scour depth x∞ is reached, Eq. 3.12 can be
rewritten as:

τ = τc ⇐⇒ x∞ + λ = b

(
0.137ρfu

2
jRe

1/6
j

τc

)3/2

= 0.051bρ
3/2
f u3

jRe
1/4
j τ−3/2

c . (3.14)

It follows for the critical fluid shear stress τc will be:

τc = 0.137ρfu
2
jRe

1/6
j

(
x∞ + λ

b

)−2/3

. (3.15)

By introducing Eq. 3.13 and Eq. 3.15 into the erosion law (Eq. 3.12), one gets:

dx

dt
= 0.137ρfu

2
jRe

1/6
j kd

[(
x+ λ

b

)−2/3

−
(
x∞ + λ

b

)−2/3
]n

(3.16)

Then, a new variable ξ = (x+λ
b

)−2/3 can be defined and substituted to x into
Eq. 3.16, as follows:

dx

dt
= −3

2
bξ−5/2dξ

dt
= 0.137ρfu

2
jRe

1/6
j kd(ξ − ξ∞)n (3.17)
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After separation of variables, it becomes:

dξ

ξ5/2(ξ − ξ∞)n
= −2

3

0.137ρfu
2
jRe

1/6
j kd

b
dt = − dt

ter
(3.18)

with
ter =

10.95b

ρfu2
jRe

1/6
j kd

. (3.19)

The integration of Eq. 3.18 from the initial condition, i.e. ξ = ξ0 and t = t0, gives:

F (ξ) =

∫ ξ(t)

ξ0

dξ

ξ5/2(ξ − ξ∞)n
= − t

ter
(3.20)

As one can see, the integral F (ξ) is simply the opposite of the dimensionless time
t/ter and depends merely on ξ0 and ξ∞, with F (ξ)→∞ when ξ → ξ∞.

Next, the following procedure was used in order to find the erodibility parameters
(kd and τc) for several scouring simulations.

• Determination of ξ0 = (x0

b
)−2/3 and ξ∞ = (x∞

b
)−2/3 from image processing (see

below).

• Plot of f(ξ) = ξ−5/2(ξ − ξ∞)−n in the range [ξ∞, ξ0].

• Numerical integration of f(ξ) = ξ−5/2(ξ − ξ∞)−n between ξ0 and ξ∞ using
N intervals. Namely, F (ξ) =

∫ ξ
ξ0
f(ξ)dξ =

∑
Fi with, for 1 ≤ i ≤ N , ξi =

ξ0 + (ξ0−ξ∞)
N−1

(i− 1) and xi
b

= (ξi)
−3/2.

• Introduction of the crater depth ∆xi = xi − x0 and plot of ∆xi
b

as a function
of −Fi = ti

ter
.

• Adjustment of the numerical results ∆x
b

vs t/ter, using ter as a free parameter,
and deduction of kd from Eq. 3.19.

• Direct calculation of the critical shear stress τc from Eq. 3.15.

3.4.2.2 Time measurement of crater depth

The determination of the scour depth ∆x is based on the assumption that ∆x is
directly proportional to the square root of the surface A of the crater. The evolution
of the scour depth thus reads:

∆x = ∆x∞

(
A

A∞

)1/2

(3.21)

This assumption is relevant in the context of a self-similar crater profile, with the
width of the crater being proportional to its depth.

The surface of the crater A can be found using image processing techniques with
the help of the free software ImageJ. ∆x∞ and A∞ are the depth and the surface of



114 3.4. Impinging jet erosion: cohesive soil
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Fig. 3.27. Illustration of the jet erosion test where x0 is the initial height, x the
actual height, and ∆x the scour depth. The grey zone is the scoured area denoted
A.

the crater at equilibrium, respectively. They are determined here by time average of
the sequential images of the evolution of the crater (see Fig. 3.30), once equilibrium
is reached. The result of the time average is shown in Figure 3.31.

The crater depth ∆x can also be estimated straight forwardly from tracking the
interface of the crater at its center. From Fig. 3.28, we can check that both methods
(area and interface) give rather close results, especially at the equilibrium since they
both reach approximately the same plateau ∆x∞. As a consequence, both methods
will give the same estimation of τc. However, they will give different kd values,
since the evolution of both curves before reaching the plateau are not similar, the
estimation from the area presenting a faster kinetics.
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Fig. 3.28. Different methods used to evaluate the evolution of the crater depth ∆x
versus time for C = 1.2 N and u0 = 2 m s−1.

Fig. 3.29. Initial sample used for the JET simulation and composed of 5000 par-
ticles with dmean = 2 mm.



116 3.4. Impinging jet erosion: cohesive soil

Fig. 3.30. Snapshots of the crater evolution for a 2D Jet Erosion Test at increasing
times obtained after some image processing.
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Δx∞

Fig. 3.31. A typical image resulted from post-processing techniques, using time
average of the evolution of the scour area (black surface) once equilibrium is reached
for ν = 40× 10−6 m2/s, u0 = 2 m/s, C = 2 N, x0 = 70 mm, and ∆x∞ = 23.5 mm.
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3.4.2.3 Test of the interpretation model

In order to test the validity of this interpretation model proposed above for our
2D erosion test (JET), a series of simulation is performed by fixing the maximal
jet inlet velocity U0 (or equivalently the mean inlet velocity uj = 2

3
U0), while the

cohesive bond strength C is varied systematically in the range [1.0-2.0] N. Three
values are chosen for U0: 1.9, 2.0, and 2.2 m/s. The simulation input parameters
are summarized in Table 3.5. The initial sample used for the simulation is shown in
Figure 3.29.

Table 3.5. Input parameters for our systematic study of the numerical jet erosion
test (JET)

Solid particles Fluid

Density ρg: 2500 kg/m3

Normal stiffness kn: 1.10× 105 N/m
Shear stiffness kt: 1.10× 105 N/m
Friction coefficient µ: 0.30
Rolling friction µr: 0.1
Restitution coefficient e: 0.2
Gravitational acceleration g: 9.81 m/s2

Density ρf : 1000 kg/m3

Kinematic viscosity ν:
4× 10−5 m2/s
Nozzle diameter b: 5 mm
Impingement height H: 70 mm
Inlet velocity U0: 1.9, 2.0,
and 2.2 m/s

The image sequences, obtained at the end of each simulation and based on particle
positions, are post-processed to quantify the time evolution of the scour depth ∆x
from the crater area (as explained in subsection 3.4.2.2). Then the crater position
x(t) = x0 + ∆x(t) is calculated, especially its asymptotic value x∞, reached at the
equilibrium. Figure 3.32a shows the evolution of the non-dimensional crater depth

∆x
∆x∞

versus time t for the simulation data. It is found that a simple exponential law
of the form 1− exp(−Bt) can satisfactorily model the evolution. In this particular
example, a coefficient B = 2.31±0.05 is obtained with a goodness of fit R2 = 0.9229.

Next, we can turn to the interpretation model by plotting, based on both the
input parameter ξ0 and the measured value ξ∞, the function f(ξ) = ξ−5/2(ξ − ξ∞)−1.
Note that here, for simplicity, we first set the exponent n = 1 for the erosion
law. Following this, a numerical integration of f is implemented for each ξ-value
in-between ξ0 and ξ∞. One thus gets t

ter
= −F (ξ) =

∫ ξ0
ξ
f(ξ)dξ), as shown in

Figure 3.33.
Once again, when the non-dimensional crater depth ∆x

∆x∞
calculated with the in-

terpretation model is plotted versus the dimensionless time t
ter

in Fig. 3.32b, an ex-
ponential law 1− exp(−A t

ter
) can fairly well fit the analytical curve. In the present

case, the value found for the parameter is A = (470 ± 1) × 10−5 with a correlation
coefficient R2 = 0.9988.

Finally, the adjustment of the numerical data with the model allows the identifi-
cation of the characteristic erosion time ter as ter = A/B. For the example shown
in Fig. 3.32, one gets ter = A/B = (204± 5)× 10−5 s. Then kd can be deduced from
Eq. 3.19 and reads kd = (6.45± 0.16)× 10−3 m3/N/s.
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Fig. 3.32. Fit of the non-dimensional crater evolution. (a) Numerical data for
C = 1.2 N and U0 = 2.0 m/s; (b) Interpretation model with ∆x∞ = 0.038 m.
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integration of f(ξ) in the corresponding range from ξ0 = 0.1357 to ξ∞ = 0.1094.
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Figure 3.34 and Figure 3.35 present the erodibility parameters kd and τc deduced
from our JET simulations for different values of the cohesive bond strength C,
respectively.

As regards kd, it can be observed two important points. First, kd consistently
decreases when the cohesion strength gets higher. Second, for a given cohesion
strength, the results vary moderately when the jet inlet velocity U0 is changed,
which is not expected as the erodibility parameters are supposed intrinsic of the
material and should not be modified when the cohesion remains the same.

The same remarks hold for τc, but in a more pronounced manner. Indeed, for a
given value of U0, τc is poorly dependent on C, whereas an almost linear relation
is expected from both Eq. 3.10 and the values obtained in the previous section as
regards erosion onset. This means that the JET interpretation model over-predicts
τc at low cohesive strength C and under-predicts it at high cohesive strength C
values. Moreover, a strong and non-consistent sensitivity to the U0-value is found.
The shortcomings of the interpretation model are discussed and partly explained
just below.
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Fig. 3.34. Erosion coefficient kd versus cohesive bond strength C obtained with
three different inlet velocities: U0 =1.9, 2.0, and 2.2 m/s.
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Fig. 3.35. Critical shear stress τc versus cohesive bond strength C obtained with
three different inlet velocities: U0 =1.9, 2.0, and 2.2 m/s. The data obtained for
erosion onset in the previous section have been added (×) while the solid line stands
for Eq. 3.10.

3.4.2.4 Influence of the exponent n

The results presented above were obtained with a fixed value of the exponent n = 1.
Here, we specifically examine the influence of the exponent n in the interpretation
of the results and subsequent estimation of the erodibility parameters kd and τc.

As a first observation on the basis of the model, the critical shear-stress τc is
obviously independent of n (Eq. 3.15) and only an impact on the erosion coefficient
τc is expected.

From Figure 3.36a, it is indeed observed that the exponent n affects only the
characteristic time of erosion ter, and thus kd, but not the final scour depth that
is solely ruled by τc. Moreover, the non-dimensional evolution of the crater depth
(∆x/∆x∞) for different n-values can be collapsed on a unique curve with the help
of a fitting parameter χn as shown in Figure 3.36b. This parameter χn is obtained
by adjustment of the dimensionless time t/ter to the reference value for n = 1:
(ter)n = χn(ter)n=1. A linear variation of ln (χn) versus n is found empirically in
Figure 3.37 and reads: ln(χn) = 4.55(n−1). Thus, for a given value of the exponent
n, the erosion time ter is simply deduced from its reference value obtained for n = 1
and, finally, the actual erosion coefficient reads:

kdn = kdn=1 × exp [4.55(1− n)] (3.22)
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Fig. 3.36. Variation of the non-dimensional evolution of the crater depth ∆x
∆x∞

for
different values of the exponent n versus: (a) t/ter; (b) t/(χnter). The simulation
parameters are: C = 1.2 N and U0 = 2.0 m/s. The simulation data was normalized
using the value of ter calculated when n = 1.
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Fig. 3.37. Variation of ln (χn) versus n for three different values of the cohesive
strength C and for U0 = 2.0 m/s. The red solid line corresponds to a linear fit of
the data according to equation: ln(χn) = 4.55(n− 1) (with a correlation coefficient
R2 = 0.9996).
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3.4.2.5 Critical discussion

Our interpretation model is clearly questionable: first, it gives different erodibility
parameter values (kd and τc) for different jet inlet velocity U0 but with a same co-
hesion strength C; second, the critical shear-stress deduced from the model is not
consistent with direct measurements at erosion onset. Such issues have also been
underlined in JET experimental studies when using different interpretation models.
Khanal et al. (2016) observed indeed a rather similar variability of the erosion pa-
rameters with jet injection velocity, initial nozzle to soil distance, and time intervals
between two successive measurements. These authors also observed a large disper-
sion of the results for three different JET interpretation models: the interpretation
model based on the Blaisdell solution of the final scour depth and proposed by
Hanson and Cook (2004); the scour depth method proposed by Daly et al. (2013);
the iterative method proposed by Simon et al. (2011). Additionally, Brunier-Coulin
et al. (2017) found a dependency between the erodibility parameters and the ini-
tial conditions of the JET test for experiments performed with super-hydrophobic
sand. To conclude, although the JET test is relevant for characterizing soil resis-
tance to erosion by estimating the erodibility parameters (kd and τc), different and
non-equivalent interpretation models exist, with a huge influence on the inferred
values of soil’s erodibility.

As regards, our numerical simulations applied to 2D JET with cohesive granular
samples, some shortcomings can be underlined about the applicability of the revised
interpretation model. Indeed, from an accurate observation of the simulation re-
sults for low cohesive bond strength and how illustrated in Figure 3.38, two layers
of particles can be distinguished above the front of the cohesive matrix: First, a
layer composed of eroded grains in motion and, second, another non-eroded layer,
composed of both cohesion-less grains and a number of small cohesive aggregates,
that is subjected to a moderate bedload transport, induced in particular by the jet’s
lateral oscillations. The estimation of the equilibrium depth ∆x∞ being based on
the crater’s profile, this could explain why the value directly deduced for the critical
fluid shear stress τc appears over estimated for low cohesive bond strengths C com-
pared to the erosion onset values of Eq. 3.10. In reality, both layers are constituted
of small grains or aggregates that can be easily carried away in suspension by the
water flow. This issue will be fixed in forthcoming Chapter 4 by deleting the eroded
particles in the simulation. However, if used here, such a deletion induces both an
under-estimation of kd and an increase of kd with C which is clearly non physical.

Obviously, a number of physically sounded criticisms can also be formulated, more
generally, about several speculative assumptions and unrealistic over-simplifications
in all the different models used for JET interpretation. First, the reference situation
used to estimate the shear-stress on a scour crater is the one of an impinging jet
on a flat and smooth wall that does not account for the flow re-circulation inside
the crater and is surely a strong and poorly realistic assumption. Second, only the
maximal shear stress value is used whereas the stress distribution on a flat wall is
strongly heterogeneous and presents a stagnation point in-between two symmetrical
peaks as shown in Chapter 1. However, our simulation results with a fixed granular
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Fig. 3.38. JET simulation with ν = 40×10−6 m2/s, U0 = 1.9 m/s, C = 1.4 N, and
x0 = 70 mm. The eroded grain are depicted in red while grey color is used for the
others. The cohesive bonds are represented in orange color. Two layers profiles are
shown in a zoom (right) where the crater shape and de-cohesion front profile from
the cohesive soil matrix are depicted by a black and a red solid lines, respectively.

layer (section 3.2.2) exhibit substantial shear-stress fluctuations compared to the
smooth wall case.

In next Chapter 4, this issue of spatially distributed and time dependent hydrody-
namic stresses is circumvented by the use of a Couette flow which enables a uniform
and stationary shear stress at the soil surface that is consequently kept flat.
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Couette shear flow erosion
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4.1 Introduction

This study is dedicated to erosion induced by a laminar tangential Couette flow
with the aim of imposing a constant shear-stress and measuring the corresponding
erosion rate of a cohesive granular soil. Then, from such separate measurements
of shear-stress and erosion rate, the relevance and use of empirical erosion laws
can be checked and tested. Once such a law selected, erodibility parameters can be
evaluated, especially the critical shear stress τc and the erosion coefficient kd. Next, a
parametric study is performed by varying the inter particle cohesion and the particle
size to investigate the link between erodibility at sample scale and cohesive contact
law at particle contact scale.

4.2 Model for 2D Couette flow erosion

4.2.1 Constant shear stress configuration

The present flow configuration consists of applying along the upper surface of a
cohesive sample a constant shear fluid flow, also denoted laminar Couette flow, as
shown in Figure 4.1. It is worth noting that there are however several options to keep
the fluid shear stress constant. For example, an increase of the inlet velocity over
time according to the mass loss, could be implemented, or a progressive lift upward
of the soil sample as is achieved in the EFA test (see chap 1). The first choice would
require increasingly large velocities that are not convenient for the LBM simulation.
So, the second option is selected, except that a progressive displacement downward
of the fluid inlet boundary condition is preferred to a global upward motion of the
granular sample. This is sketch in Figure 4.2.

In the boundary layer, the fluid shear stress is defined as:

τ = ρfν
U0

e0

(4.1)

where U0 is the imposed shear velocity at the upper boundary of the LBM domain,
e0 is the gap between the upper boundary and the sample surface, ρf and ν are the
density and kinematic viscosity of the fluid, respectively.

The flow Reynolds number reads:

Re =
U0e0

ν
. (4.2)

After Derksen (2011), the particle Reynolds number in such a shear configuration
should be defined as:

Rep =
U0d

2

e0ν
(4.3)

with d the particle diameter.
Table 4.1 summarizes the geometrical, material and model parameters used for

our simulations of shear flow erosion.
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Table 4.1. Input parameters for our parametric study of shear flow erosion

Solid phase Fluid phase

Particle mean size, dmean: 2, 3,
and 5 mm
Density ρg: 2500 kg/m3

Normal stiffness kn: 1.10× 105 N/m
Shear stiffness kt: 1.10× 105 N/m
Friction coefficient µ: 0.30
Rolling friction µr: 0.1
Restitution coefficient e: 0.2
Gravitational acceleration g: 9.81 m/s2

Bond strength, C: [1-11] N

Density ρf : 1000 kg/m3

Kinematic viscosity ν:
2× 10−4 m2/s
Lattice speed, c : [50-100] m/s
Hydraulic radius factor, Rh: 0.8
Shear fluid velocity, U0: [1-10] m/s
BC’s offset from surface, e0: 5 mm
Outlet pressure, Pout: 0 Pa

4.2.2 Boundary conditions

The boundary conditions used for the shear flow erosion simulations are the follow-
ing, as sketched in Fig.4.1: Outlet with zero pressure (Pout = 0) applied at the left,
right, and at the bottom of the domain; Constant velocity inlet (U0) imposed at the
top of the domain in the x direction. The particles located at both sides and at the
bottom are fixed (depicted in black in Fig. 4.1).

Note however that fixing these particles at the lateral boundaries could progres-
sively form a kind of basin since they will act like as a solid wall. Consequently, to
get a uniform bed throughout the top surface of the sample, the lateral grains will
be progressively suppressed following the sample’s mass loss over time. Thus, the
fluid film thickness e(t) increases as the mean height of non-eroded grains decreased
(see Figure 4.2), according to the following equation:

e = H − 2ymean (4.4)

with H the domain height and ymean = 1
Nne

∑
i yi, where i represents a given

non-eroded grain at altitude yi within a total number Nne of remaining non-eroded
particles.

As will be used in the following, the slope of the evolution of e with time is directly
equal to the soil’s erosion rate.

The present configuration corresponds to a plane Couette flow over a flat smooth
surface for which an analytical solution is given by the following self-similar relation
(Tritton, 1959):

ux(y, t) = ux

(
y

2
√
νt

)
= U0

[
1− erf

(
y

2
√
νt

)]
. (4.5)

Note that, in this flow configuration, a diffusion time tν = e2
0/ν is required in order

to reach a stable (steady) solution (i.e. steady linear velocity gradient) starting
from fluid at rest. To shorten the convergence time, the velocity at the fluid film
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was initialized at initial time step t = 0 by the following analytical expression that
already corresponds to the theoretical steady solution:

u(y) =

{
0 0 < y < H − e0

U0(y − (H − e0))/e0 H − e0 < y < H
(4.6)

Fig. 4.1. Simulation domain and boundary conditions.

Fig. 4.2. Evolution with time of the velocity inlet boundary condition and fluid
film thickness e(t).
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In this flow configuration, the TRT collision model is used with the combination
of the PSM scheme, since this choice presents several advantages in this particular
case. Indeed, as the PSM collision step is performed also inside the particle’s nodes,
a removal of the eroded grains from the system can be done easily, without significant
changes to the algorithms. Only slight perturbations of the velocity and pressure
fields after a grain’s removal are observed and tend to be very short-lived, since they
actually escape the system once they reach the outlet boundaries. Furthermore, the
TRT scheme provides a smooth pressure field around the particles as already shown
in the validation section (Sec. 2.6). Accordingly and as detailed just below, it is
decided here that all eroded particles are removed from the LBM-DEM calculation.
This way, we can focus exclusively on the erosion process, inhibiting any subsequent
bedload transport of eroded particles. In return, a relevant criterion must be used
to distinguish between eroded and non-eroded particles. In particular, an issue may
arise when cohesion is very weak due to the bed load transport at the top of the
bed which is induced by the shear flow. It is therefore difficult and rather arbitrary
to determine a threshold for eroded, and consequently deleted, particles. For this
reason, only high enough cohesive cases are studied here, namely for cohesive bond
strength C in between 1 and 11 N as specified in Table 4.1.

4.2.3 Eroded grains criteria

The criterion for eroded grain is chosen based on both a total kinetic energy threshold
(translation plus rotation) and a condition on the particle coordination number. In
other words, once a grain reaches a kinetic energy above a given threshold and loses
all contacts (i.e cohesive and non-cohesive contacts), it will not be considered further
in the simulation and will be classified as eroded, with no more interaction with the
fluid flow.

In Figure 4.3, different criteria are tested to distinguish between eroded and non
eroded grains in a typical simulation. As can be seen, there exists a rather broad
range of kinetic energy threshold giving rise to comparable values for the erosion
rate. From a physical standpoint, an order of magnitude for the kinetic energy
threshold can be obtained considering the inertial free fall of a single particle whose
terminal settling particle velocity is U =

√
∆ρ
ρf
gd. Thus the corresponding kinetic

energy E = 1
2
mU2 reads:

E =
π

8
ρg

∆ρ

ρf
gd3 (4.7)

As can be seen in Fig. 4.3, this expression is indeed in quantitative agreement with
the previous blind test, and, furthermore, enables dimensional analysis to account
for any change in particle size or densities. It will consequently be used in the
following.
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Fig. 4.3. Time evolution of the eroded particle height for different kinetic energy
thresholds and with the following simulation parameters: d = 3 mm, ν = 200×10−6

m2/s, U0 = 4 m/s, e0 = 5 mm, and C = 3 N. The dashed line corresponds to the
proposed expression in Eq. 4.7.

4.2.4 Erosion rate

As already mentioned, the erosion rate is measured based on the evolution of the
fluid’s shearing thickness e, which increases over time due to particle detachments
from the cohesive granular medium at the bed surface. Since the initial fluid gap
e0 will be kept approximately constant during the simulation, the evolution of the
fluid film thickness over time e(t) is calculated based on Eq. 4.4. Thus the erosion
rate ε̇ is simply the slope of the curve e(t)− e0 versus time t.
Figure 4.4 shows a typical evolution of the system. The vertical position of the

erosion front, i.e. e(t)−e0, is displaced at a roughly constant rate ε̇ that depends on
the shear velocity U0 as displayed in Figure 4.5. The erosion rate obviously increases
with U0 as expected.
The same analysis can be repeated for different values of the fluid shear-stress τ

and the corresponding erosion rates ε̇ are plotted against τ in Figure 4.6. A more
or less linear evolution is found but the erosion rate does not continuously decrease
to zero when the shear-stress is progressively reduced. A brutal jump is observed,
defining just below a domain where no erosion is measured at sample scale although
bonds degradation exists.

A closer examination of a cohesive soil stressed in this specific range points out
the occurrence of a crack that opens quickly and develops downward, as shown in
Fig. 4.6.



132 4.2. Model for 2D Couette flow erosion

To overcome this shortcoming, our cohesive contact law is enriched by a damage
model (see section 2.2.3 in chap 2) as explained in the next section.

Fig. 4.4. Snapshots of the typical evolution of the sample erosion by a shear fluid
flow at three successive times. Only part of the simulated domain is shown. The
fluid velocity field is depicted through a color scale, from blue (0 m/s) to red (5
m/s). The cohesive bond network is coloured in white and the particles in red.
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Fig. 4.5. Time evolution of the erosion front for a cohesive bond strength of C = 3
N (basic cohesion scheme without damage model) and with the following simulation
parameters: d=3 mm, ν = 2.10−4 m2/s, e0 = 5 mm, and U0 = 5 m/s (blue curve),
6 m/s (black curve), and 7 m/s (red curve).



134 4.2. Model for 2D Couette flow erosion

Fig. 4.6. Erosion rate ε̇ versus fluid shear stress τ (basic cohesion scheme without
damage model). The dashed line stands for a linear trend. Inset: Non-eroded sample
in a damaged state, with an oblique crack downward.
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4.2.5 Addition of the damage model

As shown above, the basic cohesive bond scheme presented in section 2.2.2 fails to
explore the lower range of fluid shear stress values due to the occurrence of large
stationary cracks.

To inhibit such deep fracturing process, we propose here to include a damage
model which can slow down the development of crack opening to the benefit of
surface erosion of stressed particles in direct contact with the main fluid shear flow.
This damage model is the one presented in section 2.2.3 with two main parameters:
a damage threshold C0 and a characteristic time η.

Figure 4.7 shows the influence of the damage time η on the temporal rate of the
erosion front (i.e. e(t)−e0) for a given damage threshold C0 = 0.1 N. In this case (i.e.
C = 3 N and U0 = 5 m/s), it can be seen that the erosion rate is almost unchanged,
meaning that η has no critical impact on the results. Then, if η is fixed to 0.01 and
U0 varied, the erosion rate can now be defined in the previously inaccessible range
of fluid shear stress as shown in Figure 4.8.

To confirm this finding, a parametric study is performed by varying the cohesive
strength C, the damage time η, and the fluid shear stress τ while fixing C0 = 0.1
N. The results are displayed in Figure 4.9. On this basis, we find that the higher η
the lower the erosion rate, up to values close to the no damage case. It is concluded
that the characteristic time η = 0.01 does not influence the erosion rate for cohesion
strength C in the range [1-5] N. This latter value will thus be used in this range,
whereas η = 0.1 is more suitable for cohesion strength C in the range [7-11] N.

Another option is to find and fix an optimal ratio C/C0 instead of varying η in
each case. Since the initial damage threshold C0 affects also the erosion rate and is
directly in proportion to the damage time (i.e. the higher C0 the faster the damage).
This possibility is a priori more convenient but requires many simulation data and
subsequently large simulation times.
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Fig. 4.7. Influence of the characteristic time of the damage model η for C = 3 N
and U0 = 5 m/s.
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Fig. 4.8. Erosion rate ε̇ versus fluid shear stress τ for C = 3 N whether transient
damage model is considered (red symbols) or not (black symbols). The damage
threshold is C0 = 0.033× C and the characteristic time η = 0.01.
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0 50 100 150 200 250 300 350 400 450
0,00

0,01

0,02

0,03

0,04  No damage
  0.1
 0.01

Er
os

io
n 

ra
te

, 
(m

/s
)

Fluid shear stress, (Pa)

(d) C = 11 N

Fig. 4.9. Erosion rate versus fluid shear stress for different values of the cohesive
strength C, without (cross symbols) or with (black and red symbols) the damage
model using C0 = 0.1 N and η = 0.01, 0.05, or 0.1.
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4.3 Parametric study of the erosion law at sample
scale

4.3.1 Choice of an accurate empirical law

As mentioned before, the variation of the erosion rate with the fluid shear stress
is found approximately linear, except at large shear stress values where a less pro-
nounced evolution is clearly observed, for instance in Fig. 4.8. Consequently, a linear
erosion law as usually assumed in previous studies, namely ε̇ = kd(τ − τc), is not
sufficiently accurate. Thus, it is here abandoned in favour of a more general power
law expression: ε̇ = kd(τ − τc)n. Note that the previous linear law is recovered for
n = 1.
As illustrated in Figure 4.10, the goodness of the fit is indeed improved when using

the power law regression. In this particular example, fixing the exponent n = 1
gives kd = 1.34 × 10−4 m3/N/s and τc = 32.84 Pa with a coefficient of correlation
R2 = 0.9931. Then, if n is used as a free parameter, one gets kd = 3.57 × 10−4

(Note that kd units are no more m3/N/s but m2n + 1/Nn/s), τc = 40.73 Pa, and
n = 0.814 with a coefficient of correlation R2 = 0.9968 which is slightly increased.
Such an improvement is systematically observed to benefit of the power law fit.
Some examples of accurate adjustments are presented in Figure 4.11 for different
values of the cohesive strength C and with corresponding exponents being either
smaller, close, or larger than 1.
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Fig. 4.10. Erosion rate ε̇ versus fluid shear stress τ for C = 3 N whether the
transient damage model is considered (red symbols) or not (black symbols). The
damage threshold is C0 = 0.033× C and its characteristic time η = 0.01. The solid
line in red represents a linear fit of the damage data (red symbols) restricted to
shear stresses lower than 300 Pa (R2 = 0.9931). The dashed line in blue stands for
a power law regression over the whole data range (red symbols), giving an improved
coefficient of correlation R2 = 0.9968.
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Fig. 4.11. Erosion rate versus fluid shear stress for different values of the cohesive
strength C with use of the damage model (C0 = 0.1 N, η = 0.01 for C = 5 N, and
η = 0.1 for C = 7 and 11 N). The dashed lines represent power law regressions over
the whole data range with the following fitting parameters: n = 0.88, τc = 42.67
Pa, kd = 2.43 × 10−4, and R2 = 0.9959 for C = 5 N (triangle symbols); n = 1.00,
τc = 52.34 Pa, kd = 1.15 × 10−4, and R2 = 0.9963 for C = 7 N (circle symbols);
n = 1.08, τc = 69.59 Pa, kd = 6.50 × 10−5, and R2 = 0.9977 for C = 11 N (square
symbols).

4.3.2 Influence of the parameters of the power erosion law
(exponent n, τc, and kd)

Figure 4.12 shows the variation of the empirical exponent n for different values of the
cohesion strength C. We can see that n increases with C, approximately from 0.7 to
1.1 when C varies in-between C = 1 N at minimum and C = 11 N at maximum. As a
reminder, the exponent n is usually taken equal to 1 for simplicity, which corresponds
to the linear excess shear stress erosion law. In practice, the exponent n can however
be higher or lower than 1 after the literature. Moreover, n appears merely as a
fitting parameter of the experimental data, or also the numerical data as presented
in previous Chapter 3, and does not provides a relevant physical significance (Bonelli
and Brivois, 2008), contrarily to the two other erodibility parameters.
The variation of the critical shear stress τc versus the cohesive strength C is now

presented in Figure 4.13. As expected, τc increases almost monotonously with C.
Similarly, Figure 4.14 shows the erosion coefficient kd versus the cohesive strength
C. This time, kd decreases as C increases which is fairly consistent with the general
trend observed in experiments and in agreement with the commonly accepted idea
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Fig. 4.12. Exponent n versus cohesive bond strength C for a mean particle diameter
d = 3 mm.
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Fig. 4.13. Critical fluid shear stress τc versus cohesive bond strength C for a mean
particle diameter d = 3 mm.

that the higher the cohesion strength, the less the material will be eroded.
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It is worth pointing out that the critical shear stress τc for natural cohesive soil
ranges from 0 to 103 Pa while the erosion coefficient ker varies from 10−6 to 10−2

s/m (Mercier, 2013). As already explained, this coefficient ker can be used alter-
natively to kd, when the erosion rate is expressed as a mass loss per surface and
time units instead of a volume. Consequently, the following relation holds between
both coefficients: ker = ρdkd with ρd the soil’s dry density. For a common soil,
ρd ∼ 1500 − 2000 kg/m3 and the corresponding range for kd reads approximately
10−5 to 10−9 m3/N/s. So, quantitatively and despite the fact that our simulation is
bi-dimensional with circular bonded particles, the erodibility values obtained from
our numerical results are comparable in terms of the critical shear stress and at least
two orders of magnitude higher as regards the kd values. The kinetics is consequently
substantial faster in the simulation compared to real conditions.
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Fig. 4.14. Erosion coefficient kd versus cohesive bond strength C for a mean particle
diameter d = 3 mm.

As mentioned in Chapter 1, if some authors did not find any correlation between
τc and kd (Knapen et al., 2007), several others have suggested the existence of an
underlying relation, generally through a power law of the form kd ∝ τ−γc . However,
as we explained, the empirical values for the exponent γ found in the literature
are quite dispersed, ranging from γ ≈ 0.4 to γ ≈ 2.4 (Daly et al., 2015; Julian and
Torres, 2006; Karamigolbaghi et al., 2017; Karmaker and Dutta, 2011; Konsoer et al.,
2016; Layzell and Mandel, 2014; Nguyen et al., 2017; Thoman and Niezgoda, 2008).
Coming back to our numerical results, Figure 4.15 shows the erosion coefficient kd
plotted versus the critical shear stress τc. An approximate power law evolution of
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kd with τc can be proposed and reads:

kd = 1.12× 106τ−5.88
c (4.8)

This value γ ∼ 5.9 is even further away from the experimental ones, especially from
γ = 0.5 which was initially found by Hanson and Simon (2001) and later suggested to
be consistent with a dimensional analysis (Andreotti et al., 2013). As a consequence,
the present result confirms that assuming a general relation between both erodibility
parameters seems to be an hazardous postulate although an inverse correlation is
clearly evidenced.
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Fig. 4.15. Erosion coefficient kd versus critical shear stress τc for a mean particle
diameter d = 3 mm. The solid line in red stands for Eq. 4.8.

4.3.3 Influence of the mean particle diameter

The results presented above were obtained with only one value of the mean particle
diameter, namely d = 3 mm. It is thus interesting to study the effect of varying the
particle diameter on soil’s erodibility (i.e. kd and τc). To this end, two additional
particles sizes are simulated: d = 2 and 5 mm. The evolution of both the critical
fluid shear stress τc, the erosion coefficient kd, and exponent n versus the cohesive
bond strength C for different particle sizes are shown in Figure 4.16, Figure 4.17,
and Figure 4.19, respectively.

Figure 4.18 shows evolution of erosion coefficient kd versus critical shear stress τc
for different particle mean diameters d = 2, 3, and 5 mm. It can be seen that the
results for d = 2 and 3 mm are rather close, whereas the data for d = 5 mm do not
follow the same evolution.
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Fig. 4.16. Critical fluid shear stress τc versus cohesive bond strength C for different
particle sizes: d=2, 3, and 5 mm.
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Fig. 4.17. Erosion coefficient kd versus cohesive bond strength C for different
particle sizes: d=2, 3, and 5 mm.

It can be seen that the smaller particle sizes require higher critical fluid shear
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stress values τc in order to be eroded, whereas the larger particle sizes need lower
values. This behaviour was already observed and explained in the previous chapter
dedicated to the impinging jets case (see section 3.4.1). Conversely, for a given
cohesion strength, the erosion coefficient kd consistently increases with d, especially
for d = 5 mm. Additionally, when plotting kd versus τc in Figure 4.18, one can gather
the data together accordingly to previous Eq. 4.8, except for the series obtained with
d = 5 mm. The same difference for d = 5 mm is also observed for the exponent n
of the erosion law as shown in Figure 4.19. The forthcoming section will test if the
previous dimensional analysis developed in Chapter 3 can account for this influence
of the particle size.
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Fig. 4.18. Erosion coefficient kd versus critical shear stress τc for different particle
sizes: d=2, 3, and 5 mm. The solid line in red stands for Eq. 4.8.

Logically, the critical shear stress τc deduced from the erosion law should identify
with the onset value measured directly at erosion initiation and reported in the
classical Shields diagram. To this end, our data for critical shear stress τc for different
mean particle sizes d are used to calculate both the usual critical Shields number
Sh∗τ and the generalized critical Shields number Sh∗coh (from Eq. 3.8 with α = 2.7)
as well as the shear Reynolds number given by: Re∗τ =

√
τc
ρf

d
ν
. Then, both critical

Shields numbers Sh∗τ and Sh∗coh are plotted versus the shear Reynolds number Re∗τ
in Figure 4.20 and Figure 4.21, respectively.

It can be seen that using directly Eq. 3.8 with α = 2.7 for Couette shear flow
erosion configuration fails not only to gather the data in the Shields diagram but
also to agree, even roughly, with the Shields curve, except possibly for low cohesion
strengths C < 2 N. As the value α = 2.7 in the expression of the generalized Shields
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Fig. 4.19. Exponent n versus cohesive bond strength C for different particle sizes:
d=2, 3, and 5 mm.

parameter in Eq. 3.8 was obtained for impinging jets with 0 < C < 3.2, it may not
be valid anymore outside this range of cohesive bond strength. To verify this, the
ratio Sh∗coh

Sh∗Guo
− 1 is plotted in Figure 4.22 as a function of the granular Bond number

Bog calculated from Eq. 3.9, similarly to previous Fig. 3.26.
In this graph, if an approximate collapse of the data is now conceivable, the ex-

cepted proportional relation is however no more recovered, even when the coefficient
α is used as a free parameter. An empirical alternative, but without any physical
basis, could be to find a proper function Ψ(Bog) able to interpolate the data while
respecting the proportional law αBog at small granular Bond numbers. For instance,
one can use:

Ψ(Bog) = AΨ ln
(

1 +
αBog
AΨ

)
. (4.9)

A regression based on this expression for Ψ provides a coefficient AΨ = 9.8± 0.5
with a correlation coefficient R2 = 0.8906. The function is plotted in Fig. 4.22 and
gives a reasonable interpolation of the data. Nevertheless, the data quickly depart
from the proportional law αBog that is also represented in the graph, typically as
soon as Bog > 5, whereas this expression was found correct at least up to granular
Bond numbers equal to 50 with previous impinging jet results (see Fig. 3.26).

Figure 4.23 shows the new empirical version of the generalized Shields diagram
based on the following definition for Shcoh:

Sh∗coh =
Sh∗τ

1 + Ψ(Bog)
(4.10)
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Fig. 4.20. Usual critical Shields number Sh∗τ versus shear Reynolds number Re∗τ
for the simulated Couette shear flow erosion of cohesive granular beds with different
values of mean particle size: d=2, 3, and 5 mm. The solid line represents the explicit
formulation of the Shields curve in Eq. 1.13 (Guo, 1997).

with the interpolation function Ψ given by Eq. 4.9, α = 2.7, and AΨ = 9.8.
To conclude this section, it can be seen that, although the results are indeed

improved, this approach is poorly relevant and lacks strongly of generality, even
by comparison of our simulations with the two flow configurations. Much work
is consequently required to fully understand the competition between cohesion,
flow stress, friction, and gravity with the final aim to propose an appropriate non-
dimensionalisation, if any.
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Fig. 4.21. Generalized critical Shields number Sh∗coh versus shear Reynolds number
Re∗τ for the simulated Couette shear flow erosion of cohesive granular beds with
different values of mean particle size: d=2, 3, and 5 mm. The solid line represents
the explicit formulation of the Shields curve in Eq. 1.13 (Guo, 1997).
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Fig. 4.22. Sh∗τ
Sh∗Guo

−1 versus granular Bond number Bog for the three different mean
particle sizes: d=2, 3, and 5 mm. Sh∗τ is the usual critical Shields number obtained
in the Couette simulation and Sh∗Guo is given by the implicit formulation of Guo
(1997). The solid line represents the best fit of function Ψ given by Eq. 4.9, with
α = 2.7 and AΨ = 9.8 (R2 = 0.8906), and the dashed line stands for the previous
proportional relation αBog.
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Fig. 4.23. Alternative generalized critical Shields number Sh∗coh = Sh∗τ
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versus
shear Reynolds number Re∗τ . The function Φ is given by Eq. 4.9 with α = 2.7 and
AΨ = 9.8.
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4.3.4 A preliminary micro-mechanical analysis

As an illustration of the micro-mechanical investigations that can be conducted with
our discrete numerical system, the particular forms of solid de-bonding taking place
during the erosion process can be conveniently analysed with a ternary plot of the
bond failure criterion (i.e. (Fn/Cn) + (Fs/Cs)

2 + (M/Mb)
2 = 1) where each de-

bonding event is represented by a point P inside an equilateral triangle, accounting
for the respective contribution of the traction, shear and bending solicitations, as
shown in Figure 4.24.

Figure 4.25 shows a particular example of this micro-mechanical analysis of bond
breakage. The corresponding results suggest that the most efficient types of de-
bonding involve either pure traction (i.e. (Fn/Cn) ∼ 1) or a combination of shear
and bending solicitations with low levels of tensile forces, in the range of (Fn/Cn) ∼
[0.3−0.4]. Furthermore, the micro-mechanical analysis also seems to indicate a pref-
erential de-bonding direction around 60° during the erosion process that is roughly
along the main direction of tensile efforts.

>
>

> >> >

>
>

>

>

>

>

Fig. 4.24. Triangular representation of bond failure condition.

All these extents are supposed greatly dependent on both the particular flow
conditions of the simulation and the chosen material behavior. They thus appear as
a promising line of work for the selection of erosion-resistant materials within the
general assessment of erosion countermeasures.
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(a)

(b)

Fig. 4.25. Micro-mechanical features of the simulated shear flow erosion. (a)
Ternary representation of bond failure conditions involving d = 3 mm, ν = 2.10−4

m2/s, U0 = 5 m/s, and e0 = 5 mm; (b) Angular distribution of cumulative solicita-
tions for all broken cohesive bonds (8647 in total) during the shear flow erosion.

4.4 Discussion

4.4.1 Different rupture modes

As pointed, the cohesive model used in the present study is quite rich, each de-
bonding event during erosion involving a combination of three rupture mechanisms:
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traction, shearing, and bending. It is thus interesting to examine the effect of
excluding one or two breakage mechanisms on the overall behavior of the cohesive
material under an eroding shear flow. Here, in practice, a given breakage mode
can be inhibited by simply multiplying its corresponding threshold component by
a factor 10. Four cases were implemented: (a) excluding shear breakage alone
(10 × T ), (b) excluding bending breakage alone (10 ×M), (c) excluding traction
breakage alone (10×N), (d) excluding simultaneously shear and bending breakages
(10×T , 10×M). The results are summarized in Figure 4.26 in terms of the previous
micro-mechanical analysis.

First, the ternary representations confirm the effectiveness of the practical mul-
tiplication by 10 to inhibit a breakage mode, especially in cases (a), (b), and (d).
This is less obvious in case (c), meaning that the contribution of tensile break-
age still exists, even when the corresponding threshold is one order of magnitude
higher. Considering now the angular distributions of cumulative solicitations, one
can note on the graphs that case (a) and case (b) are very similar, shear and bending
breakages playing almost exactly the same role, respectively, with a fairly increased
contribution compared to the reference situation (see Fig. 4.25). The preferential
de-bonding direction during erosion remains around 60°. For case (c), the distri-
bution is more symmetric, but still giving rise to a preferential mode at about 60°.
Finally, case (d) is an exceptional situation where shear and bending breakages are
excluded, and, if the previous 60° direction still contributes substantially, the pref-
erential angle is now around 90°, along indeed with the tensile efforts which thus
appear significantly modified compared to the reference case.
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Fig. 4.26. Ternary representation of bond failure conditions with excluding shear
breakage (left) and angular distribution of cumulative solicitations for all broken
cohesive bonds (right) for: (a) excluding shear breakage (10 × T ), (b) excluding
bending breakage (10×M), (c) excluding traction breakage (10×N), (d) excluding
shear and bending breakage (10× T , 10×M).
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Fig. 4.27. Time evolution of the erosion front for the different cases with d=3 mm
and for the following fluid flow conditions: ν = 2.10−4 m2/s, U0 = 5 m/s and e0 = 5
mm.
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Fig. 4.28. Fluid velocity magnitude (color scale) and cohesive bond network (in
white) contours for the 4 different rupture mode cases: (a) excluding shear breakage,
(b) excluding bending breakage, (c) excluding traction breakage, (d) excluding both
shear and bending breakage. The snapshots are zooms of the middle part of the
channel taken at the same time t = 2.4 s. The solid particle and fluid flow conditions
are the same as in Fig. 4.27.
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The time evolution of the erosion front is shown in Figure 4.27 for the different
cases. Here again, cases (a) and (b) are in very close agreement together and slightly
above but comparable to the reference situation. On the contrary, case (c) is far
less resistant to erosion. As regards case (d), it is rather similar to cases (a) and (b)
during the first moments but the erosion rate then progressively decreases somewhat,
meaning that a linear evolution of the erosion front is less obvious here.

To better understand the similarities and differences observed in the studied cases
compared to the reference situation, the fluid velocity magnitude is plotted in Fig-
ure 4.28, together with the representation of the cohesive bond network. The cor-
responding snapshots are extracted at the same time t=2.4 s and only part of the
domain is shown, basically the middle part of the channel. Once again, and even
if their bond rupture modes are different, cases (a) and (b) show a similar scenario
of erosion where only the superficial layers of the sample are damaged. Slight dif-
ferences can however be detected as regards the occurrence of small oblique cracks
which is favored in case (b). Stronger distinctions can be made for both cases (c)
and (d). The first situation is characterized by an extended damaged depth with a
substantial increase in the number of aggregates. The sample is more fragile when
traction breakage is inhibited and erosion rate increases accordingly. On the con-
trary, when tensile bond ruptures are allowed, a higher resistant is observed through
the occurrence of a significantly reduced extent of the superficial damaged depth.
Even if less visible here, these observations are to a certain extent reminiscent to
the previous exploratory study presented by Philippe et al. (2017) in the case of
erosion by an impinging jet. An exhaustive analysis could be envisaged in the fu-
ture by varying independently (which was not the case in this manuscript since they
were assumed directly proportional to each other) and systematically the three bond
rupture thresholds in traction, shearing, and bending.

4.4.2 Relevance of the shear stress

The fluid shear stress is widely used to quantify sediment transport and erosion
rate whether for cohesive or cohesion-less soil. However, many researchers have
suggested to quantify the erosion or sediment transport rate based on alternative
flow quantities, as for example the stream power (Knapen et al., 2007; Marot et al.,
2012). In turbulent flows, in addition to time average quantities such as shear stress,
turbulent eddies exist and generate fluctuations in flow quantities (e.g velocity, pres-
sure) which largely influence sediment erosion and transport, resulting for instance
in chaotic motion of the particles. Consequently, erosion laws based on statistical
distributions can be also envisaged alternatively (Van Prooijen and Winterwerp,
2010; Beguin et al., 2013).

In this section we question the relevance of the fluid shear stress as the appropriate
flow quantity able to rule the soil’s erosion rate through an erosion law. To do so, the
flow shear stress τ as defined in Eq. 4.1 is kept constant while the inlet velocity U0,
the fluid gap e0, and the fluid viscosity ν are varied. Four data set were simulated,
corresponding to two shear stress values, namely τ = 100 and 200 Pa, and two initial
fluid gaps: e0 = 5 and 8 mm. The results are summarized in Figure 4.29, which
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shows the variation of the erosion rate ε̇ as a function of either the particle Reynolds
number Rep (Fig. 4.29a), calculated from Eq. 4.3, or the flow Reynolds number Re
(Fig. 4.29b), calculated from Eq. 4.2.

0 20 40 60 80 100 120 140 160

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

0.026

 

 

 e0 = 8 mm,  = 200 Pa
 e0 = 8 mm,  = 100 Pa
 e0 = 5 mm,  = 200 Pa
 e0 = 5 mm,  = 100 Pa

E
ro

si
on

 ra
te

, 
(m

/s
)

Rep

(a)

0 100 200 300 400 500 600 700 800 900 1000 1100

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

0.026

 

 

 e0 = 8 mm,  = 200 Pa
 e0 = 8 mm,  = 100 Pa
 e0 = 5 mm,  = 200 Pa
 e0 = 5 mm,  = 100 Pa

E
ro

si
on

 ra
te

, 
(m

/s
)

Re

(b)

Fig. 4.29. Erosion rate versus (a) particle Reynolds number Rep and (b) flow
Reynolds number Re.

All the curves presented here, either versus particle or flow Reynolds number,
have the same trend with a less and less increasing evolution until a final plateau is
reached. Almost the same plateau values are found for a given shear stress τ value
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while varying e0, with a typical discrepancy around 10 to 15%. In all cases, the
plateaus are reached for similar Reynolds numbers, around Rep ∼ 50 and Re ∼ 300
in terms of the particle Reynolds number and the flow Reynolds number, respec-
tively.

In conclusion, provided that the Reynolds number is high enough, namely Rep >
50 or equivalently Re > 300, the fluid shear stress truly appears as the unique
relevant quantity that rules erosion rate. Below this range, a substantial decrease in
erosion is observed and the particle (or flow) Reynolds number should consequently
be added as a second control parameter for erosion rate. Then, a closer examination
would be required to pursue further in this direction.



Conclusion and perspectives

This work dealt with an in-depth study of the surface erosion phenomena through
a numerical point of view. The approach adopted here is based on a coupled fluid-
particle numerical model at the micro-scale by combination of the Lattice Boltzmann
Method (LBM) for the fluid phase and the Discrete Element Method (DEM) for the
solid phase composed of circular grains, including a cohesion model with time depen-
dent damage to account for solid cohesive bonds at particle contacts. In this study,
we aimed at validating and subsequently implementing an efficient code constructed
from these methods to simulate two common flow configurations generating surface
erosion of our cohesive granular soils : impinging jet, that is particularly relevant
for the Jet Erosion Test (JET), and constant shear flow from which an appropriate
erosion law was selected before related erodibility parameters were extracted and
analysed systematically.

The numerical methods (LBM-DEM) used in this work were properly described,
along with the coupling technique between both methods, highlighting the relevance
of the model when dealing with particulate flows, including many fluid/particle in-
teractions. During this thesis work, we have succeeded in parallelizing and improving
the efficiency of the original CPU version of our code using GPGPU (General Pur-
pose Graphical Processing Unit) computing approach, since the combined methods
are highly costly in terms of computational resources and simulation time. Thus,
the whole structure of the code is now adapted to be executed in GPUs where the
"CUDA c/c++" programming language was chosen. The model was ultimately val-
idated by comparison of classical particle settling situation for either a unique grain,
where relevant drag coefficients were recovered, and a pair of particles through the
so-called DKT-pattern (drafting-kissing-tumbling) which was found to be correctly
simulated.

Before making full use of the capabilities of our code, 2D jet flow configurations
were first investigated with the Lattice Boltzmann Method (LBM), namely free jet
and impinging jet on either a smooth wall and a fixed horizontal granular surface. In
this latter case, the coupling technique was turned on in the code while the particles
remained fixed in the DEM part. The results obtained for the free jet could be very
well described by the self-similarity theory for various jet Reynolds numbers through
the introduction of the virtual origin λ for which a relevant expression was proposed.
This study also further validated our model as regards the LBM flow calculation.

The following analysis of the configurations of impinging jets on a smooth wall
and on a fixed granular surface was another step towards a better understanding

160



Conclusion and perspectives 161

of jet flow erosion through relevant estimates of crucial hydrodynamic quantities,
restricted here to the laminar regime. In that respect, the maximal tangential
velocity near the impingement surface was found to be simply proportional to the
theoretical center-line velocity of the self-similar free jet model evaluated at the same
downstream distance (i.e. the distance from the nozzle exit to the impingement
surface including the virtual origin λ). Moreover, the maximal center-line velocity
from the free-jet theory allowed to provide an accurate estimate for the maximal
bed shear stress and a complete expression has been proposed here in Eq. 3.5. This
expression is notably based on the introduction of a friction coefficient that was
found to be of Blasius type, that is inversely proportional to the square root of the
jet Reynolds number.

From this point, the DEM part was fully activated in the model, starting with the
case of cohesion-less granular samples whose erosion onset under jet impingement
was found to be in close agreement with the results of Badr et al. (2014) obtained
for plane impinging jets when using an inertial expression for the critical Shields
number (Sh∗u). Thanks to the previous expression of the shear stress in Eq. 3.5
coming from the preliminary study of impinging jets, both our numerical results
and the experimental ones by Badr et al. (2014) could be successfully reported in
the classical Shields diagram (Sh∗τ ), in reasonable agreement with the Shields curve.

Next, the solid bond model was added to the code with the aim of analysing im-
pinging jet erosion of cohesive granular samples. To this end, the erosion threshold,
defined as the initiation of bond breakage and particles detachment, was quantified
for different particle sizes and fluid’s viscosity. These values have been found to be
well described by an extension of the classical Shields criterion used for cohesion-
less materials to weakly cohesive soils. More precisely, as expressed in Eq. 3.10 or
equivalently Eq. 3.11, an additional contribution of cohesion strength to the soil’s
resistance to erosion was included through a proper dimensional analysis providing a
simple relation between the generalized Shields number (Sh∗coh), the usual cohesion-
less Shields number (Sh∗τ ), and the granular Bond number (Bog) which compares
cohesion to buoyant weight.

The study was ultimately completed by the full simulation of 2D Jet Erosion
Tests (JET) in the laminar regime, allowing to quantify the erodibility parameters
of our cohesive granular samples after prior adaptation of the JET interpretation
model to our 2D geometry and to a more general erosion law based on a power law
relation including an exponent n in addition to the critical shear stress τc and erosion
coefficient kd. A parametric study was carried out by varying the cohesion strength
C while fixing the jet inlet velocity. However, the overall result was not satisfying
for the critical shear stress τc which, compared to the previous generalized critical
Shields number, is over-predicted at low cohesion strength C and under-predicted for
higher C values. Moreover, a non-expected dependence with the jet inlet velocity is
found, especially for τc comparatively to kd. This issue more generally confirms the
intrinsic weaknesses of the JET interpretation model which requires several strong
assumptions on the hydrodynamic quantities and disregards the existence of the
crater depth inside which re-circulation flows increasingly grow.
Drawing on this conclusion, a second erosion configuration has been investigated
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where the use of a Couette flow induces a uniform and stationary shear stress at the
soil surface. This allowed to circumvent most of the complexity highlighted in the
jet flow, notably the re-circulation flow once the crater is formed. Owing a relevant
criterion to determine that a particle is eroded and next to removed it from the
calculation, it was indeed possible to simulate a simple configuration where the top
surface of the sample was kept flat during erosion and where the bed shear stress
τ remained consequently constant, thus used as a control parameter. Therefore, a
linear decrease of the sample thickness with time was found, enabling for a direct
measurement of the erosion rate ε̇.
Without any a priori postulate as regards the mathematical expression of an

erosion law relating, at the sample scale, erosion rate to fluid shear stress through
intrinsic soil’s erodibility parameters, it was next possible to investigate objectively
and directly the relationship between ε̇ and τ . To this end, a remaining difficulty
was first fixed since it was found that a sharp drop to zero of the erosion rate at low
values of τ whereas a large crack occurs and develops downward in the sample. The
full version of our code was then used by addition a time dependent damage law
in the cohesive bond model and allowed to circumvent the problem. Afterward, a
parametric study was carried out and a power erosion law, defined in Eq. 1.14, was
found to fit fairly well our simulation data with a substantially increased accuracy
compared to the most common linear law. The relevance of the shear stress as unique
quantity that rules erosion was also questioned with a positive answer provided that
the Reynolds number is high enough, expressed either at the particle or the flow
scale. But less erosion was observed below this range.

Finally, as regards the relation between the erodibility parameters arising from
the erosion law at the sample and the micro-scale quantities as the bond cohesive
strength C and the particle diameter, original results were obtained, as for the new
exponent n which increases almost linearly with C, but however with some incon-
sistency, especially about the critical shear stress whose values given by the erosion
law do not coincide with the onset criterion from the generalized critical Shields
number. Empirically, a modification of the previous relation could be proposed but
without any satisfactory physical meaning. Further work is clearly needed to gain
a better understanding on this issue and this last shear flow configuration appears
particularly well suited for such an exhaustive investigation.
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Perspectives

The present study suggests many perspectives and highlights several open questions.
Among these, we can distinguish specific numerical aspects and more fundamental
concerns about actual knowledge and remaining gap in our understanding of fluid
flow erosion of cohesive soils.

Starting with the numerical tool developed and subsequently used during this
work, several potential improvements can be summarized. First, although the com-
putational speed was significantly improved using GPUs, there is still a room for
improvement, especially in the LBM part, which was found to consume approxi-
mately 84% of the whole computational cost. This could be done by disregarding
the use of the global memory to the benefit of the GPU’s shared memory which is
much faster to access. Furthermore, the actual LBM-DEM code is in 2D, thus it is
difficult to compare directly the numerical simulations to the experimental results.
However, the code could be rather easily extended to 3D, but large memory re-
sources would be needed accordingly for the LBM part, since 15 (D3Q15 scheme) or
19 (D3Q19 scheme) velocity directions is required on each fluid node. Multi GPUs
with domain decomposition may be required since one GPU has a fixed and small
memory. The 3D version would eventually allow to model more realistic geotechnical
applications.

As regards the physical aspects and related questions, several directions are en-
visaged. First, in the specific configuration of jet impingement, some investigation
of the fluid flow could be started in the case of a solid surface with a pre-formed and
realistically shaped crater, in order to estimate a more relevant shear stress value in
the carter, possibly still based on the free jet velocity. Doing so, we may improve
our jet interpretation model and thus gain a better estimation of soil’s erodibility.
As it was recently shown that the expression in Eq. 3.5 could be extended to 3D
round impinging jet configuration in the laminar regime (Brunier-Coulin et al., 2019)
and validates experimentally the generalized proposal of a critical Shields number
for weakly cohesive soils, such an improvement of the JET interpretation model in
laminar regime would become also relevant for more realistic situations.

The analysis of soil erosion under Couette flow configuration has not been sat-
isfactorily completed and remaining efforts would be needed to better understand
the underlying physical mechanisms of erosion based on an exhaustive study, by
changing several parameters as particle size, density, or gravity, but, even more in-
terestingly, by exploring all the different types of soils accessible through appropriate
variations of the three breakage thresholds introduced in the cohesive bond model.
To this end, the micro-mechanical analysis presented in section 4.3.4 appears as a
promising way for such an investigation and could be further developed.

Additionally, a specific concern deals with the relation between the microscopic
parameters and the more global quantities evaluated at sample scale. The latter
involve erodibility, as studied in this thesis, but also more general mechanical re-
sistances. To this end and as presented in Appendix A, a work has been initiated
to simulate mechanical tests, particularly traction and shearing, at the sample scale
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in order to study this micro-macro passage and check the relevance of the theoret-
ical Rumpf formula (Pierrat and Caram, 1997). It is worth highlighting that, in
parallel to the simulations, an experimental approach is already under progress in
our research group and will be pursued, based on artificial materials made of large
grains bonded by viscous or solid bridges, and a proper traction test that allows to
measure the tensile yield force at the rupture, either at the sample scale or, locally,
at the grain contact.

Finally, it should be noticed that, our coupled LBM-DEM code was used in this
study to model only two flow configurations, namely impinging jet and tangential
shear flow, it can be implemented for the study of various submerged fluid-particle
interaction problems. This is already the case for the modeling of sinkhole occurrence
within cohesive soil sublayer in karstic context (Luu et al., 2019) and preliminary
results can also be cited about profile installation of an offshore monopile in fully
saturated layered soil (Benseghier et al., 2019). Moreover, the in-house GPU code
will be used and improved in the COMET1 project starting in autumn 2019, mainly
in two applications engineering fields: erosion of offshore foundations (e.g. triggering
of superficial fluidization during the installation of a partially embedded suction
bucket) and localized erosion of layered hydraulic infrastructures.

1COMET is a Franco-German ANR-DFG projet abbreviated from "Coupled micromechanical
modelling for the analysis and prevention of erosion in hydraulic and offshore infrastructures."



Appendix A

Macro-scale tensile test

In the case of two bonded particles, the micro-scale tensile force required to break
the bond is known in our model. However, there are little knowledge about the force
needed to break at macro scale a stack of particles collectively connected by cohesive
bonds. For this reason, we develop here a numerical macro-scale tensile test.

The tensile (traction) test aims to measure the resistance force to traction of our
cohesive granular materials and also to verify Rumpf formula relating yield tensile
force F ∗t and stress σ∗t , as follows (Gilabert et al., 2007; Pierrat and Caram, 1997):

σ∗t =
1

π

〈d〉
〈dD〉

zφF ∗t (A.1)

where z denotes the coordination number, φ is the solid fraction, and D the dimen-
sion of space which is here D = 2. With our uniform diameter distribution, the
mean and mean square diameter read 〈d〉 = dmean and 〈d2〉 = d2

mean, respectively.
The test is divided into two parts. First, the sample preparation where we fill

two cones connected by their smallest section. The particles are settled under grav-
ity from the upper cone (see Figure A.1) before cohesion is activated. Second, the
traction test is performed from the prior prepared cohesive sample and after the
particles have been gathered into two separate groups, or clumps. As illustrated
in Figure A.2, Clump 1, constituted of the particles in the upper cone, moves up-
ward with constant velocity in y-direction whereas Clump 2 is fixed and contains of
the particles in the bottom cone. When the two clumps separate, basically at the
minimal section, we note the rupture force. The traction force is calculated by the
summation of the cohesive forces between particles that belong to different clumps
in y-direction.

The simulation parameters are summarized in Table A.1. The boundary con-
ditions are set as follows: a constant velocity is applied at the upper clump in
y-direction while the bottom clump is being fixed. Two different samples have been
used with a same mean particle diameter and with different size ratio L/d = 20 and
30.
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(a) (b) (c)

Fig. A.1. Time sequence of sample preparation for the traction test.

Table A.1. Parameters for our parametric study of traction tests

Particle mean size, dmean: 3 mm
Density ρs: 2500 kg/m3

Normal stiffness kn: 1.10× 105 N/m
Shear stiffness kt: 1.10× 105 N/m
Friction coefficient µ: 0.30
Rolling friction µr: 0.1
Restitution coefficient e: 0.2
Gravitational acceleration g: 0 m/s2

Bond strength, C: [1-50] N
Displacement rate ε̇ = Vy: 0.0001 m/s

Sample 1
Number of particles Ng: 2491
Minimum section L: 20× d
Coordination number z: 4.1
Solid fraction φ: 0.837

Sample 2
Number of particles Ng: 3500
Minimum section L: 30× d
Coordination number z: 4.05
Solid fraction φ: 0.793
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Fig. A.2. Snapshot showing the two clumps: clump 1 in blue with constant velocity,
clump 2 in red being fixed.

Figure A.3 shows the evolution of the y component of the tensile force exerted be-
tween both clumps versus vertical displacement for different cohesive bond strength
C values. The curves increase almost perfectly linearly until the rupture is reached
and followed by a drastic decline in the force due to sudden separation of the two
clumps. Also, it is observed that the rupture force indeed increases with the cohesion
strength C.
A parametric study was carried out by varying the cohesion strength C ranging

from 1 to 50 N. For each simulation, the rupture force is noted and plotted against
C, as shown in Figure A.4. An obvious proportional relation is observed between
the macro forces at the rupture and the micro cohesion strength C with a slope
24.84± 0.10 and a correlation coefficient R2 = 0.9998.

By direct use of Rumpf’s formula (Eq. A.1), one gets a rather close value for
the slope: 21.86. It can be concluded that the formula is well verified by the sim-
ulation, at least in this particular conditions. An additional ratio L/d = 30 was
also simulated and similar results were obtained. To compare the data each other,
the tensile stress at rupture σ∗ is plotted versus C/d in Figure A.5. According to



168

0.00 0.02 0.04 0.06
0

10

20

30

40

50

60

70

80

 

 

F y (
N

)

Vertical displacement (mm)

 C = 3 N
 C = 2 N
 C = 1 N

Fig. A.3. Evolution of the y components of tensile forces versus the vertical dis-
placement of the upper clump for different cohesive strength C.

Rumpf formula, both results obtained for the two L/d ratios must almost coincide
since they have close solid fraction φ and coordination number z values, and this is
indeed the case.
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Fig. A.4. Rupture forces versus cohesive bond strength C values. The solid line
stands for a proportional fit for L/d = 20 (R2 = 0.9998).
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Résumé étendu en français

B.1 Contexte général

Le réchauffement global actuel induit un changement rapide du climat et une aggra-
vation des catastrophes naturelles, entraînant des conséquences socio-économiques
et écologiques majeures au niveau mondial. En particulier, l’élévation du niveau des
océans et l’intensification des précipitations augmentent la fréquence et l’ampleur
des inondations et, par conséquent, le risque potentiel de rupture des ouvrages de
protection (digues, barrages, levées, etc).

Le principal phénomène responsable de la rupture de ces ouvrages hydrauliques
en remblai est, très majoritairement, l’érosion des sols constitutifs de l’ouvrage par
action de l’eau qui représente environ 95% des cas. En France, un exemple assez
récent d’évènements dramatiques en termes d’érosion d’ouvrages de protection et de
ruptures de digues concerne la crue du Gard de Septembre 2002 qui a coûté la vie à
cinq personnes et causé pour pratiquement 1 milliard d’euros de dégâts. Au niveau
international, les ruptures spectaculaires des digues de la Nouvelle-Orléans (Floride,
US) à la suite de l’ouragan Katrina en 2005 restent dans toutes les mémoires. Katrina
a tué au total plus de 1000 personnes et engendré un coût économique de l’ordre de
100 milliards de dollars. On comprend qu’il y ait une demande sociétale croissance
pour à la fois une plus grande sûreté des ouvrages de protection existants et une
meilleure gestion des réparations et constructions nouvelles en termes de durabilité,
de résistance à l’érosion mais aussi de respect de l’environnement.

D’après Foster et al. (2000), les mécanismes d’érosion des ouvrages hydrauliques
peuvent être classés en deux catégories : l’érosion interne et l’érosion externe.
L’érosion externe fait référence à l’action hydrodynamique d’un écoulement d’eau
à la surface extérieure de l’ouvrage, généralement due à une situation de surverse.
Celle-ci dégrade l’ouvrage par entraînement d’une masse importante de sol pouvant
conduire à la création d’une brèche et éventuellement à la rupture de la structure.
Ce type d’érosion représente environ 50% des défaillances de barrages en terre.
L’autre type d’érosion est dite interne et englobe, de façon générale, tous les proces-
sus d’entraînement et de transport de particules de sol à l’intérieur d’un ouvrage en
terre. Ce phénomène, typiquement plus lent et beaucoup moins visible que l’érosion
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externe, s’initie par infiltration d’eau à travers l’ouvrage ou ses fondations (voir
Fig. 1.2b). Quatre mécanismes différents d’initiation de l’érosion interne ont été
rapportés (Fell and Fry, 2007), comme résumé à la Fig. 1.3 : la suffusion, l’érosion
de contact, l’érosion régressive et l’érosion par écoulement concentré.

L’érosion par écoulement concentré apparaît généralement le long d’un chemin
hydraulique préférentiel au sein de l’ouvrage, causé par exemple par un tassement
différentiel, par la fracturation hydraulique d’une couche argileuse, par dessiccation
à proximité d’une paroi ou d’une conduite traversante, ou encore par présence de
racines ou de terriers (Zhang et al., 2016). L’érosion régressive est d’abord initiée en
pied aval d’ouvrage en cas d’écoulement d’infiltration important, par soulèvement
ou fluidisation selon la nature du sol superficiel (cohésif ou granulaire). Une fois
formée, la cavité initiale s’étend progressivement de l’aval vers l’amont, de façon
régressive par rapport au sens de l’écoulement. L’érosion de contact est une érosion
sélective des particules de sol les plus fines à l’interface entre deux couches de sols de
compositions différentes. L’écoulement hydraulique se concentre dans la couche la
plus grossière et érode la surface au contact de la couche de sol plus fin. Les particules
érodées sont ensuite transportées et éventuellement filtrées plus loin dans l’ouvrage.
La suffusion est également une érosion sélective des particules fines mais cette fois
en volume, au sein d’un sol présentant une répartition granulométrique bimodale.
On peut noter que ces quatre mécanismes d’initiation ont des cinétiques d’évolution
lentes, typiquement sur plusieurs années, mais peuvent progressivement accélérer
et se combiner à d’autres processus (tassement, colmatage, fontis, effondrement,
. . . ) pour finalement mener à la rupture de l’ouvrage dès lors qu’il y a création
d’un conduit continu connectant la réserve amont à l’aval. Ce mécanisme ultime de
rupture est appelé érosion de conduit et se distingue par une cinétique extrêmement
rapide, qui se compte plutôt en heures qu’en jours (Bonelli and Marot, 2011). Enfin,
on pourra noter que ce processus d’érosion de conduit correspond localement, aux
parois latérales, à une érosion de surface tout à fait comparable à l’érosion externe
déjà évoquée. De même, l’érosion par écoulement concentré, l’érosion de contact et
l’érosion régressive sont générées à petite échelle par l’érosion d’une couche de sol
par un écoulement hydraulique superficiel. Les mêmes lois locales d’érosion pourront
donc être a priori utilisées de façon générique pour la quasi-totalité des situations
rencontrées au sein d’un ouvrage, à l’exception du cas de la suffusion.

La plupart des travaux portant sur l’érosion des sols cherchent à identifier les
mécanismes déclencheurs ou bien, au contraire, les principaux facteurs inhibiteurs
du phénomène. Dans ce but, de nombreux essais d’érosion ont été développés pour
mesurer, en laboratoire ou in situ, la résistance d’un sol à l’érosion en fonction de
ses propriétés mécaniques et physico-chimiques. Parmi les essais les plus courants,
on peut citer l’essai d’érosion par jet (JET), l’essai d’érosion de conduit (HET) ou
encore l’essai d’érosion tangentielle (EFA). On a ainsi défini l’érodibilité des sols qui
est essentiellement caractérisée et quantifiée par deux paramètres : un coefficient
d’érosion kd et une contrainte fluide critique τc. Le coefficient d’érosion contrôle
la cinétique du processus et peut permettre par conséquent de quantifier le temps
restant avant la rupture de l’ouvrage en cas de crise. La contrainte fluide critique
prédit quant à elle le seuil au-delà duquel l’érosion peut être activée et sera plutôt
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utilisée comme une valeur de référence à ne pas dépasser lors de l’étude préalable
d’un projet de construction ou de réhabilitation d’un ouvrage hydraulique. En
pratique, ces deux quantités sont issues d’une régression linéaire des données ex-
périmentales en se basant, pour l’érosion de surface, sur une loi linéaire reliant le
taux d’érosion du sol à la contrainte fluide en excès (Eq. 1.14) proposée originelle-
ment par Partheniades (1965). La pente fournit le coefficient d’érosion kd tandis que
l’abscisse à l’origine donne la contrainte de cisaillement critique τc. Les différents
essais d’érosion devraient ainsi permettre d’établir des relations empiriques entre
les caractéristiques d’érodilibité du sol et les propriétés géo-mécaniques usuelles.
Cependant, dans la pratique, ils reposent sur des modèles d’interprétation basés
sur des hypothèses souvent réductrices et restent de ce fait encore insuffisamment
fiables. Ainsi, par comparaison entre essais d’érosion, les résultats peuvent amener
à des valeurs d’érodibilité notablement différentes pour un même sol, remettant en
cause le caractère intrinsèque de ces grandeurs ou, tout du moins, le cadre théorique
des modèles d’interprétation. D’un point de vue plus fondamental, le phénomène
d’érosion de surface reste un terme très générique qui met en jeu des mécanismes
complexes d’instabilité hydrodynamique et mécanique à petite échelle. Malgré le
nombre croissant d’études menées sur le sujet, ces processus élémentaires au niveau
de l’interaction entre grains et fluide restent encore mal compris, de même que le
passage de l’échelle microscopique à celle intermédiaire de l’échantillon et, in fine, à
celle globale de la rupture.

B.2 Objectifs et méthodologie

Ce travail de thèse porte sur la modélisation numérique de l’érosion des sols gran-
ulaires cohésifs induite par un écoulement fluide incompressible pour des nombres
de Reynolds faibles à modérés (régime laminaire). La phase fluide est décrite par la
méthode dite Lattice Boltzmann (LBM), basée sur une modélisation statistique de
la dynamique des particules constituant le fluide. La phase solide est décrite par la
méthode des éléments discrets (DEM) qui modélise un ensemble de grains sphériques
interagissant via des lois de contact simples et se déplaçant selon les équations de
Newton. Le calcul DEM inclut ici un modèle de cohésion inter-particulaire développé
par Delenne et al. (2004), dans lequel est défini un critère de rupture d’un pont solide
entre grains voisins suivant trois seuils : en traction, en cisaillement et en rotation.
Ce modèle de cohésion a, par ailleurs, été enrichi par une loi d’endommagement
temporelle du lien cohésif entre particules proposée originellement par Silvani et al.
(2009).

Un des objectifs de cette thèse est de mener des simulations numériques perti-
nentes pour étudier l’érosion des sols à l’échelle des grains, en s’appuyant et en
améliorant les outils numériques développés précédemment par J. Ngoma (2011-
2014) lors de sa thèse de doctorat et P. Cuéllar (2014-2015) lors de son post-doctorat.
Les simulations menées concernent deux cas pratiques : l’érosion par un jet fluide
impactant et l’érosion par un écoulement de cisaillement (ou Couette). Dans ce
travail de recherche, les questions scientifiques posées ont pour but de :
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• prouver l’exactitude et la validité de notre modélisation numérique pour simuler
de manière réaliste l’érosion d’un sol par un écoulement fluide ;

• tester la pertinence des lois empiriques d’érosion ;

• établir un lien entre les paramètres micro (force de liaison cohésive, diamètre
des particules) et les paramètres macro (coefficient d’érosion, contrainte cri-
tique fluide) par des études paramétriques.

B.3 Amélioration et parallélisation du code en GPU

Les applications de la méthode LBM-DEM sont encore limitées à des études académ-
iques à petite échelle. Ceci est en partie dû au coût de calcul extrêmement élevé
qu’implique des simulations discrètes de sols à une échelle représentative (par ex-
emple des millions de grains de sol interagissant au sein d’une structure de génie
civil), en combinaison avec un degré de raffinement élevé du maillage de fluide,
afin de résoudre complètement le problème autour des particules solides, environ 10
à 30 nœuds du domaine fluide par diamètre de grain étant requis en fonction de
l’application (Tran et al., 2017).

Cependant, cette limitation peut être en partie surmontée grâce au calcul parallèle
hautes performances (HPC). Plusieurs techniques de parallélisation sont utilisables,
telles que OpenMP (Open Multi-Processing) ou bien MPI (Message Passing Inter-
face). Il est à noter que ces deux méthodes de parallélisation sont basées sur les
processeurs (Unité Centrale de Traitement UCT, ou Central Processing Unit, CPU
en anglais). En raison de la moindre augmentation des performances des processeurs
CPU au cours des dernières années par rapport à la croissance considérable de celles
des processeurs graphiques, ou GPU (Graphics Processing Unit), nous avons choisi
la technique de parallélisation GPU. L’environnement de programmation utilisé est
CUDA (Compute Unified Device Architecture) qui permet aux cartes graphiques de
type NVIDIA d’exécuter des programmes écrits en C, C ++, FORTRAN et plusieurs
autres langages de programmation.

Concernant les développements nouveaux réalisés au cours de cette thèse, les
méthodes et les algorithmes implémentés sont les suivants :

Pour la partie solide (DEM) :
L’algorithme de recherche des particules voisines (liste de Verlet) a été modifié par
la technique de quadrillage régulier de l’espace. Ensuite, nous avons amélioré le
stockage de la matrice des liens cohésifs entre les particules dans la mémoire globale
de la carte à l’aide d’un algorithme de décomposition « Compressed sparse column
(CSC) ».

Pour la partie fluide (LBM) :
La méthode PSM (Partially saturated method) proposée par Noble and Torczynski
(1998) pour l’interaction solide-fluide a été implémentée et validée. Cette méthode
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a l’avantage d’éviter toute interpolation au niveau de la condition de non-glissement
entre fluide et parois solides. Elle réduit ainsi fortement l’utilisation de la mémoire
GPU et augmente en retour les performances du calcul parallèle.

La vitesse de calcul obtenue en couplant ces deux méthodes est environ 90 fois
plus rapide par rapport à l’ancienne version du code en simple précision. Nous avons
effectué la validation du code LBM-DEM parallélisé à l’aide de deux benchmarks
: la sédimentation d’une particule unique et la sédimentation de deux particules
lâchées l’une au-dessus de l’autre et induisant un scénario DKT (drafting, kissing,
tumbling). Nous avons obtenu un très bon accord entre nos résultats numériques et
ceux de la littérature.

Les outils numériques ainsi développés et validés sont ensuite appliqués à deux
configurations d’essais d’érosion, le Jet Erosion Test (JET) et l’érosion par écoule-
ment tangentiel cisaillant de type Couette. Les hautes performances du code par-
allélisé ont permis d’étudier de manière systématique ces deux processus complexes
en faisant varier de nombreux paramètres géo-mécaniques et fluides du modèle.

B.4 Erosion par jet impactant

Notre étude paramétrique de l’érosion par un jet impactant s’est intéressée au cas
des sols cohésifs et non cohésifs, en se concentrant plus particulièrement sur le seuil
d’érosion puis sur la cinétique d’affouillement.

Dans un premier temps, nous avons étudié et validé l’écoulement d’un jet libre
laminaire bidimensionnel en s’appuyant sur la théorie du jet libre auto-similaire pro-
posée par Bickley (1937); Schlichting (1960). En particulier, la vitesse longitudinale
maximale suit quasi-parfaitement la prédiction théorique après ajout d’une origine
virtuelle pour laquelle une relation empirique réaliste a été proposée. Ensuite, à
partir d’un jet impactant soit une paroi lisse, soit une surface granulaire fixe, nous
avons obtenu une formule empirique qui exprime la contrainte de cisaillement fluide
maximale au niveau de la surface d’impact à l’aide du modèle auto-similaire de jet
libre en régime laminaire et géométrie bidimensionnelle (Eq. 3.5). L’expression in-
troduit notamment un coefficient de frottement de type Blasius qui est inversement
proportionnel à la racine carrée du nombre de Reynolds du jet.

Dans un second temps, la partie de la modélisation de la phase solide discrète
basée sur la DEM standard a été entièrement activée afin de simuler l’érosion par
jet d’une couche de sol sans cohésion. Les résultats sont tracés dans le diagramme
de Shields et comparés favorablement à des résultats expérimentaux antérieurs, no-
tamment ceux de Badr et al. (2014), en utilisant une expression inertielle simplifiée
pour le nombre de Shields Sh∗u et le nombre de Reynolds particulaire Re∗p. Pour aller
plus loin, nos résultats numériques et ceux expérimentaux de Badr et al. (2014),
ré-analysés pour l’occasion grâce à l’expression précédente de la contrainte de ci-
saillement maximale (Eq. 3.5), ont pu être reportés cette fois dans le diagramme
classique de Shields avec formulation complète du nombre de Shields Sh∗τ et utilisa-
tion du nombre de Reynolds Re∗τ déduit directement de la contrainte de cisaillement.
La comparaison entre simulation et expérience reste satisfaisante et l’accord avec la
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courbe empirique de Shields, ou sa formulation explicite proposée par (Guo, 1997),
est correct. Ensuite, le modèle de liens cohésifs a été ajouté dans al calcul DEM pour
mener une démarche similaire dans le cas de sols granulaires cohésifs. Pour cela, le
seuil d’érosion défini par les premières ruptures de ponts cohésifs et l’entrainement
de grains, a été mesuré pour différentes tailles de particules et plusieurs valeurs
de viscosité du fluide. Ces valeurs ne peuvent pas être décrites par le critère de
Shields classique qui ne tient compte que du poids déjaugé et du frottement solide
mais peuvent l’être de façon convaincante par une extension de celui-ci au cas de
matériaux faiblement cohésifs. Plus précisément, l’expression que nous proposons
(Eq. 3.8) tient compte de la contribution additionnelle des liens cohésifs à la ré-
sistance à l’érosion qui, par analyse dimensionnelle, est introduite dans un nombre
de Shields généralisé Sh∗coh par l’intermédiaire du nombre de Bond granulaire qui
compare cohésion et poids déjaugé.

Cette étude a été finalement poursuivie par une analyse du processus de forma-
tion d’un cratère par jet impactant pour une version numérique bidimensionnelle de
l’essai JET usuel. Par une méthode d’analyse d’images en post-traitement des simu-
lations, un suivi de l’évolution de la profondeur du cratère (directement reliée au taux
d’érosion) en fonction de la contrainte de cisaillement fluide maximale à la surface du
lit granulaire a été obtenu. En adaptant le modèle d’interprétation mathématique
de l’essai JET à notre cas spécifique bidimensionnel et laminaire et en élargissant
le modèle à des lois d’érosion plus générales présentant un exposant n en plus des
paramètres d’érodibilité standard, nous sommes parvenus à déduire implicitement
les paramètres d’érodibilité des sols à l’échelle macro (c’est-à-dire l’exposant n, le
coefficient d’érosion kd et la contrainte de cisaillement fluide critique τc) pour dif-
férentes intensités de cohésion inter-particulaire C à l’échelle micro. Le résultat final
s’est cependant révélé peu satisfaisant puisque, comparativement à l’évaluation di-
recte du seuil d’érosion et à la prédiction précédente basée sur le critère de Shields
généralisé, la contrainte critique τc trouvée ici est sur-estimée à cohésion faible et
sous-estimée à cohésion plus forte. Par ailleurs, une dépendance est observée avec
la vitesse de jet, surtout pout τc mais aussi pour kd, remettant en cause le caractère
intrinsèque des paramètres d’érodibilité ou, dans un premier temps, certaines des
hypothèses parfois très simplificatrices du modèle d’interprétation, notamment le
fait de ne pas considérer l’évolution de la topographie, qui passe progressivement
d’un plan à un cratère de rapport d’aspect élevé, ou la présence d’une couche gran-
ulaire « protectrice » au-dessus de la matrice cohésive pour les faibles valeurs de
C.

B.5 Erosion par écoulement de type Couette

Partant des limitations de la configuration précédente, la dernière partie de cette
thèse présente une autre configuration d’érosion qui consiste à appliquer de façon
uniforme et stationnaire un écoulement fluide en cisaillement à la surface supérieure
d’un échantillon granulaire cohésif. Cette configuration d’écoulement, appelée aussi
cisaillement de Couette, s’affranchit de certaines complexités inhérentes au JET,
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notamment la recirculation de l’écoulement fluide une fois le cratère formé. Moyen-
nant un choix raisonnable pour déterminer un critère objectif d’érosion d’un grain
que l’on fait ensuite disparaître du calcul numérique, il est possible de maintenir
tout au long du processus une surface approximativement plane au sommet du lit
granulaire et de mesurer le taux d’érosion ε̇ à partir de la pente entre l’épaisseur du
lit et le temps alors que la contrainte de cisaillement fluide appliquée τ est maintenue
constante.

Grâce à cette configuration, il est possible de tracer directement, à l’échelle de
l’échantillon homogène de sol, le taux d’érosion ε̇ en fonction de la contrainte de
cisaillement τ sans recourir à aucune hypothèse a priori ou postulat quant à la loi
d’érosion adaptée. Une dernière difficulté a dû être levée cependant car, pour les
faibles contraintes fluides, l’échantillon de sol se trouvait dégradé mais pas érodé. En
réalité, cela s’explique par la formation d’une fracture en profondeur dès le début de
la simulation. Pour pallier à cela, nous avons utilisé ici la version complète de notre
modèle dans laquelle la loi de contact cohésif est enrichie par un endommagement qui
inhibe de ce fait la formation rapide d’une fracture au profit d’une érosion répartie
en surface. A partir de là, une étude systématique a été menée et la meilleure loi
empirique permettant de relier le taux d’érosion ε̇ à la contrainte de cisaillement τ
s’est révélée être une loi de puissance, similaire à la loi linéaire usuelle mais avec
un exposant n pouvant être différent de 1 et ainsi un meilleur degré d’ajustement.
Par ailleurs, nous avons cherché à tester la pertinence du choix de la contrainte de
cisaillement τ comme unique grandeur de contrôle de l’érosion. Ce choix apparaît
justifié à condition que le nombre de Reynolds soit suffisamment élevé mais il y a
en revanche une érosion moindre à valeur de τ maintenue égale quand le nombre de
Reynolds de l’écoulement devient trop petit.

Enfin, une dernière étude paramétrique nous a permis d’analyser la relation entre
l’érodibilité du sol à l’échelle d’un échantillon homogène et ses propriétés micromé-
caniques (force de cohésion, taille des particules). De façon assez logique, l’exposant
n de la loi empirique proposée ainsi que la contrainte critique τc augmentent avec la
force de cohésion entre les grains C, et le coefficient d’érosion kd à l’inverse diminue.
Certaines incohérences apparaissent cependant, notamment quant à la contrainte
critique τc dont les valeurs déduites de la régression par la loi d’érosion ne coïnci-
dent pas avec le seuil tiré du nombre de Shields généralisé Sh∗coh. Empiriquement,
une expression modifiée de Sh∗coh peut être proposée sans que cela ne soit satisfaisant
physiquement. Des approfondissements sont clairement nécessaires pour mieux ap-
préhender cette difficulté et la présente configuration d’écoulement de type Couette
semble particulièrement bien adaptée pour mener les investigations systématiques
attendues.

B.6 Perspectives

Au sortir de ce travail de thèse, plusieurs perspectives de recherche peuvent être
évoquées ainsi qu’un certain nombre de problèmes restant ouverts. Parmi ceux-ci,
on peut distinguer des aspects spécifiquement numériques et des questionnements
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plus fondamentaux sur l’état actuel des connaissances et les verrous scientifiques non
encore résolus quant à notre compréhension physique de l’érosion des sols cohésifs
par action hydrodynamique et à sa modélisation.

Au sujet de l’outil numérique développé et déployé au cours de ce travail, plusieurs
améliorations potentielles sont envisageables. Tout d’abord, bien que la vitesse de
calcul ait déjà été très significativement augmentée par l’utilisation des GPU, il
reste encore une marge de progression, particulièrement sur la partie LBM qui est la
plus consommatrice en temps de simulation. Ainsi, il serait possible de supprimer
le recours à la mémoire globale pour n’utiliser que la mémoire partagée des GPU
dont l’accès est nettement plus rapide. Par ailleurs, notre code LBM-DEM actuel
est bidimensionnel et les résultats de simulation qu’il produit s’avèrent, de ce fait,
difficiles à comparer quantitativement à des observations expérimentales réalistes.
Cependant, une extension en 3D du modèle est tout à fait envisageable mais requiert
en retour des ressources mémoire en très fort augmentation, particulièrement pour le
calcul LBM où, selon les schémas mis en œuvre (D3Q15 ou D3Q19), 15 ou 19 vecteurs
vitesses de réseau sont nécessaires à chaque nœud. Des approches multi-GPU avec
décomposition de domaine devront très vraisemblablement être envisagées puisque
la mémoire GPU reste assez limitée en volume. Une version tridimensionnelle de ce
type de code, même couteuse en temps de calcul, permettrait de simuler de façon
beaucoup plus réaliste diverses applications en géotechnique.

D’un point de vue plus physique, plusieurs questions importantes demeurent
comme autant de voies pour de futures investigations. Dans un premier temps,
et en se restreignant à la configuration du jet impactant, des travaux pourraient
être engagés sur la distribution des efforts hydrodynamiques à la surface d’une sur-
face non plus plane mais présentant une forme de cratère réaliste, afin de proposer
une estimation plus pertinente de la contrainte appliquée en cours d’affouillement, si
possible encore basée sur le modèle de jet libre auto-similaire. Il serait ainsi possible
d’améliorer significativement le modèle d’interprétation de l’essai JET, dont on a
pu voir les limitations au cours de ce travail, et accéder alors à une évaluation plus
fiable de la résistance à l’érosion. Cela a déjà été amorcé à travers l’extension à un
jet axisymétrique réel de l’expression obtenue en 2D pour la contrainte maximale
avec une validation expérimentale assez convaincante pour notre proposition d’un
nombre de Shields généralisé (Brunier-Coulin et al., 2019).

L’analyse de l’érosion par écoulement de Couette n’a pas été totalement satis-
faisante et des efforts importants restent à faire pour mieux comprendre les mécan-
ismes physiques sous-jacents de l’érosion d’un sol cohésif à petite échelle. Le point de
départ pourrait logiquement se baser sur cette configuration épurée et bien contrôlée
en poursuivant l’analyse systématique déjà engagée ici, par variation de plusieurs
paramètres physiques comme la taille des particules, leur densité ou la gravité, mais
aussi, de façon encore plus intéressante, en explorant plus largement le modèle de
cohésion utilisé, et notamment en modifiant indépendamment les 3 seuils de rup-
ture locaux des ponts solides entre grains, afin d’accéder des comportements de sols
dans une gamme beaucoup plus large et, potentiellement, plus réaliste. En cela,
l’analyse micro-mécanique amorcée à la section 4.3.4 est une approche prometteuse
et pourrait être poursuivie.
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Une question aussi se pose quant à la relation existant entre les paramètres micro-
scopiques et les grandeurs mesurées à plus grande échelle. Ces dernières englobent
l’éridibilité, évoquée dans ce travail, mais aussi d’autres types de résistances mé-
caniques fortement contrôlées par la cohésion interne du matériau. Pour cela, et
comme présenté à l’Annexe A, un travail a été initié pour simuler à l’échelle d’un
échantillon de sol des tests mécaniques, notamment en traction et cisaillement di-
rect afin d’étudier le passage micro-macro et de valider la pertinence de la formule
théorique de Rumpf (Pierrat and Caram, 1997). Il est important de souligner que,
parallèlement à l’approche numérique, des expériences sont également menées sur ce
point dans notre équipe de recherche et seront poursuivies. Celles-ci s’appuient sur
l’utilisation de matériaux cohésifs artificiels, constitués de grains collées entre eux
par des ponts solides (résine, paraffine), et de différents dispositifs expérimentaux
permettant de réaliser des tests de traction à une échelle macroscopique mais aussi
directement à l’échelle du contact entre deux grains.

Finalement, pour conclure sur ces diverses perspectives, il est bon de noter que
l’étude de plusieurs autres situations de couplage fluide-grains en condition immergée
à l’aide de notre code LBM-DEM a déjà été amorcée ou le sera très prochainement.
C’est ainsi le cas de la modélisation de l’apparition de fontis dans une couche su-
perficielle de sol en contexte karstique, travail mené depuis plusieurs années en col-
laboration avec le BRGM (Luu et al., 2019). De premiers résultats préliminaires
ont aussi été obtenus pour modéliser l’installation d’une fondation off-shore dans un
sol sous-marin (Benseghier et al., 2019). Enfin, notre code sera utilisé et amélioré
au cours du projet COMET, en démarrage effectif à l’automne 2019, qui s’intéresse
spécifiquement à deux applications géotechniques : l’érosion et la fluidisation super-
ficielle lors de l’installation d’une fondation off-shore par succion ; l’érosion localisée
dans le sol stratifié d’un structure hydraulique.
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