Thèse soutenue

Développement de l'ellipsométrie porosimétrie pour la caractérisation de couches minces nanoporeuses appliquées aux panneaux solaires
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Jérôme Loizillon
Direction : David Grosso
Type : Thèse de doctorat
Discipline(s) : Physique et sciences de la matière. Matière condensée et nanosciences
Date : Soutenance le 04/10/2019
Etablissement(s) : Aix-Marseille
Ecole(s) doctorale(s) : Ecole Doctorale Physique et Sciences de la Matière (Marseille)
Partenaire(s) de recherche : Laboratoire : Institut Matériaux Microélectronique Nanosciences de Provence (IM2NP) (Marseille, Toulon)
Jury : Président / Présidente : Florence Babonneau
Examinateurs / Examinatrices : Mika Lindén, Philip Llewellyn, Damien Reardon, Xavier Paquez
Rapporteurs / Rapporteuses : Corine Gerardin

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Avec le développement des nanotechnologies, la nécessité d’élaborer des matériaux à très petite échelle s’est accrue. En particulier, les couches minces (du nanomètre au micromètre) nanoporeuses sont utilisées dans de nombreux domaines tels que l’optique, l’électronique, ou la détection. Leur utilisation principale en tant que revêtement anti-reflets est cruciale pour les panneaux solaires en permettant d’augmenter leur rendement global. Pour ce type d’application, les couches minces doivent être en mesure de supporter des phénomènes d’abrasion (sable, nettoyage) ou des attaques chimiques (pluie, pollution). La caractérisation de la porosité des couches minces est un prérequis pour ajuster leurs propriétés mais également suivre l’évolution de la couche lors de son vieillissement. L’ellipsométrie porosimétrie, technique basée sur la sorption de gaz dans la porosité, est un des outils les plus adaptées pour cette tâche. Dans cette thèse, de nouveaux revêtements anti-reflets pour panneaux solaires ont été élaborés et leur résistance à leur environnement éprouvée. La caractérisation de leur porosité a été améliorée grâce au développement de l’ellipsométrie porosimétrie au-delà de l’état de l’art actuel. La précision de celle-ci a été évaluée par comparaison avec une autre technique. De plus, une meilleure caractérisation des interconnexions entre les pores a pu être atteinte en ajoutant une nouvelle méthode d’analyse. Cela a également permis d’établir une meilleure compréhension fondamentale des phénomènes d’adsorption dans les couches minces nanoporeuses