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Abstract
Genes and proteins do not act isolated in cells but rather interact to perform

their functions in signaling pathways, molecular complexes, or, more generally,
biological processes. These interactions can be represented as large networks
in which nodes are genes or proteins and edges represent their interactions. Var-
ious graph-theory based approaches have been developed to extract the func-
tional knowledge contained in biological networks. Nevertheless, thesemethods
have been mainly applied to individual networks, ignoring the diversity of biolog-
ical interactions. We state here that these different types of interactions can be
represented as multiplex networks, i.e. collections of networks sharing the same
nodes, leading to a more accurate description of biological systems.
This thesis focuses on the extension from individual to multiplex networks of

some of the state-of-the-art guilt-by-association methods in computational bi-
ology, and on their application to the study of human diseases. Concretely,
I expanded the random walk with restart algorithm in order to explore multi-
plex and heterogeneous networks. We demonstrated that our method is able
to take advantage of different interaction sources to predict disease-associated
genes. I also participated to the Disease Module Identification DREAM Chal-
lenge, an international project aiming at testing different clustering algorithms in
a bio-medical context, with a multiplex-tailored algorithm developed by our team.
Overall, multiplex network findmore biologically relevant modules than individual
networks.
On the application side, we concentrate on premature aging diseases, also

called progeroid syndromes, a group of rare genetic disorders that resemble
some aspects of physiological aging at an early age. In this framework, I first
applied randomwalks with restart onmultiplex networks to unveil the deregulated
biological processes in specific premature aging diseases. Then, we applied an
extension of this algorithm to detect the modules associated to more than 70
disorders annotated with at least one premature aging related phenotype. The
results revealed the landscape of perturbed molecular processes in premature
aging diseases, which can be paralleled with the hallmarks of physiological aging
to help identifying common and specific features.
Finally, the last chapter describes the analyses of proteomics and phosphopro-

teomics mass spectrometry data derived from prostate cancer cell lines. These
cell lines represent different stages of the disease’s progression. We identified
some molecular events potentially responsible for the progression of prostate
cancer to metastatic stages, which are highly aggressive and incurable.

Keywords: biological networks, multiplex networks, random walk with restart
algorithm, clustering algorithms, premature aging diseases, proteomics, phos-
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phoproteomics, prostate cancer.
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Résumé
Les gènes et les protéines n’agissent pas de manière isolée dans les cellules,

mais interagissent plutôt pour faire leurs fonctions dans les voies de signalisa-
tion, les complexes moléculaires ou, plus généralement, dans les processus
biologiques. Ces interactions peuvent être représentées sous forme de grands
réseaux dans lesquels les nœuds sont des gènes ou des protéines et les arêtes
représentent leurs interactions. Diverses approches basées sur la théorie des
graphes ont été développées pour extraire la connaissance fonctionnelle con-
tenue dans les réseaux biologiques. Néanmoins, ces méthodes ont été princi-
palement appliquées à des réseaux individuels, en ignorant la diversité des inter-
actions biologiques. Nous déclarons ici que ces différents types d’interactions
peuvent être représentés sous la forme de réseaux multiplexes, c’est-à-dire des
ensembles de réseaux partageant les mêmes nœuds, ce qui permet une de-
scription plus précise des systèmes biologiques.
Cette thèse est focalisée sur le développement de nouveaux algorithmes éten-

dant aux réseaux multiplexes certaines méthodes populaires de la théorie des
graphes en biologie computationnelle, ainsi que sur leur application à l’étude des
maladies humaines. Concrètement, j’ai étendu l’algorithme random walk with
restart aux réseaux multiplex et hétérogènes. Nous avons démontré que notre
méthode est capable de prendre avantage des différentes sources d’interaction
pour prédire les gènes associés à une maladie. J’ai également participé à
DREAM Challenge, un projet international visant à tester différents algorithmes
de clustering dans un contexte biomédical, avec un algorithme adapté au mul-
tiplex développé par notre équipe. Globalement, le fait de considérer plusieurs
réseaux améliore la détection des modules.
Du côté des applications, nous nous concentrons sur les maladies liées au

vieillissement prématuré, également appelées syndromes progéroïdes, un groupe
de maladies génétiques ressemblant à certains aspects du vieillissement phys-
iologique à un âge précoce. Dans ce cadre, j’ai d’abord appliqué des ran-
dom walk with restart sur des réseaux multiplex afin de dévoiler les proces-
sus biologiques dérégulés dans maladies particuliers liées au vieillissement pré-
maturé. Ensuite, nous avons appliqué une extension de ces algorithmes pour
détecter lesmodules associés à plus de 70 syndromes annotés avec aumoins un
phénotype lié au vieillissement prématuré. Les résultats ont révélé le paysage
des processus moléculaires perturbés dans les maladies du vieillissement pré-
maturé, qui peuvent être mis en parallèle avec les caractéristiques du vieillisse-
ment physiologique.
Enfin, le dernier chapitre décrit les analyses des données de spectrométrie

de masse, proteomics et phosphoproteomics, dérivées de lignées cellulaires du
cancer de la prostate. Ces lignées cellulaires représentent différentes étapes de
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la progression de la maladie. Nous avons identifié certains événements molécu-
laires potentiellement responsables de la progression du cancer de la prostate
vers les stades métastatiques, qui sont très agressifs et incurables.

Mots clés: Random Walk, réseaux biologiques, réseaux multiplex, cluster-
ing, maladies du vieillissement prématuré, protéomique, phosphoprotéomique,
cancer de la prostate.

7



Acknowledgements
To be honest, I never thought about doing a PhD just after finishing my bach-

elor degree in Physics. However, sometimes life takes you through unexpected
paths and now that my time in Marseille is coming to an end, I can say without
hesitation that I really feel glad to have chosen this route. It allowed me to work
on something that I really enjoy as well as meeting many interesting people from
all over the world.
First and foremost, I would like to thank the two people who allowed me to get

on board with them on this adventure: Anaïs Baudot and Pierre Cau, my thesis
supervisors. I want to express my sincerest gratitude to Anaïs for her support
and guidance during these last years. You showed me how doing research that
we can proudly stand for. I appreciate very much the freedom you gave me to ex-
plore different avenues and to build my own research interests. I could not forget
to thank you for your comprehensive and picky text corrections that helped me to
improve my writing skills :-). Before moving on to the next person, I just want to
say loudly THANKS FOR BEING SO NICE. Pierre, many thanks for trusting on
our work and therefore funding my PhD. I have really appreciated our interesting
scientific discussions where you shared with us your vast knowledge. Thanks for
providing us with a complementary perspective that we were missing. I honestly
think that you are an example to others concerning how to be passionate about
scientific work.
I am also very grateful to the members of my thesis committee: David Sal-

gado, Pascal Hingamp and Laurence Calzone. They encouraged me to keep
working enthusiastically and gave me some precious advises. I would like to
thank all the members of the jury, especially Antonio Rausell and Laura Fur-
long for willingly accepting the revision of this manuscript. My sincere thanks to
my examinators: Nicolas Thierry-Mieg and Jacques van Helden. I hope that
you can find the lecture of this manuscript enjoyable and not very tedious.
I feel proud to have been part of the Institut deMathématiques deMarseille and

the Marseille Medical Genetics unit. This gave me the opportunity to work with
many brilliant colleagues that I would like to thank. A big thank you to Elisabeth
Rémy and Laurent Tichit for their valuable scientific feedback and for being al-
ways ready to help me with any topic either personal or work-related. Thank you
very much to those who are part of the team for a longer time: Firas Hammami,
Brigitte Mosse, Elva Novoa, Léonard Herault and Alain Guenoche; and to
those who have most recently joined us: Léo Pio-López and Pooya Zakeri. I
really hope that we can keep working together in the future.
It was also a pleasure to be a member of the ProGeLife family, which made

discovering the exciting complexity of aging. I would like to especially thank
Sophie Perrin and Claire Navarro for trying to validate experimentally our pre-

8



dictions and for spending their time explaining us how they did it. I would also
like to mention the other members of ProGeLife: Nicolas Lévy, Eric Dessaud,
Gaëlle Odelin, Pascale Klopp, Clovis Bondu and Héloïse Laroye.
Occasionally, a project can face many obstacles and last longer than expected.

However, it is also possible to meet great colleagues in those situations. I feel
grateful for having the chance to work with Luc Camion and Maria Katsogian-
nou. I wish you all the best for your forthcoming projects.
Well, I think it is time to shift towards the more personal side of the acknowl-

edgements. During these last years, I had the chance to live in Marseille, a
city that produces mixed feelings among its inhabitants: sometimes you love it,
sometimes you hate it. I write these lines short before leaving and I can assure
you now that the moments of love for the city clearly exceed those of hate. I will
certainly miss you Marseille. You were also my base camp for my expeditions to
the amazing beaches and mountains of La Provence. Nevertheless, discovering
these places would not have been such a rewarding experience for me without
the friends who accompanied me.
First of all, I would like to thank all the flatmates that have passed through La

République apartment, one of the most popular spots in Marseille’s nightlife :-);
okay okay, I am exaggerating. The original crew was composed of Diogo (Tron-
cooooo), football and a beer is our perfect evening plan, Annamaria, always
busy organizing hundred different plans, and Guillaume, trying to correct our
broken French. Then, the Croatian team came into scene with two top players
Luksa (Kuuuna) and Ante (Eeeepaña). Guys, I hope to visit you soon in Mu-
nich and Cagliari. Many thanks to Alessandro for his intensive Italian courses,
mi manca parlare italiano con te! I would also like to thank Marie and Yves,
the last signings of La République. Although one of those signings was a bit
controversial, right Marie?
Participating in the Café des Langues gave me the chance to make very good

friends from all over the world. I had the enormous pleasure of meeting Dr.
Bachata (Alejandro), the music dictators (Lamia, Lolita and Wi-Fi), the Mex-
ican team and associates (Santiago, Jaime, Claire and Ariana), any Italian
in Marseille? Virtually none. . . (Elena, Serena, Andrea, Paolo and Federico),
El danés errante (Michael), the Pointu crew (Juan and Pavlo) and some good
friends that I have to mention but are not easy to categorize (Marta (Troncaaaaa),
Claudio, Jordi, Belén, Lan, Nico and Rasa). Thanks guys for all the moments
we shared. I will be waiting for your visit in my next destination!

Tomar la decisión de cambiar un empleo estable y bien remunerado en tu
país de origen por un doctorado en un país donde no conoces la lengua no
es fácil. Neli siempre me ayudó y me apoyó para que siguiera los dictados de
mi corazón. No es fácil de expresar con palabras lo eternamente agradecido
que te estoy. Por ello, simplemente quiero añadir lo siguiente: MUCHÍSIMAS
GRACIAS.

9



Quiero enviar desde aquí un beso enorme para la mujer con más paciencia
del mundo, mi madre. Además de querernos y mimarnos, La señora Urbelz
ha sido capaz de guiar a buen puerto una nave cuya tripulación está compuesta
por tres Valdeolivas varones. Creánme si les digo que esto es una empresa
titánica. Un fuerte abrazo a la persona que me inculcó el amor por la ciencia,mi
padre. Aún recuerdo las recompensas de 5 pesetas por cada especie de árbol
que yo adivinaba durante nuestros paseos por el parque de Morales. Señor
Valdeolivas, espero poder devolver el favor mostrándote las plantas de Les
Calanques. Parece que ya estoy llegando al personaje de mi hermano, Quique.
Como yo soy el hermano mayor, te agradezco por tus futuras acciones que
todavía no han tenido lugar. Gracias Doctor Valdeolivas por cuidarme y darme
consejos médicos cuando sea viejo (¡aún más viejo que ahora!)
Como el tamaño de mi familia es reducido, me voy a permitir el capricho de

citarla al completo. Muchas gracias a mi tía Pilar por animar incansablemente
las fiestas familiares. Además tiene distinto repertorio para calentar las fiestas,
lo mismo te canta que te genera una discusión. Gracias a mi prima Lorena
por los bellos recuerdo de infancia. Aunque en aquellos tiempos me hacías
sufrir mucho con el chocolate, ahora esas imágenes mentales evocan muy fe-
lices momentos para mí. Pese a que le tengo un poco de miedo por ser más
fuerte que yo, quiero también dar las gracias a mi primo Óscar, ¡Vaya mazada
niño! Y por supuesto, gracias a Lucía por convertir cada visita a Santander en
una nueva aventura. Es mejor que estés bien preparada para mi próxima vez,
¡Merengue vuelve más poderoso que nunca! Quiero también agradecer a la
pequeñaja, Alexia. Esas fotos que recibo en mi móvil donde tú eres la protag-
onista siempre consiguen sacarme una sincera sonrisa. ¡Gracias a ti también,
Robe!
Y esto se está empezando a acabar, ¡pero todavía no se ha acabado del todo!

No podría despedirme sin antes nombrar a Suzana. No hace mucho tiempo
que te cruzaste en mi vida, sin embargo has llamado con fuerza a las paredes
de mi corazón (Yeah, yeah, colder than ice, hard as a rock!). Hvala ti puno!
Faleminderit shumë!

Alberto Valdeolivas

Marseille, February 2019

10



Contents

Abstract 5

Résumé 7

Acknowledgements 10

Preface 15

Personal summary 21

Introduction: 22

1 Graph theory 23
1.1 History of graphs 23
1.2 Formal definition of graphs 24
1.3 Terminology for graphs 25
1.4 Matrix representation 27
1.5 Distances and walks 27
1.6 Subgraphs, modules and motifs 28
1.7 Topological measures and metrics in graphs 29

1.7.1 General metrics 29
1.7.2 Centrality measures 31

2 Building biological networks 36
2.1 Biological interactions between genes and proteins 37
2.2 Networks of physical binary interactions 39

2.2.1 Yeast two-hybrid screening 39
2.2.2 Databases containing PPIs 41
2.2.3 Final remarks about PPI networks 42

2.3 Networks of proteins complexes 43
2.3.1 Affinity purification coupled to mass spectrometry 44
2.3.2 Construction of protein networks from co-complex interac-

tions 45
2.3.3 Databases containing protein complexes 47
2.3.4 Final remarks about networks of protein complexes 47

2.4 Networks of pathways 48
2.4.1 Types of biological pathways 48
2.4.2 Databases containing collections of biological pathways 50
2.4.3 Construction of networks from pathways sources 52

2.5 Co-expression networks 52

11



2.5.1 Construction of gene co-expression networks 53
2.5.2 Public gene expression data sources 54

2.6 Other biological networks 55
2.6.1 Other networks of genes or proteins 55
2.6.2 Other networks containing different nodes 56

2.7 Integration of networks 57
2.8 Topological properties of biological networks 58

2.8.1 Scale-free networks 59

3 Analysis of biological networks in a bio-medical context 64
3.1 Graph-theory methods on network medicine 64

3.1.1 Network propagation ranking methods 65
3.1.2 Clustering algorithms 66

3.2 Clinical applications in network medicine 69
3.2.1 Common and rare diseases 70
3.2.2 Networkmedicine for the identification of disease-implicated

genes 72
3.2.3 Network medicine for the identification of disease biomarkers 72
3.2.4 Networks analysis of diseases comorbidities 73
3.2.5 Network pharmacology 75

Results: 77

4 Multiplex networks in biology 78
4.1 Definition and relevance of multiplex networks 78
4.2 Multiplex networks in computational biology 78
4.3 Random walks with restart on multiplex networks 80
4.4 A clustering algorithm for multiplex networks 91

5 Landscape of premature aging Diseases 102
5.1 The hallmarks of aging 102
5.2 Premature aging diseases 105
5.3 Mining multiplex-heterogeneous networks to study premature ag-

ing diseases 107

6 Proteomic portrait of prostate cancer 134
6.1 Prostate cancer 134
6.2 Proteomics 135

6.2.1 Stable isotope labeling by amino acids in cell culture 135
6.2.2 Phosphoproteomics with SILAC 136

6.3 Integrative proteomic and phosphoproteomic profiling of prostate
cell lines 137

Discussion 175

12



Conclusion 179

Bibliographie 180

ANNEXES 220
A Random walk with restart on multiplex networks 220

A.1 Random walk with restart on multiplex and heterogeneous
biological networks: supplementary materials 220

A.2 RandomWalkRestartMH: random walk with restart on mul-
tiplex and heterogeneous Networks. R package 241

B Open community challenge reveals molecular network modules
with key roles in diseases 259

C A multiplex seed-expanding approach to describe the landscape
of premature aging diseases: supplementary materials 322

13



Preface
I have always been fascinated by the fact that the number of cells in a human

being is estimated to be greater than the number of galaxies in the whole uni-
verse. This huge number of entities must communicate and organize among
themselves in a marvelous complex way to ensure the proper functioning of our
body. Moreover, this complexity is also observed at a smaller scale given that
around 1010 proteins work in a coordinated manner inside a medium-sized eu-
karyotic cell to keep us alive. The question that arises is: can we fully understand
what is actually happening inside a cell? I would rather reply no if I had to bet
on an answer. Nevertheless, I strongly believe that we are in an unprecedented
moment to improve our comprehension on the subject. We can nowadays take
advantage of the massive amount of biological data supplied by the new high-
throughput technologies.
This accumulation of large-scale data called for the development of computa-

tional tools able to explore and mine the vast amount of biological knowledge
they contain. This culminated in the birth and exponential growth of the field of
bioinformatics, bringing together two of the most appealing research fields for
me. I felt that, from my very modest contribution, I had to be part of this scientific
community at such decisive moments in which, for example, the human genome
has been completely decoded. Thus, I decided to quit my job in the banking sec-
tor in 2014, and started studying a master in bioinformatics that eventually drove
me to Marseille, where the work detailed in the forthcoming lines took place.
This thesis manuscript presents the result of my research conducted under

the supervision of Prof. Pierre Cau (ProGeLife) and Dr. Anaïs Baudot (Marseille
Medical Genetics, MMG). This double supervision led to a close collaboration be-
tween ProGeLife, a biotechnology R&D company dedicated to the development
of therapeutic solutions for rare genetic diseases characterized by premature ag-
ing, and the Networks and Systems Biology for Diseases group from the MMG
unit. In addition, we intently work closely with our former group, Mathématiques
et Algorithmique pour la Biologie des Système (MaBios), from the Institut de
Mathématiques de Marseille, I2M. In this interdisciplinary framework, I tried to
contribute to the research carried out in these groups by providing the knowledge
acquired during my education in Physics, Biophysics and Bioinformatics along
with my working experience in the banking sector as a software developer.

In this manuscript, I describe first the research path I followed during the last
four years from my own perspective (Personal summary). Then, in the first three
chapters, I introduce the background state-of-the-art notions, experimental tech-
niques and algorithms relevant for my work and results. To be more precise, the
first chapter details some general notions of graph theory, which correspond to
the mathematical scaffolds underlying my work. The second chapter describes
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the different types of biological networks, how they are constructed and their
properties. I next introduce the concept of network medicine in the third chapter,
and discuss how biological networks can help us to better understand and treat
diseases.
The later three chapters describe the results I obtained during my PhD studies.

More specifically, chapter fourth focuses on the development of new algorithms
to deal with combinations of different types of biological networks. We show how
these methods outperform traditional approaches that take as their input single
networks, within the context of network medicine. Then, I applied extended ver-
sions of these new approaches to study a group of diseases displaying a pre-
mature aging phenotype. These results are detailed in chapter fifth, and aim
at improving our knowledge about the molecular factors involved in these disor-
ders and in physiological aging. In chapter sixth, I describe the results yielded
by my analyses on proteomics data derived from prostate cancer cell lines. We
identified some molecular mechanisms likely to be implicated in the disease’s
progression to resistance. The end of the manuscript is dedicated to discussion
of the overall results and personal conclusions.
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Personal summary
In this section, I try to describe how the projects arose from a chronological

point of view and how they evolved from my personal perspective. The main
goal is to locate the reader in the general framework in which this thesis was
accomplished. It is to note that citations are not included in this section for the
sake of simplicity, but they are provided in the forthcoming sections.

Master Thesis: Proteomics and
Phosphoproteomics for Prostate Cancer
I arrived in Marseille in 2015 to accomplish my Master Thesis under the su-

pervision of Dr. Anaïs Baudot in the Institut de Mathématiques de Marseille,
I2M, UMR7373, Campus de Luminy. The project involved a collaboration be-
tween different wet and dry laboratories, and concerned a disease of consider-
able impact on today’s society, prostate cancer (PC). Indeed, PC is the second
leading cause of male cancer-related death in industrialized countries. It is of-
ten treated by castration therapy, but eventually recur as Castration-Resistant
Prostate Cancer (CRPC), which is highly aggressive and incurable. It is there-
fore essential to identify the molecular events responsible for the progression of
PC to the castration-resistant stage in order to design specific therapies. Such
molecular variations can be monitored by system-wide approaches such as tran-
scriptomics and proteomics. In this line, our collaborators in the CRCM, Centre
de Recherche en Cancérologie de Marseille, conducted a SILAC-based mass
spectrometry approach to identify and quantify the proteomes and phosphopro-
teomes of four widely used prostate cell lines. These cell lines represent different
stages of the disease progression, from prostate healthy tissue to CRPC.
During my master research stay and the beginning of my PhD thesis, I carried

out rigorous statistical analysis procedures over these proteomics and phospho-
proteomics data. My results allowed characterizing each cell line from a func-
tional point of view. In addition, we pointed out potential biomarkers differentially
expressed or phosphorylated in PC and CRPC compared to normal. We finally
turned to our specialty and integrated proteomics and phosphoproteomicsmark-
ers in a molecular network, permitting to highlight the functional mechanisms
differentially expressed in the CRPC stage. More information about this project
and an associated article detailing our results are available in the final chapter
of the present manuscript, chapter 6.

Katsogiannou, M.†, Boyer, J.B.†, Valdeolivas, A.†, Remy, E., et al. (2018). In-
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tegrative proteomic and phosphoproteomic profiling of prostate cell lines. Under
Review. †Equal contribution.

PhD Project: Networks for Premature Aging
diseases
After a few months working on the aforementioned project, I successfully de-

fended my master thesis, and Dr. Anaïs Baudot and Prof. Pierre Cau gave
me the opportunity to undertake a doctoral thesis under their guidance. Pro-
GeLife, the biotechnology R&D company founded by Pierre Cau and Nicolas
Levy, would fund my work through a CIFRE scholarship. ProGeLife is dedicated
to the development of therapeutic solutions for rare genetic diseases character-
ized by Premature Aging (PA). Anaïs has extensive experience in the systems
biology field, and more specifically in biological networks. Consequently, Pierre
and Anaïs offer me to develop network-based methods, and apply them to study
PA diseases as a thesis topic.
The general issue we aimed to address was to identify genes/proteins poten-

tially related to PA diseases, in order to get insights about the processes dereg-
ulated in these syndromes, and predict new potential therapeutic targets. In
addition, this information can provide clues about how physiological aging oc-
curs. Our working framework is the one of network medicine, which states that
the complex phenotype of a disease does not only arise from the isolated punc-
tual mutation in its causative gene, but from the global perturbation induced by
that mutation in biological networks.

Network-based algorithms
Genes and proteins do not act isolated, but rather interact with each other to

perform their functions in cells. These interactions can be represented as large
networks in which nodes are the genes or proteins, and edges represent their
interactions. As interactions are the foundations of gene and protein cellular
processes, functionally-related proteins tend to lie in the same network neigh-
borhood within biological networks. These molecular arrangements are at the
core of the guilt-by-association strategies, which state that interacting proteins
are more likely to be functionally related than non-interacting proteins. Guilt-by-
association procedures are based on two major graph-theory approaches:

1. Network propagation ranking methods prioritize network nodes according
to their topological distances to a previously defined group of genes of in-
terest, which are called the seeds. In particular, random walk with restart
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captured my attention since they have the ability to explore the global topol-
ogy of networks. It is among the most widely-used ranking techniques in
computational biology, and are described on section 3.1.1.

2. Clustering algorithms allow identifying communities of tightly connected
proteins, which are therefore likely to be involved in the same biological
processes. An overview of the different clustering algorithms, with a spe-
cial emphasis on those frequently used in network biology, can be found on
section 3.1.2. Among the various approaches, we can highlight the algo-
rithms aiming at optimize the modularity, a measure describing the strength
of division of a network into communities.

Multiplex networks
The guilt-by-association algorithms mentioned above are usually applied on

single (monoplex) networks, mainly representing protein-protein direct physical
interactions. However, other type of physical interactions and functional relation-
ships exist among genes and proteins. For instance, proteins can also be mem-
bers of the same molecular complexes without having a direct physical contact,
or can participate in the same pathways. Biological interactions are identified
thanks to different experimental techniques, including yeast-two-hybrid or mass
spectrometry. In addition, different functional relationships among genes or pro-
teins can be inferred from -omics data, such as co-expression associations from
transcriptomics) data.
Overall, we can build different networks of gene/protein relationships from

these interactions sources. Each networks contain nodes corresponding to genes
or proteins, and edges belonging to different interaction categories. The different
networks display various topological features, and each has its own strengths
and weaknesses. The richness of this information can be integrated into mul-
tiplex networks, i.e. collections of network layers (monoplex networks) sharing
the same nodes, but in which edges represent interactions of different categories.
Multiplex networks have been shown to be a good approach to represent com-
plex systems, since they provide an effective way to integrate individual sources
of information while keeping track of their individual features. We therefore de-
cided to direct my research work towards the development of algorithms dealing
with multiplex biological networks. To leverage a maximum of biological infor-
mation, we also considered heterogeneous networks, i.e., networks composed
of different type of nodes such as diseases linked by phenotypic relationships.
The core of the work presented in this document lies in the innovative exten-
sion of network propagation ranking methods and clustering algorithms to the
multiplex-heterogeneous framework. Undoubtedly, we always kept in mind their
applications to PA diseases.
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Random walks with restart on multiplex networks

Random walk with restart (RWR) is the state-of-the-art guilt-by-association
ranking algorithm used in network computational biology. It was initially ap-
plied to prioritize candidate disease genes/proteins. The algorithm ranks all
the network nodes according to their proximity to known disease-associated
genes/proteins taken as seeds. I developed two extensions of the RWR algo-
rithm, in order to explore multiplex networks and multiplex-heterogeneous net-
works. A multiplex network is composed of different layers, sharing the same
nodes but different sets of interactions. A heterogeneous network is composed
of networks having both different nodes and edges, linked through bipartite in-
teractions. We demonstrated that applying random walk with restart on a mul-
tiplex (RWR-M) network or on a multiplex-heterogeneous (RWR-MH) network
performs better than its application to monoplex isolated networks in the task
of predicting disease genes. Moreover, I applied these new methods to explore
the network vicinity of PA syndromes, in order to unveil their associated diseases
and pathways. This work is described in detail on section 4.3, where I also added
the following peer-reviewed published article:

Valdeolivas, A., Tichit, L., Navarro, C., Perrin, S., et al. (2018). Random walk
with restart on multiplex and heterogeneous biological networks. Bioinformat-
ics, (August), 1–9.

This work also lead to the publication of an R package on Bioconductor (see
Appendix A.2 for details). The application of this method on a PA disease led to
the selection of a particular gene for further biological analyses. My ProGeLife
colleagues conducted a set of experimental validations to determine if the se-
lected gene is involved in aging. These results are presented in the discussion
of this manuscript.

Clustering on multiplex networks

Biological networks usually present a community structure, meaning that groups
of proteins are more densely connected between each other than with the rest of
the network. These groups of tightly connected entities, usually called modules,
contain nodes likely to be involved in the same biological functions. Therefore,
the accurate extraction of these modules is an important guilt-by-association
strategy. For instance, the identification of the modules where a mutated gene
participates can reveal the cellular and molecular mechanisms underlying dis-
eases.
A plethora of methods have been proposed for community detection based
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on different theoretical bases and diverse assumptions to define biological mod-
ules. In this context, the Disease Module Identification (DMI) DREAM challenge
has been set up to investigate the performance of different community detec-
tion algorithms in a bio-medical context, by providing biological networks and a
controlled benchmark to evaluate the modules detected by the different methods.
We participated to the challenge with an enhanced version ofMolTi, a modularity-
based software designed to detect communities in multiplex networks previously
developed by our team. The overall results of the challenge are detailed in the
consortium article to which I participated (Appendix B).
In addition, we performed an in-depth analysis of the communities detected by

the the new version of MolTi on both simulated data and the DREAM challenge
benchmark. Concisely, we are able to detect more relevant modules taking ad-
vantage of the multiplex approach. These results, along with a detailed discus-
sion about the challenges of the detection of communities on real multiplex bio-
logical networks, are presented in section 4.4, where the following peer-reviewed
published article is also included:

Didier, G., Valdeolivas, A., & Baudot, A. (2018). Identifying communities from
multiplex biological networks by randomized optimization of modularity.
F1000Research, 7(0), 1042.

The landscape of premature aging diseases
Premature aging syndromes, also called progeroid syndromes, are a group

of rare genetic disorders that phenotypically resemble some of the aspects of
physiological aging at an early age. The aged appearance of PA disease pa-
tients can be the result of alterations in molecular mechanisms also occurring
at an advancing age on healthy individuals. Consequently, PA diseases are
the subject of a significant number of studies aiming at identifying their altered
processes and transferring this knowledge to physiological aging. These syn-
dromes are clinically and genetically heterogeneous, affecting different tissues
and displaying dissimilar severity degrees. They can therefore potentially reveal
different agents involved in the aging process.
My last project was to define a functional landscape for a set of diseases dis-

playing phenotypes related to PA. To this goal, I developed a seed-expanding ap-
proach to generate modules around node(s) of interest in multiplex andmultiplex-
heterogeneous networks. The method is based on the recursive application of
the previously mentioned RWR-M and RWR-MH algorithms. We applied the ex-
tended method to generate modules associated to different PA diseases. The
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functional modules identified revealed the landscape of perturbed molecular pro-
cesses in PA diseases, which can be paralleled with those altered in physiolog-
ical aging. We also classified these PA diseases in different groups aiming at
identifying their common and specific features. We are currently gathering these
results and writing the article detailed below, which can be found on chapter 5.

Valdeolivas, A., authors to be defined & Baudot, A. (2018). A Multiplex Seed-
expanding Approach to Describe the Landscape of Premature Aging Diseases.
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1 Graph theory
Graph theory is the area of mathematics studying graphs; it is usually called

network science when it is applied to real-world systems. Indeed, a graph is a
mathematical objects describing the pairwise relations between the entities of a
system, i.e. a network. The use of graphs have strongly gained attention in the
last decades since they may be applied to model and analyze problems into a
plethora of fields. For instance, a wide variety of applications can be found in
diverse areas such as computer science (Deo 2017), linguistics (Filippova 2010),
physics (Estrada 2013), chemistry (Trinajstić 1983), social sciences (Borgatti et
al. 2009), biology (Verwoerd 2007) and ecology (Bascompte 2007).
This chapter provides a formal introduction to graph theory by detailing some

of the mathematical concepts sustaining my work. I tried to keep a biological per-
spective, and hence give examples of graph-theory applications in the framework
of computational biology. It is to note that the biological networks considered in
the results chapters of this manuscript are large-scale, finite and undirected net-
works, so I herein restrict definitions to such graphs.

1.1 History of graphs
The former city of Königsberg in Prussia, nowadays Kaliningrad in Russia, is

at the mouth of the River Pregel. The river separates the city in four land masses
connected by seven bridges, as represented in Figure 1.1

Figure 1.1 – Schematic representation of the city of Königsberg showing the seven
bridges, the four land masses and the Pregel river. Figure adapted from (Carl-
son 2017)

The inhabitants of the city thought about the possibility of finding a path to
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travel across the four land masses, crossing each of those bridges once and
only once. In 1736, Leonhard Euler determined with mathematical rigor that
such path does not exist (Euler 1736). Doing so, Euler demonstrated the first
theorem in graph theory. The key idea is to notice that the walk inside each land
mass is not relevant, and they can thereby be represented with a point (node
or vertex). These points can be connected with other points according to the
city bridges (edges) whose crossing sequence will uniquely determine the route
of the walk. In this context, Euler eliminated all features of the city except the
list of nodes and edges (Wilson et al. 1976; Shields 2012). This mathematical
structure is a graph.
Some mathematicians thought that the answer to this problem was trivial, in-

cluded Euler himself when he was first asked about it. However, the importance
of Euler’s resolution lies on the newmathematical formulation he used to demon-
strate it, giving rise to graph theory.

1.2 Formal definition of graphs
A graph, G, is defined as a pair of setsG = (VG, EG) where VG is a finite collec-

tion of points, called vertices or nodes, and EG is a finite collection of 2-element
subsets of VG, called edges (Wilson et al. 1976). The edges link the vertices of
the graph establishing a given relation between them. G is an undirected graph
if its edges are unordered pairs {u, v}, where u and v are vertices in VG.
In order to illustrate themathematical object defined by a graph, let us consider

the graphG represented in Figure 1.2. This graph can be fully defined as follows:

G = (VG, EG) where VG = {1, 2, 3, 4, 5, 6} and
EG = {{1, 2}, {2, 3}, {2, 6}, {3, 4}, {4, 5}, {5, 6}}

The graph presented in Figure 1.2 is defined as a simple graph, i.e., an undi-
rected graph with neither multiple edges nor loops. Additional attributes such
as weights, labels or colors, can be assigned to vertices and edges. However,
these kind of graphs are not enough to model and represent some biological
systems. For instance, two atoms in a molecule can be linked by more than one
chemical bond (multi-edges); and some transcription factors can regulate their
own expression (self-loops) (J. Gross 2018; Cargnin et al. 2005).
The biological networks detailed in chapters 4, 5 and 6 are simple graphs.

Nevertheless, for the sake of comparison of different approaches, the reader
should bear in mind that I sometimes consider aggregated networks. Those par-
ticular networks, being the union of different networks, can havemulti-edges. For
instance, a pair of proteins having a physical interaction between them as well as
being co-expressed in the same tissues, will be linked by two edges in an aggre-
gated network. I also usually considered unweighted networks in this manuscript.

24



Figure 1.2 – A drawing of a simple graph containing 6 vertices and 6 edges.

Noteworthy, weighted networks are sometimes useful in computational biology,
since weighted edges can account for the reliability of the interaction described.

1.3 Terminology for graphs
Let us consider an undirected graphG = (VG, EG) with a set of vertices VG and

a set of edges EG. This section introduces some of the most commonly used
terms in graph theory:

— The number of vertices in G (|VG|) is named the order of G.
— The number of edges in G (|EG|)is called the size of G.
— Vertices linked by an edge are called their endpoints. In this context, ver-

tices u and v are the endpoints of the edge {u, v}.
— Two vertices u and v are neighbors or adjacent vertices if they are linked

by an edge (if {u, v} ∈ EG). The neighborhood of a vertex v is the set of
the neighbors of v.

— Edges are said to be adjacent edges if they have a common vertex.
— A self-loop, or simply a loop, is an edge whose endpoints are the same

vertex. An edge of the structure (v, v) is a loop.
— An edge joining two distinct nodes is named a proper edge.
— Two distinct edges are called parallel if they have the same endpoints.
— A simple graph has no parallel edges and no loops.
— A multigraph, as opposed to a simple graph, can contain multiple edges

(parallel edges) and loops.
— The degree or valence of the node v, usually denoted as d(v), deg(v) or

kv, is the number of edges with v as an endpoint. By convention, loops are
counted twice and parallel edges contribute independently.
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— A complete graph possess a set of edges containing every possible edge
between all of the vertices. The complete graph on n vertices is usually
denoted byKn. An example of a complete graph is illustrated in Figure 1.3
A.

— A regular graph is a graph where all their nodes have the same degree.
A regular graph whose vertices have degree k is called a k-regular graph.
Figure 1.3 B shows an example of a regular graph.

— A bipartite graph, B, is a graph whose vertex set, VB, can be divided into
two disjoint and independent subsets VB1 and VB2, such that every edge
contains an endpoint in VB1 and another endpoint in VB2.

Figure 1.3 – Complete and regular graphs. A) the complete graph of degree 5, K6.
B) A 3-regular graph.

Regular and complete graphs are sometimes used in biology. For instance, let
us consider expression levels of proteins in different tissues. We can compute
the correlation among these levels for every pair of proteins. A complete graph
can be constructed by taking as weighted edges the correlation values among
all the protein pairs. A regular graph can be build by imposing that each protein
should be linked to a given number of proteins.
In addition, bipartite graphs provide an interesting tool in computational biology.

In section 4.3, I detail the use of a bipartite network, where nodes are both genes
and diseases. Bipartite edges are the links between diseases and their causative
genes.
For further terminology about graphs and more rigorous mathematical defini-

tions, we address the interested reader to some of the following references (Chen
1997; J. Gross 2018; Shirinivas et al. 2010; Cvetković et al. 1995; Chartrand et
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al. 2012).

1.4 Matrix representation
There are diverse methods of graph representation: in the previous sections of

this chapter, for instance, graphs have been drawn as diagrams, or described as
set of edges. Nonetheless, these representations are only reasonable when the
size and order of graphs are small. Graphs are commonly represented in form
of matrices allowing computers to efficiently manipulate them. In addition, matrix
representation gives access to the power of linear algebra (J. Gross 2018). For
instance, well known operations of matrices can account for the computation of
different paths within a graph such as the random walks, which are widely used
in computational biology (see section 3.1.1 and 4.3).
The adjacency matrix of an undirected graph G = (VG, EG), denoted by AG,

is a square symmetrical matrix of size |VG| × |VG|. In a simple graph, the matrix
element AG[u, v] is one when there is an edge between vertex u and vertex v,
and zero if that edge does not exist (Godsil et al. 2001):

AG[i, j] =
{

1 if (u, v) ∈ EG
0 otherwise.

The diagonal of the matrix is composed of zeros, since there are no loops
in simple graphs. The definition of adjacency matrix can be easily extended to
multigraphs and graphs with loops. To do so, the corresponding matrix item
should account for the total number of edges between two nodes. In addition,
diagonal elements are permitted to be different from zero. For convention, loops
are usually counted twice. Figure 1.4 shows the diagram representation of a
graph with loops and its adjacency matrix. To construct an adjacency matrix
of a weighted network, we have to replace each element with value one for its
corresponding edge weight.

1.5 Distances and walks
A large number of methods in graph theory are related to the idea of exploring

a graph. For instance, a graph may describe the subway network of a specific
city. The vertices represent the stations and the edges account for the rails
connecting pairs of stations. Many questions may emerge: what is the distance
between two given stations?; What is the fastest way to travel between those
stations?; Which areas of the city are more densely connected?
These applications call for the definition of the concept of walks in graphs.

A walk W in a graph G, starting from vertex u and ending on vertex v, is an
alternating sequence of vertices and edges such that consecutive vertices are
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AG =


2 1 0 0 0 0
1 0 1 0 0 1
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 1 0 0 1 0



1

Figure 1.4 – Drawing of a graph along with its adjacency matrix.

adjacent:
W = 〈u = v0, e1, v1, e2 . . . vn1 , en, vn = v〉

where n ≥ 0 and vi−1 and vi are adjacent for i = 1, 2, . . . , n. The walk W is
closed if it starts and finish at the same vertex, u = v, otherwise it is called an
open walk. The length of a walk is the number of edges in the sequence walk.
A walk with no repeated edges is called a trail. A path is a trail with no repeated
vertices, excluding the starting and ending vertices.

A graph is connected if there is a walk between every pair of vertices. A
classical distance defined in connected graphs G is the length of the shortest
path. It is denoted by dG(u, v) or simply d(u, v). The diameter of a connected
graphG, denoted by diam(G), is the greatest distance between any two vertices.
The diameter of biological networks tend to be quite small due to some of their
intrinsic properties (see section 2.8).

1.6 Subgraphs, modules and motifs
A subgraph of a graph G is another graph H constructed from a reduced set

of the vertices and edges ofG. It can be denoted asH ⊆ G, if VH ⊆ VG andEH ⊆
EG. In this situation,G is also called a supergraph ofH. An induced subgraph
is comprised of all the edges of the parental supergraph whose endpoints belong
to VH . A component of a graphG is a maximal connected subgraph ofG. There
is only one component in a connected graph which is the whole graph (J. Gross
2018; Chartrand et al. 2012).
Partitioning an initial graph into a set of smaller graphs, usually induced sub-

graphs, is a constant challenge in network theory. For instance, clustering algo-
rithms aim at findingmodules/communitieswithin graphs. Modules are groups
of nodes more densely connected with each other than with the rest of the net-
work. This is a very active field in computational biology since groups of tightly
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connected proteins are usually involved in the same biological processes, as
discussed in section 3.1.2.
Another useful application is the detection of motifs, which are defined as

subgraphs more repeated than expected by chance in a specific network. Motifs
present a particular topology or pattern of interactions between vertices, such
as triangles. They may reflect functional properties of the network or reveal how
it evolves. Motif repetition in biological networks has been applied to determine
common evolutionary mechanisms. For example, the same motifs have been
found in the transcription networks of bacteria, yeast and higher organism, sug-
gesting common underlying adaptive mechanisms (R. Milo et al. 2002; Bonnici
et al. 2013).

1.7 Topological measures and metrics in graphs
Several standard measures and metrics have been defined to capture, quan-

tify and describe particular features and attributes of graphs. These properties
are key factors that can help to understand the underlying nature of the real-world
system described by a particular graph. In addition, some of these features are
the base to compare different graphs, and hence different systems.
Let us consider an undirected graphG = (VG, EG) with a set of vertices VG and

a set of edges EG. The number of nodes, i.e. order of G, is defined by |VG| = n
and the number of edges, i.e. size of G, is denoted by |EG| = m. Let A = (av,u)
be the adjacency matrix, i.e. av,u = 1 if vertex v is linked to vertex u, and av,u = 0
otherwise. The metrics used in this thesis manuscript are introduced in the next
two sections.

1.7.1 General metrics
In this section, I define some of the most relevant metrics of graph-theory in

the context of biological networks:

1. The density or connectance, ρ, of a graph is defined as the ratio between
its number of edges and the maximum possible number of edges. The
maximum possible number of edges in a simple graph is given by

(
n
2

)
:

ρ = m(
n
2

) = 2m
n(n− 1)

A graph is said to be dense if ρ is close to one, whereas it is said to be
sparse if ρ is close to zero. Complete graphs, like the one illustrated in Fig-
ure 1.3 A, have the maximum possible number of edges and their density
is therefore ρ = 1.
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2. The number of edges connected to a node i is its degree and it is denoted
by ki, as we defined previously. An important property of a graph is its
average degree which is defined by the following equation:

〈k〉 = 2m
n

The factor 2 emerges from the fact that each edge contributes to the degree
of its two endpoints in undirected graphs.

3. The degree distribution pk of a graph is defined as the probability that a
randomly elected vertex has a given degree k:

P (k) =
n∑
k=1

pk = 1; pk = nk
n

where nk is the number of vertices of degree k. The degree distribution
plays a key role in understanding how networks are organized and there-
fore their behaviour. For instance, under perturbations, a network contain-
ing nodes with roughly the same degree is not going to behave in the same
manner than a network containing few high-degree nodes and many poorly
connected nodes. In the context of a network of physical interactions be-
tween proteins, if one protein is mutated, the global impact on the network,
and hence on the organisms, may depend on its degree. Overall, the more
interaction partners has the mutated protein, the more it may affect the net-
work (see section 2.8.1.3 for further details).

Figure 1.5 – Drawing of a simple graph along with its degree distribution.

4. The clustering coefficient estimates the extent to which nodes in a graph
tend to group together. It can be described from the perspective of indi-
vidual nodes, local clustering coefficient, or from a global view of the
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network, global clustering coefficient. Formally, the local clustering co-
efficient of a vertex i with degree ki is:

Ci = 2ei
ki(ki − 1)

where ei is the number of connections between the ki neighbors of the
node i.
The global clustering coefficient computes the average probability that two
neighbors of a node are also connected, i.e. they are also neighbors them-
selves:

〈C〉 = 1
n

n∑
i=1

Ci

〈C〉 represents a probability and therefore its value is between 0 and 1.
This measure is relevant in biological networks because it indicates the
extent to which network nodes can be grouped into different modules or
communities. As we commented before, proteins or genes that belong to
the same module may be functionally related.

5. Another metric to measure the strength of division of a network into mod-
ules is the Modularity. It was defined by Newman and Girvan (Newman
and Girvan 2004) as:

Q(G) = 1
2m

∑
{i,j}
i6=j

(
Ai,j −

kikj
2m

)
δci,cj

where m is the total number of edges of G, A its adjacency matrix, ki and
kj are the degree of the nodes i and j respectively, and δci,cj is 1 if i and
j belong to the same module and 0 otherwise. Biological networks usually
exhibit a high degree of modularity and, consequently, the optimization of
this value is one of the most popular approaches to detect modules within
them (see sections 3.1.2 and 4.4). It is to note that I used a slightly different
notation for the definition of modularity than for the remaining metrics. I
tried to stay aligned with the equations presented in the section 4.4.

1.7.2 Centrality measures
The identification of the most relevant nodes in a network is another main

question in graph theory. However, the definition of relevance is very subjective.
It is usually defined by the concept of centrality, closely related to the degree
of a node. But the importance of a node strongly depends on the problem to be
addressed and, consequently, these measures should be carefully chosen. The
most used centrality measures are presented below:
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1. The most straightforward centrality measure is given by the degree of the
vertices of a network. Even though degree centrality is a very simple
centrality measure, it is very convenient in multiple contexts. For instance,
a person with many connections within a social network might be one of
the most influential in the group (Newman 2018). The same reasoning can
be applied for proteins, where highly connected proteins (hubs) are likely
to be more essential for organisms (see section 2.8.1.3).

2. The eigencentrality or eigenvector centrality is based on the same con-
cept of the degree centrality. However, eigencentrality takes into account
the importance of the vertices connected to each. Each node is scored
proportionally to the sum of the degrees of its neighbors (Newman 2018).
The eigenvector centrality score of a vertex v can be defined as:

xv = 1
λ

∑
u∈M(v)

xu = 1
λ

∑
u∈G

av,uxu

whereM(v) is the set of neighbors of v and λ is a constant. This equation
can be written as the eigenvector equation:

Ax = λx

There will usually be many different eigenvalues λ for which a non-zero so-
lution exists. However, the centrality measure is given by the unique largest
eigenvalue results according to the Perron–Frobenius theorem (Newman
2010). A popular clustering algorithm is based on this measure (Newman
2006) (see sections 3.1.2 and 5.3 for further details).

3. Eigenvector centrality is well suited to be applied on dense graphs, however
some problems can arise for sparse graphs. Katz centrality overcomes
this limitation by taking into account the total number of paths between
pairs of nodes (Hanneman et al. 2005). Connections made through re-
mote vertices are penalized by an attenuation parameter α ∈ (0, 1). The
connections between two nodes through intermediaries are represented by
the powers of A, and therefore the Katz centrality score of a vertex v can
be written as:

xv =
∞∑
k=1

n∑
u=1

αk(Ak)vu

For values of α close to zero the contribution of paths longer than one
abruptly decreases. Long paths are devalued smoothly when the attenu-
ation parameter increases, contributing more to the Katz score. It is sug-
gested to choose α < 1

λmax(A) , where λmax(A) is the largest eigenvalue
of A. Noteworthy, Katz-centrality based approaches have been applied to
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prioritize candidate genes following guilty-by-associations assumptions (J.
Zhao et al. 2011) and section 3.1.

4. Let us illustrate a situation where a node with large Katz centrality is con-
nected to many others. According to the equations presented in the pre-
vious point, the neighbors of that node will also get high centrality scores.
However, there are many situations where this is not convenient. For in-
stance, an important website with high centrality links to many other web-
sites. Some of these sites are not supposed to play an important role in the
network and, therefore, they do not deserve a high centrality score (New-
man 2018). PageRank centrality elude this problem considering that the
centrality transferred from network neighbors is proportional to their cen-
trality divided by their degree (Brin et al. 1998). Therefore, the PageRank
centrality score of a vertex v can be written as:

xv = α
∑
u

auv
xu
ku

+ 1− α
n

where ku is the degree of the node u. PageRank is the main algorithm
used by Google Search to rank websites. This measure is also one of the
foundations of the random walk with restart algorithm, a guilt-by associa-
tion method widely extended in computation biology (see sections 3.1.1
and 4.3).

5. Closeness centrality brings a totally different approach to measure cen-
trality in a graph. The underlying idea relies on the fact that the more cen-
tral nodes are those closest to the remaining nodes of the network. It is
therefore computed as the reciprocal of average length of shortest paths
between the vertex and all other vertices in the network (Sabidussi 1966):

xv = n∑
u∈G
u6=v

d(u, v)

where d(u, v) is the distance between nodes u and v. Closeness centrality
is widely used in several domains because describes node relevance in a
very intuitive way. Nevertheless, the range of distances within biological
networks is rather small and, consequently the closeness centrality scores
tend to stack together (Newman 2018) (see section 2.8). However, some
studies have also applied guilty-by-associations techniques in biological
networks based on the grounds of this measure (Tran et al. 2014).

6. Yet another different approach to the concept of centrality is the so called
betweenness centrality. Let us consider a flow of information being trans-
ferred between every pair of nodes of a graph along their connecting edges.
Larger flows of information will go thought vertices connecting pairs of
nodes in a shorter way. In other words, betweenness centrality evaluates
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the amount of times a vertex operates as a link along the shortest path be-
tween two other vertices (Freeman 1977). It seems reasonable that nodes
transferring a large amount of information are ranked as the most relevant.
The betweenness centrality is defined as:

xv =
∑

s 6=v 6=u

σsu(v)
σsu

where σsu is the total number of shortest paths from vertex s to vertex u and
σsu(v) is the number of those paths passing through v. Betweenness cen-
trality certainly contrasts with the previously described centrality measures.
A specific vertex can actually have low scores for any of those metrics and
still have high betweenness (Newman 2018). An example to illustrate this
situation is presented in Figure 1.6. All the shortest paths between a node
of group A and a node of group B should pass through node 1. Therefore,
node 1 has a high betweeness, even thought its degree is two and it is not
expected to have large centrality scores on the remaining metrics.

Figure 1.6 – Drawing of a simple graph. The drawing highlights an example of
a vertex, node 1, with high betweeness centrality but lower scores for the
remaining centrality metrics.

Betweenness centrality is a very important measure regarding failures or
attacks on the network (see section 2.8.1.3). Let us suppose that the graph
presented on Figure 1.6 models the transport system of a city. A failure on
the node 1 totally removes the communication between the two areas of
the city. On the other hand, failures on nodes 6, 8 or 10 entail a reduced
local effect on the global transport of the city.

34



(Newman and Girvan 2004) suggested that nodes and edges with higher
betweenness are most likely to lie between modules, rather than inside
them. This situation is exploited to divide networks in modules (J. Yoon
et al. 2006).
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2 Building biological networks
The cells are the building blocks of all living organisms. Multicellular organ-

isms contain cells specialized in different roles, which group together into dif-
ferent levels of organization to accomplish their biological functions. Biological
organisms are therefore very complex and the identification and characteriza-
tion of all their individual constitutive cells is not enough to understand how they
function.
At a smaller scale, a parallel situation occurs with proteins, which are the func-

tional units at the cellular level. Nowadays, we can identify and measure the
expression levels of virtually all the proteins contained in a cell. We can obtain
valuable information by analyzing this data with a reductionist approach, which
attempts to explain the system behaviour in terms of their individual components.
For instance, a reductionist procedure is usually applied to identify deregulated
genes or proteins in diseases. However, this kind of approaches are not suffi-
cient to understand global cell properties and functioning. In opposition to re-
ductionism, system biology aims at understanding how a system operates by
analyzing it as a whole, not just as a collection of parts. We should therefore look
at multiple interacting components simultaneously to better discern the complex
functioning of cells. A suitable way to do so, and hence to describe such biolog-
ical systems is by using networks, as we described in chapter 1.
This chapter focuses on the description of large biological networks repre-

senting different types of interactions or functional relationships between genes
and/or proteins. I first describe different types of interactions existing between
genes/proteins. Then, I describe how to build biological networks from these
interactions that are identified at large-scale thanks to different experimental
techniques. In particular, I discuss about: i) networks of physical binary protein-
protein interaction; ii) networks of proteins complexes; iii) networks of biological
pathways; and iv) networks of co-expressed genes/proteins. These types of
networks were my main working instruments to obtain the results exposed in
chapters 4 and 5. Afterwards, I briefly comment about other types of biologi-
cal networks that are relevant in computational biology. I end up the chapter
describing the topological properties of biological networks.
It is to note that we aim at exploring and mining the vast amount of data con-

tained in these large-scale networks. Nevertheless, large-scale networks are
mainly static, and hence do not reflect the dynamics of the aforementioned bi-
ological interactions. A totally different set of approaches are developed in sys-
tems biology, to unveil the behaviour of a specific dynamic processes containing
a limited number of interactions (e.g. a single pathway). These smaller networks
can be modeled using Boolean dynamics, in which a node has two states (inac-
tive or active), or using ordinary differential equations, in which a node has sev-
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eral states representing different concentrations of genes/proteins. Up to date,
these methods are not used on the same scale, and they are only applicable to
networks of reduced size due to the huge amounts of parameters involved. I do
not enter into details about network modelling because it is out of the scope of
my thesis.

2.1 Biological interactions between genes and
proteins

Wecan link the nodes of a network composed of genes and/or proteins through
different types of edges. The edges may describe real physical interactions be-
tween the biological molecules, but also any kind of functional relationship. In
this section, I briefly introduce the different types of interactions considered in
the networks used during my PhD thesis. Noteworthy, I herein consider gene
and protein nodes equally, unless otherwise specified.
Proteins interplay with each other and with other biological molecules through

different types of interactions. These interactions are of varied nature and can
be classified attending to several criteria. Let us consider two different proteins:
protein A and protein B.We can first distinguish if the interaction between A and B
entails a physical contact between them or not. The easiest interaction to picture
is the direct binary contact between proteins A and B. However, A and B can
also interact by being part of the same protein complex, or by participating to the
same pathway. In a protein complex, A and B are not necessarily in direct binary
contact, but they can interact through different proteins or other molecules, such
as non-coding RNAs. It is said that A and B have a co-complex interaction
in that case. In a pathway, like a set of metabolic reactions, the product of a
reaction catalyzed by A can be the substrate of a subsequent reaction catalyzed
by B. Therefore, A and B are not in direct physical contact in this situation neither.
We can further classify the interactions among proteins according to their

chemical nature or their lifetime span:

1. The vast majority of interactions between proteins are established by non-
covalent bonds. Non-covalent interactions are in most cases weak be-
cause they are based on hydrogen bonds, Van der Waals interactions, or
hydrophobic bonds between residues of the interacting proteins. On the
other hand, Covalent bonds mediate interactions with high affinity. Cova-
lent interactions between proteins are uncommon, aside from some post-
translational modifications as ubiquitination and SUMOylation. These post-
translational modifications can activate binding sites or change its shape
entailing new potential interactions (Westermarck et al. 2013; Akiva et al.
2015).

2. Permanent interactions involve proteins in contact for a long time, usu-
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ally taking part of stable complexes that carry out well defined biological
functions. On the contrary, proteins can shortly interact usually through
non-covalent bonds. These ones are called transient interactions, and
they are often occur in a reversible manner. The latter are the classical
features of the interactions that occur in biochemical cascades, i.e. biolog-
ical pathways (Nooren et al. 2003). These definitions can be extended to
protein complexes: permanent or stable complexes and transient com-
plexes. Halfway between transient and stable complexes, we can find the
so called fuzzy protein complexes, which have more than one structural
form. These complexes can adapt their structure and function depending
on the cellular conditions (Fuxreiter 2012).

3. Proteins that are able to reach their stable folded structure on their own
are called non-obligate proteins. These proteins interact with other non-
obligate proteins to form non-obligate protein complexes. Other proteins
get only to their functional folded structure when they interact with other
proteins and molecules or when they are part of a complex. It means that
these particular interactions stabilize the structure of the proteins involved.
These proteins are called obligate proteins and they integrate molecular
complexes that are known as obligate protein complexes. Generally, in-
teractions between obligate proteins are prone to last longer in time, form-
ing stable complexes, whereas interactions among non-obligate proteins
are more likely to establish transient interactions (Nooren et al. 2003).

4. We can also classify pathways according to their ultimate biological objec-
tive. More details in this direction are provided in section 2.4.

We should be aware of this diversity of interactions because the different tech-
nologies dedicated to the identification of interactions are often prone to detect
one class of interactions over others. Several different experimental techniques
have been proposed to identify protein interactions at large-scale. The most
popular ones are described in the sections 2.2 and 2.3.
It is to note that we are here mainly describing interactions between proteins,

but these interactions often encompass other types of biological molecules. For
instance, long non-coding RNA act as scaffolds for some protein complexes
(Ribeiro et al. 2018). Another major class of interactions can be found in the
genetic regulation where proteins, protein complexes, DNA and RNA molecules
operate in a coordinated way. More precisely, the transcription factors bind to
specif DNA sequences to activate or repress the expression of particular genes
by promoting or blocking the recruitment of RNA polymerase, a multiprotein com-
plex (Latchman 1997).
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2.2 Networks of physical binary interactions
Historically, the most widely-used network in computational biology is the one

composed of proteins which are linked by their physical contacts. They are usu-
ally referred as protein-protein interactions (PPIs) networks. The interactome is
defined as the complete collection of all physical PPI that can take place within
a cell (Cusick et al. 2005). The identification of the interactome is a crucial chal-
lenge in biology because molecular interactions between proteins are essential
to almost every process in cells. The interactome can therefore help us to dis-
close protein and cell functioning.

2.2.1 Yeast two-hybrid screening
Yeast two-hybrid screening (Y2H) is an in vivo molecular biology technique

used to discover binary PPIs in living yeast cells. It was first developed in 1989
to identify individual physical interaction between two proteins. Some years later,
the Y2H method led to a revolution in the field since it can be easily automated
for high-throughput studies of binary protein interactions at a genome-wide scale
(Fields et al. 1989; Brückner et al. 2009). Y2H results are the major informa-
tion source for some interaction databases (e.g. IntAct (Kerrien et al. 2012),
BioGRID (Chatr-Aryamontri et al. 2017), see section 2.2.2), and have strongly
contributed to the definition of the human interactome (Gandhi et al. 2006).
The Y2H screening systems are based on the modular properties of most eu-

karyotic transcription factors. A few years before the development of the Y2H
technique, Keegan and coworkers identified two different functional domains of
Gal4, a transcriptional activator in yeast: a DNA binding domain (DBD) and a
transcriptional activation domain (AD). These domains preserve their function
when Gal4 is split into two fragments (Keegan et al. 1986; Verschure et al. 2006).
Fields and Song demonstrated that the transcription process can still be acti-
vated when the two domains are indirectly connected through the physical inter-
action of two other proteins. They could therefore assess the existence of an
interaction between pairs of proteins by monitoring the expression of the tran-
scripted gene (Fields et al. 1989). A scheme of the process is illustrated on
Figure 2.1. The protein of interest X and the DBD of the transcription factor are
fused into a construct called bait. On the other hand, a second component called
prey is built by fusing the candidate interacting protein Y and the AD of the tran-
scription factor. The interaction between bait and prey, if it takes place, results
in a functional transcription factor, which is able to recruit RNA polymerase II. In
this context, the reporter gene is transcripted and its expression reveals a physi-
cal interaction between prey and bait, confirming the interaction between X and
Y proteins (Brückner et al. 2009).

Some of the overall key advantages of Y2H method are simplicity, time ef-
ficiency, low cost and high scalability (Struk et al. 2018). Indeed, Y2H can be
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Figure 2.1 – A scheme of a Y2H assay. A) The bait is formed by the fusion of the
protein X and the DBD of the transcription factor. It binds to the upstream
activator sequence (UAS) of the promoter of the reporter gene. The prey is
the result of merging the protein Y and the AD. B) The indirect connection
between the two domains, mediated by the direct interaction between X and
Y, activates the functional transcription factor giving rise to the recruitment
of RNA polymerase II and the subsequent transcription of the reporter gene.
Figure adapted from (Brückner et al. 2009).
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used to screen a bait against a set of preys in a protein matrix, such as proteome-
wide sets of full length open reading frames (ORFs) (Brückner et al. 2009). This
technique is also sensitive to the detection of the challenging weak and tran-
sient interactions such as stress responses (Xiaoyun Liu et al. 2017), hormone
signalling (Ryu et al. 2017) or immune signalling (Yang et al. 2018), to cite some
recent works.
On the other hand, the main weaknesses of the Y2H assays is the potential

generation of non-overlapping, non-reproducible results and thus an excess of
false positives and false negatives (Auerbach et al. 2005; Deane et al. 2002).
These limitations mainly emerge from the intrinsic setting of Y2H experiments.
Indeed, even though Y2H is performed in vivo in the nucleus of yeast cells, many
real contexts can not be reproduced and many interactions are systematically
missed. For instance, some interactions occur after post-translational modifica-
tions in mammalian cells, which do not take place in yeast cells. In the same
framework, Y2H assays significantly lack interactions involving membrane pro-
teins, because once the AD of the transcription factor is fused to a membrane
protein, it will be retained on the membrane avoiding its activation in the nucleus
(Xia et al. 2006; Lalonde et al. 2008). In addition, Y2H can identify interactions
that are possible from a biochemical point of view, but whose proteins are never
co-expressed or co-localized (Koegl et al. 2007; Stynen et al. 2012). Despite
these drawbacks, Y2H assays have successfully discovered thousands of pro-
tein interactions, fueling the creation of large interaction maps in diverse species.
Moreover, many modifications and improvements of the initial Y2H technique
have been implemented to reduce the impact of the aforementioned issues. For
example, the membrane-based yeast two-hybrid (MbY2H) system allows detect-
ing protein interactions directly at the membrane, based on the split-ubiquitin
protein complementation assay (Johnsson et al. 1994; Lentze et al. 2008). A
thoroughly review of the major methods applied for PPI identification can be
found in the work of Rao and colleagues (Rao et al. 2014).

2.2.2 Databases containing PPIs
The massive amount of PPIs identified during the last years gave rise to the

development of many databases collecting and storing this data in a structured
way (Szklarczyk and L. J. Jensen 2015). The information contained in these
PPI databases is usually diverse and they can be categorized in line with their
sources:

1. Primary dabases: databases that collect primary experimental data such
as DIP (Salwinski et al. 2004), BIND (G. D. Bader et al. 2001), IntAct (Ker-
rien et al. 2012), BioGRID (Chatr-Aryamontri et al. 2017), HPRD (Keshava
Prasad et al. 2009) or MINT (Chatr-aryamontri et al. 2007) .

2. Prediction dabases: databases that besides experimental data include pre-
dicted interactions from in silico methods and text mining approaches (e.g.
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STRING (Szklarczyk, Morris, et al. 2017), GeneMANIA (Warde-Farley et
al. 2010) and I2D (Brown et al. 2005)) or predicted interactions alone, like
PIPs (McDowall et al. 2009).

3. Meta-databases that result from the integration of the databases belong-
ing to the previous categories. The most representative examples are
APID (Alonso-López et al. 2016) and the PINA platform (M. J. Cowley et al.
2012).

We focus here in the primary databases because they are the ones we used
in the forthcoming results sections 4 and 5. It is to note that the protein inter-
actions contained in these databases not only originates from Y2H assays, but
also from other techniques not detailed in this manuscript. In addition, these
databases often contain other types of interactions between proteins besides
binary interactions. Each database have its own philosophy, and tend to accu-
mulate interactions detected with a given experimental or obtained under certain
conditions. Some technologies are prone to detect one class of interactions over
others. Overall, the information contained in these databases is highly valuable,
but we should carefully extract and filter the data. We also have to be aware that
PPI networks constructed from interactions stored in a specific database can be
biased and generate misleading results (Lalonde et al. 2008).
The IMEx Consortium was created to alleviate this issue and ease the chal-

lenging integration of the data generated using different technologies and stored
in different databases. It is a collaboration between public PPIs data providers
who have agreed to improve the data quality and curation of molecular inter-
action. Some of the aforementioned databases, such as DIP (Salwinski et al.
2004), IntAct (Kerrien et al. 2012) and MINT (Chatr-aryamontri et al. 2007), are
the core founders of IMEx. They have also proposed the Minimum Information
about a Molecular Interaction Experiment (MIMIx) guidelines, defining a list of
parameters to be supplied when describing molecular interactions in a publica-
tion (Orchard et al. 2007). The format has been broadly followed by molecular
interaction databases, allowing the development of tools like PSICQUIC, which
enables access to these resources through a standard Web Service and query
language (del-Toro et al. 2013). Aiming to ensure reliable interactions, the PPI
networks created in this work were built using PSICQUIC (see chapters 4 and 5).

2.2.3 Final remarks about PPI networks
Recent years have witnessed an exponential growth in the number of identified

binary interactions between proteins due to the last advances in high-throughput
technologies. We can therefore create large PPI maps for several species, in-
cluding humans. These PPIs networks contain a vast amount of priceless in-
formation about biological functioning since proteins interact between them and
with other molecules to perform virtually all the cellular processes. Consequently,
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this kind of networks has been the most widely used in computational biology
along the last last years. Nevertheless, we should bear in mind some additional
considerations when using them.
Despite the large amount of PPIs accumulated in the aforementioned databases,

the human interactome is far from complete. It is estimated that these technolo-
gies only cover around 20% of all potential pairwise protein interactions (Menche
et al. 2015). It is also complicated to evaluate the extent to which any of the
databases reveals the interactome. To give some numbers, the PPI used in
chapters 4 and 5 has around 60 000 pairwise interactions among 12 000 proteins.
Some studies have also suggested that the size of the interactome it is correlated
with the biological complexity of the different species (Palmari et al. 2008).

In addition, we know that some technologies fail to detect interactions of some
specific nature, like Y2H assays in the identification of interactions involving
membrane proteins or depending on post-translational modifications mediated
by enzymes (Lalonde et al. 2008). This lack of interactions of a certain type can
also be reflected in the databases. Furthermore, databases are prone to present
an over representation of interactions containing fashioned proteins, such as can-
cer related proteins, due to the unbalanced number of studies dealing with them
during the last years.
It is therefore crucial to carefully inspect the different databases before build-

ing networks derived from them and extracting the information they contain. In-
deed, none of databases is able to reflect the complexity of biological systems
with different protein variants, modifications, and spatial and temporal depen-
dencies (Szklarczyk and L. J. Jensen 2015). In our opinion, the integration of
resources containing information of different nature can aid to reduce the incom-
pleteness of individual sources and alleviate bias related issues. We therefore
claim that other sources of information should be also consider to build biologi-
cal networks. In this line, we next present networks of genes/proteins where the
edges do not necessarily represent a direct physical contact between protein
pairs (sections 2.3 and 2.4). We discuss about the integration of these networks
in chapter 4.

2.3 Networks of proteins complexes
According to the data stored in the comprehensive yeast genome database,

more than half of the yeast proteins participate in the formation of molecular
complexes (Güldener et al. 2005). Some studies indicate that around 80% of
the human proteins operate in complexes, and many proteins belong to several
different complexes (Berggård et al. 2007). These complexes play critical roles
in a large variety of biological processes (Giurgiu et al. 2018). Some well-known
examples are the proteasome and the ribosome. Thus, not only the character-
ization of the interactome is essential, but also the description of the full set of
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protein complexes functioning within cells, the (complexome).

2.3.1 Affinity purification coupled to mass spectrometry
In this section, we discuss about the leading technique to detect molecular

complexes: Affinity Purification (AP) coupled to Mass Spectrometry (MS). An-
other popular approach combines biochemical co-fraction with quantitative mass
spectrometry (Havugimana et al. 2012).
Affinity Purification coupled to Mass Spectrometry (AP-MS) is an in vitro ap-

proach to detect molecular complex and therefore to identify co-complex interac-
tions among proteins (Gavin, Bösche, et al. 2002). Briefly, Affinity Purification is
a popular purification technique which involves the fusion of a molecular marker,
the tag (e.g. TAP, Strep-Tag, GFP, and c-Myc among others), to a protein under
study. Mass spectrometry is a technique that ionizes chemical species and sorts
the ions based on their mass-to-charge ratio.
In early 2000, tandem affinity purification coupled to mass spectrometry (TAP-

MS) was the first approach of this type to purify and identify the interactions of
an specific target protein. In the first successful approach, the TAP tag consisted
of two IgG binding domains of Staphylococcus aureus protein A (ProtA) and a
calmodulin binding peptide (CBP) separated by a TEV protease cleavage site.
The construct, which we can call bait like in the Y2H technique, is produced
under physiological conditions and introduced into the host cell or organism. A
group of proteins (prey proteins) will attach to their natural interacting partner,
the initial bait protein, to form a molecular complex. Afterwards, ProtA binds
firmly to an IgG matrix and the whole complex is "fished out" (Puig et al. 2001).
Subsequently, the complexes are purified and separated into its components
according to their size. Then, the TAP process can be coupled with MS to detect
the unknown prey proteins (Figure 2.2). In 2002, (Gavin, Bösche, et al. 2002) first
developed this method in a high-throughput manner for systematic identification
of protein complexes in Saccharomyces cerevisiae.
A high-throughput AP-MS assay requires a large number of purification exper-

iments, each one of them aiming at identifying the prey proteins attached to the
initial bait protein to form a molecular complex. The purification results should
not be considered as a relevant molecular complex directly due to the presence
of experimental noise, spurious interactions or the participation of the bait in dif-
ferent complexes. For this reason, several computational methods have been
developed to score the protein interactions within the purification results and in-
fer the real complexes (Krogan et al. 2006; Gavin, Aloy, et al. 2006; Friedel et al.
2009).
The main advantage of AP-MS methods is that identify interactions occurring

in their native cell environment under near-physiological conditions (Van Leene
et al. 2014). Therefore, unlike Y2H assays, TAP-MS allows to detect the inter-
action between proteins after their post-translational modifications (Cusick et al.
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Figure 2.2 – A scheme of a AP-MS assay. The bait protein B is tagged and then
introduced into a cell or an organism where their protein partners attach to it.
The tag binds to a molecule (an antibody in this particular case) allowing to
retrieve the whole complex, which is afterwards separated into its components.
Then, the prey proteins are identified by a coupled MS technique. Figure
adapted from (Grünenfelder et al. 2002).

2005). Moreover, some AP procedures are applicable to membrane proteins (Q.
Li et al. 2004).
AP-MS also have some weaknesses. The tag of a protein can result in non-

desirable interactions leading to its non-native folding. Furthermore, the over
expression of the bait protein is usually required during the tagging, possibly
influencing the stoichiometry of the complex (Struk et al. 2018). Then, the correct
tag choices is a crucial step in the preparation of every AP-MS assay. Another
drawback is the potential loss of interactions (or even gain of spurious ones)
during the purification of the complexes (Rao et al. 2014). However, the last
years have witnessed a considerable improvement in the affinity-based methods
thanks to new purification techniques along with the increased sensitivity of the
mass spectrometry techniques (Lackner et al. 2015; Qu et al. 2016).
I would like to note the fact that co-complex methods, due to their nature, are

not able to discern between direct and indirect physical protein interactions. Con-
sequently, there are different approaches to build a protein interaction network
from this kind of large-scale data. Additional methods are presented in the review
of Rao and co-workers (Rao et al. 2014).

2.3.2 Construction of protein networks from co-complex
interactions

AP-MS assays identify molecular complexes containing several proteins. These
type of proteins interactions are called co-complex because the proteins belong
to the same molecular complex. In this context, co-complexes interactions in-
clude direct physical interactions (proteins in direct contact through a binding
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interface) and indirect interactions (proteins belonging to the same complex, but
without physical contact) (Schelhorn et al. 2011; X.-F. Zhang et al. 2015). Hence,
unlike in the results of Y2H assays, a model is needed to translate the experimen-
tal group-based observations into pairwise protein interactions (de Las Rivas
et al. 2010). The two major procedures are the matrix model and the spoke-
basedmodel (Gary D. Bader et al. 2002; Mering et al. 2002), which are schemat-
ically illustrated in Figure 2.3.

Figure 2.3 – Models to transform protein complexes to binary interactions. The
balls represent polypeptide chains within a protein complex, the blue one being
the bait protein. Lines are the pairwise interaction between the proteins. A)
Unknown real topology of a protein complex. B) Spoke model, the bait inter-
acts with each captured prey. (C) Matrix model, all possible interacting pairs
within the complex are considered. Figure adapted from (Hakes, Robertson,
Oliver, and Lovell 2007).

The choice of the model has an extraordinary impact on the topology of the
network. However, the model selection is not evident and it should be carefully
analyzed based on the available interaction data, and in accordance with the
ultimate application of the network (Hakes, Robertson, and Oliver 2005). The
network of complexes used in the results chapter 5.3 was generated applying
the matrix model on data retrieved from the databases detailed in the next sec-
tion 2.3.3. Our network of complexes contains 91 502 pairwise interactions be-
tween 8650 proteins.
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2.3.3 Databases containing protein complexes
The CORUM database was created to collect the composition, cellular func-

tion, disease association and stoichiometry of hundreds of mammalian proteins
complexes that had been analyzed in individual experiments (Ruepp et al. 2008).
CORUM aims at providing a high-quality and carefully curated dataset, adding
each complex to their records individually after a meticulous review of the as-
sociated literature. Moreover, high-throughput results are excluded since they
can potentially contain a significant fraction of false-positives (Ruepp et al. 2008).
The latest release of CORUM contains 4274 mammalian protein complexes, with
a large predominant of human complexes (67%) (Giurgiu et al. 2018).
More recently, the HumanProtein ComplexMap (hu.MAP) was released (Drew

et al. 2017). They constructed a comprehensive global map of human protein
complexes by re-analyzing three independent large-scale human protein com-
plex mass spectrometry experimental datasets (Huttlin et al. 2015; Hein et al.
2015; Wan et al. 2015). These three experimental setups explore the land-
scape of the human complexes by means of distinct methods (TAP-MS and co-
fractionation-MS) in different samples (diverse cells and tissues) and applying
different approaches for the affinity-tagged bait proteins. Consequently, the re-
sults of these three experiments are highly complementary in several facets and
they do not show a significant overlapping panorama of the human complexome.
In this context, hu.MAP developers built a protein complex discovery pipeline
based on machine learning techniques, and trained with these complementary
sets of protein complexes. The result was a unique exhaustive map of over 4600
human protein complexes (Drew et al. 2017).

2.3.4 Final remarks about networks of protein complexes
As in the case of binary physical interactions, we should bear in mind the differ-

ent types of molecular complexes described on section 2.1. Some experimental
techniques may display a preferential ability to detect some specific type of com-
plexes. For instance, the detection of transient complexes is usually more chal-
lenging than the detection of stable ones in AP-MS assays (Perkins et al. 2010).
In addition, we need to choose a model to transform the molecular complexes
into a network of pairwise interactions between proteins. The properties of the
resulting network will be quite different depending on this choice.
Noteworthy, we described in separated sections the networks constructed

from binary protein interactions and the networks inferred from protein com-
plexes. In the literature, binary interactions are sometimes treated along with
co-complex interactions, and they are both together used to build protein-protein
interaction networks. As we already described, these interactions are essen-
tially of different nature, and they are detected at large-scale by very different
technologies. Therefore, these two type of protein interactions are mainly not
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overlapping and they provide complementary information. These are the main
reasons that lead us to construct two different networks in the results presented
in section 5.3. Accordingly, we used a matrix model to build our network of
complexes using CORUM and hu.MAP data. Proceeding this way we aimed at
reinforcing the idea of protein complex in opposition to binary protein interactions
(see figure 2.3).

2.4 Networks of pathways
A biological pathway is a cascade of reactions leading to a certain resulting

product or entailing a change/response in a cell. Pathways include biochemical
reactions, transport processes and catalysis events (Cerami et al. 2011). Some
of the most representative examples are the ordered series of chemical reac-
tions transforming biological substances (metabolism), and the transmission of
a signal to respond to an external situation (e.g. repairing the damage caused by
a wound). The correct functioning of biological pathways is key for cell survival.
They provide complementary information about protein functioning than the one
disclosed by the interactions presented in the previous sections, because the
nature and source of the interactions is different.

2.4.1 Types of biological pathways
The most common broad classification of biological pathways is detailed be-

low:
1. Metabolic pathways: Metabolism is the set of life-sustaining chemical reac-

tions that occur in all living cells of every organism. A metabolic pathway is
any of the sequences of enzyme-mediated biochemical reactions that lead
to biosynthesis (anabolism) or breakdown (catabolism) of biomolecules
within a cell. These reactions are connected by their intermediates: the
products of one reaction are usually the substrates for subsequent reac-
tions, and so on (Schilling et al. 2000). Therefore, a metabolic pathway
can be represented as a directed network of proteins (enzymes) which are
not in direct physical contact. Some of the most relevant and best studied
metabolic pathways are the glycolysis (Figure 2.4) and the Krebs cycle.

2. Signal transduction pathways: Signal transduction is the process of trans-
ferring a signal throughout an organism resulting in a cellular response.
The sequence of these biochemical events, from the reception of a stimu-
lus to the final cell reaction, constitutes a signaling pathway. The majority
of signal transduction pathways involve the binding of signaling molecules,
known as ligands, to membrane receptors that trigger events inside the
cell. The nodes of a signaling network can be classified according to their
function with regard of the initial stimulus. First messengers is the most
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Figure 2.4 – The glycolysis pathway. Glucose is degraded to pyruvic acid following
a sequence of enzyme-catalysed reactions. Several of these reactions are re-
versible (double arrows) and participate in the gluconeogenesis, the synthesis
of glucose. Figure adapted from (Lodish 2016).
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common way to name the ligands, whereas receptors are called signal
transducers. They activate others membrane-bound proteins, the primary
effectors, that provoke the release of molecules accomplishing intracellu-
lar signal transduction within the cytoplasm, the second messengers. The
second messengers can trigger the final cellular response, such as gene
activation or metabolism alterations. A classical example is the release of
hormones from endocrine glands, such as the thyroid or pancreas. Some
cells have specific receptors for the hormones, which trigger the activity of
different pathways upon receiving a signal. For instance, the insulin can
induce muscle cells to uptake and store glucose, whereas it will also force
liver cells to cease producing it (Bradshaw et al. 2010; Lodish 2016; Yachie-
Kinoshita et al. 2018).

These categories of pathways have in common the sequential and ordered
nature of the involved reactions, thus they are usually described as directed
networks. On the other hand, some of their topological features can be quite
diverse. For instance, from an evolutionary point of view, metabolic pathways,
especially for intermediary metabolism, are usually well conserved along the
tree of life from mammals to bacteria whereas signaling pathways are quite di-
vergent (Kanehisa and Goto 2000). This lead to significant differences in some
of their properties, such as the network diameter and the clustering coefficient
(see section 1.5 and 1.7). Collections of pathways of different types are stored
in dedicated databases.

2.4.2 Databases containing collections of biological
pathways

Pathway databases emerged with the purpose of providing an integrated view
of well-established information about biological processes. Data stored in these
databases is usually carefully curated and reviewed by experts from the relevant
field on a regular basis (Joshi-Tope et al. 2005; Szklarczyk and L. J. Jensen
2015). There are two leading broadly-used resources, namelyKEGG (Kanehisa,
Furumichi, et al. 2017) and Reactome (Fabregat et al. 2018).
KEGG is the pathways database spanning the largest number of natural species

with over 1500 different species. It contains a vast collection of manually drawn
pathway maps representing well-established knowledge on the molecular inter-
actions, reactions and circuits for cellular processes ranging from metabolism to
pathways disturbed on human diseases. Each curated map aims at being appli-
cable for many species. To this goal, every pathway have nodes grouping genes
of different species This implementation makes KEGG database a very powerful
tool for evolutionary comparative studies, because the maps reflect the areas of
the pathway existing in a particular species, allowing a comparison between the
generic and the specie specific pathways (Szklarczyk and L. J. Jensen 2015;
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Kanehisa, Furumichi, et al. 2017).
Unlike KEGG, The Reactome Knowledgebase is mainly focused on a single

organism, Homo sapiens. In Reactome, biological processes, such as signal
transduction or protein synthesis, are systematically characterized in molecu-
lar detail to create an ordered network of biomolecular transformations. Each
interaction is carefully annotated by experts, including directionality, type, local-
ization, substrates, stoichiometry and known associated diseases. Moreover,
human proteins are linked to their molecular functions to provide a global view
of the maps. Reactome provides an in-depth description for each one of its 2244
annotated pathways involving more than 12 000 reactions among 10 778 different
proteins (Szklarczyk and L. J. Jensen 2015; Fabregat et al. 2018).
There are other relevant pathways databases that are worthy to be, at least,

briefly detailed:
1. WikiPathways is a community curated resource dedicated to biological

pathways, and mainly focused in human and model organisms. Contribu-
tions are monitored by a group of supervisors (Kutmon et al. 2016).

2. MetaCyc is a curated database based on experimentally determinedmetabolic
pathways. It contains 2666 pathways from 2960 different organisms.

3. PANTHER Pathways stores around 180 well-defined diagrams mainly fo-
cusing on signaling pathways (Mi et al. 2017).

4. Netpath is a database of curated human signaling pathways. It is centered
on signaling cascades of the immune system (Kandasamy et al. 2010).

5. The Network Data Exchange (NDEx) is software platform that eases the
sharing and publication of networks among reseraches. In addition, data
from former relevant pathway databases, such as NCI Pathway Interac-
tion Database (Schaefer et al. 2009), is now stored in NDEx (Pratt et al.
2015).

6. Pathway Commons is a collection of publicly available data from multiple
organisms. It contains resources coming from both PPIs and pathways
databases and it is focused on providing an easy-to-use web-based in-
terface (Cerami et al. 2011). Pathway Commons data is also availabe in
NDEx.

7. ConsensusPathDB integrates human interaction networks including bi-
nary and complex protein-protein, genetic, metabolic, signaling, gene reg-
ulatory as well as biochemical pathways. Data is retrieved from 32 public
resources (Kamburov et al. 2013).

The information accumulated in these databases is rapidly growing. Neverthe-
less, the way these pathways are stored and displayed is very diverse calling for
the development of integrative methods. In this framework, the Biological Path-
way Exchange (BioPAX) project provides a standard language that aims to en-
able integration, exchange, visualization and analysis of biological pathway data
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from heterogeneous sources. BioPAX is defined in Web Ontology Language
(OWL) and is represented in the RDF/XML format. Some of the aforementioned
databases, such as Reactome and Netpath, offer BioPAX format (Demir et al.
2010).

2.4.3 Construction of networks from pathways sources
The databases previously described contain thousands of different pathways.

This is a very valuable information about cell and protein functioning, comple-
mentary to the one provided by physical binary interactions and molecular com-
plexes. It is therefore very interesting to fetch the knowledge stored in pathways
databases and convert it into networks.
There are two main approaches to analyze these networks. The first one is

based on retrieving all the pathways stored in one of the databases, or in sev-
eral ones, and construct a large graph consisting on thousands of protein nodes
linked by their reactions. The resulting graph contains a massive amount of bi-
ological information that can be highly valuable when mined using graph-theory
based methods. This is the approach I followed during my thesis. To provide
some details, we retrieved data from KEGG, Biocarta, NCI, Reactome and Pan-
ther databases. We built a network containing around 254 766 edges between
10 534 proteins (see chapters 4 and 5). Even though a pathway is a set of se-
quential reactions, we constructed an undirected network be aligned with the
previously presented networks. The second approach is based in modeling a
small set of reactions to reflect their dynamics, something that the large undi-
rected networks are not able to do. We already further discussed about this
point in the section 2.1.

2.5 Co-expression networks
Butte and Kohane constructed the first gene co-expression network from a pub-

lic data set of 79 different RNA expression measurements for 2467 yeast genes.
They computed the mutual information between RNA expression patterns for
each pair of genes. Then, they set different thresholds to determine if two genes
were co-expressed and hence linked by an edge in their network. Based on the
hypothesis that genes showing similar expression patterns are related biologi-
cally (i.e. tightly connected in their network), they applied a clustering method
on the co-expression network aiming at revealing groups of genes involved in
similar functions (Butte et al. 2000).
Indeed, posteriors studies have demonstrated the interest of gene co-expression

networks due to the fact that co-expressed genes tend to be controlled by the
same transcriptional regulatory mechanism, functionally related, or members of
the same pathway or protein complex (Wolfe et al. 2005; Weirauch 2011).
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Recent improvements along with reduction of cost in transcriptomic technolo-
gies have favored a vast amount of studies dealing with gene expression levels
under different conditions in numerous organism. Therefore, large co-expression
networks can be built from this valuable source of information. Gene co-expression
can supply complementary data or strengthen the information provided by the
other networks described in this chapter, as described in section 2.1. In chap-
ter 4, we show that the integration of a co-expression network and a PPI network
performs better than these networks alone in the task of recovering gene-disease
associations. .

2.5.1 Construction of gene co-expression networks
The overall strategy to construct gene co-expression networks have not sub-

stantially changed from the first one employed by Butte and Kohane (Butte et al.
2000). It usually involves two steps:

1. Calculation of a similarity score: the expression levels of genes under
different conditions are usually log2 transformed before calculating the sim-
ilarity score in order to scale the values in the same range. Then, the
score between gene pairs can be determined by applying different mea-
sures. The most straightforward method is computing the Euclidean dis-
tance, which measures the geometric distances between expression val-
ues. However, it has been shown that is not a very convenient approach
under some conditions (Dehmer 2011). The most widely-used approaches
are Pearson correlation and Spearman’s rank that perform well in com-
parison with more computationally demanding methods like mutual infor-
mation (L. Song et al. 2012; Ballouz et al. 2015). The Pearson correlation
is the most popular method, although it assumes that the expression data
follow a normal distribution and it can only detect linear relationships. Fur-
thermore, it is sensitive to outliers, while Spearman’s rank is more robust,
but remarkably less powerful (Serin et al. 2016). The Pearson’s correla-
tion coefficient returns values between −1 and 1, allowing not only detect
co-expressed genes, but also genes expressed in opposing directions.
Other methods have been proposed as an alternative for Pearson’s corre-
lation, like “bi-weight mid-correlation” (bicor), whose authors claim to be
more robust than Pearson correlation and to outperformmutual information
in terms of elucidating gene pairwise relationships (L. Song et al. 2012)

2. Significance threshold choice: once the previous step has been accom-
plished, a cutoff is applied to generate the edges between genes in the
co-expression network. There are several ways to choose this cutoff, the
most basic one being the selection of an arbitrary cutoff and the genera-
tion of edges between genes with similarity scores above this cutoff value.
Other methods compute a z-score for each similarity score based on the
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number of samples. This z-score is then converted into a p-value. Different
approaches calculate a p-value based on permutations of the expression
values (Butte et al. 2000; Dehmer 2011). Afterwards, a classical p-value
cutoff is applied (e.g. a p-value of 0.01 or 0.05), defining as significant some
scores that become the network edges.
These methods are based on statistical routines, but they ignore the prop-
erties of the biological mechanisms controlling gene expression, gene reg-
ulatory pathways (see section 2.6.1). One of the prevalent protocols is to
choose the cutoff based on Weighted Gene Coexpression Network Analy-
sis (WGCNA). This method selects the threshold resulting in the network
which best fits a power-law distribution, which is a key feature of the topol-
ogy of biological networks (see section 2.8.1). According to their develop-
ers, the WGCNA method is able to capture more cohesive and biological
relevant modules of genes than the purely statistical methods (Bin et al.
2005; Bassel et al. 2011).

Co-expression networks have demonstrated to provide a very useful source of
biological information. However, we should keep in mind some considerations
when working with co-expression networks. The major one is our goal of extract-
ing some kind of reliable biological knowledge from the network, which it is often
hindered when using large data sets inferring too noisy co-expression networks
(Usadel et al. 2009). In addition, co-expression networks provide a static and
an undirected description of their underlying process, gene regulatory pathways,
that are highly dynamic and presents an oriented nature.
In the results presented in chapters 4 and 5, we used a co-expression network

derived from RNA-Seq expression data publicly available on the Human Protein
Atlas (Uhlen et al. 2015) (see section 2.5.2). We computed Spearman’s corre-
lation of gene expression data from many different tissues and cell lines, and
selected the similarity scores above 0.7 to be included in the network. The result
was a network of around 1 000 000 edges between 10 000 genes. Publicly avail-
able resources containing gene expression data, as the Human Protein Atlas,
are a valuable resource to build co-expression networks. They allow inspecting
gene expression data for different tissues, different cell lines and under many
different conditions (e.g. healthy versus diseased, control versus drug treat-
ment). Moreover, any researcher can access these data and therefore create
co-expression networks without conducting biological experiments.

2.5.2 Public gene expression data sources
In order to integrate the massive amount of transcriptomic data generated in

different experimental designs, an international effort was made to define the
minimal set of necessary information for microarray experiments to be properly
interpreted and to be comparable with one another (Kellam 2001). This led to the
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development of publicly available gene expression databases derived from mi-
croarray experiments, which are still frequently employed because they are rela-
tively cheap and their analysis is highly standardized (Serin et al. 2016). Compre-
hensive microarray gene expression sets generated in roughly every published
study are uploaded to public repositories, such as theGene ExpressionOmnibus
(GEO) (Edgar et al. 2002), Array Express (Brazma et al. 2003) or Genevestigator
(Hruz et al. 2008).

More recently, the Human Protein Atlas project presented a publicly available
map of the human proteome in cells, tissues and organs using various -omics
technologies, including antibody-based imaging, mass spectrometry-based pro-
teomics and quantitative transcriptomics (Uhlen et al. 2015). This project takes
advantage of RNA-sequencing, using next-generation high-throughput sequenc-
ing technologies (RNA-Seq). The main advantage of RNA-Seq over the microar-
ray platforms is its ability to cover the entire transcriptome, allowing therefore
to unveil more complete representations of the underlying gene regulatory net-
works (Serin et al. 2016). RNA-Seq is superior in detecting low abundance tran-
scripts, discriminating between different isoforms and allowing the identification
of genetic variants. RNA-Seq also eludes the technical issues derived from the
microarray pre-designed sequence detection probe (S. Zhao et al. 2014).

2.6 Other biological networks
The networks described above are the most common and widely used in com-

putational biology, and are also the ones that I have handled the most during my
thesis (see chapters 4 and 5). In those networks, the nodes are either genes or
proteins, which are usually considered equally. From a biological point of view,
the PPI network describes binary physical interactions between proteins. Nev-
ertheless, their associated graph often comprises gene nodes because we lack
information to decipher the specific gene product (i.e. protein isoform) that is
actually interacting. Co-expression networks are built from transcriptomics data
that is based on the measure of the genes mRNA transcripts, but again the most
relevant information is the final protein expression levels.
I detail below other types of biological networks not described so far. For the

sake of simplicity, I separated them into two sections: i) other biological net-
works where the nodes are also proteins or genes, like in the previously defined
networks; and ii) other biological networks where the nodes are other biological
entities.

2.6.1 Other networks of genes or proteins
A large amount of different types of networks can be build by linking the genes

or proteins with edges of diverse nature. For instance, networks connecting
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genes with shared Gene Ontology (GO) annotations reflect functional relations
(Biological process: GO-BP) or cellular co-localization (cellular component: GO-
CC) (Yongjin Li and J. Li 2012; Himmelstein et al. 2015). We can also infer func-
tionally relevant networks by associating genes that are regulated by the same
transcription factor, or are targets of the same drug (Himmelstein et al. 2015;
Lin et al. 2017). Similarly, genes having a high degree of sequence similarity or
genes sharing some kind of protein domain (i.e. protein domain co-occurrence
networks) can also be functionally related (Atkinson et al. 2009; Z. Wang et al.
2011).
Conceptually more complex networks of genes and proteins can also be con-

structed. As an illustration, we can construct networks based on the premise that
genes that co-evolve are likely to be functionally related, since those genes are
often gained and lost together through molecular evolution (Y. Li et al. 2018). An-
other example can be provided by networks relating genes which produce some
kind of response on cells (e.g. genes which that essential for the proliferation of
different cancer cell lines) (G. S. Cowley et al. 2014; Marbach 2018).

2.6.2 Other networks containing different nodes
The nodes of all the networks I described so far are genes or proteins. How-

ever, we can build biological networks describing relations among other type of
entities, i.e. networks where the nodes are not genes or proteins.
Networks of microRNA and Long non-coding RNA have gained a growing in-

terest during the past few years, as more functions are disclosed for these tran-
scripts. The edges connecting these molecules can arise from direct physical
contacts among them or from functional relationships, such as the sequence sim-
ilarity or interaction with the same protein or DNA regions. The construction of
co-expression networks among these non coding RNA is also a fairly widespread
procedure (Yuan et al. 2014; Meng et al. 2015; Chou et al. 2018; Do et al. 2018).
Another type of very appealing networks are those where the nodes represent

different drugs. We can establish edges among these drugs based on differ-
ent criteria. For instance, we can link drugs according to their structural similar-
ity or concerning common properties of their target proteins. Also we can set
drug–drug relations based on the influence, whether positive or negative, of one
drug upon another (Brody 2018). Drug networks are widely used in the context
of drug repurposing, network pharmacology or drugs synergies (Udrescu et al.
2016; Takeda et al. 2017; Lotfi Shahreza et al. 2018; H. Li et al. 2018) (see sec-
tion 3.2.5). Furthermore, the co-occurrence of drugs can be applied to construct
a network of similar adverse drug reactions (Xiaowen Chen et al. 2016).
There is also a considerable scientific literature about interaction networks

among the amino acid residues that form the proteins. The analysis of the net-
work topology can reveal the most relevant residues on particular proteins, which
is of large interest in molecular evolution, protein docking and pharmacology
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(Amitai et al. 2004; Rockah-Shmuel et al. 2015; Viswanathan et al. 2015) (Fig-
ure 2.5). However, this kind of approaches are usually restricted to a limited
number of resolved protein structures. The use of this interaction networks can
complement other existing methods in the prediction of protein structure and
protein-protein binding interfaces (Viswanathan et al. 2015).

Figure 2.5 – Structural (left) and Network representation (right) of a domain of
the dengue envelope protein. The intensity of the red color in the network
denotes the relevance of each node within the network according to a defined
topological-based score (for instance„ it can be computed based on different
centrality measures). Figure adapted from (Viswanathan et al. 2015).

Several studies have generated networks connecting human diseases if they
share some kind of molecular relationship or they have common clinical symp-
toms (Goh et al. 2007; X. Zhou et al. 2014). In this framework, shared phenotypic
features among diseases may underlay a common altered biological process at
the molecular level. In the literature, we can also find disease networks where
the edges are derived from comorbidity associations (i.e. diseases that are more
likely to co-occur than statistically expected). Comorbidity can arise from multi-
ple factors, but again, a network analysis may reveal their underlying common
molecular basis (Hidalgo et al. 2009; Khan et al. 2018). During my thesis, I con-
structed a disease-disease similarity network by connecting diseases that share
relevant phenotypes (see section 4.3).

2.7 Integration of networks
I provide here some brief notes about network integration that is extended in

chapter 4. The networks described in the present chapter can be combined into
different types of networks of networks:
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1. Aggregated networks: the different interactions of a group of networks
with common nodes can bemerged into an individual network. In this union
of networks, a pair of nodes can be linked by two edges. Aggregated net-
works are hence multigraphs. This approach is not very suitable in some
cases because the topology of the initial networks may be missed.

2. Multiplex networks: collections of networks sharing the same nodes, but
in which the edges belong to different categories. For instance, I integrated
the gene/protein networks described in sections 2.2, 2.3, 2.4 and 2.5 into
a multiplex network (see chapters 4 and 5). Some studies have also built
multiplex networks of diseases (Halu et al. 2017). In opposition to aggre-
gated networks, multiplex networks keep track of the topology of the initial
networks. We showed that multiplex networks outperform aggregated net-
works in the gene-disease association task (section 4.3).

3. Heterogeneous networks: they contain two networks with different types
of nodes and edges, as well as a bipartite graph detailing associations be-
tween nodes of distinct nature of the two previous networks. To give some
examples, a PPI network and a disease-disease network were integrated
thanks to bipartite edges inferred from disease-causative genes, in order to
predict new gene-disease associations (Yongjin Li and Patra 2010). Simi-
lar approaches can be found with drug-target networks (Xing Chen, M.-X.
Liu, et al. 2012), or lncRNA-disease networks (Sun et al. 2014).

In chapter 4, I describe how I integrated a multiplex network of genes/proteins
with a disease-disease similarity network to create a network both multiplex and
heterogeneous. These multiplex-heterogeneous network was used to predict
new gene-disease associations (see chapter 4) and to define the functional land-
scape of a group of premature aging diseases (see chapter 5).

2.8 Topological properties of biological networks
The previously described biological networks have different characteristics

both inherent to the nature of the processes they describe, and emerging from
the particular way in which they are constructed. Nevertheless, it has been
demonstrated that the laws governing the formation and evolution of real-world
networks, ranging from social to protein networks, are shared to a large extent
(Strogatz 2001; N. et al. 2013). These results have boosted the utilization of
network theory into the field of biology during the last years (A. L. Barabási and
Oltvai 2004). In this section, we aim at describing these common topological
properties in the context of networks whose nodes are genes or proteins.
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2.8.1 Scale-free networks
Until early 90s, networks of real-world systems were usually described follow-

ing the random network model stated by Paul Erdös and Alfréd Rényi. Accord-
ing to this model, all the graphs containing a specific number of nodes and edges
are equally likely. In other words, networks of a given size and order are gener-
ated by placing random links among them with a previously defined probability
(Erdös et al. 1960). The degree distribution (see section 1.7) of these networks
follows a Poisson distribution, indicating that the majority of nodes have roughly
the same number of edges (Figure 2.6 A).
Later works showed that the random network model fails to explain the topo-

logical properties of real-world networks. In 1999, Barabási and Albert pro-
posed the scale-free networkmodel in opposition to the random networkmodel.
They demonstrated that the degree distribution of networks describingmany real-
world systems follows a power law, instead of a Poisson distribution. According
to this model, the probability that a given node has a degree k is P (k) ∼ k−γ,
where γ is the degree exponent, whose value is γ ∈ [2, 3] in most of the real net-
works (A.-L. Barabási and Albert 1999). Scale-free networks are non-uniform,
meaning that some nodes count with a large number of edges, which are called
hubs, while others are poorly connected (Figure 2.6 B) (A. L. Barabási and Oltvai
2004).

A B

Figure 2.6 – Schematic examples of (A) a random network and (B) a scale-free
network, along with their respective degree distributions. Figure adapted from
(A. L. Barabási and Oltvai 2004).
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A large number of mechanisms within cells seem to be governed by scale-free
networks. For instance, the presence of very promiscuous proteins interacting
with a significantly greater number of partners than the average degree in PPI
networks, suggests the existence of protein hubs (Vallabhajosyula et al. 2009;
Vidal et al. 2011). This situation is even accentuated in metabolic pathways,
where a scarce number of metabolic substrates participate inmany reactions and
function as metabolic hubs, such as co-enzyme A which is used by around 4% of
cellular enzymes and is present in every living organism (Daugherty et al. 2002).
On the other hand, most metabolic substrates participate in a reduced number of
biochemical reactions. The gene co-expression networks of organisms spanning
from bacteria to human display scale-free distributions (E. Gross 2012).
However, the scale-free model does not apply for all biological networks. The

topology of the networks associated with genetic regulatory pathways is better
described by a mixed model. A reduced number of TFs regulate hundreds of
genes, whereas the number of genes simultaneously regulated by a many TFs is
almost negligible. It suggests that, in this case, the outgoing degree distribution
is scale-free, but the incoming degree distribution fits better into an exponential
distribution (A. L. Barabási and Oltvai 2004; Deplancke et al. 2006; Vidal et al.
2011).
I discuss in the following points about further properties of biological networks

emerging from the scale-free topology. Then, I talk about some studies aiming
at finding an explanation to this set of topological properties from the optics of
evolutionary biology. Finally, I comment on a recent publication that brought an
intense debate about the scale-free nature of real-world networks.

2.8.1.1 Small-world networks

The small-world property can be easily illustrated with the six degree of sep-
aration concept (Milgram 1967). According to this idea, a maximum of six steps
is needed to reach every node in a network where all the human beings in the
world are connected by friendship relations (knowing someone "personally") (Mil-
gram 1967; Guare 1990). More formally, the expected distance between two
randomly selected nodes increases proportionally to the logarithm of the num-
ber of nodes in small-world networks. Consequently, they tend to have a signifi-
cant smaller mean-shortest path length (see section 1.5) than random networks.
Small-world networks have higher clustering coefficients (see section 1.7) and
an over-abundance of hubs (Watts et al. 1998).
The mean-shortest path length of scale-free networks is even shorter than the

one predicted by the small-world effect. Therefore, we usually describe scale-
free networks as ultra small-world (Cohen et al. 2003). This effect can be clearly
seen in themetabolic networks, where a few reactions can link all themetabolites
(Wagner et al. 2001).
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2.8.1.2 Modules and motifs

Scale-free networks show a large clustering coefficient leading to the com-
munity structure usually present in biological networks.It means that groups of
nodes are more densely connected internally than with the rest of the network
(see section 1.6). These groups of tightly connected entities, usually called
modules, contain proteins likely to be involved in the same biological functions
(Hartwell et al. 1999). The accurate extraction of these modules is decisive in a
bunch of fields. For instance, it can reveal modules associated with a given dis-
ease, and therefore provide clues about the deregulated biological processes on
that disease (Marbach 2018). The metabolic network provides again a remark-
able evidence of the high clustering coefficient displayed on biological networks.
In this case, the high clustering coefficient is the same for metabolic networks
of the different species, and therefore independent of the network size (Ravasz
et al. 2002).
As defined in section 1.6, network motifs are characteristic subgraphs that

appear significantly more frequently than on randomized versions of the same
network (networks with the same set of nodes and an equal degree distribution,
but where the edges are placed aleatory) (Milo et al. 2002). Real-world networks
can be characterized by its set of over-represented motifs. For instance, some
studies have revealed the evolutionary conservation of proteins involved inmotifs
in PPIs. For instance in the yeast protein interaction network, a study has shown
that the conservation is particularly significant for those proteins participating in
motifs that define a fully connected subgraph of four and five nodes (Wuchty et al.
2003). These findings suggest that motifs may represent evolutionary conserved
topological units of biological networks (Wuchty et al. 2003; Shoval et al. 2010;
Vidal et al. 2011).

2.8.1.3 Network robustness and hubs

Network robustness is an essential attribute of real-world networks; it can be
defined as the capacity of resisting against failures and perturbations. We can
easily notice the robustness of biological networks. For example, metabolic path-
ways are able to adapt to nutrient scarcity while maintaining their key activities for
cell survival. The analysis of robustness in networks is performed by measuring
the response of the network to the removal of nodes or edges. Without going into
technical details, we can perceive robustness in an intuitive way thanks to this
sentence: "the larger is the amount of nodes we should remove to disconnect a
connected network, the more robust the network is" (Stauffer et al. 2014).
Scale-free networks are extraordinarily robust against accidental failures due

to their intrinsic topological architecture. A high percentage of their nodes are
poorly connected, thus the withdrawal of a randomly selected node does not
highly affect the rest of the network. Even when many of their individual nodes
are disabled at the same time, scale-free networks keep a large degree of in-
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tegrity, i.e. a great number of nodes still form a large connected component
(see section 1.5). On the other hand, scale-free networks are vulnerable to the
so-called targeted attacks. The removal of a few key hub nodes disintegrates
the network into a large number of small isolated components (A. L. Barabási
and Oltvai 2004).
In accordance with the robustness properties of scale-free networks, it is ex-

pected that molecular hubs are crucial for cell survival. Indeed, it has been
shown in model organisms that hubs correspond to essential genes, are evo-
lutionary more conserved, and have a tendency to present higher expression
levels (Jeong et al. 2001; Fraser et al. 2002; Ivanic et al. 2009). Other studies in
yeast has shown that protein connectivity also correlates with genetic pleiotropy
(Yu et al. 2009). The evolutionary selective pressure over mutations can some-
how explain the conservation of hubs. Mutations that take place in hubs have a
large phenotypic impact, making complicate for the host to have offspring, and
therefore preventing their transmission to the population (Vidal et al. 2011).

2.8.1.4 Scale-free networks and gene duplication

Some studies have suggested that the properties of biological scale-free net-
works can be explained through gene duplication (Vázquez et al. 2002; Pastor-
Satorras et al. 2003). Gene duplication is one of the major mechanisms to gen-
erate new genetic material during evolution (J. Zhang 2003). Just after a dupli-
cation episode, the protein generated by the new gene is exactly the same as
the original one. In this context, both protein copies will have the same structure
and will therefore interact with the same set of partners. Consequently, each of
the proteins partners that interacted with the ancestor gains a interaction with the
new protein (Vidal et al. 2011). Afterwards, the duplicated gene will evolve in a
different way than the original one, potentially resulting in a new protein product.
Assuming that all genes have the same probability of undergoing a duplication
process, hubs are more likely to interact with genes who has undergone a du-
plication than poorly connected proteins. This situation is known as preferential
attachment and it is a well documented process on the Internet network topology
(A. L. Barabási and Oltvai 2004).

2.8.1.5 Are scale-free networks so frequent in nature?

A recent published article has intensely shaken the network-science commu-
nity. In this study, Anna Broido and Aaron Clauset evaluated a large corpus
of more than 900 real-world networks from different scientific domains, and con-
cluded that pure scale-free networks are infrequent. They systematically applied
state-of-the-art statistical tests on the networks under study. More precisely, for
each network, they estimated the best-fitting power-law model, test its statistical
validity, and then compared it via a likelihood ratio test to alternative non-scale-
free distributions. Moreover, they defined quantitative criteria in order to bet-
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ter classify networks into five categories accounting for differing strengths and
evidences from the scale-free structure. According to their results, more than
40% of the networks under study showed no direct or indirect evidence of scale-
free structure. On the other hand, less than 5% of the networks displayed the
strongest level of direct evidence for scale-free structure, what we can define
as genuine scale-free networks (Broido et al. 2018). Broido and Clauset’s work
seems technically sound and it has unleashed a vivid debate and certain con-
troversy. In particular, Albert-László Barabási, the main reference regarding the
scale-free theory, has argued that real networks have predictable deviations from
a pure power law. He claims that these deviations arise from the fact that prefer-
ential attachment is not the solely mechanism leading to the scale-free topology.
From his point of view, these results do not weaken the idea that scale-freeness
underlies many or most complex networks (Klarreich 2018). Moreover, Barabási
rejected the statistical tests performed by Broido and Clauset. He discussed that
even the exact model of scale-free networks, following a pure power law, fails
their test (A. L. Barabási 2018).
This debate has already appeared in the context of biological networks and,

in particular, for co-expression networks. Even though many studies state the
scale-freeness of the biological networks, some statistical analyses have also
refuted the power law distribution (Khanin et al. 2006; Lima-Mendez et al. 2009).
This is a very important point since, as we have presented, many properties of
biological networks are presented as consequence of their scale-free topology.
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3 Analysis of biological networks
in a bio-medical context
Correct cellular activity relies on the accomplishment of an intricate set of inter-

actions among proteins and other biomolecules, such as metabolites. Environ-
mental factors and genetic abnormalities may alter the structure and properties
of biological molecules, and hence have an impact on their interactions with
other molecules. These perturbations can propagate through networks leading
to disease states that are difficult to explain considering punctual protein fail-
ures. Therefore, the clinical manifestations of a disease, i.e. the disease phe-
notype, can be regarded as the result of numerous altered biological process at
the molecular level (Zhong et al. 2009; Schadt 2009). In this context, network
medicine, the utilization of network theory to study human diseases, sounds
very convenient towards a better understanding of the genotype-phenotype rela-
tionship in diseases. Network medicine is an excellent example of a systems bi-
ology approach. It addresses the study of diseases from the pluralism of causes
and their effects in biological networks, instead of relying on a single disease
symptom or on an individual causative effect. I start this chapter by introducing
the most widely extended graph-theory methods applied to network medicine.
Then, after a section describing the differences and similarities between com-
mon and rare diseases, I comment their diverse application by providing clinical
examples. As in previous chapters, the content is focused on static networks
rather than network modelling.

3.1 Graph-theory methods on network medicine
Functionally-related proteins tend to lie in the same neighborhood within bio-

logical networks as a consequence of their ensemble of interactions to carry out
cellular functions. Similar or closely related diseases are caused by alterations
of the same biological processes, and therefore their causative genes/proteins
are also expected to be nearby located in biological networks. This situation al-
lows predicting protein cellular functions and identifying potential gene-disease
associations using guilt-by-association strategies, which are based on two ma-
jor graph-theory approaches: Network propagation ranking methods and clus-
tering algorithms. Under these premises, the forthcoming sections are centered
on the identification of gene-disease associations, disease biomarker discovery,
the inference of genotype-phenotype relations and pharmacology in the context
of network medicine. However, such guilt-by-association strategies can also be
applied to other biological questions, such as the functional characterization of
poorly studied genes/proteins. Furthermore, they are global methods that can

64



be applied to any kind of network describing a real-world system.

3.1.1 Network propagation ranking methods
The identification of genes associated with diseases is one of the main goals

of network medicine. A few years ago, genes associated with diseases were dis-
covered by linking genomic intervals to a particular phenotype. More recently,
genome-wide association studies (GWAS) were developed aiming at identify-
ing single nucleotide polymorphisms (SNPs) potentially related with diseases.
The result of both techniques is a large number of disease-gene candidates,
where it is not straightforward to discover the genetic variants involved in the
disease (Köhler et al. 2008; A. L. Barabási, Gulbahce, et al. 2011). There-
fore, network-based computational methods were developed to prioritize among
these disease-gene candidates.
The first approaches were parsing the direct interactors of disease protein

candidates in a PPI network (Oti et al. 2006). Then, more elaborated algorithms
computing the shortest paths between candidates and known disease proteins
were developed (Franke et al. 2006; George et al. 2006). Afterwards, network
propagation ranking algorithms, which are able to exploit the global topology of
the PPI network, were shown to largely outperform initial methods for the iden-
tification of disease genes (Köhler et al. 2008; Vanunu et al. 2010). Network
propagation is a family of closely related methods and, under certain conditions,
mathematically equivalent techniques. They include random walks on a graph,
diffusion processes on a graph and current computations in electric net-
works (Cowen et al. 2017). Since the methods are roughly equivalent, I solely
focus on Random Walks with Restart (RWR) without getting into the technical
details, which are provided in section 4.3.
Briefly, RWR starts from a node or a set of nodes - called seed(s) - that have

some kind of relevant information for us (e.g. genes associated with a specific
diseases of interest). Then, an imaginary particle explores the network follow-
ing randomly its edges. The particle have also a previously defined probability
of jumping back to the seed(s) after each step. After a large number of repeti-
tions, the number of times the particle visited each particular network node can
be considered as a measure of its distance to the seeds (Figure 3.1). Several
extensions of the RWR algorithm have been proposed to further improve the pre-
diction of disease candidate genes. They are mainly based on the integration of
the PPI network with other biological networks or on slightly modifications of the
original RWR algorithm (Yongjin Li and Patra 2010; Yongjin Li and J. Li 2012;
Xie et al. 2015; Z. Q. Zhao et al. 2015).

In addition to the application of RWR to identify genes associated with dis-
eases, similar apporaches have been proposed to predict drug-target interac-
tions (Xing Chen, M.-X. Liu, et al. 2012; H. Liu et al. 2016), adverse drug reac-
tions (Xiaowen Chen et al. 2016), lncRNA-disease association (Xing Chen, You,
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Vector of Seeds

Figure 3.1 – RWR takes an input a network and a vector indicating our prior
knowledge about the network (Seed genes). An imaginary particle explores
the neighborhood of the seeds and it provides a score that is used to rank the
remaining genes of the network based on their distance to the seeds. Figure
adapted from (Cowen et al. 2017).

et al. 2016; Gu et al. 2017) and to characterize gene functions (Blatti et al. 2016),
among others. Smedley and colleagues developed Exomiser, where RWR is ap-
plied to prioritize genes and variants in the context of whole-exome sequencing
(Smedley, Köhler, et al. 2014; Smedley, Jacobsen, et al. 2015).

The studies commented in this section are focused on the development of the
computational tools rather than in providing clinical results, which are described
in forthcoming sections of the current chapter.

3.1.2 Clustering algorithms
As we already mentioned in section 2.8, biological networks present a mod-

ular structure as a consequence of the scale-free topology and the small-world
property. Therefore, we can find within the network groups of densely connected
proteins likely to be implicated in the same biological functions or associated to
the same phenotype (Hartwell et al. 1999). The accurate extraction of these
modules is decisive because it allows hypothesizing about the function of poorly
characterized proteins. Moreover, we can identify modules associated with dif-
ferent diseases, and hence investigate about potential therapeutic actions on the
processes altered on these diseases.
Clustering is the process of grouping objects in such a manner that the objects

placed in a group (also called cluster, module or community) are to some extent
more similar than to those placed in other groups. Clustering methods are based
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on different similarity measures among the objects to be grouped. This measure
is not data-type specific, allowing to apply the same clustering algorithm to dif-
ferent kind of objects (e.g. genes/proteins in biological networks or individuals
in social networks) (Sharma et al. 2017). In addition, in contrast with network
propagation ranking methods, clustering algorithms do not usually require previ-
ous knowledge about the input data. For example, a clustering algorithm applied
on a protein network computes the resemblance between nodes based on the
topological features of the network, but it ignores the functions of the genes of
their associations with diseases. Another feature that we should bear in mind is
that cluster analysis is not a fully automatic process, but an iterative technique
of knowledge discovery. In other words, clustering algorithms are usually very
sensitive to changes in their initial parameters and some kind of data preprocess-
ing may be performed to obtain satisfactory results (e.g. clusters containing a
number of genes/proteins that is relevant from a biological point of view) (Table
3.1). These steps, as well as the selection of the appropriate clustering method,
strongly depend on the input data and the goal of the analysis.
A plethora of very diverse clustering methods have been proposed for module

extraction from biological networks. This vast amount of different algorithms
emerges from the lack of a precise definition of module. Moreover, the different
approaches select different strategies to extract the modules in a efficient way
from a computational point of view. We can classify clustering methods into five
categories namely, Partitioning, Hierarchical, Density based, Model-based
and Graph-based (Andreopoulos et al. 2009; Wiwie et al. 2015) (Table 3.1):

1. Partitioning methods: the user provides a defined number of initial clusters
k, and the process iteratively assigns objects to the closest cluster based
on a metric, such as the Euclidean distance. The most representative ex-
amples are the k-Means (MacQueen 1967) and the Partitioning Around
Medoids or k-Medoids (Kaufmann et al. 1987) algorithms. Their main
drawback is that the resulting number of cluster is provided as an input
parameter, which is not very advisable when dealing with large networks.

2. Hierarchical methods: they build a hierarchy of clusters based on a dis-
tance measure (e.g. Euclidean distance, Manhattan distance) and a link-
age criteria that determines the distance between groups as a function of
the pairwise distances between their individual objects (Langfelder et al.
2008). The result is a tree or dendrogram that is a very useful tool in some
areas of boinformatics since the clusters can be explored at different levels.
They are usually slow and therefore not recommended for large biological
datasets. In addition, sometimes very large modules are merged, neglect-
ing potentially interesting smaller local clusters (Andreopoulos et al. 2009).
The popular Spectral Clustering (Ng et al. 2001) can be placed within this
category (Wiwie et al. 2015).

3. Density-based methods: clusters are defined as areas containing a higher
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density of objects than the remainder areas of the data set. Objects in these
sparse areas are usually considered to be noise or points to separate the
other clusters. The most popular density-based cluster is DBSCAN, which
is based in the number of points that are reachable within a previously
defined distance from a given point. The points not reachable from any
other point are considered to be outliers and are not assigned to any group
(Ester et al. 1996).

4. Model-based methods: they assume that the objects to be clustered
match a model, which is usually a statistical distribution. Then, the method
try to find the modules resulting in the best fit of the distribution (Andreopou-
los et al. 2009). The main issue of these approaches emerges from the fact
that models are an oversimplification of the real nature of the data. Another
drawback is that they are normally computationally quite expensive (Wiwie
et al. 2015). Self-Organizing Maps (Kohonen 1982) are one of the most
representative algorithms falling into this category.

5. Graph-based methods: they are widely used when dealing with biologi-
cal networks since they consider their input as a graph. They aim at find-
ing the modules based Based on theoretical problems of graph theory like
simulating random walks or clique discovery. Therefore, these methods
extract modules from the networks according to their topological proper-
ties. They take advantage of the strength of graph theory, but they are
sensitive to user-defined parameters and often computationally expensive
(Andreopoulos et al. 2009; Wiwie et al. 2015)Markov clustering (Marinus
van Dongen 2000) andAffinity Propagation (Frey et al. 2007) are some of
the best known examples of graph-based clustering methods. Other meth-
ods try to optimize the modularity (see section 1.7). Identifying the set of
clusters maximizing the modularity is NP-complete (Brandes et al. 2008).
Therefore, many different metaheuristic approaches have been proposed
when dealing with large groups, as the Louvain algorithm (Lefebvre et al.
2008).

It is to note that one of the categories described above is specifically called
graph-based methods because it is based on graph theory well known problems.
Nevertheless, the methods of the remaining categories are also applicable to
networks since they can take as input the network adjacency matrix.
The development of clustering methods is a very active research field, and

new methods are published frequently. For instance, the graph-based Leiden
algorithm has been very recently published (Traag et al. 2018). The Leiden al-
gorithm tries to overcome some of the issues related to the Louvain method, in
particular the arbitrarily badly connected communities over and above the reso-
lution limit. To this goal, the new method incorporates a combination of different
moves along the network nodes: a smart local move, a fast local move and a
random neighbour move (Traag et al. 2018).
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Table 3.1 – Technical details about the most popular clustering methods of the
different categories.

Method Name Complexity Parameters Category
k-Means O(n ∗K ∗ I ∗ d) K P
k-Medoids O(K(n−K)2I) K P
Hierarchical O(n2) or O(n2 log n) K H
Spectral O(n3) K H
Louvain Modularity O(n log n) γ D
DBSCAN O(n2) ε and Dens D
Self-Organizing Maps O(n2) Grid M
Markov clustering O(Nk2) Exp and Inf G
Affinity Propagation O(N2I) Damp G

Categories: P, partioning methods; H, hierarchical methods; D, density-based methods; M, model-based methods; G, graph-based methods. Complexity:
number of objects, n; number of clusters, K; number of iterations, I; number of attributes, d; threshold for number of resources allocated per node, k.
Parameters: number of clusters, K; resolution parameter to tune the size of modules, γ; density threshold ,Dens; size or radio of the module neighborhood,
ε; size of the grid to tune the size of modules, Grid; expansion, Exp and inflation Inf to control the size of the clusters; damping factor to control the
size of the modules Damp.

As we mentioned before, all these methods can be applied on biological net-
works, but which method is the most suitable to address a specific biological
question? The problem is complicated since there is not a gold benchmark
to evaluate the relevance of the extracted modules in a specific biological con-
text. Some alternatives are the generation of simulated networks with a known
community structure or the evaluation of the biological information contained in
the genes/proteins belonging to each module. Both methods have limitations
and they cannot evaluate whether the extracted modules can reflect novel and
relevant biological knowledge. With this in mind, the Disease Module Identi-
fication (DMI) DREAM challenge aimed at investigating the performance of
different community detection algorithms in a biomedical context by providing a
controlled benchmark for all the participants (see Appendix B for the article de-
tailing the results of the DREAM challenge). We participated to this challenge
with an algorithm based on the Louvain algorithm for modularity optimization
(see section 4.4).

It is important to note that clustering algorithms are less effective than network
propagation ranking methods at associating proteins with their functional roles
or with diseases through a guilt-by-association strategy (Sharan et al. 2007; J.
Song et al. 2009). Once again, clinical results are detailed in the forthcoming
sections of the current chapter.

3.2 Clinical applications in network medicine
The multifactorial origin of diseases as well as their diverse clinical manifesta-

tions are the key motivations for the use of network theory in medicine. Indeed,
network medicine has already provided very valuable clinical results and its use
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is expected to widely span in the coming years.
In this section, I first describe the differences between common and rare dis-

eases and state why network medicine is a suitable approach in both cases.
Then, I present relevant results of networkmedicine in different application frame-
works.

3.2.1 Common and rare diseases
The name of common diseases arises from the large number of patients af-

fected by any of these diseases. For instance, it is estimated that prostate cancer
affects one in six men during their lifetime in the United States (Cancer Screen-
ing Guidelines | Detecting Cancer Early 2018) (see chapter 6). Common human
diseases are multifactorial or "complex" diseases, since they emerge from the
interplay of several aspects. Some of these aspects can be deemed as intrinsic
to the patient (e.g. DNA modifications, age or gender), whereas external envi-
ronmental factors, such as diet or exposure to toxins, play also a key role in the
development of these diseases. The joint action of these factors determines the
onset, severity and progression of the diseases. A large number of diseases
fall into this category, including several types of cancer and many neurodegen-
erative disorders. Some examples include Alzheimer’s disease, osteoporosis,
diabetes, Parkinson’s disease and coronary heart disease (Motulsky 2006). In
all such diseases, we can identify many of the so-called age-related diseases
whose prevalence dramatically increase with the age of individuals. A clear ex-
ample is provided by Alzheimer’s disease, affecting an estimated of one in 14
people over the age of 65 and one in every 6 people over the age of 80, accord-
ing to the National Health Service from the UK. Therefore, in the context of an
increasingly aging society, it is fundamental to explore new research avenues
like the one provided by network science. Moreover, the complex interplay of
many factors leading to common diseases seems to fit with the inherent nature
of networks.
In opposition to common diseases, rare diseases have a low frequency of

occurrence in the world population. According to the World Health Organization
(WHO), a disease is classified as rare if the percentage of affected individuals
ranges from 0.65−1‰ of the total population. It is complicated to state the exact
number of rare diseases identified up to date, due to their low prevalence and
the blurred boundaries among some of them. However, we can assert that there
are between 6000 and 8000 known rare diseases. Altogether, rare diseases may
affect around 30 million European Union citizens and a similar number of US
individuals. Most rare disease are genetic and thus present throughout the pa-
tient’s whole life. In addition, a significant percentage of them are life-threatening
(About Rare Diseases 2014; Stoller 2018). Despite this extensive social impact,
over 95% of rare diseases lack a FDA-approved therapeutic agent (Pushpakom
et al. 2018). This low drug coverage arises from the large number of different rare
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diseases, combined with the reduced number of patients for each one of them.
Indeed, private companies and public administrations have conceived research
on rare diseases as expensive and unprofitable so far.
Rare diseases are usually caused by mutations in a single gene in oppo-

sition to what occurs in common diseases. Nonetheless, we claim that rare
diseases are also highly complex. First and foremost, these diseases are of-
ten associated to high allelic heterogeneity. An striking example is provided by
the laminopathies, which are a collection of heterogeneous diseases caused by
more than 300 distinct mutations in the LMNA gene. Laminopathies exhibit more
than 15 phenotypically diverse disorders, including both tissue-specific and sys-
temic disorders. Among laminopathies, dilated cardiomyopathy 1A (MIM code:
115200) mainly affects muscles, whereas Dunnigan-type familiar partial lipodys-
trophy (MIM code:151660) impacts on adipose tissue, and Hutchinson-Gilford
Progeria Syndrome (HGPS; MIM code:176670) affects multiple tissues (Rankin
et al. 2006; Szeverenyi et al. 2007; Dittmer et al. 2014). Furthermore, phenotypic
severity can vary considerably across individuals carrying the same punctual
mutation, even within the same family (Brodsky et al. 2000). Taking everything
together, we can not deny the complexity associated with human rare diseases.
We can also indicate some potential molecular relations between common

and rare diseases. It has been proposed that genetic variants related to rare dis-
eases could contribute to the risk of developing some common diseases, high-
lighting comorbidity associations between rare disorders and multifactorial dis-
eases (Blair et al. 2013). For instance, given the common phenotypes displayed
between Xeroderma pigmentosum (OMIM: 278700) and aggressive skin can-
cers, a study investigated and confirmed a comorbidity relation between them.
This fact points towards the alteration of common molecular mechanisms in both
diseases, concretely to the failure of DNA repair in this case, resulting in common
phenotypes (Cleaver 2005) Some potentially inverse comorbidities between rare
and common diseases have also being studied, such as the possible protection
against cancer of HGPS patients (La Rosa et al. 2013; Fernandez et al. 2014).
Moreover, a decrease in the expression levels of the proteins encoded by the
gene causing HPGS, LMNA, seems to be correlated with the severity of some
cancers such as lung adenocarcinoma or prostate adenocarcinoma (Guinde et
al. 2018; L. Zuo et al. 2018).
Network medicine is mostly focused on the study of common diseases given

their multifactorial nature and the large number of individuals affected. How-
ever, the genetic background of rare disease patients should also be considered
due to the potential presence of modifier genes that may affect the severity of
the phenotype. Therefore, the complexity is also a hallmark of rare monogenic
diseases. We can look upon rare diseases phenotypes as the result of the prop-
agation within biological networks of the altered interactions suffered by mutated
proteins. As a matter of fact, the causative gene of rare monogenic disorders is
occasionally known and well documented, providing a valuable departure point
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for network theory approaches. Therefore, what we can learn from common
diseases is often applicable to rare syndromes and vice versa.
Another reason for the reduced number of network medicine works on rare

diseases is the challenging acquisition of an enough number of patient samples.
Therefore, the data that we can use as input for the different methods is very
limited. This issue is common to many methods besides network-approaches,
and to diverse applications. As a matter of fact, I personally believe that the in-
tegration of data into networks can somehow overcome the statistical limitations
associated to the reduced amount of available data.

3.2.2 Network medicine for the identification of
disease-implicated genes

Network medicine methods led to the discovery of several new genes involved
in diseases. Goehler and colleagues achieved one of the first remarkable results
in this field by building a PPI network around Huntingtin gene, whose mutation
causes Huntington’s disease (MIM code: 143100). They revealed new potential
interactions for Huntingtin, which eased the discovery of the GIT1 gene. GIT1
enhances the aggregation of Huntingtin and its function is altered during dis-
ease pathogenesis, turning it into a potential target for therapeutic intervention
(Goehler et al. 2004).

A paradigmatic example of a guilt-by-association approach in networkmedicine
is provided by the work of Lim and co-workers (Lim et al. 2006). They performed
Y2H assays to detect interaction partners of 23 known ataxia-causing genes.
The gene PLEKHG4, a common binder of many of the initially known ataxia
genes, was shown to cause ataxia-like phenotypes in mice after its deletion
(Amino et al. 2007; A. L. Barabási, Gulbahce, et al. 2011).

Procedures developed upon the same basics have been used to identify genes
involved in breast cancer (Pujana et al. 2007), schizophrenia (Camargo et al.
2006) or Alzheimer’s disease (Forabosco et al. 2013), among others.
Another interesting tool for the identification of disease-causative genes is the

Exomiser. Exomiser prioritizes genes and variants from exome sequencing data
by using random walk analysis of protein interaction networks (Smedley, Jacob-
sen, et al. 2015).

3.2.3 Network medicine for the identification of disease
biomarkers

Molecular diagnostics are the different techniques used to identify and analyse
biological markers in order to diagnose and monitor diseases, detect potential
risk of developing diseases and choose the therapies that suit the patients best.
In the framework of network medicine, molecular diagnostics is usually ac-

complished based on the concept of differential networks, which refers to a com-
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parative analysis between networks representing distinct states. Overall, gene
expression data from patients and healthy controls is used to build co-expression
networks or it is mapped into a PPI network or a signaling network. Clustering-
based methods allow to identify modules of genes whose collective expression
significantly differs between diseased and healthy individuals. These network-
based approaches can overcome the limitations of classical methods and detect
genes which are not individually deregulated, but participating into functional
modules which are essential for the disease pathogenesis. Consequently, the
concept of disease biomarker gains a broader context, potentially improving the
molecular diagnosis and prognosis process (R. Liu et al. 2014).
Grounded on those ideas, several studies have applied network medicine

methods to improve molecular diagnosis of different diseases. We can cite some
articles analyzing diverse types of cancer, such as lung (Y.-C. Wang et al. 2011),
breast (Bertoli et al. 2015) and pancreatic cancer (M. Zhou et al. 2016), or neu-
rogenerative diseases, like Alzheimer’s disease (Padmanabhan et al. 2017) and
Parkinson’s disease (Santiago et al. 2015).
Similar methodologies have also been employed for early diagnosis of dis-

eases. It is crucial to determine the molecular factors behind the transition from
a pre-diseased to a diseased state. The goal is twofold: to point out to individ-
uals susceptible to develop a disease, and to improve our knowledge about the
functional aspects triggering pathogenesis. Some examples of this line of re-
search can be found in articles investigating diabetes (Xiaoping Liu et al. 2013;
M. Li et al. 2013) and respiratory diseases (X. Wu et al. 2014).
Another key point in the clinics is the prognosis, which comprises the predic-

tion of how a disease will evolve, the appearance of further complications, the
impact on the patient’s quality of life and the potential influence on his/her life
expectancy. A suitable clinical prognosis permits to adapt the treatment to the
patient, avoiding for instance, adverse side effects related to excessive treat-
ment of low-risk individuals. We can cite some methods that incorporated both
network-based approaches and machine learning techniques to accurately esti-
mate survival rate in breast, ovarian or colorectal cancer patients (G. Wu et al.
2012; Shi et al. 2012). More recently, a method systematically evaluated the con-
tribution of individual genes to patient survival in four cancer types by integrating
omics data of diverse nature in a PPI network (F. Zhang et al. 2016).

3.2.4 Networks analysis of diseases comorbidities
In medicine, comorbidity is usually defined as the co-occurrence of diseases

in an individual. We can therefore establish a direct comorbidity relationship
between two diseases when they account for a higher-than-expected joint occur-
rence in individuals (Hidalgo et al. 2009). For instance, the incidence of celiac
disease is more frequent in type 1 diabetes patients than in the general popula-
tion (Smyth et al. 2008). Moreover, there are some diseases that seem to have
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a "protective" effect against the development of other syndromes. This lower-
than-expected probability of the occurrence of a concrete disease in individu-
als diagnosed with another medical condition is known as inverse comorbidity
(Tabarés-Seisdedos et al. 2011). A well documented example is the decreased
incidence of some cancers in patients with Alzheimer’s disease (Ou et al. 2013).
Comorbidities are a major health issue, as they increase patient mortality and

entangle the election of suitable treatment plans. Moreover, the co-occurrence
of diseases increases with age, challenging health systems in the context of an
elderly population (Divo et al. 2014; Hu et al. 2016). Various factors could be at
the foundation of comorbidities, such as drug-side effects, lifestyle or genetics
aspects. From a network medicine perspective, the hypothesis is that common
molecular mechanisms could underlay comorbidities relationships. We therefore
aim at identifying this altered shared mechanisms between different diseases
(Figure 3.2).

Figure 3.2 – Graphical representation of some of the key actors inter-playing in the
comorbidities scenario. A disease network (middle layer), where two diseases
are linked if they share symptoms, they have a direct comorbidity relation or
they have common genetic background. A social networks (upper layer), that
may have a large influence upon the disease network (spread of an infectious
disease or lifestyle). A cellular network, such as metabolism (lower layer), which
are perturbed under environmental and genetic factors leading to disease states.
Figure adapted from (A.-L. Barabási 2007; Faner et al. 2014).

Some examples of studies addressing comorbidities from a network medicine
perspective are the following:
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1. Lee and colleagues demonstrated that diseases caused by enzymes cat-
alyzing adjacent metabolic reactions have comorbidity patterns in patients.
They also showed that diseases with higher degree in their metabolic net-
work were associated with a larger mortality rate. They discussed that
patients diagnosed with hub diseases are more likely to develop closely
related diseases, increasing together the mortality rate of the original con-
dition (Lee et al. 2008).

2. Infections are associated with a higher probability of developing other dis-
eases. In this context, a study investigated the comorbidity association
between 2 infectious diseases, SARS and HIV, with other 7 common dis-
eases (eg. breast cancer and kidney disorder). They pointed out to genes
that seem to be deregulated in both types of diseases, suggesting common
underlying mechanisms.

3.2.5 Network pharmacology
Conventional drug discovery approaches have generally been based on the

design of highly specific ligands targeting single proteins that cause a specific
disease. Nevertheless, The number of new drugs effectively implemented in the
clinic has been significantly reduced during the last decades. The main reasons
for this drug development decline are the lack of efficacy due to drug resistance
and patients heterogeneity along with clinical toxicology (Poornima et al. 2016).
The main goal of network pharmacology is addressing the true complexity of dis-
eases by detecting the perturbations they induce in biological networks. Then,
based on chemical properties, it attempts identifying molecules capable of tar-
geting the set of the most critically affected proteins. Network pharmacology
represents a paradigm shift from "one target - one drug" to "network-targeted -
multi-component therapeutics" (Hopkins 2008; Poornima et al. 2016).
Network pharmacology frequently relies on omics techniquesmeasuringmolecules

at cellular level in response to a concrete pathophysiology and/or drug treatment.
In this context, the applications of network pharmacology span from modelling
synergistic combinations of several drugs to the identification of new potential ad-
verse drugs effects reactions (Azmi et al. 2010; Panossian et al. 2013; Xiaowen
Chen et al. 2016). Recently, network pharmacology has also been proposed as
a promising approach to understand the pleiotropic effects of natural products.
A natural product can target several pathways at the same time and alleviate
the symptoms of different diseases. Therefore, the identification of the interac-
tions between the chemical compounds of the natural product and their targeted
molecules can lead to new strategies in drug development. For instance, the nat-
ural active compounds of herbal medicines represent a very valuable resource
for drug discovery as a result of their multiplicity in structure, bioactivity and re-
duced toxicity. (Xu 2006; Poornima et al. 2016; H. Zuo et al. 2018)
Another branch of network pharmacology is the so-called network-based drug
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repositioning. Drug repositioning aims at finding new uses for approved exist-
ing drugs, which have already demonstrated to be safe for human treatment.
The main advantage of this procedure is the drastic reduction of costs and time
when compared to the development of new drugs (H. Chen et al. 2015). Conse-
quently, it can be a very suitable approach for treating rare diseases since their
low profit scope has prevented large economic investments in their research.
Lotfi Shahreza and co-workers recently published a comprehensive literature re-
view of these methods and some specific clinical applications. Moreover, they
compared the different methods by evaluations based on their performance (Lotfi
Shahreza et al. 2018).
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4 Multiplex networks in biology
In this chapter, I first define multiplex networks from a general perspective.

Then, I briefly discuss some of the articles using multiplex networks within the
framework of computational biology. I finally present some the results of my
thesis illustrated in two peer-reviewed published articles. The results described
in this chapter are focused on the computational development rather than on the
clinical application. My clinically-oriented results are presented on chapters 5
and 6.

4.1 Definition and relevance of multiplex networks
Real-world systems are composed of sets of components connected to each

other in with various types of relationships. Moreover, the features of the differ-
ent types of interactions can be totally different and these relationships are of-
ten time-dependant. A straightforward example is provided by social networks,
where relations of different categories (eg., family, work, friendship . . . ) exist
between individuals. Individual networks, also called monoplex networks, are
not enough to consider this variety of information and do not provide a truthful
scheme to investigate complex systems (Kivelä et al. 2014).
The field of multilayer networks is currently under formal development to ad-

dress this issue, and hence still lack standardized naming conventions. In this
manuscript, we consider the definition stated in this paragraph. A multilayer net-
work can be non-formally defined as a network composed of different network
layers, each of which representing a specific type of interactions or the same
type of interaction occurring at different time points. A multiplex network is a
particular case of a multilayer network where the layers share the same set of
nodes (Kivelä et al. 2014). This new way of representing and describing com-
plex systems is capturing the attention of research groups working in very diverse
scientific areas. Indeed, describing real-world systems using multiplex networks
have yielded valuable results in fields such as social network analysis (Battiston
et al. 2016), ecology (Stella et al. 2017), transport (Cardillo et al. 2013) or com-
putational neuroscience (De Domenico et al. 2016). We present in the following
section some of the most relevant results obtained in computational biology by
means of the use of multiplex network.

4.2 Multiplex networks in computational biology
We state that the complexity of biological systems can be modeled in a more

precise way using multiplex networks. This is due to the fact that biological
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macromolecules such as proteins, interact with each other throughmultiple types
of different relationships. In addition, as discussed in chapter 2, not only physical
binary interactions are nowadays screened using high-throughput technologies.
We can indeed represent many types of -omics data as networks. Overall, we are
nowadays able to build multiplex biological networks containing a great amount
of biologically relevant information.
Nevertheless, few studies have used multiplex networks in computational bi-

ology so far. On the analysis side, some clustering algorithms have been de-
veloped to identify biological communities from multiplex networks. Overall, the
communities of genes/proteins identified by these methods are more relevant
than those detected in individual monoplex networks (Bennett et al. 2015; Didier
et al. 2015; Cantini et al. 2015). For instance, (Cantini et al. 2015) constructed
a 4-layer multiplex network, and applied popular clustering methods to detect
gene communities within each layer. Then, they applied a consensus clustering
method across the four layers to identify the definitive communities (Lancichinetti
et al. 2012). Thanks to this procedure, they pointed out to some genes poten-
tially driving different cancer types. It is to note that their approach relies on
a consensus clustering method rather than a dedicated multiplex-network clus-
tering method. A multiplex-tailored community detection method was applied
to find modules in a multiplex network where the nodes represent human dis-
eases. The identified communities suggest potential comorbidity relationships
between diseases (Halu et al. 2017). Our team also developed a clustering
method, calledMolti, suited to multiplex networks (Didier et al. 2015). We partic-
ipated to the disease module identification DREAM challenge with an updated
version of Molti. This challenge aims at testing the ability of different clustering
algorithms to extract relevant modules from biological monoplex and multiplex
networks in a biomedical context. Further details about Molti and the disease
Module Identification DREAM Challenge are provided in section 4.4.
Large-scale PPIs are usually lacking tissue-specific contexts. Multiplex net-

works can represent a valuable resource to define tissue-specific features. For
instance, (Zitnik et al. 2017) built a multiplex network in which each layer ac-
counts for PPIs in different human tissues. They afterwards applied a network-
embedding approach, i.e. methods to represent network nodes as numeric vec-
tors in such a way that similar vectors account for nearby network nodes (Duran-
Frigola et al. 2018), to predict tissue-specific protein functions. Moreover, they
gave different importance to the different network layers by including hierarchy
relations among tissues, which allowed to improve their predictions (Zitnik et al.
2017).
Another promising line of research uses multiplex networks to investigate the

interaction patterns between cells. Indeed, describing biological processes at
cellular scale may be very appealing. Let us suppose a group of cells of the
same type, i.e. a cell population. The cells of this cell population interchange
information between them, interact with cells of different types, and its number
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can evolve with time. This diversity of interactions can be properly described with
multiplex networks. An interesting example is the one presented in the work of
Gosak et al. 2015. In order to describe the information flow between beta cells in
islets of Langerhans, they constructed a weighted multiplex network. Each node
represents a cell; intralayer interactions stand in the first layer for the propaga-
tion of the depolarization of membrane potential, and in the other layer for the
propagation of Ca2+ waves; interlayer connections among the same cells reflect
the time lag of the Ca2+ signal with respect to the depolarization. This multiplex
approach revealed that high-degree nodes exhibit a larger time lag between the
membrane potential and the Ca2+ signal than less connected nodes. The au-
thors associated these results with a higher activity of endoplasmic reticulum
calcium pumps in the most connected cells (Gosak et al. 2015).

4.3 Random walks with restart on multiplex
networks

Functionally or phenotypically-related proteins have a tendency to be located
in the same area in biological networks. Thus, topological distances between
proteins in networks are a key resource to infer some of their cellular functions,
as well as to predict and study disease-associated proteins. Random Walk with
Restart (RWR) is one of the state-of-the-art network propagation ranking meth-
ods. It computes the distance between a set of initial node(s), called seed(s),
and all the remaining nodes of the network. RWR measures the distances be-
tween network nodes in a more effective way than methods relying on direct
topological measures, such as shortest-paths based approaches, since it takes
into account the global topology of the network (i.e. it explores all the possible
paths between pairs of nodes).
The initial goal of my thesis was trying to predict new genes/proteins related to

aging using network-based approaches. The state-of-the-art guilt-by-association
RWRmethod appeared as a suitable strategy to achieve this purpose. RWR has
been successfully applied to predict gene-disease associations and to charac-
terize protein functions, as I previously described on section 3.1.1. Even though
RWR has been applied to several types of networks (eg., monoplex, heteroge-
neous and aggregated networks), it had never been applied to multiplex net-
works. We expected that the ability to explore simultaneously various layers of
gene/protein interactions, each one of them associated with its own topological
features, weaknesses and strengths, can improve the results obtained with pre-
vious methods. Hence, during my thesis work, I formally expanded the RWR
method to consider multiplex networks. I demonstrated that RWR on multiplex
networks significantly outperforms RWR on monoplex or aggregated networks,
when applied to recover gene-disease associations.

Biological networks whose nodes are not genes or proteins can also be built.
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In this work, we constructed a disease-disease similarity network where two dis-
eases are connected if they share significant phenotypes. We created a hetero-
geneous network linking the network of diseases to the gene/protein networks
based on bipartite known gene-diseases associations. We consequently ex-
tended the RWR algorithm in order to make it suitable to explore networks both
multiplex and heterogeneous. We showed that the performance is remarkably
better than the one achieved by RWR on multiplex networks and RWR on het-
erogeneous networks alone. I finally applied the new method to gain insights
about the molecular mechanisms underlying two rare diseases. These results
are described in the following publication:

Valdeolivas, A., Tichit, L., Navarro, C., Perrin, S., et al. (2018).
Random walk with restart on multiplex and heterogeneous biologi-
cal networks. Bioinformatics, (August), 1–9.

Further results related to this article are available on Appendix A and in the gen-
eral discussion. In particular: i) Appendix A.1: contains the supplementary ma-
terial of the article; ii) Appendix A.2: includes the vignette explaining the use of
the R package I developed associated with this article; iii) Discussion: describes
the application of the algorithm to a a premature aging disease aiming at identify-
ing new age-related genes. Based on this results, I build my general discussion
about my thesis work.
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Perrin2,3, Gaëlle Odelin2,3, Nicolas Levy3, Pierre Cau2,3, Elisabeth Remy1

and Anaı̈s Baudot1,*

1Aix Marseille Univ, CNRS, Centrale Marseille, I2M, 13009, Marseille, France, 2ProGeLife, 13001, Marseille and 3Aix

Marseille Univ, INSERM, MMG, 13005, Marseille, France

*To whom correspondence should be addressed.

Associate Editor: Alfonso Valencia

Received on September 20, 2017; revised on June 13, 2018; editorial decision on July 11, 2018; accepted on July 16, 2018

Abstract

Motivation: Recent years have witnessed an exponential growth in the number of identified inter-

actions between biological molecules. These interactions are usually represented as large and

complex networks, calling for the development of appropriated tools to exploit the functional infor-

mation they contain. Random walk with restart (RWR) is the state-of-the-art guilt-by-association ap-

proach. It explores the network vicinity of gene/protein seeds to study their functions, based on the

premise that nodes related to similar functions tend to lie close to each other in the networks.

Results: In this study, we extended the RWR algorithm to multiplex and heterogeneous networks.

The walk can now explore different layers of physical and functional interactions between genes

and proteins, such as protein–protein interactions and co-expression associations. In addition, the

walk can also jump to a network containing different sets of edges and nodes, such as phenotype

similarities between diseases. We devised a leave-one-out cross-validation strategy to evaluate the

algorithms abilities to predict disease-associated genes. We demonstrate the increased performan-

ces of the multiplex-heterogeneous RWR as compared to several random walks on monoplex or

heterogeneous networks. Overall, our framework is able to leverage the different interaction sour-

ces to outperform current approaches. Finally, we applied the algorithm to predict candidate genes

for the Wiedemann–Rautenstrauch syndrome, and to explore the network vicinity of the SHORT

syndrome.

Availability and implementation: The source code is available on GitHub at: https://github.com/

alberto-valdeolivas/RWR-MH. In addition, an R package is freely available through Bioconductor at:

http://bioconductor.org/packages/RandomWalkRestartMH/.

Contact: alberto.valdeolivas@etu.univ-amu.fr or anais.baudot@univ-amu.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent years have witnessed the accumulation of physical and func-

tional interactions between biological macromolecules. For instance,

protein–protein interactions (PPI) are nowadays screened at the

proteome scale for many organisms, revealing thousands of physical

interactions between proteins. Interaction data are commonly

represented as networks, in which the nodes correspond to genes or

proteins, and the edges to their interactions. The availability of

large-scale PPI networks led to the application of graph-theory

based approaches for their exploration, with the ultimate goal of

extracting the knowledge they contain about cellular functioning.

These methods exploit the tendency of functionally-related proteins
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to lie in the same network neighborhood. For instance, clustering

algorithms allow identifying communities of proteins involved in the

same biological processes (Arroyo et al., 2015; Brohée and van

Helden, 2006; Chapple et al., 2015; Katsogiannou et al., 2014), and

guilt-by-association strategies explore topological relationships to

predict protein cellular functions (Schwikowski et al., 2000).

Network-based guilt-by-association strategies, in particular,

have been widely used to identify new disease-associated genes. The

first approaches were parsing the direct interactors of disease pro-

teins in a PPI network (Oti et al., 2006). Then, more elaborated

algorithms computing the shortest paths between candidates and

known disease proteins were developed (Franke et al., 2006; George

et al., 2006). But algorithms able to exploit the global topology,

such as network propagation or random walk, were finally shown

to largely outperform initial methods in the identification of disease

genes (Köhler et al., 2008; Vanunu et al., 2010).

Random walks were first developed to explore the global top-

ology of networks, by simulating a particle that iteratively moves

from a node to a randomly selected neighboring node (Lovász,

1993). The idea of restart, which led to the random walk with re-

start (RWR) algorithm, was first introduced for Internet search

engines. It intent to simulate the behavior of an internet user. The

user surfs randomly from a web page to another thanks to the

hyper-links, but he can also restart the navigation in a new arbitrary

web page. Thereby, depending on the topological structure of the

pages and hyper-links, some pages will be visited more frequently

than others. The number of visits is considered as a proxy measure

of each web page relevance (Brin and Page, 1998). Moreover, if one

forces the particle to always restart in the same node or set of

nodes—called seed(s)—RWR can be used to measure a proximity

between the seed(s) and all the other nodes in the network (Pan

et al., 2004).

RWR became the state-of-the-art guilt-by-association algorithm

in network computational biology. It was initially applied, as com-

mented above, to prioritize candidate disease genes. All the network

nodes are ranked by the RWR algorithm according to their proxim-

ity to known disease-associated nodes taken as seeds (Köhler et al.,

2008). Several extensions of the RWR algorithm further improved

the prediction of disease candidate genes, mainly by considering also

phenotype data (Li and Li, 2012; Li and Patra, 2010; Xie et al.,

2015; Zhao et al., 2015). For instance, Li and Patra (2010)

described a RWR on a heterogeneous network. A heterogeneous

network is composed of two networks, each having its own nodes

and edges, which belong to different categories, and which are

linked through bipartite interactions. Li and Patra (2010) connected

a PPI network with a disease–disease similarity network using

known bipartite gene-disease associations.

However, a common feature and limitation of these approaches

is that they perform the walks in a single network of interactions be-

tween genes and proteins. Doing so, they ignore a rich variety of in-

formation on physical and functional relationships between

biological macromolecules. Indeed, not only PPI are nowadays

described on a large-scale: immuno-precipitation experiments fol-

lowed by mass-spectrometry can inform on the in vivo molecular

complexes (Ruepp et al., 2010), pathways interaction data are cured

and stored in dedicated databases such as Reactome (Fabregat et al.,

2016) and Kegg (Kanehisa et al., 2008). In addition, other function-

al interactions can be derived, for instance from transcriptomics ex-

pression data by constructing a co-expression network, or from gene

ontology (GO) annotations (Ashburner et al., 2000) by constructing

a co-annotation network.

Each interaction source has its own meaning, relevance and bias:

some networks contain links of high relevance (e.g. curated signaling

pathways), while others contain thousands or even millions of inter-

actions prone to noise (e.g. co-expression networks) (Didier et al.,

2015). The combination of the different sources is expected to pro-

vide a complementary view on gene and protein cellular functioning

(Menche et al., 2015). But networks can be combined in different

ways. Generally, the different networks are merged into an aggre-

gated network. For instance, Li and Li (2012) adapted the RWR al-

gorithm to a network in which PPI and co-annotation interactions

were aggregated. However, aggregating interaction sources as a sin-

gle network dismisses the individual features and topologies of each

network. In this context, the multiplex framework offers an interest-

ing alternative. Collections of networks sharing the same nodes, but

in which the edges belong to different categories or represent inter-

actions of a different nature are called multiplex (alt. multi-slice,

multi-layer) networks (Battiston et al., 2014). In a biological multi-

plex network, each layer contains a different category of physical

and functional interactions between genes or proteins.

We present here two extensions of the RWR algorithm to ex-

plore multiplex networks (RWR-M) and multiplex-heterogeneous

networks (RWR-MH). We constructed a multiplex network com-

posed of three layers of physical and functional interactions between

genes and proteins, and a disease–disease network based on pheno-

type similarities. We applied a leave-one-out cross-validation

(LOOCV) strategy to compare the RWR-M and RWR-MH algo-

rithms to alternatives, including RWR on monoplex networks,

aggregated networks and heterogeneous-only networks. We showed

that considering many interaction sources through a multiplex-

heterogeneous network framework enhances remarkably the per-

formances of disease-gene prioritization. Finally, we applied the

RWR-MH algorithm to predict candidate genes for being implicated

in the Wiedemann–Rautenstrauch syndrome (WRS), whose respon-

sible gene(s) remain unknown. We also explored the network vicin-

ity of the SHORT syndrome (SS) and its associated gene, PIK3R1,

and unveiled associated syndromes and pathways.

2 Materials and methods

2.1 Random walk on graphs
Let us consider an undirected graph, G ¼ ðV;EÞ with adjacency ma-

trix A. An imaginary particle starts a random walk at an initial node

v0 2 V. Considering the time is discrete, t 2 N, at the t-th step the

particle is at node vt. Then, it walks from vt to vtþ1, a randomly

selected neighbor of vt following matrix M (Lovász, 1993).

Therefore, we can write: 8x; y 2 V;8t 2 N

Pðvtþ1 ¼ y j vt ¼ xÞ ¼
1

dðxÞ if ðx; yÞ 2 E

0 otherwise;

8><
>:

where d(x) is the degree of x in the graph G. Defining ptðvÞ as the

probability for the random walk to be at node v at time t, we can de-

scribe the evolution of the probability distribution, pt ¼ ðptðvÞÞv2V ,

with the equation:

pT
tþ1 ¼MpT

t (1)

where M denotes a transition matrix that is the column normaliza-

tion of A. The stationary distribution, solution of the equation

pT
� ¼MpT

� , represents—if it exists—the probability for the particle

to be located at a specific node for an infinite amount of time.
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In the RWR version, at each iteration, the particle can also re-

start by jumping to any randomly selected node in the graph, with a

defined restart probability, r 2 ð0; 1Þ. This avoids the walk to be

trapped in a dead end, and assures the existence of the stationary

distribution (Langville and Meyer, 2004). Moreover, we can restrict

the restart of the particle to specific node(s), called seed(s) (Pan

et al., 2004). Doing so, the particle will explore the graph focusing

on the neighborhood of the seed(s), and the stationary distribution

can be considered as a measure of the proximity between the seed(s)

and all the other nodes in the graph.

Formally, based on Equation (1), RWR equation can be

defined as:

pT
tþ1 ¼ ð1� rÞMpT

t þ rpT
0 : (2)

The vector p0 is the initial probability distribution. Therefore, in

p0, only the seed(s) have values different from zero. After several

iterations, the difference between the vectors ptþ1 and pt becomes

negligible, the stationary probability distribution is reached, and

the elements in these vectors represent a proximity measure from

every graph node to the seed(s). In this work, iterations are repeated

until the difference between pt and ptþ1 falls below 10�10, as in pre-

vious studies (Li and Patra, 2010; Erten et al., 2011; Zhao et al.,

2015).

We set the global restart parameter to r ¼ 0.7, as in previous

studies (Köhler et al., 2008; Li and Li, 2012; Li and Patra, 2010;

Smedley et al., 2014; Zhao et al., 2015), for all versions of the RWR

algorithm. For the sake of simplicity, we have considered

unweighted graphs. However, the extension of the algorithms to

weighted graphs is straightforward, and can be achieved by replac-

ing the adjacency matrices by matrices of the weighted edges.

2.2 Random walk with restart on multiplex graphs
2.2.1 Definition

A multiplex graph is a collection of L undirected graphs, considered

as layers, sharing the same set of n nodes (De Domenico et al., 2014;

Kivelä et al., 2014). Each layer a ¼ 1; . . . ;L, is defined by its n � n

adjacency matrix A½a� ¼ ðA½a�ði; jÞÞi;j¼1;...;n, where A½a�ði; jÞ ¼ 1 if node

i and node j are connected on layer a, and 0 otherwise (Battiston

et al., 2014). We do not consider auto-interactions

(A½a�ði; iÞ ¼ 08 i ¼ 1; . . . ; n), and va
i stands for the node i in layer a. A

multiplex graph is characterized by its adjacency matrix:

A ¼ A½1�; . . . ;A½L� (3)

and is defined as GM ¼ ðVM;EMÞ, where:

VM ¼ fva
i ; i ¼ 1; . . . ; n; a ¼ 1; . . . ;Lg ;

EM ¼ fðva
i ; v

a
j Þ; i; j ¼ 1; . . . ;n; a ¼ 1; . . . ;L; A½a�ði; jÞ 6¼ 0g

S

fðva
i ; v

b
i Þ; i ¼ 1; . . . ; n; a 6¼ bg :

2.2.2 RWR-M: extension of RWR to multiplex graphs

The particle can walk from its current node va
i to any of its neigh-

bors within a layer, or jump to any node vb
i with b 6¼ a (De

Domenico et al., 2013), and thereby change from one to another

layer, as schematically displayed in Figure 1A.

We can thus extend the classical RWR algorithm to a multiplex

graph (RWR-M) by building a nL � nL matrix, A. The matrix A

contains the different types of transitions that the simulated particle

can follow at each step, and is defined as:

A ¼

ð1� dÞA½1� d
ðL� 1Þ I � � � d

ðL� 1Þ I

d
ðL� 1Þ I ð1� dÞA½2� � � � d

ðL� 1Þ I

..

. ..
. . .

. ..
.

d
ðL� 1Þ I

d
ðL� 1Þ I � � � ð1� dÞA½L�

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

(4)

where I is the n � n identity matrix and A½a� is the adjacency matrix

of the layer a, as described in (3). The elements in the diagonal rep-

resent the potential intra-layer walks, whereas the off-diagonal ele-

ments account for the possible jumps between different layers. The

parameter d 2 ½0;1� quantifies the probability of staying in a layer or

jumping between the layers: if d ¼ 0 the particle will always stay in

the same layer after a non-restart step.

Let us denote the transition matrix M obtained by a column nor-

malization of A. Equation (2) in the multiplex case becomes:

�pT
tþ1 ¼ ð1� rÞM�pT

t þ r�pT
RS (5)

where �pt ¼ ½p1
t ; . . . ; pL

t � and �ptþ1 ¼ ½p1
tþ1; . . . ;pL

tþ1�; t 2 N, are n � L

vectors representing the probability distribution of the particle in the

multiplex graph. These vectors are composed of the probability dis-

tributions in every layer. The restart vector, �pRS, represents the ini-

tial probability distribution. We define it as �pRS ¼ s � �p0, where the

vector parameter s ¼ ½s1; . . . ; sL� measures the probability of restart-

ing in the seed(s) of each layer in the multiplex graph. It is to note

that it is possible to tune the importance of each layer by modifying

the parameter s.
We established an equal restart probability in all the layers,

s ¼ ð1=L; 1=L; . . . ; 1=LÞ, and we also considered an equal probabil-

ity for staying in a layer or jumping between the layers, d ¼ 0:5.

When the stationary probability distribution is reached, every

node is associated to L proximity measures, one for each layer of the

multiplex graph. We compute the global score for every node as the

geometric mean of its L proximity measures. The geometric mean

Fig. 1. Multiplex, heterogeneous and multiplex-heterogeneous graphs. (A) A

multiplex graph composed of three layers. The particle can navigate within

each layer or jump to the same node in another layers. (B) A heterogeneous

graph composed of two graphs. The particle can navigate within each graph

or jump to the other graph according to bipartite associations between the

two different types of nodes. (C) A multiplex-heterogeneous graph
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penalizes nodes with a good score in one layer, but low scores in the

remaining layers.

2.3 Random walk with restart on heterogeneous graphs
2.3.1 Definition

A heterogeneous graph contains two graphs with different types of

nodes and edges, as well as a bipartite graph containing bipartite

associations between them (Lee et al., 2013). Let us consider the

graphs GV ¼ ðV;EVÞ with V ¼ fv1; . . . ; vng; GU ¼ ðU;EUÞ with

U ¼ fu1; . . . ; umg, and the bipartite graph GB ¼ ðV [U;EBÞ with

EB � V �U. The edges of the bipartite graph only connect pairs of

nodes from the different sets of nodes, V and U. We can now define

a heterogeneous graph, GH ¼ ðVH ;EHÞ, as:

VH ¼ fV [Ug

EH ¼ fEV [ EU [ EBg:

2.3.2 RWR-H: extension of RWR to heterogeneous graphs

Li and Patra (2010) proposed a RWR on a heterogeneous graph.

This heterogeneous graph was composed of a PPI network, a dis-

ease–disease similarity network, and a bipartite graph containing

protein-disease associations. The particle walks on the PPI network,

on the disease–disease similarity network, and can also jump be-

tween the two networks following the bipartite associations

(Fig. 1B). Equations and technical details of the approach proposed

by Li and Patra (2010) are described in the Supplementary Methods.

2.4 Random walk with restart on multiplex-

heterogeneous graphs
2.4.1 Definition

Let us consider a L-layers multiplex graph, GM ¼ ðVM;EMÞ, with

n � L nodes, VM ¼ fva
i ; i ¼ 1; . . . ; n; a ¼ 1; . . . ;Lg. Let GU ¼ ðU;

EUÞ be a graph with m nodes, U ¼ fu1; . . . ; umg. In order to build a

heterogeneous graph composed of GM and GU, we need to link the

nodes in every layer of the multiplex graph GM to their associated

nodes in the graph GU, according to their bipartite associations,

EB. Since the same nodes are present in every layer of the

multiplex graph, it is necessary to have L identical bipartite graphs,

G
½a�
B ¼ ðVM [U;E

½a�
B Þ to define the multiplex-heterogeneous graph.

We can then describe a multiplex-heterogeneous graph, GMH ¼
ðVMH;EMHÞ, as:

VMH ¼ fVM [Ug

EMH ¼ f[a¼1;...;LE
½a�
B [ EM [ EUg:

2.4.2 RWR-MH: extension of RWR to multiplex-heterogeneous

graph

We finally extended the RWR algorithm to multiplex-heterogeneous

networks (RWR-MH). At a given step, let the particle be at a specif-

ic node within a layer of the multiplex graph. At the next non-

restart step, the particle can either (i) walk within the same layer or

(ii) jump to the same node in a different layer or (iii) jump to the

other graph if a bipartite association exists (Fig. 1C).

Let consider a multiplex graph composed of n gene/protein

nodes and L-layers, with an adjacency matrix AMðnL�nLÞ, like the

one described in Equation (4). Let also consider a disease–disease

similarity graph characterized by its adjacency matrix, ADðm�mÞ,

where m is the total number of diseases. The bipartite graphs with

adjacency matrices B1;...;L
ðn�mÞ associate the gene/protein nodes in each

layer of the multiplex graph to diseases. These bipartite graphs are

identical, we define them as Bðn�mÞ, and construct the bipartite adja-

cency matrix of the multiplex-heterogeneous graph by sticking

Bðn�mÞ L times.

BMH ¼

Bðn�mÞ

Bðn�mÞ

..

.

Bðn�mÞ

0
BBBBBB@

1
CCCCCCA
: (6)

Then, we can define the global adjacency matrix of the

multiplex-heterogeneous graph as A ¼ AM BMH

BT
MH AD

� �
, where BT

MH

represents the transpose of BMH. From this point, we can proceed in

an analogous way to the one describing the RWR on heterogeneous

graphs (Supplementary Methods). We define a global transition ma-

trix for the multiplex-heterogeneous network and calculate its com-

ponents using the same equations. We just have to replace the

adjacency matrix of the PPI network, APðn�nÞ, by the adjacency ma-

trix of the multiplex networkAMðnL�nLÞ, and the bipartite adjacency

matrix, Bðn�mÞ, by the adjacency matrix of the bipartite graph of the

multiplex-heterogeneous graph, BMHðnL�mÞ.

In order to apply the Equation S5 (Supplementary Methods), we

have to consider that the vectors ~ptþ1; ~pt and ~pRS are now of dimen-

sion ððn� LÞ þmÞ, since the RWR-MH algorithm is ranking n pro-

teins in L different layers and m diseases at the same time. It is to

note that it is possible to tune the importance of each network by

defining ~pRS ¼
ð1� gÞu0

gv0

� �
, where u0 defines the initial probability

distribution of the multiplex graph, as described for the RWR on

heterogeneous graphs (Supplementary Methods), and v0 the initial

probability distribution of the disease-disease similarity network.

2.5 Network sources
Network details can be found in Supplementary Methods: sizes and

densities (Supplementary Table S1), degree distributions

(Supplementary Fig. S1A) and overlaps between nodes and edges

(Supplementary Fig. S1B and C). Network figures are represented

using Cytoscape (Shannon et al., 2003).

2.5.1 Biological networks

We constructed three biological networks containing genes or pro-

teins as nodes (genes and proteins are here considered equally): a PPI

network, a network connecting proteins according to pathway

interaction data, and a network in which the links correspond to co-

expressed genes (Supplementary Methods). The networks were gen-

erated from downloads on November 23 and 24, 2016, and from

the source codes available on GitHub. The PPI network contains

12 621 no and 66 971 edges. The Pathway network contains 10 534

nodes and 254 766 edges, and the Co-expression network is com-

posed of 10 534 nodes connected by 1 337 347 edges.

2.5.2 Disease–disease similarity network

Diseases and their associated phenotypes were obtained from the

Human Phenotype Ontology Project (HPO) (Köhler et al., 2014),

and we constructed a disease-disease similarity network-based on

phenotype similarities between every pair of diseases. The similarity

value is computed according to the relevance of the shared pheno-

types. We estimated the relevance of each phenotype from the
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information content (IC) given by its frequency in the HPO data-

base, as proposed by Westbury et al. (2015) (Supplementary

Methods).

2.5.3 Gene–disease bipartite associations

We connected the nodes in each layer of the multiplex network with

the disease–disease similarity network thanks to bipartite gene–dis-

eases associations extracted from OMIM (Hamosh et al., 2005),

using biomaRt (Durinck et al., 2009) (downloads December, 2016).

We obtain 4496 associations between genes/proteins and diseases.

2.6 Leave-one-out cross-validation
The performances of the different RWR algorithms were evaluated

using a LOOCV strategy. Known disease-gene associations from

OMIM (Hamosh et al., 2005) and DisGeNET v4.0 (Pi~nero et al.,

2016) were used as a benchmark: for each disease-associated to at

least two genes, each associated gene is removed one-by-one, and

considered as the left-out gene. The remaining genes are used as

seed(s) in the RWR algorithms. All the network nodes are then

scored and ranked according to their proximity to the seed(s), and

the rank of the left-out disease-gene is recorded (Supplementary

Methods).

3 Results

Our main goal was to design a RWR algorithm able to exploit mul-

tiple biological interaction sources. We first constructed three bio-

logical networks: a PPI network, a pathway-derived network and a

co-expression network (Materials and methods). These networks

can be considered independently as monoplex networks. They can

also be merged as an aggregated network, with nodes and edges cor-

responding to the union of the monoplex networks. The aggregated

network is composed of 17 559 nodes and 1 659 084 edges

(Supplementary Table S1). Finally, we also studied the three net-

works as a multiplex network. A multiplex network is a collection

of networks considered as layers, sharing the same set of nodes, but

in which the edges belong to different interaction categories. In our

multiplex network, the layers share the same set of 17 559 nodes,

also corresponding to the union of all network nodes. The genes/

proteins absent in a layer are added as isolated nodes in this layer.

We also constructed a disease–disease similarity network, in

which the nodes correspond to diseases, and the edges to the most

significant phenotype similarities between the diseases (Materials

and methods). Finally, in order to construct a multiplex-

heterogeneous network, we linked the disease–disease similarity net-

work to the multiplex network thanks to bipartite gene–disease

associations.

We next devised different RWR algorithms, which each leverage

the different networks and combinations thereof, and we compared

their efficiencies.

3.1 Random walk with restart on multiplex networks are

more efficient than on monoplex networks
The classical RWR algorithm takes as input a monoplex network.

Here, we first adapted the RWR algorithm to navigate a multiplex

network (RWR-M). Basically, at each step, the particle can walk

from one node to another in the same layer, as in a monoplex net-

work, but it can also move to the same node in another layer of the

multiplex network (Materials and methods). We compared the per-

formances of the classical RWR and multiplex RWR-M algorithms

in retrieving disease-associated genes, thanks to a LOOCV strategy

(Materials and methods). For that, we created a test set composed of

diseases associated to at least two genes in the set of 4529 protein

nodes common to the three networks. This test set contains 273 dis-

eases and 1312 gene–disease associations. For every disease, each of

its associated genes is iteratively left-out, and the remaining gene(s)

are considered as seed(s) to run the algorithms. We then compared

the ability of the different RWR algorithms to retrieve the left-out

gene (Fig. 2).

Focusing first on monoplex networks, the worst performance is

observed for the classical RWR algorithm applied to the co-expres-

sion network. It seems difficult to retrieve known disease-associated

genes from a network built from correlations of mRNA expression

data alone. The Pathway-derived network achieves the best per-

formance among the monoplex networks, probably because path-

ways databases are usually built on established biological

knowledge and curated. Noticeably, the RWR algorithm is not able

to predict disease-associated genes from randomized versions of

these biological networks (Supplementary Results).

The RWR-M algorithm, exploiting more than one interaction

source in a multiplex framework, performs better than the classical

RWR. In particular, despite the low ranking capacities of the co-

expression network alone, its integration as a layer in a multiplex

framework of two or three layers enhances the performance of the

algorithm. Overall, the best results are obtained with the integration

of the three network layers (Fig. 2).

3.2 Random walk with restart on multiplex networks are

more efficient than on aggregated networks
In a second step, we compared the performances of the RWR on

multiplex network (RWR-M) with the classical RWR run on the

three networks aggregated as a single monoplex network. In the

aggregated network, two proteins can be linked by up to three edges

(corresponding to the three network sources), and the particle can

choose between these different edges to move from a node to one of

its neighbors, as in Li and Li (2012). The ranking ability of RWR-M

and classical RWR on the aggregated network are again tested by

LOOCV. In this case, we created the test set with diseases associated

Fig. 2. Cumulative distribution functions representing the ranks of the left-out

disease genes in the LOOCV with different RWR algorithms. Classical RWR

algorithm is applied to the protein–protein (PPI), Pathway (PATH) and co-

expression (COEX) monoplex networks. RWR-M algorithm is applied to

combinations of two or three of these networks, considered as layers of a

multiplex network
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to at least two nodes in the total of 17 559 nodes corresponding to

the union of the nodes of the three networks. The test set contains

537 diseases and 2892 gene–disease associations.

The ranks of the left-out disease genes are better with the RWR-

M than with the classical RWR on the aggregated network (Fig. 3).

The aggregated and multiplex networks use the same biological data

and interaction network sources, but the multiplex framework fur-

ther keeps tracks of the individual topological structures in each net-

work layer.

3.3 Random walk with restart on multiplex-

heterogeneous networks are more efficient than on

multiplex or heterogeneous networks alone
We previously compared the performances of RWR algorithms on

different combinations of networks containing the same nodes but

edges belonging to different interaction categories. We now wish to

extend these comparisons to heterogeneous networks, i.e. networks

containing different sets of nodes, such as genes/proteins and

diseases.

We first coded the heterogeneous RWR-H algorithm as proposed

by Li and Patra (2010) (Materials and methods). The RWR-H algo-

rithm takes as input a heterogeneous network composed of a PPI

network and a disease–disease similarity network. We constructed

the disease–disease similarity network by computing the phenotype

similarity between a pair of diseases (Materials and methods). The

PPI and the disease–disease similarity networks are connected by bi-

partite gene-disease associations. In the RWR-H algorithm, the par-

ticle can move from the PPI network to the disease–disease

similarity network thanks to these bipartite associations.

We here compared the ranking capacities of RWR-M and RWR-

H by LOOCV. In this case, we created a test set of diseases associ-

ated to at least two genes in the set of 12 621 nodes present in the

PPI network. The test set contains 242 diseases and 880 gene-

disease associations. We can observe first that RWR-M and RWR-H

perform better than the classical RWR on the monoplex PPI net-

work (Fig. 4). This stands for other types of heterogeneous net-

works, built by combining pathway and disease–disease similarity

networks, or co-expression and disease–disease similarity networks

(Supplementary Fig. S3).

In this context, an algorithm able to execute a RWR on both

multiplex-heterogeneous networks is expected to have better per-

formances. Therefore, we extended our RWR-M approach to het-

erogeneous networks, defining a RWR on multiplex-heterogeneous

networks, RWR-MH (Materials and methods). The RWR-MH dis-

plays a remarkable amelioration of performances in the prioritiza-

tion task, since over 45% of the left-out genes are ranked within the

top 20 (Fig. 4).

Finally, we further checked the influence of the different parame-

ters involved in the RWR-MH algorithm using the LOOCV strat-

egy. Overall, the RWR-MH is a very robust algorithm since

variations in the parameters do not lead to large variations in the

ranking performances (Supplementary Results, Supplementary Figs

S4 and S5).

3.4 Candidate genes for the undiagnosed Wiedemann–

Rautenstrauch syndrome
The Wiedemann–Rautenstrauch neonatal progeroid syndrome

(MIM code: 264 090) is characterized by intrauterine growth retard-

ation with subsequent failure to thrive and short stature (Toriello,

1990). Patients also display a progeroid appearance, decreased sub-

cutaneous fat, hypotrichosis and macrocephaly (Kiraz et al., 2012).

Only a few published cases have been documented, and to our

knowledge, no gene has been described as causative of the syndrome

yet.

To illustrate the application of our approach for disease-

associated gene prediction, we applied the RWR-MH algorithm

using as seed only the WRS disease node. We then considered the

top 25 ranked genes as putative candidates for playing a role in

WRS (Fig. 5). Many of these top predicted candidate genes, such as

FIG4, RNF113A or LMNA, are implicated in diseases directly con-

nected to WRS from phenotype similarities. Mutations in LMNA

are responsible for the Hutchinson–Gilford progeria syndrome

(MIM code: 176 670) and other premature aging syndromes such as

Fig. 3. Cumulative distribution functions representing the ranks of the left-out

disease genes in the LOOCV with different RWR algorithms. Classical RWR al-

gorithm is applied on the three networks aggregated as a single monoplex

network, and RWR-M algorithm is applied to combinations of the three net-

works as layers of a multiplex network

Fig. 4. Cumulative distribution functions representing the ranks of the left-out

disease genes in the LOOCV with different RWR algorithms. Classical RWR al-

gorithm is applied to the monoplex PPI network, RWR-M is applied to the

combinations of the three monoplex networks as layers of a multiplex net-

work, RWR-H algorithm is applied to the heterogeneous network composed

of the PPI network and the disease-disease similarity network, and RWR-MH

algorithm is applied the multiplex-heterogeneous network composed of the

three-layers multiplex network and the disease-disease similarity network
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Mandibuloacral Dysplasia with type A lipodystrophy (MIM code:

248 370). However, the targeted sequencing of LMNA in few WRS

patients did not identify mutations (Hou, 2009; Kiraz et al., 2012).

The RWR-MH algorithm also top ranked ZMPSTE24, which is

known to cause severe progeroid syndromes such as Restrictive

Dermopathy (MIM code: 275 210) (Navarro et al., 2006). But here

also, no mutations were found for this gene in five WRS patients

(Hou, 2009).

Another set of interesting candidates is given by the subnetwork

composed of the four genes IGF2, INS, INSR and RPS6KA3. All

these genes participate in the insulin pathway, and are associated to

diseases sharing phenotypes with WRS [i.e. Donohue Syndrome

(MIM code: 147 670), hyperproinsulinemia (MIM code: 176 730)

and severe growth restriction (MIM code: 147 470)]. The insulin

pathway is suspected to play a role in WRS (Arboleda et al., 2007).

Similarly, a cluster of proteins related to the cell cycle and DNA re-

pair is connected to WRS through the Wolf–Hirschhorn syndrome

(MIM code: 194 190), and DNA repair defects are also suspected to

be involved in WRS (Hou, 2009).

3.5 Exploring vicinity of PIK3R1 and SHORT syndrome
SS (MIM code: 269 880) is a rare disease with clinical features

defined by its acronym: short stature, hyperextensibility of joints

and/or inguinal hernia, ocular depression, Rieger abnormality and

teething delay (Gorlin, 1975). However, these phenotypes do not de-

scribe the full range of SS phenotypes, and other clinical features in-

clude, for instance, partial lipodystrophy and insulin resistance

(Avila et al., 2016). Mutations in the PIK3R1 gene are described as

the main cause of SS (Chudasama et al., 2013; Dyment et al., 2013;

Thauvin-Robinet et al., 2013).

We applied the RWR-MH algorithm using the PIK3R1 gene and

the SS disease as seeds, and explored the top 25 ranked diseases and

genes, along with their interactions and associations (Supplementary

Fig. S6). Many of the top ranked diseases recapitulate phenotypes

associated to SS. For instance, permanent neonatal diabetes mellitus

(MIM code: 606176) accounts for SS phenotypes associated to insu-

lin resistance. Mandibuloacral dysplasia with type B lipodystrophy

(MIM code: 608 612) and other diseases associated to lipodystrophy

are also top ranked, as well as the growth hormone insensitivity

syndrome (MIM code: 262 500) that share with SS the phenotypes

related to short stature, among others.

Some of the identified subnetworks are very appealing. For in-

stance, we can observe a loop linking the SS, its associated gene,

PIK3R1, the Lowe oculocerebrorenal syndrome (MIM code:

309 000) and its associated gene OCRL. These two diseases share a

noticeable amount of phenotypes, including growth retardation and

glucose intolerance. The PIK3R1 and OCRL genes are coding pro-

teins involved in the same pathway: synthesis of phosphatidylinosi-

tol phosphates at the plasma membrane (reactome code: R-HSA-

1 660 499). Therefore, we can hypothesize a common deregulation

of this pathway in the two diseases, leading to shared phenotypes.

Similarly, we can point to the subnetwork containing the ELN

gene, implicated in the Williams–Beuren syndrome (MIM code:

194 050). Many phenotypes associated to this syndrome are similar

to SS and Lowe oculocerebrorenal syndrome. In this case, the ELN

gene is linked to the PDGFRB gene by a co-expression relationship.

PDGFRB is highly connected to many nodes in the subnetwork,

including to PIK3R1, by pathway interactions. The co-expression

interaction between PDGFRB and ELN is intriguing because the

two genes are, to our knowledge, not described to be involved in the

same pathway or process. However, they seem to be regulated by

the same microRNA-29 family (Cushing et al., 2015; Zhang et al.,

2012). Overall, these results could also allow pointing to other can-

didate genes predicted to be involved in the SS. This is interesting as,

for instance, Dyment et al. (2013) did not find any mutation in the

PIK3R1 gene in one of the seven tested patients.

4 Discussion

Physical and functional relationships between genes and proteins are

diverse. They are identified or derived from various approaches,

each having its own features, strengths and weaknesses. In this con-

text, the integration of different sources of interaction, exploiting

data pluralism, is expected to outperform approaches dealing with

single networks. Indeed, the combination of different large-scale

interaction datasets increases the available biological information,

and potentially reduce the bias and incompleteness of isolated sour-

ces (Menche et al., 2015).

We and others also hypothesized that the multiplex framework,

which retains information on the topology of the individual net-

works, would perform better as compared to the aggregation of the

different interaction sources (Battiston et al., 2014; Didier et al.,

2015; Kivelä et al., 2014; Kurant and Thiran, 2006). We have

shown previously, for instance, that the multiplex framework is

more efficient than network aggregations to extract communities

from biological networks (Didier et al., 2015). We extended here the

RWR algorithm by designing the RWR-M algorithm able to lever-

age multiplex networks. The performances of the RWR-M algo-

rithm are clearly improved as compared to previous algorithms

navigating monoplex networks, such as RWR on PPI networks

(Köhler et al., 2008) or RWR on aggregated networks (Li and Li,

2012). It is particularly interesting to note that even if a monoplex

network, such as the co-expression network, displays poor ranking

performances isolated, its integration as a layer of a multiplex net-

work leads to an increase of the performance, thereby demonstrat-

ing the potential of the RWR-M strategy.

Moreover, we extended our algorithm to deal with multiplex-

heterogeneous networks. To this goal, we first built a disease–dis-

ease similarity network-based on the IC of the shared phenotypes

between every pair of diseases. Previous approaches building

Fig. 5. Network representation of the top 25 ranked genes and diseases when

the RWR-MH algorithm is executed using WRS as seed (yellow node). Gray

elliptical nodes are diseases; turquoise rectangles are genes/proteins. Black

edges are bipartite gene-disease associations from OMIM (Hamosh et al.,

2005); grey edges are the similarity links in the disease–disease network; blue

edges are PPI interactions; yellow edges are co-expression relationships; red

edges are pathway interactions. It is to note that results are represented as an

aggregated network only for visualization purposes
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disease–disease networks, such as the ones proposed by (Li and

Patra, 2010; Li and Li, 2012), were based on MimMiner (van Driel

et al., 2006). MimMiner mines OMIM full-text and clinical synopsis

to compute similarity between diseases. Contrarily, our approach is

based on the controlled classification of phenotypes in an ontology,

and considers both the ontological structure and the frequencies of

phenotypes.

Thanks to the LOOCV, we demonstrated that when the new

RWR-MH algorithm is applied on this complex multiplex-

heterogeneous network, the prioritization results are far better than

those of all other versions of the algorithm. We have also demon-

strated that the RWR-MH algorithm displays a robust behavior

upon variations of the different parameters. This was previously

observed for variations in the parameters of a RWR-H algorithm (Li

and Patra, 2010; Zhao et al., 2015). The particle keeps exploring

the different network layers thanks to the jumps, and still leverage

the complementary biological information. This stability is however

observed for the average ranking of left-out genes in the LOOCV,

but a focused analysis and network representation of the top 25

ranked genes and diseases in real-case applications would reveal

variations.

We focused our applications on a multiplex network composed

of a PPI, a pathway and a co-expression network. Other biological

networks could be collected or constructed from—omics data, and

integrated into our multiplex-heterogeneous framework. Functional

interactions can be derived, for instance, by connecting genes anno-

tated for the same GOterms (Ashburner et al., 2000). It would also

be valuable to include networks with transcription factors— targets

genes, non-coding RNAs as well as drug and therapeutic targets.
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4.4 A clustering algorithm for multiplex networks
My colleagues extended the definition of modularity to multiplex networks.

This allowed applying the Louvain algorithm, which optimizes the modularity, to
detect communities from multiplex networks. They demonstrated that the mul-
tiplex clustering outperforms network aggregation and consensus approaches
in the identification of modules derived from simulated networks. Then, they
constructed a multiplex network containing four layers of physical or functional
interactions between genes and proteins, namely i) a PPI, ii) a pathway-derived
network, iii) a co-expression network and iv) a network of molecular complexes.
Their method, which was called MolTi, allowed recovering a larger number of
biologically annotated communities on the multiplex network than on their ag-
gregated counterpart networks. They concluded that considering the multiplex
nature of protein networks leads to better-defined functional modules (Didier et
al. 2015). At the time of the publication of theMolTi article, there were hardly any
other methods tailored to detect modules in multiplex networks. It was therefore
no possible to evaluate the performance of MolTi against similar methods.
The DMI DREAM challenge was launched during summer 2016, aiming at

investigating the performance of different community detection algorithms in a
biomedical context. The challenge organizers provided participants with six
anonymous networks, as well as a controlled benchmark (more details are pro-
vided on Appendix B, where the article describing the DMI DREAM challenge
results is available). The challenge was divided in two sub-challenges to iden-
tify communities from the six networks independently (sub-challenge 1) or jointly
from the six networks (sub-challenge 2). We participated to the sub-challenge
2 with our multiplex network approach MolTi. During the test phase of the chal-
lenge, we implemented various extensions of MolTi that allowed us to recover
larger number of disease-associated modules than its original version. To be
more precise, the new version ofMolTi runs a randomized version of the Louvain
algorithm, consider edge and layer weights, and performs iterative clustering.
The new version is called MolTi-DREAM, and its results within the framework of
the DMI DREAM challenge are described in the following article:

Didier, G., Valdeolivas, A., & Baudot, A. (2018). Identifying com-
munities frommultiplex biological networks by randomized optimiza-
tion of modularity. F1000Research, 7(0), 1042.

The article describing the global results of DMI DREAM challenge is available
on the Appendix B.
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            Amendments from Version 1

In the revised version, we further described the dream challenge 
data and evaluation procedure. Concerning our approach, we 
detailed the description of the SBM protocol to generate random 
networks with a community structure, and added the resolution 
parameter to the modularity formula.
Several additional experiments were performed, and additional 
data, displayed as figures and tables, are provided in the 
response to reviewers, for size constraint reasons. In particular, 
we now provide the results of the Dream challenge on 
communities obtained by varying the modularity parameter (as 
compared to the recursion procedure), simulations including 
standard deviation, Rand index comparisons of the monoplex 
networks communities, as well as many discussions around the 
points suggested by the referees.

We finally want to emphasize the fact that, as a companion paper 
of the Dream challenge channel, our manuscript is included in 
a set of papers strongly linked to the main consortium paper, 
available in BioRxiv. Some of the results and experiments can 
be fully understood only in light of the consortium paper, since 
we are required not to duplicate the information. This concerns 
in particular the data and evaluation protocol of the Dream 
challenge, which are fully described in the consortium paper. 

See referee reports

REVISED

Introduction
Biological macromolecules do not act isolated in cells, but  
interact with each other to perform their functions, in signaling or  
metabolic pathways, molecular complexes, or, more generally, 
biological processes. Thanks to the development of experimen-
tal techniques and to the extraction of knowledge accumulated 
in the literature, biological networks are nowadays assembled 
on a large scale. A common feature of biological networks is 
their modularity, i.e., their organization around communities 
- or functional modules - of tightly connected genes/proteins  
implicated in the same biological processes1,2.

The Disease Module Identification (DMI) DREAM challenge  
aims at developing a benchmark to investigate different  
algorithms dedicated to the identification of communities from 
biological networks3. The challenge has been divided into two  
sub-challenges, to identify communities either i) from six  
biological networks independently, or ii) from all these networks 
jointly. The second sub-challenge, in particular, intend to test 
if some approaches can leverage complementary information 
from multiple networks jointly to define integrated communi-
ties. The clustering approaches proposed by the participants are  
assessed regarding their capacity to reveal disease communities,  
defined as communities significantly associated with genes  
implicated in diseases in GWAS studies3,4. 

The challengers proposed various strategies and clustering 
approaches, including kernel clustering, random walks or modu-
larity optimization. We competed with an enhanced version of  
MolTi, a modularity-based software that we recently developed5. 
We focused on the subchallenge dedicated to the identification 
of communities from multiple networks as MolTi was initially  

developed to cluster multiplex networks, i.e., networks composed 
of different layers of interactions. Molti extended the modu-
larity measure to multiplex networks and adapted the Louvain  
algorithm to optimize this multiplex-modularity. We have  
demonstrated that this multiplex approach better identifies the 
communities than approaches merging the networks, or perform-
ing consensus clusterings, both on simulated and real biological  
datasets5.

Grounded on these initial results, we here extended and tested 
our MolTi software, both on simulated data and on the DMI  
challenge framework. We improved MolTi with the implemen-
tation of a randomization procedure, the consideration of edge 
and layer weights, and a recursive clustering of the classes larger  
than a given size.

With simulated data, we observed that considering more than 
one network layer improves the detection of communities, as 
already noted in Didier et al., 20155, but also that communities are  
better detected with the randomization procedure. With the DMI 
benchmark, we pointed to a great dependence on the GWAS  
dataset used for the evaluation and on the FDR threshold defined, 
but, overall, randomizations and edge and layer weights increase 
the number of disease communities detected.

Methods
MolTi-DREAM: communities from multiplex networks
We detected communities with an extended version of MolTi5, 
a modularity-based software. Although MolTi was specifically 
designed for multiplex networks, (i.e., networks composed of  
different layers of interactions), it deals with monoplex  
networks (i.e. single-layer network) by considering them as  
multiplex networks composed of a single layer. All the  
networks are here considered undirected. The new version 
of MolTi, MolTi-DREAM, and the scripts used for the DMI  
DREAM challenge are available at https://github.com/gilles- 
didier/MolTi-DREAM.

Modularity. Network modularity was initially designed to measure 
the quality of a partition into communities6, and subsequently 
used to find such communities. Since finding the partition 
optimizing the modularity is NP-complete, we applied the  
meta-heuristic Louvain algorithm7. This algorithm starts from 
the community structure that separates all vertices. Next, it tries 
to move each vertex from its community to another, picks the 
move that increases modularity the most, and iterates until no 
change increases the modularity any more. It then replaces the 
vertices by the detected communities and performs the same  
operations on the newly obtained graph, until the modularity  
cannot be increased any more. In order to handle multiplex  
networks, we use a multiplex-adapted modularity and an  
adaptation of the Louvain algorithm for optimizing this  
multiplex-modularity.

Edge and layer weights Modularity approaches can deal 
with weighted networks8, and we modified MolTi to handle 
weighted networks. We also added the possibility to weight each 
layer of the multiplex network: the contribution of each layer  
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in Equation (1) is multiplied by its weight when computing the  
multiplex modularity.

Multiplex modularity The modularity measure to detect  
communities in a multiplex network (X(g))

g
 can be written as
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where X(g) denotes the (monoplex) network of the layer g, w(g) is 
the user-defined weight associated to the network g, m(g) is the 
sum of the weights of all the edges of X(g), ( )

,
g

i jX  is the weight  
of the edge {i, j} in X(g), ( )g

iS  is the sum of the weights of all  
the edges involving vertex i in X(g), δci,cj

 is equal to 1 if i and j  
belong to a same community and to 0 otherwise, and γ is the 
resolution parameter modulating the size of the communities  
detected.

Randomization. We implemented a randomized version of the 
Louvain algorithm, similar to the one in GenLouvain9. Rather 
than updating the current partition by picking the move lead-
ing to the greatest increase of the modularity, we randomly pick 
a move among those leading to an increase of the modularity. 
Different runs of the randomized Louvain generally return  
different partitions, even if the results are often close.  
MolTi-DREAM runs the randomized Louvain algorithm a user- 
defined number of times, and returns the partition with the highest 
modularity.

Simulations of Multiplex Networks with a known community 
structure
We simulated random multiplex networks with a fixed known 
community structure and various topological properties by using 
Stochastic Block Models (SBMs) as in Didier et al., 20155. SBMs 
model networks with a given community structure under the 
key assumption that all edges are drawn independently condi-
tionally on the communities to which their nodes belong. In our  
simulations, we considered multiplex networks with 1,000  
vertices split into 20 balanced communities. Each individual 
network of these multiplex networks is then simulated by  
independently drawing edges with fixed intra and inter com-
munity edge probabilities: 0.1 and 0.01 for sparse networks 
and 0.5 and 0.2 for dense ones. Dense (resp. sparse) multiplex  
networks contain only dense (resp. sparse) networks, while mixed  
networks contain both sparse and dense networks. Multiplex  
networks with missing data are obtained by randomly remov-
ing half of the vertices (and the edges involving them) of the  
multiplex networks simulated from SBMs.

The relevance of a community structure is assessed by comput-
ing the adjusted Rand index10 between the detected communities  
and the ones used to simulate the multiplex networks.  

The Disease Module Identification challenge benchmark
Biological Networks. The DMI challenge provided six human 
biological networks: two protein-protein interactions, one  

literature-curated signaling, one co-expression, one network  
linking genes essential for the same cancer types, and one network 
connecting evolutionary-related genes. These six networks have 
various sizes and edge densities (Table 1). All networks have 
weighted edges, and all networks but the signaling network 
are undirected. However, we considered the signaling  
network as undirected.

Evaluations with GWAS data. The communities identified by the 
different challengers were evaluated according to the associations 
of their member genes with GWAS data, using the PASCAL tool 
described in Lamparter et al., 20164. The procedure leverages the  
SNP-based p-value statistics obtained from 180 GWAS datasets, 
covering common diseases and traits. The communities are  
associated with p-values, then corrected for multiple test-
ing, and an FDR threshold is used to determine the number of  
significant disease communities in a given partition3,4. We used 
three datasets: the “Leaderboard” (76 GWASs) and “Final” (104 
GWASs), which were used during the challenge, and their union  
in a “Total” dataset (180 GWASs).

Obtaining modules in a given size range. The DMI challenge 
set up two constraints on the submitted communities: no overlap  
and a size ranging from 3 to 100 nodes. We here post-filtered all 
partitions to keep only classes containing from 7 to 100 nodes.

Resolution parameter Modularity-based clustering approaches 
are often associated to a resolution parameter γ to tune the size 
of the obtained communities. We tested different values of this  
parameters (γ = 1, γ = 5, γ = 10, γ = 100), but the leaderboard 
tests showed clearly better results for the recursive approach. 
We chose to keep the default γ = 1 and focused on this recursive  
procedure.

Recursion procedure We re-clustered all the communities 
above a certain size (here 100 vertices) by extracting the corre-
sponding subgraphs from the networks and applying recursively 
the MolTi algorithm. We iterated the process until obtaining 
only communities with less than 100 vertices, if possible (some 
communities with more than 100 vertices cannot be split by  
considering modularity).

Table 1. Number of vertices, of (non-zero-
weighted) edges and density of the biological 
networks used in the DMI challenge.

Network Number 
of nodes

Number 
of edges Density

1-ppi 17,397 2,232,405 1.48 × 10−2

2-ppi 12,420 397,309 5.15 × 10−3

3-signal 5,254 21,826 1.34 × 10−3

4-coexpr 12,588 1,000,000 1.26 × 10−2

5-cancer 14,679 1,000,000 9.28 × 10−2

6-homology 10,405 4,223,606 7.80 × 10−2
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Results
Randomization improves community detection on 
simulated multiplex networks
To evaluate the accuracy of the community structures detected 
from the initial MolTi and its improved version that includes 
the randomization procedure, we simulated random multiplex  
networks with a fixed, known community structure, and various  
features (Methods). We observed that considering a greater 
number of layers always improves the inference of com-
munities, as already observed5 (Figure 1). In addition,  
communities are better detected from sparse multiplex  
networks than from dense ones. We also observed that the  
randomizations improve the accuracy of the detected  
communities, in particular for dense multiplex networks, with or 
without missing data. Increasing the number of randomizations 
improves the results up to four randomization runs.

Finding disease modules with MolTi
We applied the improved MolTi to the networks provided 
by the DMI challenge (Methods). We focused on the  
sub-challenge 2, which was dedicated to the identification of  
communities from multiple networks. We considered the six 
DMI biological networks as layers of a multiplex network, and  
applied the recursion procedure to obtain communities in the 
required size range. The significant disease communities were 
selected regarding their enrichments in GWAS-associated 
genes (Methods). We observed first that the number of detected  
disease communities is strongly dependent on the GWAS  
dataset and FDR threshold used (Figure 2). For the FDR  
threshold used during the challenge, i.e., FDR lower than 0.05, 
the number of significant disease modules detected slightly  
increases after randomization (Figure 2).

Multiplex versus monoplex. We next evaluated the added value 
of the multiplex approach as compared to the identification of  
modules from the individual networks. When analyzing the  
significant disease modules obtained for an FDR threshold of  
0.1, we observed that combining biological networks in a  
multiplex generally increases the number of significant modules  
(Figure 3). However, this does not stand for the cancer and/or 
homology networks, which lower the number of significant 
modules retrieved when added as layers of the multiplex. We  
hypothesize that the community structures of these networks 
(if they exist) are so unrelated that it is pointless to seek for a  
common structure by integrating them.

These observations are consistent with the DMI challenge obser-
vations, in which the top-scoring team in the sub-challenge  
2 handled only the two protein-protein interaction networks. 
Our algorithm also performs well with the two protein-protein  
interaction networks, but the highest number of disease modules 
is retrieved by considering network combinations that exclude  
the cancer and homology network layers (Figure 3).

Evaluation of the edge and layer weighting. All the six  
biological networks used in the DMI challenge have weighted 
edges. We compared the number of disease modules obtained 
by considering or not considering these weights in the MolTi  

partitioning, for different FDR thresholds (Table 2). We  
observed that intra-layer edge weights only has a slight effect on 
the number of significant disease modules identified, except for the 
very low significance threshold of 0.01, where it seems pertinent to 
use these weights.

MolTi-DREAM allows assigning weights to each layer of the  
multiplex network, for instance to emphasize the layers known 
to contain more relevant biological information. Given the 
results obtained on individual networks, we decided to test a 
combination of weights that would lower the importance of the  
5-cancer and 6-homology network layers. We observed that this 
led to detecting more disease modules (Figure 4). Conversely, less 
disease modules are detected when higher weights are given to  
these networks (Figure 4).

Discussion and conclusion
We applied here the MolTi software and various extensions to 
identify disease-associated communities following the DMI  
challenge benchmark. The new version of MolTi, MolTi-DREAM, 
runs a randomization procedure, takes into account edge and  
layer weights, and performs a recursive clustering of the classes 
that are larger than a given size. We finished tied for second in 
the challenge. However, even if we obtained higher scores than  
monoplex approaches, the difference was not significant and the 
organizers of the DREAM challenge declared the sub-challenge  
2 vacant.

In the simulations, all the networks are randomly generated from 
the same community structure. These networks can thereby 
be seen as different and partial views of the same underlying  
community structure. Combining their information in a suitable 
way is thereby expected to recover the original structure more 
accurately. In contrast, combining networks with unrelated  
community structures (or no structure at all) is rather likely to 
blur the signal carried by each network. The DMI biological  
networks are constructed from different biological sources 
that might correspond to unrelated community structures. This 
may explain the results of the sub-challenge 2, in which the  
top-performer used only the two protein-protein interaction  
networks. With MolTi, we tried to leverage information from the  
6 networks together. However, we do not obtain the highest  
number of disease modules from a multiplex containing all the  
six networks, but rather from a subset of these networks.

From a biological perspective, the protein-protein networks 
and the pathway networks are expected to contain mainly 
physical or signaling interactions between proteins. 
It has been shown that interacting proteins tend to be co-
expressed11, which could explain why the co-expression network 
also provides complementary information. In contrast, the  
cancer network is determined from processes operating at a 
very different level. Overall, these results show that the sources  
of biological information that are added as layers of a  
multiplex need to be evaluated thoroughly. 

Evaluating the relevance of the community structure detected 
from real-life datasets is a very complicated problem since the 
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Figure 1. Adjusted Rand indexes between the reference community structure used to generate the random multiplex networks, and 
the communities detected by standard and randomized MolTi with 1 to 5 randomization runs. Multiplex networks contain from 1 to 9 
graph layers. The indexes are averaged over 2,000 random multiplex networks of 1,000 vertices and 20 balanced communities. Each layer 
of sparse (resp. dense) multiplex networks is simulated with 0.1/0.01 (resp. 0.5/0.2) internal/external edge probabilities. Mixed multiplex 
networks are simulated by uniformly sampling each layer among these two pairs of edge probabilities. Multiplex networks with missing data 
(right column) are generated by removing vertices from each layer with probability 0.5.
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Figure  2.  Number  of  significant  disease  modules  identified  from  the  multiplex  network  for  different  GWAS  datasets  and  FDR 
thresholds. “Leaderboard” and “Final” datasets were used during the training and final evaluation of the challenge, respectively, whereas 
the “Total” dataset is the union of the two previous ones. The total number of considered communities is 605 in the absence of randomization,  
584 for 5 randomizations, 585 for 10 randomizations and 582 for 15 randomizations.

Figure 3. Number of significant disease modules identified for different combinations of multiplex network layers. Ten randomizations 
have been applied, and the FDR threshold is set to 0.1. The total number of considered communities for each multiplex network is displayed 
in parenthesis.
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Table 2. Number of significant 
disease modules detected. over 
615 and 585 considered modules 
in the unweighted and weighted 
contexts, respectively

FDR Unweighted Weighted

0.01 5 10

0.025 13 12

0.05 20 19

0.1 30 32

Figure  4.  Number  of  significant  disease  modules  identified  with  FDR  thresholds  0.05  and  0.1,  and from three different inter-layer 
weightings: No Weights, i.e., equal weights for all layers (585 modules in total), Confidence Weights, i.e., weights proportional to the 
expected biological relevance: 1-ppi=1, 2-ppi=1, 3-path=1, 4-coexpr=0.5, 5-cancer=0.1, 6-homology=0.1 (555 modules in total), and 
Inverse Confidence Weights, i.e., weights inversely proportional to the expected biological relevance: 1-ppi=0.1, 2-ppi=0.1, 3-path=0.1,  
4-coexpr=0.5, 5-cancer=1, 6-homology=1 (648 modules in total).

actual structure is hidden and generally unknown. In this context, 
the only possibility for assessing the detected communities is to  
consider indirect evidence provided by some independent biologi-
cal information. Different teams are thereby developing proxies 
to evaluate the communities, mainly based on testing the enrich-
ment of genes contained in each community in Pathways or 
Gene Ontology annotations. The approach followed by the DMI  
DREAM challenge is based on GWAS data. This GWAS-based 
evaluation is specific in the sense that it considers p-value-weighted 
annotations rather than usual binary ones, i.e., “annotated/not  
annotated”. This probably contributed to the volatility of the  
results observed with the DMI DREAM challenge framework.

Data availability
MolTi-DREAM and the scripts used for the DMI DREAM  
challenge: https://github.com/gilles-didier/MolTi-DREAM

Archived scripts and source code for MolTi-DREAM as at time  
of publication: http://doi.org/10.5281/zenodo.146895012

License for MolTi-DREAM: GNU 3

Author information
GD designed MolTi and its extensions, AB and AV applied  
MolTi during and after the challenge. All authors participated in 
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5 Landscape of premature aging
Diseases
From the point of view of evolutionary biology, human aging can be defined

as a gradual decline of natural physiological functions, leading to an increase in
the mortality rate and a decrease in the reproductive rate (Flatt 2012). Neverthe-
less, it is challenging to state a global suitable definition with which the scientific
community would agree. In contrast, there is no doubt about the fact that aging
affects all the human beings, causing a vast impact in our economic and health
systems. Indeed, aging is the major risk factor to develop some of the diseases
causing most deaths worldwide, such cardiovascular diseases and neurodegen-
erative disorders (Folgueras et al. 2018).
In this context, it is essential to improve our understanding about the molecular

mechanisms driving aging. Several studies have been made in this direction
in the last decades, mainly by analyzing the effects of different actions, such
as gene silencing or dietary restriction, on the life spans of model organisms
(Friedman et al. 1988; Clancy et al. 2001; Wilkinson et al. 2012; Anderson et
al. 2009). These works showed that the same altered processes (e.g. nutrient
sensing pathways) affected life span in very different organisms, suggesting that
they may also be associated with human aging. In addition, some rare diseases
present clinical symptoms resembling certain features of physiological aging at
an early age. We can hypothesize that the molecular mechanisms deregulated
in these human diseases are also involved in physiological aging (Carrero et al.
2016). The interest of studying these premature aging (PA) diseases is therefore
twofold: improve the clinical conditions of the patients, and their use as models
to investigate aging-associated molecular deregulations.
In this chapter, I first comment about the biological processes that have been

described as implicated in human aging so far. Then, I describe some of the PA
diseases, i.e. diseases that present some phenotype similar to the physiological
aging-phenotype. Finally, I include a draft of an article that we are currently writ-
ing. In this work, we aim at defining from a molecular point of view the functional
landscape of a group of PA disease

5.1 The hallmarks of aging
It is widely accepted that the accumulation of cellular damage through time

is the general cause of aging. However, aging is a very complex process, and
this damage accumulates as the result of many different processes occurring in
parallel (Gems et al. 2013). López-Otín et al. 2013 gathered and recapitulated
the main aging-related mechanisms and proposed nine cellular and molecular
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hallmarks of the aging process. Thesemechanisms, which are briefly describe in
the forthcoming lines, seem to be related and interplay among them, determining
together the aging phenotype. In section 5.3, we try to associate them with the
deregulated biological processes in PA diseases. It is to note that the information
presented below summarizes what is exposed in the original article (López-Otín
et al. 2013). The nine hallmarks were further grouped into three categories (see
Figure 5.1): (i) primary hallmarks; (ii) antagonistic hallmarks; and (iii) integrative
hallmarks.

Figure 5.1 – The hallmarks of aging can be grouped into three categories: i) The
primary hallmarks are the main responsible for the cellular damage caused dur-
ing aging; ii) The antagonistic hallmarks are processes whose primary function
is to compensate the damage. However, they can cause harmful effects if their
activity increases above some levels or becomes chronic ; iii) the integrative
hallmarks are responsible of the physiological aging-phenotype as the results of
the effects of the previous hallmarks. Figure adapted from (López-Otín et al.
2013)

The primary hallmarks have invariably a negative effect on cellular damage:
1. Genomic instability: genetic damage increases throughout life (Moskalev

et al. 2013). Various exogenous and endogenous agents can compromise
DNA integrity, potentially resulting in different types of genetic abnormali-
ties such as point mutations, translocations or telomere shortening, among
others. The organisms possess a large variety of DNA repair mechanisms
intended to diminish these damages.

2. Telomere attrition: shortening of telomeres is observed during physiolog-
ical aging in humans (Blasco 2007). Telomerase is the enzyme respon-
sible for the replication of the telomeric DNA. Nevertheless, telomerase
is not express in most mammalian somatic cells leading to an intensified
accumulation of DNA damage in the telomeres.
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3. Epigenetic alterations: several epigenetic alterations, including histone
modifications, DNA methylation and chromatin remodeling, come together
with physiological aging. However, the relationship between these epige-
netic alterations and aging is not clear to date. For instance, some works
reported a global age-associated hypomethylation, whereas other studies
revealed hypermethylation of some loci with age (Maegawa et al. 2010).
There are multiple enzymatic systems ensuring the maintenance of epige-
netic patterns

4. Loss of proteostasis: cells have several mechanisms controlling the bio-
genesis, correct folding, trafficking and degradation of proteins. These sys-
tems are coordinated in such a way that new functional proteins are pro-
duced to replace degraded ones. The activity of these processes declines
with aging. For instance, it is well documented the accumulation of mis-
folded proteins with age as a consequence of a decreased activity in the
proteasome and lysosome (Rubinsztein et al. 2011; Tomaru et al. 2012).

The antagonistic hallmarks of aging are involved in processes that try to main-
tain the correct cellular functioning by alleviating the damage caused by other
mechanisms. Therefore, they have a positive impact in the organisms in nor-
mal conditions. Nevertheless, if their activity increases above some levels or
becomes chronic, they can cause a harmful effect. These are the antagonistic
hallmarks:

1. Deregulated nutrient-sensing: dietary restriction have shown to increase
lifespan, or to result in healthier conditions in primates at advanced age
(Mattison et al. 2012). In this context, the main actor is the insulin and
IGF-1 signaling pathway. Its antagonistic role in aging can be explained
as follows: decreased activity on this pathway results in lower rates of cell
growth and metabolism, leading to lower rates of cellular damage. How-
ever, very low levels of of signaling in the insulin and IGF-1 pathway are
lethal (Renner et al. 2009).

2. Mitochondrial dysfunction: ATP generation decreases with age due to
a reduction in the efficacy of the respiratory chain. Historically, mitochon-
drial dysfunction has been associated to the increased production of re-
active oxygen species (ROS) (Sanz et al. 2008). On the contrary, more
recent studies have reported that an increased amount of ROS can extend
lifespan (Ristow et al. 2011). To combine these visions, it has been pro-
posed that ROS promotes proliferation and survival in response to stress
conditions. Cellular damage and stress increase with age resulting in an
larger production of ROS to compensate the increased damage. ROS lev-
els above a particular threshold may become deleterious.

3. Cellular senescence: the arrest of the cell cycle is triggered by cellular
damage like telemore attrition or other DNA lesions. Therefore, the pur-
pose of senescence is positive: avoid propagation of damaged cells. In
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addition, it activates the immune response to remove those cells. On the
other hand, senescent cells should be replaced by functional ones, but the
number of arrested cells increases with age along with the accumulation
of DNA damage. At some point, the regeneration systems may become
inefficient, turning cellular senescence into a negative mediator of aging
(Collado et al. 2007).

We finally enumerate the integrative hallmarks of aging, which are the results
of the seven previously described processes. They directly affect tissue home-
ostasis, causing thereby the physiological aging-phenotype:

1. Stem cell exhaustion: stem cells regenerate cells damaged by the pre-
viously described processes. As the global damage increases with age,
stem cells become exhausted and lose their regenerative ability, leading
to some of the age-related symptoms. For example, the production of im-
mune cells decrease with age as a consequence of hematopoiesis exhaus-
tion. Lower number of immunce cells translate into a higher incidence of
some diseases such as anemia (Shaw et al. 2010).

2. Altered intercellular communication: Molecular damage not only affects
the interior of the cell. Deregulations in the composition and organiza-
tion of the extracellular matrix may increase with age, hindering neurohor-
monal signaling such as renin-angiotensin system and insulin-IGF1 signal-
ing (H. E. Yoon et al. 2014; Anisimov 2003).

In the next chapter, I describe diseases displaying premature aging pheno-
types at an early age. Some altered processes in these diseases are shared
with those of physiological aging. A better understanding of these diseases can
shed light about the interplay of the mechanisms described above.

5.2 Premature aging diseases
Hutchinson–Gilford Progeria Syndrome (HGPS; MIM code: 176670) was first

described in 1886 by Jonathan Hutchinson (Hutchinson 1886). In 1897, it was
also described in an independent study by Hastings Gilford (Rischbieth 1913).
HGPS is an extremely rare autosomal dominant genetic disorder clinically char-
acterized by postnatal growth retardation, midface hypoplasia, micrognathia, pre-
mature atherosclerosis, absence of subcutaneous fat, alopecia, and generalized
osteodysplasia with osteolysis and pathologic fractures. HGPS patients typi-
cally die in their mid-teens, usually due to coronary artery disease (De Sandre-
Giovannoli et al. 2003). HGPS phenotypically recapitulates some of the aspects
of physiological aging at an early age. Indeed, the word progeria comes from
Greek words roughly meaning "premature old age". After the first clinical char-
acterization of HGPS, other syndromes displaying aging-related phenotypes at
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a premature age were also described. These group of diseases were conse-
quently named progeroid syndromes or premature aging (PA) diseases.
Progeroid syndromes share some clinical features, in particular the aforemen-

tioned PA appearance. Nevertheless, the molecular mechanisms underlying
those common features can differ depending on the mutated gene(s) and the bi-
ological processes that are hence altered. In this context, progeroid syndromes
are usually classified in two main categories (Navarro, Cau, et al. 2006; Carrero
et al. 2016):

1. Syndromes caused by mutations in components of the nuclear en-
velope and the nuclear matrix. The nuclear lamina is a dense fibrillar
barrier that separates the nucleus from the cytoplasm in eukaryotic cells.
Besides providing mechanical support, the nuclear lamina regulates ma-
jor cellular processes like DNA replication, cell division and chromatin or-
ganization. It is composed of lamins, which are encoded by LMNA and
LMNB1 genes, and nuclear lamin-associated membrane proteins. A spe-
cific mutation in LMNA causes HPGS, whereas several different mutations
on it cause atypical progeria syndromes whose clinical features are sim-
ilar to those of HGPS (Barthélémy et al. 2015). Restrictive dermopathy
(MIM code: 275210) is a perinatal lethal PA disease caused by mutations
in the ZMPSTE24 gene, which is involved in a post-translational modifi-
cation of the protein encoded by LMNA gene (Navarro, Cadiñanos, et al.
2005). A mutation in the BANF gene, whose encoded protein binds to
the nuclear lamina, causes the Néstor-Guillermo progeria syndrome (MIM
code: 614008). This disease shares many features with HGPS, excepting
cardiovascular defects (Cabanillas et al. 2011).

2. Syndromes caused by mutations in genes encoding DNA repair pro-
teins. As described in the hallmarks of aging section, several external and
internal factors can affect DNA integrity. To counter this deterioration, the or-
ganisms have several DNA repair mechanisms. Then, mutations in genes
involved in DNA repair may result in diseases displaying increased levels
of DNA damage at an early age. These disease can therefore present clin-
ical symptoms resembling the ones happening during physiological aging.
We can further classify these syndromes according to the different DNA
repair processes compromised by their associated mutations. Werner syn-
drome (MIM code: 277700), Bloom syndrome (MIM code: 210900) and
Rothmund-Thomson syndrome (MIM code: 268400) are caused by muta-
tions in different RecQ helicases (WRN, BLM and RECQL4, respectively)
that participate in the repair of double-strand breaks during DNA replication.
In addition to a PA appearance, these syndromes also show an increased
susceptibility to cancer (Carrero et al. 2016). Another group of progeroid
syndromes is related to mutations in genes encoding proteins implicated
in the nucleotide excision repair pathway. Cockayne syndrome (mutations
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in ERCC6 or ERCC8), xeroderma pigmentosum (mutations in XPA, XPB,
XPC,XPG,ERCC4, ERCC6,DDB2 orPOLH) and trichothiodystrophy (mu-
tations in XPB, XPD or TFB5) are the most representative diseases of this
group and are characterized by developmental defects and neurodegener-
ation (Navarro, Cau, et al. 2006).

The diseases presented above are considered as the canonical PA syndromes.
Nevertheless, there are more diseases for which PA features have been de-
scribed. Some of them are related to mutations in proteins implicated in well-
known aging-related processes. This is the case of dyskeratosis congenita and
Hoyeraal-Hreidarsson syndrome, linked tomutations in components of the telom-
erase complex and, therefore leading to an exacerbated telomere shortening
(Carrero et al. 2016). In other diseases hand, the molecular mechanisms sug-
gesting a link with physiological aging are not clear. For instance, Keppen-
Lubinsky syndrome is a very rare disorder characterized, among others, by an
aged appearance (Masotti et al. 2015). Its causative gene, KCNJ6, encodes a
potassium channel located in the plasmamembrane. Finally, the causative gene
of some PA diseases, such as the Storm syndrome, remain unknown.

5.3 Mining multiplex-heterogeneous networks to
study premature aging diseases

The study of PA disorders is important to improve the clinical conditions of pa-
tients. Moreover, the knowledge of the processes deregulated in these diseases
can potentially be transferred to gain a better understanding of physiological ag-
ing at molecular level. With this in mind, we are currently working in the article
presented below.

Valdeolivas, A., authors to be defined & Baudot, A. (2018). A
Multiplex Seed-expanding Approach to Describe the Landscape of
Premature Aging Diseases.

The supplementary material of this article containing additional tables and fig-
ures is available on Appendix C.
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A seed-expanding method to define the landscape

of Premature Aging Diseases from a

multiplex-heterogeneous network

Alberto Valdeolivas, authors to be defined, and Anäıs Baudot

January 2019

Abstract

Motivation: premature aging syndromes are a group of rare genetic disorders
that phenotypically recapitulate some of the aspects of physiological aging at
an early age. They are however clinically and genetically heterogeneous. Pre-
mature aging diseases are the subject of a significant number of studies aiming
at identifying their altered processes and transferring this knowledge to physi-
ological aging.
Results: In this work, we present a seed-expanding method that generates
modules starting from a given node(s). It is based on a extended version of our
previous work, which described a Random Walk with Restart on multiplex and
multiplex-heterogeneous networks. To our knowledge, this is the first module
generation seed-expanding algorithm in multiplex-heterogeneous networks. We
applied the new method to extract the communities associated to 77 disorders
annotated with at least one PA phenotype. A first global analysis of the module
nodes unveils the genes, processes, and diseases most frequently associated with
PA diseases. These include components of the extracellular matrix, but also
signaling receptors and transcription factors, for instance. We then hypoth-
esized that the shared PA phenotype observed in all these diseases could be
explained by the disruption of common underlying molecular mechanisms. We
measured the node overlaps between all the disease communities, and detected
clusters of PA diseases. The clusters are annotated for different biological pro-
cesses, such as DNA repair, extracellular matrix organization, melanogenesis,
or mTOR signaling pathways. Overall, they reveal the landscape of perturbed
molecular processes in PA diseases, which can be paralleled with the hallmark
of physiological aging to help identifying common and specific features.
Availability: https://github.com/alberto-valdeolivas/xxxxxxxxx
Contact: alvaldeolivas@gmail.com, anais.baudot@univ-amu.fr
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1 Introduction

Should biological aging be labeled as a disease? At the present time this topic is
subject of a vivid debate (Bulterijs et al., 2015; Gavrilov, L. A. and Gavrilova,
2017). The objective fact is that aging affects all the human beings worldwide,
causing a vast impact in our economic and health systems. Noticeably, aging is
the major risk factor for the development of cancer, neurodegenerative disorders
and cardiovascular diseases (Folgueras et al., 2018). However, the molecular
mechanisms underlying aging are poorly described. López-Ot́ın et al. (2013)
gathered and recapitulated some of the main known processes and proposed
nine cellular and molecular hallmarks considered to be responsible of the aging
process and leading to the aging phenotype. In addition, aging-related genes are
carefully stored and curated in the GenAge database. These genes have been
identified thanks to studies in model organisms such as Caenorhabditis elegans,
but also from human disorders caused by mutations leading to aging-related
phenotypes (Tacutu et al., 2018).

Premature aging (PA) syndromes, also called Progeroid syndromes, are a
group of rare genetic disorders that phenotypically recapitulate some of the
aspects of physiological aging at an early age. These syndromes are clinically and
genetically heterogeneous (Puzianowska-Kuznicka and Kuznicki, 2005; Navarro
et al., 2006). They are usually monogenic, i.e., caused by mutation in singles
genes, but can affect few or many tissues, different locus can lead to similar
diseases, and, contrarily, the phenotypes and severity can vary considerably
across individuals carrying the same mutations. Overall, to our knowledge, a
precise description of the molecular mechanisms underlying PA diseases, as well
as a comprehensive classification of these diseases do not exist.

In addition, it has been proposed that PA disorders could be used as models
to better understand aging-associated molecular deregulations (Carrero et al.,
2016). For instance, Hutchinson-Gilford Progeria Syndrome (HGPS) and Werner
Syndrome (WS) (ORPHANET codes: 740 and 902) mimic many of the features
of human aging (Dreesen and Stewart, 2011). Consequently, a significant num-
ber of cellular and animal models have been developed based on the mutations
of their causative genes: LMNA and WRN, respectively. These studies allowed
identifying some of the altered molecular mechanism in these disorders, such
as telomere attrition, defects in DNA repair, or epigenetic alterations (Chang
et al., 2004; McCord et al., 2013).

Genes and proteins do not act isolated in cells but rather interact with each
other to perform their functions in molecular complexes, pathways, and other
biological processes. Mutations in genes and proteins will thereby affect their
interaction patterns, and consequently the biological processes in which they are
involved (Zhong et al., 2009). Diseases hence arise from network perturbations,
and studying the complex biological networks in which genes and proteins par-
ticipate is a first step towards better understanding the genotype to phenotype
relationships in diseases (Schadt, 2009).

Biological interaction data are accumulating since the development of exper-
imental techniques allowing their identification on a large-scale. These interac-
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tions are usually represented as large networks in which the nodes correspond
to the genes or proteins, and the edges represent their physical or functional in-
teractions. Biological networks are usually organized in communities, i.e. struc-
tured around groups of nodes more densely connected with each other than
with the rest of the network. These groups of tightly connected nodes, usually
called modules, contain genes/proteins likely to be involved in the same cellular
functions or processes in cells (Hartwell et al., 1999). The accurate extraction
of these modules is promising in biomedicine because studying the modules
in which the mutated genes/proteins are involved can reveals the cellular and
molecular mechanisms underlying diseases (Furlong, 2013). We hypothesized
here that a systematic identification of the modules in which PA-associated
genes participate would reveal i) the biological processes perturbed in these
diseases, but also ii) define a comprehensive landscape of biological processes
perturbed in PA disorders. A plethora of clustering methods have been pro-
posed to extract modules from networks in general, and biological networks in
particular. These approaches are based on various assumptions and algorithms,
such as modularity optimization or kernel approaches, for instance (Choobdar
et al., 2018). Random Walk based methods, such as Walktrap (Pons and Lat-
apy, 2006) and Infomap (Rosvall et al., 2009), are among the most popular
approaches.

It is to note that the majority of module-identification algorithms take as
input single isolated networks (aka monoplex networks). However, genes and
proteins interact with each other in intricate configurations depicting different
types of relationships among them. The most commonly studied interactions
between proteins are their direct physical interactions, called protein-protein
interactions. Nevertheless, proteins can also be members of molecular complexes
without a direct physical contact, or participate in the same pathways. In
addition, some functional relationships can be inferred from -omics data, such
as co-expression associations from transcriptomics data. This kind of systems
can be better represented by a multiplex networks, i.e. collection of network
layers sharing the same nodes, but in which edges belong to different categories
(Battiston et al., 2014; Kivelä et al., 2014). Multiplex networks have been shown
to provide a more accurate description of complex systems in several fields, such
as social network analysis (Battiston et al., 2016), ecology (Stella et al., 2017),
computational neuroscience (De Domenico et al., 2016), or biological networks
(Didier et al., 2015, 2018). We previously demonstrated the added value of
random walks on multiplex and multiplex-heterogeneous networks to identify
disease-related genes (Valdeolivas et al., 2018). A heterogeneous network is
composed of networks having both different nodes and edges, linked through
bipartite interactions. We are using a multiplex network composed of four layers
of physical and functional relationships between genes and proteins (protein-
protein, pathways, molecular complexes, and co-expression interactions), linked
to a disease-disease network thanks to bipartite gene-disease associations.

We developed here a seed-expanding approach to generate modules from
multiplex and multiplex-heterogeneous biological networks. To this goal, we
extended our random walk with restart algorithms, which is able to explore
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multiplex and multiplex-heterogeneous networks around seed node(s) of inter-
est (Valdeolivas et al., 2018). The algorithms are now able to defined modules
associated to these seed node(s). We applied the approach to extract modules
for more than 70 diseases associated to a PA phenotype. A first global anal-
ysis of the modules reveals biological processes, genes and diseases frequently
associated with PA diseases. Further classification of all PA diseases revealed a
map of the biological processes perturbed in PA. We functionally characterized
each cluster and alluded to their link with the hallmarks of physiological aging
and age-related diseases. We finally focused on the description of the modules
associated to two particular PA diseases, Werner syndrome (WS) and Keppen-
Lubinsky syndrome (KLS). We pointed out specific molecular processes likely
perturbed in these diseases, as well as some interactions that may account for
their shared PA phenotypic feature.

2 Materials and methods

The source code is available on GitHub at:
https://github.com/alberto-valdeolivas/xxxxxxxxx

2.1 Disease and gene datasets

We carefully inspected the Human Phenotype Ontology (HPO) (Köhler et al.,
2017) to select phenotype terms associated with premature aging. We selected
the HPO term: ”HP:0007495: prematurely aged appearance” along with all
its descendant’s in the HPO ontology graph (Figure 1A and Supplementary
Table S-1). We then fetched the 77 diseases from ORPHANET (Rath et al.,
2012) associated to at least one of these HPO terms. We also extracted from
ORPHANET their 94 causative genes (Figure 1B and Supplementary Table
S-2).

2.2 Interaction Network datasets

Networks sizes and densities are detailed in the Supplementary Table S-3. Net-
work figures were generated using Cytoscape (Shannon et al., 2003).

2.2.1 Gene/Protein networks

We constructed a 4-layers multiplex network composed of a protein-protein in-
teraction (PPI) network, a network connecting proteins according to pathway
interaction data extracted from pathway databases, a network in which the
links correspond to co-expressed genes constructed from transcriptomics data,
and a network of molecular complexes. In a nutshell, the PPI network was
built by merging interactions from PSICQUIC (Del-Toro et al., 2013) and the
CCSB Interactome database (et al. Rolland T. Tasan M., 2014). The network
of pathways was generated using the R package graphite (Sales et al., 2012).
The co-expression network was derived from RNA-Seq data publicly available
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on the Human Protein Atlas (Uhlen et al., 2015). We computed Spearman cor-
relations of TPM expression data from 37 tissues and 64 cell lines, and selected
the absolute values above 0.7 to be included in the network. The network of
complexes was constructed using a matrix model on data retrieved from the
CORUM database (Giurgiu et al., 2018) and the Human Protein Complex Map
(Drew et al., 2017). These networks were generated on December 18, 2017.

2.2.2 Disease-disease similarity network

We constructed a disease-disease similarity network following our previous pro-
cedure (Valdeolivas et al., 2018). Breifly, all ORPHANET (Rath et al., 2012)
diseases and their associated phenotypes are fetched from HPO (Köhler et al.,
2017). A similarity score is then computed for every pair of diseases based
on the relevance of their shared phenotypes. The relevance of each particular
phenotype is given by its frequency of appearance in the HPO database, as
proposed by Westbury et al. (2015). Then, a network is constructed by linking
every disease to its 5 most similar diseases.

2.2.3 Gene-disease bipartite associations

The multiplex network and the disease-disease similarity network are integrated
into a multiplex-heterogeneous networks. We connected the nodes in each layer
of the multiplex network with the disease–disease similarity network thanks to
bipartite gene–diseases associations extracted from ORPHANET (Rath et al.,
2012). We obtained 3 216 associations between genes/proteins and diseases.

2.3 Seed-expanding algorithm for module identification

Based on the global clustering approach proposed by Macropol et al. (2009)
on monoplex networks, we developed an algorithm to generate modules from
multiplex and multiplex-heterogeneous networks. We used a modified versions
of our previously developed algorithms, random walk with restart on multiplex
(RWR-M) and random walk with restart on multiplex-heterogeneous networks
(RWR-MH) (Valdeolivas et al., 2018). RWR-M and RWR-MH start from a
initial set of seed node(s) (gene and/or disease node(s)) and compute a score
describing the proximity of all the network nodes wrt to the seed(s). In order
to generate modules, we applied RWR-M recursively: in each iteration, the top
scored node is added to the set of seeds until the modules reached a previously
defined size k. The pseudo-code for the repRWR-M is described on Figure 1C.
In the RWR-MH version, the top scored disease at each step is also added to the
set of seeds, in addition to the top-scoring gene node. We called these algorithms
repeated RWR-M (repRWR-M) and repeated RWR-MH (repRWR-MH). RWR-
M and RWR-MH were executed with their default parameters as described in
Valdeolivas et al. (2018). For sake of comparison, we also applied the repRWR
on the individual monoplex networks.
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2.4 Clustering coefficient

The clustering coefficient measures the probability that the neighbours of a
node are also connected among them, but its definition is not straightforward
for multiplex or heterogeneous networks (Kivelä et al., 2014). To measure the
clustering coefficient of our multiplex and multiplex-heterogeneous networks, we
merged all the individual interaction sources to create an aggregated monoplex
network.

2.5 Disease module networks

We computed the overlap between the gene nodes for every pair of disease
modules. We constructed a matrix where rows and columns represent each PA
disease, and filled it with this number of common genes for every pair of dis-
eases modules. The matrix was used to induced a weighted graph on which we
applied different algorithms to identify clusters of disease modules (Figure 1E).
The clustering algorithms used are: Fast Greedy (Clauset et al., 2004), Infomap
(Rosvall et al., 2009), Label Propagation (Raghavan et al., 2007), leading eigen-
vector (Newman, 2006), Louvain (Blondel et al., 2008) and Walktrap (Pons and
Latapy, 2006). The adjusted Rand index (Rand, 1971; Santos and Embrechts,
2009), which ranges between 0 and 1, was used to compare the similarity among
the different community partitions. The closer two community partitions, the
greater their adjusted Rand index.

2.6 Enrichment Analyses

Functional enrichment tests were carried out using g:Profiler (Reimand et al.,
2011). We selected the strong hierarchical filtering, and a p-value threshold of
0.01, after FDR multiple testing correction (Benjamini and Hochberg, 1995).
To perform the enrichment tests, g:Profiler (Reimand et al., 2011) can access
several annotation databases, and we focused here on the results retrieved from
Gene Ontology (GO) (Gerald M. Rubin, 2000), Reactome (Fabregat et al., 2016)
and KEGG (Kanehisa et al., 2008).

Fisher’s exact tests was applied to assess over-representation in aging-related
genes in modules (Fisher, 1922). To do so, we downloaded a total of 307 aging-
related genes from the GenAge database (Build 19) (Tacutu et al., 2018). We
also created a subset of 108 aging-related genes by excluding those without
direct evidence of association with aging, i.e. associated to the following criteria:
”upstream”, ”downstream”, ”functional” and ”putative” (Tacutu et al., 2018).
To avoid over-fitting, we removed the aging-genes that are also modules seeds
when performing the enrichment tests.

3 Results

The goal of this work is two-fold: better understand the molecular mechanism
underlying PA diseases, and transfer this knowledge to physiological aging. We
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Figure 1: Workflow overview (A) Premature aging phenotypes terms selected
from HPO (Köhler et al., 2017). (B) Set of PA diseases selected from ORPHANET
(Rath et al., 2012), and associated causative genes. (C) These diseases and genes
are the input seeds of the repRWR-M and repRWR-MH algorithms. The pseudo-
code of the repRWR-M algorithm is detailed. (D) Modules of size k = 10 obtained
with repRWR-M are represented for Acrogeria (ORPHA:2500; COL3A1 ), Ehlers-
Danlos syndrome type 7B (ORPHA:99876; COL1A2 ) and Lenz-Majewski hyperostotic
dwarfism (ORPHA:2658; PTDSS1 ). (E) The number of overlapping genes between
every pair of disease modules is used to build a matrix on which we apply a clustering
algorithm to obtain a partition of the disease modules.
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first identified PA disease modules thanks to new seed-expansion algorithms
extracting communities from multiplex and multiplex-heterogeneous networks.
Then, we analyzed the identified modules from a global point of view aiming at
identifying processes, genes and diseases frequently associated to PA diseases.
Then, we took advantage of the global set of modules to define the landscape of
PA diseases and better classify them in functional clusters. We also compared
these functional process to the hallmarks of physiological aging. Finally, we
detailed the modules associated to WS and KLS.

3.1 Identification of Premature Aging Disease Modules
with seed-expansion algorithms

We identified in ORPHANET 77 diseases associated to at least one premature
aging phenotype according to the Human Phenotype Ontology (Material and
Methods, Supplementary Table S-2). It is to note that some of the selected
diseases, such as HGPS, are unambiguously classified as progeroid syndromes
in the literature, while others are more debatable. For instance, the premature
aging phenotype present in Griscelli syndrome patients is premature graying
of hair. Therefore, our PA disease dataset encompass a wide diversity of dis-
eases. These diseases are linked to a total of 94 causative genes (Supplementary
Table), ranging from 0 to 11 associated genes per disease. For instance, Böök
syndrome (ORPHANET code: 1262) has no associated causative gene, whereas
Dyskeratosis congenita (ORPHANET code: 1775) is associated to 11 causative
genes.

We constructed modules starting from the causative gene(s) of the PA dis-
eases as seed node(s) for the repRWR-M algorithm, and starting from both the
causative gene(s) and the PA disease as seed node(s) for the repRWR-MH al-
gorithm (Material and Methods). The repRWR-M and repRWR-MH methods
are able to generate modules of different sizes k. In order to identify the most
suitable size for the PA disease modules, we assessed different topological and
functional features of modules containing (k = 10, 15, 20, 25, 30, 50, 100) gene
nodes.

3.1.1 Module clustering coefficient

The clustering coefficient measures the probability that the neighbours of a
node are also connected among them, and therefore the cohesiveness of local
groups (A. Barrat, M. Barthelemy, R. Pastor-Satorras, 2004). We computed the
clustering coefficients of the modules obtained applying repRWR-M (Materials
and Methods), and observed that the clustering coefficient is larger in average
for the modules containing 25 and 30 genes (Figure S-1).

We then computed the clustering coefficient of the modules generated with
the repRWR-MH algorithm on multiplex-heterogeneous networks. The cluster-
ing coefficients of these disease modules are remarkably lower than the ones
obtained with the repRWR-M approach on the multiplex network. In addition,
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the clustering coefficient of these modules decreases with their size (supplemen-
tary Figure S-2). These findings are expected since the multiplex-heterogeneous
network contains the bipartite associations connecting genes/proteins with dis-
eases, and these bipartite interactions are very sparse.

3.1.2 Module enrichments in aging genes

We next tested the over-representation of human aging-related genes (taken
from GenAge database, Tacutu et al. (2018)) in the PA disease modules. The
goal here was to evaluate the most relevant module size, but also to com-
pare the modules obtained from monoplex networks, multiplex networks and
multiplex-heterogeneous networks. The number of aging-related genes is sig-
nificantly larger than expected by chance for the PA disease modules derived
from all the networks but the co-expression network, with p-values ranging from
(10−8, 10−39) (Figure S-3 and methods). Strikingly, we also observed that the
PA disease modules built from the PPI monoplex network contains the most
significant number of aging-related genes (Figure S-3). This could be due to
genes added in the GenAge database because of interactions with aging-related
genes rather than direct evidence of involvement in aging ((Tacutu et al., 2018)
and Material and Methods).

We then repeated the over-representation tests only considering the genes
with a direct evidence connecting them to aging (Figure S-4). All the p-values
are again significant (¡0.05), except for PA disease modules obtained from the co-
expression network. The modules discovered by the repRWR-MH are the most
enriched in aging genes. The enrichments of the modules detected using the PPI
network decrease noticeably, but are still comparable to the ones obtained using
repRWR-M. We hypothesize that the co-expression layer might be hindering the
performance of the repRWR-M and repRWR-MH. Concerning the module size,
the most significant over-representation in aging-related genes, when applying
repRWR-M and repRWR-MH, is obtained for modules containing 50 and 25
genes, respectively.

3.1.3 Module enrichments in biological annotations

Next, we explored the biological information contained in the disease modules
by testing their enrichments in Gene Ontology (GO) Biological Process (BP)
terms Gerald M. Rubin (2000) (Material and Methods). For every PA disease
module, we retrieved the number of significant GO terms (FDR¡0.01, Material
and Methods), and computed the average number of enriched GO terms in
the ensemble of modules of a given size. The best performance is observed
for the repRWR-MH (Figure 2). The performances of the repRWR on the
multiplex network are comparable to those observed on the monoplex PPI and
pathways networks (Figure 2). This could be due to the fact that some GO-
BP annotations are inferred from physical interactions, and that here also, the
co-expression layer could hamper the efficiency of the repRWR-M and repRWR-
MH. The results are similar for the Gene Ontology annotations on molecular
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function (MF) and cellular component (CC) (Figures S-5 and S-6). Once again,
a good balance between the biological relevance of the modules and their size is
reached for k = 25, 30 and 50.
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Figure 2: Mean number of significant Gene Ontology Biological Process annotations
retrieved in the ensemble of PA disease modules of different sizes when the repRWR
algorithms are applied on the different networks under study.

Following the results obtained with the study of the clustering coefficient
and the module enrichments in aging and GO annotations, we decided to select
a module size of k = 30 for the forthcoming analyses. In addition, in spite of the
low ability of the co-expression network to capture annotated biological infor-
mation, we decided to keep it as a layer of the multiplex network because it can
provide complementary information for other poorly-annotated genes/proteins.
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3.2 Global analysis of PA disease modules

For each one of the 77 PA diseases retrieved from ORPHANET, we constructed a
module composed of 30 genes, i.e., modules of size k = 30, by applying repRWR-
MH, a seed-expanding algorithm operating on multiplex-heterogeneous net-
works (Material and Methods). Gathering together all the nodes contained
in the obtained 77 PA disease modules, we identified 704 different genes and
727 different diseases after removing the seeds. We first explored the common
features of these modules by identifying the most frequent biological processes,
genes and diseases.

3.2.1 Most frequent genes

Considering the 77 PA disease modules of size 30 and after removing the seeds
used to create the PA disease modules, we identified a total number of 704
different genes. About 45% of them, i.e., 317 genes, are implicated in more
than one module (see (Table 1 for the top-8 most frequent).

Gene name
Number of PA disease
module memberships

FBN1 23
COL1A1 19
COL5A2 17
MLPH 14
PAX6 14

COL2A1 12
POLH 12

TGFBR2 12

Table 1: Top most frequent genes according to their memberships in PA dis-
ease modules. The modules were built using repRWR-MH on the multiplex-
heterogeneous network

Noteworthy, none of top-8 genes shown on Table 1 are present in the GenAge
database (Tacutu et al., 2018). The most frequent genes described in GenAge
are TP53, BDNF, CDKN2A and RET appearing in from 7 to 10 different PA
disease modules. The top-8 most frequent genes have not been described as
directly associated to human aging. It has been shown that FBN1 genetic defi-
ciency accelerates some aspects of vascular aging in mice. Three collagen genes
are included in the top-8 most frequent genes associated to PA disease modules.
Mice with a mutation in the COL1A1 gene display a shortened lifespan, when
compared with wild-type littermates, and develop some features of premature
aging, such as weight loss, decreased bone mineral density, and hypertension
(Vafaie et al., 2014).

Another study demonstrated, again in mice, that the deregulation in the
expression of the PAX6 transcription factor is directly associated with aging-
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related neuronal dystrophy (Tripathi and Mishra, 2012). Other frequent genes
include MLPH involved in melanosome transport, the DNA polymerase POLH
and the TGF-beta receptor TGFBR2.

3.2.2 Most frequent diseases

A total of 727 diseases are gathered in the 77 PA disease modules of size 30,
among which 294 participate in more than one module. The most frequent dis-
ease is Familial melanoma (ORPHANET code: 618), associated to many differ-
ent susceptibility factors, including for instance the TERT telomerase reverse
transcriptase gene (Table 2). Other most frequent diseases are often associ-
ated to the most frequent genes described in the previous section. This is the
case for the Ehlers-Danlos syndromes (ORPHANET code: 287, 90309, 90318)
caused by mutations in collagen. It is to note that many Ehlers-Danlos syn-
dromes are described in ORPHANET. Some of them being associated to PA
phenotypes according to the HPO, and as such included in the initial list of
PA diseases. This is also the case of the Familial thoracic aortic aneurysm and
aortic dissection (ORPHANET code: 91387) and Neonatal Marfan syndrome
(ORPHANET code: 284979), which are caused by mutations in FBN1. Finally,
Griscelli disease type 3 (ORPHANET code: 79478), a cutaneous disease caused
by mutations in MLPH or MYO5A.

Disease
Number of PA disease
module memberships

Familial melanoma 18
Ehlers-Danlos syndrome, classic type 17

Ehlers-Danlos syndrome type 1 17
Ehlers-Danlos syndrome type 2 17

Familial thoracic aortic aneurysm and
aortic dissection

17

Localized lipodystrophy 16
Neonatal Marfan syndrome 15

Griscelli disease type 3 14

Table 2: Diseases belonging to a larger number of PA disease modules. The
modules were built using RepRWR-MH on the multiplex-heterogeneous network

3.2.3 Most frequent biological processes

We tested for each one of the 77 PA disease modules the enrichments in bio-
logical processes (Material and Methods), and checked the most frequent pro-
cesses among all the modules. Focusing on pathways identified from the KEGG
database (Kanehisa et al., 2008), we observed that almost half of the 53 KEGG
pathways significant in more than 10 modules are related to cancer (Data not
Shown). The increase risk of cancer in many premature aging diseases is well
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documented (Carrero et al., 2016). For instance, Xeroderma pigmentosum (OR-
PHA code: 910) patients develop aggressive skin cancers, because of failures in
DNA repair (Cleaver, 2005). And physiological aging is also the major risk
of developing cancers (Aunan et al., 2017). Other pathways not directly an-
notated as cancer pathways are frequently significant in PA disease modules
(Table 3). Most interesting pathways include the PI3K-Akt signaling path-
way, and its closely related FoxO and mTOR signaling pathways. The most
frequent pathways, Relaxin, Melanogenesis and AGE-RAGE are significant be-
cause they share reactions with the MAPK, WNT or PI3K canonical pathways.
Other encouraging results are related to the cellular senescence and stem cells
pluripotency pathways. These processes have been described as hallmarks of
physiological aging (López-Ot́ın et al., 2013).

Term ID Term Name
Number of PA disease
module memberships

KEGG:04926 Relaxin signaling pathway 28
KEGG:04916 Melanogenesis 22

KEGG:04933
AGE-RAGE signaling
pathway in diabetic

complications
20

KEGG:04151
PI3K-Akt signaling

pathway
19

KEGG:04974
Protein digestion and

absorption
18

KEGG:04150 mTOR signaling pathway 17
KEGG:04218 Cellular senescence 17
KEGG:04510 Focal adhesion 17
KEGG:01522 Endocrine resistance 16
KEGG:04068 FoxO signaling pathway 16

KEGG:04550
Signaling pathways

regulating pluripotency of
stem cells

15

Table 3: Top-11 most frequent non-cancer KEGG pathways associated to PA
disease modules. The modules were built using repRWR-MH

3.3 Classification of PA diseases

The entire set of 77 premature aging diseases are annotated with at least one
phenotype associated to the PA ontology term. However, apart from this shared
phenotype, each disease is also associated to many other phenotypes, some of
them not being related to aging. In addition, the degree of severity and affected
tissues can be very heterogeneous.

We here intend to leverage the 77 PA disease modules to obtain a landscape
of processes perturbed in PA diseases. To this goal, we built a network where
each node represent a PA disease module, and the weighted edges between
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modules depict their overlaps, i.e., the number of shared genes between every
pair of PA disease modules (Material and Methods). Some disease modules are
tightly linked, revealing that their underlying modules of genes are very similar
(Figure 3). We hypothesize that these diseases are caused by perturbations of
the same cellular processes. We then classified the different PA disease modules
by applying several clustering algorithms (Material and Methods). The adjusted
Rand index (Rand, 1971; Santos and Embrechts, 2009) was used to compare the
similarity among the different partition obtained (Material and Methods). We
selected the clusters obtained by the Walktrap algorithm (Pons and Latapy,
2006) for further analysis because it identifies the largest number of clusters,
i.e., 10, and these clusters are on average more similar to the ones obtained by
the other clustering algorithms (Figure S-6 and materials and methods). These
10 clusters contain from one to 17 diseases.

Cluster 1 contains the Werner Syndrome and four others disorders charac-
terized by abnormal or degenerative conditions of the body’s adipose tissue.
The main enriched GO terms among the union of the genes contained in these
five PA disease modules are related to cholesterol homeostasis and proteasome
complex. We can easily relate the latter one with loss of proteostasis, one of
the primary hallmarks of aging (López-Ot́ın et al., 2013). Failures on proteosta-
sis lead to protein misfolding, aggregation and other common components of
aging-related neurodegenerative disorders like Alzheimer’s disease and Parkin-
son’s disease (Tanaka and Matsuda, 2014).

Cholesterol metabolism is also enriched in cluster 2. However, in this clus-
ter, the most significant deregulated pathways are response to radiation and
DNA repair, as it can be expected regarding some of of the diseases present
in the cluster, such as Xeroderma pigmentosum (ORPHANET code: 910) and
Rothmund-Thomson syndrome (ORPHANET code: 2909). Radiation leads
to genetic instability, another primary hallmark of aging, resulting into an in-
creased DNA repair activity. DNA repair initially alleviates the damage, but
if its activity becomes excessive may also become harmful itself. In addition,
some telomeric related functions appeared enriched in this cluster. Telomere
attrition, is described as another hallmark of aging (López-Ot́ın et al., 2013).

Cluster 3 and 4 are related to developmental process and some pathways
that are well-known to be implicated in aging, such as PI3K-Akt and EGFR
signaling pathways. Alterations in these pathways have been mentioned in the
hallmark of aging (López-Ot́ın et al., 2013). Cluster 3 has also a significant
enrichment in the RAP1 signaling pathway, whereas cluster 4 in the signaling
by RAS mutants pathway. Both pathways are closely related to cancer.

The main enriched terms for clusters 5 and 6 are epidermis development and
keratinization. Epidermal dysfunction contributes to an age-associated increase
in the levels of inflammatory cytokines (Hu et al., 2017). Cluster 6 also presents
several genes implicated in cell-cell adherens junction, whose impaired activity
promotes vascular aging (Chang et al., 2017).

Cluster 7 contains, among others, HGPS the paradigmatic example of progeroid
diseases. In this cluster, we can observe an enrichment in components of the
extracellular matrix and focal adhesion pathway. Aging-associated changes in
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the extracellular environment can alter intercellular communications, one of the
hallmarks of aging (López-Ot́ın et al., 2013).

Skin pigmentation and the MAPK1/MAPK3 signaling are the main enriched
terms in cluster 8. Pigmentation changes with aging and it is mainly due to sun
exposure. Moreover, darkly pigmented individuals suffer less radiation-related
DNA damage than lightly pigmented subjects (GJ et al., 2002). Some studies
suggest and age-associated impairment in the MAPK signaling pathway (Zhen
et al., 1999).

The most enriched terms in the cluster 9 are proton-exporting ATPase activ-
ity, reactive oxygen species production in phagocytes and the mTOR signaling
pathway. These processes can be easily linked to some of the hallmarks of aging,
such as mitochondrial dysfunction and deregulated nutrient sensing (López-Ot́ın
et al., 2013).

Finally, we can dig into the cluster 10, which is solely integrated by Transal-
dolase deficiency (ORPHANET code: 101028). Its most relevant enriched term
is cardiac chamber morphogenesis.

In this section, we classified our set of PA disorders according to the number
of shared genes within their associated modules. This approach allowed us to
describe the functional landscape of this group of disorders. We indicated the
altered mechanisms in the different groups of diseases and linked the clusters
to the hallmarks of physiological aging. We hope that these results can shed
some light on the complex interplay of processes driving aging, and on how
aging-related diseases can arise.
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3.4 Werner syndrome and Keppen–Lubinsky syndrome

In this section, we carried out a detailed analysis of the modules of two spe-
cific PA diseases: Werner Syndrome (WS) (ORPHANET code: 902) and Kep-
pen–Lubinsky syndrome (KLS) (ORPHANET code: 435628). Both disorders
share some phenotypes associated to premature aging, but also display spe-
cific phenotypes. They are caused by mutations in genes involved in different
molecular functions: WS is caused by mutations in the WRN gene, which has
a major role in genome stability. KLS is caused by mutations in the KCNJ6
gene, which encodes a potassium channel located in the plasma membrane. Ap-
plying the repRWR-MH algorithms using these diseases and their associated
genes as seeds, we obtained the modules presented in Figure 4. Enrichment
analyses revealed different functional annotations for each module. In the WS
module, we detected a significant number of genes implicated in the cell cycle
arrest and DNA mismatch repair (Figure 4). The WRN protein is located in
the cell nucleus and member of the mismatch repair complex. Mutations in the
corresponding gene can lead to an increased level of damaged DNA resulting on
more frequent cell cycle arrest (Malumbres and Barbacid, 2009). We also iden-
tified a significant enrichment of genes involved in cholesterol metabolism. The
inhibition of cholesterol biosynthesis results in cell cycle arrest under certain
conditions (Singh et al., 2013), suggesting a link between sterol metabolism and
cell cycle control. Furthermore, a study with rabbits showed that the activity of
DNA repair pathways declined progressively when cholesterol-fed animals were
placed on a normal diet (Martinet et al., 2001).

Among the genes of the Keppen–Lubinsky syndrome module, we identified a
large number of genes implicated in the mTOR signaling pathway (4), a master
regulator of cell cycle. Interestingly, some of the genes involved in the mTOR
signaling pathway are also involved in face development. Keppen–Lubinsky syn-
drome patients show a peculiar face with an aged appearance (Basel-Vanagaite
et al., 2009), which may arise from an abnormal behaviour of some of these genes
through the perturbations originated by the mutation in the KCNJ6 gene. Fi-
nally, we also detected a significant number of components of the extracellular
matrix (4). As also shown by the high frequency of collagen genes in PA dis-
ease modules, deregulations of the organization of the extracellular matrix has
been associated to aging (Frantz et al., 2010). As expected given the very dif-
ferent molecular bases of the two diseases, no gene nor disease belong to both
modules. However, we can observed that the modules are linked on one side
by interactions between the subnetwork containing some components of the nu-
clear lamina, such as the LMNA and LMNB1 genes, in the WS module and the
MAPK subnetwork in the KLS module. On the other side, we can also notice
links between a cholesterol subnetwork in the WS module and an extracellular
matrix subnetwork in the KLS module. We can hypothesize that the common
phenotype of premature aging observed in these diseases might arise from the
deregulations around these connected subnetworks.
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4 Discussion

Complex systems can be described in a more realistic way using multiplex
networks, as it has been shown in articles published in several different re-
search fields (Battiston et al., 2016; Stella et al., 2017; Cardillo et al., 2013; De
Domenico et al., 2016). Multiplex networks preserve the topological features
of the individual layers that make them up. This is particularly interesting for
biological networks, which are built from large-scale interaction datasets derived
from different experimental methods, each one of them with their weaknesses,
strengths and technical-bias. Furthermore, biological networks are far from
complete (eg. high-throughput methods cover less than 20% of all potential
pairwise protein interactions in the human cell (Menche et al., 2015)), and their
integration increases the available biological information and may reduce the
incompleteness of the individual sources.

We have shown previously that, under certain conditions, the multiplex
framework is more efficient than single networks or network aggregations to
extract communities from biological networks (Didier et al., 2015, 2018). We
also demonstrated the increased performance of the RWR on multiplex and
multiplex-heterogeneous networks to recover gene-disease associations (Valdeo-
livas et al., 2018). Based on a extended version of this work, we presented here
a seed-expanding method that generates modules starting from genes and/or
diseases. To our knowledge, this is the first module generation seed-expanding
algorithm in multiplex-heterogeneous networks. We applied the new method
to the set of diseases that have been described to present a PA phenotype ac-
cording to ORPHANET (Rath et al., 2012). We showed the increased ability
in recovering age-associated genes and a richer biological information of the
multiplex-heterogeneous generated modules than the ones built with single net-
works.

Then, we aimed at defining the functional landscape of PA diseases. To do
so, we first analyzed the common mechanisms perturbed in the whole set of
diseases. We found some well-established age-related processes, but also some
attractive ones whose implication in aging is not evident. We also identified a
set of candidate genes likely to be involved in human aging. We then classified
the 77 PA diseases in different clusters. We functionally characterized each
cluster and alluded to their link with the hallmarks of physiological aging and
age-related diseases. Finally, we centered our attention in two particular PA
diseases whose causative genes seem to be very distant from a molecular point
of view. We described their perturbed mechanisms and pointed out to some
potential processes that may account for their shared phenotypic features.

Aging is a extremely complex phenomenon where many processes interplay,
so our approach leveraging different sources of information seems to be very
suitable to address this topic. Nevertheless, our method can be applied to any
set of diseases and/or genes sharing any kind of feature. Moreover, it can be
applied to any problem where the goal is to detect seed-centered modules. In our
particular case, we decided to set a given size for every module in order to cluster
and classify all the PA diseases under equal conditions. This potential limitation
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of the method can be overcome by adding some parameters. For instance, we
can determine at each iteration whether a new node is added to the module
based on measures describing how strongly connected they are (Xu et al., 2018).
We should also cite the hesitation about the performance of current clustering
methods on multiplex networks (Choobdar et al., 2018). However, our seed-
expanding approach is quite different than others multiplex-tailored clustering
methods because it just relies on the topological distances within the multiplex-
heterogeneous network. We previously showed that these measures are more
precise than the ones provided by single or aggregated networks (Valdeolivas
et al., 2018).

Another interesting point concerns the election of the diseases database. We
selected ORPHANET (Rath et al., 2012) rather than OMIM because HGPS,
the classical example of PA disease, lacks the PA phenotype term in the latter
according to the employed version of HPO (Köhler et al., 2017). On the other
hand, we also detected some problems in ORPHANET (Rath et al., 2012) as
some databases entries are kind of duplicated. For instance, this seems to be
the case for Griscelli syndrome, which has a general entry in the database (OR-
PHANET code: 381) missing gene associations. However, three more entries
for Griscelli syndrome can be found associated to their responsible genes: Type
I (ORPHANET code: 79476) - MYO5A, Type II (ORPHANET code: 79477)
- RAB27A and Type III (ORPHANET ) code: 79478 - MLPH and MYO5A.
Some repetitive or incoherent results can consequently arise. This kind of issues
reflect the need of a careful curation and revision of biological databases.
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Köhler, S., Vasilevsky, N. A., Engelstad, M., Foster, E., McMurry, J., Aymé,
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López-Ot́ın, C., Blasco, M. A., Partridge, L., Serrano, M., and Kroemer, G.
(2013). The hallmarks of aging. Cell, 153(6):1194–217.

23

130



Macropol, K., Can, T., and Singh, A. (2009). RRW: repeated random walks on
genome-scale protein networks for local cluster discovery. BMC Bioinformat-
ics, 10(1):283.

Malumbres, M. and Barbacid, M. (2009). Cell cycle, cdks and cancer: a changing
paradigm. Nature Reviews Cancer, 9:153 EP –. Review Article.

Martinet, W., Knaapen, M. W. M., Meyer, G. R. Y. D., Herman, A. G., and
Kockx, M. M. (2001). Oxidative dna damage and repair in experimental
atherosclerosis are reversed by dietary lipid lowering. Circulation Research,
88(7):733–739.

McCord, R. P., Nazario-Toole, A., Zhang, H., Chines, P. S., Zhan, Y., Erdos,
M. R., Collins, F. S., Dekker, J., and Cao, K. (2013). Correlated alter-
ations in genome organization, histone methylation, and dna-lamin a/c inter-
actions in hutchinson-gilford progeria syndrome. Genome Res, 23(2):260–269.
23152449[pmid].

Menche, J., Sharma, A., Kitsak, M., Ghiassian, S. D., Vidal, M., Loscalzo, J.,
and Barabási, A.-L. (2015). Disease networks. Uncovering disease-disease re-
lationships through the incomplete interactome. Science, 347(6224):1257601.
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6 Proteomic portrait of prostate
cancer
During my master thesis and the beginning of my PhD thesis, I thoroughly ana-

lyzed proteomics and phosphoproteomicsmass spectrometry experimental data
obtained from benign, cancerous and resistant prostate cell lines. Some of my re-
sults are included in an article that is now under review. In order to introduce this
work, I first briefly describe some general aspects about prostate cancer (PC).
Then, I discuss about the relevance of proteomics and phosphoproteomics data,
and present a concise overview about the experimental techniques used in our
study.

6.1 Prostate cancer
Prostate cancer is themost common non-cutaneous cancer diagnosed in men,

and a major cause of death in industrialized countries. It is estimated that each
year 1.6millionmen are diagnosed and 366 000men die of PC (Pernar et al. 2018).
The main risk factors to develop the disease are obesity, age and family history.
PC can be considered as an age-related disease since it is very unusual in men
younger than 45, but the number of affected patients exponentially increases
after the age of 65. As a matter of fact, the average age at the time of diagnosis
is 70 (Hankey et al. 1999).
A considerable increase in the overall survival of PC patients has been ob-

served in the last decade due to a more precise identification and characteri-
zation of the disease. These achievements have been possible as a result of
improved risk stratification, and thanks to the emergence of molecular biomark-
ers. We must also take into account the great technical advances recently ac-
complished in magnetic resonance and functional imaging (Litwin et al. 2017).
Nevertheless, survival rates among patients with metastatic PC have not signifi-
cantly contributed to this decline in mortality (Karantanos et al. 2015).
PC progresses through a series of clinical states characterized by tumor growth,

hormonal status (castration-sensitive or castration-resistant) and presence or ab-
sence of metastases. Treatment of aggressive cases of PC usually involves an-
drogen deprivation therapy (surgical castration, chemical castration or antiandro-
gen therapy). However, in most of the cases, PC becomes resistant to treatment
after one to three years and resume growth despite androgen deprivation. This
stage of the disease is therefore called Castration-Resistant Prostate-Cancer
(CRPC). It is highly aggressive and incurable, jeopardizing the patient’s lifespan
and quality of life (Seruga et al. 2010). Progression to CRPC involves several
mechanisms such as ligand-independent androgen receptor activation, adaptive
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up-regulation of anti-apoptotic genes and mRNA splicing events (Katsogiannou
et al. 2015). Nevertheless, many of the resistance mechanisms, as well as their
interplay during disease progression, are yet to be fully deciphered.

6.2 Proteomics
The term proteomics was coined in analogy to genomics, and refers to the

study of proteins on a large-scale (James 1997). Unlike the genome, which
is roughly constant for an organism, the proteome evolves with time and differ
from cell to cell making its study more complex. Historically, protein expression
levels were assessed at large-scale bymeasuring the amount of RNA transcripts.
Even though these transcriptomics technologies have provided great insights
about cell functioning, a lack of strong correlation between transcript expression
levels and protein content has been observed (Rogers et al. 2008). Indeed,
many factors determine protein expression from mRNA transcripts, calling for
the development of new techniques at the protein level. Proteomics technologies
determine the presence/absence of a protein and can provide a direct measure
of its expression levels. Consequently, proteomics has gained momentum over
the past years thanks to the evolution and improvement of different experimental
approaches.

6.2.1 Stable isotope labeling by amino acids in cell culture
Mass spectrometry-based methods are the most conventional techniques to

identify proteins on a large-scale. These methods require the conversion of pro-
teins into an ionized form in the gas phase, which can be achieved by bom-
barding the sample with electrons, for example. These collisions dissociates the
proteins into a set of charged fragments (ionized peptides). The ionized pep-
tides are injected into the mass spectrometer where they are accelerated in an
electric or magnetic field, and separated according to their mass-to-charge ratio.
In tandem mass spectrometry, the previous step is the first stage of mass spec-
trometry (MS1), and it is used to measure with high precision themass-to-charge
ratio of the peptides. Then, a coupled second stage of mass spectrometry (MS2)
identifies the peptides at high speed and accuracy (Chait 2011).
More recently, several new methods were developed to allow the quantifica-

tion of proteins, quantitative proteomics, based on mass spectrometry tech-
niques. The study presented in section 6.3 took advantage of SILAC (Stable
Isotope Labeling by Amino acids in Cell culture), one of the most popular meth-
ods in quantitative proteomics, to compare the expression levels of proteins in
different prostate cell lines. In the SILAC method, two different cell cultures are
required. The first cell population grows in a specialized media supplemented
with heavy forms of essential amino acids (usualy lysine or arginine contain-
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ing heavy stable isotopes of carbon or nitrogen). These heavy-labeled amino
acids are metabolically incorporated into cells and then into proteins through
the usual protein synthesis processes. The second cell culture grows in a me-
dia containing the corresponding light forms of essential amino acids. After cell
lysis, equivalent amounts of protein from both cell cultures are combined and
enzymatically digested in such a way that all the resulting peptides contain at
least one labeled amino acid. The mass shift from the labeled sample over the
non-labeled one can be detected by the mass spectrometer. The relative pro-
tein abundance is determined based on that intensity shift (Geiger, J. Cox, et al.
2010; Geiger, Wisniewski, et al. 2011). The great advantages of SILAC are its
relatively simple implementation, quantitative accuracy, and reproducibility over
other quantification strategies (Xiulan Chen et al. 2015). SILAC was developed
to be performed in cell lines in culture (Hogrebe et al. 2018). This limitation to
cell lines represents its main drawback, however, some studies have shown that
SILAC can be extended to in vivo animals, such as mice (Zanivan et al. 2011).

6.2.2 Phosphoproteomics with SILAC
Proteins can experience a broad range of chemical modifications after transla-

tion. Such post-translational modifications are crucial to determine the protein’s
function. Phosphorylation, in particular, is the most frequent post-translational
modification. Phosphorylation is a reversible process in which a kinasemediates
the addition of a phosphate group to an amino acid of the protein. It regulates
protein activity state, function, localization and degradation, and the phosphory-
lation of certain amino acids may provide meaningful clues on pathways activ-
ity. It is estimated that between 30% − 65% of all the human proteins may be
phosphorylated. Furthermore, many proteins have multiple potential phosphory-
lation sites in their sequence (Vlastaridis et al. 2017). In this framework, a whole
branch of proteomics, called phosphoproteomics, has dedicated its efforts to
identify differentially phosphorylated sites in proteins under different experimen-
tal conditions.
The most prevalent quantification techniques for global phosphoproteomics

rely also on SILAC approaches. Our collaborators applied a SILAC-basedmethod
in order to detect variations in the phosphorylation sites of proteins belonging to
prostate cell lines. The experimental protocol is similar to the one described
in the previous section,but includes a phosphopeptide enrichment step. The
phosphopeptides enrichment is crucial due to the small amount of sites simul-
taneously phosphorylated. Indeed, it is estimated that only 1 − 2% of all the
proteins are phosphorylated at a specific moment (X.-S. Li et al. 2016). Then,
mass spectrometry is used to identify phosphoserine, phosphothreonine, and
phosphotyrosine-containing peptides, because the most common phosphory-
lation events in eukaryotic cells take place in those residues (Schmelzle et al.
2006). The additional procedures related to the phosphopeptide enrichment step
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makemore complicated the experimental setup, leading to some issues concern-
ing reproducible quantification of SILAC-based phosphoproteomics techniques
(Hogrebe et al. 2018).

6.3 Integrative proteomic and phosphoproteomic
profiling of prostate cell lines

Large-scale omics techniques can assist us to monitor the molecular changes
occurring in cells during cancer progression. In particular, mass spectrome-
try proteomics techniques can directly measure protein abundance under dif-
ferent conditions, allowing to point out to deregulated process and aiding in
the discovery of biomarkers. Moreover, the identification of changes in phos-
phorylation sites through phosphoproteomics provide insights about pathways
activity. Altogether, we considered that a global proteomics and phosphopro-
teomics approach can reveal the mechanisms driving the progression of PC to
the incurable CRPC. In this context, we developed the study presented below,
where I conducted the statistical and bioinformatics analyses of the proteomics
and phosphoproteomics datasets generated to study different PC cell lines. Fi-
nally, we integrated proteomics and phosphoproteomics resistance markers in
a molecular network, to highlight biological processes differentially expressed in
the castration-resistant stage of PC.

Katsogiannou, M.†, Boyer, J.B.†, Valdeolivas, A.†, Remy, E., et
al. (2018). Integrative proteomic and phosphoproteomic profiling
of prostate cell lines. Under Review. †Equal contribution.
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Integrative	proteomic	and	phosphoproteomic	profiling	of	prostate	
cell	lines	

	

	

Keywords:	proteomics,	phosphoproteomics,	prostate	cancer,	resistance,	cell	lines,	network	

integration	

	

Abstract	
Prostate	cancer	is	a	major	public	health	issue,	mainly	because	patients	relapse	after	androgen	

deprivation	 therapy.	 Proteomic	 strategies,	 aiming	 to	 reflect	 the	 functional	 activity	 of	 cells,	 are	

nowadays	among	 the	 leading	approaches	 to	 tackle	 the	 challenges	not	only	of	better	diagnosis,	but	

also	of	unraveling	mechanistic	details	related	to	disease	etiology	and	progression.	

We	conducted	here	a	large	SILAC-based	Mass	Spectrometry	experiment	to	map	the	proteomes	

and	phosphoproteomes	of	four	widely	used	prostate	cell	 lines	representative	of	different	cancerous	

and	hormonal	status.	Using	SILAC-based	mass	spectrometry,	we	characterized	housekeeping	as	well	

as	 cell-line	 specific	 proteins,	 phosphosites	 and	 functional	 features	 of	 each	 cell	 line.	 In	 addition,	 by	

comparing	the	sensitive	and	resistant	cell	lines,	we	identified	protein	and	phosphosites	differentially	

expressed	in	the	resistance	context.	Further	data	integration	in	a	molecular	network	highlighted	the	

differentially	 expressed	 pathways	 in	 the	 resistant	 context,	 namely	 migration	 and	 invasion,	 RNA	

splicing,	DNA	damage	repair	response	and	transcription	regulation.		

	

Significance	 	
PNT1A,	LNCaP,	DU145	and	PC3	are	 four	widely	used	prostate	cell	 lines	 spanning	different	 features,	

from	non-tumorigenic	to	castration-sensitive	to	castration-resistance.	We	describe	a	 joint	proteome	

and	phosphoproteome	profiling	of	these	cells,	identifying	more	than	3000	proteins	and	phosphosites.	

Deep	 analyses	 of	 these	 data	 allowed	 us	 characterizing	 the	 housekeeping,	 cell-line,	 cancer	 and	

resistance	proteomes	and	phosphoproteomes	of	the	four	cell	lines.	Finally,	we	interpreted	the	results	

at	the	pathway	scale,	and	integrated	the	most	significant	features	in	a	molecular	network.	
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Introduction	

Prostate	 cancer	 (PC)	 is	 a	major	 public	 health	 issue	 in	 industrialized	 countries,	 mainly	 because	

patients	relapse	by	castration-resistant	disease	after	androgen	deprivation	[1,	2].	PC	is	associated	to	a	

panel	 of	 clinical	 states	 characterized	 by	 tumor	 growth,	 hormonal	 status	 (castration-sensitive	 or	

castration-resistant)	 and	 presence/absence	 of	metastases.	 After	 androgen	 deprivation	 therapy,	 the	

disease	usually	progresses	 to	 castration-resistant	prostate	cancer	 (CRPC),	which	 is	highly	aggressive	

and	 incurable,	 and	 jeopardizes	 the	 patient’s	 lifespan	 and	 quality	 of	 life.	 This	 progression	 involves	

several	molecular	mechanisms	such	as	ligand-independent	androgen	receptor	activation	or	adaptive	

upregulation	of	anti-apoptotic	genes	(for	review	[3]).		

Despite	 an	 existing	 treatment	 guideline	 for	 PC	 and	 novel	 clinical	 trials	 for	 CRPC	 [4,	 5],	 major	

challenges	 remain	 to	 understand	 and	 treat	 these	 cancers	 appropriately.	 Large-scale	 -omics	

approaches,	 able	 to	 monitor	 cancer-induced	 changes	 at	 the	 cellular	 level,	 are	 among	 the	 most	

promising	strategies.	Proteomic	strategies,	by	measuring	the	abundance	and	activity	of	proteins,	have	

the	ability	to	directly	reflect	the	functional	activity	of	cells,	and	to	point	to	deregulations	in	the	most	

druggable	 cellular	 components.	 In	 this	 context,	 several	 proteomic	 studies	 started	 to	 map	 the	

landscape	 of	 the	 PC	 proteome	 [6-9].	 These	 studies	 identified	 biomarkers,	 such	 as	 the	

proneuropeptide	Y	[6],	as	well	as	proteomic	changes	associated	to	prostate	cancer	progression	(e.g.,	

increased	 anabolic	 processes	 and	 oxidative	 phosphorylation	 in	 primary	 prostate	 cancer	 [6,	 7]).	

Overall,	such	analyses	are	valuable	not	only	for	diagnosis,	but	also	for	providing	mechanistic	details	

related	to	disease	etiology	and	progression.	

These	 proteomic	 approaches	 focused	 on	 protein	 quantification,	 but	 neglect	 protein	

phosphorylation,	 a	 key	 point	 in	 the	measurement	 of	 cellular	 activity.	 Protein	 phosphorylation	 is	 a	

post-translational	 modification	 central	 to	 signal	 transduction,	 that	 influences	 cell	 growth,	 division,	

differentiation,	 cancer	 development	 and	 progression	 [10,	 11].	 Protein	 phosphosites	 can	 trigger	

protein	 activation	 or	 inactivation,	 and	 profiling	 the	 phosphorylation	 patterns	 of	 proteins	 can	 be	 a	

powerful	 tool	 for	 understanding	 key	 roles	 in	 tumor	 progression	 and/or	 drug	 resistance	 [12].	

Technological	 advances	 in	 the	 last	decade	have	 led	 to	 the	development	of	 several	high-throughput	

strategies	 to	 map	 the	 cellular	 phosphoproteome	 [13].	 Several	 recent	 studies	 examined	 the	

phosphoproteome	of	PC,	thereby	informing	about	the	activity	status	of	signaling	pathways	involved	in	

CRPC	 progression	 [14-16].	 In	 particular,	 a	 recent	 study	 integrating	 phosphoproteomics	 with	
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transcriptomics	 and	 genomics	 data	 revealed	 the	 diversity	 of	 activated	 signaling	 pathways	 in	

metastatic	 PC	 patients,	 in	 relation	 to	 their	 resistance	 to	 the	 anti-androgen	 therapy	 [17].	 This	work	

further	demonstrated	the	utility	of	combining	-omics	approaches	to	better	understand	PC	and	CRPC	

progression.	

Here,	we	used	a	SILAC-based	Mass	Spectrometry	approach,	and	identified	and	quantified	the	

proteomes	and	phosphoproteomes	of	four	widely	used	prostate	cell	lines	representative	of	different	

cancerous	 and	 hormonal	 status.	We	 first	 identified	 a	 common	 set	 of	 housekeeping	 proteins	 highly	

expressed	 in	 all	 cell	 lines,	 and	 enriched	 in	 biological	 processes	 related	 to	 RNA	 metabolism	 and	

oxidative	stress.	We	further	detected	that	each	cell	 line	possesses	specific	protein,	phosphosite	and	

functional	features,	in	particular	related	to	cellular	metabolism,	transport	and	protein	localization.	In	

addition,	 comparing	 the	 sensitive	 and	 resistant	 cell	 lines,	 we	 were	 able	 to	 pinpoint	 potential	

biomarkers	differentially	expressed	or	phosphorylated	 in	the	resistant	context.	Finally,	pathway	and	

network-level	 interpretation	of	 the	biomarkers	 reveal	 cellular	processes	 associated	with	 resistance,	

including,	 among	 others,	 an	 upregulation	 of	 cell	 migration,	 extracellular	 processes	 and	 epithelial-

mesenchymal	transition,	and	a	downregulation	of	the	cellular	respiration.	

Experimental	Procedures		

Cell	culture	and	SILAC	Labeling	

We	 cultivated	 three	 replicates	 of	 four	 cell	 lines	 derived	 from	 prostate	 tissue.	 PNT1A,	 a	 non-

tumorigenic	 SV40-immortalized	 human	 prostatic	 epithelial	 cell	 line	 (ECACC,	 European	 Collection	 of	

Cell	 Cultures,	 England),	 castration-sensitive	 (CS)	 LNCaP	 (ATCC,	 American	 Type	 Culture	 Collection	

(Rockville,	MD,	USA))	as	well	as	castration-resistant	(CR)	DU145	and	PC3	cell	lines	(ATCC).	All	cell	lines	

were	routinely	cultured	at	37°C	in	a	humidified	5%	CO2-95%	air	atmosphere.	They	were	maintained	in	

Dulbecco’s	 Modified	 Eagle’s	 Medium	 (PC3)	 and	 RPMI-1640	 (Roswell	 Park	 Memorial	 Institute)	

(Invitrogen,	Cergy	Pontoise,	France),	supplemented	with	10%	fetal	bovine	serum	(FBS).	Stable	Isotope	

Labelling	with	Amino	acids	in	Culture	(SILAC)	labeling	of	cell	lines	was	carried	out	according	to	Geiger	

et	al.	[18,	19]	using	SILAC	media	with	10%	dialyzed	fetal	bovine	serum	supplemented	with	13C615N2-L-

lysine	 (K8)	and	13C615N4-L-arginine	 (R10).	Before	creating	the	reference	proteome,	the	 incorporation	

rate	of	the	heavy	amino	acid	was	checked	for	each	cell	 lines	using	LC-MS/MS	and	cell	extracts	were	

used	if	this	rate	reached	95%	(data	not	shown).	Additionally,	the	interconversion	of	arginine	to	proline	
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was	 checked	 and	 found	 to	be	negligible	 (data	not	 shown).	 Cells	were	washed	on	 ice	with	 PBS	 and	

collected	in	a	lysis	buffer	containing	4%	SDS,	100	mM	Tris-HCl	pH7.4,	1	mM	DTT	(with	protease	and	

phosphatase	inhibitors	cocktails,	EDTA-free,	ROCHE,	usually	1	tablet	of	each	per	10	ml	of	lysis	buffer).	

Each	pellet	was	 resuspended	 in	 the	 lysis	buffer	and	heated	 to	95°C	 for	5	min.	Viscous	 lysates	were	

first	homogenized	mechanically	with	a	 syringe	and	DNAse	was	added	at	a	1:40	dilution	 (benzonase	

endonuclease,	Sigma).	Samples	were	left	on	ice	for	40	min,	then	centrifuged	at	16	000	rcf	(g)	for	25	

min.	 Supernatants	 were	 collected	 in	 clean	 Lo-Bind	 Eppendorf	 tubes	 and	 protein	 quantitation	 was	

done	using	BCA	assay.	After	cell	lysis,	the	protein	extracts	from	the	four	heavy	cell	lines	were	mixed	in	

equimolar	 amounts	 (1:1:1:1),	 to	 generate	 the	 super	 SILAC	 reference	 proteome	 which	 was	 then	

aliquoted	 and	 stored	 at	 -80°C.	 For	 proteomics	 and	 phosphoproteomics	 profiling	 the	 reference	

proteome	was	mixed	in	equimolar	amounts	with	protein	extracts	from	each	non-labeled	cells	(Figure	

1,	c).	

Proteomes	preparation	

40µg	of	protein	extract	were	loaded	on	NuPAGE	4–12%	bis–Tris	acrylamide	gels	(Life	Technologies)	to	

separate	proteins,	and	were	stained	with	Imperial	Blue	(Pierce,	Rockford,	IL).	Each	lane	of	the	gel	was	

cut	into	20	bands	that	were	placed	in	individual	Eppendorf	tubes.	Gel	pieces	were	submitted	to	an	in-

gel	 trypsin	 digestion	 using	 a	 slightly	 modified	 version	 of	 the	 method	 described	 by	 Shevchenko	 et	

al.[20].	 Briefly,	 gel	 pieces	 were	 washed	 and	 destained	 using	 few	 steps	 of	 100mM	 ammonium	

bicarbonate.	 Destained	 gel	 pieces	 were	 shrunk	 with	 100	 mM	 ammonium	 bicarbonate	 in	 50%	

acetonitrile	 and	 dried	 at	 RT.	 Protein	 spots	 were	 then	 rehydrated	 using	 10mM	 DTT	 in	 25	 mM	

ammonium	 bicarbonate	 pH	 8.0	 for	 45	 min	 at	 56°C.	 This	 solution	 was	 replaced	 by	 55	 mM	

iodoacetamide	 in	25	mM	ammonium	bicarbonate	pH	8.0	and	 the	gel	pieces	were	 incubated	 for	30	

min	 at	 room	 temperature	 in	 the	 dark.	 They	 were	 then	 washed	 twice	 in	 25	 mM	 ammonium	

bicarbonate	and	finally	shrunk	by	 incubation	for	5	min	with	25	mM	ammonium	bicarbonate	 in	50%	

acetonitrile.	The	resulting	alkylated	gel	pieces	were	dried	at	RT.	The	dried	gel	pieces	were	re-swollen	

by	 incubation	 in	 25	 mM	 ammonium	 bicarbonate	 pH	 8.0	 supplemented	 with	 12.5	 ng/ml	 trypsin	

(Promega)	for	1h	at	4°C	and	then	incubated	overnight	at	37°C.	Peptides	were	harvested	by	collecting	

the	initial	digestion	solution	and	carrying	out	two	extractions;	first	in	5%	formic	acid	and	then	in	5%	

formic	acid	in	60%	acetonitrile.	Pooled	extracts	were	dried	down	in	a	centrifugal	vacuum	system.	

Phosphoproteomes	preparation	
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For	 each	 condition,	 400µg	 of	 cell	 lysate	 implemented	with	 400µg	 of	 the	 reference	 proteome	was	

precipitated	 using	 Acetone/Ethanol	 (sample/Acetone/EtOH	 1/4/4	 v/v/v)	 overnight	 at	 -20°C.	 The	

acetone-precipitated	lysate	was	resolubilized	in	50	mM	ammonium	bicarbonate,	pH	8.0.	The	soluble	

proteins	were	reduced	for	45	min	at	56°C	with	10	mM	dithiothreitol	(DTT),	and	then	alkylated	for	30	

min	at	 room	 temperature	 in	 the	dark	with	10mg/ml	 Iodoacetamide.	 The	protein	mixture	was	 then	

digested	 with	 trypsin	 (1:50	 w/w)	 overnight.	 Trypsin	 was	 quenched	 by	 acidification	 of	 the	 reaction	

mixture	with	 TFA.	 The	 peptide	mixture	was	 desalted	 and	 concentrated	 on	 a	 C18-SepPak	 cartridge	

(Waters,	Milford,	MA)	and	eluted	with	1x	2	mL	of	75%	acetonitrile	(ACN)	in	0.1%	TFA	and	dried	down.	

The	 phosphopeptide	 enrichment	 was	 performed	 with	 TiO2	 beads	 10	 µm	 (Titansphere	 TIO,	 GL	

Sciences,	Japan).	Titania	beads	(6	mg)	were	prepacked	in	200	μL	pipet	tips	filled	at	the	orifice	with	a	

C8	Empore	disk	 (3M	Empore).	Prior	 to	 loading	 samples,	 the	 titania	 tips	were	 rinsed	with	200	μL	of	

buffer	 A	 (3%	 TFA/70%	 CH3CN).	 Digest	 samples	 were	 reconstituted	 with	 200	 µl	 of	 loading	 buffer	

(buffer	A	+	1M	Glycolic	acid).	After	centrifugation	the	supernatant	was	slowly	loaded	three	times	onto	

the	titania	tip	using	centrifugation	at	300	g	 for	10	min.	The	titania	beads	were	sequentially	washed	

with	200	μL	loading	buffer,	twice	with	200	µl	of	buffer	A	and	200	µl	of	0.1%	TFA.	Bound	peptides	were	

eluted	with	140	μL	of	1%	NH4OH	pH	10.5	and	dried	down	with	a	vacuum	concentrator.	

Mass	Spectrometry	analysis	

Samples	were	reconstituted	in	0.1%	TFA	4%	acetonitrile	and	analyzed	by	liquid	chromatography	(LC)–

tandem	Mass	Spectrometry	(MS/MS)	using	Q-Exactive	Mass	Spectrometer	(Thermo	Electron,	Bremen,	

Germany)	for	proteome	and	phosphopeptide	experiments.	For	the	phosphopeptide	experiments,	an	

LTQ-Orbitrap	 Velos	Mass	 Spectrometer	 (Thermo	 Electron,	 Bremen,	 Germany)	was	 also	 used.	Mass	

Spectrometers	 were	 on	 line	 with	 a	 nanoLC	 Ultimate	 3000	 chromatography	 system	 (Dionex,	

Sunnyvale,	CA).	Peptides	were	separated	on	a	Dionex	Acclaim	PepMap	RSLC	C18	column	at	37°C.	First,	

peptides	were	concentrated	and	purified	on	a	pre-column	from	Dionex	(C18	PepMap100,	2	cm	x	100	

µm	I.D,	100	Å	pore	size,	5	µm	particle	size)	in	solution	A	(0.05%	trifluoroacetic	acid	–	2%	acetonitrile).	

In	 the	 second	 step,	 peptides	 were	 separated	 on	 a	 reverse	 phase	 column	 from	 Dionex	 (C18	

PepMap100,	15	 cm	x	75	µm	 I.D,	100	Å	pore	 size,	2µm	particle	 size)	 at	300	nL/min	 flow	 rate.	After	

column	equilibration	by	4%	of	solution	B	(20%	water	–	80%	acetonitrile	–	0.1%	formic	acid),	peptides	

were	eluted	from	the	analytical	column	by	a	two	steps	linear	gradient.	For	proteome	analyses,	these	

two	 steps	were	4-25%	acetonitrile/H20;	 0.1	%	 formic	 acid	 for	 40	min	 and	25-50%	acetonitrile/H2O;	
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0.1	 %	 formic	 acid	 for	 10	 min.	 For	 phosphopeptide	 analyses,	 these	 two	 steps	 were	 4-20%	

acetonitrile/H2O;	0.1%	formic	acid	for	90	min	and	20-45%	acetonitrile/H2O;	0.1%	formic	acid	for	30	

min.	For	peptides	ionisation	in	the	nanospray	source,	spray	voltage	was	set	at	1.5	kV	and	the	capillary	

temperature	at	275	°C.	Instrument	method	for	the	Q-Exactive	was	set	up	in	data	dependant	mode	to	

switch	 consistently	 between	MS	 and	MS/MS.	 MS	 spectra	 were	 acquired	 with	 the	 Orbitrap	 in	 the	

range	of	m/z	300-1700	at	a	FWHM	resolution	of	70,000	(AGC	target	at	1e6,	maximum	IT	120	ms	and	

250	 ms	 for	 proteomes	 and	 phosphopeptides	 respectively).	 For	 internal	 mass	 calibration	 the	

445.120025	ions	was	used	as	lock	mass.	The	12	most	intense	ions	per	survey	scan	(Intensity	threshold	

1e5)	 were	 selected	 for	 HCD	 fragmentation	 (AGC	 target	 5e5,	 NCE	 25%,	 maximum	 IT	 60	 ms)	 and	

resulting	 fragments	were	analysed	at	a	resolution	of	17,500	 in	 the	Orbitrap.	Charge	state	screening	

was	enabled	 to	exclude	precursors	with	unassigned,	1	and	>8	charge	 states.	 Fragmented	precursor	

ions	were	dynamically	excluded	for	25	s.	For	phosphopeptides	analysis	using	the	LTQ-Orbitrap	Velos,	

the	Mass	Spectrometer	was	set	as	above	except	 for	 the	 following	parameters.	Survey	spectra	were	

acquired	with	a	resolution	of	60,000	(AGC	target	at	1e6,	maximum	IT	100	ms)	and	the	15	most	intense	

precursors	 ions	 per	 cycle	 were	 selected	 for	 fragmentation	 by	 activation	 of	 the	 neutral	 loss	 ions	 (-

48.99,	-32.66,	and	-24.49	Thompson	relative	to	the	precursor	ions)	with	collision	induced	dissociation	

(AGC	target	3,000,	NCE	35%,	maximum	IT	200	ms).	The	Mass	Spectrometry	proteomics	data,	including	

search	 result,	 have	 been	 deposited	 to	 the	 ProteomeXchange	 Consortium	

(www.proteomexchange.org)	 [21]	 via	 the	 PRIDE	 partner	 repository	 with	 datasets	 identifiers	

PXD004970	and	PXD004992.	

Protein	identification	and	quantification	

Relative	 intensity–based	 SILAC	 quantification	 was	 processed	 using	 MaxQuant	 computational	

proteomics	platform,	version	1.3.0.5	[22].	First	the	acquired	raw	LC	Orbitrap	MS	data	were	processed	

using	 the	 integrated	 Andromeda	 search	 engine	 [23].	 Spectra	 were	 searched	 against	 a	 SwissProt	

human	database	(version	2014.02;	20	284	entries).	This	database	was	supplemented	with	a	set	of	245	

frequently	 observed	 contaminants.	 	 The	 following	 parameters	 were	 used	 for	 searches:	 (i)	 trypsin	

allowing	 cleavage	 before	 proline	 [24];	 (ii)	 two	 missed	 cleavages	 were	 allowed;	 (ii)	 monoisotopic	

precursor	 tolerance	of	20	ppm	 in	 the	 first	 search	used	 for	 recalibration,	 followed	by	6	ppm	for	 the	

main	 search	 and	 20	 ppm	 for	 fragment	 ions	 from	 MS/MS;	 (iii)	 cysteine	 carbamidomethylation	

(+57.02146	 Da)	 as	 a	 fixed	 modification	 and	 methionine	 oxidation	 (+15.99491	 Da)	 and	 N-terminal	
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acetylation	(+42.0106	Da)	as	variable	modifications;	(iv)	a	maximum	of	five	modifications	per	peptide	

allowed;	and	(v)	minimum	peptide	length	was	7	amino	acids.	The	re-quantify	option	was	enabled	to	

search	for	missing	SILAC	partners.	The	quantification	was	performed	using	a	minimum	ratio	count	of	2	

(unique+razor)	and	the	second	peptide	option	to	allow	identification	of	two	co-fragmented	co-eluting	

peptides	with	 similar	masses.	 The	 false	 discovery	 rate	 (FDR)	 at	 the	 peptide	 level	 and	 protein	 level	

were	set	 to	1%	and	determined	by	searching	a	 reverse	database.	For	protein	grouping,	all	proteins	

that	 cannot	be	distinguished	based	on	 their	 identified	peptides	were	assembled	 into	a	 single	entry	

according	to	the	MaxQuant	rules.	

Phosphopeptide	identification	and	quantification	

Peptide	 identification	was	 done	 similarly	 than	 above	 using	MaxQuant	 software	 except	 that	 serine,	

threonine,	and	tyrosine	phosphorylation	(+79.96633	Da)	were	allowed	as	variable	modifications.	

Preliminary	treatment	of	the	datasets	

Statistical	 analyses	 were	 done	 with	 the	 Perseus	 program	 (version	 1.3.0.5;	 freely	 available	 at	

www.maxquant.org)	from	the	MaxQuant	environment	[25].	The	relative	 intensity-based	SILAC	ratio,	

iBAQ	normalised	 intensities	 and	peptide	 intensities	were	uploaded	 from	 the	proteinGroups.txt	 and	

Phospho(STY)Sites.txt	 files	 for	 proteome	 and	 phosphoproteome	 studies,	 respectively.	 Proteins	

marked	as	contaminant,	reverse	hits,	and	“only	identified	by	site”	were	discarded.		

One	DU145	cell	line	replicate	in	the	phosphoproteome	study	was	discarded	due	to	high	divergence.	In	

all	other	cases,	for	each	experiment	and	for	each	cell	line,	the	measurements	of	three	replicates	were	

considered.	We	identified	3	219	proteins	(FDR	1%	for	peptide	and	protein	identification)	in	triplicates	

(Supplementary	Table	1).	We	kept	for	further	quantification	analyses	only	those	proteins	containing	

at	 least	 two	 valid	 values	 (over	 the	 3	 replicates)	 in	 each	 cell	 line.	 This	 very	 conservative	 approach	

avoids	imputing	missing	values,	and	ensures	the	results	of	the	statistical	tests.	Doing	so,	we	quantified	

1	229	proteins	(Supplementary	Table	1),	used	for	all	subsequent	analyses.	For	the	phosphoproteomics	

analysis,	a	similar	strategy	allowed	identifying	3	746	phosphosites,	of	which	563	were	kept	for	further	

quantification	analysis	following	the	previously	defined	filters	(Supplementary	Table	2).	

Data	analyses	

R	 statistical	 programming	 environment	 [26]	 was	 used	 for	 the	 treatment	 of	 the	 proteomic	 and	
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phosphoproteomic	 datasets.	 Expression	 ratios	 towards	 the	 internal	 standard	 were	 base-2	

logarithmized	and	normalized	using	z-scores.		

Clustering	

Unsupervised	 hierarchical	 clustering	 using	 average	 method	 was	 performed	 for	 the	 proteomic	 and	

phosphoproteomic	datasets	based	on	Euclidean	distances	of	the	expression	ratio	after	normalization.		

Identification	of	the	highly-expressed	housekeeping	proteome	

The	abundance	of	each	protein	in	each	cell	line	was	computed	as	the	sum	of	the	IBAQ	values	of	every	

replicate.	 The	housekeeping	proteome	was	obtained	by	 selecting	 the	 10%	most	 abundant	 proteins	

matching	across	all	cell	lines.		

Identification	of	differentially	expressed	proteins	and	phosphosites	

We	first	applied	a	1-way	ANOVA	over	the	four	different	cell	lines.	Benjamini	&	Hochberg	FDR	[27]	was	

used	for	multiple	testing	corrections,	and	the	threshold	for	significance	was	set	to	0.01.	

Next,	 to	 characterize	 cell	 line	 specific	 protein/phosphosite	 expression,	 a	 t-test	 was	 applied	 to	

compare	the	expression	value	in	the	three	PC	cell	lines	(LNCaP,	DU145	and	PC3)	to	the	reference	non-

tumorigenic	PNT1A	cell	line.	Benjamini	&	Hochberg	FDR	[27]	was	used	for	multiple	testing	corrections,	

and	the	threshold	of	significance	set	to	0.1.		

Pairwise	comparisons	of	protein/phosphosite	expression	values	between	the	castration-sensitive	(CS:	

LNCaP)	and	the	castration-resistant	cell	lines	(CR:	DU145	and	PC3)	were	performed	with	a	t-test,	and	

the	 threshold	 of	 significance	 set	 to	 0.1	 after	 FDR	 multiple	 testing	 corrections.	 The	 results	 of	 the	

pairwise	 comparisons	 with	 the	 two	 CR	 cell	 lines	 were	 combined	 to	 define	 proteins/phosphosites	

always	significantly	up-	or	downregulated	in	CS	as	compared	to	CR.	

It	is	to	note	that	these	analyses	are	conducted	with	a	very	stringent	filter	that	select	only	proteins	and	

phosphosites	 with	 at	 least	 two	 over	 three	 valid	 quantification	 values	 in	 all	 four	 cell	 lines.	 In	 this	

context,	 the	 proteins	 identified	 only	 in	 the	 CR	 resistant	 or	 only	 in	 the	 CS	 sensitive	 contexts	 were	

discarded,	whereas	 they	 could	be	 considered	as	pertinent	biomarkers.	We	 then	also	 rescued	 these	

potential	 biomarkers	 as	 "CR_only"	 proteins	 and	 phosphosites,	 having	 at	 least	 two	 valid	 expression	

values	in	CR	and	strictly	none	in	CS	cell	lines	and	"CS_only"	proteins	and	phosphosites,	having	at	least	

two	valid	values	in	the	two	CS	cell	line	and	strictly	none	in	the	CR	cell	lines.	

Pathway	and	biological	process	analyses	

Functional	Enrichments	
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Enrichment	Analyses	were	conducted	with	G:Profiler	[28],	and	the	significance	threshold	set	to	0.01	

after	FDR	multiple	testing	corrections.	The	list	of	1	229	proteins	used	for	quantification	analyses	was	

used	 as	 statistical	 background.	 Additionally,	 the	 strong	 filter	 option	was	 selected	 on	 G:	 Profiler	 to	

display	 solely	 the	 most	 significant	 ontology	 in	 each	 ontological	 group,	 and	 reduce	 annotation	

redundancy.	

ROMA		

ROMA	 (Representation	 and	 Quantification	 of	 Module	 Activity)	 is	 a	 software	 focused	 on	 the	

quantification	 and	 representation	 of	 biological	 module	 activity	 using	 expression	 data	 [29].	 The	

reference	gene	sets	used	for	this	analysis	were	selected	from	pathway	databases	including	Reactome	

[30]	and	HALLMARK	[31].	For	each	of	these	pathways,	a	score	corresponding	to	the	weighted	sum	of	

the	protein	expression	was	computed.	The	weights	are	based	on	the	first	principal	component	(PC1).	

ROMA	quantifies	 the	 statistical	 significance	of	 the	amount	of	variance	explained	by	 the	PC1,	and	 is	

referred	to	as	the	gene	set	overdispersion.	Overdispersed	pathways	are	selected	based	on	a	p-value	

set	 to	 0.01,	 and	 the	 resulting	 list	 of	 pathways	 can	 be	 interpreted	 as	 the	 pathways	 that	 contribute	

significantly	 to	 the	 total	expression	variance.	A	detailed	presentation	of	 the	 computational	method	

and	use	of	software	can	be	found	at	[29].	For	this	study,	we	applied	on	the	proteomic	dataset	an	R	

implementation	of	ROMA	(https://github.com/Albluca/rRoma),	which	 is	an	 improved	version	of	 the	

initial	 software.	 The	 results	 are	 presented	 as	 a	 heatmap	where	 the	mean	 value	 of	 the	 scores	was	

computed	by	types	of	cancer	cell	lines:	CS	for	castration-sensitive	and	CR	for	castration-resistant,	and	

scaled	between	-1	and	1.			

Ingenuity	Pathway	Analysis	(IPA)	

Proteomic	 datasets	 were	 also	 analyzed	 with	 Ingenuity	 Pathway	 Analysis	 (IPA)	 software	 (Qiagen,	

http://www.ingenuity.com/)	 to	 predict	 pathway	 activation	 or	 inhibition.	 The	 IPA	 knowledgebase,	

derived	from	literature,	compute	a	score	based	on	one-tailed	Fisher	test.	The	final	score	corresponds	

to	the	negative	log	of	p-value,	and	thresholds	were	set	to	0.01.	

KSEA	

In	 order	 to	 use	 the	 KSEA	 App	 (https://casecpb.shinyapps.io/ksea/)	 [32]	 on	 the	 phosphoproteomic	

datasets,	 we	 computed	 the	 fold-changes	 (FC)	 between	 DU145	 and	 LNCaP,	 and	 between	 PC3	 and	

LNCaP,	 using	 the	 mean	 raw	 expression	 values	 of	 the	 replicates.	 We	 selected	 the	 sites	 where	 the	

expression	values	are	over	or	under-expressed	in	both	CR	cell	lines	in	comparison	with	LNCaP.	Finally,	

we	computed	the	mean	of	the	FC	for	the	337	Sites,	and	normalized	it	between	0	and	1.	
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We	used	this	list	of	sites	as	input	for	the	KSEA	App.	The	kinases	with	at	least	3	targeted	phosphosite	

substrates,	and	a	p-value	smaller	than	0.05	were	considered	as	significant.	

Network	analyses	

We	 constructed	 a	 network	 encompassing	 molecular	 complex	 interaction	 data	 by	 merging	 Corum	

complexes	 [33]	and	Hu.MAP	complexes	 [34].	This	network	contains	8	653	nodes	and	91	500	edges.	

Then,	we	fetched	interactions	between:	

	 -	Proteins	significantly	differentially	expressed	in	CR	versus	CS;	

	 -	Proteins	containing	phosphosites	significantly	differentially	expressed	in	CR	versus	CS;	

	 -	Proteins	and	proteins	containing	phosphosites	identified	only	in	CR	or	CS	contexts	(CR_only	

and	CS_only).		

Overall,	the	interactions	between	these	proteins	led	to	an	interaction	network	of	359	nodes	and	1	161	

edges,	including	a	large	connected	component	encompassing	194	nodes	and	1	098	edges	represented	

with	 Cytoscape	 [35].	 For	 visualization	 purposes,	 the	 expression	 values	 mapped	 on	 the	 network	 in	

figure	4	correspond	to	the	mean	of	the	expression	of	PC3	and	DU145	cell	lines.	

Results 

Proteomic	and	phosphoproteomic	profiles	of	prostate	cell	lines	

In	 order	 to	 elucidate	 prostate	 cancer	 progression	 and	 androgen	 escape	 pathway	 with	

proteomics	 and	 phosphoproteomics	 identification	 and	 quantification,	 we	 selected	 four	 widely	

exploited	 prostate	 cell	 lines,	 namely	 PNT1A,	 LNCaP,	 DU145	 and	 PC3	 for	 proteomic	 and	

phosphoproteomic	profiling	(Figure	1,	a).	These	cell	lines	are	routinely	used,	and	are	representative	of	

normal,	cancerous	and	castration-resistant	progression	of	prostate	cancer	(Figure	1,	b).	 	The	PNT1A	

benign	prostate	 cell	 line	was	established	by	 immortalizing	non-tumorigenic	human	prostate	benign	

epithelial	cells	by	transfection	with	the	SV40	large-T	antigen	gene	[36].	The	castration-sensitive	LNCaP	

cell	 line	 was	 established	 from	 metastatic	 deposit	 in	 a	 lymph	 node	 and	 demonstrates	 androgen	

sensitivity	[37].	Finally,	the	two	castration-resistant	tumor	cell	lines,	DU145	and	PC3,	were	established	

from	 metastatic	 deposits	 (bone/lumbar	 spine	 and	 central	 nervous	 system,	 respectively),	 lack	 the	

androgen	 receptor	 (AR)	 and	are	 androgen-independent.	Moreover,	 PC3	 cells	 are	more	 tumorigenic	

and	have	a	higher	metastatic	potential	than	DU145	[38].	It	is	to	note	that	the	benign	PNT1A	cell	line	
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also	 lacks	 the	 AR.	 The	 loss	 of	 AR	 and	 prostate-associated	markers	 (PSA	 and	 PAP)	 appears	 to	 be	 a	

consistent	 feature	of	 immortalized	cells	of	prostatic	origin,	observed	 in	SV40	 immortalized	cell	 lines	

such	as	PNT1A	[39].		

We	used	Stable	Isotope	Labelling	with	Amino	acids	in	Culture	(SILAC)	and	Mass	Spectrometry	

(MS)	to	identify	and	quantify	the	proteomes	of	these	four	cell	lines	[40,	41]	(Figure	1,	c,	Experimental	

Procedures).	We	elected	the	spike-in	super	SILAC	method	described	by	Geiger	et	al.	[18,	19].	 In	this	

protocol,	 the	 protein	 expression	 in	 each	 cell	 line	 is	 compared	 to	 the	 same	 reference	 proteome,	

thereby	maximizing	 the	number	of	detected	proteins.	We	 identified	3	219	proteins	 (Supplementary	

Table	1).	We	plotted	 the	median	 iBAQ	values	considering	all	 the	cell	 lines	 to	estimate	 the	absolute	

abundance	of	the	3	219	identified	proteins,	and	obtained	the	expected	S-shaped	distribution	covering	

six	 orders	of	 dynamic	 range	of	MS	 signals	 (Experimental	 procedures,	 Supplementary	 Figure	1).	 The	

most	 highly	 expressed	 proteins	 include	 the	 core	 histones,	 tubulins	 as	well	 as	 heat	 shock	 proteins.	

Both	the	most	abundant	proteins	detected	as	well	as	the	lowest	ones	have	been	previously	reported	

in	other	studies	with	a	similar	approach	[42].	
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Figure	1.	(a)	Prostate	cell	lines	used	in	the	present	study.	AR:	Androgen	Receptor.	(b)	Prostate	Cancer	(PCa)	

progression	over	time,	from	localized	asymptomatic	castration-sensitive	to	metastatic	castration-resistant	

disease.	(c)	SILAC	Cell	line	culture	preparation,	Spike-in	and	Mass	Spectrometry	analysis	of	the	proteomes	

and	phosphoproteomes.	Figure	adapted	from	Geiger	et	al.(39)	(d)	Hierarchical	clustering	of	the	proteomes	

and	(e)	phosphoproteomes	normalized	expression	data	in	the	four	cell	lines.	
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We	kept	 for	 further	 analysis	 only	 those	proteins	 containing	 at	 least	 two	 valid	quantification	

values	over	the	3	replicates	in	each	cell	line.	This	very	conservative	approach	avoids	imputing	missing	

values,	and	ensures	the	results	of	the	statistical	tests.	Doing	so,	we	used	for	subsequent	analyses	the	

quantitative	expression	data	of	1	229	proteins	(Supplementary	Table	1).	

A	similar	strategy	was	used	to	identify	and	quantify	phosphopeptides	(Experimental	procedures).	We	

identified	3	746	phosphosites,	of	which	563	were	kept	for	expression	analysis	considering	the	strong	

filters	 we	 defined	 (Supplementary	 Table	 2).	 These	 563	 phosphosites	 correspond	 to	 381	 proteins. 

Overall,	135	proteins	were	associated	with	quantitative	expression	values	both	at	the	proteomic	and	

phosphoproteomic	 levels,	with	a	correlation	ranging	 from	0.43	to	0.62	 in	each	of	 the	 four	cell	 lines	

(Supplementary	 Figure	 2).	 Therefore,	 the	 level	 of	 phosphorylation	 of	 a	 protein	 is	 not	 strictly	

correlated	to	its	level	of	expression,	but	might	also	reflect	its	activity	status.	

	 The	unsupervised	clustering	of	the	quantified	proteins	and	phosphosites	first	confirms	that	the	

cell	 line	 replicates	 cluster	 together	 (Figure	 1,	 d	 and	 e).	 In	 addition,	 we	 observed	 that	 the	 benign	

PNT1A	cell	 line	clusters	with	the	resistant	DU145.	The	genetic	 instability	associated	with	continuous	

propagation	 in	culture	 is	a	particular	problem	with	benign	 immortalized	cell	 lines	such	as	PNT1A,	 in	

which	the	insertion	of	viral	DNA	drives	the	cell	to	replicate	continuously	[43].	This	might	explain	why	

its	global	expression	patterns	may	be	similar	to	that	of	more	malignant	cell	lines.	

The	highly-expressed	housekeeping	proteome	

A	large	number	of	proteins	are	essential	in	all	the	cells,	suggesting	that	their	expression	is	crucial	for	

the	 maintenance	 of	 basic	 functionality	 and	 survival	 [44].	 These	 proteins	 are	 often	 called	

housekeeping.	 We	 focused	 here	 on	 the	 top	 10%	 most	 expressed	 proteins	 in	 each	 cell	 line,	

corresponding	to	321	proteins.	Among	those	321	highly	expressed	proteins,	257	are	common	to	the	

four	cell	 lines	 (Experimental	Procedures,	Supplementary	Table	3).	This	means	 that	80%	of	 the	most	

expressed	proteins	are	the	same	in	all	the	four	cell	lines	studied	here,	and	can	thereby	be	defined	as	

the	highly-expressed	housekeeping	proteome.	

This	 housekeeping	 proteome	 is	 enriched	 in	 functions	 related	 to	 RNA	metabolism	 and	 response	 to	

oxidative	 stress	 (functional	 enrichments	 with	 G:Profiler	 [28],	 Experimental	 Procedures	 and	

Supplementary	 Table	 5).	 It	 contains	 for	 instance	many	 RNA	 binding	 proteins	 (mainly	 from	 the	 RPS	

family)	 and	 structural	 constituents	 of	 the	 ribosome.	 Eight	 members	 of	 the	 eukaryotic	 chaperonin	

TriC/CCT	complex	are	also	highly	abundant	in	all	the	four	cell	lines	studied.	
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LNCaP,	DU145	and	PC3	cancer	cell	lines	characterization	

In	a	second	step,	we	focused	on	the	differences	between	the	cell	lines.	We	first	conducted	an	ANOVA	

analysis	 to	 identify	the	proteins	and	phosphosites	with	the	most	variation	among	the	four	cell	 lines	

(Experimental	 Procedures).	 46	 proteins	 and	 13	 phosphosites	 (corresponding	 to	 13	 proteins)	 are	

varying	significantly	among	the	four	cell	lines	(FDR	<	0.01,	Supplementary	Tables	3	and	4).	Almost	half	

of	the	46	ANOVA-significant	proteins	play	a	role	in	stress	response	(e.g.,	DNAJB1,	VDAC1,	ZYX,	TCEB1),	

several	are	involved	in	actin	cytoskeleton	organization	(e.g.,	ACTN1,	RHOA,	PLS3),	and	15	proteins	are	

associated	with	RNA	binding	 (e.g.,	 CCT6A,	NOP2,	OCT3,	HNRNPA2B1).	 Among	 the	 13	proteins	with	

phosphosites	associated	with	ANOVA-significant	variations	in	the	four	cell	lines,	five	are	cell-adhesion	

molecule	binding	(SEPT9,	AHNAK,	TNKS1BP1,	SCRIB,	TAGLN2).	Of	note,	Septin-9	(SEPT9),	a	filament-

forming	cytoskeletal	GTPase,	presents	 significant	variations	across	 the	cell	 lines	both	at	 the	protein	

and	 Serine-30	 phosphosite	 levels	 (Supplementary	 Figure	 3).	 SEPT9	 has	 been	 shown	 to	 be	 highly	

expressed	in	PC	and	positively	correlates	with	malignant	progression	[45].	

Interestingly,	 two	 highly	 expressed	 housekeeping	 proteins	 are	 associated	 with	 phosphosites	

differentially	expressed	between	 the	 four	 cell	 lines	according	 to	 the	ANOVA	analysis.	 First,	 TAGLN2	

presents	 a	 significant	 variation	 in	 the	 Serine-163	 expression.	 In	 liver	 cancer,	 this	 protein	 has	 been	

reported	as	a	putative	tumor	suppressor	and	the	involvement	of	its	phosphorylation	in	actin	binding	

and	cell	migration	has	been	demonstrated	[46].	Second,	HNRNPA1,	involved	in	the	packaging	of	pre-

mRNA,	 is	 highly	 expressed	 in	 the	 four	 cell	 lines,	 but	 also	 shows	 a	 significant	 differential	

phosphorylation	in	the	Serine-6.	To	our	knowledge,	a	role	for	HNRNPA1	phosphorylation	in	PC	has	not	

been	described	previously.	

In	 order	 to	 provide	 insights	 into	 the	 cellular	 mechanisms	 that	 are	 involved	 in	 cell	 malignant	

transformation,	we	then	compared	protein	and	phosphosite	expressions	of	each	of	the	three	cancer	

cell	 lines	 (LNCaP,	 DU145	 and	 PC3)	 to	 the	 benign	 PNT1A	 cell	 line	 (Experimental	 Procedures).	 On	 a	

global	scale,	LNCaP	clusters	apart	and	appears	to	be	the	most	divergent	cell	line	(Figure	1,	d).	LNCaP	

cells	display	226	up-	and	219	downregulated	proteins	as	compared	to	PNT1A	(Supplementary	Table	

3).	 Functional	 enrichment	 analyses	 reveal	 that	 the	 proteins	 upregulated	 in	 LNCaP	 are	 related	 to	

cellular	 metabolism	 (Figure	 2,	 a,	 Supplementary	 Table	 5).	 The	 association	 of	 tumorigenesis	 and	

metabolism	 is	well	established;	 it	 is	not	 surprising	 that	a	cancer	cell,	 in	order	 to	meet	 its	 increased	

requirements	of	proliferation,	displays	fundamental	changes	 in	pathways	of	energy	metabolism	and	
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nutrient	 uptake	 [47].	 In	 contrast,	 the	proteins	downregulated	 in	 LNCaP	as	 compared	 to	PNT1A	are	

enriched	 in	 cell	 recognition	 and	 protein/RNA	 localization	 processes.	 Protein	 and	 RNA	 localization	

mechanisms	 have	 shown	 to	 play	 pivotal	 roles	 for	 the	 presence	 of	 specific	 protein	 components	 in	

cancer	cell	protrusions,	involved	in	cell	migration	and	invasion	[48].	Cell	recognition	is	one	of	the	ways	

that	 cells	 communicate	 with	 each	 other	 and	 their	 environment	 (adhesion	 proteins,	 surface	

molecules);	loss	of	cell	recognition	has	been	shown	to	lead	to	cancer	development	[49].	IPA	analysis	

(Experimental	Procedures)	confirmed	a	high	metabolic	activity	in	LNCaP,	in	particular	an	upregulation	

of	 TCA	 cycle	 for	 aerobic	 respiration.	 It	 further	 delineates	 a	 downregulation	 in	 the	 RAN	 signaling	

pathway,	central	to	the	nucleo-cytoplasmic	transport,	with	seven	downregulated	proteins,	 including	

RAN	and	its	regulator	RANBP1,	four	importins	and	one	exportin	(Supplementary	Table	5).		

The	resistant	cell	line	DU145	presents	80	up-	and	92	downregulated	proteins	as	compared	to	PNT1A.	

Upregulated	proteins	are	enriched	in	transport	and	cellular	organization	processes.	Moreover,	61/80	

proteins	upregulated	in	DU145	are	annotated	as	extracellular	proteins.	By	contrast,	we	observed	that	

proteins	 downregulated	 in	 DU145	 as	 compared	 to	 PNT1A	 are	 enriched	 in	 cellular	 respiration	 and	

protein/RNA	localization	(Figure	2,	b,	Supplementary	Table	5).	IPA	analysis	confirmed	an	upregulation	

of	actin	and	Rho	signaling	and	a	downregulation	of	TCA	cycle	for	aerobic	respiration.	

Finally,	 the	 most	 tumorigenic	 cell	 line,	 PC3,	 displays	 180	 up-	 and	 158	 downregulated	 proteins	 as	

compared	to	PNT1A.	The	upregulated	proteins	are	enriched	in	vesicle-mediated	transport,	as	it	is	the	

case	 for	 the	 other	 resistant	 cell	 line	 DU145	 (Figure	 2,	 c,	 Supplementary	 Table	 5).	 In	 recent	 years,	

several	publications	have	proposed	vesicle-mediated	transport	as	a	mechanism	to	explain	the	transfer	

of	resistance	to	drugs	among	tumorigenic	cells	[50].	In	addition,	many	proteins	upregulated	in	PC3	are	

localized	 in	 the	 extracellular	 exosome.	 The	 proteins	 downregulated	 in	 PC3	 are	 enriched	 in	 toxin	

transport	 and	protein-RNA	 localization	processes.	 These	 functional	 enrichments	 are	 complemented	

by	 the	 IPA	 analysis	 that	 revealed	 strong	 enrichment	 in	 epithelial	 adherence	 junction	 annotation	

among	the	upregulated	proteins	in	PC3.	
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Figure	2	Functional	Enrichments	of	proteins	up-	and	downregulated	in	PC	cell	 lines.	Bar	graphs	represent	relative	fold	change	of	Gene	

Ontology	Biological	Processes	among	(a)	LNCaP,	(b)	DU145,	(c)	PC3	upregulated	proteins	(red	bars)	and	downregulated	proteins	(green	

bars),	as	compared	to	PNT1A	cells.	Significance	is	represented	in	the	dot	plot	by	–log	(P-values).	

	

	

155



	

Page	18	of	33	

18	

Overall,	we	identified	13	proteins	upregulated	and	19	proteins	downregulated	together	in	LNCaP,	

DU145	 and	 PC3	 cells	 as	 compared	 to	 PNT1A	 (Supplementary	 Table	 3).	 We	 propose	 that	 these	

proteins,	 differentially	 expressed	 in	 the	 PC	 cell	 lines	 as	 compared	 to	 the	 benign	 cell	 line,	 could	

constitute	markers	of	oncogenic	 transformation.	The	upregulated	proteins	are	almost	all	annotated	

for	 secretion	and	exosomes	 (e.g.,	RAB5B,	RAB7A,	RPL36A,	NES,	SRI).	 It	has	been	 recently	described	

that	exosomes	derived	from	PC	cells	modulate	the	prostatic	tumor	adjacent	environment	by	inducing,	

among	 others,	 tumor-associated	 target	 cells	 growth	 [51].	 Among	 the	 19	 downregulated	 proteins,	

several	are	annotated	for	regulation	of	protein	stability	and	chaperone-mediated	protein	folding,	and	

almost	 half	 are	 involved	 in	 DNA	 metabolism.	 Overall,	 many	 proteins	 of	 the	 chaperonin	 TriC/CCT	

folding	 complex,	which	were	 observed	 as	 highly	 abundant	 in	 all	 cell	 lines	 and	 thereby	 classified	 as	

housekeeping,	 are	 also	 underexpressed	 in	 the	 three	 cancer	 cell	 lines	 as	 compared	 to	 PNT1A.	 The	

TriC/CCT	 chaperonin	 complex	 directly	 modulates	 the	 folding	 and	 activity	 of	 as	 many	 as	 10%	 of	

cytosolic	client	proteins	[52,	53].	Recently,	the	TRiC/CCT	complex	was	also	shown	to	be	required	for	

maintaining	the	wild-type	conformation	of	the	tumor	suppressor	p53	[54].	The	downregulation	of	this	

chaperone	complex	could	promote	the	oncogenic	functions	of	p53,	such	as	cancer	cell	migration	and	

invasion.	

We	reproduced	the	cell	 line	characterization	protocol	 for	phosphosites,	 thereby	 identifying	146	up-	

and	98	downregulated	phosphosites	in	LNCaP,	5	up-	and	3	down	in	DU145,	and	82	up-	and	44	down	in	

PC3,	 as	 compared	 to	 PNT1A.	 No	 functional	 enrichments	 were	 significant	 for	 the	 corresponding	

proteins.	Nevertheless,	two	proteins	are	associated	with	phosphosites	significantly	deregulated	in	all	

three	 PC	 cell	 lines	 as	 compared	 to	 PNT1A.	 First,	 TP53BP1	 (tumor	 protein	 p53	 binding	 protein	 1)	

phosphosites	 Serine-500	 and	 Threonine-1056	 are	 downregulated	 in	 LNCaP.	 TP53BP1	 Serine-500	

phosphosite	is	also	downregulated	in	DU145,	and	the	Threonine-1056	phosphosite	downregulated	in	

PC3,	 as	 compared	 to	 PNT1A.	 This	 TP53BP1	 protein	 is	 well	 known	 to	 be	 involved	 in	 DNA	 Damage	

Response	 (DDR)	 and	 its	 phosphorylation	 could	 be	 a	 marker	 of	 malignant	 transformation	 [55].	

Previously	 published	 studies	 described	 TP53BP1	phosphorylation	necessary	 for	 recruitment	 to	DNA	

double	strand	breaks	(DSB)	[56].	In	this	context,	a	downregulation	of	TP53BP1	phosphorylation,	as	we	

observed	in	the	three	PC	cell	lines,	could	lead	to	impaired	DDR.	Second,	the	DEAD-box	RNA	helicase	

10	 (DDX10)	 Serine-539	 phosphosite	 is	 significantly	 upregulated	 in	 LNCaP,	 DU145	 and	 PC3	 as	

compared	to	PNT1A.	DDX10	 is	an	ATP-dependent	RNA	helicase	 [57],	but,	 to	our	knowledge,	 little	 is	

known	about	its	phosphorylation	and	function	in	cancer.	Other	members	of	the	same	family	of	RNA	

156



	

Page	19	of	33	

19	

helicases	have	been	well	described,	and	the	phosphorylation	of	DDX	p68	is	reported	to	be	associated	

with	cancer	development	and	cell	proliferation	[58].	Interestingly,	the	phosphosite	Serine-539	that	we	

identified	as	upregulated	in	PC	cell	lines	is	one	of	the	known	post-translational	DDX	modification	sites	

[59].	Thus,	our	approach	allowed	us	 identifying	a	well-known	cancer-related	phosphosite,	as	well	as	

another	potential	new	candidate.	

Identification	of	Resistance	markers		

One	 of	 the	 features	 of	 PC	 is,	 in	 most	 cases,	 its	 progression	 to	 highly	 aggressive	 and	 incurable	

castration	 resistant	 (CR)	 disease	 after	 androgen	 deprivation	 therapy.	 Identifying	 resistance	

biomarkers	 is	 essential	 to	 guide	 the	 development	 of	 new	 therapeutic	 strategies	 and	 avoid	 drug	

resistance.	In	order	to	identify	proteins	and	processes	potentially	involved	in	resistance,	we	compared	

the	protein	expression	levels	in	LNCaP	cell	line	(castration-sensitive,	CS)	with	DU145	and	PC3,	the	two	

castration-resistant	cell	lines	(CR).	We	found	135	proteins	upregulated	and	135	downregulated	in	CR	

as	 compared	 to	CS	 cell	 lines,	 and	propose	 them	as	 resistance	biomarkers	 (Supplementary	Table	3).	

Protein	biomarkers	upregulated	 in	the	CR	contexts	are	functionally	enriched	 in	processes	related	to	

cell-cell	adhesion	and	external	communication	(Figure	3,	a,	Supplementary	Table	5).	This	finding	is	in	

accordance	with	previously	published	 studies	demonstrating	 the	 involvement	of	 these	processes	 in	

invasion	and	metastasis,	features	for	which	CR	cells	have	a	higher	potential	[60].	Conversely,	proteins	

downregulated	 in	 CR	 are	 enriched	 in	 cellular	 respiration	 and	 protein	 maturation	 processes.	 The	

downregulation	of	 cellular	 respiration	 in	 the	CR	 context	 could	highlight	 the	Warburg	effect	 [61],	 in	

which	castration-resistant	progression	would	be	associated	with	a	switch	from	oxidative	respiration	to	

glycolysis	 as	 primary	 energy	 source.	 The	 ROMA	 pathway	 analysis	 tool	 [29]	 also	 points	 to	 a	

downregulation	 in	CR	 cells	of	oxidative	phosphorylation	and	metabolic	pathways	 such	as	 fatty	 acid	

metabolism,	as	well	as	signaling	pathways	related	to	p53	and	apoptosis	 (Figure	3,	b).	Conversely,	 it	

reveals	an	upregulation	of	the	epithelial-mesenchymal	transition	(EMT)	and	reactive	oxygen	species	

(ROS)	 pathways.	 EMT	 refers	 to	 the	 morphological	 and	 functional	 alterations	 involved	 in	 cancer	

invasion	[62].	Finally,	IPA	analysis	points	to	an	upregulation	of	actin	cytoskeleton	and	Rho	signaling	in	

CR	cells,	and	further	identifies	an	upregulation	of	Integrin	Signaling	and	Calpain	protease	signaling.	
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Figure	 3	 Functional	 Enrichments	 of	 protein	 resistance	 biomarkers.	 (a)	 Bar	 graphs	 represent	 relative	 fold	 change	 of	 Gene	 Ontology	

Biological	Processes	among	proteins	upregulated	(red	bars)	and	downregulated	(green	bars)	in	Castration	Resistant	cell	lines	DU145	and	

PC3	 as	 compared	 to	 castration-sensitive	 LNCaP	 cell	 line.	 Significance	 is	 represented	 in	 the	 dot	 plot	 by	 –log	 (P-values).	 (b)	 Clustered	

heatmap	 of	 ROMA	 pathway	 analysis.	 The	 color	 intensities	 correspond	 to	 the	 values	 of	 the	 scores	 of	 each	 signaling	 pathway	 (red,	

upregulated;	green,	downregulated).	
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Phosphoproteomics	data	reveal	41	phosphosites	upregulated	and	40	downregulated	in	CR	versus	CS,	

which	 we	 also	 predict	 as	 resistance	 biomarkers	 (Supplementary	 Table	 4).	 The	 41	 upregulated	

phosphosites	 concern	 essentially	 nuclear	 proteins	 involved	 in	 functions	 such	 as	 transcription	

regulation,	 genome	 stability	 and	 RNA	 processing	 (e.g.,	 SMARCC1,	 SRRM1,	 SRRM2,	 SSB).	 The	

deregulation	of	these	processes,	and	their	 implication	in	cancer	development	and	progression,	have	

been	 largely	 documented	 [63].	 	 Moreover,	 2	 kinases	 are	 hyper-phosphorylated	 in	 the	 resistant	

context.	First,	the	Serine/threonine-protein	kinase	N2	(PKN2),	which	plays	a	role	in	the	regulation	of	

cell	cycle	progression,	actin	cytoskeleton	assembly,	cell	migration,	cell	adhesion,	tumor	cell	 invasion	

and	transcription	activation	signaling	processes.	 It	was	recently	shown	to	be	phosphorylated	by	the	

PI-3	Kinase	pathway	and	implicated	in	prostate	cancer	progression	[64].	Second,	the	nuclear	receptor	

binding	protein	(NRBP1),	which	is	involved	in	subcellular	ER-Golgi	trafficking.	To	our	knowledge,	a	role	

of	its	phosphorylation	status	in	prostate	cancer	has	not	been	described	previously.	

The	40	downregulated	phosphosites	concern	mainly	proteins	involved	in	cell	migration	and	invasion,	

such	as	PLEC,	AHNAK,	ESYT1	and	ZYX.	A	group	of	kinases	sharing	the	same	identified	peptide	and	that	

consequently	 cannot	 be	 distinguished	 with	 the	 MS	 experiment	 (CDK2;CDK3;CDK1;CDC2)	 shows	 a	

decrease	in	phosphorylation	activity	in	the	CR	context.		

Kinase-Substrate	 Enrichment	 Analysis	 (KSEA	 [32],	 Experimental	 Procedure)	 predicted	 from	 these	

phosphosite	 expression	 profiles	 the	 high	 activity	 of	 3	 kinases,	 namely	 CDK1,	MAPK13	 and	MAPK3,	

with	9,	4	and	3	targeted	phosphosites	that	present	significant	changes	in	the	CR	context,	respectively	

(Supplementary	Table	4).	For	instance,	the	Serine-25	and	Serine-38	of	the	stathmin	protein	(STMN1)	

are	 targets	 of	 the	 three	 kinases.	 The	 STMN1	 protein	 displays	 a	 complex	 pattern	 of	 activity	 and	

phosphorylation	 in	 cancers	 [65].	 The	 sequestosome	1	protein	 (SQSTM1)	Threonine-269	and	Serine-

272	are	targets	of	both	CDK1	and	MAPK13.	

Another	 interesting	 set	 of	 putative	 biomarkers	 can	be	derived	 from	 the	proteins	 and	phosphosites	

that	 have	 been	 identified	 in	 the	 MS	 experiment,	 but	 that	 were	 not	 further	 considered	 for	

quantification	analyses	because	of	the	strong	filtering	criteria	we	have	defined.	We	thus	rescued	the	

proteins	and	phosphosites	that	have	been	identified	in	at	least	2	replicates	in	the	CS	cell	line	but	that	

are	completely	absents	 in	the	CR	cell	 lines,	and	vice-versa	(Experimental	Procedures).	This	concerns	

140	proteins	and	5	phosphosites	that	are	identified	only	in	the	CR	cell	 lines,	and	8	proteins	and	108	

phosphosites	that	are	identified	only	in	the	CS	cell	line.	Focusing	particularly	on	kinases,	8	of	them	are	

identified	 only	 in	 the	 CR	 cell	 lines	 (CALM1,	 EGFR,	 EIF2AK2,	 EPHA2,	HK2,	 PIK3R4,	 PPP4C,	 ROCK2).	 A	
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majority	of	 these	kinases	are	 involved	 in	 response	 to	 stress.	Two	other	kinases	are	associated	with	

phosphosites	identified	only	in	the	CR	contexts	(PRPF4B,	TAOK1).		TAOK1	is	particularly	appealing	as	it	

activates	the	Hippo	pathway	involved	in	cellular	homeostasis	[66].	

Proteome	and	phosphoproteome	integration	in	a	molecular	network	

We	 finally	 sought	 to	provide	a	 larger-scale	 functional	 interpretation	of	 resistance-associated	

candidate	 biomarkers.	 The	 separated	 analysis	 of	 the	 proteomics	 and	 phosphoproteomics	 datasets	

provided	 one-dimensional	 views	 of	 cellular	 processes.	 We	 expect	 to	 obtain	 a	 comprehensive	

perspective	 of	 cellular	 processes	 and	 their	 interplays	 by	 integrating	 the	 information	 about	 protein	

abundances,	 activation	 status	 and	molecular	 interactions	 [67,	 68].	 Toward	 this	 goal,	 we	 devised	 a	

network-guided	 integration	of	CS	and	CRPC	cell	 lines	proteome	and	phosphoproteome,	by	mapping	

the	 candidate	 biomarkers	 to	 molecular	 complex	 interaction	 data	 (Experimental	 Procedures).	 The	

resulting	network	is	composed	of	356	nodes	and	1	161	edges,	including	a	large	connected	component	

encompassing	194	nodes	and	1	098	edges	(Figure	4).	The	network	reveals	the	links	between	up-	and	

downregulated	proteins,	up-	and	downregulated	phosphosites	and	corresponding	proteins,	as	well	as	

the	links	between	the	proteins	and	phosphosites	that	were	identified	by	the	MS	approach	only	in	the	

CR	or	CS	contexts.	At-a-glance,	we	can	observe	that	the	network	is	organized	around	several	strongly	

connected	subnetworks.	

First,	 we	 identified	 a	 cell	 migration/invasion	 subnetwork,	 which	 is	 composed	 mainly	 of	

upregulated	 proteins	 in	 CR	 cells	 (e.g.,	 ANXA2,	 IQGAP1,	 ACTN4,	 TWF1,	 MYO1B,	 CORO1C,	 ARPC4)	

(Figure	 4).	 It	 contains	 in	 particular	 the	 plectrin	 protein	 (PLEC),	 overexpressed	 and	 hyper-

phosphorylated	 in	CR;	 this	protein	 is	known	to	 interlink	cytoskeleton	elements	and	promote	cancer	

cell	 invasion	 and	 migration	 [69].	 Indeed,	 it	 was	 shown	 that	 along	 with	 vimentin	 intermediate	

filaments,	 plectrin	 provide	 a	 scaffold	 for	 invadopodia	 formation,	 facilitating	 cancer	 cell	 invasion	

extravasation	for	metastasis	[70].	Recently,	Burch	et	al.	demonstrated	that	upregulation	of	vimentin	

and	 plectrin	 expressions	 positively	 correlates	 with	 the	 invasion	 and	 metastasis	 of	 androgen-

independent	 PC	 cells	 [71].	 Another	 interesting	member	 of	 this	 complex	 is	 ACTG1	 (actin	 gamma-1),	

which	 is	 not	 identified,	 and	 thereby	might	 be	 not	 expressed,	 in	 CS	 cells.	 ACTG1	 is	 involved	 in	 cell	

motility/cytoskeleton	maintenance	and	cancer	cell	migration.	ACTG1	was	shown	to	induce	cancer	cell	

migration	 in	 lung	 cancer	 cells	 and	 hepatocellular	 carcinoma	 cells	 [72].	 To	 date,	 there	 is	 no	 report	

concerning	 ACTG1	 involvement	 in	 PC.	 The	 subnetwork	 also	 contains	 components	 of	 the	 Arp2/3	
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complex	(ARPC1B,	ARPC3,	ARPC4)	involved	in	the	regulation	of	actin	polymerization.	

A	smaller	subnetwork,	composed	of	 interactions	between	EZR,	MSN,	SLC9A3R1	and	EGFR,	 is	

located	 close	 to	 the	 larger	 migration	 subnetwork.	 Ezrin	 (EZR)	 and	 moesin	 (MSN)	 are	 scaffolding	

proteins	 that	 are	 involved	 in	 crosslinking	 cytoskeletal	 and	membrane	 proteins.	 Ezrin	 is	 involved	 in	

oncogenesis	 through	these	 interactions	 [73],	and	 it	was	also	shown	recently	 that	Ezrin	can	 increase	

the	 oncogenic	 functions	 of	 EGFR	 [74].	 SLC9A3R1	 is	 also	 a	 scaffold	 protein	 that	 connects	 plasma	

membrane	 proteins	 with	 members	 of	 the	 ezrin/moesin/radixin	 family	 linking	 them	 to	 the	 actin	

cytoskeleton	and	regulating	their	surface	expression[75].	

We	also	 identified	 a	 small	 subnetwork	of	 interacting	proteins	 involved	 in	 actin	 cytoskeleton	

regulation	 (e.g.,	 STMN1,	 CDC42,	 CRLK1).	 Intriguingly,	 we	 found	 that	 stathmin1	 (STMN1)	 was	 both	

hyper-	 and	 hypo-phosphorylated	 in	 CR	 cells.	 This	 protein	 is	 associated	with	 cancer	metastasis	 and	

exhibits	a	complicated	phosphorylation	pattern	in	response	to	various	extracellular	signals	[76].		
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We	 next	 focused	 on	 a	 small	 subnetwork	 composed	 of	 proteins	 underexpressed	 in	 the	 CR	

context.	It	contains	prohibitin	(PHB),	a	putative	tumor	suppressor	protein	involved	in	the	inhibition	of	

DNA	 synthesis	 and	 regulating	 proliferation,	 and	 prohibitin-2	 (PHB2),	 a	 mediator	 of	 transcriptional	

repression	 by	 nuclear	 receptors,	 also	 potentially	 involved	 in	mitochondrial	 respiration.	 Indeed,	 the	

subnetwork	 also	 contains	 the	 VDAC1	 mitochondrial	 membrane	 and	 plasma	 membrane	 channel,	

involved	 in	 apoptosis.	 The	 role	 of	 this	 subnetwork	 is	 unclear,	 but	 the	 proteins	 are	 depicted	 as	

members	 of	 the	 same	 complexes	 in	 the	 Hu.map	 dataset	 [34].	 The	 subnetwork	 is	 tightly	 linked	 to	

another	subnetwork	containing	many	mitochondrial	membrane	ATP	synthase	proteins	(e.g.,	ATP5F1,	

ATP5B,	ATP5H),	also	downregulated	in	CR	cell	lines.	

	

A	 heterogeneous	 subnetwork	 is	 composed	 of	 many	 proteins	 involved	 in	 splicing	 and	 RNA	

processing,	 that	are	either	up-	or	downregulated	 in	CR	cells	 (Figure	4).	Splicing	events	control	gene	

expression	and	their	alterations	have	been	shown	to	play	a	role	in	cancer	[77]	and	specifically	 in	PC	

[78].	 	 Fine	 regulation	 of	 expression	 and/or	 phosphorylation	 status	 determines	 whether	 a	 splicing	

	

Figure	4	Network	of	CR	biomarker	interactions.	Proteins	(boxes)	and	phosphosites	(triangles)	significantly	upregulated	or	downregulated	

in	the	CR	contexts	are	mapped	in	red	or	green,	respectively,	with	color	intensities	related	to	fold-changes.	For	visualization	purposes,	the	

expression	values	correspond	to	the	mean	of	the	expression	of	PC3	and	DU145	cell	lines.	Proteins	and	phosphosites	identified	only	in	CR	

(DU145	and	PC3)	or	CS	(LNCaP)	cells	lines	are	squared	in	red	and	green,	respectively.		
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factor	 functions	 as	 a	 splicing	 repressor	 or	 activator	 [79,	 80].	 The	 subnetwork	 contains	 the	 hypo-

phosphorylated	 splicing	 factors	 SRRM1	 (a	 highly	 phosphorylated	 protein	 under	 normal	 conditions	

[81])	 and	 SRRM2.	 It	 also	 contains	NCBP1,	which	 is	 identified	 as	hyper-phosphorylated,	 and	PRPF4B	

kinase	and	SPEN	that	were	both	hypo-phosphorylated.	The	subnetwork	also	incorporates	pre-mRNA	

splicing	factor	SYF2,	absent	in	CR	cells,	and	SF3A1,	TRAP1	and	HSPD1	proteins	that	are	downregulated	

in	CR	cells.	The	protein	phosphatase	1	(PPP1CA)	 is	contrarily	upregulated.	 Interestingly,	we	can	also	

observe	many	proteins	identified	in	the	CR	cell	lines	and	absent	in	the	CS	cell	line,	all	involved	in	RNA	

processing	and	splicing	(IK,	ZNF207,	CTNNBL1,	CRNKL1,	SF3B4,	HTATSF1,	PHF5A,	PPP1R10).	PPP1R10,	

the	Ser/Thr-protein	phosphatase-1	regulatory	subunit	10	is	only	expressed	in	CR	cells	and	is	absent	in	

CS	 cells.	 It	 has	 been	 shown	 that	 certain	 Ser/Thr-specific	 protein	 phosphatases	 are	 required	 for	

catalytic	steps	of	pre-mRNA	splicing	[82].		

We	then	emphasize	a	large	and	highly	connected	component	(Figure	4)	composed	of	proteins	

implicated	in	DNA	damage	response.	It	contains	protein	biomarkers	downregulated	in	CR	cells	(NPM1,	

NOLC1,	 RPL22L1,	 FBL,	G3BP2),	 but	 also	 several	 proteins	 identified	only	 in	 the	CR	 cell	 lines,	 namely	

H2AFX,	 kinase	 CALM1,	 DDX47,	 UTP20,	 USP10,	 BYSL.	 All	 these	 proteins	 interact	 with	 single-strand	

DNA-binding	protein	and	are	involved	in	DNA	repair	and	genome	stability	[83].	DNA	repair	and	DNA	

damage	 response	 are	 known	 to	 be	 defective	 in	 PC	 and	 lead	 to	 genome	 instability	 [84,	 85].	

Interestingly,	 several	 of	 the	 proteins	 of	 this	 subnetwork	 (e.g.,	 UTP20,	 BYSL,	 RPL22L1,	 NOLC1)	 are	

known	for	their	role	in	RNA	processing.	There	is	an	increasing	number	of	studies	demonstrating	the	

involvement	 of	 RNA	 processing	 factors	 in	 DNA	 damage	 response	 [86,	 87].	 For	 instance,	 NOLC1	

(nuclear	and	coiled-body	phosphoprotein-1)	is	a	regulator	of	RNA	polymerase	I	and	has	been	recently	

shown	to	regulate	the	nucleolar	retention	of	TERF2,	inducing	telomeric	DNA	damage	[88].	

A	 closer	 look	 into	 this	molecular	 network	 allowed	us	 to	 pinpoint	 several	 interesting	 smaller	

subnetworks.	 For	 instance,	we	noticed	 a	 small	 subnetwork	 composed	of	 interacting	proteins	RELA,	

IKBKAP,	GLG1,	KPNA3,	KPNA4.	Importin	subunits	alpha-4	(KPNA3)	and	alpha-3	(KPNA4)	are	involved	in	

nuclear	transport	of	NF	kappa	B	[89],	and	an	elevated	activity	of	the	NF-kappa	B	signaling	in	CRPC	is	

positively	correlated	with	poor	prognosis	in	CRPC	[90].	Close	to	this	subnetwork,	GATAD2B	is	known	

to	 form	 a	 homodimer	 with	 GATAD2A	 and	 the	 complex	 is	 part	 of	 a	 highly	 conserved	 chromatin-

remodeling	 complex,	 the	 NuRD	 complex	 associated	 with	 DNA	 damage-induced	 transcription	

repression	 but	 also	 metastasis	 and	 EMT	 [91,	 92].	 This	 subnetwork	 is	 also	 linked	 to	 the	 SWI/SNF	

complex	 subunit	 SMARCC1,	 which	 contains	 downregulated	 phosphosites	 in	 PC3	 and	 DU145	 cells.	
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SMARCC1	positively	 regulates	 transcription	and	was	previously	 shown	 to	 induce	PC	 survival	 [93].	 It	

interacts	 with	 proteins	 associated	 with	 phosphosites	 only	 detected	 in	 CS	 cells	 	 (transcriptional	

elongation	 factor	 TRIM28,	 transcription	 kinase	 BAZ1B	 and	 TOP2B),	 as	 well	 as	 with	 proteins	 only	

expressed	 in	 PC3	 and	 DU145	 cells	 (e.g.,	 GATAD2B,	 GTF2F1),	 all	 involved	 directly	 or	 indirectly	 in	

transcription	 regulation.	 The	 transcriptional	 reprogramming	 in	 PC	progression	has	been	extensively	

studied,	as	it	is	one	of	the	hallmarks	of	CRPC	[3,	94-96].		

Conclusion 
The	complex	nature	of	PC,	due	to	 its	clinical	and	molecular	heterogeneities,	makes	 it	difficult	to	

determine	 a	 perfect	 model	 representing	 tumor	 development,	 and	 precludes	 easy	 correlation	 of	

carcinoma	cell	 lines	with	specific	 stages	of	PC.	Nevertheless	PC	cell	 lines	 routinely	used	 for	 the	 last	

three	decades	have	provided	a	valuable	resources	for	understanding	important	functional	molecular	

mechanisms	 involved	 in	 this	disease.	 In	 the	present	 study,	we	used	 four	 cell	 lines	 that	 constitute	a	

gold	 standard	 for	 pre-clinical	 studies	 of	 PC	 progression,	 hypothesizing	 that	 they	 would	 be	 a	more	

homogeneous	 system	as	 compared	 to	 tumor	 tissues	 [97].	We	 conducted	a	 large	 SILAC-based	Mass	

Spectrometry	 identification	and	quantification	of	peptides	and	phosphopeptides	of	prostate	benign,	

castration-sensitive	(CS)	and	castration-resistant	(CR)	cells,	and	characterized	housekeeping,	cell	line,	

cancer	and	resistance	associated	proteomes	and	phosphoproteomes.	

Supplementary	Information	

-	Supplementary	Table	1	

Proteins	 identified	 in	 the	MS	experiment,	 and	 subset	of	 filtered	proteins	 associated	with	at	 least	2	
valid	quantification	values	in	all	four	cell	lines,	which	were	kept	for	expression	analyses.	

-	Supplementary	Table	2	

Phosphosites	identified	in	the	MS	experiment,	and	subset	of	filtered	phosphosites	associated	with	at	

least	2	valid	quantification	values	in	all	four	cell	lines,	which	were	kept	for	expression	analyses.	

-	Supplementary	Table	3	

Subdatasets	of	interest	in	proteomic	expression	analyses.	It	contains	the	ANOVA-significant	proteins,	
the	proteins	up-	and	downregulated	in	the	three	Prostate	Cancer	(PCa)	cell	lines	as	compared	to	the	
benign	 PNT1A	 cell	 line,	 the	 proteins	 up-	 and	downregulated	 in	 the	 castration-resistant	 (CR:	DU145	
and	 PC3)	 cell	 lines	 as	 compared	 to	 the	 castration-sensitive	 (CS:	 LNCaP)	 cell	 line,	 and	 the	 proteins	
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identified	only	in	the	CR	or	CS	contexts	(CR_only,	CS_only).	

-	Supplementary	Table	4	

Subdatasets	of	 interest	 in	phosphoproteomic	expression	analyses.	 It	contains	the	ANOVA-significant	
phosphosites,	the	phosphosites	up-	and	downregulated	in	the	three	Prostate	Cancer	(PCa)	cell	lines	as	
compared	to	the	benign	PNT1A	cell	 line,	the	phosphosites	up-	and	downregulated	in	the	castration-
resistant	(CR:	DU145	and	PC3)	cell	lines	as	compared	to	the	castration-sensitive	(CS:	LNCaP)	cell	line,	
and	the	phosphosites	identified	only	in	the	CR	or	CS	contexts	(CR_only,	CS_only).	 It	further	contains	
the	results	of	the	KSEA	analysis.	

-	Supplementary	Table	5	

Raw	 results	 of	 the	 functional	 enrichment	 analyses	with	 G:profiler	 and	 Ingenuity	 Pathway	 Analyses	
(IPA)	[28].	

-	 Supplementary	 Figure	 1.	 Dynamic	 range	 of	 the	 prostate	 cancer	 proteome.	 (a)	 Ranking	 of	 the	
absolute	 abundance	 using	 the	 IBAQ	 intensity.	 The	 expression	 values	 of	 every	 protein	 in	 the	 three	
replicates	of	the	four	studied	cell	lines	were	considered.	(b)	Zoom	on	the	left	box	in	(a)	displaying	the	
25	less	abundant	proteins.	(c)	Zoom	on	the	right	box	in	(a)	displaying	the	25	most	abundant	proteins.		

-	Supplementary	Figure	2.	Correlation	between	proteomic	and	phosphoproteomic	expression	values.		
We	 computed	 for	 each	 cell	 line	 the	 correlation	between	 the	expression	 values	of	 the	135	proteins	
that	were	quantified	both	at	the	proteomic	and	the	phosphoproteomic	 levels.	For	proteomics	data,	
we	computed	the	mean	of	the	three	replicated.	For	phosphoproteomics	data,	we	computed	the	mean	
for	all	the	phosphosites	belonging	to	the	same	protein.	

-	Supplementary	Figure	3.	Expression	Profiles	associated	with	Septin-9	 (SEPT9).	 (a)	Boxplot	 showing	
the	SEPT9	protein	expression	values	in	the	four	cell	lines	under	study.	(b)	Boxplot	revealing	the	SEPT9	
Serine-30	phosphosite	expression	values	in	the	four	cell	lines	under	study.		
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Discussion
Proteins can be considered as the functional units of cells. The information

about isolated protein function is highly valuable, but is not enough to understand
cellular functioning. Indeed, proteins interact between them to execute all the
cellular functions. In this context, the application of graph-theory methods to
mine the information contained in networks of protein interactions can improve
our knowledge about how cells work. In addition, proteins, but also genes and
other biological molecules, interact with each other thanks to different types of
relationships, which are identified at large-scale by different -omics technologies,
each one with its own strengths and weaknesses. Consequently, we propose
the use of multiplex networks to better describe and analyze biological systems.
I conduct the discussion of my work following an example that recapitulates the

main results presented inmy PhD thesis. To this goal, I applied the RandomWalk
with Restart algorithm on Multiplex-Heterogeneous network (RWR-MH) (Valdeo-
livas et al. 2018) using as seeds Hutchinson-Gilford progeria syndrome (HGPS),
the most representative premature aging (PA) disease, and its causative gene
LMNA. We identified and explored the top 50 ranked diseases and genes, to-
gether with their interactions and associations (Figure 6.1).
Among the top 50 ranked diseases, we found well known progeroid syndromes,

such as Werner Syndrome (MIM code: 277700), Néstor-Guillermo progeria syn-
drome (MIM code: 614008) and Rothmund Thomson syndrome (MIM code:
268400). We also retrieve diseases sharing non-PA phenotypes with HGPS. For
example, the Melnick-needles syndrome (MIM code: 309350) and the otopala-
todigital syndromes I and II (MIM code: 311300, 304120) share a large spectrum
of skeletal anomalies with HPGS. Moreover, mutations in the LMNA gene are
causing disorders with very diverse phenotypes, in addition to HGPS. Conse-
quently, other groups of diseases (e.g. cardiomyopathies and muscular dystro-
phies) emerge among the top ranked diseases, even if they only share a reduced
number of clinical features with HPGS.
Focusing on the top 50 ranked genes, we can observe a group containing

several genes encoding integrin proteins (ITGA3, ITGB1, ITGB3 and ITGB5).
These proteins have an important role in various cellular functions such as cell
adhesion, migration, proliferation and cell differentiation (D. Cox et al. 2010). Tu-
mour cells use this integrin-mediated processes to promote tumour growth and
metastatic spread (Hamidi et al. 2016). The identification of integrins starting
from LMNA was quite unexpected. Indeed, lamins are component of the nu-
clear cytoskeleton and lamina. The nuclear stiffness and deformability appear
to be controlled by the expression of the main components of the nuclear lamina,
A-type lamins and B-type lamins (products of the LMNA and LMNB1 genes). A
reduction in the expression of the A-type lamins leads to an increase in the de-
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Figure 6.1 – Network representation of the top 50 ranked genes and top 50 ranked
diseases when the RWR-MH algorithm is applied using HGPS as seed dis-
eases and LMNA as seed gene (yellow nodes). Grey elliptical nodes are dis-
eases; Turquoise rectangles are genes/proteins. Black edges are bipartite gene-
disease associations from OMIM (Hamosh et al. 2005). Grey edges are the
phenotypic similarity links in the disease-disease network; Blue edges are PPI
interactions; Orange edges are co-expression relationships; Yellow edges are
pathway interactions. It is to note that results are represented as an aggre-
gated network only for visualization purposes.
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formability of the nucleus, which in turn can facilitate the migration of cancer cells
promoting the metastatic process (Guinde et al. 2018). However, it is interesting
to note that some recent studies have revealed a potential role of integrins in
the modulation of the physical structure of the nucleus through functional links
with nuclear lamina components. In this context, it has been suggested that inte-
grins might mediate nuclear stiffness during cancer cell migration (Madrazo et al.
2017).
Another important point is that the identification of integrins in the top-scoring

genes is due to the direct co-expression link between LMNA and some integrins,
but also results from the contribution of indirect relationships. Indeed, HGPS
is connected with Ehlers-Danlos syndrome type IV (MIM code: 130050), whose
causative geneCOL3A1 is highly connected with the group of integrins, because
they participate in extracellular matrix organization. Even though physical inter-
actions between A-type lamins and integrins are not present in the databases
used in this study, our method was able to highlight potential relations between
them, supported by recent literature.
The integration of diverse sources of biological information into a multiplex net-

work, and its subsequent exploration with random walks enabled this interesting
prediction. The importance of integrating multiple network sources is also shown
by the presence of ZMPST24 in the top scoring genes. ZMPSTE24 is a protease
implicated in the maturation process of lamin A, but even if its physical interac-
tion with lamin A is well-known, it is not described in databases, and is therefore
absent from our multiplex molecular network. However, the integration of the
disease-disease network thank to our multiplex-heterogeneous framework cap-
tures ZMPSTE24 via its involvement in Restrictive Dermopathy, a disease also
linked to LMNA. We therefore state that a suitable combination of multiple data
sources can help to overcome the bias and missing data of individual sources.
Large-scale biological networks suffer from those limitations: the human inter-
actome is far from complete partially because high-throughput technologies sys-
tematically fail to detect specific interactions. For instance, yeast two hybrids
screens are not able to detect neither interactions involving membrane proteins
nor interactions depending on post-translational modifications mediated by en-
zymes.
On the left hand side of figure 6.1, we can observe a group of genes tightly

connected through different types of interactions. The group contain genes cod-
ing proteins mainly located in the cell nucleus. Noteworthy, many of these genes
are annotated as related with human aging in the GenAge database (Tacutu et
al. 2018), namely EMD, LMNB1, RECQL4, BANF1 and POLD1. We can hypoth-
esize, following the guilt-by-association approach, that some of the remaining
genes of the group could be also associated with human aging. We carefully
inspected the literature and several biological databases searching for the most
suitable candidate to undertake experimental validations, and selected theURB2
gene for experimental validations. The protein encoded by this gene is widely
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expressed and interacts with the nuclear envelope proteins, but its functions are
poorly understood (Vlcek et al. 2004). My ProGeLife colleagues performed a set
of experimental validations detailed in the next paragraphs.
The expression level of several proteins expression was tested after 48h or

72h URB2 silencing with a siRNA, in control and HGPS cell lines. These pro-
teins include major lamins types, as URB2 was predicted to be part of a process
involving A and B types lamins (Figure 6.2). In addition, they tested p21, a key
protein of the cell cycle progression, involved in senescence, as well as p53
recetly described to be an interactor of URB2 in Zebrafish (Cai et al. 2018) (Fig-
ure 6.2). Except a slight increase of p21 at 48h in HGPS cell line, and at 72h in
control fibroblasts (needing to be reproduced), all other protein expression levels
were not altered after 48h or 72h of URB2 silencing.

Then, they explored lamins A/C and B1 localization 48h after URB2 silencing
with siURB2 in both control (data not shown) and HGPS cell lines (Figure 6.3).
No abnormal distribution of lamins A/C (Figure 6.3A) or lamin B1 (Figure 6.3B)
was observed in both cell lines.

Finally, they performed viability and proliferation assays on both control and
HGPS fibroblasts using CyQuantTM and PrestoblueTM, respectively (Figure 6.4).
An effect of URB2 inhibition with siURB2 was observed at 72h on HGPS cell line
compared to control, but it is not clear for now if this is clearly specific as the
non-specific siRNA tended to show also an effect. Additional studies using other
specific and negative siRNAs could allow us concluding regarding this observa-
tion.
These negative or non-conclusive results show the exploratory character of

our computational biology approach. Most of bioinformatic methods are a good
approach to select potential candidates. Nevertheless, biological experimental
validations are needed to assess the predictions and to unveil new biological
knowledge.
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Figure 6.2 – Western blot analyses following URB2 silencing in control and HGPS fibroblasts. Proteins were
extracted 48h (left) or 72h (right) post SiURB2 transfection. Lanes were loaded with 40µg of protein. Each
western blot shows from left to right: control fibroblast - AG16409 (lanes 1 to 4) or HGPS fibroblast -13622
(lanes 6 to 9). Fibroblasts were transfected with lipofectamin alone (LF, lanes 1 & 6), a nonspecific siRNA
[100nM ] (SiNeg 100nM, lanes 2 & 7) or a SiURB2 [50nM ] lanes 3 & 8 and [100nM ] lanes 4 & 9. Lanes
5 and 10 are free of protein deposit and two last lanes correspond to specific controls: a cancer colon cell
line - HT29 (lane 11) and a high progerin expression cell line HGPS - 5968, at late passage p26 (lane 12).
Smaller lanes from left and right are Chameleon duo protein ladder. (A) Western blot analysis of lamin B1
expression and p21. Total protein stain (RevertTM) control is shown on the top panel. Lamin B1 is from
Abcam (ab16048, 1/1000, cf: 1µg/ml) and GAPDH from Millipore (MAB374, 1/40000, cf: 0.025µg/ml -
middle panel); reincubation on the same membrane with antibody p21 from Abcam (ab109520, 1/5000, cf:
0, 17µg/mL - lower panel). (B) Western blot analysis of Lamin B2 expression and p53. Lamin B2 is from
Sigma (AV46356, 1/500, cf: 1µg/ml) and GAPDH from Millipore (MAB374, 1/40000, cf: 0, 025µg/ml -
upper panel); reincubation on the same membrane with antibody p53 from Abcam (ab179477, 1/1500, cf:
1, 59µg/mL - lower panel). (C) Western blot analysis of A types lamins. Lamin A, lamin C and progerin were
detected with an antibody against lamin A/C from Santa-Cruz (Sc-20681, 1/200, 1µg/ml).
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Figure 6.3 – Representative immunofluorescence staining of Lamin A/C and
Lamin B1 in HGPS fibroblast, following 48h URB2 silencing. Top panels
(a, b,c) show primary antibody staining and lower panels (d,e,f) show merged
pictures with DAPI stained DNA. (2A) Immunofluorescence with rabbit an-
tibody lamin A/C (Santa Cruz, Sc- 20681, cf: 2µg/mL). (2B) Immunoflu-
orescence with rabbit antibody lamin B1 (Abcam, ab16048, cf: 10 µg/mL).
Secondary antibody is from Life Technology (DAR Alexa 555) and was used
at 5µg/mL. All pictures were acquired on Apotome (Zeiss) at Microscope
objective 40X.
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Figure 6.4 – Viability and proliferation assay after 48h or 72h of URB2 silencing.
Control AG16409 fibroblast (A, C) and HGPS 13622 fibroblast (B, D) were
exposed to silencing of URB2 at a final concentration of 50nM for 48h or 72h.
Each assay included conditions Lipofectamin alone (LF), Si negative at 50nM
(SiNeg) and a positive control treated with Staurosporine at 1nM during 24h
(Stauro).
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Conclusion
The work presented in this manuscript is the outcome of my Ph.D. studies,

which were first conducted at the Institut de Mathématiques de Marseille, (I2M,
UMR7373, Campus de Luminy), and then at Centre de Génétique Médicale,
(MMG, UMR S910). They were possible thanks to the funding and the close
collaboration with the biotechnology R&D company ProGeLife. My results have
been gathered and composed into a Ph.D. thesis entitled: "Approaches to Ex-
ploreMultiplex Biological Networks and Application to Premature AgingDiseases"
This thesis describes my contribution to some lines of research that are cur-

rently gaining the attention of the community. Indeed, the utilization of multiplex
networks to describe real-world systems is now expanding to very diverse scien-
tific areas, but few studies have employed multiplex networks in computational
biology so far. In addition, recent improvements in the experimental techniques
that produce proteomic and phosphoproteomic data at large-scale have brought
a notable increase in the number of studies analyzing this type of datasets. On
the application side, we used these approaches to study diseases that are in
the research spotlight at the present time: (i) premature aging diseases are cap-
turing attention by themselves, and due to their potential molecular links with
physiological aging; and (ii) prostate cancer is widely studied because is a major
cause of death in industrialized countries.
As far as I know, random walk with restart had not previously been extended

to multiplex and to multiplex-heterogeneous networks. Moreover, we developed
the first module generation seed-expanding algorithm in multiplex and multiplex-
heterogeneous networks. These novel methods were applied to study both
progeria and the global set of diseases showing a PA phenotype. However, such
approaches are not limited to disease studies; they can be applied to networks
describing any type of complex system. Noteworthy, the results obtained in this
work are predictive and still requiring experimental validations to state further
biological conclusions.
Concerning the prostate cancer project, I conducted amore classical statistical

and bioinfomatics analyses of -omics data. The originality of this work comes,
along with its experimental design, from the integration in a network of infor-
mation about protein abundances, phosphorylation status and molecular inter-
actions. This permitted to obtain a comprehensive perspective of some of the
cellular processes deregulated in castration-resistant prostate cancer.
Overall, this thesis introduces innovative methods to tackle relevant biologi-

cal questions, but they are extensible to further biological topics, and even to
other research fields. I strongly believe that my work can be beneficial for future
research from both the methodological and the application side.
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1 Supplementary Methods

The source codes to generate networks and run the RWR algorithms are avail-
able on GitHub at: https://github.com/alberto-valdeolivas/RWR-MH.
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1.1 Construction of the Biological Networks

We constructed three biological networks containing genes or proteins as nodes.
First, a protein-protein interaction (PPI) network of physical direct binary inter-
actions, selected from the PSICQUIC portal (Del-Toro et al., 2013), and merged
with the CCSB Interactome database (Rolland et al., 2014). Second, a network
connecting proteins according to pathway interaction data, using the R package
graphite (Sales et al., 2012). Finally, a co-expression network from RNA-Seq
data downloaded from the Human Protein Atlas (http://www.proteinatlas.org)
(Uhlen et al., 2015). We computed Spearman correlations of TPM expression
data from 32 tissues and 45 cell lines, and selected correlation having an abso-
lute value > 0.7 to be included in the network. The technical details and source
code to recreate these datasets are available on GitHub.

1.2 Construction of the Disease-Disease similarity network

A disease can be described as a set of phenotypes. We downloaded the annota-
tion file phenotype annotation.tab, containing diseases and their associated phe-
notypes, from the Human Phenotype Ontology (HPO), together with the HPO
ontology graph structure (Köhler et al., 2014) on November, 2016. We kept
only disease records from OMIM (Hamosh et al., 2005), and for each disease,
we extracted its minimal set of HPO terms. A set of phenotypes is minimal
if it describes a disease without redundancy: we considered only the deepest
(i.e., the most precise) nodes in the directed ontology structure, as described by
Greene et al., 2016.

The phenotype similarity between a pair of diseases can be computed by
counting the number of shared phenotypes. However, some phenotypes are
more relevant than others. We indeed want to consider as more similar two
diseases sharing a very rare phenotype, than two diseases sharing a very common
phenotype, as proposed by Westbury et al., 2015. To this goal, we estimated
the relevance of each phenotype based on its frequency in the HPO database,
and used the relative information content (IC), defined as follows:

IC(i) = −log(fi) (S-6)

where fi is the frequency of the phenotype i within our set of HPO diseases.
The similarity between phenotypes i and j is then computed as:

sim(i, j) = max
t∈anc(i)∩anc(j)

IC(t) (S-7)

where anc(i) indicates the ancestors of the phenotype i in the ontology graph.
Finally, the phenotype similarity between a pair of diseases Da and Db, corre-
sponding to two sets of HPO phenotypes, is measured by the total IC of their
shared phenotypes, as described in Resnik, 1999:

sim(Da, Db) =
1

|Da|
∑

i∈Da

max
j∈Db

(sim(i, j)) +
1

|Db|
∑

j∈Db

max
i∈Da

(sim(j, i)) (S-8)
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The similarity score between all pairs of diseases is computed according to
Equation S-8. The disease-disease similarity network is built by linking every
disease to its five nearest diseases according to this similarity score, as in Li
and Patra, 2010. The resulting disease-disease similarity network is composed
of 6 947 diseases connected by 28 246 edges (Supplementary Table S-1).

1.3 RWR-H: Extension of RWR to heterogeneous graphs

Following the approach proposed by Li and Patra, 2010, let us consider the
graphs GV , GU and GB , which form a heterogeneous graph. We define AP (n×n),
AD(m×m) and B(n×m) as their respective adjacency matrices. These matrices
can be considered here as the adjacency matrices of the PPI network, the disease-
disease similarity network and the bipartite network, respectively. Therefore,
the adjacency matrix of the heterogeneous network can be represented as: A =[
AP B
BT AD

]
, with BT the transpose of the matrix B.

We then compute the different transition probabilities of the random walk

with restart on heterogeneous graphs (RWR-H). Let H =

[
HPP HPD

HDP HDD

]
de-

notes the matrix of transitions on the heterogeneous graph, where HPP and
HDD describe the walks within a network, and HPD, HDP describe the jumps
between networks. For a given node, if a bipartite association exists, the particle
can either jump between graphs or stay in the current graph with a probability
given by the parameter λ ∈ [0, 1]. The closer λ is to one, the higher is the
probability of jumping between networks.

Let a particle be located at the protein node pi ∈ V . At the next step,
the particle can either walk to a protein pj ∈ V with the following transition
probability:

HPP (i, j) =

{
AP (i, j)/

∑n
k=1AP (i, k), if

∑m
k=1B(i, k) = 0

(1− λ)AP (i, j)/
∑n

k=1AP (i, k), otherwise
(S-1)

or jump through a bipartite association to the disease db ∈ U with a proba-
bility:

HPD(i, b) =

{
λB(i, b)/

∑m
k=1B(i, k), if

∑m
k=1B(i, k) 6= 0

0, otherwise
(S-2)

The same situation arises if a particle is located at the disease da ∈ U . It
can walk to the disease db ∈ U :

HDD(a, b) =

{
AD(a, b)/

∑m
k=1AD(a, k), if

∑n
k=1B(k, b) = 0

(1− λ)AD(a, b)/
∑m

k=1AD(a, k), otherwise
(S-3)
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or jump to the protein pj ∈ V :

HDP (a, j) =

{
λB(j, a)/

∑n
k=1B(k, a), if

∑n
k=1B(k, a) 6= 0

0, otherwise
(S-4)

Therefore, we can write the RWR-H equation on a heterogeneous graph as:

p̃T
t+1 = (1− r)Hp̃T

t + rp̃T
RS (S-5)

The vectors p̃t+1, p̃t and p̃RS are now of dimension n+m, since the RWR-
H algorithm is ranking proteins and diseases at the same time. Importantly,
after a restart step, the particle can go back either to a seed protein or to a
seed disease. It is to note that it is possible to tune the importance of each

network by defining p̃RS =

[
(1− η)v0

ηu0

]
, where v0 and u0 represent the initial

probability distributions on the PPI and the disease-disease similarity networks
given by their seed nodes. The parameter η ∈ [0, 1] controls the probability of
restarting in each network (PPI or disease-disease). If η < 0.5 the particle will
be more likely to restart in one of the seed proteins than in one of the seed
diseases. In our work, we set both parameters λ and η to 0.5.

1.4 Leave-one-out cross validation

In order to evaluate the performances of the different RWR algorithms, we de-
signed a Leave-One-Out Cross-Validation (LOOCV) strategy. We downloaded
diseases and associated genes from OMIM (Hamosh et al., 2005) (downloaded
on December, 2016) and DisGeNET v4.0 (Piñero et al., 2016) (associations with
a score greater than or equal to 0.15, downloaded on December, 2016). Only dis-
eases associated to at least two genes are considered for the LOOCV procedure.
For each disease, each associated gene is removed one-by-one, and considered
as the left-out gene. The remaining genes associated to this disease are used
as seed(s) for the RWR algorithms. It is to note that different subsets of gene-
disease associations, from DisGeNET or from Omim, are used to evaluate the
different versions of the algorithms, as detailed in the sections 1.4.1 and 1.4.2
below.

All the network nodes are then scored and ranked according to their proxim-
ity to the seed(s). The rank of the disease-gene that was left-out in the current
run is recorded. This rank is always between one and the total number of scored
genes, minus the number of seeds used for the disease under evaluation. Finally,
the Cumulative Distribution Function (CDF) of the ranks of the left-out genes
is plotted, as in Mordelet and Vert, 2011. It displays the percentage of left-out
genes that are ranked within the top k genes. CDFs are used to evaluate and
compare the performance of the different algorithms. The plots are focused on
the top 60 ranked genes.
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1.4.1 Leave-one-out cross-validations on monoplex, aggregated and
multiplex networks

For these networks, the seed(s) used in the RWR algorithms are the gene/protein
nodes only. To maximize the size of the test dataset, we ran the LOOCV with
gene-disease associations extracted from DisGeNET v4.0 (Piñero et al., 2016).
The DisGeNET dataset contains 6 565 gene-disease associations, corresponding
to 4 148 different diseases.

1.4.2 Leave-one-out cross-validation on heterogeneous and multiplex-
heterogeneous networks

For these networks, the seeds used in the RWR algorithms are the gene/protein
nodes, but also the disease nodes. Given that the nodes in the disease-disease
network are OMIM diseases (Hamosh et al., 2005), it is mandatory to use gene-
disease associations from OMIM for the LOOCV. The OMIM dataset contains
4 996 gene-disease associations, corresponding to 4 188 different diseases. It is
to note that in order to simulate an unknown gene-disease association, we also
removed the bipartite association linking the left-out gene and the disease of the
current run. Doing so, we avoid the artificial top ranking of the left-out genes.

2 Supplementary Results

2.1 Random walk with restart on random networks

To compare the performances of the RWR algorithm on real biological networks
with random networks, we generated randomized versions of the 3 monoplex net-
works (PPI, Pathways and Co-expression), keeping the same degree distribution
for each network (i.e., the number of nodes with a given degree remains identi-
cal, but the node names are randomized). The process was repeated ten times
for each monoplex network. We then carried out the Leave-One-Out-Cross-
Validation (LOOCV), measuring the ability of the RWR algorithm to retrieve
known gene-disease associations. We selected the best performer among the 10
randomized networks.

We can observe that the RWR algorithm is not able to retrieve known gene-
disease associations from the randomized networks (Figure S-2). In addition,
the Cumulative Distribution Functions (CDF) of the rank position retrieved for
each tested gene by LOOCV are significantly different between the monoplex
networks and their randomized version (Kolmogorov–Smirnov tests, p-values <
2.2× 10−16).

It is also interesting to note that the performances on the different random
networks are very similar whilst their topological features are quite different.
This further emphasizes that the ability of networks to allow retrieving known
gene-disease associations depends on the biological content rather than on their
topological features.
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2.2 Random walk with restart on Pathway-Disease and
Co-expression-Disease heterogeneous networks

In the main text, we tested a heterogeneous graph built by connecting the PPI
network and the disease-disease similarity network, because we intent to com-
pare our method to the existing RWR-H built by Li and Patra (2010). In order
to check the performances of the algorithm on other heterogeneous networks,
we also constructed a Pathway-Disease heterogeneous network by integrating
the disease-disease similarity network with the Pathways network, and a Co-
expression-Disease heterogeneous network in a similar way. We ran the LOOCV
to test the performances of the RWR-H in retrieving known-gene disease asso-
ciations from these heterogeneous networks. For the Pathway-Disease hetero-
geneous network, we used a test set of diseases related to at least two genes in
the set of 10 534 genes/proteins present in the Pathways network. This dataset
contains 245 different diseases and 840 gene-disease associations. Similarly, we
created a test set containing 157 different diseases and 536 gene-disease associa-
tions for the Co-expression-Disease heterogeneous network. The performances of
RWR-H strongly depend on the monoplex network used to construct the hetero-
geneous network, as expected from the results of RWR on monoplex networks
(Figure S-3). Overall, random walk with restart on Multiplex-heterogeneous
networks (RWR-MH) obtains always a remarkable better performance than the
other approaches.

2.3 Effect of parameters on the RWR-MH

We checked the influence of the parameters involved in the RWR-MH algorithm,
using the LOOCV strategy. In this case, we created the test set with diseases
associated to at least two genes in the total of 17 559 nodes corresponding to
the union of the nodes of the three networks. The test set contains 276 diseases
and 1 101 gene-disease associations.

In the applications of the RWR algorithm described previously, the restart
parameter was set as r = 0.7, as in earlier publications (Li and Patra, 2010;
Li and Li, 2012; Zhao et al., 2015; Blatti and Sinha, 2016). Changes in this
parameter only slightly affect the results (Figure S-4A).

We then studied the effect of the parameters related to the random walks in
multiplex networks, δ and τ . The parameter δ quantifies the probability that
the particle jumps from the current node to the same node in a different layer,
after a non-restart step. If δ = 0 the particle will always stay in the same layer,
and if δ = 1 the particle will jump to a different layer at each step. However, we
did not observe notable changes with moderate variations in this parameter, as
displayed in Figure S-4B. Large variations of δ are needed to alter the RWR-MH
performances (Figure S-5A). The parameter τ controls the probability of restart
in the different layers of the multiplex network. Theoretically, this would allow
exploiting our knowledge about the performance of the RWR on the monoplex
networks. For instance, it could seem reasonable to favor the restart in the
Pathway network and to hinder it in the Co-expression network. However, Fig-
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ure S-4C does not show notable differences in the performances of the LOOCV
associated to variations of this parameter. Even with radical variations of this
parameter, the performances do not decrease drastically (Figure S-5B). It is to
note that the particle continues exploring the different network layers thanks to
the jumps, and can still leverage the combined biological information, even if it
does not restart in the seeds of one of the layers.

The parameters used for on heterogeneous networks are λ and η. The pa-
rameter λ quantifies the probability of jumping between the multiplex and the
disease-disease similarity network, using the bipartite gene-disease associations.
The larger the value of λ, the higher the probability of jumping. If λ = 0, the
particle does not exploit the bipartite associations between the disease-disease
similarity network and the multiplex network. Contrarily, if λ = 1, the bipartite
gene-disease associations dominate the walks, and the particle is not allowed to
explore the topology of each individual network. Moderate variations in this
parameter show only small changes in the performances (Figure S-4D). How-
ever, the RWR-MH performance decreases when the value of λ tends to zero
or one (Figure S-5C). The parameter η quantifies the probability of restart in
the multiplex or in the disease-disease similarity network. If η = 0, the particle
will always restart in the multiplex network. In this case, variations in the pa-
rameter slightly influence the performances of the algorithm (Figure S-4E and
Figure S-5D). Here also, the particle can still explore both the multiplex and
heterogeneous network thanks to the jumps, even if it does not restart on the
seeds of one of the networks.

Overall, the RWR-MH is a very robust algorithm since moderate variations
in the parameters do not lead to large variations in the ranking performances.

3 Supplementary Tables and Figures

Table S-1: Networks used in this study, number of nodes, edges and network
densities.

Network Number of nodes Number of edges Density

Pathways 10 534 254 766 4.59× 10−3

PPI 12 621 66 971 8.41× 10−4

Co-expression 10 458 1 337 347 2.45× 10−2

Aggregated (unique) 17 559 1 659 084 1.08× 10−2

Disease-disease similarity 6 947 28 246 1.17× 10−3

7
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Figure S-1: Global features of the biological networks used in this study:
A) Degree distributions, B) Venn Diagram displaying the network overlapping
nodes and C) Venn Diagram displaying the network overlapping edges

A

B C
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Figure S-2: Cumulative distribution functions representing the ranks of the
left-out disease genes in the LOOCV with classical RWR algorithm applied to
monoplex networks, and to randomized versions of the monoplex networks. For
the randomized network, the best result over 10 randomizations is displayed.
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Figure S-3: Cumulative distribution functions representing the ranks of the
left-out disease genes in the LOOCV with different RWR algorithms: A) classi-
cal RWR on monoplex Pathway network, and RWR-H on the Pathway-Disease
heterogeneous network, and B) classical RWR on monoplex Co-expression
network, and RWR-H on Co-expression-Disease heterogeneous network and,
in both cases, RWR-M and RWR-MH on the multiplex and the multiplex-
heterogeneous networks.
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Figure S-4: Cumulative distribution functions representing the ranks of the
left-out disease genes in the LOOCV when running RWR-MH with moderate
variations of the parameters. When one parameter changes, the other parame-
ters remain with their default values. Variations are tested in: A) parameter r,
B) parameter δ, C) parameter τ for (PPI, Pathway, Co-expression) Layers

, D) parameter λ and E) parameter η.
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Figure S-5: Cumulative distribution functions representing the ranks of the
left-out disease genes in the LOOCV when running RWR-MH with large vari-
ations of the parameters. When one parameter changes, the other parameters
remain with their default values. Variations are tested in: A) parameter δ, B)
parameter τ for (PPI, Pathway, Co-expression) Layers

, C) parameter λ and D) parameter η.
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Figure S-6: Network representation of the top 25 ranked genes and diseases
when RWR-MH is executed using SS as seed disease and PIK3R1 as seed gene
(yellow nodes). Grey elliptical nodes are diseases; Turquoise rectangles are
genes/proteins. Black edges are bipartite gene-disease associations from OMIM
(Hamosh et al., 2005); Grey edges are the similarity links in the disease-disease
network; Blue edges are PPI interactions; Yellow edges are co-expression rela-
tionships; Red edges are pathway interactions. It is to note that results are
represented as an aggregated network only for visualization purposes.
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4 Supplementary Discussion

We extended here the RWR algorithm by designing the RWR-M and RWR-
MH algorithms able to leverage Multiplex and Multiplex-Heterogeneous net-
works. We performed the evaluations with a Leave-One-Out Cross Validation
(LOOCV) strategy, using a cumulative distribution function (CDF) to display
the results. As compared to a more classical Receiver Operating Curve (AUC),
the CDF ranks all the nodes in the networks, thereby resulting in a more general
validation Mordelet and Vert, 2011. It is to note that our CDF approach also
allows us evaluating the absolute performances of the different algorithms. For
instance, the average ranking position of the 880 left-out genes (section 3.3, Fig-
ure 4 of the manuscript) in the Monoplex PPI is 3 286, in the Multiplex is 2 025,
in the PPI-Heterogeneous is 1 864, and in the Multiplex-Heterogeneous is 1 237.
The RWR-MH on a Multiplex-Heterogeneous network obtains the best abso-
lute performance. In addition, even if the average ranking is 1 237, we have to
consider that it’s 1 237 over 12 621 ranked nodes (all network proteins), thereby
being in the top 10% of the ranked proteins. However, more importantly, our
approach is able to estimate the percentage of left-out genes ranked within the
top x ranked genes. Indeed, guilt-by-association algorithms are usually used
either i) to focus on the top x ranked genes for further study or ii) to prioritize
within a reduced list of candidate genes. For instance, previous efforts used
networks to rank a small candidate list of genes extracted from linkage analysis
(Köhler et al., 2008). This is why the LOOCV procedures described in previous
literature were creating artificial linkage intervals containing a reduced list of the
100 closest genes on the chromosome from the disease gene (Köhler et al., 2008;
Li and Patra, 2010; Li and Li, 2012; Zhao et al., 2015). In this context, even if
all network nodes are ranked by our CDF function, we focused our analyses on
the top 60 ranked nodes.

It is to note that the global curves of the LOOCV CDF do not change sig-
nificantly when moderate variations of the parameters are applied to the RWR-
MH algorithm (Supplementary Figures S-4). The performance of the RWR-MH
decreases notably when radical variations are introduced on the parameters
lambda and delta (Supplementary Figures S-5). On the other hand, RWR-MH
performance is just slightly affected when large changes are introduced solely
on the parameters tau and eta (Supplementary Figures S-5). This is due to
the fact that the particle keeps exploring the multiplex-heterogeneous network
thanks to the jumps, even if it does not restart on the seeds of one of the lay-
ers. However, it is important to note that, even if the overall ranking of the
nodes in the LOOCV are stable, a focused analysis and network representation
of the top 25 ranked genes and diseases in a real-case applications would reveal
variations, even with moderate variations of the parameters. In these applied
cases, changes in parameters can be used to tune the output. For instance, the
parameter τ would allow giving more emphasis on some input network layers,
based on prior knowledge related to their biological relevance.

Random walks with restart in biology have been applied to predict disease-
associated genes (Köhler et al., 2008; Li and Patra, 2010; Li and Li, 2012; Zhao
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et al., 2015; Xie et al., 2015), but also to predict drug-target interactions (Chen
et al., 2012; Liu et al., 2016) and adverse drug reactions (Chen et al., 2016),
and to identify clusters from PPI Networks (Macropol et al., 2009). Smedley
et al., 2014, 2015 developed Exomiser, where RWR is applied to prioritize genes
and variants in the context of whole-exome sequencing. We applied here our
advanced version of the random walk with restart algorithm, RWR-MH, to two
real-case biological examples. In the first one, we predicted candidate genes that
could be associated to the WSR syndrome, whose responsible gene(s) remain
to be described. We hereby demonstrate the usefulness of the approach to
study disease etiology and help diagnose patients. The next step will be to
validate these predictions, for instance using exome-sequencing data. We also
applied the RWR-MH algorithm to study the network vicinity of a disease, the
SHORT syndrome, and its associated gene, PIK3R1. We show that the disease
is sharing phenotype with other syndromes, which are caused by genes in the
neighborhood of PIK3R1 when multiple interaction types are considered. This
is an additional example of the fact that mutations in genes participating to
the same pathway, or more generally biological processes, lead to diseases with
similar phenotypes (Oti et al., 2006).

The main underlying hypothesis of the work presented here is that the inte-
gration of multiple interaction sources, each having its own features and biases,
will improve the results of the random walks by providing complementary data.
For instance, in the application of the RWR-MH to the WRS syndrome, we re-
trieved as top candidates the LMNA and ZMPSTE24 genes. The ZMPSTE24
gene codes a peptidase acting during the post-translation modifications of the
prelamin A, coded by LMNA, to undergo the complete maturation to lamin
A. It is interesting to note that the direct interaction between the products of
LMNA and ZMPSTE24 is missing in the databases we used to construct the
multiplex network. However, the ZMPSTE24 node is retrieved through different
trajectories in the random walk. Hence, the combination of multiple network
sources in this case allow completing missing interaction data.

The highly connected nodes, called hubs, can be genes or proteins highly
connected and central in the cells, but can also result from biased biological
experiments studying ”fashion” proteins, such as TP53 in cancer or APP in
Alzheimer. RWR algorithms and other network propagation algorithms are
biased towards highly connected proteins, as demonstrated by Erten et al.,
2011. In this context, poorly-connected and unwell-known nodes, which are
also potentially relevant for diseases, are more complicated to find than highly-
connected and well-known proteins. To address this issue, biased random walks
have been developed to favor the walk of the particle according to network
topological features (Battiston et al., 2016). In the simplest case, the transition
probability depends on the degree of the neighbors of the current node: the walk
of the particle can be tuned towards less connected nodes (Bonaventura et al.,
2014). Such a degree-biased random walk could be applied to the RWR-MH
algorithm in the future.

This is why overall the combination of different interaction sources is more
informative. For instance, PPI interactions might have only sparse number of
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interaction for membrane proteins, that are difficult to detect from Yeast-2-
hybrid experiments. Co-expression interaction are functional relationships but
many of them might not correspond to physical interactions. It is much larger
and much noisy than the others. Pathway interaction will focus on well-known
proteins and dismiss information about less studied proteins. All these biases
are then different, and the combination of the different sources, each considered
as different realizations of the true underlying comprehensive biological network,
will offer the best possible view on gene and proteins functional relationships.

In addition, for the sake of simplicity, all the networks considered in this
study are unweighted. Nevertheless, the extension to weighted networks is
straightforward, as pointed out in methods. The use of weighted networks could
improve the prioritization results because we can assign larger transition prob-
abilities to the most confident interactions or to the more similar diseases. For
instance, STRING database stores scored protein-protein interactions indicating
its confidence based on the evidences (Szklarczyk et al., 2015). The edges in our
Co-expression network are established based on threshold imposed on the value
of the computed correlation coefficient. This coefficient can be included into
the Co-expression network to favor the transitions between the proteins whose
expressions are more correlated. In addition, we built the disease-disease simi-
larity network according to the similarity scores between every pair of diseases.
This score could be introduced into the corresponding edges.
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Abstract

This vignette describes how to use the RandomWalkRestartMH package to run Random Walk
with Restart algorithms on monoplex, multiplex, heterogeneous and multiplex-heterogeneous
networks. It is based on the work we presented on the following article:
https://www.biorxiv.org/content/early/2017/08/30/134734
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1 Introduction

RandomWalkRestartMH (Random Walk with Restart on Multiplex and Heterogeneous Net-
works) is an R package built to provide easy access to the Random Walk with Restart (RWR)
algorithm on different types of networks: i) Monoplex networks, ii) Multiplex networks, iii)
Heterogeneous networks and iv) Multiplex-Heterogeneous networks. It is based on the work
we presented in the article: https://www.biorxiv.org/content/early/2017/08/30/134734.
RWR simulates an imaginary particle that starts on a seed(s) node(s) and follows randomly
the edges of a network. At each step, there is a restart probability, r, meaning that the
particle can come back to the seed(s) [1]. This imaginary particle can explore the following
types of networks:

• A monoplex or single network, which contains solely nodes of the same nature. In
addition, all the edges belong to the same category.

• A multiplex network, defined as a collection of monoplex networks considered as layers
of the multiplex network. In a multiplex network, the different layers share the same
set of nodes, but the edges represent relationships of different nature [2]. In this case,
the RWR particle can jump from one node to its counterparts on different layers.

• A heterogeneous network, which is composed of two monoplex networks containing
nodes of different nature. These different kind of nodes can be connected thanks to
bipartite edges, allowing the RWR particle to jump between the two networks.

• A multiplex and heterogeneous network, which is built by linking the nodes in every
layer of a multiplex network to nodes of different nature thanks to bipartite edges. The
RWR particle can now explore the full multiplex-heterogeneous network.

The user can introduce up to six single networks (monoplex networks) to create a multiplex
network. The multiplex network can also be integrated, thanks to bipartite relationships,
with a network containing nodes of different nature. Proceeding this way, a network both
multiplex and heterogeneous will be generated.
Please note that this first version of the package deals only with undirected and unweighted
networks. New functionalities will be included in future updated versions of RandomWalkRestartMH.

2 Installation of the RandomWalkRestartMH pack-
age

First of all, you need a current version of R (www.r-project.org). RandomWalkRestartMH
is a freely available package deposited on http://bioconductor.org/. You can install it by
running the following commands on an R console:
> if (!requireNamespace("BiocManager", quietly=TRUE))

+ install.packages("BiocManager")

> BiocManager::install("RandomWalkRestartMH")
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3 A Detailed Workflow

In the following paragraphs, we describe how to use the RandomWalkRestartMH package
to perform RWR on different types of biological networks. Concretely, we use a protein-
protein interaction (PPI) network, a pathway network, a disease-disease similarity network
and combinations thereof. These networks are obtained as detailed in [3]. The PPI and the
Pathway network were reduced by only considering genes/proteins expressed in the adipose
tissue, in order to reduce the computation time of this vignette.
The goal in the example presented here is, as described in [3], to find candidate genes
potentially associated with diseases by a guilt-by-association approach. This is based on the
fact that genes/proteins with similar functions or similar phenotypes tend to lie closer in
biological networks. Therefore, the larger the RWR score of a gene, the more likely it is to
be functionally related with the seeds.
We focus on a real biological example: the SHORT syndrome (MIM code: 269880) and its
causative gene PIK3R1 as described in [3]. We will see throughout the following paragraphs
how the RWR results evolve due to the the integration and exploration of additional networks.

3.1 Random Walk with Restart on a Monoplex Network

RWR has usually been applied within the framework of single PPI networks in bioinformatics[4].
A gene or a set of genes, so-called seed(s), known to be implicated in a concrete function or
in a specific disease, are chosen as the starting point(s) of the algorithm. The RWR particle
explores the neighbourhood of the seeds and the algorithm computes a score for all the nodes
of the network. The larger it is the score of a node, the closer it is to the seed(s).
Let us generate an object of the class Multiplex, even if it is a monoplex network, with our
PPI network.
> library(RandomWalkRestartMH)

> library(igraph)

> data(PPI_Network) # We load the PPI_Network

> ## We create a Multiplex object composed of 1 layer (It's a Monoplex Network)

> ## and we display how it looks like

> PPI_MultiplexObject <- create.multiplex(PPI_Network,Layers_Name=c("PPI"))

> PPI_MultiplexObject

Number of Layers:

[1] 1

Number of Nodes:

[1] 4317

IGRAPH 1573a63 UN-- 4317 18062 --

+ attr: name (v/c), type (e/c)

+ edges from 1573a63 (vertex names):

[1] AAMP --VPS52 AAMP --BHLHE40 AAMP --GABARAPL2 AAMP --MAP1LC3B

[5] VPS52 --TXN2 VPS52 --DDX6 VPS52 --MFAP1 VPS52 --PRKAA1

[9] VPS52 --LMO4 VPS52 --STX11 VPS52 --KANK2 VPS52 --PPP1R18

[13] VPS52 --TXLNA VPS52 --KIAA1217 VPS52 --VPS28 VPS52 --ATP6V1D

[17] VPS52 --TPM3 VPS52 --KIF5B VPS52 --NOP2 VPS52 --RNF41
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[21] VPS52 --WTAP VPS52 --MAPK3 VPS52 --ZMAT2 VPS52 --VPS51

[25] BHLHE40--AES BHLHE40--PRKAA1 BHLHE40--CCNK BHLHE40--RBPMS

[29] BHLHE40--COX5B BHLHE40--UBE2I BHLHE40--MAGED1 BHLHE40--PLEKHB2

+ ... omitted several edges

To apply the RWR on a monoplex network, we need to compute the adjacency matrix of the
network and normalize it by column [4], as follows:
> AdjMatrix_PPI <- compute.adjacency.matrix(PPI_MultiplexObject)

> AdjMatrixNorm_PPI <- normalize.multiplex.adjacency(AdjMatrix_PPI)

Then, we need to define the seed(s) before running the RWR algorithm on this PPI network.
As commented above, we are focusing on the example of the SHORT syndrome. Therefore,
we take the PIK3R1 gene as seed, and we execute RWR.
> SeedGene <- c("PIK3R1")

> ## We launch the algorithm with the default parameters (See details on manual)

> RWR_PPI_Results <- Random.Walk.Restart.Multiplex(AdjMatrixNorm_PPI,

+ PPI_MultiplexObject,SeedGene)

> # We display the results

> RWR_PPI_Results

Top 10 ranked Nodes:

NodeNames Score

1 GRB2 0.006845881

2 EGFR 0.006169129

3 CRK 0.005674261

4 ABL1 0.005617041

5 FYN 0.005611086

6 CDC42 0.005594680

7 SHC1 0.005577900

8 CRKL 0.005509182

9 KHDRBS1 0.005443541

10 TYRO3 0.005441887

Seed Nodes used:

[1] "PIK3R1"

Finally, we can create a network (an igraph object) with the top scored genes. Visualize the
top results within their interaction network is always a good idea in order to prioritize genes,
since we can have a global view of all the potential candidates. The results are presented in
Figure 1.
> ## In this case we selected to induce a network with the Top 15 genes.

> TopResults_PPI <-

+ create.multiplexNetwork.topResults(RWR_PPI_Results,PPI_MultiplexObject,

+ k=15)

> par(mar=c(0.1,0.1,0.1,0.1))

> plot(TopResults_PPI, vertex.label.color="black",vertex.frame.color="#ffffff",

+ vertex.size= 20, edge.curved=.2,

+ vertex.color = ifelse(igraph::V(TopResults_PPI)$name == "PIK3R1","yellow",
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+ "#00CCFF"), edge.color="blue",edge.width=0.8)

GRB2

CDC42
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PTPN6
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TYRO3

PTK2

EGFR

SHC1

ABL1

BCAR1

KHDRBS1

ABI1

PIK3R1

CRKL

AXL

Figure 1: RWR on a monoplex PPI Network
Network representation of the top 15 ranked genes when the RWR algorithm is executed using the PIK3R1
gene as seed (yellow node). Blue edges represent PPI interactions.

3.2 Random Walk with Restart on a Heterogeneous Network

A RWR on a heterogeneous (RWR-H) biological network was described by [5]. They con-
nected a PPI network with a disease-disease similarity network using known gene-disease
associations. In this case, genes and/or diseases can be used as seed nodes for the algo-
rithm. In the following example, we also use a heterogeneous network integrating a PPI
and a disease-disease similarity network. However, the procedure to obtain these networks is
different to the one proposed in [5], and the details are described in our article [3].
To generate a PPI-disease heterogeneous network object, we load the disease-disease network,
and combine it with our previously defined Multiplex object containing the PPI network,
thanks to the gene-diseases associations obtained from OMIM [6]. A MultiplexHet object
will be created, even if we are dealing with a monoplex-heterogeneous network.
> data(Disease_Network) # We load our disease Network

> ## We load a data frame containing the gene-disease associations.

> ## See ?create.multiplexHet for details about its format

> data(GeneDiseaseRelations)

> ## We keep gene-diseases associations where genes are present in the PPI

> ## network

> GeneDiseaseRelations_PPI <-

+ GeneDiseaseRelations[which(GeneDiseaseRelations$hgnc_symbol %in%

+ PPI_MultiplexObject$Pool_of_Nodes),]

> ## We create the MultiplexHet object.

> PPI_Disease_Net <- create.multiplexHet(PPI_MultiplexObject,
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+ Disease_Network, GeneDiseaseRelations_PPI, c("Disease"))

> ## The results look like that

> PPI_Disease_Net

Number of Layers:

[1] 1

Number of Nodes Multiplex:

[1] 4317

IGRAPH 1573a63 UN-- 4317 18062 --

+ attr: name (v/c), type (e/c)

+ edges from 1573a63 (vertex names):

[1] AAMP --VPS52 AAMP --BHLHE40 AAMP --GABARAPL2 AAMP --MAP1LC3B

[5] VPS52 --TXN2 VPS52 --DDX6 VPS52 --MFAP1 VPS52 --PRKAA1

[9] VPS52 --LMO4 VPS52 --STX11 VPS52 --KANK2 VPS52 --PPP1R18

[13] VPS52 --TXLNA VPS52 --KIAA1217 VPS52 --VPS28 VPS52 --ATP6V1D

[17] VPS52 --TPM3 VPS52 --KIF5B VPS52 --NOP2 VPS52 --RNF41

[21] VPS52 --WTAP VPS52 --MAPK3 VPS52 --ZMAT2 VPS52 --VPS51

[25] BHLHE40--AES BHLHE40--PRKAA1 BHLHE40--CCNK BHLHE40--RBPMS

[29] BHLHE40--COX5B BHLHE40--UBE2I BHLHE40--MAGED1 BHLHE40--PLEKHB2

+ ... omitted several edges

Number of Nodes of the second network:

[1] 6947

Second Network

IGRAPH 3eed1b5 UN-- 6947 28246 --

+ attr: name (v/c), type (e/c)

+ edges from 3eed1b5 (vertex names):

[1] 100050--122470 100050--227330 100050--259200 100050--305400 100050--601803

[6] 100070--105800 100070--105805 100070--107550 100070--120000 100070--130090

[11] 100070--132900 100070--154750 100070--180300 100070--192310 100070--208060

[16] 100070--210050 100070--219100 100070--252350 100070--277175 100070--300537

[21] 100070--309520 100070--600459 100070--604308 100070--606519 100070--608967

[26] 100070--609192 100070--610168 100070--610380 100070--611788 100070--613780

[31] 100070--613834 100070--614042 100070--614437 100070--614980 100070--610655

[36] 100070--615436 100070--616166 100100--192350 100100--236700 100100--236730

+ ... omitted several edges

To apply the RWR-H on a heterogeneous network, we need to compute a matrix that accounts
for all the possible transitions of the RWR particle within that network [5].
> PPIHetTranMatrix <- compute.transition.matrix(PPI_Disease_Net)

Before running RWR-H on this PPI-disease heterogeneous network, we need to define the
seed(s). As in the previous paragraph, we take PIK3R1 as a seed gene. In addition, we can
now set the SHORT syndrome itself as a seed disease.
> SeedDisease <- c("269880")

> ## We launch the algorithm with the default parameters (See details on manual)

> RWRH_PPI_Disease_Results <-

7248



Random Walk with Restart on Multiplex and Heterogeneous Network

+ Random.Walk.Restart.MultiplexHet(PPIHetTranMatrix,

+ PPI_Disease_Net,SeedGene,SeedDisease)

> # We display the results

> RWRH_PPI_Disease_Results

Top 10 ranked Multiplex nodes:

NodeNames Score

1479 GRB2 0.001965500

1081 EGFR 0.001754048

797 CRK 0.001636329

603 CDC42 0.001630575

19 ABL1 0.001623304

798 CRKL 0.001605543

1360 FYN 0.001598567

3405 SHC1 0.001597720

2583 PDGFRB 0.001596830

4027 TYRO3 0.001589911

Multiplex Seed Nodes used:

[1] "PIK3R1"

Top 10 ranked Second Network Nodes:

SecondNet_node Score

6352 615214 0.020817435

6705 616005 0.020785895

1699 194050 0.005868407

3625 309000 0.005687206

2901 262500 0.005681162

686 138920 0.005655559

2150 223370 0.005655117

4770 608612 0.005649291

4464 606176 0.005641777

1411 180500 0.005639919

Second Network Seed Nodes used:

[1] "269880"

Finally, we can create a heterogeneous network (an igraph object) with the top scored genes
and the top scored diseases. The results are presented in Figure 2.
> ## In this case we select to induce a network with the Top 10 genes

> ## and the Top 10 diseases.

> TopResults_PPI_Disease <-

+ create.multiplexHetNetwork.topResults(RWRH_PPI_Disease_Results,

+ PPI_Disease_Net, GeneDiseaseRelations_PPI, k=10)

> par(mar=c(0.1,0.1,0.1,0.1))

> plot(TopResults_PPI_Disease, vertex.label.color="black",

+ vertex.frame.color="#ffffff",

+ vertex.size= 20, edge.curved=.2,

+ vertex.color = ifelse(V(TopResults_PPI_Disease)$name == "PIK3R1"

+ | V(TopResults_PPI_Disease)$name == "269880","yellow",

+ ifelse(V(TopResults_PPI_Disease)$name %in% PPI_Disease_Net$Pool_of_Nodes,
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+ "#00CCFF","Grey75")),

+ edge.color=ifelse(E(TopResults_PPI_Disease)$type == "PPI","blue",

+ ifelse(E(TopResults_PPI_Disease)$type == "Disease","black","grey50")),

+ edge.width=0.8,

+ edge.lty=ifelse(E(TopResults_PPI_Disease)$type == "bipartiteRelations",

+ 2,1),

+ vertex.shape= ifelse(V(TopResults_PPI_Disease)$name %in%

+ PPI_Disease_Net$Pool_of_Nodes,"circle","rectangle"))

GRB2

CDC42

CRK

FYN

TYRO3
PDGFRB

EGFR

SHC1

ABL1

PIK3R1

CRKL

138920

180500194050

223370

262500

269880

309000 606176

608612

616005

615214

Figure 2: RWR-H on a heterogeneous PPI-Disease Network
Network representation of the top 10 ranked genes and the top 10 ranked diseases when the RWR-H algo-
rithm is executed using the PIK3R1 gene and the SHORT syndrome disease (MIM code: 269880) as seeds
(yellow nodes). Circular nodes represent genes and rectangular nodes show diseases. Blue edges are PPI in-
teractions and black edges are similarity links between diseases. Dashed edges are the bipartite gene-disease
associations.

3.3 Random Walk with Restart on a Multiplex Network

Some limitations can arise when single networks are used to represent and describe systems
whose entities can interact through more than one type of connections [2]. This is the case
of social interactions, transportation networks or biological systems, among others. The
Multiplex framework provides an appealing approach to describe these systems, since they
are able to integrate this diversity of data while keeping track of the original features and
topologies of the different sources.
Consequently, algorithms able to exploit the information stored on multiplex networks should
improve the results provided by methods operating on single networks. In this context, we
extended the random walk with restart algorithm to multiplex networks (RWR-M) [3].
In the following example, we create a multiplex network integrated by our PPI network and
a network derived from pathway databases [3].
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> data(Pathway_Network) # We load the Pathway Network

> ## We create a 2-layers Multiplex object

> PPI_PATH_Multiplex <- create.multiplex(PPI_Network,Pathway_Network,

+ Layers_Name=c("PPI","PATH"))

> PPI_PATH_Multiplex

Number of Layers:

[1] 2

Number of Nodes:

[1] 4899

IGRAPH ed22f9b UN-- 4899 18062 --

+ attr: name (v/c), type (e/c)

+ edges from ed22f9b (vertex names):

[1] AAMP --VPS52 AAMP --BHLHE40 AAMP --GABARAPL2 AAMP --MAP1LC3B

[5] VPS52 --TXN2 VPS52 --DDX6 VPS52 --MFAP1 VPS52 --PRKAA1

[9] VPS52 --LMO4 VPS52 --STX11 VPS52 --KANK2 VPS52 --PPP1R18

[13] VPS52 --TXLNA VPS52 --KIAA1217 VPS52 --VPS28 VPS52 --ATP6V1D

[17] VPS52 --TPM3 VPS52 --KIF5B VPS52 --NOP2 VPS52 --RNF41

[21] VPS52 --WTAP VPS52 --MAPK3 VPS52 --ZMAT2 VPS52 --VPS51

[25] BHLHE40--AES BHLHE40--PRKAA1 BHLHE40--CCNK BHLHE40--RBPMS

[29] BHLHE40--COX5B BHLHE40--UBE2I BHLHE40--MAGED1 BHLHE40--PLEKHB2

+ ... omitted several edges

IGRAPH 71919ca UN-- 4899 62602 --

+ attr: name (v/c), type (e/c)

+ edges from 71919ca (vertex names):

[1] BANF1--PSIP1 BANF1--HMGA1 BANF1--PPP2R1A BANF1--PPP2CA BANF1--KPNA1

[6] BANF1--TPR BANF1--NUP62 BANF1--NUP153 BANF1--RANBP2 BANF1--NUP54

[11] BANF1--POM121 BANF1--NUP85 BANF1--PPP2R2A BANF1--EMD BANF1--LEMD2

[16] BANF1--ANKLE2 PSIP1--HMGA1 PSIP1--KPNA1 PSIP1--TPR PSIP1--NUP62

[21] PSIP1--NUP153 PSIP1--RANBP2 PSIP1--NUP54 PSIP1--POM121 PSIP1--NUP85

[26] HMGA1--TP53 HMGA1--KPNA1 HMGA1--TPR HMGA1--NUP62 HMGA1--NUP153

[31] HMGA1--RANBP2 HMGA1--NUP54 HMGA1--POM121 HMGA1--NUP85 HMGA1--MYC

[36] HMGA1--RB1 HMGA1--MAX HMGA1--RPS6KB1 XRCC6--XRCC5 XRCC6--IRF3

+ ... omitted several edges

Afterwards, as in the monoplex case, we have to compute and normalize the adjacency matrix
of the multiplex network.
> AdjMatrix_PPI_PATH <- compute.adjacency.matrix(PPI_PATH_Multiplex)

> AdjMatrixNorm_PPI_PATH <- normalize.multiplex.adjacency(AdjMatrix_PPI_PATH)

Then, we set again as seed the PIK3R1 gene and we perform RWR-M on this new multiplex
network.
> ## We launch the algorithm with the default parameters (See details on manual)

> RWR_PPI_PATH_Results <- Random.Walk.Restart.Multiplex(AdjMatrixNorm_PPI_PATH,

+ PPI_PATH_Multiplex,SeedGene)

> # We display the results

> RWR_PPI_PATH_Results
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Top 10 ranked Nodes:

NodeNames Score

1 GRB2 0.001662893

2 FYN 0.001517786

3 HCST 0.001506594

4 EGFR 0.001494459

5 SHC1 0.001492456

6 PTK2 0.001430282

7 JAK2 0.001401867

8 HRAS 0.001396854

9 CRKL 0.001389391

10 PDGFRB 0.001369533

Seed Nodes used:

[1] "PIK3R1"

Finally, we can create a multiplex network (an igraph object) with the top scored genes. The
results are presented in Figure 3.
> ## In this case we select to induce a multiplex network with the Top 15 genes.

> TopResults_PPI_PATH <-

+ create.multiplexNetwork.topResults(RWR_PPI_PATH_Results,

+ PPI_PATH_Multiplex, k=15)

> par(mar=c(0.1,0.1,0.1,0.1))

> plot(TopResults_PPI_PATH, vertex.label.color="black",

+ vertex.frame.color="#ffffff", vertex.size= 20,

+ edge.curved= ifelse(E(TopResults_PPI_PATH)$type == "PPI",

+ 0.4,0),

+ vertex.color = ifelse(igraph::V(TopResults_PPI_PATH)$name == "PIK3R1",

+ "yellow","#00CCFF"),edge.width=0.8,

+ edge.color=ifelse(E(TopResults_PPI_PATH)$type == "PPI",

+ "blue","red"))

3.4 Random Walk with Restart on a Multiplex-Heterogeneous
Network

RWR-H and RWR-M remarkably improve the results obtained by classical RWR on monoplex
networks, as we demonstrated in the particular case of retrieving known gene-disease asso-
ciations [3]. Therefore, an algorithm able to execute a random walk with restart on both,
multiplex and heterogeneous networks, is expected to achieve an even better performance.
We extended our RWR-M approach to heterogeneous networks, defining a random walk with
restart on multiplex-heterogeneous networks (RWR-MH) [3].
Let us integrate all the networks described previously (PPI, Pathways and disease-disease
similarity) into a multiplex and heterogeneous network. To do so, we connect genes in both
multiplex layers (PPI and Pathways) to the disease network, if a bipartite gene-disease relation
exists.
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Figure 3: RWR-M on a multiplex PPI-Pathway Network
Network representation of the top 15 ranked genes when the RWR-M algorithm is executed using the
PIK3R1 gene (yellow node). Blue curved edges are PPI interactions and red straight edges are Pathways
links. All the interactions are aggregated into a monoplex network only for visualization purposes.

> ## We keep gene-diseases associations where genes are present in the PPI

> ## or in the pathway network

> GeneDiseaseRelations_PPI_PATH <-

+ GeneDiseaseRelations[which(GeneDiseaseRelations$hgnc_symbol %in%

+ PPI_PATH_Multiplex$Pool_of_Nodes),]

> ## We create the MultiplexHet object.

> PPI_PATH_Disease_Net <- create.multiplexHet(PPI_PATH_Multiplex,

+ Disease_Network, GeneDiseaseRelations_PPI_PATH, c("Disease"))

> ## The results look like that

> PPI_PATH_Disease_Net

Number of Layers:

[1] 2

Number of Nodes Multiplex:

[1] 4899

IGRAPH ed22f9b UN-- 4899 18062 --

+ attr: name (v/c), type (e/c)

+ edges from ed22f9b (vertex names):

[1] AAMP --VPS52 AAMP --BHLHE40 AAMP --GABARAPL2 AAMP --MAP1LC3B

[5] VPS52 --TXN2 VPS52 --DDX6 VPS52 --MFAP1 VPS52 --PRKAA1

[9] VPS52 --LMO4 VPS52 --STX11 VPS52 --KANK2 VPS52 --PPP1R18

[13] VPS52 --TXLNA VPS52 --KIAA1217 VPS52 --VPS28 VPS52 --ATP6V1D

[17] VPS52 --TPM3 VPS52 --KIF5B VPS52 --NOP2 VPS52 --RNF41

[21] VPS52 --WTAP VPS52 --MAPK3 VPS52 --ZMAT2 VPS52 --VPS51

[25] BHLHE40--AES BHLHE40--PRKAA1 BHLHE40--CCNK BHLHE40--RBPMS

[29] BHLHE40--COX5B BHLHE40--UBE2I BHLHE40--MAGED1 BHLHE40--PLEKHB2
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+ ... omitted several edges

IGRAPH 71919ca UN-- 4899 62602 --

+ attr: name (v/c), type (e/c)

+ edges from 71919ca (vertex names):

[1] BANF1--PSIP1 BANF1--HMGA1 BANF1--PPP2R1A BANF1--PPP2CA BANF1--KPNA1

[6] BANF1--TPR BANF1--NUP62 BANF1--NUP153 BANF1--RANBP2 BANF1--NUP54

[11] BANF1--POM121 BANF1--NUP85 BANF1--PPP2R2A BANF1--EMD BANF1--LEMD2

[16] BANF1--ANKLE2 PSIP1--HMGA1 PSIP1--KPNA1 PSIP1--TPR PSIP1--NUP62

[21] PSIP1--NUP153 PSIP1--RANBP2 PSIP1--NUP54 PSIP1--POM121 PSIP1--NUP85

[26] HMGA1--TP53 HMGA1--KPNA1 HMGA1--TPR HMGA1--NUP62 HMGA1--NUP153

[31] HMGA1--RANBP2 HMGA1--NUP54 HMGA1--POM121 HMGA1--NUP85 HMGA1--MYC

[36] HMGA1--RB1 HMGA1--MAX HMGA1--RPS6KB1 XRCC6--XRCC5 XRCC6--IRF3

+ ... omitted several edges

Number of Nodes of the second network:

[1] 6947

Second Network

IGRAPH 04739c8 UN-- 6947 28246 --

+ attr: name (v/c), type (e/c)

+ edges from 04739c8 (vertex names):

[1] 100050--122470 100050--227330 100050--259200 100050--305400 100050--601803

[6] 100070--105800 100070--105805 100070--107550 100070--120000 100070--130090

[11] 100070--132900 100070--154750 100070--180300 100070--192310 100070--208060

[16] 100070--210050 100070--219100 100070--252350 100070--277175 100070--300537

[21] 100070--309520 100070--600459 100070--604308 100070--606519 100070--608967

[26] 100070--609192 100070--610168 100070--610380 100070--611788 100070--613780

[31] 100070--613834 100070--614042 100070--614437 100070--614980 100070--610655

[36] 100070--615436 100070--616166 100100--192350 100100--236700 100100--236730

+ ... omitted several edges

To apply the RWR-MH on a multiplex and heterogeneous network, we need to compute a
matrix that accounts for all the possible transitions of the RWR particle within this network
[3].
> PPI_PATH_HetTranMatrix <- compute.transition.matrix(PPI_PATH_Disease_Net)

As in the RWR-H situation, we can take as seeds both, the PIK3R1 gene and the the SHORT
syndrome disease.
> ## We launch the algorithm with the default parameters (See details on manual)

> RWRH_PPI_PATH_Disease_Results <-

+ Random.Walk.Restart.MultiplexHet(PPI_PATH_HetTranMatrix,

+ PPI_PATH_Disease_Net,SeedGene,SeedDisease)

> # We display the results

> RWRH_PPI_PATH_Disease_Results

Top 10 ranked Multiplex nodes:

NodeNames Score

1616 GHR 0.0005153889

4867 ZMPSTE24 0.0004781314
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1706 GRB2 0.0004642946

1625 GJA1 0.0004457777

1781 HCST 0.0004408101

1249 EGFR 0.0004239882

1564 FYN 0.0004193109

3883 SHC1 0.0004161564

2990 PDGFRB 0.0004079884

3361 PTK2 0.0004069179

Multiplex Seed Nodes used:

[1] "PIK3R1"

Top 10 ranked Second Network Nodes:

SecondNet_node Score

6352 615214 0.020797695

6705 616005 0.020775842

1699 194050 0.005868202

4770 608612 0.005691321

2901 262500 0.005691027

3625 309000 0.005683228

686 138920 0.005653962

2150 223370 0.005653358

4464 606176 0.005639004

1411 180500 0.005631733

Second Network Seed Nodes used:

[1] "269880"

Finally, we can create a multiplex and heterogeneous network (an igraph object) with the top
scored genes and the top scored diseases. The results are presented in Figure 4.
> ## In this case we select to induce a network with the Top 10 genes.

> ## and the Top 10 diseases.

> TopResults_PPI_PATH_Disease <-

+ create.multiplexHetNetwork.topResults(RWRH_PPI_PATH_Disease_Results,

+ PPI_PATH_Disease_Net, GeneDiseaseRelations_PPI_PATH, k=10)

> par(mar=c(0.1,0.1,0.1,0.1))

> plot(TopResults_PPI_PATH_Disease, vertex.label.color="black",

+ vertex.frame.color="#ffffff",

+ vertex.size= 20,

+ edge.curved=ifelse(E(TopResults_PPI_PATH_Disease)$type == "PATH",

+ 0,0.3),

+ vertex.color = ifelse(V(TopResults_PPI_PATH_Disease)$name == "PIK3R1"

+ | V(TopResults_PPI_Disease)$name == "269880","yellow",

+ ifelse(V(TopResults_PPI_PATH_Disease)$name %in%

+ PPI_PATH_Disease_Net$Pool_of_Nodes,

+ "#00CCFF","Grey75")),

+ edge.color=ifelse(E(TopResults_PPI_PATH_Disease)$type == "PPI","blue",

+ ifelse(E(TopResults_PPI_PATH_Disease)$type == "PATH","red",

+ ifelse(E(TopResults_PPI_PATH_Disease)$type == "Disease","black","grey50"))),

+ edge.width=0.8,
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+ edge.lty=ifelse(E(TopResults_PPI_PATH_Disease)$type ==

+ "bipartiteRelations", 2,1),

+ vertex.shape= ifelse(V(TopResults_PPI_PATH_Disease)$name %in%

+ PPI_PATH_Disease_Net$Pool_of_Nodes,"circle","rectangle"))
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Figure 4: RWR-MH on a multiplex and heterogeneous network (PPI-Pathway-Disease)
Network representation of the top 10 ranked genes and the top 10 ranked diseases when the RWR-H algo-
rithm is executed using the PIK3R1 gene and the SHORT syndrome disease (MIM code: 269880) as seeds
(yellow nodes). Circular nodes represent genes and rectangular nodes show diseases. Blue curved edges are
PPI interactions and red straight edges are Pathways links. Black edges are similarity links between dis-
eases. Dashed edges are the bipartite gene-disease associations. Multiplex interactions are aggregated into
a monoplex network only for visualization purposes.
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Summary 

Identification of modules in molecular networks is at the core of many current analysis methods 

in biomedical research. However, how well different approaches identify disease-relevant 

modules in different types of networks remains poorly understood. We launched the “Disease 

Module Identification DREAM Challenge”, an open competition to comprehensively assess 

module identification methods across diverse gene, protein and signaling networks. Predicted 

network modules were tested for association with complex traits and diseases using a unique 

collection of 180 genome-wide association studies (GWAS). While a number of approaches 

were successful in terms of discovering complementary trait-associated modules, consensus 

predictions derived from the challenge submissions performed best. We find that most of these 

modules correspond to core disease-relevant pathways, which often comprise therapeutic 

targets and correctly prioritize candidate disease genes. This community challenge establishes 

benchmarks, tools and guidelines for molecular network analysis to study human disease 

biology (https://synapse.org/modulechallenge). 
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Highlights 

● Crowdsourced challenge enables critical assessment of module identification methods 

● Top approaches recover complementary disease modules in diverse molecular networks 

● Community-established benchmarks, user guidelines and tools for network analysis 

● Molecular network modules reveal core pathways underlying complex traits and 

diseases 
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Introduction 

Understanding the mechanisms and pathways underlying complex human diseases remains a 

difficult problem, hindering the development of targeted therapeutics. Complex diseases involve 

many genes and molecules that interact within context-specific cellular networks (Califano et al., 

2012). These densely interconnected networks sense and propagate perturbations from genetic 

variants and environmental factors, giving rise to disease states that may be difficult to 

understand at the level of individual genes (Schadt, 2009). Indeed, it has become apparent that 

the majority of genetic variants underlying complex traits and diseases lie in noncoding regions 

of the genome where they presumably disrupt gene regulatory networks (Pickrell, 2014), lending 

further support to the long-recognized importance of molecular network analysis for 

understanding disease biology (Ideker and Sharan, 2008; Vidal et al., 2011). 

 

Experimental and computational techniques for mapping molecular networks, including physical 

interaction networks (e.g., protein-protein interaction, signaling and regulatory networks) as well 

as functional gene networks (e.g., co-expression and genetic interaction networks), have been a 

major focus of systems biology. Recent studies have further introduced comprehensive 

collections of tissue-specific networks (Greene et al., 2015; Marbach et al., 2016). Network-

based approaches are now widely used for systems-level analyses in diverse fields ranging 

from oncology (Chen et al., 2014; Tsherniak et al., 2017) to cell differentiation (Cahan et al., 

2014; Ciofani et al., 2012). A key problem in biological network analysis is the identification of 

functional units, called modules or pathways. It is well known that molecular networks have a 

high degree of modularity (i.e., subsets of nodes are more densely connected than expected by 

chance), and that the corresponding modules often comprise genes or proteins that are involved 

in the same biological functions (Hartwell et al., 1999). Moreover, biological networks are 

typically too large to be examined and visualized as a whole. Consequently, module 

identification is often a crucial step to gain biological insights from network data (Chen et al., 

2008; Langfelder and Horvath, 2008; Padi and Quackenbush, 2017; Pe’er et al., 2001).  

 

Module identification, also called community detection or graph clustering, is a key problem in 

network science for which a wide range of methods have been proposed (Fortunato and Hric, 

2016). These methods are typically assessed on in silico generated benchmark graphs (Girvan 

and Newman, 2002). However, how well different approaches uncover biologically relevant 

modules in real molecular networks remains poorly understood. Crowdsourced open-data 

competitions (known as challenges) have proven an effective means to rigorously assess 

methods and, in the process, foster collaborative communities and open innovation. The 
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Dialogue on Reverse Engineering and Assessment (DREAM) is a community-driven initiative 

promoting open-data challenges in systems biology and translational medicine 

(http://dreamchallenges.org). DREAM challenges have established standardized resources and 

robust methodologies for diverse problems, including the inference of gene regulatory and 

signaling networks (Hill et al., 2016; Marbach et al., 2012). But, so far there has been no 

community effort addressing the downstream analysis of molecular networks. 

 

Here we present the results of the Disease Module Identification DREAM Challenge (Fig. 1). 

The aim of this challenge is to comprehensively assess module identification methods across 

diverse molecular networks. Six research groups contributed unpublished molecular networks 

and over 400 participants from all over the world developed and applied module identification 

methods. Teams predicted disease-relevant modules both within individual networks (Sub-

challenge 1) and across multiple, layered networks (Sub-challenge 2). In the final round, 75 

submissions, including method descriptions and code, were made across the two sub-

challenges, providing a broad sampling of state-of-the-art methods. We employed a novel 

approach to assess the performance of these methods based on the number of discovered 

modules associated with complex traits or diseases. In this paper, we discuss the top-

performing approaches, show that they recover complementary modules, and introduce a 

method to generate robust consensus modules. Finally, we explore the biology and therapeutic 

relevance of trait-associated network modules. 

 

All challenge data, including the networks, GWAS datasets, team submissions and code are 

available as a community resource at https://www.synapse.org/modulechallenge. 

 

Results 

A crowdsourced challenge for empirical assessment of module 

identification methods 

We developed a panel of diverse, human molecular networks for the challenge, including 

custom versions of two protein-protein interaction and a signaling network extracted from the 

STRING (Szklarczyk et al., 2015), InWeb (Li et al., 2017) and OmniPath (Türei et al., 2016) 

databases, a co-expression network inferred from 19,019 tissue samples from the GEO 

repository (Barrett et al., 2011), a network of genetic dependencies derived from genome-scale 

loss-of-function screens in 216 cancer cell lines (Cowley et al., 2014; Tsherniak et al., 2017), 

and a homology-based network built from phylogenetic patterns across 138 eukaryotic species 
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(Li et al., 2014) (Methods). These networks have varying size, link density and structural 

properties, making a heterogeneous benchmark resource (Fig. 1A). 

 

Each network was generated specifically for the challenge and released in anonymized form 

(i.e., we did not disclose the gene names and the identity of the networks). Using unpublished 

networks made it impossible for participants to infer the gene identities, thus enabling rigorous 

“blinded” assessment. That is, participants could only use the provided network structures, 

without having access to any additional information such as known disease genes. 

 

We solicited participation in two types of module identification challenges (Fig. 1B). In Sub-

challenge 1, solvers were asked to run module identification on each of the provided networks 

individually (single-network module identification). Thus, they were asked to submit one set of 

modules for each of the six networks. This is a typical problem in biomedical research, where 

one is often presented with a single network derived from a given dataset. In Sub-challenge 2, 

the networks were re-anonymized in a way that the same gene identifier represented the same 

gene across all six networks. Solvers were then asked to identify a single set of non-overlapping 

modules by sharing information across the six networks (multi-network module identification). 

This is also common problem, as network-based approaches are often used to integrate 

disparate molecular datasets (Krishnan et al., 2016). In both sub-challenges, predicted modules 

had to be non-overlapping and comprise between 3 and 100 genes (modules with over one 

hundred genes are typically less useful to gain specific biological insights). 

 

We developed a framework to empirically assess module identification methods based on the 

number of predicted modules that show significant association with complex traits and diseases 

(called trait-associated modules, Fig. 1C). To this end, predicted modules were scored on 

GWAS data using the Pascal tool (Lamparter et al., 2016), which takes into account 

confounders such as linkage disequilibrium within and between genes (Methods). Since we are 

employing a large collection of 180 GWAS datasets ranging over diverse disease-related 

human phenotypes (Table S1), this approach covers a broad spectrum of molecular processes. 

In contrast to evaluation of module enrichment using existing gene and pathway annotations, 

where it is sometimes difficult to ascertain that annotations were not derived from similar data 

types as the networks, the GWAS-based approach provides an orthogonal means to assess 

disease-relevant modules. 

 

The challenge was run using the open-science Synapse platform (Derry et al., 2012). Over a 

two-month period, teams could make repeated submissions and see their performance on a 
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real-time leaderboard to iteratively improve their methods. The total number of leaderboard 

submissions per team was limited to 25 and 41 for the two sub-challenges, respectively. In the 

final round, teams could make a single submission for each sub-challenge, which had to include 

detailed method descriptions and code for reproducibility. The scoring of the final submissions 

was based on a separate set of GWAS data sets that were not used during the leaderboard 

round (Methods). 

 

Community-based collection of module identification methods 

The community contributed 42 single-network and 33 multi-network module identification 

methods in the final round of the two sub-challenges. Single-network module identification 

methods are listed in Table 1, top-performing approaches are detailed in Methods, and full 

descriptions and code of all methods are available on the Synapse platform 

(https://www.synapse.org/modulechallenge). In the following sections we first discuss the single-

network methods (Sub-challenge 1). 

 

We grouped methods into seven broad categories: (i) kernel clustering, (ii) modularity 

optimization, (iii) random-walk based, (iv) local methods, (v) ensemble methods, (vi) hybrid 

methods and (vii) other methods (Fig. 2A, Table 1). While many teams adapted existing 

algorithms for community detection, other teams -- including the best performers -- developed 

novel approaches.  

 

Top methods from different categories achieve comparable 

performance 

In Sub-challenge 1, teams submitted a separate set of predicted modules for each of the six 

networks. We scored these predictions based on the number of trait-associated modules at 5% 

false discovery rate (FDR; Methods). The overall score used to rank methods in the challenge 

was defined as the total number of trait-associated modules across the six networks. (Module 

predictions, scoring scripts and full results are available in on the challenge website.) 

 

The top five methods achieved comparable performance with scores between 55 and 60, while 

the remaining methods did not get to scores above 50 (Fig. 2B). To assess the robustness of 

the challenge ranking, we further scored all methods on 1,000 subsamples of the GWAS hold-

out set (Methods). This analysis revealed a significant difference between the top-scoring 

method K1 (method IDs are defined in Table 1) and the remaining methods (Fig. 2C). In 

addition, we repeated the scoring using four different FDR cutoffs: method K1 ranked 1st in 
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each case, while the performance of other methods varied (Fig. S1A). Moreover, method K1 

also obtained the top score in the leaderboard round. We conclude that although the final 

scores of the top 5 methods are close, method K1 performed more robustly in diverse settings. 

 

The top teams used different approaches: the best performers (K1) developed a novel kernel 

approach leveraging a diffusion-based distance metric (Cao et al., 2013, 2014) and spectral 

clustering (Ng et al., 2001); the runner-up team (M1) extended different modularity optimization 

methods with a resistance parameter that controls the granularity of modules (Arenas et al., 

2008); and the third-ranking team (R1) used a random-walk method based on multi-level 

Markov clustering with locally adaptive granularity to balance module sizes (Satuluri et al., 

2010). Interestingly, teams employing the widely-used Weighted Gene Co-expression Network 

Analysis tool (WGCNA) (Langfelder and Horvath, 2008), which relies on hierarchical clustering 

to detect modules, did not perform competitively in this challenge (rank 35, 37 and 41). 

 

Four different method categories are represented among the top five performers, suggesting 

that no single approach is inherently superior for module identification in molecular networks. 

Rather, performance depends on the specifics of each individual method, including the strategy 

used to define the resolution of the modular decomposition (the number and size of modules). 

Most teams used the leaderboard round to determine an appropriate resolution to capture 

disease-relevant pathways. Notably, the two runner-up teams (M1 and R1) both used methods 

specifically designed to control the resolution of modules, and the top three teams all subdivided 

large modules (>100 genes) by recursively applying their methods to the corresponding 

subnetworks. Pre-processing steps also affected performance: many of the top teams first 

sparsified the networks by discarding weak edges. A notable exception is the top method (K1), 

which performed robustly without any pre-processing of the networks. 

 

The challenge also allows us to explore how informative different types of molecular networks 

are for finding modules underlying complex traits. In absolute numbers, methods recovered the 

most trait-associated modules in the co-expression and protein-protein interaction networks 

(Fig. S1B). However, relative to the network size, the signaling network contained the most trait-

associated modules (Fig. 2D). The cancer-related and homology-based networks, on the other 

hand, were less informative for the considered traits. These results are consistent with the 

importance of signaling pathways for many of the considered traits and diseases. 
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Consensus predictions outperform individual methods 

Integration of multiple team submissions sometimes leads to winning predictions in 

crowdsourced challenges (Marbach et al., 2012). We therefore developed an ensemble 

approach to derive consensus modules from team submissions. To this end, module predictions 

from different methods were integrated in a consensus matrix C, where each element cij is 

proportional to the number of methods that put gene i and j together in the same module. The 

consensus matrix was then clustered using the top-performing module identification method 

from the challenge (Fig. S2A, Methods).  

 

When applied to the top 50% of methods from the leaderboard round, the consensus indeed 

leads to a new best-scoring prediction (Fig. 2B,C). However, when applied to fewer methods, 

the performance of the consensus drops (Fig. S2C), suggesting that further work is needed to 

make this approach practical outside of a challenge context. 

 

Complementarity of different module identification approaches 

We next asked whether predictions from different methods and networks tend to capture the 

same or complementary modules. To this end, we developed a pairwise similarity metric for 

module predictions, which we applied to the complete set of 252 module predictions from Sub-

challenge 1 (42 methods x 6 networks, Methods). We find that similarity of module predictions is 

primarily driven by the underlying network and not the method category (Fig. 3A). When 

comparing module predictions of different methods across networks, we find that the top-

performing methods produce dissimilar clusterings, suggesting that they capture complementary 

functional modules (Fig. S3A). 

 

These observations can be confirmed by evaluating the overlap between trait-associated 

modules from different methods. Within the same network, only 46% of trait modules are 

recovered by multiple methods with good agreement (high overlap or submodules, Fig. 3B). 

Across different networks, the number of recovered modules with substantial overlap is even 

lower (17%). Thus, the majority of trait modules are method- and network-specific. This 

suggests that users should not rely on a single method or network to find trait-relevant modules. 

 

The modules produced by different methods also vary in terms of their structural properties. For 

example, the average module size ranges from 7 to 66 genes across methods and does not 

correlate with performance in the challenge (Figs. 3C, S3B-D). This implies that trait-relevant 

pathways can be captured at different levels of granularity (indeed, 26% of trait modules are 
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submodules of larger trait modules, Fig. 3B). Topological quality metrics of modules such as 

modularity showed only modest correlation with the challenge score (Fig. 3D), highlighting the 

need to empirically assess module identification methods for a given task. 

 

Multi-network module identification methods did not provide added 

power 

In Sub-challenge 2, teams submitted a single modularization of the genes, for which they could 

leverage information from all six networks together. While some teams developed dedicated 

multi-network (multi-layer) community detection methods (De Domenico et al., 2015; Didier et 

al., 2015), the majority of teams first merged the networks in some way and then applied single-

network methods. 

 

It turned out to be very difficult to effectively leverage complementary networks for module 

identification. While three teams achieved marginally higher scores than single-network module 

predictions, the difference is not significant (Figs. 3E, S1C). Moreover, the best-scoring team 

simply merged the two protein interaction networks (the two most similar networks, Fig. S2E), 

discarding the other types of networks. Since no significant improvement over single-network 

methods was achieved, the winning position of Sub-challenge 2 was declared vacant. 

 

We nevertheless also applied our consensus method to integrate team submissions across 

networks. The exact same consensus method as we employed for Sub-challenge 1 was used, 

except that a cross-network consensus matrix was formed by taking the sum of the six network-

specific consensus matrices (Fig. S2B, Methods). This resulted in the best-scoring module 

prediction of Sub-challenge 2 (Fig. 3E), the only multi-network prediction that significantly 

outperforms single-network predictions, thus confirming the robustness of the consensus 

method and demonstrating that the multi-network methods can be further improved. 

 

Network modules reveal shared pathways between traits 

We next sought to explore biological properties of trait-associated modules discovered by the 

challenge participants. In what follows, we focus on the single-network predictions from Sub-

challenge 1. The most trait-associated modules were found for immune-related, psychiatric, 

blood cholesterol and anthropometric traits, for which high-powered GWAS are available that 

are known to show strong pathway enrichment (Fig. 4A).  
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Significant GWAS loci often show association to multiple traits. Across our GWAS compendium, 

we found that 46% of trait-associated genes but only 28% of trait-associated modules are 

associated with multiple traits (Fig. 4B). Thus, mapping genes onto network modules may help 

disentangling trait-specific pathways at shared loci. 

 

We further asked which traits are similar in terms of the implicated network components. To this 

end, we considered the union of all genes within network modules associated with a given trait 

(called “trait-module genes”). We then evaluated the pairwise similarity of traits based on the 

significance of the overlap between the respective trait-module genes (Methods). Trait 

relationships thus inferred are consistent with known biology and comorbidities between the 

considered traits and diseases (Fig. 4C). For example, consistent with its pathophysiological 

basis, age-related macular degeneration shares network components with cholesterol and 

immune traits, while coronary artery disease shows similarity with established risk factors 

(cholesterol levels, body mass index) and osteoporosis, which is epidemiologically and 

biologically linked (atherosclerotic calcification and bone mineralization involve related 

pathways). 

 

Trait-associated modules implicate core disease genes and pathways 

Trait-associated modules typically include many genes that do not show any signal in the 

respective GWAS. A key question is whether modules correctly predict such genes as being 

relevant for that trait or disease. We first consider a module from the consensus method that 

shows association to height -- a classic polygenic trait -- as an example. In the GWAS that was 

used to identify this module there are only three module genes that show association to height, 

while the remaining genes are predicted to play a role in height solely because they are 

members of this module (Fig. 5A). We sought to evaluate such candidate genes for height as 

well as other traits using higher-powered GWASs, ExomeChip data, monogenic disease genes 

and functional annotations. 

 

There are eight traits for which we have both an older (lower-powered) and more recent (higher-

powered) GWAS in our hold-out set: height, schizophrenia, ulcerative colitis, Crohn’s disease, 

rheumatoid arthritis, and three blood lipid traits (Fig. S4A). We can thus identify trait modules 

and candidate genes using the lower-powered GWAS and then evaluate how well they are 

supported in higher-powered GWAS (a common approach used to assess methods for GWAS 

gene prioritization, see Methods). Indeed, while only 3 genes in the height module introduced 

above are associated to height in the lower-powered GWAS (Randall et al., 2013), 13 module 
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genes are confirmed in the higher-powered GWAS (Wood et al., 2014) and 6 module genes 

further comprise coding variants associated to height in an independent ExomeChip study 

(Marouli et al., 2017) (Fig 5B). Similar results are obtained when evaluating module predictions 

from all challenge methods across the eight above-mentioned traits: a substantial fraction of 

module genes that do not show any signal and are located far from any significant locus in the 

lower-powered GWAS are subsequently confirmed by the higher-powered GWAS (Fig. 5C). 

This demonstrates that modules are predictive for trait-associated genes and could thus be 

used to prioritize candidate genes for follow-up studies, for instance. 

 

We next explored the biological function and clinical relevance of identified trait modules. For 

example, the height module discussed above consists of two submodules comprising 

extracellular matrix proteins responsible for, respectively, collagen fibril and elastic fibre 

formation -- pathways that are essential for growth (Fig. 5D). Indeed, mutations of homologous 

genes in mouse lead to abnormal elastic fiber morphology (Table S2) and one out of four 

module genes are known to cause monogenic skeletal growth disorders in human (Fig. 5D). For 

example, the module gene BMP1 (Bone Morphogenic Protein 1) causes osteogenesis 

imperfecta, which is associated with short stature. Interestingly, BMP1 does not show 

association to height in current GWAS and ExomeChip studies (Fig. 5A,B), demonstrating how 

network modules can implicate additional disease-relevant pathway genes (see Fig. S4B for a 

systematic comparison of trait modules with independent disease gene sets from the literature). 

 

To evaluate more generally whether trait-associated modules correspond to generic or disease-

specific pathways, we visualized and tested modules for functional enrichment of Gene 

Ontology (GO) annotations, mouse mutant phenotypes, and diverse pathway databases. In 

order to account for annotation bias of well-studied genes (Glass and Girvan, 2014), we 

employed a noncentral hypergeometric test (Methods). We find that the majority of trait modules 

reflect core disease-specific pathways. For example, in the first protein-protein interaction 

network only 33% of trait modules from the consensus method have generic functions, such as 

epigenetic gene silencing for modules associated with schizophrenia and body mass index; the 

remaining 66% of trait modules correspond to core disease-specific pathways, some of which 

are therapeutic targets (Fig. 6 and Tables S3, S4). Examples include a module associated with 

rheumatoid arthritis that comprises the B7:CD28 costimulatory pathway required for T cell 

activation, which is blocked by an approved drug (Fig. 6A); a module associated with 

inflammatory bowel disease corresponding to cytokine signalling pathways mediated by Janus 

kinases (JAKs), which are therapeutically being targeted at multiple levels (Fig. 6B); and a 

module associated with myocardial infarction that includes the NO/cGMP signaling cascade, 
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which plays a key role in cardiovascular pathophysiology and therapeutics (Fig. 6C). We further 

applied our pipeline to a GWAS on IgA nephropathy (IgAN) obtained after the challenge, a 

disease with poorly understood etiology and no effective therapy (Kiryluk et al., 2014). IgAN is 

an autoimmune disorder that manifests itself by deposition of immune complexes in the kidney’s 

glomeruli, triggering inflammation (glomerulonephritis) and tissue damage. The best-performing 

challenge method (K1) revealed one IgAN-specific module. The module implicates complement 

and coagulation cascades, pointing to the chemokine PF4V1 as a novel candidate gene (Fig. 

6D). In support of the function of this module in IgAN, top enriched mouse mutant phenotypes 

for module gene homologs are precisely “glomerulonephritis” and “abnormal blood coagulation” 

(Fig. S5). 

 

Discussion 

Large-scale network data are becoming pervasive in many areas ranging from the digital 

economy to the life sciences. While analysis goals vary across fields, robust detection of 

network communities remains an essential task in many applications of interest. We have 

conducted a critical assessment of module identification methods on real-world networks, 

providing much-needed guidance for users. The community-based challenge enabled 

comprehensive and impartial assessment, avoiding the “self-assessment trap” that leads 

researchers to consciously or unconsciously overestimate performance when evaluating their 

own algorithms (Norel et al., 2011). While it is important to keep in mind that the exact ranking 

of methods -- as in any benchmark -- is specific to the task and datasets considered, we believe 

that the resulting collection of top-performing module identification tools and methodological 

insights will be broadly useful for modular analysis of complex networks in biology and other 

domains. 

 

In addition to providing a cross section of established approaches, the collection of contributed 

methods also includes novel algorithms that further advance the state-of-the-art (notably, the 

best-performing method). Kernel clustering, modularity optimization, random-walk-based and 

local methods were all represented among the top performers, suggesting that no single type of 

approach is inherently superior. In contrast, basic approaches such as hierarchical clustering, 

which is widely used for gene network analysis, did not perform competitively. Consensus 

modules obtained by integrating multiple team submissions achieved the top score, 

demonstrating that method performance can be further improved. However, this strategy was 

only successful when integrating predictions from over twenty methods, explaining why 

ensemble approaches applied by individual teams, which integrated only few methods, did not 
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perform well. Indeed, our analysis showed that top-performing methods produced very different 

modular decompositions, capturing complementary pathways at varying resolutions that may be 

difficult to merge in a single consensus prediction. 

 

Published studies in biology that apply network analysis tools typically rely on a single clustering 

method. The results of this challenge call for a different approach. We recommend that users 

apply top methods from several categories, enabling the detection of different types of modules 

and making results less prone to biases of any single approach. We find that the top four 

challenge methods (K1, M1, R1 and M2) already offer substantial diversity (Fig. S3E). The 

generated modules should be considered as is, without forming a consensus prediction. It 

should be noted that the larger number of modules also results in a higher multiple testing 

burden in any subsequent analyses (e.g., functional enrichment testing) and that modules from 

different methods may overlap. When a single non-overlapping partition is needed, the best-

performing challenge method (K1) is a good choice as it functioned robustly in diverse settings 

(notably, it was also used to cluster the consensus matrices, leading to the top-scoring 

consensus predictions in both sub-challenges). 

 

The challenge also emphasized the importance of the resolution (size and number of modules), 

which critically affected results. Biological networks typically have a hierarchical modular 

structure, which implies that disease-relevant pathways can be captured at different levels 

(Ravasz et al., 2002). Our results showed that the optimal resolution is method- and network-

specific (Fig. S3B-D). Top-performing challenge methods allowed the resolution to be tuned. 

Although setting the “right” resolution can be challenging for users, this critical point should not 

be sidestepped. We recommend that users experiment with different resolutions and use the 

settings optimized by teams for the different types of networks as guidance. 

 

Our analysis showed that signaling, protein-protein interaction and co-expression networks 

comprise complementary trait-relevant modules (Fig. 3A,B). Considering different types of 

networks is thus clearly advantageous. However, multi-network module identification methods 

that attempted to reveal integrated modules across these networks failed to significantly 

improve predictions compared to methods that considered each network individually. Possibly, 

the networks of the challenge were not sufficiently related -- multi-network methods may 

perform better on networks from the same tissue- and disease-context (Krishnan et al., 2016).  

 

The benchmark datasets and results of the challenge provide a reference point for future 

method improvements. We see many promising avenues for future work, such as: (i) top-
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performing challenge methods can potentially be further enhanced with ensemble approaches 

that sample multiple partitions of the same method to generate stable results (Lancichinetti and 

Fortunato, 2012); (ii) top teams recursively broke down large “supermodules” by iteratively 

applying their clustering methods, a heuristic that worked well, but more principled approaches 

to globally balance module sizes may improve accuracy (exemplified by method R1); and (iii) 

methods for detection of overlapping modules (Ihmels et al., 2002) may also be assessed using 

the benchmarks of this challenge. 

 

An important observation about these results is that the module identification tasks were 

performed on completely blinded networks; gene identities and even the type of relationship 

captured was unknown to challenge participants. The fact that meaningful modules can be 

identified in such a context is perhaps surprising, revealing how much functional information is 

present strictly in the topological structure of biological networks. It remains to be seen whether 

an un-blinded approach that allows integration of prior knowledge about gene functions, 

relationships, and the source of network edges might further improve the quality of inferred 

modules, especially when integrating data from multiple types of networks. 

 

The collective effort of over 400 challenge participants resulted in a unique compendium of 

modules for the different types of molecular networks considered. By leveraging the “wisdom of 

crowds” we generated robust consensus modules, which captured disease-relevant pathways 

better than any individual method. While most modules partly reflect known pathways or 

functional gene categories, which they reorganize and expand with additional genes, other 

modules may correspond to yet uncharacterized pathways. The consensus modules (gene sets) 

thus constitute a novel data-driven pathway collection, which may complement existing pathway 

collections in a range of applications (e.g., for interpretation of gene expression data using gene 

set enrichment analysis). 

 

There is continuing debate over the value of GWASs for revealing disease mechanisms and 

therapeutic targets. Indeed, the number of GWAS hits continues to grow as sample sizes 

increase, but the bulk of these hits may not correspond to core genes with specific roles in 

disease etiology. An “omnigenic” model recently proposed by Boyle et al. (2017) explains this 

observation by the high interconnectivity of molecular networks, which implies that most of the 

expressed genes in a disease-relevant tissue are likely to be at least weakly connected to core 

genes and may thus have non-zero effects on that disease. Indeed, disease-associated genes 

tend to coalesce in regulatory networks of tissues that are specific to that disease (Marbach et 

al., 2016). Our analysis of 180 GWAS datasets across six molecular networks demonstrated 
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that, although thousands of genes may show association for a given disease, at the network 

level specific disease modules comprising only dozens of genes can be identified. We have 

shown that these modules are more disease-specific than individual genes, reveal pathway-

level similarity between diseases, accurately prioritize candidate genes, and correspond to core 

disease pathways in the majority of cases. These results are consistent with the omnigenic 

model and the robustness of biological networks: presumably, the many genes that influence 

disease indirectly are broadly distributed across network modules, while core disease genes 

cluster in specific pathways underlying pathophysiological processes (Sullivan and Posthuma, 

2015). Our analysis also demonstrated that GWASs with larger sample size are extremely 

useful for the identification of key core modules and SNP effect size (explained variance) is not 

necessarily an indicator of core-ness. 

 

In this study we used global networks because the focus was on method assessment across 

diverse disorders. Global networks mostly comprise pathways that are either broadly expressed 

or specific to well-studied tissues, such as blood or immune cells. In the near future, we expect 

much more detailed maps of cell- and tissue-specific networks, along with diverse high-powered 

genetic datasets, to become available. We hope that the challenge resources will be 

instrumental in dissecting these networks and will provide a solid foundation for developing 

integrative methods to reveal the cell types and causal circuits implicated in human disease. 
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Table 1 

Table 1. Module identification methods 

 
IDa 

 
Description 

 
Scoreb 

Pre- / post- 
processing 

Kernel clustering: (i) the weighted adjacency matrix is transformed into a gene similarity matrix; (ii) a clustering algorithm is applied. 
K1 (i) Diffusion State Distance metric (Cao et al., 2013); (ii) spectral clustering. 60 R 
K2 (i) Singular Value Thresholding (Cai et al., 2010) maps the graph into a latent feature space; (ii) hierarchical clustering using 

Ward’s method. 
48 W, R 

K3 (i) Large-scale Information Network Embedding (LINE) (Tang et al., 2015); (ii) K-means clustering. 46 - 

K4 (i) Extension of Spectral Clustering On Ratios-of-Eigenvectors (SCORE) (Jin, 2015) allowing for weighted networks and 
hierarchical structure of submodules; (ii) spectral clustering. 

42 R 

K5 (i) SCORE (Jin, 2015); (ii) spectral clustering.  38 - 
K6 (i) Diffusion kernel is applied to graph Laplacian (Kondor and Lafferty, 2002); (ii) Weighted Gene Coexpression Network 

Analysis (WGCNA) (Langfelder and Horvath, 2008). 
30 M 

Modularity optimization: search algorithms are employed to find modules that maximize a modularity quality function. 
M1 Modularity optimization algorithms are extended with a multiresolution technique (Arenas et al., 2008). 60 S, R 
M2 Louvain community detection algorithm (Blondel et al., 2008). 56 S,W,R,M 
M3 Extension of a multi-network module identification method (Didier et al., 2015), here applied to single-layer networks. 48 R 
M4 PageRank algorithm is used to create an initial partition for the Louvain method. 44 W, R 
M5 A hierarchical module tree is generated using the Louvain method, optimal partitions are selected using modularity, 

conductance and connectivity metrics. 
42 W,R,M,F 

M6 Greedy agglomerative clustering approach optimizes a score based on total weight of intra-module edges and module size. 40 S,W, M 
M7 Fast greedy clustering algorithm (Clauset et al., 2008) that iteratively divides modules to optimize the modularity. 40 - 
M8 Modularity optimization by Conformational Space Annealing (Mod-CSA) (Lee et al., 2012) using the weighted adjacency matrix. 38 S, R 
M9 Louvain algorithm is used for optimization of a generalized modularity metric with a resolution parameter. 37 R 
M10 Louvain algorithm. 33 R 

Random-walk-based: modules are identified using diffusion processes over the network. 
R1 Multi-level Markov clustering is extended with a regularization matrix to balance module sizes (Satuluri et al., 2010). 58 S, W, R 
R2 Walktrap algorithm (Pons and Latapy, 2005), output modules are filtered based on the median node degree. 44 S, R 
R3 Walktrap algorithm. 43 S, R 
R4 A machine learning approach for predicting disease genes from graph features is combined with the Infomap algorithm (Rosvall 

et al., 2009) for community detection.  
40 S,R,F 

R5 Walktrap algorithm with varying number of steps. 39 S, F, M 
R6 Infomap algorithm, Markov-time parameter is optimized to yield maximum number of modules of valid size. 38 R,M 
R7 Markov clustering, output modules are filtered based on conductance and module size. 36 S, w 
R8 Recursive local graph sparsification and clustering using Infomap for scalable community detection.  36 S, R 
R9 Walktrap is used for the first network, Infomap for the remaining networks. 28 R 
R10 Modules detected using Walktrap and Infomap are combined. 20 S 

Local methods: agglomerative algorithms that grow modules from seed nodes. 
L1 Topological overlap matrix is clustered using the fast agglomerative SPICi (Jiang and Singh, 2010) and SCAN++ algorithms 

(Shiokawa et al., 2015). 
55 S, W,R 

L2 Basic agglomerative approach assigning genes to connected modules until the module size limit is reached.  31 W,R,M 
L3 Local method that grows modules from seed nodes using a novel Triangle based Community Expansion (TCE) method. 30 M 

Ensemble clustering: alternative clusterings sampled either from stochastic runs or from a set of different methods are merged.  
E1 Various clustering methods are applied on network embeddings created using DeepWalk (Perozzi et al., 2014), consensus 

modules are obtained using a bagging method. 
46 S,W,M 

E2 Consensus modules are derived from two flat clustering algorithms: ClusterOne and Finding Low-Conductance set with Dense 
interactions (FLCD) (Wang and Qian, 2017). 

41 S,W,F 

E3 Ensemble approach applied to integrate multiple Markov clustering runs. 24 S,R 

Hybrid methods: different clustering methods are selected for each network based on leaderboard performance or structural quality scores. 
H1 Either Louvain, Infomap, or a continuous optimization method (Li et al., 2016) are selected for each network. 50 R, F 
H2 Either Louvain, Infomap, SPICi, or DCut (Shao et al., 2016) are selected for each network. 50 W,R 
H3 Up to five different methods are applied to cluster networks, followed by filtering of modules based on structural quality metrics. 40 W,R, M, F 
H4 Up to nine different methods are applied in different combinations, followed by module filtering and post-processing steps. 37 

 

H5 Up to seven different methods are applied including an ensemble approach, followed by filtering and post-processing steps. 31 S,W,R,M,F 
H6 WGCNA followed by fast greedy community detection to refine modules. 19 R 
H7 No detailed description provided. 14 - 

Others   

O1 Agglomerative algorithm that joins clusters based on the number of shared neighbors and the cluster sizes.  36 W,F 
O2 Two-way modules (dense bipartite subgraphs) are mined using a heuristic algorithm. 33 W,F 
O3 No detailed description provided. 12 - 

(legend on next page) 
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Table 1. The 42 module identification methods applied in Sub-challenge 1 grouped by category (see Fig. 2A). 

aIdentifier (ID) of the method used throughout the paper. 

bOverall score of the method as defined in Fig. 2B. 

cCommon pre- and post-processing steps. Pre-processing steps are coded as: (S) sparsification of networks and (W) 
rescaling of edge weights. Post-processing steps are coded as: (R) recursive break-down of large modules, (M) 
merging modules of invalid size followed by re-modularization, and (F) filtering modules according to a quality metric. 
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Figure 1 

 

Figure 1: The Disease Module Identification DREAM Challenge.  
We launched an open-participation community challenge, where teams competed to predict groups of functionally 
related genes (i.e., modules) within diverse molecular networks.  

(A) The challenge comprised six networks, including protein-protein interaction, signaling, co-expression, cancer 
dependency, and homology-based gene networks. As the networks were all unpublished, we could anonymize them 
by removing the gene labels. This prevented participants from using existing knowledge of gene functions, thus 
enabling rigorous, blinded assessment.  

(B) The aim of the challenge was to identify disease-relevant modules within the provided networks. Teams could 
participate in either or both sub-challenges: 42 teams predicted modules for individual networks (Sub-challenge 1) and 
33 teams predicted integrated modules across multiple networks (Sub-challenge 2).  

(C) The submitted modules were tested for association with complex traits and diseases using a comprehensive 
collection of 180 GWAS datasets. The final score for each method was the number of trait-associated modules that it 
discovered. Since GWAS are based on data completely different from those used to construct the networks, they can 
provide independent support for biologically relevant modules. 
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Figure 2 

 

Figure 2: Assessment of module identification methods.  

(A) Main types of module identification approaches used in the challenge: kernel clustering methods transform and 
cluster the network adjacency matrix; modularity optimization methods rely on search algorithms to find modular 
decompositions that maximize a structural quality metric; random-walk-based methods take inspiration from diffusion 
processes over the network; local methods use agglomerative processes to grow modules from seed nodes; and 
ensemble methods merge alternative clusterings sampled either from stochastic runs of a given method or from a set 
of different methods. In addition, hybrid methods employ more than one of the above approaches and then pick the 
best modules according to a quality metric. See also Table 1. 

(B) Final scores of the 42 module identification methods applied in Sub-challenge 1 for each of the six networks, as 
well as the overall score summarizing performance across networks (same method identifiers as in Table 1). Scores 
correspond to the number of unique trait-associated modules identified by a given method in a network (evaluated 
using the hold-out GWAS set at 5% FDR, see Methods). Ranks are indicated for the top ten methods. The last two 
rows show the performance of consensus predictions derived from the challenge submissions and randomly 
generated modules, respectively.  

(C) Robustness of the overall ranking was evaluated by subsampling the GWAS set used for evaluation 1,000 times. 
For each method, the resulting distribution of ranks is shown as a boxplot. The rankings of method K1 are substantially 
better than those of the remaining teams (Bayes factor < 3, see Methods). 

(D) Number of trait-associated modules per network. Boxplots show the number of trait-associated modules across 
methods, normalized by the size of the respective network. See also Fig. S1B.  
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Figure 3 

 

Figure 3: Complementarity of module predictions from different methods and networks. 

(A) Similarity of module predictions from different methods (color) and networks (shape). The closer two points are in 
the plot, the more similar are the corresponding module predictions (multidimensional scaling, see Methods). Top 
performing methods tend to be located far from the origin (the top three methods are highlighted for each network). 
Top methods do not cluster close together, suggesting dissimilar modular decompositions (see also Fig. S3A). 

(B) Comparison of GWAS trait-associated modules identified by all challenge methods. Pie-charts show the 
percentage of trait modules that show overlap with at least one trait module from a different method in the same 
network (top) and in different networks (bottom). We distinguish between strong overlap, sub-modules, weak but 
significant overlap, and insignificant overlap (Methods). 

(C) Total number of predicted modules versus average module size for each method (same color scheme as in Panel 
A). There is a roughly inverse relationship between module number and size because modules had to be non-
overlapping and did not have to cover all genes. The top five methods (highlighted) produced modular decompositions 
of varying granularity. See also Figs. S3B-D. 

(D) Challenge score (number of trait-associated modules) versus modularity is shown for each method (same color 
scheme as in Panel A). Modularity is a topological quality metric for modules based on the fraction of within-module 
edges (Newman and Girvan, 2004). While there is modest correlation between the two metrics (r=0.45), the methods 
with the highest challenge score are not necessarily those with the highest modularity, presumably because the 
intrinsic scale of modularity is not optimal for the task considered in the challenge. 

(E) Final scores of multi-network module identification methods in Sub-challenge 2 (evaluated using the hold-out 
GWAS set at 5% FDR, see Methods). For comparison, the overall best-performing method from Sub-challenge 1 is 
also shown (method K1, purple). Teams used different combinations of the six challenge networks for their multi-
network predictions (shown on the left): the top-performing team relied exclusively on the two protein-protein 
interaction networks. The difference between the top single-network module predictions and the top multi-network 
module predictions is not significant when sub-sampling the GWASs (Fig. S1D). The last two rows show the 
performance of multi-network consensus predictions (obtained by integrating single-network submissions from Sub-
challenge 1 across networks) and randomly generated module predictions, respectively.  
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Figure 4 

 

Fig. 4: Overlap between modules associated with different traits and diseases. 

(A) Average number of trait-associated modules identified by challenge methods for each trait. For traits where 
multiple GWASs were available, results for the best-powered study are shown. 

(B) Histograms showing the number of distinct traits per trait-associated module (brown) and gene (grey). 72% of trait-
associated modules are specific to a single trait, while the remaining 28% are hits for multiple traits. In contrast, only 
54% of trait-associated genes are specific to a single trait. 

(C) Trait network showing similarity between GWAS traits based on overlap of associated modules (force-directed 
graph layout). Node size corresponds to the number of genes in trait-associated modules and edge width corresponds 
to the degree of overlap (Jaccard index; only edges for which the overlap is significant are shown, see Methods). 
Traits without any edges are not shown. Traits of the same type (color) tend to cluster together, indicating shared 
pathways. 
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Figure 5 

 

Figure 5: Support of trait-module genes in diverse datasets. 

(A) Example module of the consensus method in the STRING protein interaction network (force-directed graph layout). 
The module shows modest association to height (q-value = 0.04) in the GWAS by Randall et al. (2013) (lower-
powered than the GWAS shown in Panel B). Color indicates GWAS gene scores. The signal is driven by three genes 
from different loci with significant scores (pink), while the remaining genes (grey) are predicted to be involved in height 
because of their module membership. 

(B) The module from Panel A is supported in the higher-powered GWAS (Wood et al., 2014) (q-value = 0.005). 45% 
of candidate trait genes (grey in Panel A) are confirmed (pink). In addition, 28% of module genes have coding variants 
associated to height in an independent ExomeChip study published after the challenge (Marouli et al., 2017) (black 
squares, enrichment p-value = 1.9E-6). See also Fig. S4B. 

(C) Support of candidate trait genes across eight different traits for which lower- and higher-powered GWASs are 
available in our hold-out set. The lower-powered GWASs were used to predict candidate trait genes, i.e., genes within 
trait modules that do not show any signal (GWAS gene score <4) and that are located far away (>1mb) from any 
significant GWAS locus (cf. grey genes in Panel A). The plot shows the cumulative distribution of gene scores in the 
higher-powered GWASs for candidate trait genes (red line) and all other genes (grey line, see Methods). 

(D) Functional annotation of genes in the height-associated module from Panel A. Genes implicated in monogenic 
skeletal growth disorders are highlighted (red squares, enrichment p-value = 7.5E-4). See also Table S2. 
  

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/265553doi: bioRxiv preprint first posted online Feb. 15, 2018; 

289



 31 

Figure 6 

 

Figure 6: Example trait modules comprising therapeutically relevant pathways. 

(A, B and C) Three trait-associated modules in the STRING protein interaction network identified using the consensus 
method (similar results were obtained for other modules and traits, Tables S3, S4). Node colors correspond to gene 
scores in the respective GWAS. For the two inflammatory disorders (A and B), red squares indicate genes causing 
monogenic immunodeficiency disorders (enrichment p-values of 4.1E-8 and 1.2E-6, respectively).  

(A) Module associated with rheumatoid arthritis (q-value = 0.04) involved in T cell activation. A costimulatory pathway 
is highlighted green: T cell response is regulated by activating (CD28) and inhibitory (CTLA4) surface receptors, which 
bind B7 family ligands (CD80 and CD86) expressed on the surface of activated antigen-presenting cells. The 
therapeutic agent CTLA4-Ig binds and blocks B7 ligands, thus inhibiting T cell response.  

(B) A cytokine signalling module associated with inflammatory bowel disease (q-value = 0.0006). The module includes 
the four known Janus kinases (JAK1-3 and TYK2, highlighted green), which are engaged by cytokine receptors to 
mediate activation of specific transcription factors (STATs). Inhibitors of JAK-STAT signaling are being tested in 
clinical trials for both ulcerative colitis and Crohn’s disease (Neurath, 2017).  

(C) Module associated with myocardial infarction (q-value = 0.0001). The module includes two main components of 
the NO/cGMP signaling pathway (highlighted green): endothelial nitric oxide synthases (NOS1-3), which produce the 
gas nitric oxide (NO) used as signal transmitter, and soluble guanylate cyclases (GUCY1A2, GUCY1A3 and 
GUCY1B3), which sense NO leading to formation of cGMP. The cGMP signal inhibits platelet aggregation and leads 
to vascular smooth muscle cell relaxation; it is a therapeutic target for cardiovascular disease as well as erectile 
dysfunction (Kraehling and Sessa, 2017). 

(legend continued on next page) 
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(D) Module associated to IgA nephropathy (IgAN; q-value = 0.04). The module was identified using the best-
performing method (K1) in the InWeb protein interaction network. Besides finding complement factors that are known 
to play a role in the disease (CFB and C4A), the module implicates novel candidate genes such as the chemokine 
Platelet Factor 4 Variant 1 (PF4V1) from a sub-threshold locus, and is enriched for coagulation cascade, a process 
known to be involved in kidney disease (Madhusudhan et al., 2016) (see also Fig. S5). 
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Methods 

Network compendium 

A collection of six gene and protein networks for human were provided by different groups for 

this challenge. The two protein-protein interaction and signaling networks are custom or new 

versions of existing interaction databases that were not publicly available at the time of the 

challenge. The remaining networks were yet unpublished at the time of the challenge. This was 

important to prevent participants from deanonymizing challenge networks by aligning them to 

the original networks. The original networks, anonymized networks and the mappings from gene 

symbols to anonymized IDs are available on the challenge website. 

 

Networks were released for the challenge in anonymized form. Anonymization consisted in 

replacing the gene symbols with randomly assigned ID numbers. In Sub-challenge 1 each 

network was anonymized individually, i.e., node k of network A and node k of network B are 

generally not the same genes. In Sub-challenge 2 all networks were anonymized using the 

same mapping, i.e., node k of network A and node k of network B are the same gene. Since the 

networks were unpublished, it was practically impossible for participants to infer the gene 

identities. Participants also agreed not to attempt to infer gene identities as part of the challenge 

rules. 

 

All networks are undirected and weighted, except for the signaling network, which is directed 

and weighted. Basic properties and similarity between the networks are shown in Figs. 1A and 

S2E. Below we briefly summarize each of the six networks. Detailed descriptions of networks 4, 

5 and 6 are available on GeNets, a web platform for network-based analysis of genetic data 

(http://apps.broadinstitute.org/genets). 

 

Network 1: STRING protein-protein interaction network 

The first network was obtained from STRING, a database of known and predicted protein-

protein interactions (Szklarczyk et al., 2015). STRING includes aggregated interactions from 

primary databases as well as computationally predicted associations. Both physical protein 

interactions (direct) and functional associations (indirect) are included. The challenge network 

corresponds to the human protein-protein interactions of STRING version 10.0, where 

interactions derived from text-mining were removed. Edge weights correspond to the STRING 

association score after removing evidence from text mining. The network was provided by 

Damian Szklarczyk and Christian von Mering (University of Zürich). 
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Network 2: InWeb protein-protein interaction network 

The second network is the InWeb protein-protein interaction network (Li et al., 2017). InWeb 

aggregates physical protein-protein interactions from primary databases and the literature. The 

challenge network corresponds to InWeb version 3. Edge weights correspond to a confidence 

score that integrates the evidence of the interaction from different sources. 

 

Network 3: OmniPath signaling network 

The third network is the OmniPath signaling network (Türei et al., 2016). OmniPath integrates 

literature-curated human signaling pathways from 27 different sources, of which 20 provide 

causal interaction, 7 deliver undirected interactions. These data were integrated to form a 

directed weighted network. The edge weights correspond to a confidence score that 

summarizes the strength of evidence from the different sources. 

 

Network 4: GEO co-expression network 

The fourth network is a co-expression network based on Affymetrix HG-U133 Plus 2 arrays 

extracted from the Gene Expression Omnibus (GEO) (Barrett et al., 2011). In order to adjust for 

non-biological variation, data were rescaled by fitting a loess-smoothed power law curve to a 

collection of 80 reference genes (ten sets of ~8 genes each, representing different strata of 

expression) using nonlinear least squares regression within each sample. All samples were then 

quantile normalized together as a cohort. This approach is described fully in (Subramanian et 

al., 2017). After filtering out samples that did not pass quality control, a gene expression matrix 

of 22,268 probesets by 19,019 samples was obtained. Probes were mapped to genes by 

averaging and the pairwise Spearman correlation of genes across samples was computed. The 

matrix was thresholded to include the top 1M strongest positive correlations resulting in an 

undirected, weighted network. The edge weights correspond to the correlation coefficients. 

 

Network 5: Achilles cancer co-dependency network 

The fifth network is a functional gene network derived from the Project Achilles dataset v2.4.3 

(Cowley et al., 2014). Project Achilles performed genome-scale loss-of-function screens in 216 

cancer cell lines using massively parallel pooled shRNA screens. Cell lines were infected with a 

library of 54,000 shRNAs, each targeting one of 11,000 genes for RNAi knockdown (~5 shRNAs 

per gene). The proliferation effect of each shRNA in a given cell line could be assessed using 

Next Generation Sequencing. From these data, the dependency of a cell line on each gene (the 
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gene essentiality) was estimated using the ATARiS method. This led to a gene essentiality 

matrix of 11,000 genes by 216 cell lines. Pairwise correlations between genes were computed 

and the resulting co-dependency network was thresholded to the top 1M strongest positive 

correlations, analogous to how the co-expression network was constructed. Project Achilles 

data was kindly provided by Aviad Tsherniak and Barbara Weir (Broad Institute). 

 

Network 6: CLIME homology-based network 

The sixth network is a functional gene network based on phylogenetic relationships identified 

using the CLIME (clustering by inferred models of evolution) algorithm (Li et al., 2014). CLIME 

can be used to expand pathways (gene sets) with additional genes using an evolutionary model. 

Briefly, given a eukaryotic species tree and homology matrix, the input gene set is partitioned 

into evolutionarily conserved modules (ECMs), which are then expanded with new genes 

sharing the same evolutionary history. To this end, each gene is assigned a log-likelihood ratio 

(LLR) score based on the ECMs inferred model of evolution. CLIME was applied to 1,025 

curated human gene sets from GO and KEGG using a 138 eukaryotic species tree, which 

resulted in 13,307 expanded ECMs. The network was constructed by adding an edge between 

every pair of genes that co-occurred in at least one ECM. Edge weights correspond to the mean 

LLR scores of the two genes.  

 

Challenge structure  

Participants were challenged to apply network module identification methods to predict 

functional modules (gene sets) based on network topology. Valid modules had to be non-

overlapping (a given gene could be part of either zero or one module, but not multiple modules) 

and comprise between 3 and 100 genes. Modules did not have to cover all genes in a network. 

The number of modules per network was not fixed: teams could submit any number of modules 

for a given network (the maximum number was limited due to the fact that modules had to be 

non-overlapping). In Sub-challenge 1, teams were required to submit a separate set of modules 

for each of the six networks. In Sub-challenge 2, teams were required to submit a single set of 

modules by integrating information across multiple networks (it was permitted to use only a 

subset of the six networks).  

 

The challenge consisted of a leaderboard phase and the final evaluation. The leaderboard 

phase was organized in four rounds, where teams could make repeated submissions and see 

their score on each network. Due to the high computational cost of scoring the module 

predictions on a large number of GWAS datasets (see next section), a limit for the number of 
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submissions per team was set in each round taking into consideration our computational 

resources and the number of participating teams. The total number of submissions that any 

given team could make over the four leaderboard rounds was thus limited to only 25 and 41 for 

the two sub-challenges, respectively. For the final evaluation, a single submission including 

method descriptions and code was required per team, which was scored on a separate set of 

GWASs after the challenge closed to determine the top performers.  

 

The submission format and rules are described in detail on the challenge website 

(https://www.synapse.org/modulechallenge). 

 

Challenge scoring 

We have developed a novel framework to empirically assess module identification methods on 

molecular networks using GWAS data. In contrast to functional gene annotations and pathway 

databases such as GO, which sometimes originate from similar types of functional genomics 

data as the network modules, GWAS data are orthogonal to the networks and thus provide an 

independent means of validation. In order to cover diverse molecular processes, we compiled a 

large collection of 180 GWAS datasets from public sources. The collection was split into two 

sets of 76 and 104 GWASs used for the leaderboard phase and the final evaluation, 

respectively (Table S1). 

 

Gene and module scoring using Pascal  

SNP-trait association p-values from a given GWAS were integrated across genes and modules 

using the Pascal (pathway scoring algorithm) tool (Lamparter et al., 2016). Briefly, Pascal 

combines analytical and numerical solutions to efficiently compute gene and module scores 

from SNP p-values, while properly correcting for linkage disequilibrium (LD) correlation structure 

prevalent in GWAS data. To this end, LD information from a reference population is used (here, 

the European population of the 1000 Genomes Project was employed as we only included 

GWASs with predominantly European cohorts). Compared to alternative gene scoring methods 

that rely on Monte Carlo simulations, Pascal is about 100 times faster and more precise 

(Lamparter et al., 2016). The fast gene scoring is critical as it allows module genes that are in 

LD, and can thus not be treated independently, to be dynamically rescored. This amounts to 

fusing the genes of a given module that are in LD and computing a new score that takes the full 

LD structure of the corresponding locus into account. Finally, Pascal tests modules for 

enrichment in high-scoring (potentially fused) genes using a modified Fisher method, which 

avoids any p-value cutoffs inherent to standard binary enrichment tests. As background gene 
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set, the genes of the given network were used. Lastly, the resulting nominal module p-values 

were adjusted to control the FDR via the Benjamini-Hochberg procedure. A snapshot of the 

Pascal version used for the challenge is available on the challenge website.  

 

Scoring metric 

In Sub-challenge 1, the score for a given network was defined as the number of modules with 

significant Pascal p-values at a given FDR cutoff in at least one GWAS (called trait-associated 

modules). Thus, modules that were hits for multiple GWAS traits were only counted once. The 

overall score was defined as the sum of the scores obtained on the six networks (i.e., the total 

number of trait-associated modules across all networks). For the official challenge ranking a 5% 

FDR cutoff was defined, but performance was further reported at 10%, 2.5% and 1% FDR. 

 

Module predictions in Sub-challenge 2 were scored using the exact same methodology and 

FDR cutoffs. The only difference to Sub-challenge 1 was that submissions consisted of a single 

set of modules (instead of one for each network) and there was thus no need to define an 

overall score. As background gene set, the union of all genes across the six networks was used. 

 

Robustness analysis of challenge ranking 

To gain a sense of the robustness of the ranking with respect to the GWAS data, we 

subsampled the set of 104 GWASs used for the final evaluation (called the “test set”) by 

drawing 76 GWASs (same number of GWASs as in the leaderboard set; note that we have to 

do subsampling rather than resampling of GWASs because the scoring counts the number of 

modules that are associated to at least one GWAS, i.e., including the same GWASs multiple 

times does not affect the score). We applied this approach to create 1,000 subsamples of the 

test set. The methods were then scored on each subsample. 

  

The performance of every method m was compared to the highest-scoring method across the 

subsamples by the paired Bayes factor Km. That is, the method with the highest overall score in 

the test set (all 104 GWASs) was defined as reference (i.e., method K1 in Sub-challenge 1). 

The score S(m, k) of method m in subsample k was thus compared with the score S(ref, k) of 

the reference method in the same subsample k. The Bayes factor Km is defined as the number 

of times the reference method outperforms method m, divided by the number of times method m 

outperforms or ties the reference method over all subsamples. Methods with Km < 3 were 

considered a tie with the reference method (i.e., method m outperforms the reference in more 

than 1 out of 4 subsamples). 
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Module identification methods 

Here we provide an overview of module identification approaches applied in the two sub-

challenges, including a detailed description of the top-performing method. Full descriptions and 

code of all methods are available on the challenge website 

(https://www.synapse.org/modulechallenge). 

 

Overview of module identification methods in Sub-challenge 1 

Based on descriptions provided by participants, module identification methods were classified 

into different categories (Fig. 2A). Categories and corresponding module identification methods 

are summarized in Table 1. In the following, we first give an overview of the different categories 

and top-performing methods, and then describe common pre- and post-processing steps used 

by these methods: 

● Kernel clustering. Instead of working directly on the networks themselves, these 

methods cluster a kernel matrix, where each entry (i, j) of that matrix represents the 

closeness of nodes i and j in the network according to the particular similarity function, or 

kernel that was applied. Some of the kernels that were applied are well-known for 

community detection, such as the exponential diffusion kernel based on the graph 

Laplacian (Kondor and Lafferty, 2002) employed by method K6. Others, such as the 

LINE embedding algorithm (Tang et al., 2015) employed by method K3 and the kernel 

based on the inverse of the weighted diffusion state distance (Cao et al., 2013, 2014) 

employed by method K1, were more novel. Method K1 was the best-performing method 

of the challenge and is described in detail below. 

● Modularity optimization. This method category was, along with random-walk-based 

methods (see below), the most popular type of method contributed by the community. 

Modularity optimization methods use search algorithms to find a partition of the network 

that maximizes the modularity Q (commonly defined as the fraction of within-module 

edges minus the expected fraction of such edges in a random network with the same 

node degrees) (Newman and Girvan, 2004). The most popular algorithm was Louvain 

community detection (Blondel et al., 2008). At least eight teams employed this algorithm 

in some form as either their main method or one of several methods. The top team of the 

category (method M1), which ranked second overall, first sparsified networks by 

removing low confidence edges. A mixture of several established community detection 

algorithms was then employed in order to search for a partition that optimized 
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modularity. Importantly, these algorithms were extended with an additional resistance 

parameter that penalized merging of communities (Arenas et al., 2008); increasing the 

resistance parameter thus led to partitions with a larger number of communities. 

Communities above the size limit (100 nodes) were subdivided recursively by reapplying 

the same community detection algorithms to the corresponding subnetworks (see 

below). 

● Random-walk-based methods. These methods take inspiration from random walks or 

diffusion processes over the network. Several teams used the established Walktrap 

(Pons and Latapy, 2005) and Infomap (Rosvall et al., 2009) algorithms. The top team of 

this category (method R1) used a sophisticated random-walk method based on multi-

level Markov clustering (Satuluri et al., 2010). The method modifies basic Markov 

Clustering in two ways. First, a hierarchical view of the graph is considered by 

successively coarsening neighborhoods into fewer supernodes. The clustering is first run 

on the coarsened graph, enabling the detection of communities at varying scales. 

Second, a balance parameter is introduced that adjusts for nodes to preferentially join 

smaller communities, thus leading to more balanced community sizes. Similar to method 

M1 described above, networks were first sparsified and communities above the size limit 

were recursively subdivided. While we did not include kernel methods in the “random 

walk” category, several of the successful kernel clustering methods used random-walk-

based measures within their kernel functions. 

● Local methods. Only three teams used local community detection methods, including 

agglomerative clustering and seed set expansion approaches. The top team of this 

category (method L1) first converted the adjacency matrix into a topology overlap matrix 

(Ravasz et al., 2002), which measures the similarity of nodes by their topological overlap 

based on the number of neighbor they have in common. The team then used the SPICi 

algorithm (Jiang and Singh, 2010), which iteratively adds adjacent genes to cluster 

seeds such as to improve their local density. 

● Hybrid methods. Seven teams employed hybrid methods that leveraged clusterings 

produced by several of the different main approaches listed above. These teams applied 

more than one community detection method to each network in order to get larger and 

more diverse sets of predicted modules. The most common methods applied were 

Louvain (Blondel et al., 2008) hierarchical clustering, and Infomap (Rosvall et al., 2009). 

Two different strategies were used to select a final set of modules for submission: (1) 

choose a single method for each network according to performance in the leaderboard 
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round, and (2) select modules from all applied methods according to a topological quality 

score such as the modularity or conductance (Fortunato and Hric, 2016). 

● Ensemble methods. Much like hybrid methods, ensemble methods leverage clusterings 

obtained from multiple community detection methods (or multiple stochastic runs of a 

single method). However, instead of selecting individual modules according to a quality 

score, ensemble methods merge alternative clusterings to obtain potentially more robust 

consensus predictions (Lancichinetti and Fortunato, 2012). Our method to derive 

consensus module predictions from team submissions is an example of an ensemble 

approach (described in detail below).  

 

Besides the choice of the community detection algorithm, there are other steps that critically 

affected performance, including pre-processing of the network data, setting of method 

parameters, and post-processing of predicted modules. We describe successful approaches 

employed by challenge participants to address these issues below (pre- and post-processing 

steps of challenge methods are also summarized in Table 1): 

● Pre-processing. Data pre-processing often plays a key role in the analysis of noisy 

data, such as biological network data. Most networks in the challenge were densely 

connected, including many edges of low weight that are likely noisy. Some of the top 

teams (e.g., M1, R1, L1) benefitted from sparsifying these networks by discarding weak 

edges before applying their community detection methods. An added benefit of 

sparsification is that it typically reduces computation time. Few teams also normalized 

the edge weights of a given network to make them either normally distributed or fall in 

the range between zero and one. Not all methods required pre-processing of networks, 

for example the top performing method (K1) was applied to the original networks without 

any sparsification or normalization steps. 

● Parameter setting. Most community detection methods have parameters that need to 

be specified, typically to control the resolution of the clustering (the number and size of 

modules). While some methods have parameters that explicitly set the number of 

modules (e.g., the top-performing method K1), other methods have parameters that 

indirectly control the resolution (e.g., the resistance parameter of the runner-up method 

M1). Teams used the leaderboard phase to optimize the parameters of their method. 

Note that teams could make at most 25 submissions during the leaderboard phase, 

which limited the parameter space that could be explored in particular for methods with 

multiple parameters. While there were also methods that had no parameters to set (e.g., 
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the classic Louvain algorithm), these methods have an intrinsic resolution that may not 

always be optimal for a given network and target application. 

● Post-processing. Depending on the target application, the output of community 

detection methods may need to be post-processed. In biological networks, most 

methods typically lead to highly imbalanced module sizes. That is, some modules may 

be very small (e.g., just one or two genes), while others are extremely large (e.g., 

thousands of genes). Both extremes are generally not useful to gain biological insights at 

the pathway level. In the challenge, module sizes were thus required to be between 3 

and 100 genes. Since current community detection methods generally do not allow such 

constraints on module size to be specified, teams used different post-processing steps 

to deal with modules outside of this range. A successful strategy employed by teams to 

break down large modules was to recursively apply their method to each of these 

modules. Alternatively, all modules of invalid size were merged and the community 

detection method was re-applied to the corresponding subnetwork. Finally, modules with 

less than three genes were often discarded (i.e., the corresponding genes were not 

included in any of the submitted modules). Some teams also discarded larger modules 

that were deemed low quality according to a topological metric, although this strategy 

was generally not beneficial. 

 

Top-performing team method 

The top-performing team developed a kernel clustering approach (method K1) based on a 

distance measure called Diffusion State Distance (DSD) (Cao et al., 2013, 2014), which they 

further improved for this challenge (Crawford et al., in preparation). DSD produces a more 

informative notion of proximity than the typical shortest path metric, which measures distance 

between pairs of nodes by the number of hops on the shortest path that joins them in the 

network. More formally, consider the undirected network 𝐺(𝑉, 𝐸) on the node set 𝑉 =

{𝑣1, 𝑣2, 𝑣3, . . . , 𝑣𝑛} with |𝑉| = 𝑛.  𝐻𝑒𝑡(𝑣𝑥 , 𝑣𝑦) is defined as the expected number of times that a 

random walk (visiting neighboring nodes in proportion to their edge weights) starting at node 𝑣𝑥 

and proceeding for some fixed t steps will visit node 𝑣𝑦 (the walk includes the starting point, i.e., 

0th step). Taking a global view, we define the n-dimensional vector 𝐻𝑒𝑡(𝑣𝑥) whose 𝑖th entry is 

the 𝐻𝑒𝑡(𝑣𝑥 , 𝑣𝑖) value to network node 𝑣𝑖. Then the 𝐷𝑆𝐷𝑡 distance between two nodes 𝑣𝑥 and 𝑣𝑦 

is defined as the 𝐿1 norm of the difference of their 𝐻𝑒𝑡 vectors, i.e.  

𝐷𝑆𝐷𝑡(𝑣𝑥 , 𝑣𝑦) = ||𝐻𝑒𝑡(𝑣𝑥)  −  𝐻𝑒𝑡(𝑣𝑦)||1. 
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It can be shown that DSD is a metric and converges as 𝑡 → ∞, allowing DSD to be defined 

independently from the value t (Cao et al., 2013). The converged DSD matrix can be computed 

tractably, with an eigenvalue computation, as  

𝐷𝑆𝐷(𝑣𝑥 , 𝑣𝑦) = ||(1𝑥 − 1𝑦)(𝐼 − 𝐷−1𝐴 + 𝑊)−1||1, 

where 𝐷 is the diagonal degree matrix, 𝐴 is the adjacency matrix, and 𝑊 is the matrix where 

each row is a copy of 𝜋, the degrees of each of the nodes, normalized by the sum of all the 

vertex degrees (in the unweighted case; weighted edges can be normalized proportional to their 

weight), and 1x and 1y are the vectors that are zero everywhere except at position x and y, 

respectively. The converged DSD matrix was approximated using algebraic multigrid techniques 

(Crawford et al., in preparation). Note that for the signaling network, edge directions were kept 

and low-weight back edges were added so that the network was strongly connected; i.e. if there 

was a directed edge from 𝑣𝑥to 𝑣𝑦, an edge from 𝑣𝑦 to 𝑣𝑥 of weight equal to 1/100 of the lowest 

edge weight in the network was added. 

 

A spectral clustering algorithm (Ng et al., 2001) was used to cluster the DSD matrix of a given 

network. Note that the spectral clustering algorithm operates on a similarity matrix (i.e., entries 

that are most alike have higher values in the matrix). However, the DSD matrix is a distance 

matrix (i.e., similar entries have low DSD values). The radial basis function kernel presents a 

standard way to convert the DSD matrix to a similarity matrix; it maps low distances to high 

similarity scores and vice-versa. Since the spectral clustering algorithm employed uses k-means 

as the underlying clustering mechanism, it takes a parameter k specifying the number of cluster 

centers. The leaderboard rounds were utilized to measure the performance of different k. Also 

note that spectral clustering produces clusters of size less than 3, and clusters of size more than 

100. Whenever a cluster of size less than 3 was produced, those vertices were not included in 

any cluster for that network. Whenever a cluster of size more than 100 was produced, spectral 

clustering was called recursively to split that cluster into two subclusters (i.e., k=2) until all 

clusters were of size < 100.  

 

The top-performing team also used a different algorithm to search for dense bipartite subgraph 

module structure in half of the challenge networks. However, a post-facto analysis of their 

results showed that this step contributed few modules and the score would have been similar 

with this additional procedure omitted (Crawford et al., in preparation).  
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Overview of module identification methods in Sub-challenge 2 

In Sub-challenge 2, few teams employed dedicated multi-network community detection methods 

(De Domenico et al., 2015; Didier et al., 2015). The majority of teams first built an integrated 

network by merging either all six or a subset of the challenge networks, and then applied single-

network methods (typically the same method as in Sub-challenge 1) to modularize the 

integrated network. For example, the team with highest score in Sub-challenge 2 merged the 

two protein interaction networks and then applied the Louvain algorithm to identify modules in 

the integrated network. The top performing team from Sub-challenge 1 also performed 

competitively in Sub-challenge 2. They applied their single-network method (K1) to an 

integrated network consisting of the union of all edges from the two protein interaction networks 

and the coexpression network. 

 

Similar to Sub-challenge 1, teams used the leaderboard phase to set parameters of their 

methods. However, besides the parameters of the community detection method, there were 

additional choices to be made, whether to use all or only a subset of the six networks and how 

to integrate them. 

 

Consensus module predictions 

We developed an ensemble approach to derive consensus modules from a given set of team 

submissions (see Fig. S2A for a schematic overview). In Sub-challenge 1, a consensus matrix 

Cn was defined for each network n, where each element cij corresponds to the fraction of teams 

that put gene i and j together in the same module in this network. That is, cij equals one if all 

teams clustered gene i and j together, and cij equals zero if none of the teams clustered the two 

genes together. The top-performing module identification method (K1) was used to cluster the 

consensus matrix (i.e., the consensus matrix was considered a weighted adjacency matrix 

defining a functional gene network, which was clustered using the top module identification 

method of the challenge). Method K1 has only one parameter to set, which is the number of 

cluster centers used by the spectral clustering algorithm (see previous section). This parameter 

was set to the median number of modules submitted by the considered teams for the given 

network. The consensus module predictions described in the main text were derived from the 

submissions of the top 50% teams (i.e., 21 teams) with the highest overall score on the 

leaderboard GWAS set. (Results for different cutoffs regarding the percentage of teams 

included are reported in Fig. S2C.) 
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Multi-network consensus modules were obtained by integrating team submissions from Sub-

challenge 1 across all six networks using the same approach (see Fig. S2B). The same set of 

teams was considered (i.e., top 50% on the leaderboard GWAS set). First, a multi-network 

consensus matrix was obtained by taking the mean of the six network-specific consensus 

matrices Cn. The multi-network consensus matrix was then clustered using method K1 as 

described above, where the number of cluster centers was set to the median number of 

modules submitted by the considered teams across all networks. 

 

Two additional, more sophisticated approaches to construct consensus matrices Cn were tested: 

(1) normalization of the contribution of each module by the module size led to similar results as 

the basic approach described above, and (2) unsupervised estimation of module prediction 

accuracy using the Spectral Meta Learner ensemble method (Parisi et al., 2014) did not perform 

well in this context (Fig. S2D). 

 

Similarity of module predictions 

To define a similarity metric between module predictions from different methods, we 

represented module predictions as vectors. Namely, the set of modules predicted by method 𝑚 

in network 𝑘 was represented as a prediction vector 𝑃𝑚𝑘  of length 𝑁𝑘(𝑁𝑘 − 1)/2, where 𝑁𝑘 is the 

number of genes in the network. Each element of this vector corresponds to a pair of genes and 

equals 1 if the two genes are in the same module and 0 otherwise. Accordingly, for any two 

module predictions (method 𝑚1 applied to network 𝑘1, and method 𝑚2 applied to network 𝑘2), 

we calculated the distance as follows: 

 

𝐷(𝑚1𝑘1,  𝑚2𝑘2)  =  1 −
<𝑃𝑚1𝑘1 ,𝑃𝑚2𝑘2>

||𝑃𝑚1𝑘1||2 ||𝑃𝑚2𝑘2||2
,  (1) 

 

where <. , . > is the Euclidean inner product, ||. ||2is the Euclidean norm, and 𝐷is the (symmetric) 

distance matrix between the 252 module predictions submitted in Sub-challenge 1 (i.e., 42 

methods applied to each of six networks). The distance matrix 𝐷was used as input to the 

Multidimensional Scaling (MDS) analysis for dimensionality reduction in Fig. 3A. 

 

Similarity between method predictions across networks was calculated in the same way. To this 

end, the prediction vectors 𝑃𝑚𝑘  of method 𝑚 for the six networks (𝑘 = 1,2, . . . ,6) were 

concatenated, forming a single vector 𝑃𝑚 that represents the module predictions of that method 

for all six networks. A corresponding distance matrix between the 42 methods was computed 
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using the same approach as described above (Equation 1) and used as input for hierarchical 

clustering in Fig. S3A. 

 

Overlap between trait-associated modules 

Three different metrics were considered to quantify the overlap between trait-associated 

modules from different methods and networks. The first metric was the Jaccard index, which is 

defined as the size of the intersection divided by the size of the union of two modules (gene 

sets) 𝐴 and 𝐵: 

  𝐽(𝐴, 𝐵)  =  
|𝐴∩𝐵|

|𝐴∪𝐵|
 . 

The Jaccard index measures how similar two modules are, but does allow the detection of sub-

modules. For example, consider a module 𝐴 of size 10 that is a submodule of a module 𝐵 of 

size 100. In this case, even though 100% of genes of the first module are comprised in the 

second module, the Jaccard index is rather low (0.1). To capture sub-modules, we thus 

considered in addition the percentage of genes of the first module that are comprised in the 

second module: 

  𝑆(𝐴, 𝐵)  =  
|𝐴∩𝐵|

|𝐴|
 . 

Lastly, we also evaluated the significance of the overlap. To this end, we computed the p-value 

𝑝𝐴𝐵 for the overlap between the two modules using the hypergeometric distribution. P-values 

were adjusted using Bonferroni correction given the number of module pairs tested. 

 

Based on these three metrics, we categorized the type of overlap that a given trait-module 𝐴 

had with another trait-module 𝐵 as:  

(1) strong overlap if 𝐽(𝐴, 𝐵)  ≥ 0.5 and 𝑝𝐴𝐵 < 0.05;  

(2) submodule if 𝐽(𝐴, 𝐵) < 0.5 and 𝑆(𝐴, 𝐵) − 𝐽(𝐴, 𝐵) ≥ 0.5 and 𝑝𝐴𝐵 < 0.05; 

(3) partial overlap if 𝐽(𝐴, 𝐵) < 0.5 and 𝑆(𝐴, 𝐵) − 𝐽(𝐴, 𝐵) < 0.5 and 𝑝𝐴𝐵 < 0.05; 

(4) insignificant overlap if 𝑝𝐴𝐵 ≥ 0.05. 

This categorization was used to get a sense of the type of overlap between trait modules from 

all methods (see Fig. 3B). 

 

Trait similarity network 

We defined a network level similarity between GWAS traits based on overlap between trait-

associated modules. To this end, we only considered the most relevant networks for our 

collection of GWAS traits, i.e., the two protein interaction, the signaling and the co-expression 

network (see Fig. 2D). For a given network, the set of “trait-module genes” 𝐺𝑇 was obtained for 
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every trait 𝑇by taking the union of the modules associated with that trait across all challenge 

methods. (If different GWASs were available for the same trait type (see Table S1), the union of 

all corresponding trait-associated modules was taken). The overlap between every pair of trait-

module gene sets 𝐺𝑇1
and 𝐺𝑇2

 was evaluated using the Jaccard index 𝐽(𝐺𝑇1
, 𝐺𝑇2

) and the 

hypergeometric p-value 𝑝𝑇1𝑇2
as described in the previous section. P-values were adjusted using 

Bonferroni correction. For the visualization as a trait-trait network in Fig. 4C, an edge between 

traits 𝑇1 and 𝑇2 was added if the overlap was significant (𝑝𝑇1𝑇2
< 0.05) in at least three out of the 

four considered networks, and node sizes and edge weights were set proportional to the 

average number of trait-module genes and the average Jaccard index across the four networks, 

respectively. 

 

Evaluation of candidate trait genes 

Trait-associated modules comprise many genes that show only borderline or no signal in the 

corresponding GWAS (called “candidate trait genes”). To assess whether modules correctly 

prioritized candidate trait genes, we considered eight traits for which older (lower-powered) and 

more recent (higher-powered) GWAS datasets were available in our test set (Fig. S4A). This 

allowed us to evaluate how well trait-associated modules and candidate trait genes predicted 

using the lower-powered GWAS datasets were supported in the higher-powered GWAS 

datasets.  

 

We only considered candidate trait genes that were predicted solely because of their 

membership in a trait-associated module, i.e., that did not show any signal in the lower-powered 

GWAS as defined by: (i) a high gene p-value (p > 1E-4, i.e., two orders of magnitude above the 

genome-wide significance threshold of 1E-6) and (ii) genomic location of more than one 

megabase away from the nearest significant locus of the corresponding GWAS. Gene p-values 

were computed using Pascal as described above (see “Gene and module scoring using the 

Pascal tool”). Finally, the Pascal p-value of all candidate trait genes was evaluated for the 

higher-powered GWAS. Since there is a genome-wide tendency for p-values to become more 

significant in higher-powered GWAS data (Boyle et al., 2017), Pascal p-values were also 

evaluated for a background gene set (all genes that meet the two conditions (i, ii) but do not 

belong to trait-associated modules of the lower-powered GWAS). Fig. 5C shows the cumulative 

distribution of Pascal p-values for the candidate trait genes as well as the background genes.  
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Functional enrichment analysis 

In order to test network modules for enrichment in known gene functions and pathways, we 

considered diverse annotation and pathway databases. GO annotations for biological process, 

cellular component, and molecular functions were downloaded from the GO website 

(http://geneontology.org, accessed on January 20, 2017). Curated pathways (KEGG, 

Reactome, and BioCarta) were obtained from MSigDB version 5.2 

(http://software.broadinstitute.org/gsea). We also created a collection of gene sets reflecting 

mouse mutant phenotypes, as defined by the Mammalian Phenotype Ontology (Blake et al., 

2017). We started with data files HMD_HumanPhenotype.rpt and MGI_GenePheno.rpt, 

downloaded from the Mouse Genome Informatics database (http://www.informatics.jax.org) on 

February 21, 2016. The first file contains human-mouse orthology data and some phenotypic 

information; we then integrated more phenotypic data from the second file, removing the two 

normal phenotypes MP:0002169 ("no abnormal phenotype detected") and MP:0002873 

("normal phenotype"). For each remaining phenotype, we then built a list of all genes having at 

least one mutant strain exhibiting that phenotype, which we considered as a functional gene set. 

 

Annotations from curated databases are known to be biased towards certain classes of genes. 

For example, some genes have been much more heavily studied than others and thus tend to 

have more annotations assigned to them. This and other biases lead to an uneven distribution 

of the number of annotations per genes (annotation bias). On the other hand, the gene sets 

(modules) tested for enrichment in these databases typically also exhibit bias for certain classes 

of genes (selection bias) (Glass and Girvan, 2014; Young et al., 2010). Standard methods for 

GO enrichment analysis use the hypergeometric distribution (i.e., Fisher’s exact test), the 

underlying assumption being that, under the null hypothesis, each gene is equally likely to be 

included in the gene set (module). Due to selection bias, this is typically not the case in practice, 

leading to inflation of p-values (Glass and Girvan, 2014; Young et al., 2010). Following Young et 

al. (2010), we thus used the Wallenius non-central hypergeometric distribution to account for 

biased sampling. Corresponding enrichment p-values were computed for all network modules 

and annotation terms (pathways). The genes of the given network were used as a background 

gene set. For each network, module identification method, and annotation database, the 𝑀 × 𝑇 

nominal p-values of the 𝑀 modules and 𝑇 annotation terms (pathways) were adjusted using 

Bonferroni correction. 
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Data and software availability 

Challenge data, results, and code are available from the challenge website 

(https://synapse.org/modulechallenge). This includes: 

• Official challenge rules; 

• Gene scores for the compendium of 180 GWASs used in the challenge plus 5 additional 

GWASs obtained after the challenge (GWAS SNP p-values are available upon request); 

• The molecular network collection (anonymized and deanonymized versions); 

• Module identification method descriptions and code provided by teams; 

• The final module predictions of all teams for both sub-challenges; 

• Consensus module predictions for both sub-challenges; 

• Method scores at varying FDR cutoffs; 

• Individual module scores for all GWASs; 

• Enriched functional annotations for all modules (GO, mouse mutant phenotypes, and 

diverse pathway databases); 

• A snapshot of the PASCAL tool and scoring scripts. 

 

The latest version of PASCAL and the source code is also available from the PASCAL website 

(https://www2.unil.ch/cbg/index.php?title=Pascal) and GitHub 

(https://github.com/dlampart/Pascal). 
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Figure S1 

 

Figure S1. Assessment of Module Identification Methods, Related to Figures 2 and 3. 

 

(legend on next page)   
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Figure S1. Assessment of Module Identification Methods, Related to Figures 2 and 3. 

(A) Overall scores of the 42 module identification methods applied in Sub-challenge 1 at four different FDR cutoffs 
(10%, 5%, 2.5%, and 1% FDR). For explanation see legend of Fig. 2B, which shows the scores at 5% FDR (the 
predefined cutoff used for the challenge ranking). The top-performing method (K1) ranks first at all four cutoffs. The 
consensus prediction achieves the top score at 10% and 5% FDR, but not at the more stringent cutoffs. 

(B) Average number of trait-associated modules across all methods for each of the six networks. The most trait 
modules are found in the two protein-protein interaction (PPI) and the co-expression networks. Related to Fig. 2D, 
which shows the average number of trait modules relative to network size. 

(C) Final scores of multi-network module identification methods in Sub-challenge 2 at four different FDR cutoffs (10%, 
5%, 2.5%, and 1% FDR). For explanation see legend of Fig. 3E, which shows the scores at 5% FDR (the predefined 
cutoff used for the challenge ranking). Ranks are indicated for the top five teams (ties are broken according to 
robustness analysis described in Panel D). The multi-network consensus prediction (red) achieves the top score at 
each FDR cutoff. 

(D) Robustness of the overall ranking in Sub-challenge 2 was evaluated by subsampling the GWAS set used for 
evaluation 1,000 times. For each method, the resulting distribution of ranks is shown as a boxplot (using the 5% FDR 
cutoff for scoring). Related to Fig. 2C, which shows the same analysis for Sub-challenge 1. The difference between 
the top single-network module prediction and the top multi-network module predictions is not significant when sub-
sampling the GWASs (Bayes factor < 3). 
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Figure S2 

 

Figure S2. Consensus Module Predictions, Related to Figures 2 and 3.  

(A) Schematic of the approach used to generate single-network consensus module predictions for Sub-challenge 1. 
For each network, module predictions from the top 50% of teams were integrated in a consensus matrix C, where 
each element cij gives the fraction of teams that clustered gene i and j together in the same module in the given 
network (performance as the percentage of considered teams is varied is shown in Panel C). The overall score from 
the leaderboard round was used to select the top 50% of teams, i.e., the same set of teams was used for each 
network. The consensus matrix of each network was then clustered using the top-performing module identification 
method of the challenge (method K1; see Methods). 

(B) The approach used to generate multi-network consensus module predictions for Sub-challenge 2 was exactly the 
same as for single-network predictions, except that team submissions from all networks were integrated in the 
consensus matrix C. In other words, as input we still used the single-network predictions of the top 50% of teams from 
Sub-challenge 1, but instead of forming a consensus matrix for each network, a single cross-network consensus 
matrix was formed. This cross-network consensus matrix is then clustered using method K1 as described above (see 
Methods). 

(C) Scores of the single-network consensus predictions as the percentage of integrated teams is varied. We 
considered the top 25%, 50%, 75% and 100% of teams, as well as the top eight (19%) teams (these are the teams 
that ranked 2nd, or tied with the team that ranked 2nd, at any of the considered FDR cutoffs). 

(D) Performance of different methods to construct the consensus matrix C. In addition to the basic approach described 
above (Standard), two more sophisticated approaches to construct the consensus matrix were evaluated (Normalized 
and SML). In each case, the same set of team submissions were integrated (top 50%) and method K1 was applied to 
cluster the resulting consensus matrix. 

The first alternative (Normalized) is similar to the basic method but further assumes that appearing together in a 
smaller cluster is stronger evidence that a pair of genes is associated than appearing together in a larger cluster.  

(legend continued on next page) 
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Thus, each cluster’s contribution to the consensus matrix was normalized by the size of the cluster. Furthermore, we 
normalized the ij-entry of the consensus matrix by the number of methods that assigned gene i to a cluster, thus taking 
the presence of background genes into account. We found that the consensus still achieved the top score with these 
normalizations, but there was no improvement compared to the basic approach. 

The second method is a very different approach called Spectral Meta Learner (SML) (Parisi et al., 2014). SML is an 
unsupervised ensemble method designed for two-class classification problems. Briefly, it takes a matrix of predictions, 
𝑃,  where each row corresponds to different samples being classified and the columns correspond to different 

methods. Accordingly, each matrix element 𝑃𝑖𝑗 is the class (0 or 1) assigned to sample 𝑖 by method 𝑗. Under the 

assumption of conditional independence of methods given class labels, SML can estimate the balanced accuracy of 
each classifier in a totally unsupervised manner using only the prediction matrix 𝑃. The algorithm then uses this 

information to construct an ensemble classifier in which the contribution of each classifier is proportional to its 
estimated performance (balanced accuracy). The module identification problem is an unsupervised problem by its 
nature and we applied the SML algorithm as a new way for constructing consensus modules. For each method 𝑚 and 

network 𝑘, we created a vector of prediction 𝑃𝑚𝑘, of size 𝑁𝐺𝑘
by 𝑁𝐺𝑘

, where 𝑁𝐺𝑘
is the number genes in network as 

follows: 

𝑃𝑚𝑘(𝑖, 𝑗) = 1,   𝑖𝑓 𝑚𝑒𝑡ℎ𝑜𝑑 𝑚 𝑝𝑢𝑡𝑠 𝑔𝑒𝑛𝑒𝑠 𝑖 𝑎𝑛𝑑 𝑗 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑚𝑜𝑑𝑢𝑙𝑒    (1) 

𝑃𝑚𝑘(𝑖, 𝑗) = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.  

For each network, we constructed the prediction matrix 𝑃with each column 𝑃𝑚defined as above. We then provided this 

matrix as input to the SML algorithm. The SML algorithm outputs a consensus matrix, which assigns a weight between 
each pair of genes. We found that SML did not perform well in the context of this challenge, likely because the 
underlying assumption of SML is that top-performing methods converge to similar predictions, which was not the case 
here (see Figs. 3 and S3). 

(E) Pairwise similarity of networks. The upper triangle of the matrix shows the percent of shared links (the Jaccard 
index multiplied by 100) and the lower triangle shows the fold-enrichment of shared links compared to the expected 
number of shared links at random. The two protein-protein interaction networks are the two most similar networks with 
8% of shared edges. 
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Figure S3 
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Figure S3. Complementarity of Module Identification Methods, Related to Figure 3.       (legend on next page) 
Figure S3. Complementarity of Module Identification Methods, Related to Figure 3. 

All panels show results for single-network module identification methods (Sub-challenge 1). 

(A) Pairwise similarity of module predictions from different methods, averaged over all networks. Similarity was 
computed based on whether the same genes were clustered together by the two methods (see Methods). The 
resulting similarity matrix was hierarchically clustered using Ward’s method. The top row shows the method type. The 
top five methods (1-5) and the consensus (C) are highlighted. The top methods did not converge to similar module 
predictions (they are not all grouped together in the hierarchical clustering). Related to Fig. 3, which shows similarity of 
module predictions from individual networks. 

(B) Average module size versus score for each method. The x-axis shows the average module size of a given method 
across the six networks. The y-axis shows the overall score of the method. Top teams (highlighted) produced modules 
of varying size, i.e., they did not converge to a similar module size during the leaderboard round. Methods that 
generated very small modules (average size < 10) were not among the top performers. 

(C) Comparison of module sizes between networks. For each network, the boxplot shows the distribution of average 
module sizes of the 42 challenge methods. On average, modules were smallest in the signaling network and largest in 
the co-expression network. 

(D) Comparison of module sizes between method types. For each network, boxplots show the distribution of average 
module sizes for kernel clustering, modularity optimization, random-walk-based, and hybrid methods (the remaining 
categories are not shown because they comprise only three methods each). Note that teams tuned the resolution 
(average module size) of their method during the leaderboard round. The variation in module size between different 
method categories and networks suggests that the optimal resolution is method- and network-specific. For example, 
teams using random-walk-based methods tended to choose a higher resolution (smaller average module size) than 
teams using kernel clustering or modularity optimization methods. 

(E) Number of distinct trait-associated modules recovered by the top K methods. Given the top K methods, we 
considered the set including all modules predicted by these methods and scored them with the same pipeline as used 
for the individual methods in the challenge. We then evaluated how many “distinct” trait-associated modules were 
recovered by these methods. Distinct modules were defined as modules that do not show any significant overlap 
among each other. Overlap between pairs of modules was evaluated using the hypergeometric distribution and called 
significant at 5% FDR (Benjamini-Hochberg adjusted p-value < 0.05). From the set of trait-associated modules 
discovered by the top K methods, we thus derived the subset of distinct trait-associated modules (when several 
modules overlapped significantly, only the module with the most significant GWAS p-value was retained). Although the 
resulting scores (number of distinct trait-associated modules) cannot be directly compared with the challenge scores 
(because module predictions had to be strictly non-overlapping in the challenge), it is instructive to see how many 
distinct trait modules can be recovered when applying multiple methods. The stacked bars (colors) further show how 
many of the distinct trait modules are contributed by each method category. The number of distinct trait modules is not 
monotonically increasing as more methods are added because the larger sets of modules also increase the multiple 
testing burden of the GWAS scoring. The top four methods together discover 78 distinct trait-associated modules. 
Relatively little is gained by adding a higher number of methods. 
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Figure S4 

 

Figure S4. Support of Trait Modules in Diverse Datasets, Related to Figures 5 and 6. 

(A) Pairs of older (lower-powered) and more recent (higher-powered) GWASs used for the evaluation of module-based 
gene prioritization in Fig. 5C. The first column gives the trait and the second and third columns indicate the 
approximate cohort sizes of the respective GWASs. The bar plot shows the percentage of trait-associated modules 
from the first GWAS that are also trait-associated modules in the second GWAS. At the bottom, the expected 
percentage of confirmed modules at random is shown (i.e., assuming the trait-associated modules in the second 
GWAS were randomly selected from the set of predicted modules). 

(B) Enrichment of trait-associated modules in six curated gene sets from three recent studies. The first two gene sets 
were taken from Marouli et al., (2017) and correspond to genes comprising height-associated ExomeChip variants and 
genes known to be involved in skeletal growth disorders, respectively. The third gene set was taken from de Lange et 
al., (2017) and corresponds to genes causing monogenic immunodeficiency disorders. Lastly, three gene sets relevant 
for type 2 diabetes (T2D) were taken from Fuchsberger et al. (2016) and correspond to genes in literature-curated 
pathways that are believed to be linked to T2D (we distinguished between genes in cytokine signalling pathways and 
other pathways) and genes causing monogenic diabetes. We then considered corresponding GWAS traits in our hold-
out set, namely height, all immune-related disorders, and T2D. We then tested all modules associated with these 
GWAS traits for enrichment in these six external gene sets. Enrichment was tested using the hypergeometric 
distribution and p-values were adjusted to control FDR using the Benjamini-Hochberg method. The heatmap shows for 
each GWAS (row) the fraction of trait-associated modules that significantly overlap with a given gene set (column). It 
can be seen that modules associated with a given trait predominantly overlap the external gene sets that are expected 
to be relevant for that trait. 
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Figure S5 

 

Figure S5. Modules Associated with IgA Nephropathy, Related to Fig. 6D. 

 

(legend on next page) 
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Figure S5. Modules Associated with IgA Nephropathy, Related to Fig. 6D. 

The top ten enriched GO biological processes, Reactome pathways and mouse mutant phenotypes are shown for two 
IgA nephropathy (IgAN) associated modules. P-values were computed using the non-central hypergeometric 
distribution, see Methods.  

(A) IgAN-associated module identified using the consensus method in the InWeb protein-protein interaction network. 
The module comprises immune-related NF-κB signaling pathways. Enriched mouse mutant phenotypes for module 
gene homologs include perturbed immunoglobulin levels (IgM and IgG1). The module implicates in particular the NF-
κB subunit REL as a candidate gene. The REL locus does not reach genome-wide significance in current GWASs for 
IgAN but is known to be associated with other immune disorders such as rheumatoid arthritis. 

(B) Enriched annotations for the IgAN-associated module shown in Fig. 6D. The module comprises complement and 
coagulation cascades. The top two enriched mouse mutant phenotypes are precisely “abnormal blood coagulation” 
and “glomerulonephritis”. See main text for discussion. 
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Table S1 

Provided as Excel file (Table_S1.xlsx) 

Table S1: Collection of GWAS Datasets used for the Challenge. 

The table lists the GWAS datasets used for the module scoring. The first column indicates whether the GWAS was 
used during the "leaderboard" or "final" evaluation phase. The five GWAS listed in the end ("extra") were not used for 
the scoring as they were added to the collection after the challenge. The PASCAL gene scores for all GWAS are 
available for download from the challenge website (file names are given in the last column). The original GWAS SNP 
summary statistics can be downloaded individually from the indicated sources or we can share the complete collection 
upon request. 
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Table S2 

 
 

Table S2: Functional Enrichment for Example Modules, Related to Figs. 5 and 6. 

Enrichment p-values for mouse mutant phenotypes, Reactome pathways and GO biological processes are shown for 
four example modules discussed in the main text (Figs. 5 and 6). P-values were computed using the non-central 
hypergeometric distribution and adjusted using the Bonferroni method (Methods). Results for the remaining trait-
associated modules from the consensus method in the STRING protein interaction network are shown in Table S4. 
Functional enrichment analysis for additional pathway databases and modules from all methods and networks are 
available on the challenge website.  
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Table S3 

 

Table S3: Overview of Consensus Trait-modules in the STRING Network, Related to Fig. 6. 

Overview of all 21 trait-associated modules discovered by the consensus method in the STRING protein-protein 
interaction network. The first three columns give the module ID, the trait type, and the specific GWAS trait that the 
module is associated to. We tested all modules for enrichment in GO annotation, mouse mutant phenotypes, and 
other pathway databases using the noncentral hypergeometric test (Methods). The putative function of each module 
based on this enrichment analysis is summarized in the fourth column (see Figs. 5, 6 and Tables S2, S4 for details). 
Two thirds of the modules have functions that correspond to core pathways underlying the respective traits, while the 
remaining modules correspond either to generic pathways that play a role in diverse traits or to pathways without an 
established connection to the considered trait or disease. Only pathways with a well-established link to the trait were 
considered core pathways. Generic pathways, such as cell-cycle-related or epigenetic pathways, were not considered 
core pathways because they are relevant for many traits and tissues, making them more difficult to target 
therapeutically. For example, modules 77 and 109 are both associated with schizophrenia and comprise pathways 
related to epigenetic gene silencing and nucleosome organization, respectively. Although there is evidence that 
epigenetic mechanisms may play a role in schizophrenia, we considered this to be a generic pathway. 
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Table S4 

Provided as Excel file (Table_S4.xlsx) 

Table S4: Functional Enrichment of Consensus Trait Modules. 

For each of the 21 consensus trait-modules shown in Table S3, all categories with a Bonferroni-corrected P-value 

below 0.05 are listed (Methods). Only results for mouse mutant phenotypes, Reactome pathways and GO biological 

process annotations are included for brevity. Full results including all tested pathway databases and all challenge 

modules are available on the challenge website. 
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Supplementary Materials

Supplementary Tables

Table S-1:Premature aging phenotypes retrieved from HPO.

HPO Term
Identifier

Term Name

HP:0007495 Prematurely aged appearance
HP:0002216 Premature graying of hair
HP:0004771 Premature graying of body hair
HP:0005328 Progeroid facial appearance
HP:0008509 Aged leonine appearance
HP:0100678 Premature skin wrinkling
HP:0000607 Periorbital wrinkles
HP:0007392 Excessive wrinkled skin

HP:0007407
Excessive skin wrinkling on dorsum of hands and

fingers
HP:0007605 Excessive wrinkling of palmar skin
HP:0007517 Palmoplantar cutis laxa
HP:0007414 Neonatal wrinkled skin of hands and feet
HP:0009762 Facial wrinkling
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Table S-2: ORPHANET diseases (Rath et al., 2012) in which at least one PA
aging phenotype has been described.

Disease ID Disease Name Causative Genes

ORPHA:100 Ataxia-telangiectasia ATM
ORPHA:101028 Transaldolase deficiency TALDO1
ORPHA:1262 Böök syndrome
ORPHA:1297 Branchio-oculo-facial syndrome TFAP2A
ORPHA:1299 Branchioskeletogenital syndrome CDH11
ORPHA:1318 Campomelia, Cumming type
ORPHA:1340 Cardiofaciocutaneous syndrome BRAF; MAP2K1; KRAS; MAP2K2

ORPHA:137608
Segmental

outgrowth-lipomatosis-arteriovenous
PTEN

ORPHA:1387
Cataract-intellectual

disability-hypogonadism syndrome
RAB3GAP1; RAB3GAP2

ORPHA:156156
Lipoatrophy with diabetes,
leukomelanodermic papules

ORPHA:163746
Peripheral demyelinating

neuropathy-central dysmyelinating
SOX10

ORPHA:1775 Dyskeratosis congenita
NOP10; PARN; NHP2; USB1; TERC;

TINF2; RTEL1; TERT; DKC1;
CTC1; WRAP53

ORPHA:1807 Focal facial dermal dysplasia type III TWIST2
ORPHA:1860 Thanatophoric dysplasia type 1 FGFR3

ORPHA:1901
Ehlers-Danlos syndrome,

dermatosparaxis type
ADAMTS2

ORPHA:191 Cockayne syndrome ADAMTS2

ORPHA:1979
Lipodystrophy due to peptidic

growth factors deficiency
ORPHA:2067 GAPO syndrome ANTXR1
ORPHA:2078 Geroderma osteodysplastica PYCR1; GORAB
ORPHA:209 Cutis laxa

ORPHA:220295
Xeroderma pigmentosum-Cockayne

syndrome complex
ERCC2; ERCC3; ERCC4; ERCC5

ORPHA:221008 Rothmund-Thomson syndrome type 1
ORPHA:221016 Rothmund-Thomson syndrome type 2 RECQL4
ORPHA:228240 Elastoderma
ORPHA:2500 Acrogeria COL3A1

ORPHA:2617
Microcephalic primordial dwarfism,

Montreal type
ORPHA:263534 Acral peeling skin syndrome CSTA; TGM5
ORPHA:2658 Lenz-Majewski hyperostotic dwarfism PTDSS1

ORPHA:280365
Autosomal semi-dominant severe

lipodystrophic laminopathy
LMNA

ORPHA:2834 Wrinkly skin syndrome ATP6V0A2

ORPHA:286
Ehlers-Danlos syndrome, vascular

type
COL3A1; COL5A1

ORPHA:2909 Rothmund-Thomson syndrome

ORPHA:2959
Progeria-short stature-pigmented

nevi syndrome
ORPHA:2962 De Barsy syndrome
ORPHA:2963 Progeroid syndrome, Petty type SLC25A24

ORPHA:2976
Pseudoleprechaunism syndrome,

Patterson type

ORPHA:3051
Intellectual disability-sparse
hair-brachydactyly syndrome

SMARCA2

ORPHA:3163 SHORT syndrome PIK3R1

ORPHA:3322 Hoyeraal-Hreidarsson syndrome
ACD; PARN; TINF2; RTEL1; TERT;

DKC1
ORPHA:3342 Arterial tortuosity syndrome SLC2A10

ORPHA:33445
Neuroectodermal melanolysosomal

disease
MYO5A

ORPHA:3437 Vogt-Koyanagi-Harada disease FAS; PTPN22
ORPHA:3440 Waardenburg syndrome
ORPHA:3455 Wiedemann-Rautenstrauch syndrome

ORPHA:357074
Autosomal recessive cutis laxa type

2, classic type
ATP6V1E1; ATP6V0A2; ATP6V1A

ORPHA:363618
LMNA-related cardiocutaneous

progeria syndrome
LMNA

ORPHA:381 Griscelli disease

ORPHA:412057
Autosomal recessive cerebellar ataxia

due to STUB1 deficiency
STUB1

ORPHA:435628 Keppen-Lubinsky syndrome KCNJ6

ORPHA:500
Noonan syndrome with multiple

lentigines
BRAF;PTPN11; RAF1

ORPHA:50811
Lipodystrophy-intellectual

disability-deafness syndrome
ORPHA:633 Laron syndrome GHR

ORPHA:66633
Sensorineural hearing loss-early

graying-essential tremor syndrome

-
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Disease ID Disease Name Causative Genes

ORPHA:740
Hutchinson-Gilford progeria

syndrome
LMNA; ZMPSTE24

ORPHA:75496
Ehlers-Danlos syndrome, progeroid

type
B4GALT7; B3GALT6

ORPHA:758 Pseudoxanthoma elasticum ABCC6; ENPP1
ORPHA:769 Rabson-Mendenhall syndrome INSR

ORPHA:79086 Acquired generalized lipodystrophy
ORPHA:79087 Acquired partial lipodystrophy LMNB2

ORPHA:79397
Epidermolysis bullosa simplex with

mottled pigmentation
KRT14; KRT5

ORPHA:79474 Atypical Werner syndrome LMNA
ORPHA:79476 Griscelli disease type 1 MYO5A
ORPHA:79477 Griscelli disease type 2 RAB27A

ORPHA:808 Seckel syndrome
ATR; CEP152; TRAIP; CENPE;
CENPJ; PCNT; RBBP8; PLK4;

ATRIP
ORPHA:870 Down syndrome
ORPHA:894 Waardenburg syndrome type 1 PAX3

ORPHA:895 Waardenburg syndrome type 2
EDNRB; SOX10; KITLG; MITF;

SNAI2
ORPHA:897 Waardenburg-Shah syndrome EDN3; EDNRB; SOX10

ORPHA:90153
Mandibuloacral dysplasia with type

A lipodystrophy
LMNA

ORPHA:90154
Mandibuloacral dysplasia with type B

lipodystrophy
ZMPSTE24

ORPHA:902 Werner syndrome WRN
ORPHA:90348 Autosomal dominant cutis laxa FBLN5; ELN; ALDH18A1
ORPHA:90349 Autosomal recessive cutis laxa type 1 FBLN5; EFEMP2
ORPHA:90350 Autosomal recessive cutis laxa type 2

ORPHA:904 Williams syndrome
TBL2; LIMK1; GTF2IRD1; CLIP2;

ELN; BAZ1B; GTF2I; RFC2
ORPHA:920 Ablepharon macrostomia syndrome TWIST2

ORPHA:99876 Ehlers-Danlos syndrome type 7B COL1A2
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Table S-3: Networks used in this study, number of nodes, number of edges and
network densities.

Network
Number of

nodes
Number of

edges
Density

PPI 12 803 68 530 8.36 × 10−4

Pathways 10 010 227 310 4.54 × 10−3

Co-expression 10 131 922 424 1.80 × 10−2

Complexes 8 650 91 502 2.44 × 10−3

Disease similarity 3 193 12 941 2.54 × 10−3
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Supplementary Figures
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Figure S-1: Clustering coefficients for all the modules of size k. Modules are identified
from repRWR-M on multiplex network for all PA diseases associated to at least one
causative gene.
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Figure S-2: Clustering coefficients for all the modules of genes, one module per PA
disease, of different sizes generated by Repeated RWR-MH.
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Figure S-3: Fisher’s test results for the different sizes of modules and networks
considered in our study. We considered the number of matching genes among our genes
modules and aging-related genes from GenAge database without preliminar filtering.
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Figure S-4: Fisher’s test results for the different sizes of modules and networks
considered in our study. We considered the number of matching genes among our genes
modules and aging-related genes from GenAge database after a criterion filtering.

34

330



2.5

5.0

7.5

10.0

12.5

25 50 75 100

Module Sizes (k)

M
e
a
n
 #

 o
f 
s
ig

n
if
ic

a
n
t 
M

F
 T

e
rm

s

Networks
Co−expression

Complexes

Multiplex

Multiplex−Het.

Pathways

PPI

Figure S-5: The mean number of significant GO-MF annotated terms retrieved in
the PA disease modules of different sizes when the repeated RWR algorithm is applied
on the different networks under study.
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Figure S-6: The mean number of significant GO-CC annotated terms retrieved in
the PA disease modules of different sizes when the repeated RWR algorithm is applied
on the different networks under study.
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Figure S-7: Adjusted Rand Indexes between the partitions given by the different
algorithms used to cluster the network of PA diseases.
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