
THÈSE DE DOCTORAT DE L’ÉTABLISSEMENT UNIVERSITÉ BOURGOGNE FRANCHE-COMTÉ

PRÉPARÉE À L’UNIVERSITÉ DE FRANCHE-COMTÉ

École doctorale n°37

Sciences Pour l’Ingénieur et Microtechniques

Doctorat d’Informatique

par

DIOT NICOLAS

SAMP : Plateforme de modélisation à partir du paradigme multi-agents pour
l’univers du jeu vidéo : vers un développement accessible et une gestion

adaptée des interactions

Thèse présentée et soutenue à Besançon, le 19 décembre 2018

Composition du Jury :

MANDIAU RENÉ Professeur des universités à
l’Université de Valenciennes

Président

MICHEL FABIEN Maître de conférences HDR à
l’Université de Montpellier

Rapporteur

AMBLARD FRÉDERIC Professeur des universités à
l’Université de Toulouse 1

Rapporteur

BOUQUET FABRICE Professeur des universités à
l’Université de Franche-Comté

Directeur de thèse

LANG CHRISTOPHE Maître de conférences à l’Université de
Franche-Comté

Codirecteur de thèse

GROSDEMOUGE SYLVAIN Président de Shine Research Référent entreprise

école doctorale sciences pour l ’ingénieur et microtechniques

Université Bourgogne Franche-Comté
32, avenue de l’Observatoire
25000 BesanÃğon, France

Titre : SAMP : Plateforme de modélisation à partir du paradigme multi-agents pour l’univers du jeu vidéo :
vers un développement accessible et une gestion adaptée des interactions

Mots-clés : Jeux vidéo, système multi-agents, interaction, accessibilité, Shine Agent Modeling Platform

Résumé :
En quelques années, les domaines des jeux vidéo
et des systèmes multi-agents (SMA) ont connu un
très bel essor. Malgré des similitudes assez fortes
entre les deux domaines (présence d’entités dans
les jeux vidéo pouvant être assimilées à des agents),
les SMA ne sont presque jamais utilisés dans le
développement de jeux. Ce mémoire présente Shine
Agent Modeling Platform (SAMP), une plateforme
visant à intégrer le paradigme multi-agents au
sein du développement de jeux vidéo. Cette fusion
permet l’utilisation de la puissance des multi-agents
au sein des jeux vidéo.
SAMP propose une approche au niveau des
interactions permettant de réduire le coût de

traitement de ces interactions en optimisant
le nombre de recherches effectuées dans
l’environnement.
En plus d’intégrer le paradigme multi-agents, SAMP
vise à être accessible à un maximum d’utilisateurs
en proposant une interface de modélisation
entièrement graphique. Un système d’importation de
modèles comportementaux permet de créer deux
niveaux de modélisation : un niveau proche de la
logique développement informatique et un niveau
proche de la logique métier de l’utilisateur.
SAMP est intégré à un moteur de jeux vidéo, Shine
Engine, permettant de générer les environnements
graphiques dans lesquels les agents évolueront.

Title: SAMP : Plateforme de modélisation à partir du paradigme multi-agents pour l’univers du jeu vidéo :
vers un développement accessible et une gestion adaptée des interactions

Keywords: Video games, multi-agents system, interaction, user-friendly, Shine Agent Modeling Platform

Abstract:
In recent years, video games and multi-agents
systems (MAS) domains has become more and
more present. Despite of strong similarities (video
games entities which can be assimilated to agents),
MAS are very rarely used during the development
of video games. This thesis presents the Shine
Agent Modeling Platform (SAMP), a framework
trying to integrate the multi-agents paradigm within
the development of video games. The purpose is to
integrate the efficiency of the MAS within the video
games.
SAMP provides an approach to enhance the

interactions between agents. This approach reduces
the number of searches within the environment.
In addition, to integrate the multi-agents paradigm
within the video games, SAMP aims to be user-
friendly by proposing a full graphical interface to
MAS. An import/export system of these models
allows users to create two modeling levels: one close
to the computer sciences logic and the second close
the business logic of the user.
SAMP is integrated in a video games engine: Shine
Engine. This integration allows to generate the
graphic environment in which agents will live.

iv

A Christian qui était toujours si fier de moi et à qui je pense si souvent,

REMERCIEMENTS

Avant toute chose, je tiens à remercier toutes les personnes qui ont, de près ou de loin
participé à cette aventure avec moi.

Merci Fabrice et Christophe pour votre accompagnement, votre patience, vos conseils et
votre humour constant qui m’ont permis de ne pas voir passer ces années de recherches.
Merci au laboratoire FEMTO-ST et son département DISC de l’université de Franche-
Comté de m’avoir accueilli.

Merci à l’entreprise Shine Research qui m’a accueilli tout au long de cette thèse et m’a
permis de travailler dans un domaine pour lequel j’ai toujours eu une forte attirance.
Merci Sylvain pour l’accompagnement qui a été le tien tout au long de mes travaux de
recherche. Ton expertise du domaine des jeux vidéo m’a guidé dans beaucoup de choix
technologiques. Merci à Bastien, Rémy, Johann et Thomas qui ont été là depuis le début
et ont toujours su m’accompagner... à leur manière. Petite pensée pour Stéphane tout
récemment arrivé et à qui je dois annoncer que j’ai perdu.

Merci à mes parents, mes beaux-parents et surtout à ma femme et ma fille. Ces derniers
jours de rédaction n’ont pas été les plus simples pour moi, mais aussi pour vous. Merci
pour votre soutien et votre aide sans failles.

Merci à Carnat de toujours avoir su trouver mes blessures et mes faiblesses, ce que
j’avoue qu’à demi-mots. Je ne remercie pas celui qui pensait que mes encadrants vou-
laient que je me taise et non que je fasse une thèse. Il se reconnaitra.

Un grand merci aux relecteurs/correcteurs. Relire une thèse lorsque l’on ne comprend
pas grand-chose à son contenu a dû être un travail de longue haleine. S’il reste des
fautes, je ne vous en tiendrai pas rigueur.

Merci à Messieurs Fabien Michel et Frédéric Amblard pour leur travail de rapporteurs sur
ce mémoire et à Monsieur René Mandiau d’avoir accepté de présider le jury de soute-
nance de ma thèse. J’espère que la lecture et la soutenance vous seront agréables.

v

SOMMAIRE

I Contexte et problématiques 1

1 Introduction 3

1.1 Contexte . 3

1.2 Problématiques . 5

1.3 Plan mémoire . 6

2 État de l’art 7

2.1 Les jeux vidéo . 8

2.1.1 Qu’est ce qu’un jeu vidéo . 8

2.1.2 Les moteurs physiques . 9

2.1.3 Les moteurs de jeux vidéo . 10

2.2 Les agents et les Systèmes Multi-Agents 12

2.2.1 Les agents . 13

2.2.2 Les systèmes multi-agents . 15

2.2.3 La communication . 16

2.2.4 L’environnement . 19

2.3 Systèmes multi-agents et gestion du temps 22

2.3.1 Préambule . 23

2.3.2 Systèmes multi-agents en temps réel 23

2.4 Modélisation . 25

2.4.1 Dans le monde académique . 26

2.4.2 Dans le monde du jeu vidéo . 27

2.5 Synthèse . 28

2.5.1 Analyses . 28

2.5.2 Objectifs . 29

II Travaux réalisés 31

3 Exemple fil rouge 33

vii

viii SOMMAIRE

3.1 Définition de l’exemple . 33

3.2 Modélisation de la population . 34

4 Shine Agent Modeling Platform 37

4.1 Les principes fondamentaux de SAMP . 38

4.1.1 L’approche tout agent pour une plus grande facilité 38

4.1.2 Coller au plus près des jeux vidéo 40

4.2 Des compétences... 40

4.2.1 L’acquisition des compétences . 40

4.2.2 Des compétences avec des pré-requis 41

4.2.3 Définition des compétences dans SAMP-E 42

4.3 ...et des interactions . 42

4.3.1 Une automatisation grâce aux compétences 43

4.3.2 Une structure de données minimale 45

4.3.3 Définition des interactions dans SAMP-E 47

4.4 Définition des types d’agents . 47

4.4.1 Les facilitateurs . 48

4.4.2 Acquisition ou perte de compétences et interactions 50

4.4.3 Définition du comportement des agents 51

4.5 Comportements des agents . 52

4.5.1 Un système d’état et d’événements 52

4.5.2 Différents niveaux d’état . 53

4.5.3 Les altérations . 55

4.6 Modélisations des comportements par quatre vues 56

4.6.1 Le paramétrage des vues . 56

4.6.2 Généralités sur les nœuds . 58

4.6.3 Vue Altération . 61

4.6.4 Vue Comportement . 62

4.6.5 Vue État . 64

4.6.6 Vue Événement . 68

4.6.7 Instanciations des agents . 69

4.7 Bilan . 70

5 Les interactions 73

5.1 L’approche classique . 74

5.2 Interactions inversées et agents actifs/passifs 74

SOMMAIRE ix

5.3 L’envoi des interactions . 76

5.4 Analyses . 78

6 Génération et exécution 81

6.1 Les transformations model2model et model2text 81

6.1.1 Model to Model . 82

6.1.2 Model to Text . 82

6.2 Le contrôle des erreurs . 83

6.3 Génération du code . 85

6.3.1 Les classes CShAgentInstance, CShSkills et CShInteraction 86

6.3.2 Les classes CShModel . 88

6.3.3 Code Manager : Un gestionnaire de génération de code 89

6.3.4 Règles de transformations . 91

6.3.4.1 Une génération commune 91

6.3.4.2 La méthode ParameterGeneration 92

6.3.4.3 Les nœuds Entry . 95

6.3.4.4 Les nœuds Exit . 95

6.3.4.5 Les nœuds event . 95

6.3.4.6 Les nœuds state . 97

6.3.4.7 Les nœuds fonctions . 98

6.3.4.8 Les nœuds if . 99

6.3.4.9 Les nœuds for . 100

6.3.4.10 Les nœuds value . 101

6.3.4.11 Les nœuds comparator . 102

6.4 Génération de projet et Compilation . 102

6.5 Conclusion . 103

III Evaluation de la méthode 105

7 Calculs théoriques 107

7.1 Formules . 107

7.2 Résultats . 110

7.2.1 Jeux de stratégie en temps réel . 110

7.2.2 Calculs et analyses . 111

7.2.2.1 Modification de la densité de population 112

x SOMMAIRE

7.2.2.2 Impact du nombre d’agents actifs 112

7.2.2.3 Calculs pour une seconde 113

7.3 Conclusions . 114

8 Résultats pratiques 115

8.1 Expérimenter . 115

8.1.1 Nos buts . 116

8.1.2 Qu’est-ce qu’un facteur? Que sont les niveaux? 116

8.2 Conditions d’expérimentation du fonctionnement des interactions 116

8.3 Expérimentations avec le SMA proies-prédateurs complet 118

8.4 Expérimentations avec des moutons aveugles 118

8.5 Consommation de mémoire . 119

8.6 Modélisation d’un jeu 2D . 120

8.6.1 Description du système . 121

8.6.2 L’agent personnage . 122

8.6.3 Les agents ennemis . 123

8.6.4 Les agents murs . 123

8.6.5 Les agents potion . 124

8.6.6 La détection des entrées utilisateurs 124

8.6.7 La détection des collisions . 124

8.6.8 Un modèle réutilisable : MoveTo . 125

8.6.9 Le modèle d’altération du personnage 126

8.7 SAMP dans d’autres projets . 126

8.7.1 Silva Numerica . 127

8.7.2 Un lecteur de flux Rss . 128

8.8 Bilan des expérimentations . 129

IV Conclusion et perspectives 131

9 Conclusion 133

9.1 Le contexte . 133

9.2 Nos contributions . 134

9.3 Perspectives . 136

9.3.1 Optimisation des règles de génération de code 136

9.3.2 Facilité d’utilisation . 136

SOMMAIRE xi

9.3.3 Optimiser les interactions . 137

9.3.4 Changer l’organisation . 137

9.4 Un petit mot pour la fin . 138

I
CONTEXTE ET PROBLÉMATIQUES

1

1
INTRODUCTION

Sommaire
1.1 Contexte . 3
1.2 Problématiques . 5
1.3 Plan mémoire . 6

1.1/ CONTEXTE

Le contexte est celui des jeux vidéo mais aussi celui des systèmes multi-agents. L’in-
dustrie du jeu vidéo est en constante évolution pour combler les attentes du public et
proposer de nouvelles expériences ludiques. L’évolution des périphériques a permis de
repenser et d’améliorer le jeu vidéo. Au commencement, on retrouve des jeux simplistes
tel que PONG (créé par la société Atari) qui voyait deux joueurs s’affronter dans un jeu
de raquette minimaliste ou Core War (créé par la société Bell) qui faisait s’affronter des
programmes reproducteurs entre eux. C’est l’arrivée des bornes d’arcades qui a permis
de démocratiser le jeu vidéo auprès du grand public.

En 1978, Taito sort le célèbre Space Invaders suivi par Atari qui livre, en 1979, Asteroid et
fait entrer le jeu vidéo dans ce que certains nomment l’âge d’or de l’arcade. Le jeu vidéo
entre aussi dans les foyers, d’abord sur consoles de jeux, des périphériques dédiés aux
jeux vidéo, puis sur micro-ordinateur.

S’ensuit une évolution constante de l’industrie du jeu vidéo, proposant à chaque géné-
ration de jeux de nouvelles manières de jouer. En 2014, le revenu mondial du jeu vidéo
est estimé à 81 milliards de dollars (le double de ce que l’industrie du cinéma a généré
l’année d’avant).

Les avancées technologiques ont permis le développement de jeux plus complexes, où
l’expérience de jeu est immersive. Par exemple, le comportement des personnages non-
joueurs (PNJ) dans un jeu a beaucoup évolué depuis les débuts du jeu vidéo. Si on prend
l’exemple de Space Invaders, les ennemis se déplaçaient d’un bord à l’autre de l’écran,
et lorsqu’un bord était atteint, ils descendaient d’un cran sur l’écran et repartaient dans la
direction opposée. On peut aussi citer des classiques comme Mario ou Castlevania dans
lesquels les ennemis suivent ce qu’on appelle des patterns 1 (cf figure 1.1). Dans cette

1. Un pattern est un comportement qu’un ennemi dans un jeu vidéo va suivre. Chaque ennemi d’un même
type suit le même pattern ce qui permet au joueur qui a mémorisé ces patterns d’avancer plus facilement
dans le jeu.

3

4 CHAPITRE 1. INTRODUCTION

FIGURE 1.1 – Le pattern des ennemis dans le jeu New Super Mario Bros.

figure, chaque flèche représente le mouvement que l’ennemi suivra tout le temps.

Lorsque nous décrivons le comportement des PNJ dans un jeu, il est facile de faire le pa-
rallèle avec le paradigme multi-agents. En effet, si nous considérons chaque PNJ comme
un agent, le jeu vidéo devient alors un système multi-agents (SMA). C’est naturellement
que nos recherches se sont dirigées dans cette direction. Cependant, même si certains
jeux vidéo semblent être développés en se basant sur le paradigme multi-agents, ils n’en
appliquent pas toujours les règles et ne font qu’adapter certains aspects du paradigme.

Aujourd’hui, les jeux proposent des ennemis (ou des alliés) avec des comportements
plus complexes. Certains ennemis sont, par exemple, capables de se coordonner pour
prendre à revers le joueur qui se serait mis à couvert derrière un obstacle. Ces compor-
tements pourraient se rapprocher de comportements intelligents mais, bien souvent, il ne
s’agit que de comportements réactifs, où les agents ne font que répondre d’une manière
particulière en fonction de l’environnement qui les entoure.

La modélisation de ces comportements est un sujet prégnant dans le monde du jeu vidéo.

Ces comportements permettent de favoriser l’immersion du joueur et, par conséquent,
son expérience de jeu. Le framerate, le nombre d’images par seconde (ou Frame Per
Second (FPS)), a aussi une incidence sur l’expérience de jeu. Avec un framerate trop
bas, les images s’enchaineront trop lentement et le jeu sera saccadé à l’écran (fluidité vi-
suelle). Si au contraire le framerate est élevé, il se peut que les entités du jeu se mettent
à jour trop peu souvent (fluidité intellectuelle) ce qui a aussi un impact sur l’expérience
de jeu. Le framerate est directement influencé par le fait que, aujourd’hui, les jeux vidéo
mettent en scène de plus en plus d’agents et que ces agents ont un comportement de
plus en plus complexe. Cela entraîne une augmentation de la consommation des res-
sources pouvant nuire au temps de calcul et donc au framerate.

Il est alors nécessaire d’optimiser l’exécution des jeux, notamment pour tenir compte de
cette contrainte.

Un autre point intéressant dans le monde du jeu vidéo est l’apparition, il y a quelques
années, sur le marché, de développeurs indépendants. Un des premiers succès dans

1.2. PROBLÉMATIQUES 5

ce domaine est le jeu Minecraft, développé par Markus Persson (aka Notch). Suite au
succès de ce jeu, beaucoup de développeurs amateurs ont essayé avec plus ou moins
de réussite de développer leurs propres jeux. De plus, les équipes de développement de
studios professionnels sont composées d’acteurs différents : développeurs, designers,
graphistes, animateurs, etc. Cette hétérogénéité d’acteurs, chacun avec leurs compé-
tences, nous conforte dans le besoin de rendre notre solution accessible aux néophytes
en développement informatique.

Il nous semble alors pertinent, dans la mise en œuvre d’une solution de développement
de jeu vidéo, de prendre en compte le niveau hétérogène des utilisateurs.

1.2/ PROBLÉMATIQUES

Nous nous plaçons donc dans un contexte où le jeu vidéo est un système multi-agents
avec des obligations d’exécution en temps réel et d’intégration de moteurs physiques,
inhérents aux jeux vidéo. Il faut aussi bien garder à l’esprit que les jeux vidéo contiennent
aujourd’hui des environnements contenant des milliers d’agents et que ces agents sont
capables de communiquer et se coordonner.

Sachant que la coordination entre différents agents se fait à l’aide d’interactions (entre
l’agent et son environnement ou entre les agents eux-mêmes) et que le nombre de ces
interactions est conséquent dans bon nombre de jeux vidéo, nous pensons que réduire
ces interactions permettrait de répondre à la contrainte de performance. Mais comment
réduire l’impact de ces interactions sur le système? Comment permettre une intégration
complète des moteurs physiques dans le fonctionnement des SMA développés? Com-
ment permettre une intégration complète des moteurs physiques dans le fonctionnement
des SMA développés?

Dans un autre registre, comme l’a fait remarquer Yoann Kubera [52], un des principaux
problèmes est que les SMA sont modélisés par les spécialistes du domaine et qu’ils sont
implémentés par des développeurs en informatique. Et cette situation impose qu’il y ait
une traduction pour passer du modèle à l’implémentation durant laquelle il y a un risque
que des informations soient perdues ou mal traduites.

De par l’émergence de ces différents profils de créateurs de jeux vidéo et l’hétérogénéité
des compétences de chacun, nous avons cherché à répondre à une problématique de
complexité. Comment rendre notre outil simple d’utilisation tout en permettant une grande
expressivité dans le développement? Comment permettre de développer tous les com-
portements possibles tout en permettant à un néophyte en développement de réaliser
ces comportements?

Afin de répondre à toutes ces questions, nous présentons, dans cette thèse nos travaux et
plus particulièrement SAMP (Shine Agent Modeling Platform), une approche permettant
de développer un jeu vidéo à base de SMA en s’affranchissant de l’apprentissage
d’un langage informatique. SAMP est décomposée en 3 parties (figure 1.2) : une partie
définissant le méta-modèle de SAMP (SAMP-M), une partie d’édition de modèles et de
génération des SMA (SAMP-E) et une partie permettant la gestion de l’exécution des
SMA (SAMP-X). Le tout offrant des performances permettant de jouer en respectant
nos contraintes de temps réel. Enfin, le besoin d’intégrer, aux SMA développés à l’aide
de SAMP, la capacité d’utiliser des outils pour simuler les principes de la physique appelés

6 CHAPITRE 1. INTRODUCTION

FIGURE 1.2 – Représentation des 3 parties de SAMP

moteurs physiques.

C’est en prenant en compte toutes ces composantes propres au développement d’un jeu
vidéo que nous avons orienté nos travaux de recherche.

1.3/ PLAN MÉMOIRE

La suite de ce mémoire est découpée ainsi :
— Le chapitre 2 réalise un état de l’art. Nous abordons d’abord le concept de jeux

vidéo que nous définissons et dont nous introduisons les deux principaux outils qui
sont les moteurs de jeux et les moteurs physiques. Nous continuons par un état
de l’art du paradigme multi-agents en abordant les agents, les SMA, les environ-
nements et les communications. Nous enchaînons par un état de l’art sur le temps
réel en SMA afin de respecter le principe de frame propre au domaine du jeu vidéo.
Avant de conclure ce chapitre nous faisons un état de l’art des outils de modélisa-
tion de comportement, que ce soit en SMA ou dans le domaine du jeu vidéo ;

— Le chapitre 3 présente un exemple d’un système proies-prédateurs qui servira à
illustrer les explications de nos contributions ;

— Dans le chapitre 4 nous décrivons Shine Agent Modeling Platform en commençant
par décrire ses concepts fondamentaux. Nous décrivons ensuite les éléments qui
le composent : les compétences, les interactions, les agents et la modélisation des
comportements ;

— Nous définissons ensuite, dans le chapitre 5, une nouvelle approche pour les inter-
actions basée sur un principe d’agents actifs et passifs ;

— Le chapitre 6 explique comment, à partir de la modélisation du système nous gé-
nérons le code qui, une fois compilé, générera un plugin compatible avec les jeux
vidéo développés à l’aide de Shine Engine ;

— Nous évaluons ensuite, dans le chapitre 7, la méthode, d’abord d’un point de vue
théorique. Dans ce chapitre, nous abordons comment nous avons obtenu les résul-
tats théoriques concernant la comparaison de notre approche des interactions avec
une approche classique ;

— Nous exposons enfin les résultats de nos expérimentations dans le chapitre 8. Cela
concerne, dans un premier temps, des expérimentations permettant de comparer
notre approche des interactions avec une approche classique. Nous nous focali-
sons ensuite sur la simplicité d’utilisation et l’expressivité de SAMP.

— Nous terminons par une conclusion et une discussion sur les travaux décrits dans
ce mémoire dans le chapitre 9.

2
ÉTAT DE L’ART

Sommaire
2.1 Les jeux vidéo . 8

2.1.1 Qu’est ce qu’un jeu vidéo . 8
2.1.2 Les moteurs physiques . 9
2.1.3 Les moteurs de jeux vidéo . 10

2.2 Les agents et les Systèmes Multi-Agents 12
2.2.1 Les agents . 13
2.2.2 Les systèmes multi-agents . 15
2.2.3 La communication . 16
2.2.4 L’environnement . 19

2.3 Systèmes multi-agents et gestion du temps 22
2.3.1 Préambule . 23
2.3.2 Systèmes multi-agents en temps réel 23

2.4 Modélisation . 25
2.4.1 Dans le monde académique . 26
2.4.2 Dans le monde du jeu vidéo . 27

2.5 Synthèse . 28
2.5.1 Analyses . 28
2.5.2 Objectifs . 29

Les systèmes multi-agents et les agents qui les composent peuvent être définis et utilisés
de différentes manières. Cela dépend d’abord du domaine dans lequel nous cherchons à
utiliser ces agents et de l’objectif à atteindre. Un SMA utilisé pour effectuer une simulation
d’un environnement naturel n’a pas les mêmes restrictions et besoins qu’un SMA utilisé
dans le but de contrôler plusieurs robots et de les faire se coordonner.

Le type des agents utilisés, l’environnement dans lequel ils évoluent ou leur mode de
communication sont différents points qu’il est important de définir avant le développement
d’un SMA afin de répondre au mieux aux objectifs fixés. Comme nous l’avons indiqué, nos
travaux prennent place dans le domaine des jeux vidéo. C’est un domaine en perpétuelle
évolution et qu’il est important de définir afin de pouvoir au mieux appréhender la suite
de ce mémoire.

Dans ce chapitre, nous commençons par définir les spécificités de notre contexte appli-
catif qui est le domaine des jeux vidéo en explicitant le lien entre celui-ci et les SMA. Nous
présentons, ensuite, les concepts et les approches associés à la réalisation d’un SMA.
Nous nous attardons, enfin, sur les recherches abordant le temps réel dans les SMA.

7

8 CHAPITRE 2. ÉTAT DE L’ART

2.1/ LES JEUX VIDÉO

Dans cette section, nous commençons par décrire ce qu’est un jeu vidéo et ce qui le
compose. Pour cela, nous présentons ce que sont les moteurs physiques et comment
fonctionne le moteur d’un jeu. Nous nous attardons sur le moteur Shine Engine dans
lequel SAMP a été intégré en tant que plugin. Nous terminons par expliquer le fonctionne-
ment interne propre à une grande majorité de jeu.

2.1.1/ QU’EST CE QU’UN JEU VIDÉO

Le domaine des jeux vidéo est vaste et varié. Chaque année des milliers de nouveaux
jeux voient le jour sur des supports très différents les uns des autres : consoles de jeux,
ordinateurs, appareils mobiles.

Il existe de nombreux genres de jeux différents avec des budgets et des équipes toutes
aussi différentes. On peut parler de jeu AAA 1 comme Far Cry ou Battlefield, de jeux vi-
déo casual comme Angry Birds ou Candy Crush Saga ou de productions indépendantes
comme Minecraft, toutefois tous les jeux vidéo sont caractérisés par les mêmes proprié-
tés.

Nous définissons un jeu vidéo comme :

— devant être exécuté sur un dispositif numérique ;

— devant être ludique ;

— devant permettre des interactions de la part de son ou ses utilisateurs, par le biais
de périphériques : manettes, clavier, souris, écran tactile, détecteur de mouvement,
capteurs de position, etc ;

— devant permettre aux actions des utilisateurs d’avoir un impact sur le jeu et que ces
impacts puissent être perçus par les utilisateurs : affichage sur un écran ou dans
un casque, retour haptique, son, etc.

Le domaine des jeux vidéo est un domaine en constante évolution. De nombreuses avan-
cées technologiques sont réalisées par les industries du jeu vidéo, notamment en ce qui
concerne les algorithmes de rendu graphique. En 2018, Nvidia met en avant un algo-
rithme permettant d’afficher une scène en temps réel en utilisant le Ray Tracing. Le Ray
Tracing vise à reproduire le plus fidèlement le rendu de la lumière dans une scène 3D.

Les avancées technologiques ne se contentent pas du seul rendu visuel. De nombreuses
technologies ont été adoptées et grandement améliorées par l’industrie du jeu vidéo. La
démocratisation des smartphones et l’utilisation grandissante de ces terminaux pour le
jeu a amené de nombreuses avancées technologiques notamment dans la miniaturisa-
tion des composants, l’amélioration de l’autonomie des batteries ou l’efficacité des écrans
tactiles. La détection de mouvement développée par Microsoft pour la Xbox 360 avec Ki-
nect est aujourd’hui utilisée dans les domaines de l’industrie (amélioration des postures
de travail des ouvriers) ou dans les domaines médicaux (pilotage de terminaux informa-
tiques par le mouvement dans les blocs opératoires).

1. AAA - ou triple-A - est une classification de l’industrie du jeu vidéo désignant des jeux dont les budgets
de développement et de promotion sont élevés et dont les évaluations par les critiques professionnels sont
bonnes.

2.1. LES JEUX VIDÉO 9

Tous les jeux vidéo n’ont pas les mêmes objectifs : Certains sont développés dans le but
de distraire leurs utilisateurs. Ils amènent une réflexion artistique ou sociale en faisant
intervenir différentes émotions chez les joueurs. Certains autres jeux ont une portée pé-
dagogique, médicale ou scientifique voir publicitaire. Ces jeux sont appelés jeux sérieux
(serious game), du terme Serio Ludere issu du mouvement humaniste italien du XVe

siècle qui visait à aborder un sujet sérieux de manière ludique.

Les jeux vidéos font intervenir un grand nombre de métiers. Dans le développement d’un
jeu vidéo peuvent intervenir des développeurs en informatique, des graphistes, des mo-
délisateurs (pour la création des squelettes des objets 3D), des animateurs (pour l’ani-
mation des objets 3D ou 2D), des ingénieurs du son, des concepteurs de niveaux, des
concepteurs de règles du jeu, des scénaristes, etc. Parfois, des métiers qui n’ont aucun
lien avec le jeu vidéo sont mis à contribution. Par exemple, lors du développement des
jeu Battlefield 1 et Call of Duty : World War II, des historiens ont travaillé sur l’aspect
historique des jeux.

Comme dit précédemment les serious games sont utilisés dans de nombreux domaines
de recherche où ils sont utilisés comme un support de travail [85]. Certains de ces travaux
visent à aider les patients atteints de troubles autistiques 2 [14, 43]) ou encore visent à
développer des outils pour l’apprentissage [47, 15].

Maintenant que nous avons défini ce qu’est un jeu vidéo et abordé tout ce qui gravite
autour de ce domaine, nous allons expliquer ce qui compose un jeu vidéo que ce soit
pour la gestion et l’affichage des informations ou pour le fonctionnement du monde qu’il
émule.

2.1.2/ LES MOTEURS PHYSIQUES

Depuis des dizaines d’années, des outils permettant la gestion de la physique dans les
jeux vidéo ont été développés. Il s’agit des moteurs physiques [19, 65]. Ces moteurs
permettent de calculer des effets physiques : gravité, forces de frottements, jointures,
etc. Presque chaque jeu vidéo aujourd’hui utilise un moteur physique, du basique Angry
Birds au plus évolué Battlefield. Les moteurs ont sans cesse évolué pour améliorer leur
fonctionnement et assurer aujourd’hui de façon efficace le réalisme des effets et l’optimi-
sation des calculs (notamment en réalisant leur calcul directement sur GPU).

Le moteur physique a un fonctionnement simple : on crée un monde que l’on paramètre
avec ses différentes caractéristiques (gravité, densité de l’air, dimensions). Ensuite, on
crée des entités physiques que l’on paramètre (masse, friction, jointure, etc) et que l’on
ajoute au monde. Il sera alors possible d’appliquer des forces aux entités pour qu’à
chaque boucle, le moteur physique calcule le nouvel état de chaque entité.

L’utilisation d’un moteur physique dans un jeu vidéo est une nécessité pour des raisons
économiques (pas de besoin de réécrire du code) et pour des raisons de performances
(les moteurs physiques sont de plus en plus évolués). Ainsi, il est nécessaire que l’outil
que nous voulons développer puisse utiliser la puissance des moteurs physiques. Nous
allons maintenant aborder un nouvel outil du jeu vidéo : les moteurs de jeux vidéo.

2. Selon la classification internationale des maladies de l’OMS (CIM 10), l’autisme est un trouble enva-
hissant du développement qui affecte les fonctions cérébrales. Il n’est plus considéré comme une affection
psychologique ni comme une maladie psychiatrique.

10 CHAPITRE 2. ÉTAT DE L’ART

FIGURE 2.1 – Diagramme représentant les modules les plus importants de Shine Engine

2.1.3/ LES MOTEURS DE JEUX VIDÉO

Les moteurs physiques permettent l’intégration rapide et efficace des principes de la
physique dans les jeux vidéo. Il est un autre outil qui est devenu indispensable au déve-
loppement d’un jeu vidéo : le moteur de jeu. Là où le moteur physique permet de gérer
tout ce qui a trait à la physique des corps, le moteur de jeu va gérer tout ou partie du
fonctionnement d’un jeu.

Les moteurs de jeux vidéo permettent de gérer l’affichage des entités, l’activation des
sons, les calculs de luminosité, les entrées utilisateurs, mais aussi d’interfacer différentes
API externes (réseaux sociaux, discussions, store pour achat complémentaire, connexion
aux serveurs de jeu, etc). La figure 2.1 montrent les différents modules composant le
moteur Shine Engine. Bien qu’utilisant pour exemple Shine Engine, ces modules sont
aussi présents dans d’autres moteurs de jeux vidéo.

Un des avantages majeurs de l’utilisation des moteurs de jeux vidéo est la diminution des
coûts de développement. Il existe un grand nombre de moteurs de jeux vidéo possédant,
pour une grande majorité, un éditeur graphique. On peut citer parmi les plus connus
Unreal Engine, Unity, Game Maker ou Rpg maker. Chacun permet le développement de
jeux vidéo plus ou moins complexes de manière plus ou moins fermée.

Rpg Maker est spécialisé dans le développement de jeux de type Rpg (Role Playing
Game ou Jeu de rôle). Game Maker est lui spécialisé dans le développement de jeu 2D.
Ces deux éditeurs sont très simples d’utilisation est permettent le développement de jeux
vidéo sans avoir recours à l’utilisation de langage de programmation textuel (comme du
C++ ou du Java). Il est cependant possible de développer des parties de jeux à l’aide
de code textuel afin de créer des fonctionnalités non prises en compte par l’un de ces
éditeurs.

Unreal Engine et Unity sont des moteurs possédant des capacités et des outils plus
complets que Rpg Maker ou Game Maker. Les possibilités de développement sont plus
grandes avec ces deux moteurs de jeux, mais sont aussi plus compliquées à prendre en
main. Ils proposent cependant un système de programmation graphique permettant de
créer des jeux sans avoir recours à un langage de programmation textuelle.

2.1. LES JEUX VIDÉO 11

L’entreprise dans laquelle cette thèse a été développée possède un moteur de jeux vidéo
appelé Shine Engine 3 développé par l’entreprise Shine Research 4. Ce moteur multi-
plateformes est capable de générer un jeu compatible pour différentes plateformes à
partir d’un seul code source. Shine Engine gère l’intégration de moteur physique par le
biais de l’utilisation de plugins. La figure 2.1 montre les différents modules composant
Shine Engine.

On constate dans cette figure 2.1 qu’il y a 3 groupes de modules :

— Shine Engine qui contient toutes les bibliothèques multi-plateformes du moteur.
Tous ces modules sont multi-plateformes.

— ShStd, ShMaths et ShFileSystem redéfinissent des méthodes des biblio-
thèques standard, maths et système de fichiers pour les différentes plate-
formes ;

— ShInput gère les entrées utilisateurs en utilisant différents drivers en fonction
de la plateforme et des périphériques utilisés ;

— ShSoundDriver et ShDisplayDriver permettent la communication avec les pé-
riphériques de sortie pour le son et l’affichage ;

— ShDisplay gère le rendu des objets dans les scènes 3D ; ShGUI gère le rendu
de l’interface utilisateur.

— ShSDK est l’API permettant d’accéder aux méthodes présentes dans Shine En-
gine ;

— Les Tools sont tous les outils permettant de développer du contenu dans Shine
Engine :

— ShAssetCompiler permet la compilation des ressources (textures, objet 3D,
animation, fonts, ...) dans un format compatible avec Shine Engine ;

— L’éditeur permet la création de différents contenus pour Shine Engine : ni-
veaux 3D/2D, méta-animation, système de particules, interface utilisateur, etc.
Et permet le paramétrage de nombreux éléments tels que les entrées utilisa-
teurs (utilisées par ShInput), les ressources (sons, images, shaders, etc) ou
les trophées 5 que les joueurs peuvent débloquer ;

— ShPackager permet la création d’un package prêt à l’emploi pour être envoyé
sur les différentes boutiques de ventes de jeux des plateformes cibles (Steam
sur PC, Google Play sur Androïd, Ps Store sur Playstation, etc).

C’est au sein de cet éditeur que SAMP est développé. Il est entièrement développé en
tant que plugin pour être intégré dans celui-ci.

Les moteurs de jeux vidéo sont tous différents, cependant, ils ont tous le même fonction-
nement pour ce qui est de la boucle de jeu.

La boucle de jeu est un terme désignant le cheminement des instructions exécuté entre
deux affichages d’un jeu vidéo. La boucle de jeu peut-être créée de différentes manières
qui ont été classifiées par Luis Valente, Aura Conci et Bruno FeijòI [83]. Shine Engine
utilise un de ces pattern : le pattern Thread Unique Model Non Couplé. La figure 2.2
expose le fonctionnement de ce pattern. On constate que dans ce pattern la boucle de

3. http ://www.shine-engine.com/
4. http ://www.shine-research.com/
5. Les trophées sont acquis lorsque les joueurs réalisent certaines actions dans les jeux. Ils permettent

aux joueurs de comparer leurs progressions avec leurs amis.

12 CHAPITRE 2. ÉTAT DE L’ART

jeu débute par le calcul du delta time correspondant au temps écoulé depuis le début de
la boucle précédente. Cette valeur permet de synchroniser sur le temps certains calculs
même si les boucles de jeu ont des temps d’exécution différents. Ensuite, le pattern
possède une phase de récupération des entrées utilisateur puis une phase de mise à
jour du moteur (par exemple la synchronisation de la position des objets dans le moteur
par rapport aux entités dans le moteur physique). Dans Shine Engine, ces deux phases
sont regroupées dans une phase plus complexe appelée PreUpdate.

Dans le pattern vient ensuite une phase de rendu. C’est durant cette phase que sont
réalisés les calculs de lumières, d’ombrages et de réflexions.

La différence entre Shine Engine et ce pattern est que dans Shine Engine, après le rendu,
vient une phase de PostUpdate dans laquelle sont réalisés certains calculs comme la
mise à jour du moteur physique ou la validation des trophées.

FIGURE 2.2 – Fonctionnement d’une boucle de jeu.

Nous avons défini ce que sont les jeux vidéo et les principaux outils utilisés lors de leurs
développements. Nous abordons dans la suite de cette section la définition des SMA et
des éléments les composants.

2.2/ LES AGENTS ET LES SYSTÈMES MULTI-AGENTS

Le paradigme multi-agents est utilisé dans divers domaines de la science, de l’indus-
trie et du divertissement. Ce paradigme peut-être utilisé de différentes manières afin de
répondre à des besoins divers. Il est possible d’utiliser des SMA afin de simuler des en-
vironnements en ayant au préalable défini les règles qui régissent cet environnement.

Il est possible d’exécuter des simulations afin d’étudier l’évolution d’une population, l’éva-
cuation d’un bâtiment, la propagation d’un incendie, etc. Il est aussi possible d’utiliser le
paradigme multi-agents afin de gérer le comportement de machines dans un environne-
ment réel où chaque robot et chaque capteur sera un agent.

Dans le divertissement, il est possible de modéliser des scènes contenant une multitude
d’agents que ce soit pour des films ou dans des jeux vidéos.

Nos objectifs sont d’utiliser la puissance des systèmes multi-agents au sein des jeux vi-
déo afin de pouvoir utiliser la puissance des algorithmes développés depuis une trentaine
d’années dans ce domaine.

2.2. LES AGENTS ET LES SYSTÈMES MULTI-AGENTS 13

Afin de répondre au mieux à nos objectifs, nous avons cherché quels pourraient être les
meilleurs choix à mettre en place dans le développement de SMA dans le domaine des
jeux vidéo. Cette section contient les résultats de nos recherches. Nous commençons en
donnant différentes définitions des agents, nous continuons en décrivant différents pro-
tocoles de communication entre les agents. Nous continuons en décrivant les différents
rôles que peut prendre un environnement et nous terminons par la définition des SMA.

2.2.1/ LES AGENTS

Il existe un grand nombre de définitions pour un agent. Elles ont beaucoup de similitudes,
mais diffèrent cependant selon le domaine dans lequel l’agent est utilisé : la robotique,
l’intelligence artificielle, les études biologiques ou sociologiques. En 1971, Richard Fikes
et Nils Nilsson [34] décrivent un système de résolution de problème basé sur ce qu’ils
appellent des opérateurs. Dans leurs perspectives d’avenir, ils imaginent des systèmes
où plusieurs opérateurs travaillent de concert. Durant leur discussion, ils imaginent aussi
qu’un opérateur puisse être capable d’apprendre en fonction des tâches qu’il a déjà exé-
cutées par le passé.

Stuart Russell et Peter Norvig [69], en 1995 (soit 25 ans plus tard), donnent cette défini-
tion de l’agent : "Un agent est ce qui peut être vu comme percevant son environnement
à l’aide de senseurs et agissant sur lui à l’aide d’effecteurs, en toute autonomie". Cette
même année, Jacques Ferber dans [32] a donné une des premières définitions d’un agent
par induction en fonction de ces aptitudes :

"On appelle agent une entité physique ou virtuelle :

— qui est capable d’agir dans un environnement ;

— qui peut communiquer directement avec d’autres agents ;

— qui est mue par un ensemble de tendances (sous la forme d’objectifs individuels ou
d’une fonction de satisfaction, voire de survie, qu’elle cherche à optimiser) :

— qui possède des ressources propres ;

— qui est capable de percevoir (mais de manière limitée) son environnement ;

— qui ne dispose que d’une représentation partielle de cet environnement (et éven-
tuellement aucune) ;

— qui possède des compétences et offre des services ;

— qui peut éventuellement se reproduire ;

— dont le comportement tend à satisfaire ses objectifs, en tenant compte des res-
sources et des compétences dont elle dispose, et en fonction de sa perception, de
ses représentations et des communications qu’elle reçoit".

Les définitions que Jacques Ferber donne sont, pour nous, les plus abouties. Sa définition
ne prend pas en compte que l’agent et ce qu’il peut faire, mais aussi l’environnement
dans lequel il évolue et son lien avec cet environnement ou encore la possibilité pour les
agents d’avoir des compétences et des objectifs. La représentation partielle qu’un agent
a de son environnement permet de s’approcher d’un comportement anthropomorphique
du fait que, comme un humain, un agent possède une connaissance partielle de son
environnement. Il aborde aussi le concept des compétences des agents, concept qui se
révèle intéressant pour le domaine dans lequel nos recherches se basent. Dans les jeux

14 CHAPITRE 2. ÉTAT DE L’ART

vidéos, l’apprentissage de capacités (savoir-faire, connaissances, compétences, ...) est
souvent une partie importante de la jouabilité 6.

Mais bien que ces définitions soient les plus abouties, il est apparu au fil des années
de recherche dans le domaine multi-agents deux visions différentes des agents. Rodney
Brooks [21] distingue principalement deux types d’agents : les agents cognitifs issus de
l’IA symbolique, et les agents réactifs représentés par la vie artificielle et l’intelligence
"sans représentation". Cette distinction n’est plus si nette, les agents actuellement déve-
loppés sont souvent entre ces deux bornes extrêmes. Nous plaçons ainsi le curseur en
fonction des besoins du système. Nous constatons que, souvent, les systèmes contenant
de très nombreux agents privilégient des entités assez basiques dans leur raisonnement.

Les agents cognitifs sont capables de prendre des décisions en fonction de leurs connais-
sances (environnement, échange avec d’autres agents, expérience).Les agents cognitifs
possèdent des besoins, des envies, des croyances ou une éthique [88, 76]. Les agents
cognitifs peuvent être autonomes, sont capables de se coordonner pour résoudre des
conflits ou des problèmes les faisant se rapprocher d’individus vivant en société.

Les agents réactifs sont des agents ayant un comportement de réaction à des stimuli.
Leur comportement de réaction a été inspiré par le comportement de certains insectes
comme les fourmis [27] ou les Episyrphus balteatus [7]. Un agent réactif seul n’a pas
un grand intérêt, mais un SMA contenant une multitude d’agents réactifs est capable
de simuler un comportement de groupe intelligent. Cette approche considère qu’un sys-
tème composé d’agents non-intelligents peut avoir un comportement intelligent. C’est
par exemple le cas d’une fourmilière. Si l’on prend chaque entité de la fourmilière (une
fourmi), indépendamment des autres, son comportement est extrêmement basique. Mais
si l’on se réfère au comportement de la fourmilière, on peut remarquer qu’il s’agit d’une
société organisée, hiérarchisée et fonctionnelle. D’après Van Dyke Parunak [64], il est
impossible de prévoir de propriétés émergentes avec des systèmes réactifs du fait qu’ils
n’ont pas de but ni de planification.

On constate que la séparation entre réactif et cognitif s’amenuise. Au départ, cette dif-
férence provenait en partie de la difficulté d’avoir un grand nombre d’agents avec des
comportements complexes sur des ordinateurs avec une puissance de calcul limitée. Au-
jourd’hui, les machines sur lesquelles les SMA sont exécutés sont de plus en plus puis-
santes et on constate l’émergence de SMA avec des agents que l’on pourrait qualifier
d’hybrides. Leurs comportements s’apparentent toujours à celui d’agents réactifs mais ils
peuvent posséder une mémoire qui peut impacter leur réaction, ils sont capable de se
coordonner et peuvent posséder des croyances.

Dans le but d’améliorer la modularité des SMA et la réutilisabilité des éléments pro-
duits dans ces SMA, Jean-Christophe Routier, Philippe Mathieu et Yann Secq proposent
dans [68] d’offrir aux agents la capacité d’acquérir des compétences qui leur seraient don-
nées par d’autres agents. Ils partent du constat qu’un agent est une entité capable d’agir
et que partant de ce postulat, il doit avoir les compétences pour réaliser cette action.
Ils définissent une compétence comme un ensemble de capacités et décrivent un agent
"atomique" comme un agent ne possédant que deux compétences de base : une pour
interagir et une pour apprendre de nouvelles compétences. Ils expliquent qu’un agent
possédant ces deux compétences sera capable d’évoluer, en acquérant de nouvelles
compétences, afin d’améliorer ses capacités et de pouvoir changer son comportement

6. La jouabilité est le ressenti que le joueur a en jouant à un jeu vidéo. Est ce que les contrôles sont
ergonomiques. Les règles du jeu sont elles cohérentes et procurent elles un plaisir à joueur.

2.2. LES AGENTS ET LES SYSTÈMES MULTI-AGENTS 15

voire même de changer le rôle qu’il a dans le système. Dans le domaine du jeu vidéo,
l’utilisation de compétences pouvant être acquises est une approche très intéressante.
Beaucoup de jeux se basent sur une évolution du personnage incarné par le joueur par
l’acquisition de compétences le rendant plus fort, capable de nouvelles actions lui per-
mettant d’avancer dans sa quête.

Nous visons le développement d’un système utilisant des agents hybrides. Ces agents
auront un comportement de base proche d’un comportement d’agent réactif car ils ne fe-
ront que réagir à des interactions des autres agents. Cependant, ils seront aussi capables
de réflexion, ils pourront posséder une mémoire et ils pourront aussi acquérir des compé-
tences ce qui les fera se rapprocher des agents cognitifs. Notre système devra être assez
permissif pour autoriser l’ajout de base de connaissance, de protocole de négociation ou
de décision dans les comportements modélisés [70, 89].

2.2.2/ LES SYSTÈMES MULTI-AGENTS

L’agent prend son vrai sens lorsqu’il est immergé dans un système qui en regroupe
d’autres. On parle alors de système multi-agents. Dans [32], Jacques Ferber propose
une définition : "On appelle système multi-agents (ou SMA), un système composé des
éléments suivants :

— un environnement E, c’est-à-dire un espace disposant ou non d’une métrique,

— un ensemble d’objets O. Ces objets sont situés, c’est-à-dire que, pour tout objet, il
est possible, à un moment donné, d’associer une position dans E. Ces objets sont
passifs, c’est-à-dire qu’ils peuvent être perçus, créés, détruits et modifiés par les
agents.

— un ensemble A d’agents, qui sont des objets particuliers (A ⊆ O), lesquels repré-
sentent les entités actives du système,

— un ensemble de relations R qui unissent des objets (et donc des agents) entre eux,

— un ensemble d’opérations Op permettant aux agents de A de percevoir, produire,
consommer, transformer et manipuler des objets de O,

— des opérateurs chargés de représenter l’application de ces opérations et la réaction
du monde à cette tentative de modification, que l’on appellera les lois de l’univers."

On peut retenir de toutes ces définitions que les agents peuvent être perçus comme des
êtres vivants autonomes dans la recherche de satisfaction de leur but, capables d’agir
dans leur environnement, capables de communiquer, et qu’ils ont une représentation
partielle de l’environnement dans lequel ils évoluent.

On peut aussi voir le SMA comme un ensemble organisé d’agents qui évoluent dans un
même environnement et capables d’interagir entre eux. Le développement d’un système
multi-agents se fait en intégrant donc ces quatre données identifiées dans l’approche
voyelle AEIO définie : l’Agent, l’Environnement, les Interactions, et l’Organisation.

Il est tout de même à noter qu’il existe deux possibilités de développement de SMA : les
SMA en temps discret et les SMA en temps réel.

16 CHAPITRE 2. ÉTAT DE L’ART

2.2.3/ LA COMMUNICATION

Nous avons vu que la communication est un point central des SMA. Les agents sont
capables de communiquer entre eux, mais aussi avec leur environnement. De nombreux
travaux de recherche visent à améliorer le fonctionnement des communications dans les
SMA.

Dans ses travaux, Yves Demazeau décrit l’approche MAGMA [26] permettant d’utiliser
les SMA pour la résolution de problèmes complexes. Il décrit chacune des voyelles de
l’approche AEIO en s’attardant sur les interactions. Une interaction entre deux agents est
un échange d’informations et peut être considérée comme une communication. Il explique
qu’au moment de la publication de ses travaux, les protocoles d’interactions entre agents
étaient chacun développés pour une situation particulière. Il cite, entre autres :

• Un protocole de comportements hiérarchisés [30] où le comportement des agents
est défini par 6 aspects (qui ? fait quoi? quand? où? comment? pourquoi?) et où
chaque niveau de la hiérarchie affine un aspect qui était général dans le rang pré-
cédent de la hiérarchie. Par exemple, un des aspects concerne la date à laquelle
le comportement doit être exécuté (quand?). Au rang N de la hiérarchie, cet as-
pect peut avoir la valeur "dans la semaine" et au rang N + 1, on peut retrouver
deux valeurs différentes "aujourd’hui" et "demain ». Lors des interactions, chaque
agent envoie le niveau le plus haut de sa hiérarchie. Si l’agent qui reçoit les informa-
tions détecte un conflit, il peut demander une version plus affinée des informations.
Ce protocole permet des résolutions de problèmes entre agents, mais possède
quelques limitations. Par exemple, dans sa forme première, il permet à un agent de
fournir une information ou un service à un autre agent, mais ne permet pas à deux
agents de réaliser une tâche ensemble si cette tâche nécessite une coordination
entre eux.

• The Contract Net Protocol (CNP) [78] [71] [72] qui propose un protocole d’interac-
tions par contrat. Dans ce protocole, chaque agent est capable d’exécuter certaines
tâches et lorsqu’un agent a besoin d’exécuter une tâche qu’il ne maîtrise pas, il de-
mande aux agents présents dans son réseau s’ils acceptent de l’aider. Un contrat
est alors mis en place entre les deux agents. Ce système permet, contrairement au
protocole de comportements hiérarchisés, aux agents de se coordonner. Smith ex-
plique même qu’il est capable de gérer une hiérarchie dans les tâches pour rendre
l’exécution d’une tâche prioritaire par rapport à une autre. Cependant, un agent
exécute une tâche jusqu’à ce qu’il ait fini, même si une requête plus prioritaire lui
est envoyée et un agent n’est pas capable de refuser une tâche qui lui a été assi-
gnée. Certaines améliorations à Contract Net Protocol ont cherché à corriger ces
défauts (ex.)[71]).

Afin de pallier au problème décrit par Yves Demazeau, certains travaux de recherche ont
mis au point des protocoles de communication génériques. Cette généricité vise à per-
mettre à des agents, ne faisant pas partie du même système, de communiquer. Les re-
cherches ont mené au développement d’ACL (Agent Communication Language). Un ACL
est un langage permettant de standardiser les échanges d’informations entre agents.

Lors d’un échange entre agents, il est important de séparer le protocole utilisé lors
de l’échange (http, tcp, ...), du protocole de communication (KQML, FIPA ACL, ...), du
contenu (propre à chaque système, mais pouvant nécessiter un vocabulaire commun ou
ontologie). Deux des ACL les plus connus sont KQML et FIPA ACL :

2.2. LES AGENTS ET LES SYSTÈMES MULTI-AGENTS 17

— KQML (Knowledge Query and Manipulation Language) [59] est un ACL permettant
à des agents de communiquer entre eux en se basant sur des primitives (appelées
performatifs 7) qui permettent aux agents de communiquer leurs requêtes à d’autres
agents.
KQML se divise en trois calques : le calque de contenu permet, comme son nom
l’indique de contenir le contenu du message à transmettre. Le calque de commu-
nication est le calque permettant la transmission du message. Le paramétrage de
ce calque contient, entre autres, un identifiant unique pour le message ou l’identité
de l’expéditeur. Et enfin le calque de message qui est le cœur de KQML. Ce calque
est utilisé pour encoder le message dans le format KQML pour qu’il soit utilisable
par d’autres agents utilisant le langage KQML.
Ce langage est le résultat de la coopération de quatre groupes de scientifiques :
l’Advanced Research Projects Agency(ARPA), l’Air Force Office of Scientic Re-
search (ASOFR), la Corporation for National Research Initiative (NRI) et la National
Science Foundation (NSF). Cette association a mené à la mise au point de l’ap-
proche KSE (Knowledge Sharing Effort) visant à permettre l’échange de connais-
sances entre différents systèmes informatiques [60]. KQML permet de formater les
données afin qu’elles puissent être "lues" par les agents fonctionnant avec KQML.
KQML étant un ACL, les informations transmises à un agent utilisant KQML peuvent
être bien "lues", mais ne seront pas nécessairement comprises. Cette compréhen-
sion du message dépendra de la base de connaissances [77] de l’agent. Dans sa
première version, KQML ne propose pas de sémantique, ce qui rend ce langage
ambigu. Des évolutions ont été proposées pour améliorer KQML. Nous pouvons ci-
ter les travaux de Labrou [53] [36] [54] qui ont, entre autres, porté à 35 le nombre de
performatifs et ajouté une description sémantique à ceux-ci pour faciliter la conver-
sion entre les connaissances des agents et le contenu des messages. Mais comme
le rappel Mahot [56], ces modifications présupposent "que les agents embarquent
une base de connaissances, et la présentation des préconditions sous-entend éga-
lement d’avoir des connaissances sur l’état interne de ses interlocuteurs, ce qui
peut rapidement devenir une masse importante d’informations."
Et dans notre objectif d’optimisation, le fait d’avoir plus d’informations à traiter peut
rapidement surcharger le système. Mais d’autres ACL ont été créées pour pallier
les problèmes de KQML.

— FIPA (Foundation for Intelligent Physical Agent) est une fondation qui a pour but de
définir des spécifications pour standardiser les interfaces agents [37] [62]. Ce stan-
dard définit, entre autres, des règles pour les interactions entre agents. La première
version de FIPA (FIPA97) a défini trois axes de standardisation pour les agents (les
communications, le management et l’intégration logiciel) complétés avec les inter-
actions dans FIPA98. Les deux axes de standardisation qui nous intéressent le plus
sont ceux de la communication et des interactions. Pour la communication, FIPA
a mis au point un ACL, FIPA ACL, se basant sur le formalisme et la grande ex-
pressivité d’ARCOL 8 et la facilité d’utilisation de KQML. FIPA ACL est divisé en 5
niveaux :

• niveau Protocol permettant de définir les règles sociales entre les agents. Un
acheteur demandant une information à un vendeur ;

7. Terme défini par Austin [8] désignant un verbe qui exécute une action lorsqu’il est énoncé. Dans la
phrase : "Je vous déclare mari et femme", déclare est un performatif.

8. ACL développé par David Sadek en 1991 au sein de l’entreprise France Télécom [20]

18 CHAPITRE 2. ÉTAT DE L’ART

FIGURE 2.3 – Diagramme de description de FIPA-Request Protocol [4].

• niveau Acte de communication définissant la structure de la communication.
Par exemple, une requête attendant une réponse ;

• niveau Message contenant les méta-informations des messages (Émetteur,
récepteur, contexte, etc) ;

• niveau Langage du contenu définissant la grammaire et la sémantique as-
sociées pour permettre la lecture du message. Un exemple pourrait être PRO-
LOG;

• Niveau Ontologie permettant de définir le vocabulaire et la signification des
termes utilisés dans le message.

Comme KQML, FIPA ACL fonctionne sur le principe de performatifs. Dans sa pre-
mière version, FIPA ACL proposait 4 performatifs desquels les actes de langages
étaient exprimés par composition. En 2000, FIPA ACL contenait 22 performatifs.
Les messages de FIPA ACL contiennent les mêmes champs que les messages
de KQML en plus de quelques nouveaux champs permettant, par exemple, de re-
placer un message dans un contexte (lui donner un lien avec d’autres messages
précédemment envoyés).
FIPA a mis au point différents protocoles permettant de définir le comportement
de certaines interactions afin que les agents puissent anticiper les réponses que
leurs interlocuteurs pourront leur fournir. Par exemple, le FIPA-Request protocol est
un protocole permettant de définir le déroulement d’une requête entre un agent
initiateur et la réponse possible de l’agent participant (voir figure 2.3).

Que ce soit KQML ou FIPA, ces ACL permettent de définir un standard dans les échanges
entre agents et sont réputés pour offrir une grande expressivité tout en n’alourdissant pas
la taille des messages transmis entre les agents. Dans [59], Mckay et McEntire expliquent
avoir compressé les messages pour obtenir un gain dans leur taille.

2.2. LES AGENTS ET LES SYSTÈMES MULTI-AGENTS 19

Cependant, la seule utilisation des ACL ne permet pas le fonctionnement complet d’in-
teractions entre agents (qu’ils fassent partie d’un même système ou non). Nous l’avons
déjà évoqué précédemment, il est nécessaire d’avoir un protocole qui se charge de l’en-
voi des messages, mais il est aussi nécessaire que les agents maîtrisent le vocabulaire
avec lequel le contenu du message est créé afin de pouvoir comprendre le sens de ce
message.

KQML et FIPA permettent aux agents de maîtriser chacun des vocabulaires en fonc-
tion des domaines d’application dans lesquels ils sont utilisés. Cela permet aux agents
maîtrisant les mêmes vocabulaires de pouvoir communiquer et de se comprendre. Il est
possible aussi que certains termes d’un vocabulaire existent dans un autre vocabulaire.
Si l’on exclut les risques que cela inclut en termes de doubles sens d’un même terme,
cela permet aux agents de pouvoir communiquer et se comprendre sans posséder le
même vocabulaire. Par exemple, lorsqu’un agent astrologue veut connaître la position
d’une planète il fait sa demande à un agent astronome. Ces deux agents n’ont pas le
même domaine d’application, mais le terme "planète" est logiquement présent dans leurs
vocabulaires respectifs.

Cependant, d’après Steels [79], ce fonctionnement utilisant des ontologies, des langages
et des protocoles de communication définis à l’avance est mauvaise. Il cite quatre raisons
à cela :

1. Il est difficile de déterminer tous les domaines d’application des applications multi-
agents et ainsi difficile d’en déduire tous les vocabulaires, langages ou protocoles
de communication.

2. Les systèmes multi-agents sont des systèmes ouverts ayant sans cesse de nou-
veaux besoins. Et il est impossible d’inclure ces nouveaux besoins dans des sys-
tèmes existants si tout est défini à l’avance.

3. Les systèmes multi-agents peuvent être distribués, sans contrôle central. Com-
ment transmettre les mises à niveau des protocoles, langages ou vocabulaires aux
agents?

4. Dans le cas d’agents robotisés, l’ontologie est dépendante des capacités sensori-
motrice de l’agent. Si l’agent robotisé évolue, son ontologie doit évoluer.

Mais toutes ces raisons n’ont pas réellement d’importance dans le domaine dans lequel
nous travaillons. Les jeux vidéo ne sont pas ouverts dans le sens où les utilisateurs ne
vont pas ajouter de nouveaux comportements aux agents ou intégrer de nouveaux agents
avec un vocabulaire inconnu des autres agents.

Toujours dans ses travaux, Steels propose que les agents puissent apprendre à commu-
niquer au contact des autres agents. Ainsi, un nouvel agent plus évolué (ayant subi une
mise à niveau de son vocabulaire, de son langage ou de son protocole de communica-
tion) sera à même de faire évoluer les agents avec lesquels il communique. Ces agents
capables d’apprendre et d’évoluer peuvent être considérés comme des agents cognitifs.

2.2.4/ L’ENVIRONNEMENT

Nous l’avons vu, Jacques Ferber définit l’agent comme ayant une connaissance partielle
de son environnement et pouvant interagir avec lui. Mais dans le domaine des SMA,
l’environnement est une notion très vague. Il peut avoir de multiples utilités et prendre de
multiples formes.

20 CHAPITRE 2. ÉTAT DE L’ART

Jacques Ferber [33] explique que l’environnement peut être représenté comme un sys-
tème unique (centralisé) ou comme un système distribué. Dans nos recherches, nous
utilisons des environnements centralisés. En effet, dans le domaine du jeux vidéo, même
dans le cas de jeux multi-joueurs, il est préférable d’utiliser un serveur central pour réali-
ser les calculs de l’environnement afin d’éviter que l’un ou l’autre des joueurs ne puissent
tricher.

Très souvent, l’environnement est utilisé comme un vecteur de communication en étant
utilisé de plusieurs manières différentes. Nous dressons une liste non-exhaustive de ces
possibilités :

— La méthode du tableau blanc consiste à laisser un message qui pourra être lu par
tous les agents. Les messages laissés peuvent nécessiter certaines compétences
pour être lus ou peuvent être limités à une zone géographique. Ces messages sont
similaires aux phéromones laissés par les insectes dans leur environnement pour
communiquer avec leurs semblables [27].

— La méthode du broadcast est le fait qu’un agent communique directement avec tous
les autres agents présents dans un environnement sans que ces derniers n’aient
à lire le message. Cette méthode est différente de la méthode du tableau blanc où
les agents doivent interroger l’environnement pour lire les messages qu’il possède.
Tout comme la méthode du tableau blanc, il est possible de filtrer les agents pouvant
lire ces messages en imposant certaines compétences par exemple.

— La méthode pair-à-pair consiste en la mise en contact de deux agents afin qu’ils
échangent entre eux sans passer par l’environnement.

Chacune de ces méthodes apporte un intérêt dans le domaine du jeu vidéo. La méthode
du tableau blanc permet aux agents de voir les changements de l’environnement causés
par la présence d’autres agents (ou de joueurs), des traces de pas au sol par exemple.
La méthode broadcast permet, quant à elle, de simuler des communications de masse
comme cela pourrait être le cas dans une communication par radio ou télépathie ou
bien dans une discussion entre plusieurs agents. La communication pair-à-pair peut être
utilisée afin de permettre aux agents de se notifier des interactions ne faisant pas partie
des actes de langages (Par exemple pour notifier un contact entre deux agents).

Un environnement simple ne permet pas aux agents de communiquer en broadcast ou
en pair à pair. Il manque en effet un moyen pour les agents de se mettre en relation.
KQML et FIPA mettent en place des agents dits facilitateurs. Il s’agit d’agents particuliers
permettant aux autres agents d’entrer en contact entre eux.

Les agents facilitateurs de KQML agissent comme des routeurs centralisant les informa-
tions sur les agents présents dans le système. Cette centralisation pose un problème de
disponibilité du système du fait que si le facilitateur ne fonctionne plus, les agents seront
incapables de se contacter.

FIPA définit deux types d’agents facilitateurs :

1. Agent Management System (AMS) : permet aux agents de récupérer une liste
des agents avec qui ils peuvent communiquer. Cet agent agit un peu comme le
service des pages blanches d’un annuaire. Il est aussi en charge de la création et
la destruction des agents du système qu’il manage.

2. Directory Facilitator (DF) : permet aux agents de récupérer une liste des services
que chacun des autres agents met à disposition. Cet agent fonctionne comme le
service pages jaunes d’un annuaire.

2.2. LES AGENTS ET LES SYSTÈMES MULTI-AGENTS 21

Un des objectifs de l’AMS de FIPA est d’améliorer la stabilité du système. Lorsque les
travaux sur les facilitateurs ont été menés, c’était pour pallier le fait que les systèmes de
découvertes de services (qu’ils soient agents facilitateurs ou non) fonctionnaient princi-
palement de manière centralisée.

Chaque agent qui propose des services va envoyer la liste de ceux-ci à l’agent DF, au
moment où il entre dans le système. Lorsqu’un agent A a besoin d’un service, il demande
à l’agent DF de le mettre en liaison avec un agent pouvant exécuter ce service.

Nous l’avons vu précédemment, les moteurs physiques permettent, entre autres, de
connaître le positionnement de chaque agent. Dans les SMA, l’environnement peut avoir
ce rôle de renseigner les agents sur le positionnement des autres agents. Le position-
nement des agents et la capacité de chaque agent de pouvoir connaître la position des
autres agents ont une grande importance dans les SMA. Ainsi, Philippe Mathieu [57]
propose 4 patterns fondamentaux pour le positionnement des agents :

— Le premier pattern permet de lister le voisinage d’un agent en parcourant tous les
agents du système pour chercher ceux qui lui sont proches.

— Le deuxième pattern divise l’environnement en grille (environnement discret) et
liste les cellules proches de celle où se trouve l’agent pour déterminer son voi-
sinage. Dans ce pattern, les agents d’une même cellule sont considérés comme
des voisins proches et les agents présents dans deux cellules considérées comme
proches sont eux-mêmes considérés comme proches les uns des autres. Ce
deuxième pattern donne aussi un algorithme pour le déplacement des agents dans
cet environnement.

— Le troisième pattern réalise la même chose que le deuxième pattern, mais en trans-
crivant un environnement en espace continu vers un environnement discret afin de
pouvoir appliquer les règles du deuxième pattern.

— Le quatrième pattern permet aux agents de connaître leur positionnement en fonc-
tion de la proximité social qu’ils ont avec les autres agents.

Dans le but de formaliser les interactions, Yoann Kubera, Philippe Mathieu et Sébas-
tien Picault ont développé Interaction-Oriented Design of Agent simulations (IODA), une
approche orientée interactions visant à formaliser les interactions et permettant de les
définir par le biais d’une matrice. Les interactions de IODA représentent chaque action
pouvant être réalisée par les agents. Chaque interaction définie un nombre d’agents im-
pactés par elle et comment et sous quelles conditions ces agents sont impactés. Pour ce
faire, les interactions possèdent des conditions qui sont la conjonction :

— De pré-conditions permettant de définir sous quelles conditions l’interaction peut
être initiée. Par exemple, dans le cas d’une interaction où l’agent se nourrit, une
pré-condition serait la nourriture n’est pas avariée ;

— De déclencheurs permettant d’indiquer quels événements déclenchent une inter-
action. Toujours dans le cas d’une interaction où l’agent se nourrit, le déclencheur
serait l’agent à faim.

Dans IODA, une interaction décrit aussi les agents sources (ceux qui initient l’interaction)
et les agents cibles (ceux qui la subissent) ainsi que la cardinalité de cette interaction
sous la forme (cardS (I), cardT (I)) avec cardS (I) représentant le nombre d’agents sources
et cardT (I) représentant le nombre d’agents cibles.

Enfin, une interaction dans IODA possède une liste d’actions correspondant à des primi-
tives qui seront exécutées par les agents qui exécutent l’interaction. Les primitives sont

22 CHAPITRE 2. ÉTAT DE L’ART

FIGURE 2.4 – Matrice d’interaction de IODA.

similaires à des méthodes de la programmation orientée objets. Elles permettent de dé-
finir les actions réalisables par les agents.

La modélisation des interactions que les agents peuvent exécuter se fait par le biais
d’une matrice comme celle présente dans la figure 2.4. Dans cette matrice, les agents
sources sont dans la colonne de gauche et les agents cibles dans la ligne supérieure.
A l’intersection d’une ligne et d’une colonne on peut trouver les interaction qu’un agent
source peut exécuter à destination d’un agent cible. La valeur d correspond à la portée
de l’interaction.

IODA permet aussi de définir des perceptions. Dans IODA, chaque agent peut percevoir
les agents dans leur voisinage (sous entendu dans leur halo). Ce concept de halo peut
cependant avoir un inconvénient qui est qu’un agent ne possède qu’une seule manière
de percevoir car il ne possède qu’un seul halo. Il est alors complexe, mais non impossible,
de développer une perception orale et visuelle pour un même agent par exemple.

Dans nos travaux de recherche, nous avons décidé de faire de l’environnement un vecteur
de communication qui a aussi comme rôle celui de facilitateur. Nous nous basons sur
les agents facilitateurs définis par FIPA. Nous modifions cependant l’agent DF pour qu’il
puisse filtrer les réponses qu’il donne aux requêtes des agents. Cela permet de générer
un comportement où un agent propose certains services à une liste réduite d’agent,
en fonction de leurs liens sociaux, leur hiérarchie ou autre. L’environnement aura aussi
pour rôle de faire le lien entre le moteur physique du système et les agents afin que ces
derniers puissent obtenir des renseignements sur le positionnement des autres agents
du système.

2.3/ SYSTÈMES MULTI-AGENTS ET GESTION DU TEMPS

Nous avons décrit précédemment que les SMA peuvent être développés pour fonctionner
en temps réel ou non. Le choix sera souvent dicté par les besoins du système : Y a
nécessité d’observer les résultats du système pendant qu’il s’exécute, ou est-il possible
d’analyser ces résultats lorsque le système aura terminé son exécution?

Les systèmes en temps réel sont nécessaires lorsque le système doit répondre à des
informations provenant de périphériques externes. Il peut s’agir de capteurs dans des
ateliers, des usines ou dans les villes [45] [50] [91]. Dans ces exemples, le système doit
réagir en temps réel afin d’adapter son comportement aux nouvelles données qu’il a reçu
des périphériques externes. La littérature définit aussi un système temps réel comme un
système qui n’est pas seulement caractérisé par ses fonctionnalités (temporelles) mais
aussi et surtout par des contraintes de temps [66] [74]. Plus spécifiquement, il s’agit de
systèmes dans lesquels les tâches exécutées possèdent une deadline.

Dans le domaine qui est le nôtre, lorsque l’utilisateur souhaite réaliser une action, il utilise
un périphérique pour signaler au système l’action qu’il souhaite réaliser. C’est pourquoi

2.3. SYSTÈMES MULTI-AGENTS ET GESTION DU TEMPS 23

les SMA que nous souhaitons développer à l’aide de nos travaux doivent être exécutés en
temps réel. De plus les animations des agents, la physique des projectiles ou les effets
météorologiques ont besoin d’un rendu fluide pour que l’expérience de l’utilisateur soit
optimale.

Dans cette section nous abordons les recherches menées afin de développer des SMA
en temps réel. Nous voyons que l’optimisation de la consommation des ressources n’est
qu’une partie de l’état de l’art des systèmes temps réel et que la fréquence de mise à
jour du système n’est pas forcément garantie.

Nous commençons par donner quelques précisions sur les termes employés dans cette
section. Nous continuons avec l’état de l’art des recherches visant au développement
de SMA en temps réel en abordant les différents axes de recherches envisagés. Nous
concluons enfin sur les questions de gestion du temps dans les SMA.

2.3.1/ PRÉAMBULE

Avant de continuer cette section, nous allons faire un rapide rappel en ce qui concerne
le temps dans les systèmes informatiques. Il est important pour pouvoir bien aborder
la suite de cette section de comprendre la différence entre temps réel, temps discret et
temps continu. Le terme continu que nous utilisons est celui de l’aspect des théories
mathématiques décrit dans [61] par Anne Nicolle.

Dans cette définition du temps continu, il est mis en opposition au temps discret. Un
système à temps discret est un système dont le temps "avance" par pas. Dans certains
systèmes chaque pas représente la même durée (Gama [81] [42] [6], NetLogo [82] [87])
quand, dans d’autres, chaque pas est exécuté lorsque le système en a besoin (synchro-
nisation dans des systèmes distribués) et sa durée peut-être différente des autres pas.
Un système en temps continu est par opposition un système dont l’exécution n’est pas
découpée en pas.

Shine Engine est un système avec un temps discret. Chaque boucle du système repré-
sente un pas, d’une durée pouvant être différente de celle des autres pas. En informa-
tique, il n’existe pas réellement de temps réel. Dans le domaine du jeu vidéo, le terme
temps réel a une autre signification. Il s’agit d’une composante du gameplay. Un jeu en
temps réel est un jeu dans lequel il n’y a pas de temps d’arrêt, le temps dans le jeu se
déroule à vitesse constante, sans interruption. Il est à mettre en opposition aux jeux au
tour par tour dans lesquels les joueurs ont, entre chacune de leurs actions, un temps de
réflexion.

Dans la suite de ce mémoire, le terme temps réel est toutefois assimilé au temps réel
informatique. Malgré le fait que Shine Engine ne soit pas en temps réel, nous estimons
nous rapprocher du temps réel lorsque l’affichage du jeu est fluide. Cette fluidité est
atteinte à 30 images par seconde. La suite de cette section explique plus en détails les
notions de temps dans les SMA.

2.3.2/ SYSTÈMES MULTI-AGENTS EN TEMPS RÉEL

La notion de temps réel est indépendante des notions de temps discret et continu. Elle
permet à des signaux extérieurs au système, comme les informations provenant des

24 CHAPITRE 2. ÉTAT DE L’ART

contrôleurs de jeu (manettes, souris, clavier, écran tactile, ...), d’avoir un impact sur son
fonctionnement.

Cette définition est parfaitement adaptée aux besoins du domaine des jeux vidéo. En
effet, lors de son exécution, un jeu vidéo affiche un certain nombre de frames par se-
conde et, pour que le rendu soit fluide et ne gâche pas l’expérience de l’utilisateur, il est
nécessaire d’en afficher un maximum.

Rappelons qu’entre chaque frame le jeu doit réaliser des calculs afin de faire évoluer les
informations qu’il possède : position de chaque entité, calculs physiques ou de lumières,
etc. Tous ces calculs doivent être réalisés avant l’affichage de l’image suivante, soit dans
un temps maximum de 33ms (pour un rendu de 30 images par seconde). Le système
que nous cherchons à mettre en place doit assurer que tous les agents se mettent à jour
toutes les 33ms maximum, sachant qu’il faut aussi du temps pour les calculs physiques,
de lumières, d’ombrages et pour exécuter les animations et autres sons.

Les recherches concernant le temps réel dans les SMA et que nous avons étudiées
cherchent principalement à optimiser les systèmes afin qu’ils répondent le plus rapide-
ment possible [84, 49].

Des simulateurs comme Gama ou NetLogo ont un fonctionnement en temps réel. Il est,
en effet, possible d’observer les résultats d’une simulation pendant qu’elle est exécutée.
Il est aussi possible de modifier des paramètres de cette simulation pendant qu’elle est
exécutée.

Pour répondre à notre besoin d’assurer que tous les agents se mettent à jour en moins
de 30ms, nous avons cherché du côté des planificateurs de tâches [12, 24]. Un planifi-
cateur est un outil permettant de déterminer l’ordre d’exécution des tâches d’un système
afin d’optimiser le temps d’exécution complet du système. Les planificateurs prennent
en compte les priorités des tâches et peuvent mettre en pause certaines tâches afin d’en
exécuter d’autres plus prioritaires. Ils sont aussi capables de gérer les dépendances entre
les tâches (par exemple, lorsqu’une tâche a besoin du résultat d’une autre tâche).

Enfin, et c’est le point qui nous intéresse le plus, certains planificateurs sont capables de
donner des deadlines aux tâches et de les arrêter si elles prennent plus que le temps qui
leur a été assigné.

Dans les SMA, un planificateur de tâches aura pour rôle de déterminer l’ordre d’exécu-
tion des tâches de chaque agent en fonction des priorités et des deadlines de chacune
des tâches. Les planificateurs de tâches peuvent aussi avoir pour but de déterminer des
deadlines pour les tâches que les agents exécutant devront respecter.

Dans notre système, la deadline devrait être fixée au temps maximum que nous sou-
haitons pour l’exécution de la frame. Si cette deadline n’est pas respectée, les tâches
en cours d’exécution devraient être mise en pause et redémarrées au début de la frame
suivante. Les planificateurs que nous avons étudiés ne permettent pas de tels fonctionne-
ments. De plus, un tel planificateur aurait un coup en temps de calcul et pourrait impacter
le temps de calcul des agents.

Le concept de deadline est aussi utilisé par les systèmes à événements discrets comme
DEVS [90, 35]. Dans DEVS chaque système se trouve dans un état qui fixe son com-
portement. Le système peut recevoir des activations qui le feront changer d’état. Chaque
état dans lequel le système peut se trouver possède une deadline qui, si elle est atteinte,
aura pour conséquence de faire changer d’état le système. Ce principe est intéressant

2.4. MODÉLISATION 25

pour éviter que des systèmes prennent trop de temps sur un état en particulier. Cepen-
dant, dans notre contexte, l’objectif n’est pas de partager le temps de calcul entre tous
les agents mais que tous les agents terminent leur calcul en un temps réduit.

D’autres travaux de recherche ont été menés afin d’approcher une exécution en temps
réel des SMA notamment en travaillant sur l’architecture matérielle des systèmes. Cette
architecture matérielle a une grande importance dans l’efficacité du système. Une archi-
tecture multi-coeur sera plus efficace qu’une architecture mono-coeur (à caractéristiques
identiques) tout comme une mémoire sera plus efficace qu’une autre si ses vitesses de
lecture et d’écriture sont plus élevées que celles d’une autre mémoire. Des recherches
ont aussi été menées afin d’optimiser la consommation de ressource, notamment de res-
sources processeur [75] [9] [10].

Paul Richmond et Daniela Romano dans [67] utilisent des optimisations sur GPU afin
d’utiliser la puissance de calcul des processeurs graphiques. Mais Emmanuel Hermellin,
Fabien Michel et Jacques Ferber [46] explique que cette optimisation est efficace pour des
SMA à base d’agents réactifs et qu’il est nécessaire d’utiliser des système hybrides (avec
calculs sur CPU et GPU) en ce qui concerne des agents plus évolués comme les agents
cognitifs. Ils expliquent qu’il existe des systèmes hybrides permettant les calculs sur CPU
et GPU permettant une plus grande optimisation que ce que proposent les systèmes
100% sur GPU. Cependant, les ressources GPU sont, dans les jeux vidéo, extrêmement
précieuses et il n’est pas envisageable de consommer de la puissance GPU pour d’autres
calculs que ceux de rendu.

Nous avons déjà abordé les communications entre les agents. Du côté des communica-
tions Julian et al. ont développé RT-MESSAGE [49], un modèle basé sur MESSAGE [23].
RT-MESSAGE est développé pour parer l’impossibilité pour MESSAGE de fonctionner
dans des systèmes en temps réel.

2.4/ MODÉLISATION

Les équipes de développement de jeux vidéos sont composées d’acteurs multiples et va-
riés. On y trouve des développeurs en informatique, des game designers, des graphistes,
des animateurs, des level designers, etc. Chaque corps de métier a un rôle dans le dé-
veloppement d’un jeu et utilise des outils qui sont propres à ses besoins. Cependant,
certains de ces acteurs ont parfois besoin de faire du développement de code informa-
tique afin de réaliser leurs travaux. Il s’agit par exemple d’un game designer qui aurait
besoin de définir le comportement d’un personnage d’un jeu ou un level designer qui
aurait besoin de créer un script et l’intégrer dans un niveau du jeu.

Le travail en binôme est alors obligatoire afin que le game designer ou le level designer se
fasse aider par un développeur pour créer ce dont ils ont besoin. Nous avons alors réalisé
des recherches dans le but de développer un système permettant aux non-développeurs
de pouvoir participer à la création de jeux sans avoir recours à un développeur. Que ce
soit dans une équipe dans un studio ou en tant que créateurs indépendants.

Dans cette section, nous nous attardons sur ce qui nous a semblé être la meilleure solu-
tion pour répondre au besoin de simplicité : la création par modélisation de graphes de
nœuds. Nous voyons quels logiciels utilisent déjà cette solution, quelles pourraient être
les limites de ces systèmes et quels en sont les avantages. Nous commençons par la

26 CHAPITRE 2. ÉTAT DE L’ART

présentation d’outils de modélisation graphique développés afin d’assister les chercheurs
dans le développement de système multi-agents et nous continuons par des logiciels per-
mettant le développement de jeux vidéo en minimisant l’utilisation de code.

2.4.1/ DANS LE MONDE ACADÉMIQUE

NetLogo [82] et GAMA [81] [2] sont deux outils existants qui offrent simplicité d’utilisation
et liberté de modélisation.

En effet, ces deux outils offrent chacun un langage simplifié afin que l’utilisateur puisse
facilement modéliser des SMA. Cependant, l’apprentissage d’un langage, aussi simple
soit-il, peut représenter un frein pour certains utilisateurs. Par exemple, les figures 2.5 et
2.6 exposent le code et le résultat obtenu afin d’afficher un simple cercle tournant. Malgré
la simplicité apparente de l’utilisation de NetLogo, le code afin de créer ce cercle est trop
complexe pour un utilisateur novice.

FIGURE 2.5 – Cercle tournant sur lui même développé avec NetLogo et le code de la
figure 2.6

Il faut tout de même noter que pour accompagner les utilisateurs, un grand nombre
d’exemples prêts à l’exécution sont fournis lors de l’installation de ces deux outils. Bien
qu’ils soient simples d’utilisation, ils permettent tout de même de modéliser un grand
nombre de comportements d’autant plus que nous avons la possibilité d’ajouter des plu-
gins ou des extensions. Ces ajouts permettent de modifier le comportement natif des ou-
tils en y ajoutant des fonctionnalités spécifiques. Il est ainsi possible d’ajouter des plugins
permettant, par exemple, la modélisation entièrement graphique d’un SMA dans GAMA
(GAMAGraM [80]) ou la possibilité de charger des données GIS dans NetLogo [1].

Chacune des plateformes que nous avons citées laisse une certaine liberté quant aux
choix de modélisation, mais elles restent assez limitées dans les possibilités offertes. Par
exemple, GAMA ou MAGéo [3] [55] sont spécialisés dans les simulations spatiales, ce
qui induit une restriction sur le type de simulation modélisable.

Ces outils scientifiques ne sont cependant pas les seuls à proposer une modélisation
simplifiée de SMA ou de systèmes similaires.

2.4. MODÉLISATION 27

FIGURE 2.6 – Code développé dans NetLogo afin d’obtenir le cercle de la figure 2.5

2.4.2/ DANS LE MONDE DU JEU VIDÉO

Nous l’avons vu quand nous avons abordé les moteurs de jeux vidéo, de nombreux édi-
teurs existent afin d’aider au développement de jeux. Ces éditeurs permettent de créer
les niveaux des jeux vidéo et certains vont encore plus loin en proposant des outils pour
le développement des comportements des entités faisant partie de ces jeux. Même s’ils
ne sont pas tous basés sur le paradigme multi-agents, il est tout de même intéressant de
s’attarder sur ces outils puissants.

Pour ce qui est de la facilité d’utilisation, Game Maker est certainement l’un des mieux
classés. Il permet de développer des jeux en 2D avec une simplicité presque enfantine.
Avec GameMaker, il est possible de créer des objets et d’appliquer à chaque objet des
événements, une physique, des variables, des collisions, des texture pour son rendu, etc.
Le tout se fait par le biais d’une interface graphique épurée et complète (cf Fig. 2.7). Et
pour les utilisateurs plus accomplis, un système de script basé sur Delphi vient compléter
l’interface graphique pour développer des comportements plus complexes.

Dans le domaine du jeu vidéo et des moteurs de jeu, Unreal Engine possède une place
prédominante. Utilisé dans un grand nombre de productions, il possède lui aussi un édi-
teur de comportements graphiques appelé BluePrint. BluePrint permet de créer des com-
portements assignables aux entités du système. Ces comportements sont modélisables
par le biais d’un système de graphe de nœuds où chaque nœud possède un rôle (cf fi-
gure 2.8). On retrouve parmi tous les nœuds, des nœuds variables, des nœuds fonctions,
des nœuds événements, des nœuds conditions, etc. Tout comme pour GameMaker, Un-
real Engine permet aux développeurs accomplis de développer des parties de leurs jeux
en se servant d’un langage de programmation textuel. Mais la création d’un jeu en utili-
sant uniquement Blueprint est possible.

28 CHAPITRE 2. ÉTAT DE L’ART

FIGURE 2.7 – Interface graphique de paramétrage d’un objet GameMaker

Malgré son approche proposant une interface simple à prendre en main dû à son utilisa-
tion d’un langage graphique plutôt que d’un langage textuel, Unreal Engine reste compli-
qué à prendre en main. Ceci résulte de l’obligation de maîtriser la logique de program-
mation. En effet, même graphiquement, appréhender le fonctionnement des boucles, des
conditions et des variables peut être un frein au développement d’un jeu.

2.5/ SYNTHÈSE

Nous dressons ici une analyse de l’état de l’art et en extrayons les objectifs qui ont été
les nôtres tout au long de nos recherches.

2.5.1/ ANALYSES

La première information que nous extrayons de cet état de l’art est qu’il est tout à fait
possible de développer un jeu vidéo en utilisant le paradigme multi-agents. De nombreux
jeux vidéo sont développés à base de SMA et, même s’il s’agit principalement de se-
rious game, il n’y a aucun problème à le faire avec des jeux à but uniquement ludique et
artistique.

Nous avons abordé dans l’état de l’art, les travaux réalisés par Philippe Mathieu [57] qui
proposait 4 patterns fondamentaux pour le positionnement des agents, ainsi que les tra-
vaux de Yoan Kubera [52] qui proposait que chaque action que les agents réalisent soit
des interactions. Même si ces recherches sont pertinentes, il ne nous semble pas judi-
cieux de les intégrer à SAMP. En effet, SAMP est un système utilisé pour le jeu vidéo et à
ce titre il va utiliser un moteur physique. Les SMA que nous avons étudiés jusqu’à main-
tenant ne sont pas assez ouverts pour l’intégration de ce genre d’outils. Dans IODA [52],
l’agent interagit directement avec son environnement pour lui indiquer qu’il se déplace ce
qui représenterait un dédoublement d’informations dans le cas d’une utilisation couplée à
un moteur physique. Et des travaux comme ceux de Philippe Mathieu [57] présentent des
algorithmes permettant de ne réaliser qu’une partie des tâches que réalisent les moteurs
physiques (le positionnement) en ne proposant pas tout ce qu’un moteur physique pro-
pose : simulation des forces de poussées ou de frottements, calcul des collisions, gravité,

2.5. SYNTHÈSE 29

FIGURE 2.8 – Exemple d’un Blueprint développé à l’aide d’Unreal Engine.

etc.

Les outils existants permettant la modélisation de SMA ne permettent pas d’intégrer fa-
cilement un moteur physique à leur fonctionnement de base. C’est pourquoi nous avons
décidé de développer un nouveau modèle de SMA qui utiliserait nativement un moteur
physique et capable d’utiliser n’importe quel moteur physique existant.

Dans leur objectif initial, les facilitateurs permettent aux agents d’exposer quels services
ils mettent à disposition des autres agents. Ce fonctionnement est très intéressant dans
le cas où chaque agent collabore avec les autres. Dans le cas d’un jeu vidéo, les agents
peuvent avoir le choix de communiquer ou non les capacités qu’ils possèdent mais ils
peuvent aussi mentir à propos de ce qu’ils sont capables ou non de faire.

Aidés par l’état de l’art, nous pensons que limiter au maximum le besoin d’utiliser un
langage de programmation textuel est une bonne solution pour faciliter l’utilisation de
notre contribution. En se basant sur des outils comme le Blueprint d’Unreal Engine, il
nous semble pertinent de chercher à développer un système permettant de modéliser
des comportements à l’aide de graphe de nœuds. Cependant, la complexité d’utilisation
de Blueprint nous a amené à réfléchir à proposer plusieurs niveaux d’utilisation de SAMP.
Il est nécessaire de cibler les besoins et compétences de chaque utilisateur pour leur
offrir différentes approches de SAMP : la possibilité de développer des comportements
primaires ou de ne développer que des comportements abstraits.

2.5.2/ OBJECTIFS

Forts de cette analyse, nous nous sommes fixé 3 objectifs :

— développer un logiciel permettant de modéliser, générer et exécuter des systèmes
multi-agents sans l’utilisation de langage textuel : utilisation d’une interface gra-
phique pour le paramétrage des SMA, modélisation graphique, etc ;

— intégrer dans un même système les spécificités des SMA et des jeux vidéos :
agents, communications, moteur physique, boucle de jeu, etc ;

— que les systèmes développés à l’aide de ce logiciel fonctionnent en temps réel.

Dans la suite de ce mémoire, nous décrivons comment nous avons mis au point chaque
partie de SAMP et comment chaque partie interagit avec les autres.

II
TRAVAUX RÉALISÉS

31

3
EXEMPLE FIL ROUGE

Sommaire
3.1 Définition de l’exemple . 33
3.2 Modélisation de la population . 34

Nous définissons dans ce chapitre un exemple qui servira de fil conducteur pour le reste
de ce mémoire. Cet exemple est accompagné de sa modélisation dans SAMP afin de
pouvoir appuyer nos explications. Nous avons décidé de mettre en place un système
de proies-prédateurs car il est très répandu dans la littérature multi-agents et qu’il peut
s’adapter facilement au domaine des jeux vidéo.

3.1/ DÉFINITION DE L’EXEMPLE

L’exemple choisi est un système proies-prédateurs. Il n’existe pas de standard pour les
systèmes de proies-prédateurs, mais de nombreux travaux de recherche ont utilisé cet
exemple [29, 17, 16].

Dans notre exemple, il y a 3 types d’agents différents : les loups, les moutons et l’herbe.
Les loups peuvent manger les moutons et se reproduire. Les moutons peuvent man-
ger l’herbe et se reproduire. L’herbe peut s’étendre afin de recouvrir des zones non-
herbeuses.

Dans cet exemple, les loups et les moutons possèdent une propriété représentant leur
niveau de faim. Celle-ci diminue au fil du temps pour indiquer leur réserve et déclen-
cher la faim. Les moutons et les loups se déplacent aléatoirement jusqu’à ce que leur
niveau de faim atteigne ce seuil. Lorsqu’il est atteint, ils se mettent à la recherche de
nourriture. Lorsque cette nourriture est trouvée, ils se rapprochent d’elle, la mangent et
recommencent à se déplacer aléatoirement. Si un mouton ou un loup ne trouve pas de
nourriture et que son niveau de faim atteint 0, il meurt.

Lorsqu’un loup ou un mouton a fini de manger, il peut entrer dans un état de recherche
d’un partenaire pour se reproduire. Il entre alors dans la même phase de recherche que
pour la nourriture avec une cible différente. Lorsqu’il trouve un partenaire, il se rapproche
de lui et ils se reproduisent si le partenaire cherche aussi à se reproduire. Il recommence
ensuite à se déplacer aléatoirement. S’il ne trouve aucun partenaire et que son niveau
de faim le requiert, il recherchera de la nourriture avant de recommencer à chercher un
partenaire.

33

34 CHAPITRE 3. EXEMPLE FIL ROUGE

Lorsqu’un agent herbe est en contact avec un emplacement de l’environnement qui n’est
pas encore colonisé par de l’herbe, il est capable de le coloniser. La colonisation consiste
en la création d’un nouvel agent sur l’emplacement jusque-là vierge. Lorsqu’un nouvel
agent herbe apparaît sur un emplacement de l’environnement, il met un certain temps à
devenir comestible. Lorsqu’un agent herbe est attaqué (mangé) par un mouton, il meurt et
l’emplacement sur lequel il se trouvait redevient vierge. Pour plus de facilité, nous avons
découpé l’environnement en grille et chaque cellule de cette grille est un emplacement
pouvant être colonisé par de l’herbe.

Dans la suite de cette section, nous présentons comment la population est modélisée.
Nous donnons pour chaque type d’agent, son comportement, ses propriétés et ses com-
pétences.

3.2/ MODÉLISATION DE LA POPULATION

L’exemple décrit met en place plusieurs agents ayant chacun un comportement défini.
Ces agents sont la population de la simulation, et SAMP permet de définir cette popula-
tion : type d’agent présent, propriété des agents de chaque type, nombre d’agents pour
chaque type, capacités.

Dans cette section, nous allons exposer la modélisation de la population de notre exemple
ainsi que la modélisation des instanciations des agents.

TABLE 3.1 – Type d’agent de la simulation

Nom Héritages Cpt Propriétés Compétences
Etre vivant — — Points de Vie

Mouton Etre vivant Cpt Mouton

Résistance Être attaqué
Niveau de faim Être vu
Seuil de faim Voir

Perte faim à l’arrêt Se reproduire
Perte faim en déplacement Attaquer

Loup Etre vivant Cpt Loup

Force
Niveau de faim Être vu
Seuil de faim Voir

Perte faim à l’arrêt Se reproduire
Perte faim en déplacement Attaquer

Herbe
Etre vivant Cpt Herbe Chance de colonisation Être attaqué

Être vu
Coloniser

La table 3.1 montre comment la population de notre système est modélisée. Nous voyons
que la population de notre exemple comporte 4 types d’agents : être vivant, mouton, loup
et herbe. Les agents mouton, loup et herbe héritent du type être vivant.Nous aurions pu
factoriser les propriétés communes des loups et des moutons en les faisant hériter d’un
type animal qui aurait possédé les propriétés niveau de faim, seuil de faim, perte de faim.
Nous constatons que les moutons suivent le comportement mouton, les loups suivent
le comportement loup et l’herbe suit le comportement herbe. Tous les êtres vivant pos-
sèdent des points de vie. Nous avons donné une résistance aux agents de type mouton

3.2. MODÉLISATION DE LA POPULATION 35

et une force aux agents de type loup ainsi que trois propriétés liées au fonctionnement
de la faim :

— Niveau de faim : correspond au niveau de faim lorsque la barre est totalement rem-
plie. On estime que lorsqu’un agent mange, sa barre se remplit entièrement ;

— Seuil de faim : correspond au niveau de faim à partir duquel l’agent commencera à
chercher à se nourrir ;

— Perte de faim par seconde : correspond à la perte du niveau de faim d’un agent
à chaque seconde. Ce niveau de faim évolue en fonction de l’état dans lequel les
agents se trouvent.

Les agents de type herbe possèdent une propriété indiquant, pour chaque seconde, le
pourcentage de chance de coloniser un emplacement de l’environnement adjacent. Le
test est effectué, pour chaque emplacement vierge à proximité de chaque agent herbe.
Si un emplacement vierge est voisin de deux agents herbe, le test sera effectué pour
chacun des deux agents.

4
SHINE AGENT MODELING PLATFORM

Sommaire
4.1 Les principes fondamentaux de SAMP 38

4.1.1 L’approche tout agent pour une plus grande facilité 38
4.1.2 Coller au plus près des jeux vidéo 40

4.2 Des compétences... 40
4.2.1 L’acquisition des compétences 40
4.2.2 Des compétences avec des pré-requis 41
4.2.3 Définition des compétences dans SAMP-E 42

4.3 ...et des interactions . 42
4.3.1 Une automatisation grâce aux compétences 43
4.3.2 Une structure de données minimale 45
4.3.3 Définition des interactions dans SAMP-E 47

4.4 Définition des types d’agents . 47
4.4.1 Les facilitateurs . 48
4.4.2 Acquisition ou perte de compétences et interactions 50
4.4.3 Définition du comportement des agents 51

4.5 Comportements des agents . 52
4.5.1 Un système d’état et d’événements 52
4.5.2 Différents niveaux d’état . 53
4.5.3 Les altérations . 55

4.6 Modélisations des comportements par quatre vues 56
4.6.1 Le paramétrage des vues . 56
4.6.2 Généralités sur les nœuds . 58
4.6.3 Vue Altération . 61
4.6.4 Vue Comportement . 62
4.6.5 Vue État . 64
4.6.6 Vue Événement . 68
4.6.7 Instanciations des agents . 69

4.7 Bilan . 70

Dans ce chapitre, nous répondons aux besoins spécifiques évoqués dans la synthèse de
l’état de l’art. En effet, ces derniers nous ont amenés à développer une nouvelle approche
des SMA : Shine Agent Modeling Platform (SAMP). SAMP est une approche composée
de trois modules :

— SAMP-M qui est le méta-modèle des SMA générés par SAMP ;

— SAMP-E qui est un outil graphique d’édition de SMA;

37

38 CHAPITRE 4. SHINE AGENT MODELING PLATFORM

— SAMP-X qui est un outil de génération de code. SAMP-X génère le code des SMA
modélisés à l’aide de SAMP-E et respectant les règles définies par SAMP-M.

Pour ce faire, nous présentons Shine Agent Modeling Platform en décrivant chacun des
trois modules qui le composent. Nous commençons par décrire les fondements de SAMP,
les principes de bases que nous avons décidé de mettre en place afin de développer
notre approche. Nous continuons en décrivant le fonctionnement des interactions, des
compétences et des agents et les règles qui régissent leurs liens dans SAMP-M. Nous
expliquons comment chacun de ces éléments est paramétrable dans SAMP-E et quels
impacts ces paramètres auront sur le système final généré par SAMP-X.

Nous continuons en décrivant le fonctionnement global de la modélisation des compor-
tements en indiquant comment le fonctionnement des graphes de nœuds permet cette
modélisation. Nous expliquons en détail chaque type de graphe et chaque type de nœud
pouvant le composer. Nous décrivons comment SAMP-E permet la modélisation de ces
graphes de nœuds.

Nous terminons en expliquant comment SAMP-E permet de paramétrer les instances des
agents qui seront créées au démarrage des SMA générés.

FIGURE 4.1 – SAMP-M est le méta-modèle de SAMP.

4.1/ LES PRINCIPES FONDAMENTAUX DE SAMP

SAMP repose sur des concepts et des approches existants que nous avons assemblés
et adaptés afin de répondre au mieux à nos besoins. SAMP doit permettre le développe-
ment de jeux vidéo basés sur le paradigme multi-agents. Le fonctionnement des entités
présentes dans SAMP doit être abordé sous deux angles différents : celui des agents du
paradigme multi-agents et celui de personnages propres au domaine des jeux vidéo.

Dans cette première section de nos contributions, nous abordons les différents concepts
sur lesquels nous nous sommes appuyés afin de développer SAMP.

4.1.1/ L’APPROCHE TOUT AGENT POUR UNE PLUS GRANDE FACILITÉ

Nous l’avons vu précédemment, Yoann Kubera [51] a défini une approche tout agent qui
consiste à considérer chaque entité comme un agent. Cette approche est très intéres-
sante pour notre objectif de simplicité, car elle permet d’uniformiser toutes les entités du
système. Ainsi, les utilisateurs n’ont besoin de paramétrer et modéliser qu’un seul type

4.1. LES PRINCIPES FONDAMENTAUX DE SAMP 39

FIGURE 4.2 – SAMP-E est l’outil graphique permettant d’utiliser SAMP.

d’entités. Dans cette approche, chaque agent possède un état (statut 1) d’activité permet-
tant de définir si un agent est actif, passif ou s’il est capable de changer de statut sans
exécuter d’action ou sans être la cible d’une action.

Ainsi, l’approche proposée par SAMP pour générer les SMA repose sur le tout agent.
Cependant, nous n’avons pas utilisé le statut de l’approche tout agent de Yoann Kubera
de la même manière que lui. Ce statut permettant de savoir si un agent est actif ou passif
joue un rôle très important pour l’efficacité du fonctionnement des interactions dans SAMP

comme nous le décrivons dans la suite de ce mémoire (section 5.2).

Une des conséquences de l’utilisation de l’approche tout agent est que l’environnement
est un agent. Dans SAMP, l’environnement est un agent avec quelques particularités.
C’est le seul agent de SAMP qui ne respecte pas le principe d’agents atomiques de Jean-
Christophe Routier, Philippe Mathieu et Yann Secq [68] que nous abordons dans la sec-
tion sur les compétences des agents de SAMP. Chaque SMA modélisé et exécuté avec
SAMP possède un environnement. Cet environnement permet de faire le lien entre les
agents et le moteur physique utilisé (si un moteur physique est utilisé). Il permet par
exemple de notifier les agents s’ils sont entrés en contact avec d’autres agents. Il permet
aussi aux agents de récupérer une liste des agents à proximité d’eux, de lister les agents
en fonction de leur type ou d’une propriété particulière. Cet environnement connaît tous
les agents du SMA, il permet la création et la destruction d’agents au cours de l’exécution
du SMA.

Nous le verrons dans la suite, lorsqu’un agent demande des informations sur d’autres
agents à l’environnement, celui-ci contact les agents cibles afin de savoir s’ils sont d’ac-
cord pour transmettre ces informations à l’agent requérant (en se basant sur le principe
des facilitateurs).

Le fait d’utiliser l’approche tout agent ne résout pas la duplicité des entités des SMA de
SAMP. Dans la suite de ce mémoire, lorsque nous parlons de personnage, il s’agit bien
d’agent, mais que nous abordons du point de vue des jeux vidéo. Et pour accompagner
au mieux les utilisateurs, nous avons utilisé d’autres concepts du paradigme multi-agents
afin de coller au plus près des jeux vidéo.

1. Dans la suite du document, nous utilisons le terme statut afin de ne pas confondre avec les états qui
composent le méta-modèle que nous décrivons.

40 CHAPITRE 4. SHINE AGENT MODELING PLATFORM

4.1.2/ COLLER AU PLUS PRÈS DES JEUX VIDÉO

En plus de l’approche tout agent permettant de faciliter la compréhension de SAMP par
les utilisateurs débutants, nous avons cherché quels concepts très présents dans les jeux
vidéo devaient être intégrés à nos travaux.

Dans un jeu vidéo, ce qui différencie en premier les personnages c’est leurs propriétés.
On peut comparer deux personnages sur leur force ou leur vitesse en comparant leurs
propriétés correspondantes. Afin d’intégrer cette forte dépendance des jeux vidéo aux
propriétés des personnages, il nous est apparu que les propriétés des agents de SAMP

devaient avoir une importance particulière. Elles doivent pouvoir être utilisées comme des
propriétés d’agents (présent au sein d’un SMA), mais aussi être exposées et utilisables
au sein du jeu comme des caractéristiques permettant de différencier les personnages.

Les compétences font partie intégrante des jeux vidéo. Elles permettent de créer des
différences entre deux personnages ou entités d’un jeu. Les compétences dans les jeux
vidéo ne sont pas la spécificité de quelques types de jeu, mais d’une grande majorité. Un
grand nombre de types de jeux vidéo mettent en jeu des compétences. On peut citer par
exemple :

— Les jeux de rôle où les joueurs peuvent faire évoluer leurs personnages en leur
faisant acquérir de nouvelles compétences ou en améliorant celles qu’ils possèdent
déjà ;

— Les jeux de sport où les caractéristiques de chaque personnage peuvent lui per-
mettre de réaliser des actions que d’autres personnages ne peuvent pas faire ;

— Les jeux de courses où il est possible de donner des compétences à son véhicule
(une bonbonne de nitro pour une accélération puissante par exemple) ;

— Les jeux de stratégie où il est possible d’améliorer chaque unité en lui donnant de
nouvelles compétences.

Il nous est apparu que les compétences devaient être un des fondements des agents de
SAMP. Qu’elles devaient faire partie, au même titre que les propriétés, des données que
les agents exposent afin de pouvoir être utilisées comme des compétences propres aux
SMA mais aussi comme des compétences des personnages des jeux.

4.2/ DES COMPÉTENCES...

Nous l’avons vu, les compétences font partie intégrante des jeux vidéo et leur intégration
dans SAMP doit aider au fonctionnement des agents au sein des SMA, mais aussi au sein
des jeux vidéo.

4.2.1/ L’ACQUISITION DES COMPÉTENCES

En nous inspirant des travaux de Jean-Christophe Routier, Philippe Mathieu et Yann
Secq [68], nous avons développé un système de compétences dans SAMP. Ces com-
pétences permettent aux agents d’émettre ou de recevoir des interactions. Dans ces
travaux, il est expliqué qu’un agent atomique ne possède que deux compétences : une
pour interagir et l’autre pour apprendre de nouvelles compétences. Nous avons décidé

4.2. DES COMPÉTENCES... 41

de réduire le nombre de compétences des agents atomiques de SAMP en ne leur donnant
que la compétence pour apprendre de nouvelles compétences. Cette décision se justifie
par l’approche tout agent de notre système. Dans SAMP chaque entité du système est
un agent et certains de ces agents pourraient ne pas avoir besoin de la capacité d’in-
teragir avec d’autres agents. De plus, nous le verrons dans la suite de cette section que
les interactions peuvent être émises ou perçues par les agents lorsqu’ils possèdent les
compétences nécessaires, que ce système est automatisé et qu’il n’existe pas qu’un seul
type d’interactions dans SAMP.

Le fait de permettre aux agents d’apprendre de nouvelles compétences permet entre
autres :

— D’intégrer une fonctionnalité propre à un grand nombre de jeux vidéo directement
dans SAMP. Cette fonctionnalité est celle qui permet de faire évoluer les joueurs ou
PNJ en leur donnant de nouvelles capacités dans le jeu ;

— De ne pas imposer la création d’un agent pour chaque cas particulier que l’on veut
gérer dans le système. Il est possible de modifier le comportement et la capacité
d’agents à réaliser certaines actions en ayant des instances différentes d’un même
agent.

Par exemple, un agent rocher n’aurait pas la capacité d’interagir avec les autres agents.
On estime qu’il n’est pas possible dans le système de déplacer, ramasser ou endomma-
ger le rocher. Si un agent entre en contact avec le rocher, c’est le moteur physique qui
transmet les informations à l’agent qui est entré en contact avec lui. Mais si un nouvel
agent plus puissant que tous les autres agents du système apparait, il est possible que le
rocher puisse être endommagé. Dans ce cas, il est possible de lui offrir une compétence
pour interagir avec ce nouvel agent.

Dans SAMP, la manière d’acquérir de nouvelles compétences n’est pas limitée. Il est pos-
sible qu’un agent acquière une nouvelle compétence en obtenant un nouvel objet dans
son inventaire (une pioche permettant de récolter de la pierre par exemple), en dépensant
une monnaie particulière (de l’expérience par exemple) ou en l’acquérant directement.

4.2.2/ DES COMPÉTENCES AVEC DES PRÉ-REQUIS

Une compétence est identifiée par son nom et une liste de t-uplet composés de l’iden-
tifiant d’une propriété et d’une valeur minimum. Les agents doivent posséder chaque
propriété listée avec une valeur minimum. Celle-ci correspond à la valeur requise pour
maîtriser la compétence associée (cf 4.4). Il n’y a aucune restriction au nombre de pro-
priétés requises. La seule restriction est que les propriétés requises doivent avoir une
valeur de type primitif (entier, flottant, double, booléen). Dans le cas où une compétence
requiert une valeur de type booléen, cela signifie que pour maîtriser cette compétence,
l’agent doit posséder la propriété (si le booléen est à vrai) ou ne pas posséder cette pro-
priété (si le booléen est à faux). Cela pourrait être nécessaire dans le cas où un agent
avec la propriété intangible voudrait maîtriser une compétence pour attraper des objets.
Son intangibilité l’empêcherait de maîtriser cette compétence.

Comptence = identi f iant, {{propriété, niveau_de_maitrise}}

Dans l’exemple, la compétence se déplacer requiert, pour être acquise par un agent, qu’il
possède la propriété vitesse (sans valeur minimum).

42 CHAPITRE 4. SHINE AGENT MODELING PLATFORM

S e_déplacer = ”seDeplacer”, {{vitesse, 0}}

Ces restrictions, faites sur les compétences, permettent avant tout d’éviter de créer des
incohérences en empêchant les agents d’acquérir des compétences pour lesquelles ils
n’ont pas les pré-requis. Les jeux vidéo sont principalement basés sur leurs règles, celles
qui régissent l’univers dans lequel le jeu se déroule, mais aussi les règles du jeu à pro-
prement parler. Le système de compétences présent dans SAMP permet de définir une
partie des règles du jeu.

Il est à noter que ce système n’amène aucun surcoût pour les agents ne possédant au-
cune compétence. Nous voyons dans la section suivante (4.3) les impacts de ce système,
couplé au système d’interactions, sur les ressources.

4.2.3/ DÉFINITION DES COMPÉTENCES DANS SAMP-E

L’utilisation de SAMP-E permet de définir ces règles du jeu directement depuis une inter-
face graphique permettant de ne pas avoir recours à du code informatique. La figure 4.3
montre la fenêtre de définition des compétences dans SAMP-E. Dans cette figure, nous
voyons que la fenêtre se divise en deux parties. La première, celle de gauche, liste toutes
les compétences que les agents peuvent maîtriser. Il est possible de créer et supprimer
les compétences. Lorsqu’une compétence est sélectionnée dans cette liste, l’interface
se met à jour afin d’afficher les données relatives à cette compétence dans la deuxième
partie. Cette deuxième partie liste les propriétés qu’un agent doit posséder pour pouvoir
maîtriser la compétence sélectionnée. Dans notre exemple, la propriété See requiert, de
la part des agents voulant la maîtriser, qu’ils possèdent une propriété Vision. On constate
que dans notre exemple, la compétence See requiert que les agents aient la propriété
Vision avec une valeur minimale de 0. Cela signifie que n’importe quel agent possédant
cette propriété sera capable de maîtriser la compétence See. Nous aurions pu, dans ce
cas particulier, requérir pour la compétence See une propriété Vision de type booléenne.
Dans ce cas, si un agent ne possède pas la propriété Vision ou si la valeur de cette
propriété est égale à faux, alors l’agent ne serait pas dans la capacité de maîtriser la
compétence See.

Dans l’exemple proies-prédateurs, les loups et les moutons possèdent les compétences
pour se déplacer, être vus, voir, attaquer et se reproduire. L’herbe, quant à elle, possède
les compétences pour être vue et coloniser du terrain vierge. Les moutons et l’herbe pos-
sèdent une compétence pour être attaqués. La table 4.1 résume l’ensemble des compé-
tences nécessaires à l’exemple.

Nous allons voir dans la suite de ce chapitre que l’acquisition de compétences offre au-
tomatiquement la possibilité d’émettre ou de recevoir des interactions et qu’il est possible
de paramétrer des agents pour qu’ils possèdent des compétences dès leur initialisation.

4.3/ ...ET DES INTERACTIONS

Dans la suite de ce mémoire, nous considérons qu’une interaction n’est pas seulement
un acte de langage (communication), mais plus généralement un échange d’informations
entre deux agents.

4.3. ...ET DES INTERACTIONS 43

FIGURE 4.3 – Fenêtre de définition des compétences dans SAMP

Les interactions sont les actions qu’un agent est capable d’émettre vers un autre agent.
Dans les jeux vidéo, les interactions sont omniprésentes : lorsqu’un personnage en
touche un autre, lorsqu’un personnage voit ou entend un autre personnage, il y a in-
teraction. Si on pousse le concept d’interaction au maximum, lorsque le joueur utilise un
périphérique, il émet une interaction vers le personnage qu’il contrôle. Mais les interac-
tions permettent aussi de façonner le jeu, de le rendre plus réaliste. Quand un joueur peut
ramasser un morceau de bois, détruire une caisse ou pousser une table, il s’immerge plus
facilement dans l’univers dans lequel évolue son personnage.

Afin de permettre aux utilisateurs de SAMP de plus facilement gérer ses interactions,
nous avons développé un système d’interactions automatisées couplé avec le système
de compétences précédemment décrit. Dans cette section, nous décrivons ce système
d’interactions.

4.3.1/ UNE AUTOMATISATION GRÂCE AUX COMPÉTENCES

Contrairement à IODA [52] qui est un système orienté interactions, nous avons un sys-
tème orienté états/événements. Bien que nous nous soyons inspirés de ces travaux,
nous n’avons pas pris le parti de définir chaque action des agents comme étant des in-
teractions. Dans IODA, lorsqu’un agent se déplace, il s’agit d’une interaction entre lui
et l’environnement. Ce fonctionnement n’est cependant pas adapté à l’utilisation combi-
née avec un moteur physique. Dans SAMP, lorsqu’un agent se déplace, c’est le moteur
physique qui modifie la position de l’entité physique représentant l’agent.

Nous avons fixé le fait que dans SAMP les interactions sont tous les échanges d’infor-
mations entre différents agents ou entre un agent et l’environnement. Que ce soit un
échange d’informations volontaire comme lors d’une communication verbale ou lors d’un
échange non-volontaire comme lorsqu’un agent est vu par un autre agent. Afin d’évi-
ter toute ambiguïté, nous définissons le terme perception représentant cette deuxième
catégorie d’interaction :

Définition (Perception). Une perception est tout échange d’informations durant lequel

44 CHAPITRE 4. SHINE AGENT MODELING PLATFORM

TABLE 4.1 – Table des compétences nécessaire au fonctionnement de notre exemple.

Compétence Propriétés requises
Se déplacer Vitesse = 0

Être vu —
Voir Vision = 0

Attaquer —
Être attaqué Résistance = 0

Se reproduire —
Coloniser —

Comestible —

tous les agents concernés ne sont pas conscients de cet échange.

Par exemple, lorsqu’un agent A est vu par un agent B, l’agent A n’est pas conscient qu’il
transmet des informations à B.

Dans SAMP, afin de faciliter la modélisation des SMA, nous avons cherché à automatiser
le fonctionnement des interactions. Nous l’avons déjà vu, les agents de SAMP peuvent
posséder des compétences qui leur permettent d’exécuter de nouvelles actions. Ces ac-
tions peuvent être l’émission ou la réception d’interactions et ainsi, l’acquisition de nou-
velles compétences peut permettre à un agent d’émettre ou recevoir des interactions.

Cette automatisation possède un coût dû au fait qu’une recherche est effectuée dès
qu’une modification est exécutée sur une compétence d’un agent. Le coût maximum de
cette recherche est :

Posons :

— Γ l’ensemble des interactions du système ;

— Γn une interaction du système tel que Γn ∈ Γ ;

— Competence(Γn) la fonction donnant le nombre de compétences requises par Γn ;

— Alors, le coût maximum de la recherche des interactions pour un agent est :
int=|Interactions|∑

int=0

Comptence(Γn) (4.1)

Pour minimiser ce coût et éviter que le parcours soit exécuté dès qu’une compétence d’un
agent est modifiée, nous avons réduit le nombre de parcours nécessaire à 1 par frame.
Chaque agent garde une information permettant de savoir, si au cours d’une frame, il a
acquis une compétence et une information permettant de savoir s’il a perdu une compé-
tence. Ainsi, à la fin de la phase de PostUpdate (cf 2.1.3), si l’agent a acquis ou perdu
une ou plusieurs compétences, il n’y a qu’un unique parcours qui exécute trois types de
recherches différentes :

— Si l’agent a acquis une ou plusieurs compétences, il n’exécute la recherche que
sur les interactions qu’il ne peut pas déjà émettre ou recevoir afin de trouver de
nouvelles interactions qu’il peut émettre ou recevoir ;

— Si l’agent a perdu une ou plusieurs compétences, il n’exécute la recherche que sur
les interactions qu’il peut déjà émettre ou recevoir afin de vérifier quelles interac-
tions il ne peut plus émettre ou recevoir ;

4.3. ...ET DES INTERACTIONS 45

— Si l’agent a acquis et perdu des compétences, les deux points précédents sont
exécutés, mais toujours à l’aide d’un seul parcours.

Le fait de réaliser cette action à la fin de la phase de PostUpdate permet de s’assurer que
tous les agents acquièrent la capacité de recevoir et émettre des interactions au même
moment que les autres agents.

Dans notre système, si une interaction ne requiert pas de compétence pour être reçue
(resp. émise) c’est qu’elle peut être reçue (resp. émise) par tous les agents du système.
Dans SAMP, lorsqu’un agent possède les compétences nécessaires pour émettre (resp.
recevoir) une interaction, il est automatiquement capable d’émettre (resp. recevoir) cette
interaction.

Cette automatisation permet aux utilisateurs de SAMP d’avoir uniquement à gérer les
compétences que les agents acquièrent ou perdent sans avoir, en plus, à se préoccuper
des interactions. Il est à noter qu’il n’y a pas de limitations dans ce système d’interactions
et compétences. Une interaction peut nécessiter un nombre indéfini de compétences
pour être émise ou reçue et une compétence peut-être utile à un nombre indéfini d’inter-
actions.

4.3.2/ UNE STRUCTURE DE DONNÉES MINIMALE

Nous avons voulu la structure des interactions la plus petite possible afin d’éviter de
consommer trop de ressources. La structure que nous proposons est la plus minime
possible pour fonctionner dans SAMP. Les interactions de SAMP possèdent toutes les
mêmes propriétés :

— un identifiant ;

— deux listes de couples formés d’une compétence et du niveau de maîtrise de cette
compétence requis pour exécuter les interactions. Ces listes permettent d’identifier
les compétences nécessaires pour recevoir et émettre l’interaction ;

— une liste de variables pouvant être nécessaire au fonctionnement de l’interaction.
Cette liste de variables est initialisée par les agents émetteurs au moment de l’émis-
sion de l’interaction.

Dans notre exemple, l’interaction Mange serait ainsi paramétrée :

Mange = ("Attaque", {{Attaquer, 0}}, {{Être attaqué, 0}}, {Force})

Les valeurs de maîtrise sont à 0, car l’interaction Attaque requiert les compétences Atta-
quer et Être attaqué sans niveau minimum de maîtrise. L’interaction requiert en plus une
variable que nous avons appelée Force correspondant à la force de l’attaque exécutée
par l’agent émetteur. Le fait que ce soit l’agent émetteur de l’interaction qui calcule et
transmette la valeur de la variable de force permet de gérer différentes situations particu-
lières. La liste suivante n’est pas exhaustive et s’appuie sur des exemples particuliers et
non sur l’exemple fil rouge :

— Si un agent attaquant possède un bonus particulier permettant d’augmenter tem-
porairement sa force ;

— Si un agent attaquant possède deux armes et attaque à l’aide de ces deux armes.
Le fait de calculer la force une seule fois permet de n’émettre qu’une seule fois
l’interaction.

46 CHAPITRE 4. SHINE AGENT MODELING PLATFORM

Toutes les interactions n’ont pas nécessairement besoin de variables. Une liberté totale
est laissée aux utilisateurs afin que les interactions transmettent les informations mini-
males requises pour leur fonctionnement. Les variables transmises avec les interactions
ne sont pas des propriétés que les agents doivent posséder, ce sont des valeurs que les
agents transmettent lors de l’émission de l’interaction. Ces valeurs peuvent refléter des
propriétés d’un agent, mais aussi être calculées ou générées à partir d’autres informa-
tions. Dans notre exemple, les moutons n’ont pas de force. Ainsi, lorsqu’un mouton va
émettre une interaction Mange, il transmettra une force à une valeur de 0.

La table 4.2 représente les interactions que les agents peuvent émettre ou recevoir dans
le système défini par l’exemple proies-prédateurs. Dans cette table, on constate que les
interactions Se déplace et Colonise peuvent être reçues par chaque agent. Dans les faits,
il est possible que l’herbe colonise un agent mouton par exemple. C’est la modélisation
du comportement de l’herbe qui permettra de fixer son comportement pour l’empêcher
(ou l’autoriser selon nos envies) de coloniser un mouton. L’environnement étant un agent
comme un autre, il est capable de recevoir les interactions Colonise et Se déplace.

TABLE 4.2 – Table des interactions des agents du système proies-prédateurs

Interaction Émettre Recevoir Valeurs
Colonise Coloniser – –
Mange Manger Comestible –

Voit Visible Voir –
Se déplace Se déplacer – –

Attaque Attaquer Être attaqué Force

Lors de l’exécution du système, les agents peuvent émettre ou recevoir des interactions.
Chaque interaction émise sera formée de la même manière afin de pouvoir être lue par
tous les agents. Chaque interaction émise sera composée avec :

— un identifiant (sous forme d’un entier) ;

— le pointeur de l’agent émetteur ;

— l’ensemble des valeurs supplémentaires requises.

Ainsi, chaque agent recevant une interaction est capable, grâce à l’identifiant de l’in-
teraction, de savoir s’il peut recevoir ou non cette interaction et est capable d’agir en
conséquence. Le fait que chaque interaction émise possède la même forme, l’agent sera
capable de gérer n’importe quelle interaction qu’il est en capacité de recevoir. Comme
pour la structure de l’interaction elle-même, nous avons mis en place une structure de
données pour les envois et réceptions d’interactions la plus petite possible. Dans ce for-
mat, la structure est minimale. L’ensemble des valeurs supplémentaires est un simple
tableau. Dans SAMP-E les utilisateurs se serviront des identifiants des valeurs pour mo-
déliser les accès à ces valeurs. Dans SAMP-X, comme nous maîtrisons la génération du
code, un simple tableau de valeurs est suffisant, car nous savons quelle valeur se trouve
à quel indice du tableau. La figure 4.4 explique ce principe. Le tableau en haut de cette
figure montre le tableau des identifiants des valeurs. SAMP-E connaît l’indice de chaque
identifiant. Lorsqu’on génère le code correspondant, nous ne générons pas les identi-
fiants mais les valeurs directement (le tableau du bas de la figure). Les valeurs dans le
tableau se trouvent au même indice que l’identifiant qui leur correspond dans SAMP-E.
Ainsi, nous ne surchargeons pas les envois avec des valeurs inutiles comme des identi-
fiants pour ces valeurs supplémentaires.

4.4. DÉFINITION DES TYPES D’AGENTS 47

FIGURE 4.4 – Tableaux de valeurs des interactions dans SAMP-E et SAMP-X.

4.3.3/ DÉFINITION DES INTERACTIONS DANS SAMP-E

Tout comme pour les compétences, il est possible de définir les interactions par le biais
d’une interface graphique. La figure 4.5 montre l’interface de définition des interactions
dans SAMP-E avec les valeurs correspondantes à notre exemple. Nous constatons que
cette fenêtre se découpe en 3 parties :

1. La partie à gauche, Interactions, énumère toutes les interactions que les agents
pourront émettre ou recevoir. Il est possible de créer et supprimer les interactions.
Lorsqu’une interaction est sélectionnée, l’interface se met à jour pour afficher les
données relatives à cette interaction ;

2. La partie la plus à droite, Available Skills liste toutes les compétences créées dans
la fenêtre de définition des compétences présentée dans la figure 4.3 ;

3. La partie centrale, Requirements, liste, pour l’interaction sélectionnée, les compé-
tences requises pour pouvoir émettre ou recevoir l’interaction. Si aucune compé-
tence n’est indiquée pour émettre (resp. recevoir) une interaction, cela signifie que
tous les agents peuvent émettre (resp. recevoir) cette interaction.

Nous l’avons vu précédemment, il est possible d’offrir aux agents la capacité d’émettre
ou recevoir des interactions en leur donnant les compétences requises pour le faire. Nous
définissons dans la section suivante les agents de SAMP.

4.4/ DÉFINITION DES TYPES D’AGENTS

Dans SAMP, les agents possèdent des propriétés, des compétences et sont capables
d’émettre et recevoir des interactions. Cette section décrit comment nous avons déve-
loppé les agents dans SAMP qui utilisent une approche tout agent. Dans cette section,
nous expliquons le fonctionnement des propriétés des agents et nous expliquons com-
ment est géré le système de compétences et d’interactions au sein des agents.

Il est important de préciser que dans cette section, nous parlons des agents en tant que
ressources et non en tant qu’instance. Dans SAMP, une instance d’agent est créée à
partir des paramètres d’une ressource agent.

48 CHAPITRE 4. SHINE AGENT MODELING PLATFORM

FIGURE 4.5 – Fenêtre de définition des interactions dans SAMP

4.4.1/ LES FACILITATEURS

Tout comme les compétences et les interactions, les propriétés des personnages dans les
jeux vidéo sont omniprésentes. Les propriétés définissent si un agent est capable ou non
d’exécuter une action et avec quelle efficacité. Que ce soit dans des jeux de sport où les
propriétés déterminent l’habilité d’un joueur ou dans des jeux de rôle où les propriétés
déterminent la force des coups et la résistance à ces coups de deux personnages se
battant.

SAMP met à disposition des agents possédant des propriétés qu’il est possible de para-
métrer entièrement. Chaque agent possède une liste de propriétés qui peuvent être de
n’importe quel type. Il est possible de donner une valeur par défaut pour les propriétés
d’une ressource agent afin que, lors de l’instanciation d’un agent, cette propriété pos-
sède cette valeur. Les propriétés des agents peuvent être utilisées et modifiées lors de
l’exécution de leur comportement.

Nous l’avons vu dans la section 2.2.4, FIPA a défini des agents particuliers appelés fa-
cilitateurs permettant de fournir aux agents la liste des agents avec lesquels ils peuvent
communiquer (Agent Management System - AMS) et la liste des services proposés par
ces agents (Directory Facilitator - DF). Les facilitateurs de FIPA sont principalement pen-
sés pour le monde de l’industrie. Dans ce domaine, les agents ont un but commun, faire
avancer le système. Les agents ne mentent pas et collaborent sans se préoccuper de
leurs intérêts personnels. Dans les jeux vidéo, c’est différent. Les agents peuvent avoir
des objectifs personnels, ils peuvent décider de mentir à d’autres agents, de ne pas col-
laborer voire même de saboter le travail d’un autre. Pour ces raisons, nous nous sommes
inspirés des facilitateurs de FIPA, mais avons dû appliquer quelques changements.

Tout d’abord, nous l’avons vu dans la section 2.2.4, FIPA est basé sur 5 niveaux. Dans
nos travaux, nous n’utilisons pas le niveau langage de contenu qui n’a pas d’utilité dans
un système fermé comme l’est un jeu vidéo. Nous avons aussi modifié le niveau ontologie
en définissant une seule ontologie avec la possibilité de spécialiser cette ontologie avec
de nouveaux vocabulaires que certains agents en particulier connaîtraient.

Pour ce qui est de l’AMS qui, rappelons le, permet d’indiquer aux agents la liste des
agents avec qui ils peuvent communiquer, mais aussi qui sont responsables de la création
et la destruction des agents, nous avons décidé de l’intégrer à l’agent environnement des
SMA SAMP.

Pour ce qui est des DF, qui ont pour rôle d’indiquer aux agents les services proposés

4.4. DÉFINITION DES TYPES D’AGENTS 49

par les autres agents, nous avons décidé de donner ce rôle à chaque agent du système.
Cela permet d’offrir aux agents un comportement plus proche de la réalité en leur offrant
la capacité de décision quant aux demandes qui leurs sont faites. Ainsi, lorsqu’un agent
demandera à un autre agent la valeur d’une propriété ou de venir l’aider sur une situation
requérant une coopération, l’agent sollicité, par le biais de son DF, prendra une décision :
répondre positivement ou négativement à la demande. Il sera même possible aux agents
de fournir une réponse erronée que ce soit volontaire ou non.

Pour les demandes de coopération, l’agent recevra une interaction contenant les infor-
mations de cette demande. Le DF de l’agent décidera si, oui ou non, il accepte de venir
en aide à l’agent requérant et modifiera son comportement en fonction. Cette interac-
tion possédera l’identifiant cooperate. L’objectif de la coopération sera défini dans les va-
leurs supplémentaires de l’interaction. Chaque utilisateur pourra ainsi définir les objectifs
comme il le veut.

Une coopération peut prendre plusieurs formes. Cela peut-être une coopération où un
agent requiert une action d’un autre agent ou simplement une coopération où un agent
requiert une information détenue par un autre agent. Comme dans la réalité, un agent
requis pour une coopération peut refuser cette coopération et ce refus peut prendre plu-
sieurs formes :

— L’agent décide de ne pas coopérer volontairement et préviens l’agent requérant qu’il
refuse ;

— L’agent décide de ne pas coopérer volontairement, mais ment sur ses intentions (en
donnant une information qu’il possède, mais avec une valeur erronée) ;

— L’agent exprime son envie de coopérer, mais sabote la coopération. Similaire au fait
que l’agent mente. Mais dans le cas du mensonge, l’agent requérant ne sait pas
qu’il y a eu un mensonge. Dans le cas du sabotage, l’agent requérant sait qu’il y a
eu sabotage, car la coopération a échoué par la volonté de l’agent requis.

La décision qu’un agent prend, lorsqu’une demande de coopération lui est transmise, est
prise par son DF.

Lorsqu’un agent a besoin de connaître la valeur d’une propriété d’un autre agent, il envoie
une requête à cet agent. Le DF prend alors la décision de répondre positivement ou non
à cette requête. Le fait que les agents aient chacun le contrôle sur ce qu’ils exposent ou
non permet de coller au plus près de la réalité. Il était important que ce soit uniformisé
pour ne pas alourdir la compréhension aux utilisateurs.

L’avantage de cette méthode est qu’en laissant une totale liberté de définition aux utili-
sateurs sur ce qu’un agent accepte de partager ou non, permet de modéliser tous les
comportements imaginables sur les réactions qu’un agent aura face à ce genre de re-
quête. Le risque est qu’une mauvaise modélisation amènera un comportement irréaliste
avec des agents refusant de partager des propriétés pourtant accessibles aux yeux de
tous comme la couleur de leurs cheveux, leur taille ou s’ils portent un sac par exemple.

Chaque agent possédant son propre DF, le risque de créer une file d’attente de requêtes
sur un seul agent DF est limité. De plus, il est plus simple de créer, à partir d’un même
agent, des instances qui prendront des décisions différentes.

Nous allons maintenant expliquer comment donner ou retirer des compétences aux
agents et l’impact que cela a sur eux.

50 CHAPITRE 4. SHINE AGENT MODELING PLATFORM

4.4.2/ ACQUISITION OU PERTE DE COMPÉTENCES ET INTERACTIONS

En se basant sur les agents atomiques définis par Jean-Christophe Routier, Philippe
Mathieu et Yann Secq dans [68], nous avons donné aux agents la possibilité d’acquérir
des compétences (définies dans 4.2). Il est possible de paramétrer une ressource agent
avec des compétences de bases afin que les instances de cette ressource possèdent,
dès leur création, ces compétences.

Il est aussi possible que les agents acquièrent de nouvelles compétences durant leur
cycle de vie. Pour acquérir une compétence, chaque agent possède une méthode lui
permettant d’ajouter une compétence à la liste de celles qu’il possède déjà. Cette mé-
thode prend en argument l’identifiant de la compétence et retourne un booléen indiquant
si, oui ou non, la compétence a été acquise par l’agent.

Il est possible qu’un agent ne puisse pas acquérir une compétence si, par exemple, il
ne possède pas les propriétés nécessaires. Un agent est capable d’acquérir des compé-
tences de plusieurs manières différentes. La liste suivante n’est pas exhaustive, chaque
utilisateur pourra définir les différentes façons de faire acquérir de nouvelles compétences
à un agent :

— par acquisition directe. Il s’agit d’une acquisition qui se fait directement, par exemple
lorsque l’agent a atteint un niveau suffisant ou qu’une monnaie a été dépensée pour
lui faire acquérir cette compétence ;

— par transmission. Dans ce cas, l’agent a appris, par le biais d’un autre agent, à
maîtriser la compétence ;

— par acquisition indirecte. Il s’agit d’une méthode dans laquelle l’agent acquiert la
maîtrise d’une compétence par le biais de l’acquisition d’un autre agent. Si un agent
guerrier ramasse une épée (qui est un agent dans l’approche tout agent), il possé-
dera alors la compétence pour attaquer à l’épée. Cela se rapproche de la méthode
par transmission dans le sens où c’est l’agent épée qui transmet à l’agent guerrier
la compétence pour attaquer à l’épée.

Cependant, si les agents sont capables d’acquérir de nouvelles compétences, ils sont
aussi capables de perdre des compétences. De la même manière que pour l’acquisition
d’une compétence, un agent possède une méthode qui permet de lui faire perdre une
compétence. Cette méthode prend en argument l’identifiant de la compétence à perdre
et retourne un booléen indiquant si, oui ou non, la compétence a été perdue par l’agent.

En reprenant l’exemple de l’agent acquérant une compétence par le biais d’un agent
épée, s’il perd cette épée, il perdra la compétence pour attaquer à l’épée.

Lorsqu’un agent gagne ou perd une compétence, il vérifie quelles interactions il peut ou
ne peut plus émettre et recevoir. Tout ceci est géré automatiquement. Seuls l’ajout ou le
retrait des compétences doivent être modélisés par l’utilisateur.

Cette possibilité offerte aux utilisateurs d’ajouter ou retirer des compétences à un agent
et de définir les différentes manières que les agents ont de gagner ou perdre ces com-
pétences permet de modéliser des comportements très différents pour l’acquisition et la
perte de compétences.

L’approche tout agent ([51]) associée aux agents atomiques ([68]) permet de n’avoir qu’un
seul type d’entité dans nos systèmes et que ces entités soient capable de se différencier,
avant même qu’on leur applique un comportement, sur leurs capacités. On s’approche

4.4. DÉFINITION DES TYPES D’AGENTS 51

d’un système anthropomorphique où des individus peuvent être comparés sur ce qu’ils
sont capables de faire avant d’avoir à le faire.

Comme nous l’avons déjà expliqué dans la section 4.3, l’ajout ou la perte de compétence
ne créés pas de surcoût. C’est la gestion des interactions qui suit ces modifications sur
les compétences qui créé un surcoût que nous maîtrisons.

Ce fonctionnement permettant d’acquérir la possibilité d’émettre et recevoir des interac-
tions en fonction des compétences maîtrisées par les agents permet de se rapprocher
du concept d’Affordance de James Gibson [40]. Ce concept expose que des informations
des actions possibles sont présentes dans l’environnement. Ce concept a été appliqué
dans le domaine des SMA [5]. Le principe est de permettre à des agents d’interagir avec
d’autres agents en fonction de leur type.

Dans les SMA, l’utilisation des affordances permet, par exemple, de différencier les inter-
actions qu’un agent homme et un agent fourmi peuvent échanger avec un agent chaise.

Dans SAMP le fait que les agents acquièrent la capacité d’émettre ou recevoir des inter-
actions permet de simuler une partie du concept d’affordances. En gardant cet exemple
d’agents homme, fourmi et chaise, les affordances devraient permettre de différencier le
fait qu’un homme peut s’asseoir sur la chaise et la fourmi grimper sur la chaise. Dans
SAMP, nous pouvons créer une interaction grimper_sur_chaise et une interaction as-
seoir_sur_chaise. Ensuite, il suffirait de donner les compétences à la chaise pour re-
cevoir ces deux interactions et les compétences pour émettre la compétence asseoir_-
sur_chaise à l’agent homme et les compétences pour émettre l’interaction grimper_sur_-
chaise à l’agent fourmi. De cette manière, chaque agent pourra émettre une interaction
différente vers l’agent chaise.

4.4.3/ DÉFINITION DU COMPORTEMENT DES AGENTS

Les agents peuvent maîtriser des compétences et émettre ou recevoir des interactions.
Mais ils peuvent surtout exécuter des comportements. Ces comportements peuvent être
appliqués aux agents afin que ces derniers exécutent les instructions du comportement.
Toujours dans le but de faciliter la modélisation des SMA développés avec SAMP, nous
avons cherché à rendre le plus intuitif possible la définition des comportements.

Tout comme les agents, les comportements de SAMP possèdent des propriétés permet-
tant de différencier deux exécutions d’un même comportement. Nous le voyons dans
la suite de ce chapitre, ces propriétés sont initialisées lorsque les comportements sont
initialisés.

En plus des propriétés, les comportements possèdent des restrictions. Comme pour les
compétences des agents, ces restrictions permettent d’empêcher certains agents d’exé-
cuter des comportements particuliers. Les restrictions sur les comportements vérifient les
compétences et les propriétés que les agents possèdent. Une vérification est faite sur les
propriétés afin qu’un comportement se servant, par exemple, de la propriété vitesse d’un
agent ne soit pas exécuté par un agent n’ayant pas cette propriété. Pour cette même rai-
son, les compétences sont vérifiées afin qu’un agent n’ayant pas la compétence attaquer
ne puisse pas exécuter un comportement d’attaque.

Chaque comportement possède une liste composée de t-uplet comprenant le nom de la
propriété et son type.

52 CHAPITRE 4. SHINE AGENT MODELING PLATFORM

Dans notre exemple, les agents voulant exécuter le comportement des loups doivent
posséder les propriétés Niveau de Faim, Seuil de Faim, Perte de Faim à l’arrêt et Perte
de Faim en déplacement chacune de type entier.

Si un agent possède les propriétés pour exécuter un comportement, il est possible de lui
assigner ce comportement directement depuis l’interface graphique de SAMP-E.

Nous avons abordé et défini le fonctionnement et la définition des compétences, des
interactions et des agents. Nous allons maintenant expliquer comment modéliser le com-
portement des agents au sein de SAMP.

4.5/ COMPORTEMENTS DES AGENTS

Nous venons de voir comment paramétrer les agents dans SAMP. Nous allons maintenant
aborder le comportement de ces agents. Nous avons différencié deux types de compor-
tements qu’un agent pouvait avoir : un comportement de réaction et un comportement
d’altération que nous décrivons plus en détail dans la suite de cette section. Ces deux
comportements différents peuvent être exécutés en même temps par un agent.

Dans cette section, nous décrivons chacun de ces deux types de comportements en
commençant par décrire le fonctionnement des comportements de réaction basés sur un
système d’états et d’événements. Nous continuons en expliquant le principe des états à
multi-niveaux et nous terminons en décrivant les comportements d’altérations.

4.5.1/ UN SYSTÈME D’ÉTAT ET D’ÉVÉNEMENTS

Les agents de SAMP suivent un comportement basé sur des états et des événements. A
chaque instant de sa vie, un agent est dans un état. Chaque état est modélisé par une
série d’instructions qui permettent de définir le comportement qu’auront les agents se
trouvant dans cet état. Tant qu’un agent est dans un état, il exécute en boucle le compor-
tement modélisé par cet état. Ce comportement à base d’états et d’événements est ce
que nous avons appelé le comportement de réaction. L’agent réagit à des événements
qui le font changer d’état.

Un agent ne peut se trouver que dans un seul état à un instant t. Il est capable de changer
d’état au cours de son cycle de vie. Un changement d’état s’opère lorsqu’un événement
est déclenché. Enfin, il est possible de passer des paramètres en entrée d’un état au
moment où un agent entre dans cet état. Cela permet de modifier le fonctionnement d’un
état.

Cette approche d’états et d’événements est similaire à un système à événements discrets
(DEVS [35] par exemple). La différence réside principalement dans le fait que dans un
système à événement discret, les états ont une durée de vie qui, lorsqu’elle est atteinte,
oblige le système à changer d’état. De plus, les états suivants, lors d’une transition, dé-
pendent du temps écoulé dans l’état courant. Dans notre approche, les états n’ont pas
de durée de vie et le temps écoulé durant un état n’a pas d’impact sur la désignation de
l’état suivant.

Ce principe d’état permet d’économiser des ressources. En effet, à chaque frame, un
agent teste si un événement s’est déclenché pour le faire changer d’état. Lorsqu’un agent

4.5. COMPORTEMENTS DES AGENTS 53

est dans un état, il connaît les événements qui pourraient le faire quitter cet état. Ainsi,
un agent ne va tester que les événements en lien avec l’état dans lequel il se trouve au
moment des tests.

Mais ce système d’état et d’événement permet aussi de gérer une partie des règles du
jeu. Si un agent est incapable de réaliser une action (commandée par le joueur) lorsqu’il
est dans un état particulier, lorsque le joueur va déclencher l’événement pour réaliser
cette action interdite (en appuyant sur un bouton de la manette par exemple), cet événe-
ment ne sera pas du tout récupéré par l’agent.

Les événements peuvent prendre plusieurs formes :
— Une interaction venant d’un autre agent ou de l’environnement ;
— La modification de la valeur d’une propriété de l’agent ;
— Lorsqu’un état a fini de s’exécuter. Certains états modélisent un comportement qui

a une durée définie. Cela peut être le cas lorsqu’un état joue une animation ;
— Lorsque le joueur transmet une instruction à son personnage.

Plusieurs événements peuvent être liés à un même état et mener, lors de leur activation,
à des états différents ou identiques.

Définition (Événements concurrents). Des événements sont appelés concurrents s’ils
sont déclenchés en même temps (durant la même frame) et qu’ils sont reliés à l’état
courant d’un agent.

Le fait qu’un agent ne puisse être que dans un seul état à la fois impose que lorsque
des événements sont concurrents, il soit nécessaire de faire un choix. Pour se faire, si
plusieurs événements sont liés à un même état, un ordre de priorité sera donné à ces
liaisons afin d’ordonner l’ordre d’analyse des événements et ainsi gérer une éventuelle
concurrence entre ces événements.

Les tables 4.3, 4.4 et 4.5 donnent les différents états dans lesquels peuvent se trou-
ver les loups, les moutons et l’herbe pour notre exemple. Ces tables donnent aussi les
événements permettant de passer d’un état à un autre.

Nous constatons qu’un même état peut servir pour réaliser des tâches similaires avec des
comportements différents. Par exemple, l’état Recherche est le même que ce soit pour
rechercher de la nourriture ou un partenaire pour se reproduire. Seuls les paramètres en
entrée de l’état permettront de déterminer la cible qui sera recherchée. Cela permet de
factoriser les comportements.

Il est utile aussi de préciser la raison qui amène un agent loup ou un agent mouton à
quitter l’état Recherche pour entrer à nouveau dans l’état Recherche lorsque la propriété
de faim atteint un certain seuil. Cela arrive lorsque l’agent loup ou l’agent mouton est
en recherche d’un partenaire pour la reproduction. Il quittera l’état de Recherche d’un
partenaire pour entrer dans un état de Recherche de nourriture.

Nous voyons dans la sous-section suivante qu’il est possible de créer des états à partir
d’autres états.

4.5.2/ DIFFÉRENTS NIVEAUX D’ÉTAT

SAMP permet à des utilisateurs sans connaissance des logiques de développement in-
formatique de modéliser des SMA. Mais SAMP permet aussi à des utilisateurs maîtrisant

54 CHAPITRE 4. SHINE AGENT MODELING PLATFORM

TABLE 4.3 – Table d’états des agents Loup et événements permettant de changer d’état

Cible
Déplacement Recherche Manger

S
ou

rc
e

Déplacement — Faim < Seuil —
Recherche — Faim < Seuil —

Manger Reproduction = 0 Reproduction = 1 —
Se reproduire Animation terminée — —

Attaquer — — Mouton tué
Mort — — —

Cible
Se reproduire Attaquer Mort

S
ou

rc
e

Déplacement — — Faim = 0
Recherche Loup trouvé Mouton Trouvé Faim = 0

Manger — — Faim = 0
Se reproduire — — Faim = 0

Attaquer — — Faim = 0
Mort — — —

TABLE 4.4 – Table d’états des agents Mouton et événements permettant de changer
d’état

Cible
Déplacement Recherche Manger

S
ou

rc
e

Déplacement — Faim < Seuil —
Recherche — Faim < Seuil —

Manger Reproduction = 0 Reproduction = 1 —
Se reproduire Animation terminée — —

Attaquer Animation terminée — —
Mort — — —

Cible
Se reproduire Attaqué Mort

S
ou

rc
e

Déplacement — — Faim = 0
Recherche Mouton trouvé Herbe Trouvée Faim = 0

Manger — — Faim = 0
Se reproduire — — Faim = 0

Attaquer — — Faim = 0
Mort — — —

TABLE 4.5 – Table d’états des agents Herbe et événements permettant de changer d’état

Cible
Coloniser Attente Mort

S
ou

rc
e Coloniser — — Mangé

Attente Colonisation != 0 — Mangé
Mort — — —

la logique du développement informatique de modéliser des comportements plus com-
plexes grâce à une grande expressivité. Pour offrir cette simplicité d’utilisation, en conser-

4.5. COMPORTEMENTS DES AGENTS 55

vant une grande expressivité, SAMP offre la possibilité de modéliser des états contenant
eux-mêmes des états.

Dans notre exemple, les agents loup et mouton ont un état appelé Déplacement qui
leur permet de se déplacer aléatoirement dans l’environnement. Cet état est lui-même
composé d’un état Se Déplacer Vers qui prend en entrée la destination cible. Dans l’état
Déplacement, un tirage aléatoire est fait pour obtenir la destination cible qui est passée
en paramètre de l’état Se Déplacer Vers. Une fois la destination atteinte, l’état Se Dé-
placer Vers émet un événement qui a pour effet qu’une nouvelle destination est tirée
aléatoirement avant de retourner dans l’état Se Déplacer Vers.

Nous constatons alors deux niveaux de modélisation :

— La modélisation des comportements primitifs par des développeurs expérimentés.
Ce niveau de modélisation nécessite de connaître la logique de développement :
compréhension des boucles, des conditions, des variables, ...

— La modélisation des comportements abstraits. Ce niveau requiert une faible
connaissance de la logique de développement, mais requiert de maîtriser la logique
métier. Il s’agit principalement d’assembler des comportements primitifs entre eux.

Lorsqu’un agent se trouve dans un état lui-même composé d’états, il exécute le compor-
tement de l’état de plus bas niveau (le plus primaire), mais les événements qui permettent
de changer d’état sont testés en partant de l’état le plus abstrait. Lorsqu’un agent quitte
un état, cet état est mis en pause et l’agent pourra revenir dans cet état et reprendre son
exécution là où il l’avait arrêtée.

Dans notre exemple, si un agent mouton est dans l’état Déplacement, son état courant
est en fait l’état Se Déplacer Vers. Pour quitter l’état Se Déplacer Vers, nous l’avons vu, il
faut que l’agent atteigne sa destination. Mais, si l’agent est attaqué par un loup, il quittera
l’état Déplacement (et par conséquent, il quittera aussi l’état Se Déplacer Vers) pour
entrer dans l’état Attaqué.

Les états comme les événements sont modélisés à l’aide de graphes de nœuds. Dans la
suite de cette section, nous décrivons les différents types de modèles (appelés vues) qu’il
est possible de créer dans SAMP. Nous décrivons aussi les différents nœuds qui peuvent
composer ces modèles.

4.5.3/ LES ALTÉRATIONS

Nous l’avons vu précédemment, le comportement des agents est divisé en deux caté-
gories. Nous avons déjà défini le comportement de réaction des agents. Nous allons
aborder le comportement d’altération.

Nous l’avons vu, lorsqu’un agent est dans un état, il ne gère que les événements en
lien avec cet état. De plus, si plusieurs événements sont concurrents, l’agent ne gère
qu’un seul de ces événements. Afin d’éviter que certains événements impactant l’agent
ne soient perdus, nous avons mis en place les altérations. Tous les événements ne sont
pas sujets à être gérés dans les altérations. Seuls ceux entraînant un changement des
propriétés des agents doivent être gérés dans les altérations.

Définition (Altération). Une altération est la conséquence d’un événement qui impacte
un agent sans que celui-ci y réagisse directement.

56 CHAPITRE 4. SHINE AGENT MODELING PLATFORM

Il est important de bien différencier les altérations des réactions. La conséquence d’une
réaction est que l’agent change d’état. La conséquence d’une altération est que l’agent
va subir des modifications de propriétés. Il est possible qu’un événement soit à la source
d’une réaction et d’une altération. Lorsqu’un agent loup attaque un mouton, le mouton
va réagir en entrant dans un état où il va jouer une animation signifiant qu’il est attaqué.
Dans cet état, il ne perdra pas de point de vie. En plus de cette réaction, le mouton va
subir une altération que lui fera perdre des points de vie.

Dans notre exemple, le système de faim est une altération. A intervalle régulier, les agents
loup et mouton voient leur propriété de Faim diminuée. Il s’agit d’une altération dont
l’événement est la fin d’un timer. Il s’agit d’une altération, car l’agent dont la propriété
de Faim diminue ne va pas réagir directement à cette diminution. Il réagira au fait que la
propriété de Faim est passée sous un certain seuil.

Dans son comportement d’altération, du fait qu’un agent ne modifie pas son compor-
tement à cause d’un événement, un agent peut être altéré par plusieurs événements,
même concurrents. Le comportement altération ne permet pas aux agents de changer
d’état ni d’effectuer des actions autres que des modifications de leurs propriétés.

4.6/ MODÉLISATIONS DES COMPORTEMENTS PAR QUATRE VUES

Dans la section précédente, nous avons décrit les deux types de comportements pouvant
être exécutés par les agents de SAMP. Dans cette section, nous allons expliquer comment
modéliser ces comportements.

Pour rappel, dans un but de permettre l’utilisation de SAMP à un grand nombre d’utili-
sateurs, et ce, quelles que soient leurs compétences en développement informatique,
la modélisation des comportements se fait par l’utilisation de graphes de nœuds (aussi
appelés vues). Chaque vue peut être modélisée dans une interface graphique proposée
par SAMP-E. Il existe 4 types de vues différentes :

— Les vues de comportement qui sont les points d’entrée des comportements de
réaction ;

— Les vues d’état permettant de modéliser le comportement des états dans lesquels
les agents peuvent se trouver ;

— Les vues d’événement permettant de modéliser un événement ;

— Les vues d’altération permettant de modéliser le comportement des altérations.

Dans cette section, nous commençons par décrire les généralités concernant les vues et
les nœuds qui les composent. Nous continuons cette section en définissant le fonction-
nement de chaque type de nœud et les liens qui permettent de les unir. Nous terminons
en décrivant les 4 vues : d’altération, de comportement, d’état et d’événements. Pour
chaque type de graphe de nœuds que nous décrivons, nous donnons les spécificités le
concernant : nœuds (in)utilisables, sémantique et usage des nœuds.

4.6.1/ LE PARAMÉTRAGE DES VUES

SAMP permet de modéliser les comportements des agents en créant des vues. Chacune
de ces vues a un rôle particulier que nous décrivons dans la suite de cette section. Dans

4.6. MODÉLISATIONS DES COMPORTEMENTS PAR QUATRE VUES 57

cette sous-section, nous nous attardons sur la manière de paramétrer ces vues. Les
vues permettent de faire une projection du méta-modèle. Les paramètres permettent de
configurer ces projections.

Ce paramétrage possède plusieurs buts :

1. Ajouter des variables qui seront accessibles dans chaque instance de la vue. Ces
variables peuvent être de tous les types connus par SAMP. Elles peuvent être re-
quises en entrée du comportement et peuvent être accessibles en sortie du com-
portement ;

2. Ajouter à une vue des propriétés requises par les agents pour qu’ils exécutent le
comportement associé. Ces propriétés peuvent être de tous les types connus par
SAMP ;

3. Pour les vues de comportement et d’état, indiquer si durant l’exécution de ces com-
portements les agents se déplacent dans leur environnement. SAMP automatise le
déplacement des agents exécutant un comportement paramétré comme un com-
portement de déplacement. Cela permet de faire se déplacer les agents (en se
référant à leur vitesse et leur direction) sans que l’utilisateur n’ait besoin de modéli-
ser se déplacement ;

4. Pour les vues associées à une vue état, indiquer s’il s’agit d’un état actif ;

La figure 4.6 montre la fenêtre de SAMP-E permettant de réaliser ce paramétrage. Les
chiffres 1 à 4 permettent d’identifier le rôle des zones de paramétrage définies dans
l’énumération ci-dessus. Nous voyons dans la suite de cette section un exemple de para-
métrage.

FIGURE 4.6 – Fenêtre de paramétrage d’un modèle

58 CHAPITRE 4. SHINE AGENT MODELING PLATFORM

4.6.2/ GÉNÉRALITÉS SUR LES NŒUDS

Nous nous attardons ici pour décrire les généralités concernant les nœuds présents dans
les vues de SAMP afin d’avoir toutes les informations nécessaires à la bonne compréhen-
sion de la suite de cette section.

Les nœuds des vues de SAMP peuvent posséder deux types différents d’entrées-sorties :

— Des entrées-sorties de types valeurs qui permettent de transmettre des valeurs
entre les nœuds d’un graphe de nœuds. Dans SAMP-E les entrées-sorties de va-
leurs peuvent prendre deux apparences : une apparence ronde © pour la valeur
simple et une apparence carrée 2 pour les valeurs sous forme de tableau. Chaque
type de valeur (entier, flottant, booléen, instance de classe, etc) est représenté par
une couleur particulière.

— Des entrées-sorties de types activation. Ce type d’entrée-sortie permet d’indiquer
aux nœuds du graphe quand ils doivent démarrer leur exécution. Lorsqu’un nœud
a terminé de s’exécuter, il active l’une de ses sorties activation. Le nœud possédant
l’entrée activation reliée à la sortie activation qui vient de s’activer, s’active alors. Le
nœud ayant fini son exécution se désactive. Nous avons appelé cet enchaînement
d’activation le flux d’exécution. Les entrées-sorties de type activation ont une appa-
rence triangulaire . dans SAMP-E, la pointe indique le flux d’activation (en entrée
ou en sortie).

La figure 4.7 représente deux nœuds dans SAMP-E. Le premier, à gauche, permettant de
créer une entité 3D dans le moteur Shine Engine qui possède une entrée et une sortie
d’activation ainsi que 8 entrées et une sortie de valeur normales. Le deuxième nœud, à
droite, permet de récupérer tous les agents présents dans l’environnement. Il possède
une entrée et une sortie d’activation, deux entrées de valeur normales et une sortie de
valeur sous forme d’un tableau. Une dernière chose à noter, c’est la valeur d’entrée
bShow du nœud de gauche. Cette valeur d’entrée est de type booléen et possède un
bouton à cocher (la forme carrée sous bShow) permettant de paramétrer la valeur bShow
sans être obligé de connecter l’entrée de valeur à un autre nœud. Chaque entrée-sortie,
lorsqu’elle est connectée à une autre entrée-sortie, voit son apparence être modifiée : la
forme qui la représente se remplit (c’est le cas pour l’entrée de valeur Asker et la sortie
d’activation du nœud CShEnvironment::GetAllBehaviorAgent).

Les sorties de valeurs peuvent être de deux types différents : de type valeur de retour
ou de type argument. Les sorties de valeurs de type retour correspondent à des sorties
correspondant à la valeur de retour de la fonction modéliser par les nœuds auxquels elles
appartiennent. Les sorties de type argument correspondent à des arguments passés en
paramètre de la fonction des nœuds auxquels elles appartiennent et qui sont des argu-
ments de sorties. Afin de pouvoir les différencier, SAMP-E affiche, au survol de chaque
sortie par la souris, une info-bulle indiquant le type de sortie dont il s’agit.

Les nœuds permettant de modéliser les comportements peuvent être de 6 types diffé-
rents :

1. Entry : Ils indiquent les points d’entrée des modèles.

2. Exit : Ils indiquent les points de sortie des modèles.

3. State : Lorsque le flux de contrôle active un nœud state, cela indique que l’agent
va changer son état courant pour l’état indiqué par le nœud. Les nœuds states

4.6. MODÉLISATIONS DES COMPORTEMENTS PAR QUATRE VUES 59

FIGURE 4.7 – Exemple des différentes formes que peuvent prendre les entrées-sorties
des nœuds de SAMP

permettent d’exécuter le comportement modélisé dans les vues états que nous
abordons dans la suite de cette section (cf 4.6.5) ;

4. Event : Lorsqu’un event connecté à un state en cours d’exécution est déclenché,
l’agent change d’état pour passer dans celui qui a son entrée connectée à l’event.
Les nœuds events permettent d’exécuter les comportements modélisés dans les
vues événements que nous abordons dans la suite de cette section (cf 4.6.6) ;

5. Function : Ils permettent d’exécuter des fonctions accessibles depuis le moteur
Shine Engine ou dans des plugins. Les fonctions accessibles peuvent être des mé-
thodes, des surcharges d’opérateurs ou des blocs de condition ;

6. Variable : Ces nœuds permettent de stocker et utiliser des variables présentes dans
les modèles. Il peut s’agir de variables possédées par le modèle, de variables glo-
bales (provenant de l’environnement par exemple) ou de variable spécifique (delta
time par exemple).

Nous avons essayé de trouver un équilibre entre la facilité d’utilisation et une grande ex-
pressivité. Le nombre réduit de types de nœuds permet de ne pas alourdir la complexité
du système, mais nous estimons que ces différents nœuds offrent une grande expressi-
vité. Nous utilisons ce système dans des développements interne à Shine Research et
pour le moment, le système permet de modéliser tous les comportements voulus.

De plus, Shine Engine est un moteur multi-plateforme qui redéfinit les bibliothèques stan-
dard, de mathématiques et de système de fichiers. SAMP ayant accès aux fonctions de
Shine Engine, cela offre aux utilisateurs une grande panoplie de fonctions prête à l’em-
ploi.

Il est aussi possible d’importer des fonctions (qui seront accessibles sous la forme de
nœuds fonctions) depuis des plugins. Tout ce que SAMP ne permet pas de faire peut être
créé par un utilisateur confirmé (sous forme de code textuel) et importé dans SAMP.

Nous avons ajouté dans SAMP, en plus des nœuds décrits précédemment, des nœuds
particuliers afin de faciliter la modélisation et la lecture des vues. Par exemple, nous

60 CHAPITRE 4. SHINE AGENT MODELING PLATFORM

FIGURE 4.8 – Example de la modélisation d’une boucle for parcourant un tableau.

FIGURE 4.9 – Example de la modélisation d’une boucle foreach parcourant un tableau.

avons créé un nœud ForEach permettant le parcours d’un ensemble et un nœud IfNull
testant la valeur d’un pointeur. La possibilité d’ajouter des nœuds comme ceux-ci apporte
une utilisation simplifiée et permet aux utilisateurs de plus facilement développer des al-
gorithmes complexes et de faciliter la lecture d’une vue. Les figures 4.8 et 4.9 modélisent
le même comportement. Dans la figure 4.8, on récupère l’élément courant dans la boucle
en sortie du nœud CShArray::At alors que dans la figure 4.9 c’est le nœud foreach qui
fournit cette valeur. Le code généré est exactement le même, mais la lecture et l’utilisation
sont simplifiées.

Les nœuds state et event possèdent une synergie particulière : les sorties activation
d’un nœud state peuvent être de deux types différents : externe ou interne. Lorsqu’une
sortie activation d’un nœud state est externe, elle doit être connectée (directement ou
indirectement) à un nœud event avant d’être connectée à un nœud state. S’il s’agit d’une
sortie activation interne, cette sortie doit être connectée (directement ou indirectement) à
un nœud state sans qu’il y ait de nœud event entre les deux nœuds states.

Chaque nœud state peut posséder une infinité de sorties activation de type externe,
quelle que soit la modélisation de l’état qu’il représente. Les sorties activation internes
sont quant à elles définies par la modélisation de l’état. Nous décrivons comment définir
un événement interne dans la section 4.6.5.

Dans la suite de cette section, pour chaque type de modèle, nous donnons des précisions
sur le comportement de chaque type de nœud si nécessaire.

La figure 4.10 présente le méta-modèle de SAMP. On constate que chaque nœud
peut posséder un nombre indéfini d’entrées-sorties de chaque type. Il existe cependant
quelques exceptions :

— le nœud Variable ne possède pas d’entrée ou de sortie de type activation ;

— le nœud Entry ne possède qu’une sortie de type activation ;

— le nœud Exit ne possède qu’une entrée de type activation et une entrée de type
valeur ;

On constate aussi sur la figure 4.10 que les liaisons entre les différents nœuds sont
contraintes. Ces contraintes sont présentées dans le chapitre 6. Ainsi, il n’est pas pos-
sible d’avoir plusieurs connexions sur une même entrée de type valeur. Il n’est pas non
plus possible d’avoir plusieurs liens partant d’une même sortie d’activation. De plus, il est

4.6. MODÉLISATIONS DES COMPORTEMENTS PAR QUATRE VUES 61

à noter qu’un nœud événement doit, en entrée, être connecté (directement ou indirecte-
ment) à un nœud état et en sortie, il doit être connecté (directement ou indirectement) à
un nœud état ou un nœud de sortie.

FIGURE 4.10 – Diagramme de classes des éléments composants SAMP.

Pour terminer sur les généralités des graphes de nœuds, nous avons expliqué que les
nœuds state et event permettent, lorsqu’ils sont exécutés, de réaliser le comportement
modélisé dans les vues état et événement correspondantes. Ces nœuds state et event
doivent donc posséder des entrées-sorties correspondants aux entrées-sorties paramé-
trées pour les vues correspondantes.

Nous l’avons vue dans la sous-section 4.6.1, il est possible d’ajouter aux vues des va-
riables. Ces variables peuvent être des variables d’entrées ou de sortie. Dans la fi-
gure 4.11, nous avons la fenêtre de paramétrage de la vue état LookAt et un nœud
state Lookat correspondant à cette vue. La vue LookAt recherche, dans une zone définie
sur un plan par xMin, yMin, xMax et yMax, un agent de type TargetType. L’agent exécu-
tant cette recherche se déplace à une vitesse de speed. Une fois une cible trouvée, elle
est enregistrée dans Target. Nous constatons que la vue possède 6 variables d’entrées
(yMin, yMax, xMin, xMax, TargetType et Speed) ainsi qu’une variable de sortie (Target).
Nous retrouvons chacune de ces entrées-sorties sur le nœud correspondant.

Lorsque le nœud est activé, les valeurs d’entrées du nœud sont transmises à la vue et il
est possible de récupérer les valeurs de sorties de la vue depuis le nœud.

4.6.3/ VUE ALTÉRATION

Nous l’avons vu, les comportements de SAMP sont divisés en deux types distincts : les
réactions et les altérations. Comme nous l’avons expliqué, une vue altération permet de
modéliser le comportement de ce qui impacte un agent sans le faire changer directement
d’état.

Le premier élément que l’on peut extraire de cette définition, c’est qu’une vue altération
ne permet pas l’utilisation de nœuds state ni de nœuds event. Une vue altération ne

62 CHAPITRE 4. SHINE AGENT MODELING PLATFORM

FIGURE 4.11 – Exemple d’un nœud dont les entrées-sorties ont été générées

FIGURE 4.12 – Vue altération appliquée aux agents mouton

permet pas non plus l’utilisation des nœuds exit, car les comportements d’altération sont
actifs du début à la fin de la vie d’un agent.

Le fonctionnement de la vue altération est simple : il peut y avoir une infinité de flux
d’activation. Ils sont tous exécutés lors de la phase de PostUpdate. Le début de chaque
flux d’activation est modélisé par un nœud entry. Chacun de ces nœuds possède une
valeur entière permettant d’indiquer l’ordre dans lequel chaque flux d’activation est activé.
A chaque frame, lors de la phase PostUpdate, chaque nœud entry est activé et le flux
d’activation est exécuté et se termine lorsqu’un nœud terminant son exécution n’a aucune
de ses sorties d’activation connectées à aucun nœud.

La figure 4.12 représente la vue d’altération des moutons. Dans cette vue altération il y a
deux flux d’activation :

— Le premier, en haut, permet de gérer la faim des agents moutons. A chaque frame,
si le timer StarveTimer est terminé, l’agent perd de la faim.

— Le deuxième, en bas, permet de gérer la perte de point de vie en fonction de la
résistance de l’agent mouton et de la force de l’attaque qu’il subit (dans le cas où
cette fonctionnalité aurait été intégrée à notre exemple fil rouge).

4.6.4/ VUE COMPORTEMENT

Les comportements des agents de SAMP sont divisés en deux catégories : les altéra-
tions et les réactions. Dans la partie précédente, nous venons d’aborder les altérations
dans leurs fonctionnements et leurs modélisations à travers la vue altération. Nous allons
maintenant présenter le fonctionnement du comportement réaction qui lui est modélisé

4.6. MODÉLISATIONS DES COMPORTEMENTS PAR QUATRE VUES 63

FIGURE 4.13 – Vue comportement modélisant le comportement des agents mouton

au travers de 3 vues différentes. La première de ces vues est la vue comportement. Cette
vue est le point d’entrée du comportement réaction.

Dans la section 4.4.3, nous avons présenté le paramétrage d’un comportement sur un
agent. Il permet d’indiquer l’identifiant d’une vue comportement associé à l’agent. Un
modèle comportement possède un seul nœud entry permettant de définir le point de
démarrage de ce comportement. Ce nœud entry doit être directement où indirectement
connecté à un nœud state ou un nœud exit sans qu’un nœud event soit activé avant.

Lors de la phase d’initialisation du comportement, le flux d’activation démarre depuis un
nœud entry et va jusqu’à un nœud state ou exit. L’initialisation se termine et l’agent a
comme état actif le nœud state rencontré ou est détruit s’il rencontre un nœud exit.

Lorsqu’un nœud exit est activé, l’agent est considéré comme mort et il est supprimé de la
simulation. Cette mort est définitive. Il ne faut pas confondre cet état de mort à un état de
mort d’un personnage dans un jeu qui existerait encore dans le jeu en tant que cadavre.

La vue comportement peut contenir tous les nœuds proposés par SAMP. Il n’y a qu’une
seule restriction : une vue comportement doit posséder un et un seul nœud entry. Si un
agent ne possède pas de nœud exit c’est qu’il ne sera jamais détruit durant le cycle de
vie du SMA dans lequel il se trouve. Il peut mourir et disparaître visuellement, mais ne
sera pas détruit.

La vue comportement est la vue modélisant le comportement le plus abstrait d’un agent.

La figure 4.13 contient la modélisation du comportement des agents mouton de notre
exemple dans SAMP-E. On observe que ce comportement est composé de 3 états :

1. Un état MainSheep qui permet de factoriser le comportement principal du mouton
qui est de se déplacer, se nourrir et se reproduire. Cet état est le premier état activé
lorsque l’agent entre dans le comportement décrit ;

2. Un état hit activé lorsque l’agent est ciblé par une interaction d’attaque. Dans cet
état, l’agent joue une animation signifiant qu’il est attaqué. Lorsque l’animation est
terminée, l’agent retourne dans l’état MainSheep ;

3. Un état Death activé lorsque la valeur de faim de l’agent est inférieure à 0 ;

Nous pouvons constater qu’il est très simple de comprendre les actions exécutées par
ce comportement. Il est aussi très simple de modifier les actions réalisées par ce com-
portement. Par exemple, si l’on désire que les agents mouton meurent lorsqu’ils sont

64 CHAPITRE 4. SHINE AGENT MODELING PLATFORM

attaqués, il suffirait de relier la sortie d’exécution du nœud état hit à l’entrée OnEnter de
l’état Death.

La vue comportement est la vue la plus abstraite et permet de modéliser les comporte-
ments de haut niveau des agents.

4.6.5/ VUE ÉTAT

Le comportement des agents de SAMP est basé sur le principe décrit dans la section
4.5.1 : les agents exécutent en boucle le comportement défini par un état jusqu’à ce qu’un
événement le fasse quitter cet état pour entrer dans un nouvel état (ou pour mourir).

Une vue état permet de définir chaque comportement que les agents vont exécuter lors-
qu’ils seront dans cet état.

Une vue état permet de définir et gérer 4 flux d’activation différents. Chacun de ces flux
correspond à une phase de fonctionnement de la vue :

1. Un flux d’activation lorsqu’un agent entre dans l’état. Il s’agit en quelque sorte de la
phase d’initialisation de l’état et elle est appelée OnEnter ;

2. Un flux d’activation lors de la phase de PreUpdate du système. C’est durant cette
phase que l’agent exécutera les actions définies par l’état ;

3. Un flux d’activation lors de la phase de PostUpdate du système. C’est dans cette
phase que les tests pour des événements internes (décrits dans la suite de cette
section) seront exécutés ;

4. Un flux d’activation lorsqu’un agent quitte l’état. Ce flux est appelé OnLeave.

Aucune de ces phases n’est obligatoire et il est envisageable d’avoir un état qui ne définit
aucun comportement (pour un état de mort par exemple). Pour indiquer le point de départ
de chacun de ces flux d’activation une vue état possède 4 types de nœud entry, chacun
correspondant à un flux d’activation.

Nous l’avons vu précédemment, pour quitter un état, il est nécessaire qu’un événement
lié à cet état soit déclenché. Nous avons aussi vu que des nœuds événements peuvent
être connectés aux sorties activation d’un nœud state. Dans ce cas, nous appelons ces
événements des événements externes.

La figure 4.13 montre la modélisation dans SAMP-E de la vue comportement des agents
mouton. Dans cette vue, nous avons un nœud state MainSheep dont deux sorties
d’activation sont reliées à des nœuds event : Starvation < X:int et Receive Attack.
Il s’agit ici d’événements externes qui ne dépendent pas du résultat de l’exécution de
l’état MainSheep.

Nous avons aussi abordé les événements internes d’un état. Il s’agit d’événements dont
les conditions d’activation sont modélisées dans le flux d’activation de la phase PostUp-
date de la vue état. Dans la vue état, pour indiquer qu’un événement interne est déclen-
ché, il faut activer un nœud exit. Ainsi, lors de l’exécution du comportement d’un état, si
un nœud exit est activé, cela déclenchera un événement interne à l’état. Les événements
internes permettent, par exemple, aux états possédant des objectifs internes (se déplacer
vers une position, rechercher un agent dans l’environnement, ...) ou un temps d’exécu-
tion (durée d’une animation, durée d’un chronomètre, ...) d’indiquer qu’ils ont terminé leur
exécution.

4.6. MODÉLISATIONS DES COMPORTEMENTS PAR QUATRE VUES 65

La figure 4.14 montre la modélisation de la phase PostUpdate de l’état MoveTo dans
SAMP-E. Cet état a pour but de faire se déplacer un agent vers une destination. Lorsque
la destination est atteinte, l’état déclenche un événement internet permettant d’indiquer
à l’agent qui exécute le comportement de cet état qu’il est arrivé à destination et qu’il doit
quitter l’état MoveTo. Durant cette phase de PostUpdate, le flux d’activation va activer le
nœud exit lorsque la destination (donnée par la valeur du nœud Target) est atteinte par
l’agent. Le fait d’activer ce nœud exit déclenche un événement qui indique à l’agent qu’il
faut quitter l’état MoveTo.

Dans la figure 4.15, le nœud MoveTo est une instance de l’état MoveTo. Lorsque ce
nœud est activé l’agent entre dans l’état MoveTo est exécute son comportement. Lorsque
l’agent a atteint sa destination, l’événement interne de l’état MoveTo est déclenché ce qui
active la sortie d’activation PositionReached du nœud MoveTo.

FIGURE 4.14 – Modélisation de la phase PostUpdate de l’état MoveTo

FIGURE 4.15 – Modélisation de l’état random move

La figure 4.16 présente la fenêtre de paramétrage de l’état MoveTo. On constate tout
d’abord, en haut de la fenêtre, que l’état est movable et active. Le fait que l’état soit
movable indique que l’agent pourra se déplacer quand il sera dans cet état. Ce qui permet
d’automatiser le déplacement de l’agent en ne paramétrant que sa vitesse et sa direction.
Le fait que l’état soit active indique que les agents ayant pour état courant cet état, seront
actifs dans la gestion de leurs interactions et exécuteront un scan de leur environnement
(cf section 5.2).

La partie centrale de la fenêtre recense les variables présentes dans l’état. Ces variables
possèdent un identifiant, un type et trois valeurs booléennes déterminant si les variables
sont des tableaux (array), sont passées en entrées de l’état (In Variable) ou récupérées
en sorties de l’état (Out Variable).

Dans l’état Déplacement, il est nécessaire d’avoir 4 variables :

66 CHAPITRE 4. SHINE AGENT MODELING PLATFORM

FIGURE 4.16 – Fenêtre de paramétrage du modèle état Déplacement

— Target contenant la destination à atteindre est passée en entrée de l’état

— Step qui est une variable paramétrée à l’activation de l’état. Elle contient le pas de
déplacement effectué pour chaque milliseconde.

— Speed qui est une variable passée en entrée de l’état. Elle contient la vitesse de
déplacement de l’agent.

— Direction qui est une variable indiquant la direction du déplacement de l’agent. Cette
variable est paramétrée lors de l’activation de l’état en fonction de la Target et de la
position actuelle de l’agent.

La figure 4.15 représente une vue état dans laquelle est modélisé, dans SAMP-E, un com-
portement de déplacement aléatoire. Dans cette figure, nous voyons un nœud function
(GetNextVector3Value) permettant de générer, lors de la phase OnEnter de l’état, une
valeur aléatoire de type Vector3. Ce nœud function est activé lors de l’activation de l’état
par le biais du nœud entry de type On Enter. Le nœud function prend en entrée 6 valeurs
permettant d’indiquer les valeurs minimums et maximums du Vector3 généré. Dans notre
exemple, même si nous utilisons la 3D, toutes les positions sont situées sur un plan. C’est
pourquoi les valeurs minimum et maximum en Z sont fixées à 0. Les autres valeurs (pour
X et Y) proviennent de valeurs passées en entrée de l’état et stockées dans les variables
xMin, xMax, yMin et yMax.

Lorsque la fonction a généré le Vector3 elle active le nœud state StateMove. Ce nœud
prend en entrée deux valeurs : une valeur de vitesse initialisée avec une valeur passée
en entrée de l’état Déplacement aléatoire (Speed) et la destination du déplacement initia-
lisée avec la valeur générée par la fonction précédemment décrite. Lorsque l’événement
interne Position Reached de l’état StateMove est déclenché, la fonction de génération

4.6. MODÉLISATIONS DES COMPORTEMENTS PAR QUATRE VUES 67

est à nouveau activée pour recommencer une boucle de génération de destination et de
déplacement.

Le nœud StateMove est un nœud state qui, lorsqu’il est activé, va exécuter le com-
portement défini par l’état StateMove. Cet état StateMove est modélisé dans les fi-
gures 4.17, 4.18 et 4.14.

Cet état exécute un déplacement vers une destination donnée en tant que paramètre
d’entrée. L’état MoveTo est découpé en trois parties, chacune modélisant le comporte-
ment d’une phase : la phase OnEnter (fig. 4.17), PreUpdate (fig. 4.18) et PostUpdate
(fig. 4.14). Durant la phase OnEnter, l’état calcule la direction du déplacement en fonc-
tion de la position de l’agent exécutant le comportement et la destination ciblée. Ensuite,
un ControlledAgent est initialisé avec les valeurs de direction et de vitesse du déplace-
ment. Le ControlledAgent est un objet spécifique à SAMP permettant de contrôler faci-
lement le déplacement des agents de SAMP et le positionnement de leur représentation
graphique dans Shine Engine. Lorsqu’un comportement est paramétré comme Movable
(c’est-à-dire que les agents exécutant ce comportement peuvent se déplacer) une ins-
tance de Controlled Agent est automatiquement créée et utilisable par le comportement.
Durant la phase de PreUpdate, le ControlledAgent est mis à jour. Enfin, dans la phase
de PostUpdate, l’état teste si la destination est atteinte. Si c’est le cas, il active un nœud
exit déclenchant un événement interne permettant d’indiquer que l’état a terminé son
exécution.

Dans ces figures, on constate la présence de nœuds Behavior Agent. Ces nœuds per-
mettent d’accéder, depuis une vue, à l’instance de l’agent exécutant le comportement
modélisé. Le nœud Delta Time permet d’obtenir, durant les phases PreUpdate et Pos-
tUpdate, le temps écoulé depuis la dernière frame (cf section 2.1.3).

FIGURE 4.17 – Modélisation de la phase OnEnter de l’état MoveTo

FIGURE 4.18 – Modélisation de la phase PreUpdate de l’état MoveTo

68 CHAPITRE 4. SHINE AGENT MODELING PLATFORM

4.6.6/ VUE ÉVÉNEMENT

Le dernier type de modèle que nous avons mis en place dans SAMP est le type événe-
ment. Ce type de vue permet de modéliser les conditions de déclenchement des événe-
ments permettant aux agents de SAMP de changer d’état.

Ces vues ne possèdent qu’un seul flux d’activation (et donc qu’un seul nœud entry).

Lorsque l’entrée d’activation d’un nœud event est connectée à une sortie d’activation
d’un nœud state, à chaque frame, l’événement correspondant au nœud event est testé.
Lors de ce test, le flux d’activation de l’événement démarre du nœud entry de cet événe-
ment. Lorsqu’un nœud exit est activé, cela signifie que les conditions de déclenchement
de l’événement sont réunies et l’événement est déclenché. Si un nœud d’une vue évé-
nement termine son exécution et que sa sortie d’activation activée n’est reliée à aucun
autre nœud cela signifie que l’événement n’est pas déclenché.

Les événements peuvent retourner des valeurs. Pour qu’une valeur puisse être récupérée
lorsqu’un événement s’active, il faut que dans la vue de l’événement une propriété de la
vue soit paramétrée en tant que propriété de sortie. Lorsque l’événement est déclenché,
cette propriété sera alors accessible.

Certains événements sont générés automatiquement et ne requièrent pas de créer des
vues pour être utilisables sous forme de nœuds. Il y a deux types d’événements dans ce
cas là :

— Les événements déclenchés lorsqu’une interaction est reçue par un agent ;

— Les événements déclenchés lorsqu’une comparaison d’une propriété d’un agent
est vérifiée.

Dans la figure 4.13, il y a un nœud Receive Attack qui est un nœud événement activé
lorsque l’agent a reçu une interaction signifiant qu’il est attaqué. La valeur de sortie de
ce nœud événement contient la liste de toutes les interactions d’attaque reçues durant
la frame courante. Dans cette figure, il y a aussi un nœud Starvation < X:int qui est
un événement déclenché lorsque la propriété Starvation de l’agent est inférieure à la
valeur indiquée par X. La valeur de retour de ce nœud contient la valeur de la propriété
Starvation au moment du déclenchement de l’événement.

Les vues événement ne peuvent contenir de nœud event ou de state ce qui signifie que
leurs flux d’activation sont parcourus entièrement durant la frame où ils sont activés.

La figure 4.19 expose la vue modélisant l’événement ISNear de notre exemple. Cet évé-
nement se déclenche lorsqu’un agent exécutant le comportement est proche d’une po-
sition donnée en paramètre d’entrée de l’événement. Cet événement prend en entrée
la position cible et la distance à partir de laquelle l’événement considère l’agent comme
proche de sa cible.

FIGURE 4.19 – Modélisation de l’événement IsNear

4.6. MODÉLISATIONS DES COMPORTEMENTS PAR QUATRE VUES 69

4.6.7/ INSTANCIATIONS DES AGENTS

Lorsque tous les comportements ont été modélisés, que les interactions, les compé-
tences et les ressources agents ont été paramétrées, il reste une dernière étape avant
d’exécuter le système à l’aide de SAMP-X. Cette étape consiste à paramétrer les ins-
tances d’agent qui seront présentes dans la simulation.

Dans la section sur les agents (4.4), nous avons décrit les agents en tant que ressources.
Dans cette section, nous abordons les instances de ces ressources qui seront les agents
présents durant l’exécution du système.

Il existe deux solutions pour instancier des agents dans SAMP-X :

1. Utiliser un nœud function spécial permettant la création d’un nouvel agent. Ce
nœud prend en entrée le type du nouvel agent, le comportement qu’il exécutera, sa
position, la ressource permettant sa représentation graphique et une liste de para-
mètres correspondant aux propriétés de l’agent. Cette liste permet d’initialiser les
propriétés de l’agent lors de sa création.

2. Lors du chargement d’une scène (un niveau de jeu), SAMP-X parcours tous les ob-
jets de la scène chargée et créé un agent pour chaque objet de la scène possédant
une dataset 2 agent. La figure 4.20 montre une scène représentant notre exemple.
Dans cette scène, chaque objet est paramétré pour qu’un agent soit créé lors du
changement de la scène : chaque loup, chaque mouton et chaque carré d’herbe.
On voit, en bas à gauche de la figure, la zone de propriétés de l’objet sélectionné
(dont un zoom est affiché sur la droite de la figure). On voit qu’il est un agent de
type Sheep. On voit aussi qu’il est possible de donner des valeurs aux propriétés
de l’agent. Ces propriétés correspondent aux propriétés paramétrées sur les res-
sources agents (section 4.4). Dans la figure 4.20, l’objet sélectionné est une entité
3D représentant un loup. Elle est paramétrée pour instancier un agent Wolf et ini-
tialiser les différentes propriétés de cet agent.

SAMP permet donc, à l’aide de Shine Engine et de son éditeur, de modéliser les scènes
2D ou 3D des SMA exécutés dans SAMP-X et de paramétrer les instances des agents
présents au démarrage de la scène.

TABLE 4.6 – Instances des agents de la simulation

Nom Nb Type Cpt Propriétés Capacités
A 1 Mouton — — —
B 1 Mouton — Résistance = 4 —

C, D 2 Loup — — —
E 1 Loup — PdV = 9 —

La table 4.6 expose un exemple de différentes instances d’agents correspondant à notre
exemple de proies-prédateurs. Chaque instance d’un agent doit être d’un type défini lors
de la modélisation de la population (table 3.1). Dans la table 4.6, nous paramétrons l’ins-
tanciation de 5 agents, 2 de type mouton et 3 de type loup. Nous voyons que parmi les
agents de type loup, l’agent E modifie la valeur par défaut du nombre de points de vie

2. Les datasets sont des structures de données que l’on peut ajouter aux propriétés d’un objet afin
d’étendre les informations qu’il expose. Pour SAMP, ces datasets permettent d’indiquer quels objets repré-
senteront des agents dans SAMP-X et de donner des valeurs aux propriétés des agents qui seront créés.

70 CHAPITRE 4. SHINE AGENT MODELING PLATFORM

FIGURE 4.20 – Scène modélisée dans Shine Engine.

et que l’agent B modifie la valeur de résistance par défaut des agents mouton. Les va-
leurs par défaut des propriétés des agents ont été paramétrées lorsque l’on a défini les
différents types d’agents et que des propriétés leur ont été assignées (cf 4.4).

Il n’y a pas d’agent herbe présent dans cette table, car dans l’exemple, les agents herbe
seront générés aléatoirement au démarrage du système.

4.7/ BILAN

SAMP, aidé de ses trois modules, permet la modélisation et le paramétrage de toutes les
composantes d’un système multi-agent. De la création des agents à leur instanciation en
passant par la modélisation de leur comportement, SAMP permet aux utilisateurs débu-
tants de créer des SMA sans utiliser de langage textuel, mais offre aussi la possibilité aux
utilisateurs confirmés d’importer du contenu dans SAMP.

Le méta-modèle SAMP-M a été réduit au maximum afin d’offrir une grande expressivité
en conservant une grande accessibilité. Enfin, l’instanciation des agents, rendue possible
par l’utilisation de l’éditeur de Shine Engine, permet une plus grande compréhension de
ce qui est modélisé et qui sera exécuté.

SAMP est utilisé pour modéliser notre exemple fil rouge. Nous l’avons aussi utilisé pour
modéliser un autre système qui est un jeu vidéo de plateforme en 2D que nous abordons
dans la section 8.6. Certains éléments sont encore perfectibles. Notamment la compré-
hension de certains graphes de nœuds lorsque les vues modélisées contiennent beau-
coup de nœuds. Certains paramètres peuvent paraître obscurs et un soin particulier sera
apporté à la documentation et à l’affichage d’info-bulles à destination des utilisateurs.

Les surcoûts potentiels dus à l’implémentation des compétences et des interactions sont
maîtrisés. Ce système d’automatisation apporte un véritable avantage tant au niveau de
la simplicité de modélisation, mais aussi du fait qu’il permet de gérer une partie des règles
du jeu.

L’approche états-événements apporte une optimisation des calculs en évitant de gérer
des événements qui n’ont pas d’intérêt en fonction des états dans lesquels se trouvent
les agents. De plus, cette approche permet elle aussi de paramétrer une partie des règles

4.7. BILAN 71

du jeu en empêchant les agents de réaliser des actions qui ne leur sont pas permises en
fonction des états dans lesquels ils se trouvent.

L’apport le plus important est sur la facilité d’utilisation et la simplicité de modélisation. La
section suivante se concentre sur le fonctionnement et l’implémentation des interactions
afin d’étudier s’il y a la possibilité d’améliorer leur traitement.

5
LES INTERACTIONS

Les jeux vidéo mettent en scène des univers où se côtoient de nombreux personnages et
entités. Chaque personnage ou entité est capable d’interagir avec les autres. Ces inter-
actions permettent de rendre l’univers "vivant", cohérent et immersif. Dans certains jeux
vidéo les interactions sont partie intégrante de la jouabilité. Les interactions sont pré-
sentes partout : lorsqu’un personnage en voit un autre, lorsqu’un personnage en touche
un autre ou lors d’une communication.

A chaque frame, chaque agent peut potentiellement rechercher des interactions qui pour-
raient l’intéresser et qui auraient été laissées dans l’environnement par d’autres agents.
Ou bien, chaque agent pourrait rechercher quels autres agents sont intéressés par des
interactions qu’il va émettre.

Dans les SMA, un agent obtient des informations, à propos de son environnement ou
des autres agents, en scannant son environnement proche ou en étant notifié par son
environnement ou d’autres agents. Cette capacité à percevoir son environnement est ap-
pelée perception. Danny Weyns et al. [86] décrivent les perceptions comme "la capacité
d’un agent à ressentir son environnement proche, résultant en une perception de l’envi-
ronnement". Quand les perceptions sont utilisées, il y a deux possibilités : la première
est basée sur le fait que l’agent émetteur notifie le récepteur. La seconde se base sur
le fait que l’agent récepteur va scanner son environnement proche pour découvrir des
interactions qui pourraient le concerner.

Andrew Frank [38] explique "qu’un agent peut être décrit par une fonction de perception
et une fonction de décision". Ruzena Bajcsy [11] quant à lui explique "qu’il devrait être
axiomatique qu’une perception n’est pas passive, mais active. Ainsi, l’activité de percevoir
c’est explorer, sonder, chercher. [...] Nous ne faisons pas que voir, nous regardons.".
Frank et Bajcsy sont d’accord pour définir un agent comme actif quand il perçoit son
environnement. Dans le développement de notre approche, nous ne sommes pas aussi
définitifs.

Nous considérons les perceptions et les communications comme des interactions. Une
communication est une interaction où chacun des agents est conscient qu’il échange des
informations. Nous avons vu quelques possibilités pour un agent d’envoyer une interac-
tion aux autres : par l’approche tableau blanc, par l’approche des phéromones [28] ou
par l’approche des notifications [18].

Dans chacune de ces approches, les agents sont actifs dans le management des per-
ceptions : en écrivant ou en lisant le tableau blanc, en plaçant ou en cherchant des phé-
romones ou en notifiant les agents récepteurs. Dans le cas des notifications, seul l’agent

73

74 CHAPITRE 5. LES INTERACTIONS

émetteur est actif, le récepteur pouvant être inactif (jusqu’à la réception de la notification).

Nous en avons déduit la définition suivante :

Définition (Approche classique). L’approche classique est un système dans lequel les
agents (émetteur et récepteur) doivent être actifs durant leurs perceptions.

5.1/ L’APPROCHE CLASSIQUE

Afin d’optimiser au mieux les SMA développés à l’aide de SAMP, nous avons cherché
à optimiser ce qui nous semblait le plus consommateur de ressources. Dans un SMA,
les interactions entre les agents sont très nombreuses et peuvent représenter une part
importante de la consommation de ressources. Dans un jeu vidéo, chaque personnage
non-joueur (PNJ) 1 est capable de percevoir son environnement, les autres PNJ et le
joueur. Dans des jeux vidéo très peuplés, les interactions entre les PNJ se révèlent très
nombreuses.

Pour commencer, nous posons cette question : Si un arbre tombe dans une forêt, mais
que personne n’est là pour l’entendre, fait-il du bruit ? 2

Cette question métaphysique amène une réflexion intéressante pour les SMA : le fait
d’émettre un son est une interaction à l’encontre des agents capables de l’entendre. Mais
si personne n’entend ce son, pourquoi consommer des ressources en l’émettant.

Dans un SMA, cet exemple pourrait avoir deux solutions :
1. Tout au long de sa chute, l’arbre va scanner son environnement pour voir si des

agents sont capables de percevoir son interaction sonore et va les notifier s’il en
trouve ;

2. Au début de sa chute, l’agent va placer dans l’environnement un marqueur indiquant
qu’une interaction sonore est en cours. Les agents à proximité devront scanner leur
environnement pour pouvoir utiliser cette interaction.

La première solution est très gourmande, car l’agent émetteur de l’interaction va scanner
inutilement son environnement à la recherche d’agents cibles qui n’existent pas.

La seconde solution semble plus économe, mais elle possède un autre problème. Pre-
nons un agent que nous plaçons dans une pièce. Cet agent va continuellement scanner
son environnement afin d’être notifié si une interaction apparait à proximité.

Dans ces deux cas, nous avons des agents qui consomment inutilement des ressources
que ce soit au moment de l’émission d’une interaction ou en scannant l’environnement à
la recherche d’interactions.

5.2/ INTERACTIONS INVERSÉES ET AGENTS ACTIFS/PASSIFS

Afin de pallier les problèmes de sur-consommation amenés par le fonctionnement de
l’approche classique, nous avons développé une nouvelle approche de gestion des inter-
actions.

1. Dans un jeu vidéo, les personnages non-joueur sont toutes les entités (agents) peuplant l’environne-
ment, mais qui ne sont pas contrôlés par le joueur.

2. https ://en.wikipedia.org/wiki/If_a_tree_falls_in_a_forest

5.2. INTERACTIONS INVERSÉES ET AGENTS ACTIFS/PASSIFS 75

Pour développer cette approche, nous avons isolé les deux principaux problèmes de
l’approche classique :

1. Les agents émettent des interactions même si aucune cible n’est présente pour les
recevoir ;

2. Les agents scannent leur environnement même si aucune interaction n’est émise
dans leur proximité.

Pour pallier aux problèmes qui font que les agents émettent des interactions sans que
des agents cibles ne soient à proximité, nous avons développé une approche basée sur
des agents actifs et passifs. Nous posons ces deux définitions :

Définition (Agent Actif). Un agent est actif lorsque les actions qu’il réalise impactent sa
perception du système ou que les actions qu’il réalise impactent la perception des autres
agents du système.

Définition (Agent Passif). Un agent passif est un agent qui n’est pas actif.

Au cours de son existence, un agent change de statut en fonction de l’état dans lequel
il se trouve. Lorsque l’on paramètre une vue état, il est possible d’indiquer s’il s’agit d’un
état actif ou passif. Lorsqu’un agent entre dans un état, il acquiert le statut paramétré par
l’état. Dans notre exemple, les états actifs sont les états de déplacement (moveTo). Seuls
les agents actifs vont scanner leur environnement. Nous voyons par la suite les autres
actions que réalisent les agents actifs.

Cette distinction agents actifs et passifs est complétée par un système de tableaux
d’interactions à émettre permettant aux agents de savoir vers quels autres agents
émettre quelles interactions. Cette fonctionnalité est proche des approches publish/sub-
scribe [39, 31] à ceci près que SAMP, ce ne sont pas obligatoirement les agents intéressés
par les interactions qui vont souscrire eux mêmes sur ces interactions. Dans le cas de
systèmes publish/subscribe, lorsqu’un agent est intéressé par une interaction, c’est lui
même qui a la tâche d’aller souscrire à cette interaction.

Chaque tableau contient une liste de couples composés de l’interaction à émettre et de
l’agent cible de l’interaction. Chaque agent possède un de ces tableaux et, à chaque
frame, le tableau de chaque agent est parcouru. Pour chaque élément du tableau, l’inter-
action enregistrée est envoyée à l’agent qui lui est associé.

Ces tableaux d’interactions à émettre peuvent être remplis par n’importe quel agent qui
est actif. Lorsqu’un agent est actif, il scanne son environnement à la recherche :

1. d’agents qui pourraient être intéressés par des interactions qu’il peut émettre ;

2. d’agents pouvant émettre des interactions qui pourraient l’intéresser.

Dans le premier cas, l’agent va enregistrer, pour chacune des interactions qu’il peut
émettre, les agents intéressés par ces interactions. Dans le deuxième cas, il va lui-même
s’enregistrer dans les tableaux d’interactions à émettre des agents qu’il a scannés.

Afin d’optimiser cette phase de scanne de l’environnement, nous avons diminué le
nombre de scans effectués par certains agents. Lorsqu’un agent A, en scannant son
environnement, détecte un agent B, A va vérifier si B peut être la cible d’interactions qu’il
peut émettre. A va aussi vérifier s’il peut être la cible d’interactions émises par B. Si dans
la même frame, B scanne son environnement, il devrait aussi scanner A. Comme A a déjà
scanné B, il n’est pas nécessaire que B exécute ces vérifications. Ainsi, chaque agent
possède un autre tableau contenant une liste d’agents qu’il a déjà scannés ou qui les ont

76 CHAPITRE 5. LES INTERACTIONS

déjà scanné. Lorsqu’un agent détecte, lors d’une phase de scan de l’environnement, un
autre agent, il vérifie d’abord si cet agent l’a déjà scanné en parcourant son tableau. Si
c’est le cas, il ne va pas analyser cet agent et va continuer son scan de l’environnement.

Avec notre système, nous espérons réduire le nombre de scans de l’environnement ef-
fectués par les agents pour le fonctionnement des interactions. Nous avons vu comment
les agents peuvent s’enregistrer dans les tables d’interactions à émettre. Il reste à dé-
crire comment chaque agent peut se désinscrire des listes dans lesquelles il est inscrit
lorsque c’est nécessaire. Chaque agent possède un tableau dans lequel on ajoute un
élément lorsque l’agent est ciblé par une interaction. Chaque élément est un couple com-
posé de l’agent émetteur et de l’interaction émise. A chaque frame, en plus de vérifier
les agents à proximité intéressés par leurs interactions, les agents actifs vont vérifier s’ils
doivent désinscrire des agents de leur tableau d’interactions à émettre ou se désinscrire
eux-mêmes des tableaux d’interactions à émettre des autres agents.

Il existe alors quatre possibilités, pour un agent, d’être désinscrit d’un tableau d’interaction
à émettre.

1. Lorsque l’agent émetteur cesse d’émettre l’interaction ;

2. Un agent émetteur actif désinscrit les agents qui ne sont plus capables de recevoir
les interactions qu’il émet (obstacle, distance, perte de compétence ...) ;

3. L’agent récepteur actif se désinscrit des interactions qu’il n’est plus capable de re-
cevoir ;

4. L’agent récepteur meurt.

Toutes ces fonctionnalités sont transparentes pour l’utilisateur. Il n’a pas besoin de sa-
voir comment les interactions sont émises pour pouvoir utiliser ce système. Le but étant
d’optimiser les interactions tout en gardant la simplicité d’utilisation de SAMP. Nous allons
dans la suite de ce chapitre aborder l’envoi des interactions.

5.3/ L’ENVOI DES INTERACTIONS

Dans les SMA les interactions, qu’il s’agisse de communications verbales ou de per-
ceptions, permettent aux agents d’échanger des informations. Lorsque des agents inter-
agissent entre eux, ils s’échangent des informations.

Afin de rendre ces informations compréhensibles par tous les agents du système, il est
nécessaire de les formaliser. Si un agent émet une interaction à destination d’un autre
agent, il est nécessaire que l’agent récepteur puisse recevoir ce message, mais aussi
qu’il puisse le comprendre.

En plus du fait que les messages doivent être lisibles et compréhensibles pour les agents
qui les reçoivent, ils doivent permettre de transmettre des informations diverses et va-
riées. Lorsqu’un agent attaque un autre agent, l’interaction émise doit contenir son type
(une attaque) et des informations comme la puissance de l’attaque, le type d’attaque
(tranchant, perforant, ...) ou de possibles effets secondaires (empoisonnement, brûlure,
renversement, ...).

Les interactions ont toutes le même format. Elles sont composées : du type de l’interac-
tion, de son identifiant, de son destinataire, de son émetteur et d’un tableau contenant

5.3. L’ENVOI DES INTERACTIONS 77

les valeurs utiles à l’analyse de l’interaction. Ce dernier tableau peut contenir des va-
leurs de n’importe quel type afin de pouvoir transmettre tout ce dont a besoin la cible de
l’interaction pour l’analyser.

Dans notre exemple, lorsqu’un agent loup L attaque un agent mouton M, l’interaction est
composée comme suit :

— Type : "Attaque" ;

— Identifiant : Attaque_001 ;

— Destinataire : "M" ;

— Emetteur : "L" ;

— Valeurs : «"Force", 1» ;

Dans cet exemple, l’interaction attaque transmet la valeur de force de l’attaquant pour
que la cible puisse agir en fonction de cette information. Mais cette même interaction
aurait pu être plus complexe et, par exemple, transmettre une information sur le type
de l’attaque. Dans ce cas, nous aurions ajouté un élément dans le tableau : <"Type",
e_type_tranchant>. La valeur e_type_tranchant aurait été de type énumération. Cette
information aurait pu être utilisée afin d’infliger plus de dégâts aux moutons qui auraient
été sensibles aux attaques tranchantes.

Afin de pouvoir analyser toutes les interactions qui l’ont ciblé durant une même frame,
chaque agent possède un tableau, vidé au début de chaque frame, dans lequel il enre-
gistre toutes les interactions reçues lors de la frame courante. A chaque frame, durant la
phase de PostUpdate, chaque agent va parcourir ce tableau et réagir, ou non, à chaque
interaction. Il est possible pour l’agent de réagir de trois manières différentes à une inter-
action :

1. S’il est dans un état connecté à cette interaction, il va alors changer d’état. Ceci
est possible, car dans SAMP, lorsqu’une interaction est déclenchée, elle génère un
événement. Et les événements sont les sources de changement d’état ;

2. Il peut, indépendamment de l’état dans lequel il est, être altéré par cette altération
et donc modifier ses propriétés en fonction ;

3. Il peut enfin décider de ne pas réagir à cette interaction qui, dans son état actuel,
n’a pas d’intérêt pour lui.

Il est à noter que lors d’une même frame, un agent peut être la cible de plusieurs interac-
tions du même type en provenance de différents agents. Dans ce cas-là, si l’agent réagit
aux interactions de ce type, il devra analyser les données de chaque interaction de ce
type qu’il a reçue durant cette frame.

Dans les vues de SAMP, il existe un nœud fonction particulier permettant de faire l’envoi
d’une interaction. La figure 5.1 expose deux nœuds. Le premier, à gauche, permet à un
agent d’émettre l’interaction Attack. On constate que ce nœud requiert deux valeurs en
entrée. La première, Target correspond à la cible de l’interaction. La seconde, Strenght,
correspond à la valeur de force de l’agent émetteur requise par l’interaction.

Le second nœud, à droite, est un nœud permettant aux agents d’être notifiés lorsqu’ils
sont ciblés par une interaction Attack. Les nœuds de réception d’interactions fonctionnent
comme les nœuds event : ils doivent être connectés à une sortie d’activation d’un nœud
state et permettent, lorsqu’ils sont déclenchés, de faire changer d’état un agent. Un nœud

78 CHAPITRE 5. LES INTERACTIONS

FIGURE 5.1 – Exemple de nœuds utilisés pour émettre et recevoir une interaction

de réception d’interaction est déclenché lorsque l’agent a été ciblé au moins une fois
par l’interaction concernée par le nœud. En sortie du nœud Receive Attack, il y a deux
valeurs : la première est un tableau contenant tous les agents ayant émis l’interaction
concernée en ciblant l’agent courant, et ce, durant la frame courante. La seconde valeur
est un tableau des forces que chaque agent transmet lors de l’émission de l’interaction. Il
est alors possible de parcourir toutes les interactions d’un même type reçues durant une
même frame.

5.4/ ANALYSES

Cette approche de gestion des interactions permet de diminuer le nombre de scans de
l’environnement par les agents sans impacter le nombre d’interactions émises : Si les
agents sont actifs constamment, ils effectueront le même nombre de scans de leur en-
vironnement que les agents dans une approche classique. Dès que des agents sont
passifs, il y a une réduction du nombre de scans.

Nous avons des perspectives d’avenir pour cette approche. Nous allons chercher no-
tamment à améliorer le parcours des tableaux d’enregistrements d’interactions que les
agents émettent à chaque frame. Le fonctionnement en tableau n’est pas satisfaisant
en termes d’accès. La première idée était de remplacer ces tableaux par des map per-
mettant un accès en lecture plus rapide. Mais les axes les plus prometteurs pour ces
tableaux seraient de les transformer en matrices. Différents travaux de recherche ont
permis le développement de matrice d’interactions :

L’approche IODA [52] propose une matrice d’interactions permettant de paramétrer les
interactions qu’une instance d’un type d’agent peut émettre vers une autre instance d’un
type d’agent. Cette matrice n’a pas le même objectif que les tableaux de l’approche SAMP

(qui gèrent les interactions à envoyer et non les interactions possibles entre agents) mais
l’idée d’une matrice est prometteuse.

Nous avons eu des échanges lors des JFSMA 2018 durant lesquelles nous avons pré-
senté l’approche décrite dans cette section. Une discussion nous a guidés vers l’ap-
proche MIC* de Abdelkader Gouaïch, Fabien Michel et Yves Guiraud [41] qui propose
l’utilisation de trois matrices d’interactions. Ces trois matrices permettent aux agents de
se situer dans l’environnement et d’exposer les résultats de leurs perceptions. L’envi-
ronnement de MIC* est discret ce qui ne permet pas de l’appliquer facilement dans le
domaine du jeu vidéo. De plus, il ressort de nos premières réflexions que de nombreuses
informations et actions seraient dupliquées entre le moteur physique présent dans SAMP

5.4. ANALYSES 79

et l’environnement de déploiement de MIC* (déplacements des agents, positionnements,
...). Cependant, l’utilisation de matrices semble être une solution très intéressante pour
améliorer la manière dont les interactions à émettre sont stockées par les agents.

Nous exposons plus tard dans ce mémoire, entre autres, les expérimentations et les
validations de cette approche. Il est notamment intéressant de s’attarder sur l’efficacité
de cette approche, mais aussi du coût en mémoire des tableaux d’interactions.

Le chapitre suivant décrit comment nous générons et exécutons les SMA modélisés dans
SAMP.

6
GÉNÉRATION ET EXÉCUTION

Une fois que tous les agents, leurs interactions, leurs compétences et leurs comporte-
ments ont été modélisés et instanciés, il est possible d’exécuter le SMA. Pour l’exécution
du SMA modélisé avec SAMP, nous avons étudié deux possibilités.

La première consistait en la création d’une machine virtuelle dans laquelle les modèles
pouvaient être exécutés. Cette solution n’est pas la plus efficace pour notre objectif d’opti-
misation des SMA. Le fonctionnement d’une machine virtuelle consomme des ressources
en plus du système qu’elle exécute. Cette solution a donc rapidement été abandonnée
aux profits de la seconde.

La seconde solution qui s’est alors imposée à nous était la génération de code dans
un langage natif, compilable et exécutable. Dans le domaine des jeux vidéo, et particu-
lièrement quand il s’agit de console de jeux, les API fournies par les constructeurs de
périphériques sont principalement développées en C++ et/ou compatibles C++. De plus,
Shine Engine est lui aussi développé en C++. Ceci a guidé notre choix final : les SMA
modélisés dans SAMP doivent être transformés en code en C++ qui sera compilé et exé-
cuté.

Ce chapitre explique comment le code est généré à l’aide de SAMP et comment SAMP fait
appel à des outils externes pour compiler et exécuter ce qui a été généré. Nous commen-
çons par décrire comment les règles syntaxiques des modèles de SAMP sont vérifiées
afin d’empêcher les utilisateurs de faire des erreurs de modélisation. Nous continuons en
expliquant comment la génération du code est faite puis nous terminons en expliquant
comment les utilisateurs peuvent exécuter les SMA générés afin de les tester ou de les
intégrer à un jeu.

6.1/ LES TRANSFORMATIONS MODEL2MODEL ET MODEL2TEXT

Les comportements modélisés dans SAMP respectent le méta-modèle que nous avons
défini (figure 4.10). Il est nécessaire de vérifier que les vues modélisées par les utilisa-
teurs respectent les règles imposées par le méta-modèle. Pour nous assurer de ceci,
nous avons décidé d’utiliser une approche model to model (M2M). Nous avons aussi
cherché comment réaliser la génération du code à partir des éléments modélisés par les
utilisateurs. Pour cela, nous avons utilisé une approche basée sur les transformations
model to text (M2T).

Dans cette section, nous abordons ces concepts afin de savoir s’il peut se révéler utile

81

82 CHAPITRE 6. GÉNÉRATION ET EXÉCUTION

de les mettre en place dans SAMP.

6.1.1/ MODEL TO MODEL

Les transformations model to model (M2M) ont pour objectif de permettre de convertir un
modèle en un autre modèle. Des travaux de recherche ont été menés afin de standardiser
et améliorer le domaine des transformations de modèles. Le consortium Object Manage-
ment Group (OMG), qui a pour but de standardiser un grand nombre de domaines de
l’informatique et de l’industrie, propose MetaObject Facility (MOF) [44], un méta-modèle
standard. Le standard UML est lui-même basé sur le standard MOF. Atlas Transformation
Language ATL [48] s’inspire des travaux d’OMG sur les transformations.

Ces outils de transformations de modèles permettent d’automatiser les transformations
de modèles. Nous ne cherchons pas à automatiser la transformation de notre méta-
modèle SAMP-M en un autre modèle, mais à vérifier que les modèles produits par les
utilisateurs respectent les règles définies par SAMP-M.

Il existe de nombreux travaux ayant pour objectif la vérification des transformations [13].
Certains travaux proposent une méthodologie pour effectuer une vérification manuelle
des transformations [73]. D’autres travaux de recherche ont permis de développer des
outils et algorithmes permettant l’automatisation de ces tests. Dans ces travaux, Erwan
Brottier [22] définit un procédé pour automatiser les tests des données générées. Il ex-
plique qu’il y a 3 étapes dans ce procédé :

1. La décomposition du méta-modèle en plusieurs partitions représentant les types
simples et les cardinalités du méta-modèle ;

2. A partir des partitions générées, la création de fragments de modèle qui peuvent
être testés indépendamment des autres ;

3. La création de modèles valides pour les tests des fragments de modèles précédem-
ment générés.

La spécificité de notre système est que les vérifications doivent se faire en temps réel. A
chaque fois que l’utilisateur veut réaliser une action, nous le notifions si l’action souhaitée
(ne) peut (pas) être réalisée directement. Une deuxième passe est effectuée lorsque
l’action a été réalisée afin de vérifier si une erreur n’a pas été indirectement causée
par cette action. C’est en partie pour ces raisons que nous avons décidé de développer
notre propre système de vérification directement intégré à SAMP, ne requérant aucun outil
externe. Cependant, nous nous sommes basés sur l’approche M2M pour réaliser notre
propre développement.

6.1.2/ MODEL TO TEXT

La génération Model to text (M2T) permet de convertir un modèle en texte. La version de
M2T qui nous intéresse ici est le Model to Code (M2C) permettant de convertir un modèle
en code respectant la syntaxe d’un langage précis.

Tout comme les transformations M2M, il existe de nombreux outils et algorithmes trans-
formant des modèles en code. On peut notamment citer MOFScript [63] qui définit des
règles de génération de code basées sur les modèles MOF. La méthodologie de MOF-
Script est de rendre chaque élément du modèle indépendant des autres et de générer le

6.2. LE CONTRÔLE DES ERREURS 83

code correspondant à chaque élément indépendamment des autres. MOFScript définit
des règles de transformation pour chaque élément. MOFScript possède un outil permet-
tant l’édition de modèle MOFScript et la transformation en code.

La complexité liée aux transformations nécessaires de nos modèles pour pouvoir utiliser
des outils externes, nous a décidé à développer notre propre mécanisme de transfor-
mation M2C directement dans SAMP. Cependant, nous avons adopté la méthodologie
de MOFScript qui est d’appliquer les règles de transformation sur des éléments rendus
indépendants les uns des autres où les seuls liens sont les transitions entre les éléments.

Dans la suite de ce chapitre, nous expliquons comment nous avons mis en place le
contrôle des erreurs pour accompagner la modélisation faite par les utilisateurs, la géné-
ration du code à partir des vues, le paramétrage défini dans SAMP-E ainsi que la compi-
lation de ce code en un plugin compatible avec Shine Engine.

6.2/ LE CONTRÔLE DES ERREURS

Dans la sous-section 4.6.2, nous avons vu les règles définissant les possibilités offertes
aux utilisateurs pour modéliser des comportements. Ces règles permettent d’éviter que
les comportements modélisés soient incohérents avec le méta-modèle de SAMP, et ainsi
que le code puisse être généré.

Afin de guider au mieux les utilisateurs, SAMP propose une vérification en deux étapes
afin de repérer les erreurs et notifier les utilisateurs de la présence de ces erreurs par le
biais de son interface graphique. Il est à noter que SAMP permet d’ajouter dans une vue
seulement les nœuds autorisés dans cette vue. Nous ne considérons pas cette fonction-
nalité comme faisant partie du système de contrôle des erreurs, mais il permet d’éviter
que des erreurs dans la syntaxe des comportements modélisés ne soient créées.

La première étape consiste en une analyse des erreurs à la volée. Lorsqu’un utilisateur
cherche à réaliser une action qui se révèle être interdite, SAMP ne permet pas de valider
l’action. Par exemple, il peut s’agir d’empêcher un utilisateur de créer un lien entre deux
entrées ou deux sorties de nœuds, de créer un lien entre une entrée et une sortie dont
les valeurs ne sont pas compatibles (et qu’il se révèle impossible de convertir le type
de la valeur source dans le type de la valeur cible). Cette première étape permet de
vérifier les actions qu’un utilisateur cherche à réaliser, mais elle ne vérifie pas les erreurs
indirectement créées par ces actions.

C’est pourquoi nous avons mis en place une deuxième étape de vérification sur toute la
vue une fois qu’une action a été validée. Cette étape réalise une vérification de tout le
modèle courant. Les erreurs relevées par cette étape peuvent comprendre, par exemple,
que la suppression d’un nœud fasse qu’une entrée d’un autre nœud se retrouve sans
valeur.

L’interface graphique de SAMP permet de notifier l’utilisateur des erreurs présentes lors-
qu’il est en cours de réalisation d’une action ou des erreurs présentent dans le modèle
courant. Chaque notification est visible dans une fenêtre dédiée en lien avec un affichage
particulier sur le modèle, à l’emplacement de l’erreur. Il est alors simple pour l’utilisa-
teur de savoir où sont les erreurs et d’obtenir des informations complémentaires sur ces
erreurs afin de pouvoir les corriger sans trop de difficulté.

Nous avons dressé la liste de toutes les erreurs qu’un utilisateur peut créer lorsqu’il mo-

84 CHAPITRE 6. GÉNÉRATION ET EXÉCUTION

FIGURE 6.1 – Liens impossibles 1

délise un comportement dans SAMP. D’abord, les erreurs détectées lors de la première
phase :

— Relier plusieurs sorties de valeurs sur une même entrée de valeur. Car dans ce
cas, il serait impossible de déterminer quelle valeur récupérer (figure 6.1) ;

— Avoir plusieurs liaisons sur une même sortie d’exécution. Ceci afin de ne pas avoir
plusieurs flux d’activation actifs en même temps (figure 6.1) ;

— Relier une sortie de valeur à une entrée d’exécution ou une sortie d’exécution à une
entrée valeur. Ces deux types d’entrées-sorties ont des rôles totalement différents
et ne peuvent pas être connectés entre eux (figure 6.2) ;

— Relier (directement ou indirectement) une sortie d’exécution d’événement externe
d’un nœud state à une entrée d’exécution d’un nœud state sans passer par l’entrée
d’exécution d’un nœud event. La règle citée précédemment est valable ici aussi. Il
est nécessaire, pour passer d’un état à un autre, qu’un événement soit déclenché
(figure 6.3(i)) ;

— Relier (directement ou indirectement) une sortie d’exécution de type événement
interne d’un nœud state à un nœud event. La règle est qu’un agent ne réagit qu’à
un seul événement en même temps et que les événements concurrents peuvent
être priorisés (figure 6.3(ii)) ;

— Relier une sortie de valeur de type T à une entrée de valeur de type V et que T ne
peut être converti 1 en V. Ceci afin d’éviter toute erreur de conversion de type lors
de la compilation (figure 6.3(iii)) ;

— Relier deux entrées ou deux sorties entre elles afin d’éviter des boucles lors de la
génération de code (figure 6.4) ;

— Supprimer un nœud qui ne peut pas l’être : Le nœud exit point d’une vue événement
ou le nœud OnEnter d’une vue comportement sont obligatoires.

Les figures 6.1, 6.2, 6.3 et 6.4 exposent toutes les liaisons qu’il est interdit de réaliser lors
de la modélisation d’un comportement dans SAMP-E et listées précédemment.

Ci-dessous, nous énonçons les anomalies détectées lors de la seconde phase :

— Vérifier que toutes les entrées de valeur possèdent une valeur. il est à noter que
SAMP sait si une entrée possède une valeur par défaut, dans ce cas, si aucune
valeur n’est indiquée, ce n’est pas une erreur qui est affichée, mais simplement un
avertissement ;

1. SAMP permet de savoir si un type peut être converti, en un autre type, par héritage ou par une sur-
charge d’opérateur.

6.3. GÉNÉRATION DU CODE 85

FIGURE 6.2 – Liens impossibles 2

FIGURE 6.3 – Liens impossibles 3

— Vérifier que la valeur d’une sortie valeur est bien générée quand on la requiert.
Par exemple, si une valeur provenant d’un nœud fonction est utilisée, mais que ce
nœud fonction n’a pas encore été activé au moment où sa valeur est requise, une
erreur est relevée.

6.3/ GÉNÉRATION DU CODE

Pour la génération de code, la figure 6.5 présente les quatre interfaces utilisées par l’en-
semble des éléments générés par SAMP. Chaque élément composant les SMA modélisés
dans SAMP hérite d’une de ces interfaces :

1. CShAgentInstance. Chaque agent crée dans SAMP génère une classe héritant de
l’interface CShAgentInstance ;

2. CShSkills. Chaque compétence génère une classe héritant de l’interface CShSkills ;

3. CShInteraction. Chaque interaction génère une classe héritant de l’interface CShIn-
teraction ;

4. CShModel. Chaque vue modélisée dans SAMP génère une classe héritant de l’in-
terface CShModel ;

Chaque classe CShAgentInstance possède un tableau de CShSkills qui correspond aux
compétences que l’agent maîtrise. Le fait de maîtriser des compétences permet à l’agent
d’émettre ou recevoir des interactions qui sont stockées dans deux tableaux de CShIn-
teractions (un pour les interactions qu’il peut émettre et l’autre pour les interactions qu’il
peut recevoir). Chaque agent peut exécuter un comportement (représenté par la classe
CShBehavior) et autant d’altérations qu’il veut (représenté par la classe CShAlteration).

86 CHAPITRE 6. GÉNÉRATION ET EXÉCUTION

FIGURE 6.4 – Liens impossibles 4

6.3.1/ LES CLASSES CShAgentInstance, CShSkills ET CShInteraction

Les classes héritant de CShAgentInstance, CShSkills et CShInteraction sont générées à
partir des informations issues des différentes fenêtres de paramétrages de SAMP. Nous
allons aborder les points qui nous semblent les plus intéressants quant à ces générations
de classes.

Les agents de SAMP possèdent des propriétés et celles-ci peuvent être accessibles aux
autres agents. Pour rappel, nous avons mis en place un facilitateur qui permet à chaque
agent de décider comment il partage ses propriétés aux autres agents (lesquelles? et à
qui?).

Chaque classe agent est générée avec deux méthodes pour chaque type de propriétés
qu’un agent possède. La première permet de récupérer une propriété d’un certain type
(getter) et la seconde permet de changer la valeur des propriétés pour un type (setter).
Ces méthodes possèdent toutes les mêmes types de retours et d’arguments :

ESetGetReturn GetProperty_XXX(CShIdentifier PropertyIdentifier ,
CShAgentInstance * pAsker,
XXX & value);

ESetGetReturn SetProperty_XXX(CShIdentifier PropertyIdentifier ,
CShAgentInstance * pAsker,
const XXX & value);

En argument de ces méthodes, on trouve :

— PropertyIdentifier qui est un identifier de la propriété 2 ;

— pAsker qui est de type CShAgentInstance et qui représente l’agent qui fait la de-
mande d’accès ou de modification sur la propriété ;

— value qui est du type de la valeur à récupérer ou modifier. Dans la méthode
pour accéder à la propriété (getter), cette valeur est paramétrée dans la méthode
GetProperty_XXX seulement si le facilitateur de l’agent décide de transmettre cette
valeur à l’agent requérant. Dans le cas contraire, elle n’est pas modifiée .

La valeur de retour de ces méthodes est une énumération qui peut prendre les différentes
valeurs suivantes :

2. Chaque propriété générée possède un identifier sous forme d’entier permettant une recherche plus
rapide qu’avec une chaîne de caractères.

6.3. GÉNÉRATION DU CODE 87

FIGURE 6.5 – Diagramme de classes de SAMP-X

— OK dans le cas où l’accès ou la modification ont été acceptés par le facilitateur
de l’agent. Il est à noter que le facilitateur peut décider de renvoyer une valeur
approximative de la propriété même s’il renvoie OK (Dans le cas d’une coopération
truquée par exemple) ;

— NOT_ALLOWED dans le cas où l’accès ou la modification ont été refusés par le facili-
tateur de l’agent ;

— NOT_EXIST dans le cas où l’agent ne possède pas la propriété indiquée en argu-
ment. Le facilitateur peut, dans le cas où la propriété n’existe pas, décider de re-
tourner la valeur NOT_ALLOWED plutôt que NOT_EXIST.

Tous ces paramétrages doivent, à l’heure actuelle être fait directement dans le code.
Mais pour faciliter l’utilisation par des utilisateurs novices, nous allons développer une
interface permettant de paramétrer les facilitateurs des agents. Dans notre exemple, un
agent mouton possède ces deux méthodes pour accéder et modifier les propriétés de
type entier (int) comme présenté dans le code suivant :
ESetGetReturn GetProperty_Int(CShIdentifier PropertyIdentifier ,

CShAgentInstance * pAsker,
int & value)

{
if (pAsker.type() == "sheep")
{
if (PropertyIdentifier == "starvation")
{
value = self.starvation;
return(OK);

}
else if (PropertyIdentifier == "resistance")
{

value = self.resistance;
return(OK);

}
else
{
return(NOT_EXIST);

}
}
else
{
return(NOT_ALLOWED);

}

88 CHAPITRE 6. GÉNÉRATION ET EXÉCUTION

}

ESetGetReturn SetProperty_Int(CShIdentifier PropertyIdentifier ,
CShAgentInstance * pAsker,
int value)
{
if (pAsker.type() == "sheep")
{
if (PropertyIdentifier == "starvation")
{
self.starvation = value;
return(OK);

}
else if (PropertyIdentifier == "resistance")
{
self.resistance = value;
return(OK);

}
else
{
return(NOT_EXIST);

}
}
else
{
return(NOT_ALLOWED);

}
}

Dans ces méthodes, on constate trois possibilités :

1. Si l’agent requérant (pAsker) est un agent de type Mouton, il peut accéder ou mo-
difier les valeurs de l’agent possédant les valeurs :

— Si la valeur existe, elle est modifiée ou assignée au paramètre value et la
méthode retourne la valeur OK ;

— Si la valeur n’existe pas, la méthode retourne NOT_EXIST.
2. Si l’agent n’est pas un agent de type mouton, la méthode retourne la valeur

NOT_ALLOWED.

Les conditions de l’exemple sont basiques. Mais il est possible de faire des tests plus
complexes en vérifiant, par exemple, si l’agent requérant possède une compétence par-
ticulière ou si un objet dans son inventaire est présent.

6.3.2/ LES CLASSES CShModel

Nous avons vu comment étaient générées les classes permettant le fonctionnement des
compétences et des interactions des agents. Nous allons maintenant expliquer comment
sont générées les classes permettant l’exécution des comportements.

Pour rappel, les comportements des agents sont modélisés dans des graphes de nœuds
dans lesquels chaque nœud permet de définir une partie du comportement. Il existe 4
types de vues : les vues comportement, les vues état, les vues événement et les vues
altération.

Les vues événement et état peuvent être utilisées dans d’autres vues. C’est pourquoi
nous avons décidé de générer une classe C++ pour chaque vue. Lors des exécutions, il

6.3. GÉNÉRATION DU CODE 89

suffira d’instancier la classe correspondant à la vue désirée afin de pouvoir exécuter le
comportement qu’elle définit.

Chaque vue possède un ou plusieurs points d’entrée modélisés par des nœuds entry
point. C’est à partir de chacun de ces nœuds que nous démarrons la génération de code
de chaque vue. Nous parcourons le flux d’activation partant de chaque nœud entry point
jusqu’à ce qu’un nœud exit point soit atteint ou que le flux d’activation soit stoppé.

Le fait d’exécuter la génération de cette manière permet de ne pas avoir à gérer les
nœuds qui ne sont pas reliés à un flux d’activation. De plus, nous le verrons dans la suite
de cette section, cela permet aussi la gestion de la portée des variables et la gestion de
la fermeture des blocs.

Avant de faire ce parcours des flux d’activations, nous faisons une recherche des nœuds
importants existants dans la vue. Il s’agit des nœuds entry points afin de connaître les
points d’entrées de la génération ainsi que les nœuds states et events afin de pouvoir
générer la déclaration, l’instanciation et l’initialisation des instances des classes de ces
nœuds. Lorsqu’une instance est générée à partir d’un nœud state ou event, le nom de
cette instance sera celui de l’identifier du nœud correspondant. En effet, dans SAMP-E,
chaque nœud de chaque vue possède un identifier unique généré pour être compatible
avec la syntaxe C++ de nommage des variables.

En plus des variables contenant les instances décrites précédemment, chaque classe
héritant de CShModel possède une variable membre pointant sur l’instance de l’agent
exécutant le comportement de la classe. Cette variable est appelée AgentPerformer.

Une fois la définition de la classe terminée, nous pouvons générer la déclaration de la
classe ainsi que les définitions du constructeur, du destructeur et de la méthode d’initia-
lisation de la classe. Une fois cela réalisé, nous pouvons passer générer les définitions
des méthodes OnEnter, OnLeave, OnPreUpdate et OnPostUpdate.

Chaque nœud génère un code particulier pour chacune de ces méthodes. Cette spécifi-
cité permet une génération unitaire du code ce qui facilite le développement, la mainte-
nance et la correction de la génération.

Dans la suite de cette section, nous décrivons le Code Manager permettant de gérer les
transmissions des valeurs entre les nœuds au moment de la génération du code ainsi
que la gestion de la portée des variables pour permettre la gestion des blocs de code.

6.3.3/ Code Manager : UN GESTIONNAIRE DE GÉNÉRATION DE CODE

Afin de nous aider dans le développement de notre générateur de code, nous avons mis
au point un gestionnaire permettant de gérer divers aspects de la génération de code.

Lorsqu’un nœud possède une valeur de sortie de type retour (cf 4.6.2), il créé le code
correspondant lors de sa génération. Pour ce faire, il demande au Code Manager de
générer une variable du type de la valeur (avec un nom de variable inutilisé) et de lui
assigner sa valeur de retour. Dans le même temps, il va ajouter des informations sur cette
variable dans un tableau du Code Manager qui fonctionne un peu comme un dictionnaire
de données. Ces informations sont :

— Le nom de la variable ;

— Le type de la variable ;

90 CHAPITRE 6. GÉNÉRATION ET EXÉCUTION

FIGURE 6.6 – Exemple du tableau de blocs et de variables du Code Manager

FIGURE 6.7 – Exemple de modélisation d’une condition if-else

— Le pointeur du nœud qui possède la valeur ;

— Le pointeur de la sortie de valeur du nœud.

Lorsqu’un nœud possède une entrée de valeur, reliée à une sortie de valeur d’un autre
nœud, il va demander au Code Manager de lui retourner le nom de la variable correspon-
dant. Si le Code Manager ne possède pas d’information sur cette variable, c’est que la
variable requise n’a pas encore été générée. Cela peut être dû au fait que le nœud qui de-
vait générer cette variable n’a pas encore été activé. Il s’agit d’une erreur de modélisation
qui aura été détectée par le contrôle des erreurs (cf 6.2).

Les variables générées sont stockées dans un tableau du Code Manager. Il s’agit d’un
tableau à deux niveaux (Figure 6.6) permettant de gérer la portée des variables dans les
différents blocs d’instructions du code généré :

— Le premier niveau liste tous les blocs d’instructions créés. On considère qu’un bloc
d’instructions à l’indice i dans le tableau est contenu dans le bloc d’instructions à
l’indice i-1. Le bloc d’instructions d’indice 0 est le bloc d’instructions de plus haut
niveau. La portée des variables dans ce bloc d’instructions est globale ;

— Le deuxième niveau permet de lister toutes les variables du bloc d’instructions.

Le dernier élément du premier niveau de ce tableau est toujours le bloc courant dans
lequel le code est généré. Lorsqu’un bloc est ouvert par un nœud (if, for, ...), un nouvel
élément est ajouté au premier niveau. Et lorsqu’une variable est générée, elle est ajoutée
dans le dernier élément du premier niveau. Lorsqu’un bloc est fermé, le dernier élément
de premier niveau est retiré du tableau.

En plus de permettre la gestion de la portée des variables, le Code Manager permet aussi
de gérer quand doivent se terminer les blocs créés par des nœuds générant plusieurs flux
d’activation. Un nœud générant plusieurs flux d’activation est, par exemple, un nœud if
qui va générer un flux d’activation pour sa sortie Alors et un pour sa sortie Sinon. Le
code manager est capable de détecter quand les deux flux d’activation se rejoignent et
de fermer les blocs ouverts lors de la génération de chacun de ces flux d’activation.

Le but étant d’obtenir, depuis le modèle de la figure 6.7, un code de la forme :

6.3. GÉNÉRATION DU CODE 91

if (condition)
{

instruction1
instruction2

}
else
{

instruction3
}

instruction4

et de ne pas obtenir des codes de la forme :

if (condition)
{

instruction1
instruction2

instruction4
}
else
{

instruction3

instruction4
}

6.3.4/ RÈGLES DE TRANSFORMATIONS

Dans cette sous-section, nous allons aborder les règles de transformations qui sont appli-
quées par les nœuds lorsque ceux-ci sont sollicités pour générer du code. Nous dressons
la liste de chaque nœud et donnons, pour chacun, la ou les règles de transformation le
concernant. Certains nœuds peuvent avoir plusieurs règles de transformation dépendant
de la vue dans laquelle ils se trouvent ou dépendant de leurs paramètres.

Dans la suite de cette sous-section, nous écrivons les transformations dans un pseudo-
code très proche du C/C++. La valeur de retour de chaque fonction de génération corres-
pond au code qui sera généré. Nous commençons par décrire deux routines de généra-
tion de code commune à chaque nœud.

6.3.4.1/ UNE GÉNÉRATION COMMUNE

Chaque nœud possède sa propre fonction de génération de code. Cependant, il est pos-
sible de mutualiser certains traitements que nous avons placés sous formes de deux
routines communes.

La première routine commune se trouve au début de la fonction de génération de code
de chaque nœud possédant au moins une entrée activation. Cette routine permet de
déterminer s’il faut fermer ou non le bloc courant, en coordination avec le Code Manager
(cf 6.3.3), pour générer le code du nœud. Lorsque chaque nœud démarre la génération
de son code, il interroge le Code Manager afin de savoir s’il fait partie du bloc courant ou
non. S’il ne fait pas partie du bloc courant, le nœud va alors générer une fermeture de

92 CHAPITRE 6. GÉNÉRATION ET EXÉCUTION

FIGURE 6.8 – Exemple de la génération de code avec un nœud if

bloc (}). Le Code Manager va alors lui indiquer s’il doit générer son code ou attendre. La
figure 6.8 permet de mieux visualiser ce que fait ce code.

On remarque dans la figure 6.8 que le nœud C est connecté au nœud if deux fois.
Lorsque la génération va se faire, on souhaite obtenir le code suivant :

if (...) //Genere par le noeud if
{ //Ouverture de bloc par le noeud if

A //Genere par le noeud A
} //Fermeture de bloc par le noeud C
else //Genere par le noeud if
{ //Ouverture de bloc par le noeud if

B //Genere par le noeud B
} //Fermeture de bloc par le noeud C
C //Genere par le noeud C

On remarque dans ce code que même si le nœud C a été sollicité deux fois pour générer
du code, il n’a généré qu’une seule fois son code et a fermé les blocs ouverts par le nœud
if. En effet, lorsque le nœud if s’est généré, il active le nœud A pour sa génération qui
ensuite active le nœud C. Le nœud C va demander au Code Manager ce qu’il doit faire.
Le Code Manager va répondre au nœud C qu’il doit fermer le bloc et attendre avant de se
générer. Le nœud if va alors activer le nœud B qui ensuite va activer à nouveau le nœud
C. Le Code Generator va dire au nœud C de fermer le bloc et de générer son code.

Une seconde routine se trouve à la fin de chaque méthode de génération des nœuds
possédants une et une seule sortie d’activation. Cette routine ne génère pas de code,
mais elle permet de continuer le processus de génération. Cette routine se trouve dans
une méthode appelée CallNextNode et qui retourne une chaîne de caractères contenant
le code généré par le nœud suivant.

6.3.4.2/ LA MÉTHODE ParameterGeneration

Chaque nœud est associé à une classe qui possède une méthode utile à la génération
de son code. Chaque type de nœud possède cette méthode, mais son contenu diffère
en fonction du type du nœud. Cette méthode est appelée ParameterGeneration et son
rôle est de rechercher dans le Code Manager (ou les générer et les ajouter dans le Code
Manager s’ils n’existent pas encore) tous les paramètres nécessaires à la génération du
code associé au nœud. Cette méthode possède 2 arguments de type chaîne de carac-
tères et renvoie une chaîne de caractères.

string ParameterGeneration (string parameterDeclaration , string
returnDeclaration)

6.3. GÉNÉRATION DU CODE 93

FIGURE 6.9 – Exemple pour l’algorithme de génération des paramètres des nœuds

— Le premier argument de cette méthode est parameterDeclaration. La méthode
ajoute dans cet argument toutes les déclarations des variables qu’elle fait. Ces
variables peuvent correspondre à des nœuds value connectés en entrée du nœud
qui est en cours de génération de son code ou elles peuvent correspondre à des
arguments de sorties (et non des valeurs de retour) du nœud.

— Le deuxième argument de cette méthode est returnDeclaration. La méthode ajoute
dans cet argument la déclaration de la variable dans laquelle sera stockée la valeur
de retour du nœud.

— La valeur de retour de cette méthode est une chaîne de caractères contenant les
arguments d’entrée et de sortie du nœud. Cette chaîne est formatée pour être di-
rectement utilisée.

Chaque nœud possède cette méthode ParameterGeneration et son fonctionnement est
le même pour tous les nœuds sauf les nœuds comparator. En effet, pour la majorité
des nœuds, la génération des paramètres se fait en séparant les paramètres par des
virgules. Pour ce qui est des nœuds comparator, la séparation n’est pas une virgule, mais
un opérateur de comparaison booléenne séparant deux valeurs. La figure 6.9 expose
un exemple possible de modélisation. Le nœud < est un nœud comparator, les nœuds
ShEntity3::Find et CShIdentifier sont des nœuds fonction. ShEntity3::Find est une
fonction statique et CShIdentifier est un constructeur. Une fois généré, on obtient le code
(simplifié) suivant :

if (5 < 10)
{
CShIdentifier var0("Entity");
ShEntity3 return0;
return0 = ShEntity3::Find(CShIdentifier("Level"), var0);

}

On constate qu’il y a deux générations de paramètres différentes en fonction du nœud
généré. La variable var0 est générée par le nœud CShIdentifier et la variable return0
est générée par le nœud ShEntity3::Find pour stocker sa valeur de retour. On constate
que dans l’appel à ShEntity3::Find, le premier argument est CShIdentifier("Level").
La méthode ParameterGeneration est capable de générer ce genre de code lorsqu’une
valeur d’entrée d’un nœud est renseignée directement dans le nœud.

L’algorithme suivant exprime, en pseudo-code, comment est faite cette génération :

string ParameterGeneration (string parameterDeclaration , string
returnDeclaration)

{
string parameters;

94 CHAPITRE 6. GÉNÉRATION ET EXÉCUTION

//
// Generation parametres d’entree
bool bFirst = true;
foreach (self.aValueInput as value)
{
Variable variable;
if (value.IsLinked())
{
Value linkedValue = value.GetLinkedValue();
variable = CodeManager.FindVariableFromValue(linkedValue);

if (variable == 0)
{
variable = CodeManager.CreateVariable(value);
parameterDeclaration += variable.type + " " + variable.name + ";";

}

parameters += variable.name;
}
else
{
parameterDeclaration += value.Type + "(" + value.GetValueAsString() +")";

}

if (!bFirst)
{
if (self.NodeType() == e_type_comparator)
{
parameters += " " + self.comparatorType + " ";

}
else
{
parameters += ", ";

}
}

bFirst = false;
}

//
// Generation valeur de retour
if (!self.aNodeOutput.IsEmpty())
{
Value value = self.aNodeOutput[0];
Variable var = CodeManager.CreateVariable(value);
returnDeclaration = var.Type + " " + var.name;

}

return(parameters);
}

Dans cet algorithme, il est à noter le cas particulier suivant : parameterDeclaration +=
value.Type + "(" + value.GetValueAsString() + ")";. C’est cette instruction qui va
générer le paramètre CShIdentifier("Level") de notre exemple. Il faut savoir que
seules les entrées de valeurs dont le type est un type primaire ou un type CShIdenti-
fier ou CShString (deux types de valeurs propres à Shine Engine) peuvent avoir une
valeur renseignée dans une zone de texte. Par exemple, dans la figure 6.9, le nœud
ShEntity3::Find possède une valeur renseignée dans une zone de texte, car il s’agit
d’une valeur de type CShIdentifier.

6.3. GÉNÉRATION DU CODE 95

Nous allons maintenant décrire les règles de transformation de chaque nœud de SAMP.

6.3.4.3/ LES NŒUDS Entry

Le premier nœud que nous analysons est le nœud entry. Ce nœud ne génère pas de
code. Il permet d’indiquer pour chaque vue par où doit commencer la génération. C’est
pour cette raison qu’il est obligatoire comme indiqué dans la section 6.2.

6.3.4.4/ LES NŒUDS Exit

Le nœud exit possède deux règles différentes dépendant de la vue dans laquelle le nœud
se trouve. On utilise un nœud exit dans trois vues différentes avec deux générations de
code différentes. Les deux pseudo-codes suivants permettent d’expliquer comment est
généré le code d’un nœud exit dans les vues comportement (1) et dans les vues état et
événement (2) :

— Dans une vue Comportement (1) :

string Generation (void)
{
string generer = "AgentManager::GetInstance()->AddToRemove(

AgentPerformer);";
return(generer);

}

Lorsqu’un nœud exit est rencontré lors de la génération du code d’une vue Compor-
tement, SAMP-E génère un code permettant de détruire l’agent exécutant le com-
portement en question. AgentManager est un singleton permettant la gestion de
toutes les instances des agents. C’est AgentManager qui décide du meilleur mo-
ment pour détruire les agents qui doivent l’être. Pour rappel, la mort d’un agent dans
le système est différente de la destruction de son instance dans le système.

— Dans une vue État ou une vue Événement (2) :

string Generation (void)
{
Valeur v = self.aValeur[0];
identifier id = v.GetAsIdentifier();
string generer = "return(" + id.GetAsInterger() + ");";
return(generer);

}

Lorsqu’un nœud exit est rencontré dans une vue État ou Événement, SAMP-E gé-
nère un code permettant de quitter l’exécution du comportement courant. Pour ce
faire, on génère un return. Dans le cas où il y aurait plusieurs nœuds exit et afin de
les différencier, le return est appelé avec pour valeur de retour une conversion de
l’identifier du nœud exit en entier.

6.3.4.5/ LES NŒUDS event

Du fait que SAMP est basé sur un système d’états et d’événements, le code du compor-
tement de la figure 6.10 prend cette forme :

96 CHAPITRE 6. GÉNÉRATION ET EXÉCUTION

FIGURE 6.10 – Exemple d’un enchaînement d’état et d’événements.

if (self.MainShepp == self.currentState)
{
if (self.Starvation_minus_x.IsTrue(0))
{
self.ChangeState(self.Death);
self.Death.OnEnter();

}
else if (self.ReceiveAttack.IsTrue())
{
self.ChangeState(self.hit);
self.hit.OnEnter();

}
}
else if (self.hit == self.currentState)
{
if (self.hit.InternalEvent() == "Ended")
{
self.ChangeState(self.Death);
self.Death.OnEnter();

}
}

La première partie de ce découpage est gérée par le nœud state lui-même. Il s’agit de
la première condition permettant de savoir si l’état auquel est rattaché l’événement est
l’état courant. Le nœud event quant à lui génère le code permettant de déterminer si sa
condition d’activation est vérifiée. Ensuite, il active le nœud relié à sa sortie d’activation.

Le cas particulier des nœuds state avec un événement interne est géré par les nœuds
state eux-mêmes (cf 6.3.4.6).

string Generation (void)
{
string parameterDeclaration;
string returnDeclaration;
string parameter = ParameterGeneration(parameterDeclaration ,

returnDeclaration)

string generer = parameterDeclaration;

generer += "if(" + self.identifier + ".IsTrue(" + parameter + "));\n";
generer += "{\n";
generer += self.CallNextNode();
generer += "}\n";
return(generer);

}

6.3. GÉNÉRATION DU CODE 97

6.3.4.6/ LES NŒUDS state

Lorsqu’un nœud state est rencontré dans une vue, SAMP-E génère un code permettant au
comportement courant de changer d’état. Pour ce faire, on génère un appel à la méthode
ParameterGeneration. Ensuite, on génère l’appel à ChangeState, qui est une méthode
que possède chaque vue Comportement et Etat permettant de changer l’état courant
de la vue. Puis nous générons l’appel à la méthode OnEnter du nouvel état courant,
dans laquelle nous passons en paramètres les valeurs récupérées à l’aide de la méthode
ParameterGeneration.

Ensuite, afin de générer le code sous la forme d’écrite dans la section 6.3.4.5, le nœud
state génère une condition permettant de déterminer si l’état qu’il représente est l’état
courant ou non.

Pour terminer, le nœud state active ses sorties d’activation avec deux cas possibles. Le
premier, si la sortie est une sortie événement externe. Le second, si la sortie est une sor-
tie événement interne (cf 4.6.5). Si la sortie activation est une sortie événement externe,
le nœud connecté à cette sortie est activé. S’il s’agit d’une sortie événement interne, le
nœud state génère une condition permettant de tester si l’événement est déclenché.

string Generation (void)
{
string parameterDeclaration;
string returnDeclaration;
string parameter = ParameterGeneration(parameterDeclaration ,

returnDeclaration)

string generer = parameterDeclaration;
generer += "ChangeState(" + self.identifier + ");\n";
generer += self.identifier + "->OnEnter(" + parameter + ");";

generer += "if (self.currentState == self." + identifier + ")\n";
generer += "{\n";

foreach(self.aTriggerOutput as trigger)
{
if (trigger.isInternalEvent())
{
generer += "if (self." + self.identifier + ".InternalEvent()

== " + trigger.identifier + ")\n";
generer += "{\n";
generer += self.aTriggerOutput[0].GetLinkedNode().Generation() + "\n";
generer += "}\n"

}
else
{
generer += self.aTriggerOutput[0].GetLinkedNode().Generation() + "\n";

}
}

generer += "}\n"
return(generer);

}

Les nœuds state ne peuvent pas avoir de valeur de retour, mais uniquement des argu-
ments de sortie. C’est pourquoi la variable returnDeclaration n’est pas utilisée.

98 CHAPITRE 6. GÉNÉRATION ET EXÉCUTION

FIGURE 6.11 – Deux nœuds fonctions : à gauche statique, à droite non-statique

6.3.4.7/ LES NŒUDS fonctions

Lorsqu’un nœud fonction est rencontré dans une vue, SAMP-E génère un code permettant
l’appel de la fonction correspondante. Pour commencer, on génère un appel à la méthode
ParameterGeneration. Ensuite, s’il s’agit d’une méthode statique, on génère l’appel en
concaténant le nom de la classe possédant la méthode avec le nom de la méthode puis
avec les paramètres récupérés précédemment. S’il ne s’agit pas d’une méthode statique,
on récupère le nom de l’objet qui appelle la méthode (le nœud connecté à l’entrée de
valeur Caller 3 du nœud fonction). Puis on concatène ce nom avec le nom de la méthode
et avec les paramètres récupérés précédemment.

string Generation (void)
{
string parameterDeclaration;
string returnDeclaration;
string parameter = ParameterGeneration(parameterDeclaration ,

returnDeclaration)
string generer = parameterDeclaration;

if (!returnDeclaration.IsEmpty())
{
generer += returnDeclaration + "=";

}

string functionCall;

if (self.IsStatic())
{
functionCall = self.GetClassName();
functionCall += "::" + self.GetFunctionName();

}
else
{

3. Les nœuds fonctions correspondant à des méthodes non statiques possèdent tous une entrée de
valeur appelée Caller permettant d’indiquer au nœud quel objet va exécuter la méthode (cf Figure 6.11)

6.3. GÉNÉRATION DU CODE 99

FIGURE 6.12 – Exemple d’un nœud if

Variable var = codeManager.GetVariableFromInput("Caller");
functionCall = var.GetName();
functionCall += "." + self.GetFunctionName();

}

generer += "functionCall + (" + parameter + ");";

generer += self.CallNextNode();

return(generer);
}

6.3.4.8/ LES NŒUDS if

Lorsqu’un nœud fonction est rencontré dans une vue, SAMP-E génère un code permettant
de générer un bloc if, et si besoin, un bloc else.

Pour commencer, la figure 6.12 expose un nœud if. Ce nœud contient une entrée
d’activation, une entrée de valeur permettant de définir la condition ainsi que deux sorties
d’activation : true qui est activée si la condition est vérifiée (correspond au bloc Alors) et
false qui est activée si la condition n’est pas vérifiée (correspond au bloc Sinon).

Le principe de génération est simple, le nœud génère le code de la condition en fonction
de ses paramètres d’entrée puis ouvre un bloc d’instructions. Une fois fait, il active le
nœud relié à sa sortie d’activation Alors. Lorsque tout le flux d’activation de sa sortie
Alors est terminé, et si besoin, il réalise les mêmes actions pour sa sortie Sinon. Il existe
une troisième possibilité dans le cas où seule la sortie d’exécution Sinon est connectée
à un autre nœud. Dans ce cas, le nœud if génère le bloc if en faisant la négation de la
condition d’entrée.

string Generation (void)
{
string parameterDeclaration;
string returnDeclaration;
string parameter = ParameterGeneration(parameterDeclaration ,

returnDeclaration)
string generer = parameterDeclaration;

// aTriggerOutput contient la liste des sorties d’activation.
// Dans un noeud if, le premier element est la sortie Alors
// et le second est la sortie Sinon
if (self.aTriggerOutput[0].IsLinked())
{
generer += "if (" parameter + ")\n";
generer += "{\n"

100 CHAPITRE 6. GÉNÉRATION ET EXÉCUTION

FIGURE 6.13 – Exemple d’une nœud for

generer += self.aTriggerOutput[0].GetLinkedNode().Generation() + "\n";
generer += "}\n"

if (self.aTriggerOutput[1].Islinked())
{
generer += else + "\n";
generer += "{\n"
generer += self.aTriggerOutput[1].GetLinkedNode().Generation() +"\n";
generer += "}\n"

}
}
else
{
if (self.aTriggerOutput[1].Islinked())
{
generer += "if (! (" parameter + "))\n";
generer += "{\n"
generer += self.aTriggerOutput[1].GetLinkedNode().Generation() +"\n";
generer += "}\n"

}
}
return(generer);

}

6.3.4.9/ LES NŒUDS for

Lorsqu’un nœud for est rencontré dans une vue, SAMP-E génère un code permettant de
générer un bloc for. Pour commencer, la figure 6.13 expose un nœud for. On constate que
ce nœud possède une entrée d’activation, deux entrées de valeurs, l’une pour indiquer sa
valeur de départ (start) et l’autre pour indiquer sa valeur de fin (End). Ce nœud possède
aussi une sortie de valeur permettant, durant chaque boucle du for de récupérer la valeur
de l’index courant. L’incrément de ces boucles for est de 1 mais une version avec un
entrée permettant de paramétrer l’incrément est en projet. Il possède également deux
sorties d’activation : l’une qu’il faut relier aux nœuds modélisant le contenu du bloc for
contenant les instructions à itérer (Loop) et l’autre qu’il faut relier aux nœuds modélisant
le comportement exécuté après que le bloc for ait terminé son exécution (Completed)

Le principe de génération est le suivant : le nœud for récupère les paramètres pour
générer la condition et crée une variable Index qui a pour portée l’intérieur du bloc for.
Ensuite, le nœud génère une ligne contenant les conditions d’exécution du bloc puis
ouvre le bloc. Il va ensuite activer le nœud relié à sa sortie d’activation Loop. Lorsque ce

6.3. GÉNÉRATION DU CODE 101

flux d’activation se termine, le nœud va fermer le bloc et activer le nœud relié à sa sortie
d’activation Completed.

string Generation (void)
{
string parameterDeclaration;
string returnDeclaration;
string parameter = ParameterGeneration(parameterDeclaration ,

returnDeclaration)
string generer = parameterDeclaration;

Variable varStart = codeManager.GetVariableFromInput("Start");
Variable varEnd = codeManager.GetVariableFromInput("End");
codeManager.addVar("Index", "int");

generer += "for (int Index = " + varStart.GetName() + ";
Index < " + varEnd.GetName() + "; ++Index)\n";

generer += "{\n";

if (self.aTriggerOutput[1].IsLinked())
{
generer += self.aTriggerOutput[1].GetLinkedNode().Generation();

}

generer += "}\n";
codeManager.removeVar("Index");

if (self.aTriggerOutput[0].IsLinked())
{
generer += self.aTriggerOutput[0].GetLinkedNode().Generation();

}

return(generer);
}

6.3.4.10/ LES NŒUDS value

Les nœuds value ne possèdent pas d’entrée ou de sortie d’activation mais ils possèdent
une sortie de valeur. Le code généré par le nœud contient le nom de la variable. Les
nœuds value ne sont activés que dans la méthode ParameterGeneration. Dans cette
méthode, lorsqu’une entrée de valeur d’un nœud est reliée à une sortie de valeur d’un
nœud value, la méthode ParameterGeneration va, si la variable concernée n’est pas
accessible dans le bloc courant, demander au Code Manager de créer une variable, gé-
nérer le code correspondant à cette création et stocker cette génération dans l’argument
parameterDeclaration.

string Generation (void)
{
string generer = self.identifier;
return(generer);

}

102 CHAPITRE 6. GÉNÉRATION ET EXÉCUTION

FIGURE 6.14 – Exemple d’un cas d’utilisation d’un nœud comparator

6.3.4.11/ LES NŒUDS comparator

Les nœuds comparator tout comme les nœuds value ne possèdent pas d’entrée ou de
sortie d’activation. Lorsqu’ils sont activés, ils génèrent un code permettant de comparer
les valeurs qu’ils possèdent en entrée. La figure 6.14 montre comment sont utilisés ces
nœuds dans SAMP-E.

Sur cette figure on constate que le nœud comparator, lors de la génération de code du
nœud if, va générer son code. Ce code sera en réalité généré par la méthode Parame-
terGeneration du nœud if qui va générer la condition requise par ce nœud en se servant
des valeurs des nœuds value et comparator.

string Generation (void)
{

string generer = self.comparatorType;
return(generer);

}

Ce que l’on peut analyser de ces règles de transformations, c’est que la génération de
code se fait de façon presque unitaire. Chaque élément de SAMP-E génère un petit bout
du code du SMA modélisé. Lorsque les codes des agents, des interactions, des com-
pétences et des comportements ont été générés, il ne reste plus qu’à générer le fichier
CMake permettant la création d’un projet C++. Nous abordons dans la suite la création
du projet C++ permettant la compilation du code généré.

6.4/ GÉNÉRATION DE PROJET ET COMPILATION

Une fois le code généré, il faut créer un projet C++ que nous pourrons compiler. Pour ses
développements, l’entreprise Shine Research utilise l’IDE (Environnement de Développe-
ment intégré) Microsoft Visual Studio (MVS). Nous avons décidé d’utiliser le compilateur
de MVS afin de compiler le projet créé avec CMake et généré par SAMP-E.

Lorsque la génération de code est terminée, SAMP-E génère une commande CMake afin
de créer un projet C++ compilable. Il s’agit d’un projet Microsoft Visual Studio. Une fois le
projet créé, SAMP-E génère une nouvelle commande pour, cette fois, compiler le code du
projet Microsoft Visual Studio sous la forme d’une bibliothèque C++ ;

Le projet est compilé pour être utilisé en tant que plugin dans Shine Engine. L’avantage
de l’utilisation d’un plugin dans Shine Engine est qu’il est exécutable dans un jeu, mais

6.5. CONCLUSION 103

aussi dans l’éditeur Shine Editor.

Nous avons expliqué que la génération de code se faisait avec une approche unitaire.
Chaque élément de SAMP-E génère juste ce qu’il représente. Cela facilite la maintena-
bilité du code en permettant de rapidement cibler l’origine d’éventuelles erreurs et de
facilement ajouter de nouveaux éléments sans impacter les éléments déjà présents. Ce-
pendant, nous ne sommes jamais à l’abri d’une erreur causée par la modification du code
de génération d’un élément de SAMP-E.

Afin de pallier au problème de régression et afin de valider le code généré, nous avons
mis en place différents modèles de tests. Chacun de ces modèles permet de tester diffé-
rentes fonctionnalités. Pour chaque modèle, nous indiquons s’il est conforme et quels ré-
sultats il doit donner. S’il n’est pas conforme, nous indiquons quelles erreurs doivent être
levées. Le nombre de contraintes et d’erreurs possible est fini et pour chaque contrainte,
le nombre de tests à réaliser pour vérifier qu’elles sont respectées est lui aussi fini. Nous
avons donc un nombre de tests finis à réaliser pour vérifier que les contraintes sont
respectées et nous couvrons chacun de ces tests. Cette couverture se rapporte aux
contraintes et erreurs connues, que nous avons identifiées. Il est possible, par exemple,
que des erreurs de compilation apparaissent dans du code généré pour des cas particu-
liers que nous n’avons pas encore rencontrés ni anticipés.

Au moment où nous écrivons ce mémoire, la validation doit se faire manuellement, car la
comparaison de certains résultats n’a pas pu être automatisée. Nous sommes en cours
de développement de tests unitaires sur Code Testing Tool, un outil de Microsoft Visual
Studio permettant la création et l’exécution de tests unitaires au sein de l’environnement
de développement.

6.5/ CONCLUSION

SAMP-E permet la modélisation de comportement à l’aide d’une interface graphique, mais
permet aussi la génération sous la forme de code et la compilation en un plugin, com-
patible Shine Engine, des comportements modélisés. Une fois la modélisation réalisée,
le contrôle d’erreur permet de relever toutes les erreurs présentes dans la modélisation.
Sachant qu’un grand nombre d’erreurs ont déjà été empêchées lors de la modélisation
par ce même contrôle d’erreur.

De par son format de génération unitaire, la génération de code est simple à maintenir
et les tests de non-régression permettent de s’assurer de la validité du code généré par
rapport aux modèles que l’on veut traduire. La compilation se fait en un clic et le contrôle
d’erreur s’assure que lorsque la compilation est lancée aucune erreur de compilation ne
peut apparaître. Tout au plus, des erreurs de liens peuvent être levées si les bibliothèques
Shine Engine ne sont pas dans le bon dossier ou si elles ne sont pas à jour. Ces erreurs
peuvent être dues à une mauvaise manipulation de l’utilisateur des fichiers du moteur
Shine Engine.

III
EVALUATION DE LA MÉTHODE

105

7
CALCULS THÉORIQUES

Dans ce chapitre, nous allons évaluer, de manière théorique, l’efficacité de notre système
d’interactions par rapport à l’approche classique. Nous commençons en exposant diffé-
rentes formules permettant de calculer le nombre d’actions que réalisent les agents de
chacune des approches pour réaliser les interactions. Nous continuons en définissant un
exemple d’un jeu de stratégie basique auquel nous appliquons ensuite les formules afin
d’obtenir des résultats exploitables.

7.1/ FORMULES

Pour valider notre approche, qui cherche à réduire le nombre des interactions entre
agents, nous proposons d’évaluer de façon théorique les différentes approches. Dans
cette section, nous décrivons les différentes entités manipulées pour cette comparaison :

— A : l’ensemble de tous les agents.

— Ae : l’ensemble des émetteurs, Ae ⊆ A

— Aea : l’ensemble des émetteurs actifs, Aea ⊆ Ae

— At : l’ensemble des récepteurs, At ⊆ A

— Ata : (resp. Atp) l’ensemble des récepteurs actifs (resp. passifs),
Ata ⊆ A, Atp ⊆ A, Ata ∩ Atp = ∅

— Iem(ea) : l’ensemble des interactions émises par un agent ae.

— Ienv(ta) : l’ensemble des interactions ayant pour récepteur l’agent ta.

— Aenv(ea) : l’ensemble des agents récepteurs passifs pour les interactions émises
par l’agent ea.

— OAs(i,ea) : l’ensemble des agents récepteurs d’une interaction i de l’agent émet-
teur ea durant la frame précédente.

— OI(a) : l’ensemble des interactions sur lesquelles un agent a est déjà enregistré.

— Si(i) : l’ensemble des compétences nécessaires pour recevoir l’interaction i.

— Ai(i) : l’ensemble des agents récepteurs enregistrés sur l’interaction i.

Coût du test d’enregistrement vérifiant si un agent ta est enregistré sur l’interaction i :

CostRegTest(i, ta) = |Ai(i)| (7.1)

107

108 CHAPITRE 7. CALCULS THÉORIQUES

Coût de l’enregistrement d’un agent a sur l’interaction i : CostReg(i, a) = 1

Coût des calculs des compétences requises détermine si un agent a possède les com-
pétences requises pour réagir à i. Pour chaque compétence requise, nous considérons
que la vérification si l’agent récepteur la possède est constante.

CostS kills(i, a) = |S i(i)| (7.2)

Dans la suite, nous considérons le coût de recherche d’une interaction dans l’environne-
ment comme identique, et ce, quelle que soit l’approche utilisée du fait de l’utilisation d’un
moteur physique dans chacune des approches.

Nous commençons par établir pour les agents actifs, le calcul du coût de la recherche,
de l’enregistrement et du désenregistrement des interactions. Posons :

— ta : un agent actif qui exécute la recherche d’interactions.

— in : une interaction de Ienv(ta).

Le coût du filtrage détermine si ta peut réagir aux interactions. Ainsi, pour chaque in-
teraction qui cible cet agent, pour laquelle il n’est pas encore enregistré, nous vérifions si
cet agent a les compétences nécessaires pour réagir et si oui, il s’enregistre :

CostT AFilter(ta) =
∑

i∈Ienv(ta)\OI(ta)

(CostS kills(i, ta) + CostReg(i, ta)) + |Ienv(ta)| (7.3)

Nous ajoutons à la formule |Ienv(ta)| correspondant au coût du calcul de la différence
ensembliste entre les deux ensembles des interactions.

Coût du désenregistrement concernant un agent récepteur actif ta et les interac-
tions qui ne le ciblent plus (si ta est hors de portée de l’émetteur, si l’émetteur a arrêté
d’émettre l’interaction, etc). ta se désenregistre des interactions présentes dans l’en-
semble des interactions sur lesquelles il était enregistré lors de la frame précédente et
dont il n’est plus cible dans la frame courante (comparaison entre les ensembles OI(ta)
et Ienv(ta)). Nous considérons l’action de désenregistrement sur une table comme étant
égale à 1. Nous ajoutons à la fin de la formule, le coût de la différence ensembliste :

CostUnregRec(ta) =
∑

i∈OI(ta)\Ienv(ta)

1 + |OI(ta)| (7.4)

Dans le pire des cas, où ta se désenregistre de l’ensemble des interactions, le coût sera
2 fois la cardinalité de OI(ta) : CostUnreg(ta) ≤ 2*|OI(ta)|.

Pour un agent récepteur ta, le coût total de ses interactions est la somme du coût de
filtrage des interactions donné par (7.3) et le coût de désenregistrement donné par (7.4) :

CostTA(ta) = CostTAFilter(ta) + CostUnregRec(ta)

Nous calculons maintenant le coût de fonctionnement des interactions pour un agent
émetteur actif qui est composé de la recherche et de l’enregistrement sur les interactions
et du désenregistrment des agents récepteurs de ces interactions.

Coût du désenregistrement depuis un agent émetteur actif ea sur un agent récepteur
ta pour une interaction i. Ce coût inclut le test pour vérifier si l’agent est non ciblé par

7.1. FORMULES 109

l’interaction durant la frame courante (i ∈ OI(ta) et i < Ienv(ta)), et le coût de désen-
registrement (si nécessaire) :

CostUnregEm(i, ea, ta) = 1 + 1 + 1 = 3 (7.5)

Coût total du traitement des interactions pour un agent émetteur actif. Il est composé
du coût de l’enregistrement de la nouvelle interaction (7.3) et du coût de désenregistre-
ment (7.5) pour l’agent qui n’est plus ciblé par l’interaction durant la frame courante. A
chaque fois, nous ajoutons le coût de la différence ensembliste :

CostEmitterAgent(ea) =
∑

in∈Iem(ea)

(∑
tar∈Aenv(ea)\OAs(in,ea)

(CostS kills(in, tar) + CostReg(in, tar)) + |Aenv(ea)|

+
∑

tau∈OAs(in,ea)\Aenv(ea)

CostUnregEm(in, ea, tau) + |OAs(in, ea)|

)
(7.6)

Nous définissons le coût d’émission d’une interaction in de Iem(e) pour un agent
émetteur e et un agent récepteur ta :

CostEmitInter(in, e, ta) = 1 (7.7)

Le coût total d’émission des interactions est pour un agent émetteur e :

TotalCostCom(e) =
∑

in∈Iem(e)

∑
tan∈Ai(in)

CostEmitInter(in, e, tan) (7.8)

Nous pouvons donc définir le coût complet de la gestion des interactions de notre
approche comme étant le coût de fonctionnement des interactions pour les agents ré-
cepteurs actifs ainsi que pour les agents émetteurs actifs et passifs. Pour les agents
émetteurs, le calcul se fait en trois parties : une première qui va calculer le coût d’émis-
sion des interactions pour tous les agents récepteurs, une seconde qui calcule le coût de
traitement des interactions pour les agents émetteurs actifs (7.6) et la dernière qui calcule
le coût des émissions des interactions de l’ensemble des agents (7.8).

TotalCostInt =
∑

ta∈Ata

CostT A(ta)

+
∑

ea∈Aea

CostEmitterAgent(ea)

+
∑
e∈Ae

TotalCostCom(e)

(7.9)

Maintenant, nous établissons le calcul du coût complet de la gestion des interactions
pour le système classique dans l’environnement de simulation env, Il considère pour
chaque agent du système, le coût de la vérification pour établir les interactions auxquelles
il réagit (7.2) et le coût d’émission des interactions qu’il émet (7.7) :

110 CHAPITRE 7. CALCULS THÉORIQUES

TotalCostClassicS ystem =
∑
an∈A

(
∑

in∈Ienv(an)

CostS kills(an, in)

+
∑

it∈Iem(an)

CostEmitInter(it, an, env)

)

(7.10)

7.2/ RÉSULTATS

Dans cette section, nous présentons une instance des calculs définis précédemment.
Pour illustrer notre démarche, nous commençons par décrire un exemple de SMA. En-
suite, nous analysons les résultats des calculs théoriques appliqués à ce système afin
de comparer notre approche à l’approche classique. Nous étudions différentes valeurs
de paramètres du SMA afin d’observer les tendances des résultats à travers les formules
théoriques.

7.2.1/ JEUX DE STRATÉGIE EN TEMPS RÉEL

La première étape est de définir un système avec des valeurs réalistes, proches d’un
jeu vidéo. Nous avons choisi de simuler un jeu de stratégie en temps (STR). Ce type de
jeu vidéo met en scène différentes équipes qui s’affrontent entre elles à l’aide d’unités
mobiles, de bâtiments de défense et de bâtiments de production.

Pour nos calculs, nous avons décidé d’opposer deux équipes. Chacune d’elle peut créer
deux types de bâtiment et un type d’unité. Un agent hutte qui ne peut exécuter aucune
action et est constamment passif (bâtiment de production). Un agent tour qui ne peut
pas bouger, mais peut attaquer les ennemis entrant dans son champ de vision. Une
tour est constamment passive même lorsqu’elle attaque. En effet, en attaquant, elle ne
changera pas la perception que les autres agents ont d’elle ni sa perception des autres
agents. Ce sont les agents actifs se déplaçant à proximité de la tour qui feront un scan
de l’environnement pour détecter la tour et s’enregistrer dans sa table d’enregistrement
ou les agents actifs sortant de son champ de vision qui se désenregistreront de sa table
d’enregistrement.

Un agent soldat qui peut se déplacer pour se rapprocher des ennemis et les attaquer. Un
soldat est passif quand il ne bouge pas et devient actif lorsqu’il se déplace. Pour optimiser
ce système dans notre approche, nous considérons un soldat qui attaque comme étant
passif (il ne se déplace pas durant son attaque).

Tous les agents peuvent être vus par les autres agents possédant la compétence voir.
Tous les agents peuvent être endommagés par les agents possédant la compétence
attaquer. Les propriétés des agents sont présentées dans la table 7.1.

Pour comparer les deux approches, nous analysons différentes configurations du sys-
tème. Nous avons étudié l’impact de cinq paramètres du système :

— Le nombre d’agents de chaque type présent dans le système

— Le nombre d’agents actifs.

7.2. RÉSULTATS 111

TABLE 7.1 – Propriétés des agents du STR

Agent Etat Compétence Interaction
Hutte Passif Endommageable Etre vu
Tour Passif Voir Etre vu

Endommageable Attaquer
Soldat Actif Voir, Marcher Etre vu

Passif Endommageable Attaquer

— Le pourcentage d’agents qui sont dans le champ d’action des interactions des
autres agents.

— Le pourcentage d’agents déjà enregistrés sur une interaction à chaque frame
— Le pourcentage d’agents qui se désenregistrent d’une interaction à chaque frame.

Dans notre expérimentation, nous utilisons les valeurs suivantes pour paramétrer nos
calculs : 1000 huttes, 2000 tours et 3300 soldats.

1. Nous fixons le nombre d’interactions actives pour un agent à la moyenne du nombre
d’interactions. Dans notre exemple, le nombre d’interactions pour un agent est 1.84
= (1000*1+2000*2+3300*2)/6300.

2. Nous fixons le nombre de compétences pour un agent à la moyenne du nombre de
compétences pour chaque agent. Dans notre exemple, le nombre de compétences
par agent est 2.88 =(1000*1+2000*2+3300*4)/6300.

3. Nous décidons que chaque agent dans le champ d’action d’une interaction s’enre-
gistre dessus.

7.2.2/ CALCULS ET ANALYSES

Nous définissons trois termes pour nos analyses :

Définition (Densité de population). La densité de population est le nombre d’agents qui
peuvent interagir avec les autres à un instant t.

Définition (Diversité de population). La diversité de population est le nombre d’agents
de chaque type à un instant t.

Durant nos expérimentations, quand nous changeons la diversité de population, le
nombre d’agents de la simulation n’est pas impacté. Par exemple, si nous ajoutons 200
soldats, nous retirons 200 autres agents.

Nous paramétrons le taux de soldats actifs à 50% (1650 agents actifs et 4650 agents
passifs)

Définition (taux d’enregistrement). Le taux d’enregistrement correspond au nombre de
nouveaux agents qui cherchent à s’enregistrer eux-mêmes sur une interaction sur la-
quelle ils ne sont pas déjà enregistrés.

Par exemple, si nous avons 100 agents et que le taux d’enregistrement est de 2%, cela
signifie que 2 nouveaux agents seront enregistrés sur chaque interaction à chaque frame.
Pour rappel, dans notre approche, un agent ne s’enregistre qu’une seule fois sur une in-
teraction. Les agents vérifient s’ils possèdent les compétences nécessaires pour recevoir
l’interaction. Changer le taux d’enregistrement permet de voir l’impact de ce filtrage.

112 CHAPITRE 7. CALCULS THÉORIQUES

7.2.2.1/ MODIFICATION DE LA DENSITÉ DE POPULATION

Nous commençons par étudier l’impact de la variation de la densité de population sur les
deux approches. Nous faisons évoluer la densité de population de 1 à 125 agents. Nous
calculons les résultats pour différents taux d’enregistrement.

Dans la figure 7.1 (ne montrant qu’une partie des résultats : densité de population supé-
rieure à 75) nous pouvons voir que notre approche est meilleure que l’approche classique
pour un taux d’enregistrement inférieur à 80%. Dans les faits, il est impossible d’avoir un
taux d’enregistrement de 100% durant deux frames consécutives, car si tous les agents
sont enregistrés sur une interaction durant la première frame, ils n’auront pas besoin de
s’enregistrer à nouveau durant la seconde frame. Le plus mauvais taux d’enregistrement
moyen possible est de 50% à chaque frame.

FIGURE 7.1 – Changement de densité de population.

Pour les calculs suivants, nous décidons d’utiliser le pire des cas de notre approche : un
taux d’enregistrement de 100%. Ce paramétrage permettra d’évaluer l’impact des autres
paramètres sur l’efficacité de notre approche comparée à l’approche classique, dans le
pire des cas. Nous paramétrons la densité de population à 1% (62 agents), la valeur
médiane de notre approche (1 à 125) .

7.2.2.2/ IMPACT DU NOMBRE D’AGENTS ACTIFS

Nous étudions l’impact du ratio d’agents actifs/passifs ainsi que l’impact d’un change-
ment de configuration sur l’efficacité de notre système. Nous créons deux simulations : la
première utilisant les paramètres précédemment définis et pour la seconde, nous don-
nons une compétence supplémentaire aux agents hutte et tour. Pour les deux simu-
lations, nous faisons évoluer le ratio d’agent actifs/passifs de 0.03 à 1.10. Dans la fi-

7.2. RÉSULTATS 113

FIGURE 7.2 – Changement du ratio d’agents actifs/passifs

gure 7.2, les courbes montrent les résultats de la première simulation (1) et les résultats
de la simulation avec une configuration modifiée (2). Pour clarifier les informations, nous
avons décidé de ne montrer les résultats que pour un ratio d’agents actifs/passifs de 0.23
à 0.39 (offrant une meilleure visibilité aux croisements des courbes).

Nous pouvons d’abord constater que le ratio d’agents actifs/passifs a un impact sur l’ef-
ficacité de notre approche. Notre système est plus efficace quand ce ratio est inférieur
à 0.31 pour (1) et 0.34 pour (2). Ces résultats sont cohérents pour un jeu vidéo dans
lequel le nombre d’agents passifs (portes, coffres, arbres, ...) est souvent plus élevé que
le nombre d’agents actifs.

Concernant le changement de configuration, nous pouvons constater qu’il est plus effi-
cace que le système classique quand les agents possèdent plus de compétences. Ceci
est dû au fait que, dans notre approche, la phase de filtrage n’est exécutée qu’une fois
durant la durée d’une interaction et non à chaque frame comme dans l’approche clas-
sique.

7.2.2.3/ CALCULS POUR UNE SECONDE

Nous avons précédemment parlé de l’importance du respect du nombre de frames par
seconde dans les jeux vidéo. Nous réalisons maintenant un calcul pour une seconde (30
frames). Rappelons qu’un humain concentré sur un stimulus réagira à ce stimulus 1 en
250ms (8 frames) et qu’un conducteur réagit à un danger en 1 à 2 secondes [58]. Un
calcul sur une seconde semble être proche de la réalité.

Nous considérons qu’un agent s’enregistre lui-même ou il est enregistré par d’autres
agents sur une seule interaction par seconde. Dans le système classique, tous les agents
scannent l’environnement pour vérifier si des interactions pourraient les concerner. Dans
notre approche, ces scans ne sont exécutés qu’au moment où l’émetteur débute l’émis-

1. https ://www.humanbenchmark.com/tests/reactiontime

114 CHAPITRE 7. CALCULS THÉORIQUES

FIGURE 7.3 – Changement du nombre de soldats actifs avec un calcul sur 1 seconde.

sion de l’interaction ou quand un agent est actif. Dans les deux approches, les envois des
interactions sont effectués à chaque frame. Nous faisons évoluer le nombre de soldats
qui sont actifs et nous gardons la densité et la diversité de population fixe. Pour notre ap-
proche, nous exécutons le calcul pour un taux d’enregistrement de 100%. La figure 7.3
montre que, même dans le pire des cas, en temps réel, notre approche est plus efficace
que l’approche classique.

7.3/ CONCLUSIONS

Les résultats théoriques obtenus à l’aide de ces calculs sont très encourageants. Ils per-
mettent de constater que dans un système en temps réel, l’approche SAMP pour les inter-
actions est plus efficace qu’une approche classique. Fort de ces résultats, nous avons dé-
cidé de réaliser des expérimentations pratiques afin de tester SAMP en conditions réelles
et de comparer son efficacité par rapport à une approche classique.

8
RÉSULTATS PRATIQUES

Dans ce chapitre, nous exposons nos expérimentations. SAMP est développé afin d’être
utilisé dans le domaine du jeu vidéo, mais son utilisation n’est pas restreinte à ce seul
domaine.

Nous commençons en exposant les résultats d’expérimentations pratiques autour du sys-
tème proies-prédateurs modélisé avec SAMP. Pour cela, nous présentons différentes mé-
thodes d’expérimentation et expliquons comment nous avons mené ces expérimenta-
tions. Nous continuons en décrivant les conditions dans lesquelles les expérimentations
ont été effectuées. Ensuite, pour chacune d’entre elles, nous présentons ses paramètres
puis nous exposons et analysons ses résultats.

Nous exposons ensuite trois systèmes modélisés à l’aide de SAMP. Le premier est un
jeu en 2D, le second est un SMA utilisé dans un projet nommé Silva Numerica qui est
un serious game. Le troisième est un applicatif de communication de type lecteur de
flux Rss utilisant SAMP pour gérer le comportement des éléments qui le composent. Le
développement de ces trois systèmes a pour but d’expérimenter l’expressivité de SAMP,
sa capacité à permettre la modélisation de SMA utilisables dans d’autres domaines que
celui des jeux vidéo et la possibilité d’importer/exporter des éléments entre différents
projets.

Nous concluons ce chapitre en analysant les résultats que nous avons obtenus.

8.1/ EXPÉRIMENTER

Afin d’organiser nos expérimentations, nous avons cherché ce qu’il existait dans l’état de
l’art au sujet de l’organisation des expérimentations. Le livre de Pierre Dagnelie Principe
d’Expérimentation, Planification des expériences et analyse de leurs résultats [25] nous
a amené beaucoup de réponses.

Pierre Dagnelie décrit dans son livre qu’il existe différentes étapes à la réalisation d’ex-
périmentations :

1. La définition du ou des buts ;

2. La définition du ou des facteurs dont on désire étudier l’influence ;

3. La définition des individus ;

4. La définition des observations ;

115

116 CHAPITRE 8. RÉSULTATS PRATIQUES

5. Les différentes affections que l’on donnera aux facteurs pour faire évoluer les expé-
rimentations ;

6. Les analyses.

8.1.1/ NOS BUTS

Dans notre approche, nous cherchons à diminuer le nombre de scans de l’environnement
que chaque agent réalise afin d’alléger le fonctionnement des interactions. Le but de
nos expérimentations sera de comparer notre système à une approche classique. Nous
chercherons aussi à étudier l’impact que peuvent avoir différents paramètres d’un SMA
sur notre approche.

8.1.2/ QU’EST-CE QU’UN FACTEUR ? QUE SONT LES NIVEAUX ?

Dans son livre, Pierre Dagnelie explique que les facteurs sont des séries d’éléments de
même nature pouvant être comparés. Il explique aussi que les éléments composants
les séries sont appelés variantes ou niveaux. Le terme variante est plus adapté dans le
cas de facteurs qualificatifs (dont les éléments ne peuvent pas être classés) et le terme
niveau est plus adapté dans le cas de facteurs quantitatifs (dont les éléments peuvent
être classés).

Dans nos expérimentations, nous avons isolé trois facteurs quantitatifs (le nombre
d’agents, le nombre de scans effectués et le nombre d’interactions émises), nous utili-
serons donc le terme niveau.

Les facteurs peuvent être contrôlés, non contrôlés ou constants. Un facteur contrôlé est
un facteur qui est étudié au cours de l’expérimentation. Il est possible de fixer les valeurs
de certains facteurs pour en faire des facteurs constants afin de ne pas multiplier le
nombre d’éléments à étudier au cours des expérimentations. Nous verrons dans la suite
de ce chapitre que nous aurions pu fixer le nombre d’agents constant, mais que cela se
révélait inutile.

Ainsi, durant nos expérimentations, nous avons besoin d’étudier 3 facteurs : le nombre
d’agents, le nombre d’interactions émises par agent et le nombre de scans de l’environ-
nement effectués par chaque agent.

8.2/ CONDITIONS D’EXPÉRIMENTATION DU FONCTIONNEMENT

DES INTERACTIONS

A l’aide de SAMP, nous avons généré quatre SMA exécutant chacun un système proies-
prédateurs. Sur ces quatre systèmes, deux utilisent l’approche d’interactions SAMP et
deux utilisent une approche classique. Pour chacune des approches, nous avons un sys-
tème proies-prédateurs complet comme décrit dans notre exemple fil rouge et un système
proies-prédateurs dans lequel les moutons ont été rendus aveugles afin d’identifier l’im-
pact de la réduction du nombre de compétences sur le nombre de scans et d’interactions.

En effet, dans les SMA proies-prédateurs où les moutons sont aveugles, lorsqu’un mou-
ton a faim, il patiente sur place 3 secondes avant de manger, quelle que soit sa position.

8.2. CONDITIONS D’EXPÉRIMENTATION DU FONCTIONNEMENT DES INTERACTIONS117

Il possède aussi un certain pourcentage de chance de se cloner sur place après avoir
mangé (le mouton ne part plus en recherche d’un autre mouton pour se reproduire). Ici,
le but n’était pas d’avoir un système réaliste, mais de tester l’impact du nombre d’interac-
tions sur l’efficacité de notre approche par rapport à l’approche classique, mais aussi de
tester cet impact entre deux SMA utilisant notre approche.

Du fait que les moutons ne maîtrisent plus la compétence voir, ils ne sont plus capables
de recevoir les interactions émises par les agents herbes et les autres agents moutons.

Pour chacun des SMA générés, nous avons réalisé deux scènes permettant de repré-
senter l’état de départ des SMA pour les expérimentations. La première avec un nombre
réduit d’agents au départ de la simulation (89 agents 1). L’autre avec un nombre beau-
coup plus grand (1424 agents1). Ceci afin de tester l’impact du nombre d’agents sur les
différents SMA générés. Dans chacune des expérimentations, la population évolue. Des
agents se reproduisent, d’autres meurent. C’est la seule variable sur laquelle nous avons
le contrôle, qui évolue et qui représente un intérêt pour nos résultats. Nous n’avons pas
un contrôle direct sur les autres variables qui évoluent et qui représentent un intérêt pour
nos résultats. C’est notamment le cas pour le nombre de scans réalisés par frame et le
nombre d’interactions émises par frame.

Nous analysons, pour chaque expérimentation, la moyenne du nombre de scans effec-
tués par chaque agent en fonction du nombre d’agents dans la simulation. Pour chaque
expérimentation, nous affichons dans un même graphe les courbes correspondant aux
valeurs analysées pour notre approche et l’approche classique. Chaque exécution dure
5000 frames 2.

Avant de commencer l’analyse des résultats de chaque expérimentation, il est bon de
noter qu’entre les systèmes générés avec une approche SAMP et ceux générés avec
une approche classique, très peu d’éléments changent. Dans l’approche SAMP, seuls
les agents actifs scannent leur environnement à la recherche d’interactions qui les in-
téressent et à la recherche d’agents intéressés par leurs interactions. Ensuite, chaque
agent émet des interactions à destination des agents présents dans leur table d’émis-
sion.

Dans l’approche classique, chaque agent scanne l’environnement à la recherche d’inter-
actions pouvant l’intéresser. Une fois cela fait, ils n’ont pas besoin d’émettre d’interac-
tions.

Durant chacune des expérimentations, nous avons relevé la moyenne du nombre d’inter-
actions émises par chaque agent rapportée sur la durée complète de la simulation. Ce
chiffre permet de vérifier que le nombre d’interactions émises ne diffère pas trop d’une
expérimentation à l’autre. Si cette moyenne était trop différente d’une expérimentation
à l’autre (pour un même comportement modélisé), cela aurait signifié que les différents
systèmes (approche SAMP et approche classique) n’exécutaient pas le même comporte-
ment. Nos tests en auraient été faussés.

Pour les expérimentations avec le SMA proies-prédateurs complet, cette moyenne oscille
entre 0.13 et 0.15. Pour les expérimentations avec les moutons aveugles, cette moyenne
est de 0 pour chaque expérimentation. En effet, le nombre d’agents émettant des inter-

1. Ces deux valeurs du nombre d’agents ont été obtenues une fois que nous avons créé les scènes
contenant les entités 3D des simulations

2. La population se stabilisant aux alentours des 4000 frames, nous avons fixé la fin d’exécution à 5000
frames

118 CHAPITRE 8. RÉSULTATS PRATIQUES

actions est minime. Chaque mouton n’émet plus d’interactions que vers les agents loups
à proximité. Dans le SMA proies-prédateurs complet, les moutons et les carrés de sol
émettent des interactions vers les moutons qui leur sont proches (pour respectivement la
reproduction entre les moutons et pour l’alimentation des moutons).

Pour rappel, le système proies-prédateurs que nous utilisons pour nos expérimentations
est composé de loups, de moutons et de carrés d’herbes. Chaque mouton se déplace
aléatoirement. Lorsqu’il a faim, il se met en recherche d’un carré d’herbe qui n’a pas en-
core été mangé. Une fois qu’il en a trouvé un, il se dirige vers lui et le mange. Ensuite,
il a un pourcentage de chance de chercher à se reproduire. S’il ne cherche pas à se re-
produire, il va retourner dans sa phase de déplacement aléatoire. S’il veut se reproduire,
il va chercher un mouton, se rapprocher de lui et se reproduire avec puis retourner dans
sa phase de déplacement aléatoire.

Les loups ont un comportement similaire à ceci près qu’ils mangent des moutons et non
de l’herbe et se reproduisent avec des loups. Lorsqu’un mouton est mangé par un loup,
il meurt.

Lorsqu’ils sont mangés, les carrés d’herbes changent de représentation visuelle et de-
viennent non comestibles pendant une certaine période. Lorsque cette période est pas-
sée, ils redeviennent comestibles.

Chaque expérimentation est réalisée 50 fois avec, pour chaque exécution, une graine
différente pour l’aléatoire. Chaque expérimentation est exécutée 50 fois avec les mêmes
graines que les autres.

8.3/ EXPÉRIMENTATIONS AVEC LE SMA PROIES-PRÉDATEURS

COMPLET

Nous avons commencé nos expérimentations en exécutant nos tests sur des SMA re-
produisant l’exemple proies-prédateurs que nous avons précédemment décrit. Comme
nous l’avons expliqué dans la section 8.2, nous avons réalisé 4 expérimentations pour ce
proies-prédateurs. Deux pour chaque système d’interactions chacun dans deux configu-
rations de SMA différentes.

Nos résultats sont visibles dans les graphes des figures 8.1 et 8.2.

Sur ces résultats, nous constatons que SAMP est constamment plus efficace que l’ap-
proche classique. Nous pouvons aussi constater que plus le nombre d’agents grandi plus
l’écart devient important.

8.4/ EXPÉRIMENTATIONS AVEC DES MOUTONS AVEUGLES

Dans le but de tester l’impact des interactions sur l’approche SAMP et sur son efficacité
par rapport à l’approche classique nous avons réalisé de nouvelles expérimentations en
modifiant le comportement des moutons. Pour ce faire, nous avons rendu les moutons
aveugles. C’est-à-dire que nous leur avons enlevé leur compétence de vue. Ainsi, ils
n’exécutent plus de scan de leur environnement pour ce qui concerne leur vision. Nous
avons exécuté les mêmes expérimentations que dans la section 8.3. Les résultats sont

8.5. CONSOMMATION DE MÉMOIRE 119

FIGURE 8.1 – Nombre moyen de scans par frame en fonction du nombre d’agents pour
proies-prédateurs complet (nombre d’agents réduit).

visibles dans les figures 8.3 et 8.4

On constate avec ces figures que les tendances restent les mêmes. L’approche SAMP

reste plus efficace que l’approche classique et tend à devenir de plus en plus efficace
plus le nombre d’agents augmente.

En comparant les résultats pour l’approche SAMP dans les deux expérimentations (com-
plète et avec les moutons aveugles), on constate que le nombre de scans réalisés par
chaque agent est légèrement plus faible lorsque les moutons sont aveugles. Dans le cas
où les moutons sont aveugles, lorsque ceux-ci sont actifs, ils ne scannent plus les carrés
d’herbes, mais vont tout de même scanner les loups. En effet, même si les moutons ne
peuvent pas voir les loups, les loups doivent tout de même être notifiés de leur présence.
C’est pourquoi le nombre de scans réalisés par les agents est légèrement plus faible bien
que les agents moutons ne soient plus intéressés par aucune interaction.

Ce qui a le plus d’impact sur notre approche, en termes de nombre de scans effectués,
ce n’est pas la complexité des agents qui composent le SMA mais leur nombre.

8.5/ CONSOMMATION DE MÉMOIRE

Le but de notre approche de gestion des interactions est de diminuer le nombre de scans
qu’effectuent les agents. Nous avons constaté que les agents de SAMP effectuent moins
de scans de leur environnement qu’avec une approche classique. Cependant, cette effi-
cacité a un prix.

Le principe de l’approche de SAMP repose sur le fait que les agents ne scannent leur en-
vironnement que lorsqu’ils sont actifs. Lorsqu’ils scannent leur environnement, les agents
enregistrent dans un tableau les agents intéressés par leurs interactions et s’enregistrent

120 CHAPITRE 8. RÉSULTATS PRATIQUES

FIGURE 8.2 – Nombre moyen de scans par frame en fonction du nombre d’agents pour
proies-prédateurs complet (grand nombre d’agents).

dans un tableau possédé par les agents dont les interactions les intéressent.

Par rapport à l’approche classique, chaque agent possède deux tableaux supplémen-
taires. Le premier contient une liste des agents émettant des interactions vers le proprié-
taire du tableau. Le second contient une liste des agents vers lesquels l’agent propriétaire
du tableau émet des interactions. Chaque élément de ces tableaux est composé de 2 va-
riables : les éléments du premier tableau sont composés d’un pointeur vers l’agent qui
émet l’interaction et d’un pointeur vers cette interaction. Les éléments du second tableau
sont composés d’un pointeur vers l’agent qui reçoit l’interaction et d’un pointeur vers cette
interaction.

Le coût supplémentaire est donc, pour chaque interaction émise, de 4pointeurs∗8octets =

32octets. Lors de nos expérimentations, le plus grand nombre d’interactions que nous
avons obtenu était de 25003 ce qui donne un surcout total d’environ 800 kilo-octets. Ce
surcoût semble minime comparé aux avantages apportés par cette approche. Mais il nous
semble intéressant pour le futur de nos travaux de diminuer ce surcoût afin d’améliorer
encore notre approche.

8.6/ MODÉLISATION D’UN JEU 2D

Afin de s’assurer que SAMP est adapté à plusieurs types de jeu vidéo, nous avons mo-
délisé un autre SMA. Ce SMA modélise un jeu en deux dimensions (2D) vue du dessus.
Ce SMA est composé d’un agent personnage (contrôlable par l’utilisateur), d’ennemis et
d’éléments de décors. Dans la suite de cette section, nous décrivons plus en détail ce
SMA puis nous expliquons comment nous avons réussi à le modéliser.

8.6. MODÉLISATION D’UN JEU 2D 121

FIGURE 8.3 – Nombre moyen de scans par frame en fonction du nombre d’agents pour
proies-prédateurs (moutons aveugles et nombre d’agents réduit).

8.6.1/ DESCRIPTION DU SYSTÈME

Il existe deux possibilités de définition pour un jeu 2D :

— D’un point de vue rendu, un jeu 2D est un jeu dont les ressources sont elles-mêmes
en 2D et dont le rendu se fait sur un plan ;

— D’un point de vue Gameplay, un jeu 2D est un jeu dans lequel les entités sont
positionnées sur un plan.

Le jeu que nous avons développé est un jeu 2D d’un point de vue rendu et d’un point
de vue gameplay. Nous avons choisi de faire un rendu 2D, car nous avons déjà prouvé
qu’un jeu en 3D était possible avec l’exemple proies-prédateurs.

L’environnement est découpé sous la forme d’une grille où chaque agent est positionné
en fonction de la case sur laquelle il se trouve. Il existe plusieurs types d’agents :

— Le personnage qui est l’agent que les utilisateurs contrôlent. Il peut se déplacer, ra-
masser des objets et attaquer ses ennemis. Il possède des points de vie. A chaque
fois qu’un ennemi le touche, il perd de la vie. Pour attaquer un ennemi, l’utilisateur
doit exécuter l’action attaque en étant sur une case adjacente à un ennemi et en
étant tourné dans sa direction ;

— Les ennemis sont des agents qui se meuvent à la recherche du personnage afin de
l’attaquer. Dès qu’un ennemi voit le personnage, il le suit jusqu’à pouvoir l’attaquer ;

— Les pièces sont des agents que le personnage doit ramasser afin de gagner la
partie. Dès que le personnage se trouve sur une case avec une pièce, il la ramasse
automatiquement ;

— Les potions sont des agents qui rendent le personnage invulnérable.

De plus, les ennemis et le personnage possèdent une valeur de direction indiquant le
sens dans lequel ils regardent. Cette direction peut être droite, gauche, haut ou bas.

122 CHAPITRE 8. RÉSULTATS PRATIQUES

FIGURE 8.4 – Nombre moyen de scans par frame en fonction du nombre d’agents pour
proies-prédateurs (moutons aveugles et grand nombre d’agents).

Les ennemis et le personnage ne peuvent se déplacer que dans ces quatre directions.
Lorsqu’un ennemi arrive sur la même case que le personnage, le personnage perd un
point de vie et l’ennemi est tué.

Les déplacements du personnage se font en utilisant les touches fléchées du clavier
et l’attaque se fait en appuyant sur la touche espace. Un appui sur une touche fléchée
aura deux effets selon la direction dans laquelle le personnage regarde. S’il regarde dans
la même direction que la flèche appuyée, il se déplacera. S’il regarde dans une direc-
tion opposée, il devra d’abord s’orienter dans la bonne direction avant de se déplacer.
L’orientation du personnage prend du temps, tout comme le temps d’attente entre deux
attaques, et il s’agit d’éléments du gameplay. Lorsque le personnage est invulnérable, les
ennemis qui le voient fuient.

8.6.2/ L’AGENT PERSONNAGE

L’agent personnage est l’agent que l’utilisateur contrôle en utilisant les touches fléchées.
Il possède deux propriétés : une propriété point de vie déterminant combien de fois il peut
subir des dégâts de la part d’un ennemi et une propriété case déterminant la case sur
laquelle il se trouve.

Il possède aussi des compétences. Une compétence attaque permettant d’attaquer les
ennemis présents (émettre une interaction en direction des ennemis) dans l’environne-
ment et une compétence être attaqué qui lui permet de recevoir une interaction de la part
des ennemis qui le touche.

Il y a 10 modèles qui gèrent le comportement de l’agent personnage :

— Un modèle comportement modélisant le comportement global de l’agent ;

— Un modèle état appelé MainCharacter qui modélise le comportement principale de

8.6. MODÉLISATION D’UN JEU 2D 123

l’agent ;

— Un modèle état appelé idle qui modélise le comportement lorsque l’agent est à
l’arrêt ;

— Un modèle état appelé dead qui modélise le comportement lorsque l’agent est
mort ;

— Un modèle état appelé moveTo qui modélise le comportement de l’agent lorsqu’il
se déplace ;

— Un modèle état appelé attack qui modélise le comportement de l’agent lorsqu’il
attaque ;

— Un modèle état appelé attacked qui modélise le comportement de l’agent lorsqu’il
est attaqué ;

— Un modèle événement appelé actiontriggered qui modélise l’événement déclenché
lorsqu’une touche du clavier est appuyée ;

— Un modèle événement appelé OnContact qui modélise l’événement déclenché
lorsqu’un autre agent entre en contact avec le personnage ;

— Un modèle altération qui modélise les altérations que subit le personnage (perte de
point de vie, changement de statistique, ...).

8.6.3/ LES AGENTS ENNEMIS

Les agents ennemis sont des agents capables de se mouvoir dans l’environnement. Ils
possèdent deux propriétés :

— Une propriété Case permettant de connaître la case sur laquelle ils se situent ;

— Une propriété CasePersonnage permettant de stocker la dernière position du per-
sonnage qu’il connaît.

Les ennemis se déplacent aléatoirement sur le plateau. Lorsqu’ils voient l’agent per-
sonnage, ils enregistrent la case sur laquelle ils le voient comme étant une destination.
Lorsqu’ils atteignent cette destination (ce qui signifie qu’ils ne voient plus le personnage),
ils recommencent à se déplacer aléatoirement. Lorsqu’un ennemi atteint la même case
que le personnage, il meurt. Lorsque le personnage attaque un ennemi, il meurt aussi.

Pour se déplacer, ils exécutent le même modèle de déplacement que le personnage
(MoveTo décrit en 8.6.8).

8.6.4/ LES AGENTS MURS

Les agents murs servent à délimiter les zones dans lesquelles les autres agents ne
peuvent pas aller. Ces agents ne possèdent qu’une seule propriété : une propriété case
permettant de déterminer la case sur laquelle ils se trouvent. Ils ne possèdent aucune
compétence.

Le seul comportement que les agents case exécutent est, au moment de leur initialisa-
tion, le calcul de la case sur laquelle ils se trouvent en fonction de leurs positions dans
l’environnement. La figure 8.5 expose la modélisation du calcul de la valeur de la pro-
priété case des murs.

124 CHAPITRE 8. RÉSULTATS PRATIQUES

FIGURE 8.5 – Modèle Comportement calculant la valeur de la case de chaque mur

Nous considérons que chaque case de l’environnement est un carré de 10 de côté. Ainsi,
la case sur laquelle se trouve chaque agent est sa position dans l’environnement divisé
par 10.

8.6.5/ LES AGENTS POTION

Un agent potion est un agent qui, lorsque le personnage entre sur sa case, disparaît et
redonne un point de vie au personnage. Un agent potion possède une propriété case
permettant à l’agent de connaître sa position sur la grille de l’environnement.

Les agents potions ont un comportement très simple. Ils attendent que le personnage
leur transmette une interaction de contact. A ce moment-là, les potions disparaissent.
Lorsque le personnage entre en contact avec une potion il regagne un point de vie et
émet une interaction à destination de l’agent potion qu’il vient de "ramasser".

8.6.6/ LA DÉTECTION DES ENTRÉES UTILISATEURS

Rappelons que Shine Engine permet la gestion des entrées utilisateurs quelle que soit
la plateforme sur laquelle l’application est exécutée. Pour ce faire, Shine Engine utilise
ce que nous appelons des actions. Chaque action est paramétrée avec, pour chaque
plateforme, le périphérique utilisé (manette, clavier, souris, etc), le capteur utilisé (nom
du bouton, de la touche du clavier, de la gâchette, etc) ainsi que l’état de ce capteur qui
activera l’action (pressé, relâché, etc). Lorsque l’on veut savoir si une action est activée,
on appelle alors la méthode HasTriggeredAction de la classe ShUser.

La figure 8.6 expose le modèle événement qui permet de modéliser la condition de dé-
clenchement de l’événement détectant l’activation d’une action de Shine Engine. Ce
modèle est alors utilisé, pour l’agent personnage, dans le modèle MainCharacter. La
figure 8.7 fait un zoom sur le modèle MainCharacter pour n’exposer que les nœuds per-
mettant de passer de l’état idle (l’agent est immobile) à l’état moveTo (l’agent se déplace)
lorsque l’on appuie sur une touche fléchée. Lorsqu’un des événements est déclenché, on
créé un vecteur de direction paramétré en fonction de l’événements déclenché. C’est ce
vecteur direction qui sera passé en entrée du modèle moveTo

8.6.7/ LA DÉTECTION DES COLLISIONS

L’agent personnage et les ennemis sont sensibles aux collisions. Ils ne peuvent pas se
déplacer sur une case sur laquelle se trouve un mur. Lorsqu’un ennemi entre dans la case

8.6. MODÉLISATION D’UN JEU 2D 125

FIGURE 8.6 – Modèle événement détectant le déclenchement d’une entrée utilisateur

où se trouve le personnage, ce dernier perd un point de vie et l’ennemi est tué. Lorsque
le personnage attaque en direction d’une case où se trouve un ennemi, ce dernier est tué
et lorsque le personnage se déplace sur une case sur laquelle se trouve une potion, il la
ramasse et ses effets sont appliqués au personnage.

Nous avons envisagé deux possibilités pour la gestion des positionnements et des colli-
sions :

— La première solution consiste en la création d’agents case qui auraient pu contenir
une liste d’agents correspondant aux agents présents sur chaque case ;

— La seconde solution consiste en la recherche dans l’environnement des agents à
proximité et de récupérer le ou les agents présents sur la case qui nous intéresse.

Ces deux solutions nous semblaient bonnes à implémenter, mais dans l’optique de mon-
trer les capacités de modélisation de SAMP, il nous a semblé plus opportun d’utiliser la
seconde solution qui fait plus intervenir les interactions entre les agents et l’environne-
ment.

Ainsi, pour détecter si le personnage entre en collision avec un autre agent, il faut cher-
cher les agents présents dans son environnement proche et récupérer la case sur la-
quelle ils se trouvent afin de savoir si un agent se trouve sur la même case que le per-
sonnage.

La figure 8.8 présente un zoom sur la modélisation de la détection de collisions. Il s’agit
dans cette figure de détecter si le personnage va entrer en collision avec un mur, et dans
ce cas, arrêter son déplacement.

Dans ce modèle, on récupère tous les agents proches de l’agent personnage (à une
distance de 11) et, pour chaque agent récupéré, on vérifie la valeur de sa case. Si elle
correspond à la valeur de la case où l’on veut aller et que le type de l’agent est Wall cela
signifie qu’il y a un mur là où l’agent veut se déplacer. Le booléen CanMove est alors
assigné à la valeur faux. Lorsque l’on sort de la boucle qui parcourait tous les agents
proches, si le booléen CanMove est à vrai le personnage se déplace, sinon, il retourne
dans l’état idle (Non présent dans le zoom fait pour la figure 8.8).

8.6.8/ UN MODÈLE RÉUTILISABLE : MoveTo

Le modèle permettant le déplacement des agents est le même qu’il s’agisse de l’agent
personnage ou des agents ennemis. La figure 8.9 expose le modèle permettant le dé-
placement des agents dans leur environnement. Ce modèle prend en entrée un vecteur
de direction normalisé. A l’aide de ce vecteur direction, le modèle calcule, dans la phase

126 CHAPITRE 8. RÉSULTATS PRATIQUES

FIGURE 8.7 – Zoom sur l’utilisation des événement actionTriggered dans le Modèle Main-
character

OnEnter, la case qui sera la destination du déplacement. Une fois la case destination cal-
culée, le modèle paramètre la direction et la vitesse de l’agent pour le faire se déplacer.

Dans la phase PostUpdate, le modèle vérifie si l’agent a atteint la destination visée. Si
c’est le cas, il déclenche un événement interne indiquant qu’il a atteint la destination
ciblée.

8.6.9/ LE MODÈLE D’ALTÉRATION DU PERSONNAGE

Dans SAMP, les modèles d’altérations permettent de définir comment les agents ré-
agissent aux événements qui ne les font pas changer d’état. Dans le cas de ce jeu 2D, le
modèle altération permet de gérer un événement : Lorsqu’un ennemi entre dans la case
sur laquelle se trouve le personnage. Dans ce cas-là, le personnage perd un point de vie
et l’ennemi est tué.

La figure 8.10 expose le modèle altération du personnage. Dans ce modèle, on voit que
pour tuer l’ennemi, le personnage lui envoie une interaction attack. En effet, dans son
comportement, lorsqu’un agent ennemi reçoit une interaction attack, il change d’état pour
entrer dans un état de mort.

8.7/ SAMP DANS D’AUTRES PROJETS

SAMP est utilisable dans de nombreux projets différents. Cela peut être dans une simu-
lation de type proies-prédateurs, un jeu vidéo en 2D, mais aussi dans des projets de jeu
3D ou pour la gestion d’interfaces utilisateur.

8.7. SAMP DANS D’AUTRES PROJETS 127

FIGURE 8.8 – Zoom sur la détection de collision entre le personnage et les murs

FIGURE 8.9 – Zoom sur la détection de collision entre le personnage et les murs

8.7.1/ SILVA NUMERICA

Silva Numerica 3 est un projet mené en collaboration entre différentes structures dont de
nombreux instituts et laboratoires de recherches : AMValor, l’Université de Bourgogne
Franche-Comté, le Laboratoire d’Etude de l’Apprentissage et du Développement (LEAD),
Eduter Recherche (Agrosup Dijon). L’objectif de Silva Numerica est de développer un
logiciel de simulation de gestion de forêt à l’attention des professionnels de la filière du
bois, mais aussi à l’attention d’élèves de collège, lycée, Bts et filière professionnalisante.

Dans ce logiciel, l’utilisateur contrôle une entité pouvant observer une parcelle d’une forêt.
Le point de vue de l’utilisateur peut être un point de vue personnage (la caméra est située
à la hauteur du regard de l’entité) ou être un point de vue placé au-dessus de la forêt.

Dans ce projet, SAMP est utilisé pour modéliser et gérer les comportements de l’entité
contrôlée par l’utilisateur, de ses actions sur son environnement et des arbres et autres
végétaux dans l’environnement.

Dans ce projet, on utilise le modèle de détection des entrées utilisateurs, déjà utilisé
dans le projet de jeu 2D décrit précédemment. Le modèle permettant le déplacement
des agents que nous avons créé dans le système proie-prédateur est aussi utilisé dans
ce projet pour le déplacement du personnage que nous contrôlons.

3. http://www.silvanumerica.net/

http://www.silvanumerica.net/

128 CHAPITRE 8. RÉSULTATS PRATIQUES

FIGURE 8.10 – Modèle altération du personnage

8.7.2/ UN LECTEUR DE FLUX RSS

SAMP permet de faire des jeux et des simulations, mais il permet aussi de modéliser le
comportement d’interface utilisateur comme un menu de jeu par exemple.

Nous avons alors modélisé le comportement d’un lecteur de flux Rss. Il s’agit d’une inter-
face utilisateur récupérant le flux Rss à partir d’un lien internet, récupère les données du
flux Rss et les affiches. Cette interface se découpe en deux parties : une première partie
permet d’afficher la liste complète des éléments récupérés sur le flux Rss et d’afficher
leurs titres et résumés. Une deuxième partie permet l’affichage du contenu d’un élément
qui est sélectionné.

En utilisant SAMP, il y a un agent qui gère la récupération des données du flux. Cet agent
possède une propriété indiquant l’adresse du flux Rss. Ensuite, chaque entrée du flux
Rss est affichée dans l’interface. Chacune de ces entrées est un élément d’interface sur
lequel les utilisateurs peuvent cliquer et qui affiche le titre et le résumé d’un élément
du flux Rss. Chacun de ces éléments est associé à un agent SAMP qui réagit lorsque
l’utilisateur clique sur l’élément graphique ce qui a pour conséquence d’afficher en plein
écran le contenu de cette entrée. Le contenu affiché en plein écran associé à un autre
agent.

Chaque bouton présent dans l’interface est aussi associé à un agent : le bouton actualiser
permettant de récupérer les données du flux Rss et le bouton retour permettant de passer
de l’affichage plein écran d’une entrée du flux à l’affichage de la liste des entrées.

La possibilité de modéliser le comportement d’interfaces utilisateur permet d’offrir aux uti-
lisateur débutants la possibilité de créer les menus de leur jeu sans avoir à utiliser un autre
système que SAMP. Ajoutée à la possibilité d’importer des modèles d’autres projets, la
création des interfaces utilisateur peut être faite sous forme de différents modules (menu
vertical, menu horizontal, ...) par des utilisateurs avancés et utilisée par des utilisateurs
débutants n’ayant qu’à associer les modules entre eux afin d’obtenir le comportement
voulu.

La figure 8.11 expose le comportement de l’agent listant les éléments du flux Rss. Cet
agent débute en étant dans un état où il affiche la liste éléments du flux. Lorsqu’un clic
est réalisé sur un élément de la liste, il récupère cet événement et entre dans un état
d’affichage d’un élément. Dans cet état, il rend invisible l’objet de l’interface qui lui est
associé et émet une interaction vers l’agent gérant l’affichage d’un élément du flux en
plein écran. Cette interaction transmet le pointeur sur l’agent dont l’élément associé vient
d’être cliqué.

8.8. BILAN DES EXPÉRIMENTATIONS 129

FIGURE 8.11 – Modèle Comportement de l’agent gérant la liste des éléments du Rss

8.8/ BILAN DES EXPÉRIMENTATIONS

Dans cette section, nous avons exposé les résultats de nos expérimentations. Nous
avons tout d’abord validé les résultats théoriques obtenus dans le chapitre 7.

L’approche SAMP visant à réduire le nombre de scans de l’environnement que chaque
agent réalise est plus efficace qu’une approche classique. Il faut tout de même noter
que cela s’applique dans le cas où les agents cherchent à connaître l’état de leur en-
vironnement à chaque frame. C’est notamment le cas dans le domaine des jeux vidéo.
Chaque agent pouvant interagir avec le reste du monde doit connaître son environne-
ment à chaque instant afin de pouvoir réagir aux perturbations qui pourraient impacter
son comportement.

L’approche SAMP apporte cependant une légère augmentation de la consommation de
mémoire par rapport à l’approche classique. De l’ordre de 32 octets par interaction émise,
ce coût peut nous sembler dérisoire par rapport à la consommation en mémoire des jeux
vidéo actuels. En nous référant à une valeur de 5 giga-octets utilisés pour un jeu vidéo 4

et en utilisant la valeur de surconsommation donnée dans la section 8.5 qui est de 781
kilo-octets, nous obtenons un surcoût de 0.015% de l’utilisation de la mémoire. De plus,
l’exemple que nous avons utilisé implique que les agents ont, à chaque instant, besoin
de connaître l’état de leur environnement. Sans cette contrainte, il est envisageable en
approche classique que les agents, même actifs, ne scannent leur environnement que
lorsqu’ils en ont besoin, réduisant ainsi le nombre de scans exécutés. Dans SAMP, cette
optimisation ne serait pas possible, car chaque agent actif, même s’il n’a besoin d’au-
cune interaction, doit scanner son environnement pour pouvoir éventuellement notifier
les agents passifs. Cependant, dans un jeu vidéo il est rare que les agents actifs n’aient
pas besoin de scanner leur environnement notamment pour détecter des obstacles sur
leurs routes.

Dans la section 8.6 nous avons modélisé un jeu 2D afin de tester les possibilités offertes
par SAMP. Ce jeu est très différent de l’exemple proies-prédateurs, mais utilise cepen-
dant des éléments importés de la modélisation du proies-prédateurs. Cela montre que le
principe de nœuds exportables fonctionne correctement et permet aux novices en déve-
loppement d’utiliser ce que d’autres utilisateurs ont développé.

Enfin, les sections 8.7.1 et 8.7.2 permettent de confirmer le fait que SAMP puisse per-
mettre de modéliser des comportements très différents, éloignés des comportements
d’agents dans un jeu vidéo. La possibilité de modéliser le comportement du système à

4. Les configurations minimales pour la mémoire des jeux vidéo actuels avoisinent souvent les 5 giga-
octets et approchent de plus en plus des 10 giga-octets.

130 CHAPITRE 8. RÉSULTATS PRATIQUES

travers les interfaces utilisateur permet d’ouvrir SAMP à la création d’applications et logi-
ciels par un maximum d’utilisateurs, quel que soit leur niveau en développement logiciel.

IV
CONCLUSION ET PERSPECTIVES

131

9
CONCLUSION

Nous rappelons ici les problématiques qui ont été les nôtres ainsi que les objectifs que
nous avons fixés pour y répondre. Nous revenons ensuite sur les contributions que nous
avons développées pour atteindre ces objectifs. Nous continuons par une discussion au-
tour des perspectives d’évolution de SAMP. Ce chapitre se termine par une conclusion
plus personnelle sur l’aventure qu’est la préparation d’un doctorat.

9.1/ LE CONTEXTE

Le jeu vidéo et les SMA sont deux domaines qui sont complémentaires.

Le domaine des SMA est le terrain d’un grand nombre de travaux de recherche visant,
entre autres, à simuler des systèmes distribués réels ou virtuels. Dans notre cas, les
agents peuvent tout à fait représenter les entités d’un jeu vidéo. Ces travaux apportent
une expertise en termes d’interactions, de validations, mais aussi de prises de décisions,
de coopérations et de négociations, autant de concepts qui peuvent être utiles aux jeux
vidéo.

Ces jeux vidéo apportent aussi une expertise dans les domaines de la simulation des
concepts de la physique, des algorithmes de rendu 2d et 3d pour l’affichage des simu-
lations et des interfaces utilisateur (tant au niveau de l’ergonomie des affichages que de
l’utilisation des périphériques d’entrée).

Nous nous plaçons dans un contexte où les SMA sont utilisés comme paradigme de
programmation des jeux vidéos. Mais la fusion de ces deux domaines est accompagnée
de l’apparition de différents verrous : comment assurer la performance d’exécution afin
de respecter le concept de frame présent dans le domaine du jeu vidéo, sachant que
les SMA ne sont pas toujours optimisés dans ce domaine? Comment intégrer des outils
externes tels que les moteurs physiques? Nous avons constaté que les plateformes de
modélisation de SMA existantes ne sont pas forcément adaptées au développement de
jeux vidéo, tout du moins dans le respect de ces contraintes.

Au-delà des difficultés liées à la fusion de ces deux domaines, il existe un problème
commun qui concerne la traduction des besoins entre la personne désirant modéliser
un système et le développeur qui va le modéliser. Dans le domaine des SMA, lorsqu’un
scientifique, une collectivité ou un industriel expose ses besoins à un développeur, il y a
un risque que cette personne les exprime mal ou/et que le développeur les comprenne
mal. Dans le domaine du jeu vidéo, le problème est le même lorsqu’un Game Designer,

133

134 CHAPITRE 9. CONCLUSION

un animateur 3D ou un Level Designer expose ses besoins à un développeur. Certains
outils existent pour permettre aux utilisateurs voulant modéliser un SMA ou un jeu de le
faire eux-mêmes. Mais aucun de ces outils, à notre connaissance, ne permet le dévelop-
pement de jeux vidéo en utilisant le paradigme multi-agents.

Forts de cette analyse, nous avons extrait 3 objectifs qui ont guidé nos travaux durant
cette thèse. Nous avons eu pour objectifs le développement d’une plateforme de modé-
lisation, de génération et d’exécution de jeux vidéo basé sur le paradigme multi-
agents accessible à un grand nombre d’utilisateurs afin de pallier les problèmes de
traduction entre les différents acteurs de la modélisation de SMA. Ce logiciel devait inté-
grer des concepts et spécificités propres au domaine des jeux vidéo et au domaine
des multi-agents afin d’allier leurs optimisations. Il devait aussi s’approcher d’une exé-
cution en temps réel afin d’offrir une fluidité et une immersion de bonne qualité néces-
saires au plaisir de jeu.

9.2/ NOS CONTRIBUTIONS

Afin de répondre à ces objectifs, nous avons développé Shine Agent Modeling Platform
(SAMP). Cette plateforme permet d’unifier les domaines du jeu vidéo et des SMA. Nous
y avons intégré les concepts du paradigme multi-agents (interactions, perceptions, com-
pétences, environnement, ...).

Afin de se rapprocher au plus près d’un fonctionnement en temps réel, nos travaux ont
été guidés par deux impératifs : le respect du concept de frame propre aux jeux vidéo et
la présence de capteurs (les boutons des périphériques d’entrées) dont les informations
doivent être transmises en temps réel au système.

Plusieurs travaux de recherche dans le domaine des SMA visent à optimiser le fonction-
nement des SMA pour s’approcher d’une exécution en temps réel. Cependant, la plupart
de ces recherches sont incompatibles avec le domaine du jeu vidéo. Les recherches sur
l’amélioration des architectures matérielles ne pouvaient pas être intégrées du fait de l’hé-
térogénéité des systèmes sur lesquels les jeux sont exécutés (chaque joueur possède un
pc différent et Shine Engine est entièrement multi-plateforme). Les travaux visant à exé-
cuter les SMA sur les GPU sont aussi incompatibles car, dans le domaine des jeux vidéo,
les ressources des GPU sont dédiées aux calculs de rendu et de physique.

C’est pourquoi nous avons décidé de concentrer nos recherches sur l’amélioration des
interactions entre les agents, gourmandes, par leur nombre, en temps d’exécution. Notre
approche, basée sur des agents actifs et passifs, permet une réduction du nombre de
recherches effectuées dans l’environnement par les agents. Nos expérimentations ont
prouvé que cette approche est efficace dans bien des contextes.

En sus d’améliorer les interactions entre les agents, SAMP a pour objectif d’être accessible
au plus grand nombre d’utilisateurs. Pour ce faire, il met à disposition un éditeur graphique
permettant la modélisation de SMA, du paramétrage des agents à la modélisation de
leur comportement. L’éditeur graphique de SAMP ne requiert aucune connaissance de
langage de développement textuel et offre ainsi une accessibilité simplifiée à un grand
nombre d’utilisateurs. La modélisation des comportements se fait à l’aide d’un système
de graphes de nœuds et les paramétrages des agents, interactions et compétences se
font par le biais de fenêtres graphiques.

9.2. NOS CONTRIBUTIONS 135

FIGURE 9.1 – Diagramme de classes de Shine Engine

Afin d’assurer un bon fonctionnement, tant de la partie modélisation des SMA que de
l’exécution du modèle, SAMP est composé de 3 modules :

— SAMP-M est un méta-modèle permettant de définir les éléments composant SAMP

(interactions, compétences, agents, modèles comportementaux, ...). SAMP-M per-
met aussi de définir les règles liant chacun de ces éléments aux autres ;

— SAMP-E est l’éditeur graphique de SAMP permettant de paramétrer les projections
du méta-modèle : paramétrages des compétences, des interactions et des agents,
modélisation des comportements, ... ;

— SAMP-X qui réalise la génération, la compilation et l’exécution des SMA modélisés.

SAMP intègre, en plus des concepts agent, des outils propres au domaine des jeux vidéo.
La gestion des principes physiques (gravité, collisions, calculs des distances, propagation
du son, etc) est faite par l’utilisation de moteurs physiques qui sont des outils approuvés et
éprouvés par les professionnels du domaine. Le fait que SAMP soit intégré dans un moteur
de jeu permet de pouvoir modéliser l’environnement à l’aide d’une interface graphique
comme on modéliserait un niveau de jeu vidéo. En se référant à la figure 9.1, SAMP

utilise le SDK pour accéder aux fonctions du moteur Shine Engine et est intégré comme
un plugin à ce moteur pour être utilisable dans des jeux vidéo, mais aussi dans l’éditeur
Shine Editor.

Malgré une interface entièrement graphique, il est nécessaire de prendre en main le
langage graphique SAMP-M afin de pouvoir modéliser les comportements des agents de
SAMP. Mais la possibilité d’exporter/importer des modèles de comportement d’un projet
à un autre permet de différencier deux types d’utilisateurs : d’un côté des utilisateurs
ayant une connaissance de la logique de programmation (qui comprendra les concepts
de programmation tel que les boucles, les conditions, les tableaux, etc) et de l’autre des
utilisateurs ayant une connaissance d’une logique métier (devant assembler des modèles
entre eux pour modéliser le comportement du système désiré).

SAMP permet de modéliser des SMA principalement destinés au monde du jeu vidéo.
Mais nous avons abordé le fait qu’il était possible d’utiliser SAMP dans des projets très
éloignés de ce domaine. Le système proies-prédateurs est un classique de la littérature
multi-agents et le lecteur de flux RSS n’est pas un jeu à proprement parler. Cette grande
expressivité permet d’imaginer une utilisation de SAMP dans des domaines variés et de

136 CHAPITRE 9. CONCLUSION

ne pas le cloisonner au domaine des jeux vidéo qui était notre cible au départ.

9.3/ PERSPECTIVES

Les perspectives d’avenir pour SAMP sont nombreuses.

9.3.1/ OPTIMISATION DES RÈGLES DE GÉNÉRATION DE CODE

Une des premières perspectives concerne l’optimisation des règles de génération de
code. Cette optimisation aurait deux impacts sur le fonctionnement de SAMP :

Le premier impact se trouverait au niveau de la compilation du code généré. En évitant
aux compilateurs d’avoir à réaliser certaines optimisations en les incluant directement
dans le code, il serait possible de gagner un temps précieux lors des compilations. Ces
optimisations pourraient être contextuelles : Imaginons le cas de deux blocs if imbriqués,
l’optimisation permettrait de ne générer qu’un seul bloc avec une seule condition.

Le deuxième impact serait sur l’exécution à proprement parler des SMA modélisés avec
SAMP en optimisant le code généré. Tout comme pour le point précédent, il pourrait s’agir
d’optimisations contextualisées : par exemple, un parcours de boucle dont la condition
peut être optimisée dans un cas particulier, ou une écriture répétée en mémoire qui pour-
rait être évitée.

9.3.2/ FACILITÉ D’UTILISATION

Un autre point sur lequel nous avons envie de travailler est la facilité d’utilisation de SAMP.
Faciliter l’utilisation de SAMP peut passer par la création de nœuds particuliers permettant
de générer du code complexe qui, sans ces nœuds particuliers, nécessiterait l’utilisation
de plusieurs nœuds. On a déjà évoqué un tel nœud avec le nœud foreach qui permet le
parcours d’un tableau plus facilement qu’avec un nœud for. L’objectif est d’en ajouter plus
afin de rendre les concepts propres au développement informatique plus accessibles et
par conséquent rendre plus facile l’utilisation de SAMP.

La facilité d’utilisation de SAMP est aussi permise grâce à la possibilité d’importer/exporter
des modèles d’un projet à un autre permettant à des utilisateurs débutants d’utiliser des
modèles complexes modélisés par des utilisateurs confirmés. Dans sa version actuelle,
SAMP permet cette importation/exportation de manière manuelle. Shine Engine est en
évolution constante et une des évolutions majeures qui est en cours concerne le déploie-
ment de Shine Engine en SAAS. Cette version SAAS est l’occasion d’offrir la possibilité
de mutualiser sur un serveur en ligne (accessible par tous les utilisateurs) les modèles
de comportement de SAMP. Cette mutualisation permettra à la communauté d’aider les
utilisateurs qui en ont besoin en leur fournissant des modèles de comportement.

De plus, il est à l’heure actuelle possible d’intégrer de nouvelles bibliothèques de code
dans SAMP. C’est de cette manière que la bibliothèque de code du SDK de Shine Engine
est intégrée dans SAMP. Cependant, cette intégration requiert de fortes connaissances en
informatique (ajout de macro dans le code afin que le parser de SAMP récupère correcte-
ment les méthodes à intégrer). Améliorer cette fonctionnalité permettra à la communauté

9.3. PERSPECTIVES 137

de proposer des bibliothèques de code prêtes à l’emploi et intégrables dans divers projets
SAMP.

9.3.3/ OPTIMISER LES INTERACTIONS

Mais la facilité d’utilisation n’est pas le seul point important de notre outil et l’optimisation
de l’exécution ne passe pas uniquement par l’optimisation des règles de génération. Nous
avons prouvé l’intérêt de notre approche d’interactions, mais il est clairement possible de
l’améliorer. Le nombre de recherches dans l’environnement effectuées par les agents a
été grandement réduit mais ces recherches elles-mêmes peuvent être optimisées. Dans
la version actuelle, les agents jouent tous le rôle de Directory Facilitator (DF) en indiquant
à chaque autre agent quelles interactions il peut émettre ou recevoir.

Ce fonctionnement à un coût du fait qu’il est nécessaire de chercher dans l’environne-
ment quels agents sont à proximité. On pourrait réduire ce coût en appliquant un concept
propre aux jeux vidéo, les chunks. Il s’agit d’un concept consistant en des zones de
l’environnement qui sont désactivées lorsqu’il n’est pas utile de mettre à jour leur état
(notamment, si le joueur est trop loin de cette zone). Nous envisageons d’ajouter des
agents de type chunks qui joueraient le rôle de DF et qui seraient dispersés dans l’envi-
ronnement. Ainsi, chaque agent pourrait connaître les agents qui sont à proximité de lui
en contactant l’agent chunk du chunk dans lequel il se trouve. Le temps de calcul pour
effectuer des recherches dans l’environnement serait grandement réduit. Il serait alors
possible d’appliquer des algorithmes de positionnement dans des environnements dis-
crets afin d’obtenir un premier tri des agents dans l’environnement et de repasser à une
recherche dans un environnement continu, mais uniquement à l’intérieur du chunk. Les
agents actifs de SAMP exécuteraient leurs recherches uniquement auprès de ces agents
chunk.

Un autre avantage de l’utilisation de ce concept de chunks serait la capacité de parallé-
liser les SMA de SAMP dans lesquels l’environnement serait divisé en plusieurs chunks
et déployer ces chunks sur des serveurs différents. Dans le cas de jeux vidéo de type
Jeu de Rôle Massivement Multi-joueurs (MMORPG) par exemple. Il faudrait cependant
mettre en place des algorithmes de synchronisation et de propagation afin de pouvoir
faire transiter des agents d’un chunk à l’autre.

L’intégration des chunks au sein de SAMP devra être transparente pour l’utilisateur. Il sera
donc nécessaire de prévoir une interface simple à prendre en main pour paramétrer les
chunks.

9.3.4/ CHANGER L’ORGANISATION

L’intégration de certains concepts agents n’est pas encore aboutie. Il a été longtemps dis-
cuté de la nécessité ou non d’intégrer des concepts tels que l’approche Agent/Groupe/-
Rôle ou des types de communications particuliers comme les phéromones. Mais avant
d’intégrer ce genre de concept, nous souhaitions avoir une plateforme générique per-
mettant aux utilisateurs de modéliser ces concepts eux-mêmes. L’intégration native dans
SAMP serait un véritable plus pour aider à l’accessibilité de la plateforme aux scientifiques
désireux de modéliser des SMA, mais n’ayant pas les connaissances suffisantes pour le
faire avec un langage informatique textuel.

138 CHAPITRE 9. CONCLUSION

L’ajout, par exemple, du concept AGR apporterait un véritable plus dans la gestion de
SMA avec un grand nombre d’agents (comme dans les jeux de stratégie). A l’aide de
ce concept, il serait possible d’améliorer l’exécution des SMA. Chaque groupe possé-
derait un chef qui centraliserait les comportements propres au groupe (déplacement,
perception, etc). Ainsi, chaque agent du groupe n’aurait pas à réaliser les calculs de ces
comportements ce qui réduirait grandement le nombre de calculs effectués.

Il serait possible de paramétrer et modéliser le fonctionnement interne de chaque groupe
comme on paramètre et modélise des agents. On pourrait ainsi modéliser les conditions
d’accès au groupe, le comportement des agents et du groupe en cas de mort de leur chef
(dissolution du groupe, élection d’un nouveau chef). Imaginons un groupe qui perdrait
un grand nombre de ses agents sous les coups d’un adversaire trop puissant. Il serait
envisageable de modéliser la dissolution du groupe lorsque le nombre d’agent en son
sein passerait sous un certain seuil. Ainsi, les agents seraient mis en déroute et fuiraient
le champ de bataille.

L’ajout de ce concept AGR aurait un impact tant d’un point de vue de l’optimisation de
l’exécution que de la centralisation des comportements et leur réalisme.

Un système tel que SAMP sera toujours en évolution et de nouvelles perspectives se-
ront mises en avant par les utilisateurs. Mais les perspectives citées dans cette section
nous semblent être de bons objectifs à atteindre afin d’améliorer SAMP et le rendre plus
accessible et plus performant.

9.4/ UN PETIT MOT POUR LA FIN

Je terminerai par une analyse plus personnelle. Ces trois années m’ont permis d’acqué-
rir des connaissances dans un domaine extrêmement vaste et complexe. Les systèmes
multi-agents apportent des possibilités et des solutions à de nombreux problèmes. Ces
nouvelles connaissances et ce travail de recherche m’ont fait prendre conscience qu’il y
a une multitude de possibilités pour répondre à un problème, et ce bien avant l’implémen-
tation, mais déjà lors de la réflexion sur les architectures, les technologies et les concepts
qui seront utilisés.

J’ai déjà remercié toutes les personnes qui ont pris part à l’aboutissement de cette thèse,
mais je tenais à vous réaffirmer toute la sympathie que j’ai pour vous.

BIBLIOGRAPHIE

[1] Extension gis version 1.0, diffusée le 16.07.2008. http ://romainmejean.fr/manuel_-
netlogo/gis.html.

[2] Gama, modeling made easy. http ://gama-platform.org/. 2016.

[3] Patrice langlois, baptiste blanpain et eric daudé, « magéo, une plateforme de mo-
délisation et de simulation multi-agent pour les sciences humaines », cybergeo :
European journal of geography [en ligne], systèmes, modélisation, géostatistiques,
document 741, mis en ligne le 02 octobre 2015, consulté le 23 décembre 2016. url :
http ://cybergeo.revues.org/27236 ; doi : 10.4000/cybergeo.27236.

[4] Fipa request interaction protocol specification. http ://www.fipa.org/specs/fipa00026/,
2002.

[5] Z. Afoutni. Un modèle multi-agents pour la représentation de l’action située basé sur
l’affordance et la stigmergie. PhD thesis, Université de la Réunion, 2015.

[6] E. Amouroux, T.-Q. Chu, A. Boucher, and A. Drogoul. Gama : an environment for
implementing and running spatially explicit multi-agent simulations. In Pacific Rim
International Conference on Multi-Agents, pages 359–371. Springer, 2007.

[7] F. Arrignon. HOVER-WINTER : un modèle multi-agent pour simuler la dynamique
hivernale d’un insecte auxiliaire des cultures (Episyrphus balteatus, Diptera : Syrphi-
dae) dans un paysage hétérogène. PhD thesis, 2006.

[8] J. L. Austin. How to do things with words. Oxford university press, 1975.

[9] H. Aydin, R. Melhem, D. Mossé, and P. Mejia-Alvarez. Dynamic and aggressive sche-
duling techniques for power-aware real-time systems. In Real-Time Systems Sym-
posium, 2001.(RTSS 2001). Proceedings. 22nd IEEE, pages 95–105. IEEE, 2001.

[10] H. Aydin, R. Melhem, D. Mossé, and P. Mejía-Alvarez. Power-aware scheduling for
periodic real-time tasks. IEEE Transactions on Computers, 53(5) :584–600, 2004.

[11] R. Bajcsy. Active perception. Proceedings of the IEEE, 76(8) :966–1005, 1988.

[12] J. C. Ballantyne. Real-time scheduler, Oct. 18 2005. US Patent 6,957,432.

[13] B. Baudry, S. Ghosh, F. Fleurey, R. France, Y. Le Traon, and J.-M. Mottu. Barriers to
systematic model transformation testing. Communications of the ACM, 53(6) :139–
143, 2010.

[14] S. Bernardini, K. Porayska-Pomsta, and T. J. Smith. Echoes : An intelligent se-
rious game for fostering social communication in children with autism. Information
Sciences, 264 :41–60, 2014.

[15] V. Berry. Jouer pour apprendre : est-ce bien sérieux? réflexions théoriques sur les
relations entre jeu (vidéo) et apprentissage. Canadian Journal of Learning and Tech-
nology/La revue canadienne de l’apprentissage et de la technologie, 37(2), 2011.

[16] T. Bouron and A. Collinot. Sam : a model to design computational social agents. In
Proc. 10th European Conference on Artificial Intelligence, ECAI, volume 92, pages
239–243, 1992.

139

140 BIBLIOGRAPHIE

[17] T. Bouron, J. Ferber, and F. Samuel. Mages : A multi-agent testbed for heteroge-
neous agents. Decentralized Artificial Intelligence, 2 :195–214, 1991.

[18] F. Bousquet, I. Bakam, H. Proton, and C. Le Page. Cormas : common-pool resources
and multi-agent systems. In International Conference on Industrial, Engineering and
Other Applications of Applied Intelligent Systems, pages 826–837. Springer, 1998.

[19] Box2D. A 2d physics engine for games. http://box2d.org/, 2018.

[20] P. Breiter and M. Sadek. A rational agent as a kernel of a co-operative dialogue
system. In Proceedings EC AT 96 ATAL Workshop.

[21] R. A. Brooks. Intelligence without representation. Artificial Intelligence, 47 :139–159,
1991.

[22] E. Brottier, F. Fleurey, J. Steel, B. Baudry, and Y. Le Traon. Metamodel-based test
generation for model transformations : an algorithm and a tool. In Software Reliabi-
lity Engineering, 2006. ISSRE’06. 17th International Symposium on, pages 85–94.
IEEE, 2006.

[23] G. Caire, W. Coulier, F. Garijo, J. Gomez, J. Pavón, F. Leal, P. Chainho, P. Kearney,
J. Stark, R. Evans, et al. Agent oriented analysis using message/uml. In Internatio-
nal Workshop on Agent-Oriented Software Engineering, pages 119–135. Springer,
2001.

[24] S. Chandhoke. Hardware assisted real-time scheduler using memory monitoring,
Jan. 27 2015. US Patent 8,943,505.

[25] P. Dagnelie. Principes d’expérimentation (deuxième édition). Presses agronomiques
de Gembloux, 2012.

[26] Y. Demazeau. From interactions to collective behaviour in agent-based systems. In
In : Proceedings of the 1st. European Conference on Cognitive Science. Saint-Malo.
Citeseer, 1995.

[27] A. Drogoul. When ants play chess (or can strategies emerge from tactical beha-
viours?). In European Workshop on Modelling Autonomous Agents in a Multi-Agent
World, pages 11–27. Springer, 1993.

[28] A. Drogoul. When ants play chess (Or can strategies emerge from tactical beha-
viours?), pages 11–27. Springer Berlin Heidelberg, Berlin, Heidelberg, 1995.

[29] E. H. Durfee and T. A. Montgomery. Mice : A flexible testbed for intelligent coordina-
tion experiments. Ann Arbor, 1001 :48103, 1989.

[30] E. H. Durfee and T. A. Montgomery. A hierarchical protocol for coordinating muli-
tagent behaviors. In AAAI, pages 86–93, 1990.

[31] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces of
publish/subscribe. ACM computing surveys (CSUR), 35(2) :114–131, 2003.

[32] J. Ferber. Les systèmes multi-agents : vers une intelligence collective. Informatique,
Intelligence Artificielle. Inter-éditions, 1995.

[33] J. Ferber. Les systèmes multi-agents : un aperçu général. Techniques et sciences
informatiques, 16(8), 1997.

[34] R. E. Fikes and N. J. Nilsson. Strips : A new approach to the application of theorem
proving to problem solving. Artificial intelligence, 2(3-4) :189–208, 1971.

[35] J. B. Filippi. Une architecture logicielle pour la multi-modélisation et la simulation
à évènements discrets de systèmes naturels complexes. PhD thesis, Université de
Corse ; Université Pascal Paoli, 2003.

http://box2d.org/

BIBLIOGRAPHIE 141

[36] T. Finin, R. Fritzson, D. McKay, and R. McEntire. Kqml as an agent communication
language. In Proceedings of the third international conference on Information and
knowledge management, pages 456–463. ACM, 1994.

[37] F. for Intelligent Physical Agent. Foundation for intelligent physical agent - specifica-
tions. http ://www.fipa.org/specifications/, 1997.

[38] A. U. Frank, S. Bittner, and M. Raubal. Spatial and cognitive simulation with multi-
agent systems. In Proceedings of the International Conference on Spatial Infor-
mation Theory : Foundations of Geographic Information Science, pages 124–139.
Springer-Verlag, 2001.

[39] B. P. Gerkey and M. J. Matarić. Murdoch : Publish/subscribe task allocation for
heterogeneous agents. In Proceedings of the fourth international conference on
Autonomous agents, pages 203–204. ACM, 2000.

[40] J. J. Gibson. The ecological approach to visual perception : classic edition. Psycho-
logy Press, 2014.

[41] A. Gouaïch, F. Michel, and Y. Guiraud. Mic* : a deployment environment for autono-
mous agents. In International Workshop on Environments for Multi-Agent Systems,
pages 109–126. Springer, 2004.

[42] A. Grignard, P. Taillandier, B. Gaudou, D. A. Vo, N. Q. Huynh, and A. Drogoul. Gama
1.6 : Advancing the art of complex agent-based modeling and simulation. In In-
ternational Conference on Principles and Practice of Multi-Agent Systems, pages
117–131. Springer, 2013.

[43] C. Grossard and O. Grynszpan. Entraînement des compétences assistées par les
technologies numériques dans l’autisme : une revue. Enfance, (1) :67–85, 2015.

[44] O. M. Group. Metaobject facility, 2018.

[45] Y. HAFRI and N. M. NAJID. Utilisation de l’approche multi-agents pour le pilotage
en temps réel des systèmes de production. In 3e Conférence Francophone de Mo-
délisation et Simulation : Conception, Analyse et Gestion des Systèmes Industriels,
MOSIM, volume 1, page 25, 2001.

[46] E. Hermellin, F. Michel, and J. Ferber. Systèmes multi-agents et gpgpu : état des
lieux et directions pour l’avenir. In JFSMA : Journées Francophones sur les Sys-
tèmes Multi-Agents, pages 97–106, 2014.

[47] N. Hocine, A. Gouaïch, I. Di Loreto, and L. Abrouk. Techniques d’adaptation dans les
jeux ludiques et sérieux. Revue des Sciences et Technologies de l’Information-Série
RIA : Revue d’Intelligence Artificielle, 25(2) :253–280, 2011.

[48] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. Atl : A model transformation tool.
Science of computer programming, 72(1-2) :31–39, 2008.

[49] V. Julian and V. Botti. Developing real-time multi-agent systems. Integrated
Computer-Aided Engineering, 11(2) :135–149, 2004.

[50] I. Kosonen and A. Bargiela. Simulation based traffic information system. In Seventh
World Congress on Intelligent Transport Systems, pages 6–9, 2000.

[51] Y. Kubera, P. Mathieu, and S. Picault. Everything can be agent ! In Proceedings of
the 9th International Conference on Autonomous Agents and Multiagent Systems :
volume 1-Volume 1, pages 1547–1548. International Foundation for Autonomous
Agents and Multiagent Systems, 2010.

142 BIBLIOGRAPHIE

[52] Y. Kubera, P. Mathieu, and S. Picault. Ioda : an interaction-oriented approach
for multi-agent based simulations. Autonomous Agents and Multi-Agent Systems,
23(3) :303–343, 2011.

[53] Y. Labrou and T. Finin. A proposal for a new kqml specification. Technical report,
Technical Report Technical Report TR-CS-97-03, University of Maryland Baltimore
County, 1997.

[54] Y. Labrou and T. Finin. Semantics for an agent communication language. In Interna-
tional Workshop on Agent Theories, Architectures, and Languages, pages 209–214.
Springer, 1997.

[55] P. Langlois, B. Blanpain, and E. Daudé. Magéo, une plateforme de simulation multi-
agents pour tous. In SimTools 2013, 2013.

[56] P. Mahot and A. Nédélec. Communication entre agents informatiques dans un envi-
ronnement virtuel. 2005.

[57] P. Mathieu, S. Picault, and Y. Secq. Design patterns for environments in multi-agent
simulations. In International Conference on Principles and Practice of Multi-Agent
Systems, pages 678–686. Springer, 2015.

[58] D. V. McGehee, E. N. Mazzae, and G. S. Baldwin. Driver reaction time in crash
avoidance research : Validation of a driving simulator study on a test track. In Pro-
ceedings of the human factors and ergonomics society annual meeting, volume 44
of 20, pages 320–323. SAGE Publications Sage CA : Los Angeles, CA, 2000.

[59] D. McKay and R. McEntire. Kqml-a language and protocol for knowledge and infor-
mation exchange. Technical report, Technical Report CS-94-02, Computer Science
Department, University of Maryland and Valley Forge Engineering Center, Unisys
Corporation, 1994.

[60] R. Neches, R. E. Fikes, T. Finin, T. Gruber, R. Patil, T. Senator, and W. R. Swartout.
Enabling technology for knowledge sharing. AI magazine, 12(3) :36, 1991.

[61] A. Nicolle. Le continu, le discontinu et le discret en informatique. Espaces Temps,
82(1) :97–109, 2003.

[62] P. D. O’Brien and R. C. Nicol. Fipa-towards a standard for software agents. BT
Technology Journal, 16(3) :51–59, 1998.

[63] J. Oldevik, T. Neple, R. Grønmo, J. Aagedal, and A.-J. Berre. Toward standar-
dised model to text transformations. In European Conference on Model Driven
Architecture-Foundations and Applications, pages 239–253. Springer, 2005.

[64] H. V. D. Parunak. " go to the ant" : Engineering principles from natural multi-agent
systems. Annals of Operations Research, 75 :69–101, 1997.

[65] B. Physics. Real-time physics simulation. http://bulletphysics.org/wordpress/, 2018.

[66] J. Real and A. Crespo. Mode change protocols for real-time systems : A survey and
a new proposal. Real-time systems, 26(2) :161–197, 2004.

[67] P. Richmond and D. Romano. Agent based gpu, a real-time 3d simulation and in-
teractive visualisation framework for massive agent based modelling on the gpu. In
Proceedings International Workshop on Supervisualisation, 2008.

[68] J.-C. Routier, P. Mathieu, Y. Secq, et al. Dynamic skill learning : A support to agent
evolution. In Proceedings of the AISB01 Symposium on Adaptive Agents and Multi-
Agent Systems, pages 25–32, 2001.

http://bulletphysics.org/wordpress/

BIBLIOGRAPHIE 143

[69] S. Russell, P. Norvig, and A. Intelligence. A modern approach. Artificial Intelligence.
Prentice-Hall, Egnlewood Cliffs, 25 :27, 1995.

[70] S. J. Russell and D. Subramanian. Provably bounded-optimal agents. Journal of
Artificial Intelligence Research, 2 :575–609, 1995.

[71] T. Sandholm. An implementation of the contract net protocol based on marginal cost
calculations. In AAAI, volume 93, pages 256–262, 1993.

[72] T. Sandholm, V. R. Lesser, et al. Issues in automated negotiation and electronic
commerce : Extending the contract net framework. In ICMAS, volume 95, pages
12–14, 1995.

[73] S. Sen, J.-M. Mottu, M. Tisi, and J. Cabot. Using models of partial knowledge to test
model transformations. In International Conference on Theory and Practice of Model
Transformations, pages 24–39. Springer, 2012.

[74] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker, A. Burns, G. Buttazzo,
M. Caccamo, J. Lehoczky, and A. K. Mok. Real time scheduling theory : A histo-
rical perspective. Real-time systems, 28(2-3) :101–155, 2004.

[75] Y. Shin and K. Choi. Power conscious fixed priority scheduling for hard real-time sys-
tems. In Proceedings of the 36th annual ACM/IEEE Design Automation Conference,
pages 134–139. ACM, 1999.

[76] Y. Shoham. Agent-oriented programming. Artificial intelligence, 60(1) :51–92, 1993.

[77] M. P. Singh. Agent communication languages : Rethinking the principles. Computer,
31(12) :40–47, 1998.

[78] R. G. Smith. The contract net protocol : High-level communication and control in a
distributed problem solver. IEEE Transactions on computers, (12) :1104–1113, 1980.

[79] L. Steels. The origins of ontologies and communication conventions in multi-agent
systems. Autonomous Agents and Multi-Agent Systems, 1(2) :169–194, 1998.

[80] P. Taillandier. Gamagram : Modélisation graphique sous gama. In Masyco 2013,
2013.

[81] P. Taillandier, D.-A. Vo, E. Amouroux, and A. Drogoul. Gama : a simulation platform
that integrates geographical information data, agent-based modeling and multi-scale
control. In International Conference on Principles and Practice of Multi-Agent Sys-
tems, pages 242–258. Springer, 2010.

[82] S. Tisue and U. Wilensky. Netlogo : A simple environment for modeling complexity.
In International conference on complex systems, volume 21, pages 16–21. Boston,
MA, 2004.

[83] L. Valente, A. Conci, and B. Feijó. Real time game loop models for single-player com-
puter games. In Proceedings of the IV Brazilian Symposium on Computer Games
and Digital Entertainment, volume 89, page 99, 2005.

[84] J. Van den Berg, M. Lin, and D. Manocha. Reciprocal velocity obstacles for real-
time multi-agent navigation. In Robotics and Automation, 2008. ICRA 2008. IEEE
International Conference on, pages 1928–1935. IEEE, 2008.

[85] B. Virole. Du bon usage des jeux vidéo et autres aventures virtuelles. Hachette
littératures, 2003.

[86] D. Weyns, E. Steegmans, and T. Holvoet. Towards active perception in situated
multi-agent systems. Applied Artificial Intelligence, 18(9-10) :867–883, 2004.

144 BIBLIOGRAPHIE

[87] U. Wilensky. Netlogo. http ://ccl.northwestern.edu/netlogo/, 1999.

[88] M. Wooldridge and N. R. Jennings. Intelligent agents : Theory and practice. The
knowledge engineering review, 10(2) :115–152, 1995.

[89] P. Xuan, V. Lesser, and S. Zilberstein. Communication decisions in multi-agent co-
operation : Model and experiments. In Proceedings of the fifth international confe-
rence on Autonomous agents, pages 616–623. ACM, 2001.

[90] B. P. Zeigler, T. G. Kim, and H. Praehofer. Theory of modeling and simulation. Aca-
demic press, 2000.

[91] H. Zgaya. Conception et optimisation distribuée d’un système d’information d’aide à
la mobilité urbaine : Une approche multi-agent pour la recherche et la composition
des services liés au transport. PhD thesis, Ecole Centrale de Lille, 2007.

TABLE DES FIGURES

1.1 Le pattern des ennemis dans le jeu New Super Mario Bros. 4

1.2 Représentation des 3 parties de SAMP . 6

2.1 Diagramme représentant les modules les plus importants de Shine Engine 10

2.2 Fonctionnement d’une boucle de jeu. 12

2.3 Diagramme de description de FIPA-Request Protocol 18

2.4 Matrice d’interaction de IODA. 22

2.5 Cercle tournant sur lui même développé avec NetLogo et le code de
l’image 2.6 . 26

2.6 Code développé dans NetLogo afin d’obtenir le cercle 2.5 27

2.7 Interface graphique de paramétrage d’un objet GameMaker 28

2.8 Exemple d’un Blueprint développé à l’aide d’Unreal Engine. 29

4.1 SAMP-M est le méta-modèle de SAMP. 38

4.2 SAMP-E est l’outil graphique permettant d’utiliser SAMP. 39

4.3 Fenêtre de définition des compétences dans SAMP 43

4.4 Tableaux de valeurs des interactions dans SAMP-E et SAMP-X. 47

4.5 Fenêtre de définition des interactions dans SAMP 48

4.6 Fenêtre de paramétrage d’un modèle . 57

4.7 Exemple des différentes formes que peuvent prendre les entrées-sorties
des nœuds de SAMP . 59

4.8 Example de la modélisation d’une boucle for parcourant un tableau. 60

4.9 Example de la modélisation d’une boucle foreach parcourant un tableau. . 60

4.10 Diagramme de classes des éléments composants SAMP. 61

4.11 Exemple d’un nœud dont les entrées-sorties ont été générées 62

4.12 Vue altération appliquée aux agents mouton 62

4.13 Vue comportement modélisant le comportement des agents mouton 63

4.14 Modélisation de la phase PostUpdate de l’état MoveTo 65

4.15 Modélisation de l’état random move . 65

4.16 Fenêtre de paramétrage du modèle état Déplacement 66

145

146 TABLE DES FIGURES

4.17 Modélisation de la phase OnEnter de l’état MoveTo 67

4.18 Modélisation de la phase PreUpdate de l’état MoveTo 67

4.19 Modélisation de l’événement IsNear . 68

4.20 Scène modélisée dans Shine Engine. 70

5.1 Exemple de nœuds utilisés pour émettre et recevoir une interaction 78

6.1 Liens impossibles 1 . 84

6.2 Liens impossibles 2 . 85

6.3 Liens impossibles 3 . 85

6.4 Liens impossibles 4 . 86

6.5 Diagramme de classes de SAMP-X . 87

6.6 Exemple du tableau de blocs et de variables du Code Manager 90

6.7 Exemple de modélisation d’une condition if-else 90

6.8 Exemple de la génération de code avec un nœud if 92

6.9 Exemple pour l’algorithme de génération des paramètres des nœuds . . . 93

6.10 Exemple d’un enchaînement d’état et d’événements. 96

6.11 Deux nœuds fonctions : à gauche statique, à droite non-statique 98

6.12 Exemple d’un nœud if . 99

6.13 Exemple d’une nœud for . 100

6.14 Exemple d’un cas d’utilisation d’un nœud comparator 102

7.1 Changement de densité de population. 112

7.2 Changement du ratio d’agents actifs/passifs 113

7.3 Changement du nombre de soldats actifs avec un calcul sur 1 seconde. . . 114

8.1 Nombre moyen de scans par frame en fonction du nombre d’agents pour
proies-prédateurs complet (nombre d’agents réduit). 119

8.2 Nombre moyen de scans par frame en fonction du nombre d’agents pour
proies-prédateurs complet (grand nombre d’agents). 120

8.3 Nombre moyen de scans par frame en fonction du nombre d’agents pour
proies-prédateurs (moutons aveugles et nombre d’agents réduit). 121

8.4 Nombre moyen de scans par frame en fonction du nombre d’agents pour
proies-prédateurs (moutons aveugles et grand nombre d’agents). 122

8.5 Modèle Comportement calculant la valeur de la case de chaque mur 124

8.6 Modèle événement détectant le déclenchement d’une entrée utilisateur . . 125

8.7 Zoom sur l’utilisation des événement actionTriggered dans le Modèle
Maincharacter . 126

TABLE DES FIGURES 147

8.8 Zoom sur la détection de collision entre le personnage et les murs 127

8.9 Zoom sur la détection de collision entre le personnage et les murs 127

8.10 Modèle altération du personnage . 128

8.11 Modèle Comportement de l’agent gérant la liste des éléments du Rss . . . 129

9.1 Diagramme de classes de Shine Engine . 135

LISTE DES TABLES

3.1 Type d’agent de la simulation . 34

4.1 Table des compétences nécessaire au fonctionnement de notre exemple. . 44

4.2 Table des interactions des agents du système proies-prédateurs 46

4.3 Table d’états des agents Loup et événements permettant de changer d’état 54

4.4 Table d’états des agents Mouton et événements permettant de changer
d’état . 54

4.5 Table d’états des agents Herbe et événements permettant de changer d’état 54

4.6 Instances des agents de la simulation . 69

7.1 Propriétés des agents du STR . 111

149

Document réalisé avec LATEX et :
le style LATEX pour Thèse de Doctorat créé par S. Galland — http://www.multiagent.fr/ThesisStyle

la collection de paquets tex-upmethodology— http://www.arakhne.org/tex-upmethodology/

http://www.multiagent.fr/ThesisStyle
http://www.arakhne.org/tex-upmethodology/

	I Contexte et problématiques
	1 Introduction
	1.1 Contexte
	1.2 Problématiques
	1.3 Plan mémoire

	2 État de l'art
	2.1 Les jeux vidéo
	2.1.1 Qu'est ce qu'un jeu vidéo
	2.1.2 Les moteurs physiques
	2.1.3 Les moteurs de jeux vidéo

	2.2 Les agents et les Systèmes Multi-Agents
	2.2.1 Les agents
	2.2.2 Les systèmes multi-agents
	2.2.3 La communication
	2.2.4 L'environnement

	2.3 Systèmes multi-agents et gestion du temps
	2.3.1 Préambule
	2.3.2 Systèmes multi-agents en temps réel

	2.4 Modélisation
	2.4.1 Dans le monde académique
	2.4.2 Dans le monde du jeu vidéo

	2.5 Synthèse
	2.5.1 Analyses
	2.5.2 Objectifs

	II Travaux réalisés
	3 Exemple fil rouge
	3.1 Définition de l'exemple
	3.2 Modélisation de la population

	4 Shine Agent Modeling Platform
	4.1 Les principes fondamentaux de samp
	4.1.1 L'approche tout agent pour une plus grande facilité
	4.1.2 Coller au plus près des jeux vidéo

	4.2 Des compétences...
	4.2.1 L'acquisition des compétences
	4.2.2 Des compétences avec des pré-requis
	4.2.3 Définition des compétences dans samp-e

	4.3 ...et des interactions
	4.3.1 Une automatisation grâce aux compétences
	4.3.2 Une structure de données minimale
	4.3.3 Définition des interactions dans samp-e

	4.4 Définition des types d'agents
	4.4.1 Les facilitateurs
	4.4.2 Acquisition ou perte de compétences et interactions
	4.4.3 Définition du comportement des agents

	4.5 Comportements des agents
	4.5.1 Un système d'état et d'événements
	4.5.2 Différents niveaux d'état
	4.5.3 Les altérations

	4.6 Modélisations des comportements par quatre vues
	4.6.1 Le paramétrage des vues
	4.6.2 Généralités sur les nœuds
	4.6.3 Vue Altération
	4.6.4 Vue Comportement
	4.6.5 Vue État
	4.6.6 Vue Événement
	4.6.7 Instanciations des agents

	4.7 Bilan

	5 Les interactions
	5.1 L'approche classique
	5.2 Interactions inversées et agents actifs/passifs
	5.3 L'envoi des interactions
	5.4 Analyses

	6 Génération et exécution
	6.1 Les transformations model2model et model2text
	6.1.1 Model to Model
	6.1.2 Model to Text

	6.2 Le contrôle des erreurs
	6.3 Génération du code
	6.3.1 Les classes CShAgentInstance, CShSkills et CShInteraction
	6.3.2 Les classes CShModel
	6.3.3 Code Manager : Un gestionnaire de génération de code
	6.3.4 Règles de transformations
	6.3.4.1 Une génération commune
	6.3.4.2 La méthode ParameterGeneration
	6.3.4.3 Les nœuds Entry
	6.3.4.4 Les nœuds Exit
	6.3.4.5 Les nœuds event
	6.3.4.6 Les nœuds state
	6.3.4.7 Les nœuds fonctions
	6.3.4.8 Les nœuds if
	6.3.4.9 Les nœuds for
	6.3.4.10 Les nœuds value
	6.3.4.11 Les nœuds comparator

	6.4 Génération de projet et Compilation
	6.5 Conclusion

	III Evaluation de la méthode
	7 Calculs théoriques
	7.1 Formules
	7.2 Résultats
	7.2.1 Jeux de stratégie en temps réel
	7.2.2 Calculs et analyses
	7.2.2.1 Modification de la densité de population
	7.2.2.2 Impact du nombre d'agents actifs
	7.2.2.3 Calculs pour une seconde

	7.3 Conclusions

	8 Résultats pratiques
	8.1 Expérimenter
	8.1.1 Nos buts
	8.1.2 Qu'est-ce qu'un facteur ? Que sont les niveaux ?

	8.2 Conditions d'expérimentation du fonctionnement des interactions
	8.3 Expérimentations avec le SMA proies-prédateurs complet
	8.4 Expérimentations avec des moutons aveugles
	8.5 Consommation de mémoire
	8.6 Modélisation d'un jeu 2D
	8.6.1 Description du système
	8.6.2 L'agent personnage
	8.6.3 Les agents ennemis
	8.6.4 Les agents murs
	8.6.5 Les agents potion
	8.6.6 La détection des entrées utilisateurs
	8.6.7 La détection des collisions
	8.6.8 Un modèle réutilisable : MoveTo
	8.6.9 Le modèle d'altération du personnage

	8.7 Samp dans d'autres projets
	8.7.1 Silva Numerica
	8.7.2 Un lecteur de flux Rss

	8.8 Bilan des expérimentations

	IV Conclusion et perspectives
	9 Conclusion
	9.1 Le contexte
	9.2 Nos contributions
	9.3 Perspectives
	9.3.1 Optimisation des règles de génération de code
	9.3.2 Facilité d'utilisation
	9.3.3 Optimiser les interactions
	9.3.4 Changer l'organisation

	9.4 Un petit mot pour la fin

