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Abstract

Mobile phone datasets are the central keystone of the thesis, where
we propose new approaches for studying networking problems. We are
using, in this thesis, those real dynamic data rather than the old con-
ventional approaches based on simulations and random inputs. Most
of these datasets consist of Call Data Records (CDR) metadata, i.e.
a time-stamped dataset of all interactions between the subscribers of
a mobile operator and the network infrastructure during a given pe-
riod. Given their large size and the fact that these are real-world
datasets, information extracted from these datasets have intensively
been used in our work to develop new algorithms that aim to revolu-
tionize the infrastructure management mechanisms and optimize the
usage of resource. CDR metadata contains also, in addition to tem-
poral information, other information about the geographic scale of
subscribers network usage. Combining the temporal and geographical
information certainly helps to infer the spatio-temporal dynamics of
subscribers use of the network resource as well as the dynamic patterns
of the base-station throughout the day.

Therefore, the goal of this thesis is to provide a general process
for analyzing cellular network CDR datasets and provide tools and
frameworks based on these datasets to optimize and enhance networks
performances.

First, we start by analyzing real CDRs dataset and infer the most
relevant profiles of bandwidth consumption. Then we propose an au-
tomatic tool that provide an on-line and daily classification of the
access network base stations. We exploit then this classification to
estimate the amount users are moving from a location to another in
order to study the bandwidth mobility across the cellular access net-
work. We continue then mining the network traces and we analyze
the periodicity features of base stations load. Based on that, we pro-
pose an on-line tool to predict the future load of each cell. Building
upon the proposed tools, we develop a global framework which com-
bine them and exploit their results in order to optimize the planning
of wireless networks. The framework is then validated on a wireless
mesh topology.



Cellular networks may suffer from some unexpected bandwidth de-
mands that may drastically drop their performance. They may even
suffer from unusual decrease of bandwidth consumption that need to
be explained. In this context, we propose a framework that detect
proactively network anomalies. Then, we propose another framework
that aim manage and optimize instantly drone-cells based networks.
The purpose of these drone-cells is to support the existent macro-cells
at rush hours or during mass event when unexpected and massive
bandwidth demands occur.



RÉSUMÉ

Les traces réelles des réseaux cellulaire est la clé de voute de ma
thèse de doctorat. En effet, je propose dans cette thèse des nouvelles
approches dans l'étude et l'analyse des problématiques des réseaux
de télécommunications en utilisant ces traces réelles contrairement
aux approches classiques basées sur des jeux de données simulés ou
générées par des processus aléatoires. Ces traces cellulaires sont présentes
sous la forme de jeux de données de CDR (Call Detail Records ou
statistiques d'appels) représentés par des information horodatées sur
chaque interaction de l'abonné avec l'infrastructure des réseaux mo-
bile, quelques soient les appels reçus/émis, des SMS ou des sessions
d'internet. Vu leur richesse et le fait qu'ils reflètent des cas d'usages
réels, les informations massives qui peuvent tre extraites et analysées
de ces jeux donnés, ont été exploités intensivement dans mes travaux
de thèse pour développer de nouveaux algorithmes qui ont pour but de
changer litéralement les mécanismes de gestion et d'optimisation dans
le cadre de l'usage des ressources réseaux. Outre les informations tem-
porelles, les CDRs contiennent aussi les informations géographiques
qui projettent l'emplacement instantané de labonnées durant ses inter-
actions. En combinant les échelles temporelles et géographiques, nous
pouvons déduire les dynamicités spatio-temporelle de l'usage réseaux
de chaque abonnée ainsi que les modèles dynamiques de l'utilisation
de la bande passante sur les stations de bases. Les jeux de données
des CDR sont généralement des données brutes et qui nécessitent des
outils avancés d'analyse de données et d'intelligence artificielle afin
d'extraire les informations les plus importantes. Dans ce contexte, on
propose dans cette thèse une étude structurée pour analyser des traces
réelles de CDRs réels comme les traces du D4D challenge contenant
les données du réseau cellulaire dOrange Sénégal et les traces du Big
Data challenge fournis par l'opérateur Telecom Italia. Notre méthode
consiste, en premier lieu, à regrouper intelligemment les séries tem-
porelles journalières de charge sur les stations de bases dans des classes
pertinentes. Nous proposons pour ça d'utiliser un algorithme modifié
de K-means basé sur la distance DTW (Dynamic Time Warping) qui
a été montré plus performante que la distance euclidienne classique.



Cet algorithme, nous a permis, de classer les series temporelles de
charge pour chaque station de base dans trois classes principales. Une
première classe pour les profils de Pic de charge matinale , une classe
pour les profils de Charge constante et une dernière classe pour les
Pic de charge nocturne . Cette première classification, nous permet
de proposer notre algorithme de classification automatique et mas-
sive des profiles journalières des stations de bases basé sur la machine
dapprentissage SVM (Support Vector Machine). Cette classification
automatique est importante pour les opérateurs de réseaux et peut
leur servir à adapter l'allocation de ressource radio selon ces profiles.

Afin de garantir la continuité du service pour les abonnées, il est im-
portant d'estimer avec précision la dynamicité de la bande passante sa
migration instantanée entre les différents endroits dans le futur. Ceci
revient à étudier les déplacements des abonnées, qui reflètent aussi un
potentiel déplacement de demande de bande passante, entre les zones
classifiées précédemment. On propose pour cet objectif, une nouvelle
forme de matrice Origine-Destination basée sur les résultats de classi-
fication, qui nous permet d'estimer les futurs taux de déplacement de
la demande de bande passante entre les classes de zones. En d'autres
termes, elle projette la mobilité de bande passante durant la journée.

Le deuxième chapitre de cette thèse répond à une question impor-
tante : Est-t-il possible dexploiter les traces de CDRs pour implémenter
des algorithmes capables de prédire avec précision les futurs taux de
charge sur chaque station de base? Dans la continuité du premier
chapitre, nous abordons cette problématique en proposant une étude
pour les caractéristiques des séries temporelles de charge journalière
et en implémentant un modèle de prédiction basé sur l'algorithme
d'apprentissage SVR (Support Vector Regression). Nous fournissons
une comparaison des performances avec d'autres algorithmes de prédictions
connus qui montrent l'efficacité de notre modèle. Nous intégrons par
la suite les modèles que nous avons proposé dans un outil flexible
qui permet l'optimisation dynamique des ressource réseaux basé sur
les traces réelles. Nous évaluons notre solution en l'appliquant sur
une architecture basée sur un réseau sans fil mesh proposé dans le
projet national LCI4D. l'optimisation de ce réseau est faite par un
algorithme qui exploite les résultats des modules danalyse de données.



Une deuxième évaluation pour notre outil est proposée et qui consiste
à l'appliquer sur une topologie dynamique basé sur des cellules-drones
(des drones embarquant des femto-cells). Nous proposons pour ça un
algorithme d'apprentissage renforcé multi-agent qui exploite aussi les
résultats des modules danalyse de données pour optimiser dynamique-
ment et en temps réel cette topologie.

Dans la continuité du contexte d'analyse des traces réelles de CDRs,
nous proposons dans un dernier chapitre, un deuxième outil qui sera
capable de détecter proactivement les anomalies dans les réseaux cellu-
laire qui peuvent se produire suite à un pic de consommation brusque
ou une chute due à des problèmes techniques. Cet outil est basé sur les
algorithmes OCSVM (One-class SVM) et SVR qui permettent de dis-
tinguer en temps réel les profile de charge anormale. L'outil est testé
en utilisant les traces du D4D challenge et Big challenge et en le
comparant à dautre technique de détection d'anomalies et les résultats
montrent qu'il est plus efficace. Nous validons aussi le modèle pour
analyser l'impact des données proliférantes issues des nouvelles appli-
cations comme celle de le-santé. Notre modèle est capable de détecter
les anomalies due à linjection de ces nouvelles sources de données et
qui impactent évidement l'usage normal des réseaux cellulaire.
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Chapter 1

Introduction

1.1 Network optimization challenges

1.1.1 Mobile users’ behavior

Mobile internet usage has become in the forefront of the daily life
habits of smartphone and tablet users. It allows subscribers to access
a infinite source of information and share with their networks. Some
studies suggests that the global mobile traffic will increase by seven-
folds by 2021 with respect to 2016. The world mobile population
counts 3.7 billion unique users at the beginning of 2018 according to
Statista’ statistics [1]. Other studies reveal that mobile subscribers
spend on average 69% of their media time on smartphones. Another
study [2] estimates that 68% of the global Internet usage is driven by
mobile devices and it predicts that the average will reach 80% by 2018.

These statistics represents a direct impact of the non-stopping de-
velopment of mobile devices on the rapid development of network ar-
chitectures that boost the subscribers penetration averages. More-
over, the Internet consumption pattern of subscribers is continuously
changing to follow the expansion of networks and mobile devices. For
example, nowadays subscribers can use the smartphone everywhere
and at any time, while standing in a bus, walking in the street or
laying in a bed.

As the development of mobile technology affects the on users behav-
ior, it also has an impact on network resource consumption. In fact,
user mobility and various data consumption behaviors induce several
load patterns and network fluctuation. Therefore, network operators
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should stand up for these challenges to deal with user consumption
dynamics. They need to abandon the classical techniques such as
statically sharing the licensed spectrum, which cannot efficiently man-
age instantaneous users demand dynamics. New techniques and ra-
dio resource allocation mechanisms must be designed to dynamically
manage user demands and provide better Quality of Service (QoS).
Information about user consumption behaviors and network load fluc-
tuation trends can be extracted from mobile network datasets like Call
Detail Record (CDR). Thus, the first step toward enhancing network
performance is to analyze the massive information included within
CDR datasets

1.1.2 network planning and resource allocation

Another challenge in today’s network optimization is the adapta-
tion of the wireless traffic rates in new mobile networks, so that such
a way an efficient resource allocation is guaranteed. The growth of
data demands and the increase in wireless traffic rates in new mobile
networks needs intelligent and dynamic technologies for telecommuni-
cation management. Recent studies predicts that the new generation
cellular standards (like 5G) will rely much more heavily on a dense
and less power consuming networks to serve dynamically requested
data rates to the user [3].

In this thesis, we evaluate the network planning and resource allo-
cation via the following types of wireless networks topology:

Wireless mesh networks

Wireless Mesh Networks (WMN) [4] are an easy and low cost al-
ternative for network operators to provide a high speed connectivity
access to some areas where installing a cellular access network is diffi-
cult. Thus, WMN can extend cellular network femtocell-based cover-
age areas with a backhaul internet dorsal and then satisfy more users
anywhere. The state-of-the-art in WMN architectures focuses on en-
hancing the performance of wireless mesh networks either by reducing
the interference between mesh nodes [5, 6, 7] or by addressing rout-
ing issues [8, 9]. However, it is difficult to find WMN contributions
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explaining how such systems can be efficiently integrated into a real
cellular architecture (4G/5G). In this thesis, one part of our contribu-
tion is to propose an innovative architecture that combines WMN with
cellular femto-cells (3GPP based) to deploy cellular services for small
Mobile Virtual Network Operators (MVNO) in developing countries
or for special periodic mass events.

Drone-cells networks

Small cells mounted on Unmanned Aerial Vehicles (UAV) [10] or
drones (we call them drone-cells hereafter) are proposed, as an alterna-
tive to fixed femto-cells, to support existing macro-cell infrastructure.
The deployment of these mobile small cells consists on move these
small cells toward a target positions (usually within the range of the
macro-cell that support) based on the decision made by a mobile net-
work operator. The drone-cells movement toward adequate positions
must be correlated to the amount of data requested, i.e. drone-cells
should support overloaded cells. Hence, an intelligent entity may be
added to the network in order to monitor instantly the network state
and find the optimal decision to control drone-cells.

1.2 Thesis motivations

1.2.1 CDR: A mine of data

A Global Digital Forensics report [11] has predicted that smart-
phones, tablets and social media will deeply impact human beings
business and personal network usage in the near future. It is a key ob-
jective to make us updated with the worldwide news, keep interaction
with others, procure valuable knowledge and valuable information.
With the fast growth of the network contents usage, we are able to
analyze tremendous amounts of data and predict customer favourites
and future demands.

Moreover, network planning is crucial for network operators to en-
hance services that are cost-effective and QoS-dependent. Tools allow-
ing the inference of instantaneous bandwidth demand, permit network
operators to dynamically manage the bandwidth and to implement in-
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novative techniques for radio resource sharing between BSs. In this
thesis, we aim to exploit CDR and data analysis techniques in net-
working context. More precisely, the goal of this research is to apply
data mining on real CDR datasets to assist operators in optimizing the
network resource consumption. This prevents both under-provisioning
and over-provisioning. We use data from the Data For Development
(D4D) challenge [12] provided by Orange Senegal, restricted to the set
of BS in the Dakar city.

Before rethinking cellular network deployment, operators must be-
gin by analyzing the existing architecture and optimizing the huge
number of data flows. CDR data-sets include massive knowledge and
information that can be very useful for this step. We claim that current
operators policies for radio resource allocation and management can
be improved. As a matter of fact, classical resource allocation tech-
niques are founded based on a static sharing of the licensed spectrum,
so that the access network cannot efficiently manage instantaneous
dynamics of user demands, i.e. when the number of users quickly in-
creases, access network starts to reject some of the users and thus, the
quality of service decreases. Therefore, we can make the hypothesis
that the classical allocation techniques have some waste of the radio
resource as some BS may not use all the resources because of the low
number of its attached users, while at the same time, other BSs are
over populated. In such scenario, extra resources are needed to satisfy
all the users without affecting their Quality of Service (QoS).

1.2.2 Network profiling and classification

In this thesis, we start with characterizing the daily bandwidth
consumption for each BS and we propose an on-the-fly algorithm for
BS load classification based on Support Vector Machine (SVM). First,
in order to have reference classes for our SVM classification, we infer
typical BS load classes from a modified K-means algorithm. The ob-
tained profile classes are then used to run an SVM-based algorithm
which allows assigning on-the-fly BSs to different classes with high
accuracy.

Although, studies such as [13, 14, 15] have analyzed the daily
cell load patterns and classified them according to users activities or
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land-use. Most of them have applied K-means tools with Euclidean
Distance (ED) as similarity measurement to cluster load time-series.
However, study [16] showed that Dynamic Time Warping (DTW) is
more efficient than ED for measuring time-series similarities due to its
insensitivity to time distortion. Therefore, in this thesis we propose
a modified K-means technique based on DTW distance to detect BS
load profile. Besides, clustering load profiles is not sufficient for op-
erator networks, since a BS class may change throughout a period of
days. In such scenario, an automated classification technique is needed
to adjust the on-the-fly classification by taking into consideration the
most recent history. To address the affirmed issues, in this thesis we
propose a classification method based on SVM to classify the large
scale dataset of BS load profile.

The base station profile classification algorithm constitutes an im-
portant step towards analyzing the spatio-spatial bandwidth consump-
tion patterns and also dynamically optimizing the overall network re-
source allocation. By classifying the BS load profile, we are inferring
the data request trends and thus, we can even infer the semantics
areas, i.e. whether residential, business, night-life areas, etc. The
classification also allows to customize their offer plans according to
the bandwidth consumption profiles. In fact, for business areas, the
network operator can propose some offer plans with more emailing,
browsing, chatting services. For residential area customers, the net-
work operator may propose offer plans with higher mobile data for
streaming, video gaming services, etc.

1.2.3 Network load prediction and anomaly detection

Network load prediction

We claim that current operators policies for radio resource alloca-
tion and management are no more efficient. The classical technique
for allocation is based on a static sharing of the licensed spectrum.
Therefore, with the help of our field classifications, we can say that
this allocation seems to be a waste of the radio resources as some BS
may not consume all the allocated resource in case of under-load. In
the same time, there can be some BS where the number of users is
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too high and then it demands extra resources to satisfy all the users
without affecting the quality of service. Dynamic Techniques for ra-
dio resource allocation must substitute the classic ones, so that we can
exploit dynamically the unused resources on a given period of time on
another places and allocate them to overloaded BS at that moment.

Many techniques can helps operators and OEM (original equipment
manufacturers) to change their resource allocation policies as well as
an on-line load prediction to dynamically optimize network resources.
By predicting the future capacity, we can anticipate the class for which
the BS will stand. By this way, we dynamically decide how much
resource to allocate and when. In our study, we propose an algorithm
based on Support Vector Regression (SVR) to predict the load of BS
according its history.

In this context, we propose also in this work a machine learning
technique based on SVR to predict the instant load of each BS. The
combination of network classification and load prediction tools allows
network operators to monitor their network resources and to provide
new mechanisms that take into account the dynamics of user demands
and adapt the network resource allocation to enhance the QoS and
Quality of Experience (QoE). Also, load prediction provides a pro-
active mechanism to complete bandwidth sharing between areas and
to dynamically allocate bandwidth for new attaching users.

Network anomaly detection

On July 2012, a general system failure occurred in the network of
Orange Telecom, the historic national French operator. The break-
down was very severe and most of Orange subscribers (almost 26
million subscribers) were out of service for 9 hours. They were un-
able to make calls, texts or to use data services. The failure has
also affected the Orange MVNOs and the interconnection with other
Network operators. Due to the lack of adequate management tools
that can rapidly detect this kind of anomaly, the operator was un-
able to avoid the blackout in its network or even reduce its impact.
In addition, it was forced to deploy more resources to fix the failure
which added extra cost in addition to its subscribers dissatisfaction.
Investigations showed that an earlier update of a software stack was
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the origin of this blackout and the anomaly has not been notified by
any alarm signal (Probably it was identified as a true positive alarm).
From this incident and many others, it appears that there is a need
to upgrade management and alarm systems with efficient automated
techniques that, by the analysis of real-time traces, is able to detect on
the fly network anomalies. These tools can also help the operators to
monitor their infrastructures and more accurately manage their net-
works. Strong by their learning capabilities, they avoid the long and
fastidious hand work to build evolving traffic profiles.

In fact, network outliers detection techniques aim to automatically
identify and detect abnormal and anomalous patterns which differ
from a normal behavior or may present a local deviation from the
normal data. Next-generation cellular systems and cognitive networks
aim to introduce more flexible techniques to better react to these dy-
namics. On the other hand, a major issue for network operators is
to handle and detect sudden and local anomalous behavior within the
network, whether it is a sharp peak of users demands (occurred dur-
ing mass events for example), an abnormal brief decrease or even an
non-common daily data consumption patterns. If the first anomaly
type needs a fast reaction to guarantee network resilience and service
survivability and hence, avoiding users rejections, the second one may
be due to some technical malfunction of the network infrastructure
that need an instant maintenance. These anomalies are also time-
dependent and need not only geographic identification but also tem-
poral detection of the time interval in which they occur with high
precision.

In our contribution, we address the problem of detecting outliers
within radio access network. In this thesis, we propose a general
outliers detection framework for radio access networks and we eval-
uate our proposal using real datasets CDRs. The framework is based
on the combination of One-Class Support Vector Machine (OCSVM)
and SVR algorithms. The OCSVM algorithm, is able to detect the
cell presenting an anomaly, thus its geographical location. While the
SVR prediction algorithm is used to provide more precision to the
framework and allow detecting the time-interval in which occurred
the network anomaly.
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Merging the two algorithms allows to implement more accurate
framework for network anomaly detection, since we need to detect
outliers in a spatio-temporal context. In fact, the OCSVM is insensi-
tive to the temporal scale, but it allow to optimize the processing by
detecting the anomalous BS activity within a large scale dataset. Thus
the temporal anomaly detection is only performed on the detected set
of anomalous activity instead of the entire large set. Moreover, using
the SVR based prediction for the temporal detection avoid employing
the OCSVM with a window-based approach [17] for anomaly detec-
tion for time-series. So it permits to save the computational resource
since the window-based techniques divide the time-series into many
sub-sequences to be processed. In addition, the choice of the window
size and the manner to split the time-series is complex.

1.3 Contributions

This thesis constitutes a flexible toolbox that consists on a set of
frameworks for mining and analyzing mobile network datasets. The
main topic of the thesis addresses the analysis and mining of real cel-
lular network CDR datasets. It also tackles the network optimization
and the resource allocation in wireless networks.

First, we provide in this thesis a data mining study of a real-world
CDRs dataset such as D4D challenge dataset provided by Orange
Senegal and the big data challenge dataset provided by Telecom Italia.
Our analysis method consists on clustering the BS daily load time-
series into relevant classes. We use for that a modified k-means clus-
tering algorithm based on the DTW distance. This clustering results
in dividing the BS load time-series, extracted from the D4D challenge
dataset, into three relevant classes. Each class belong to a specific BS
load profile, such as a day-peak load profile, Constant load profile and
Night-peak load profile. This first analysis phase permits to tag each
BS with its corresponding profile class. The profiled data are used
then to implement an automatic classification machine learning based
on SVM. The classification algorithm allow us to infer automatically,
in large scale, the daily class of each BS time-series. This information
are important for network operators to propose dynamic algorithms
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for radio resource allocation that follow the instantaneous load fluc-
tuation. In addition, to enhance the continuity of network services,
it is important to estimate with high confidence how the bandwidth
demand on a BS is shared among all the base stations in the near
future. Hence, we exploit the classification of BS profiles to analyze
the mobility of the network bandwidth between areas. We use for this
objective a novel form of the origin-destination matrix based on the
classification. This classified OD matrix provides aggregate informa-
tion about the mobility of the load usage. In other words, it projects
the mobility of the bandwidth between areas.

Second, we address this issue in this thesis and we provide an anal-
ysis of the BS load time-series characteristics. Then, we propose a
prediction model based on SVR. Our solution is compared to other
prediction techniques and the results prove the high efficiency of the
SVR-based prediction model.

Third, we combine the network classification and load prediction
algorithms into a global framework that propose a dynamic network
resource allocation techniques based on real data analysis. We evalu-
ate the framework by applying it on a wireless mesh network topology
in order to optimize its planning. In this part of the thesis, we propose
a Multi-Integer Linear Programming (MILP) algorithm that provide a
dynamic and fault-tolerant planning for a wireless mesh network that
takes as input the cell load time-series resulting from the machine
learning tools presented previously.

Fourth, in the continuity of the CDRs dataset analysis and the
load prediction, we propose in this thesis a second framework that
consists on detecting pro-actively the anomalous load patterns of the
network that may occur during mass events or network technical mal-
functions. The anomaly detection framework is based on One-class
SVM (OCSVM) and SVR algorithms. It is tested and validated with
D4D challenge CDR and Italia telecom datasets. Comparison results
show that our model outperforms other techniques. The framework
is used then to analyze the impact of the proliferous e-health data
generated by the medical smart-phone applications.

Finally, we propose a dynamic solution based on drone-cells that
exploit real traces of demand profiles, output from the framework, and
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adapt in real time the deployment of drones-cell according these de-
mands. The framework helps network operator to handle unexpected
bandwidth consumption in a mass event context and ensure a faster
recovery of network services. In this part, we propose to optimize the
deployment using the machine learning paradigm instead of classical
linear programming models. Our solution is based on a Multi-Agent
Reinforcement Learning (MARL) approach.

1.4 Outline

The remainder of this thesis is organized as follows. Chapter 2
highlights future cellular network approaches such as cognitive radio
and resource allocation techniques. It also provides an insight about
network data mining. Chapter 3 presents the first CDR dataset used
in the thesis and provides a analysis of this dataset. We depict in this
chapter the clustering of BS profiles into three pertinent classes and
we provide a tool based on SVM to classify the large dataset of BS pro-
files. We exploit the classification results to also study the bandwidth
mobility over the network. In Chapter 4, we propose a prediction tool
based on SVR to forecast the future BS load. In chapter 5, a combined
use of classification and prediction and classification algorithms is pro-
posed to optimize the planning and management wireless network. An
application of the framework is applied on a wireless mesh topology
to evaluate its performance. In chapter 6, we propose a second tool
that aim to detect network anomalies caused during mass events where
unexpected data demand occur or even for unusual drop of network
usage. While in chapter 7, we propose a multi-agent reinforcement
learning based tool that aim to optimize the dynamic deployment of
drone-cells networks in a mass event context. Chapter 6 concludes the
thesis and discusses further research opportunities.
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Chapter 2

State of the Art

2.1 Wireless networks resource optimization

As wireless devices become democratized and lead to develop a ple-
tora of novel services that require higher QoS characteristics and data
rate demands, resource allocation and optimization becomes more
challenging problem. Otherwise, the “Mobile Internet” revolution-
ized the traditional mobile services and provided an unprecedented
experience for users. Therefore, network operators are facing a critical
problem with the ever-growing expansion of data rate requests for new
services. Actual network architecture are suffering from resource lim-
itations of wireless networks that places increased stress on the static
radio spectrum allocation techniques. Hence, optimized and dynamic
allocation techniques become more essential since its is shown [18] that
the spectrum is somehow over-planned (or even under-planned) and
it is used sporadically over the day, leading to its under-utilization.
The spectrum under-utilization can be highlighted by the spectrum
holes where no devices are requesting service in a given area, blank
periods (or Resource Block (RB)) when no device is transmitting in
the channel or poor utilization due to sparse users density. In the
other hand, the mobile network spectrum is limited. Otherwise, it
need more intelligent management policies or exploiting extra unused
and unlicensed spectrum such as Tv-white space [19].

New techniques are proposed recently that propose to enhance the
spectrum usage, such as cognitive radio concept, dynamic spectrum
access, etc. Dynamic Spectrum Access (DSA) models [20] consists
on optimizing the access competition between devices especially when
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the channel is overloaded. In this context, several studies proposes
techniques such as open sharing and hierarchical access models [21,
22, 23].

2.1.1 Cognitive radio concept

The term of Cognitive Radio (CR) is more generic and it introduces
an scalable network architecture. The concept was introduced in 1998
by Joseph Mitola who described it as follows:

“The point in which wireless Personal Digital Assistants (PDA) and
the related networks are sufficiently computationally intelligent

about radio resources and related computer-to-computer
communications to detect user communications needs as a function
of use context, and to provide radio resources and wireless services

most appropriate to those needs.” [24]

Cognitive radio is an access network radio that can be dynamically
programmed and configured to choose the best wireless channels in its
vicinity to avoid network interference and congestion. It is also able
to detect automatically available wireless channels, then accordingly
adapt its communication parameters in a given spectrum band at a
given location. This process is a form of dynamic spectrum manage-
ment.

The cognitive radio concept need a whole chapter to present all its
features and models, but we will focus in this section on its most rele-
vant features that are in a direct relationship with our contributions.

Resource allocation and networking

As stated earlier, the fixed resource allocation techniques led to
an under-utilization/over-utilization of the spectrum in the temporal
and spatial scale. Hence, the concept of DSA has raised. DSA mech-
anism enable more flexible spectrum sharing allowing secondary users
to exploit white spaces (idle frequency) in the licensed spectrum. This
needs also a cooperative and smooth management of primary and sec-
ondary users to avoid interference issues between both groups of users

Hence, we can classify the dynamic resource allocation in CRs into
4 categories as follows:
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• Graph based spectrum allocation [25]: This approach aims to es-
tablish a graph coloring model for spectrum allocation according
to interference and other constraints.

• Game based spectrum allocation [26, 27] This approach is based
on a competitive game between primary and secondary users to
improve spectrum usage against the increasing service demands

• Auction based spectrum allocation [28, 29] Its objective is to pre-
serve the QoS of Primary User (PU) by making the Secondary
User (SU) paying for its utilization.

• Carrier aggregation based spectrum allocation [30] Aggregate mul-
tiple carriers into wider spectrum to improve the spectral effi-
ciency.

Spectrum sharing and sensing

One of the essential functional key in CR networks is how to detect
the spectrum holes (or white space: idle available radio resources)
within the available spectrum band. The efficiency of CR networks
relies especially on the accuracy of spectrum sensing approaches [31].
Moreover, other spectrum sensing approaches based on temporal and
spatial correlation [32, 33] are proposed. Other models are based on
energy-detection have been developed [34]. Furthermore, QoS-aware
spectrum sensing model are proposed to support real time and latency-
sensitive applications [31, 35].

We can also distinguish three major categories of spectrum sensing
in CR concept:

• Cooperative spectrum sensing [36, 37] : In this approach a SU
needs the cooperation of all other SUs and it collects their sensing
results to improve the detection reliability.

• Full-Duplex spectrum sensing [38] Full-duplex sensing means that
the SU is able to transmit using a spectrum hole and continue
sensing at the same time the spectrum. This approach avoid
conflicts and collision between SU and PU to happen.
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• Database based spectrum sensing [39] A spectrum database is
utilized to store the historical spectrum information and to gener-
ate a new available spectrum table based on the current spectrum
state information. As an example of this category we mention the
Spectrum Access System (SAS) proposed by the Federal Commu-
nications Commission (FCC) [40].

Energy efficiency in CR

Energy efficiency and saving is not only primordial during the sens-
ing process, but also for the whole communication in CR networks and
its one of the major challenges. Green radio (GR) concept is recently
introduced and become essential for wireless communications espe-
cially with the slow advances in battery innovations. Many studies
addressed this issue in CR context. Studies in [41] optimize the av-
erage of energy efficiency while authors in [42] aim to maximize it
for different scenarios. In [43], authors propose a mathematical op-
timization model to maximize the energy efficiency under different
constraints in order to find a trade-off between energy and spectral
efficiency. Moreover, study in [44] investigates the trade-offs between
several features such as QoS, fairness, primary user interference, and
security.

In addition, power control is essential for spectrum sharing mech-
anisms in CR networks. Power control aim to minimize as much the
interference between primary and secondary users when the channel is
divided between them. Many studies addressed the power control sub-
ject via artificial intelligence and game theory models [45, 46]. Power
adaptation during spectrum sensing phase has been the focus of study
[42] taking into consideration the interference constraints.

2.1.2 Tv-white spaces

Due to spectrum limitations, solutions based on unlicensed spec-
trum has been proposed to extend network coverage and ensure more
bandwidth availability. As example of unlicensed spectrum we cite the
TV White Space (TVWS) [47] at low UHF frequencies that is able to
support long-range communications, hence the ability to deploy large
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number of access points and controlling at the same time the inter-
ference issues. The band allocated for Tv broadcasting services has
similar characteristics as the frequency band of mobile communica-
tions. In the other hand, the development of TV services affect the
usage of this UHF band so that we get more unused frequency in this
band [48]. These unused (or idle) frequency called Tv White Space
can be allocated for mobile communication use. The exploitation of
TVWS allows also to boost the deployment of 5G networks and spread
mobile connectivity in rural areas.

Recent studies are exploiting the advantages of TV white space
and introduced models to enhance the network QoS. Authors in [19]
present a optimization framework for extra TV-white space spectrum
allocation in Long Term Evolution (LTE) networks based on femto-
cells. Authors in [49] address the subject of dynamic spectrum sharing
in heterogeneous networks.

2.1.3 Wireless mesh networks

Wireless mesh networks attract the interest of many researchers
due to its autonomous deployment and low cost. In terms of real
deployment contributions, Bicket et al. propose in [50] the design of a
mesh network called Roofnet where the mesh routers are installed on
the top of buildings to provide fast internet access over an urban area
of four square kilometers in Massachusetts.

One major issue to consider when deploying a WMN is the number
of wireless mesh nodes to be installed in the service area, the placement
of these nodes and the interference issues that affect the performance
of the network. The first two issues are related to a classic planning
problem and in the literature many research papers address it by using
mathematical models [51, 52, 53, 54] to infer the optimal number of
mesh nodes to be installed to serve a fixed demand.

On the other hand, there are several recent studies that propose
to enhance the performance of an already deployed WMN in terms of
interference. In [7], the authors propose an efficient channel selection
scheme to reduce the interference between co-located wireless mesh
networks. In the same context, works like [55, 54, 56, 57] propose a
channel assignment technique to alleviate the interference within the
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WMN. Other researchers propose to enhance the WMN performance
by focusing on link scheduling techniques [58] or multi-hop routing
[9, 8, 59].

The solutions of most of the papers proposing WMN planning result
in optimal fully connected networks satisfying the demand of clients
but without considering fault-tolerance. Only few papers address
fault-tolerance in WMN. In [60], the authors study the fault-tolerant
planning of WMN in industrial environments. This work only proposes
a radio coverage-based solution and neglects the connectivity and QoS
concerns. In [61], authors propose a placement algorithm with fault-
tolerance for mesh gateways. Usually, the number of gateways in a
mesh network is very small compared to mesh routers so the problem
is not really complex. We propose hereafter a fault-tolerance plan-
ning algorithm for mesh routers including also the above mentioned
requirements.

Globally, the WMN planning solutions mentioned above, even with
fault-tolerance, are based on static planning algorithms with fixed
user throughput requests. This is not sufficient today, because users’
demands are variable during the day and can be very high compared
to the initial planning assumptions. Data demand fluctuation leads us
to investigate issues in reducing the Operational Expenses (OPEX).
Thus, when the demand is very low, some mesh nodes can be turned
off and then the network energy consumption may be reduced. To
study this issue, temporal patterns of the user demand fluctuation
must be taken into consideration. In this context, Capone et al [62]
address the problem of reducing the energy consumption by using a
traffic profile. They propose to assign a randomly generated rate for
each time interval and the traffic profile they propose is split into 8
intervals of 3 hours each. It is a good start but with such a profile, some
traffic demand details can be lost. In our previous contribution [63],
we proved that each base station (BS) is characterized by a specific
profile class with more refined time intervals. Note that Capone et
al concentrate on this profile and they did not consider the effect
of interference, like most of the WMN planning contributions, and
assigned to their WMN links an over-estimated rate which is not so
realistic and that will definitely cause waste in resources.
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In this thesis, we propose a dynamic planning solution for WMN
with fault tolerance in order to save energy consumption and guarantee
a more available bandwidth in the network since reducing the number
of active mesh routers in each time interval alleviates the bandwidth
use and enhance channel availability for the active ones. To achieve the
dynamic planning task we use a realistic set of traffic profiles inferred
from our study in [63]. Moreover, contrary to the work mentioned
above that neglects the interference based on the assumption that
multiple antennas avoid this phenomenon, we include this factor in our
model. And we believe that as far as our investigations went, there
is no contribution combining the objective of WMN planning, fault
tolerance, energy efficiency with realistic dynamic traffic demands.

2.1.4 Drone-cells based networks

Smart deployment of drone-cells has been a topic of extensive re-
search; examples of such work include [10], where the authors use
binary integer linear programming (BILP) to selectively place and
drone-cells networks and integrate them to an existent cellular net-
work infrastructure while temporal increase of user demands occurs.
They design the air-to-ground channel for drone-cells as the combi-
nation of two component: a component for a non-line-of-sight model
(NLoS) and another one for a line-of-sight (LoS) model. Authors in
[64] investigate the number and the 3D placement while drone-cells
formation. The study aim to optimize not only the geographic coor-
dinates of drone-cells but also their total number while serving users.

In [65], authors propose a framework for drone-cells formation.
Thee framework aim to optimize the coverage (by increasing or de-
creasing the drone altitude) in order to remove dead zones and reach
network capacity goals.

While previous mentioned studies investigate the small cells deploy-
ment in only drone-cells networks, other studies such as [66] investigate
the issue of drone-cells assisting the existent cellular network and take
into consideration the design of the macro BS channel. Authors in
[66] addressed in their study two types of channel design such as air-
to-ground channel for drone-cells transmission ( designed as in [10])
and ground-to-ground for classical macro BS channel. The authors
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consider also the energy issues for drone-cells formation and propose
an assisted solar energy for drones battery. Spectrum sharing with
cellular networks and link design are also considered in [67] and au-
thors modeled the drone-cells network as a poison point process (PPP)
within a limited height.

whilst, authors in [68] consider the problem of congestion and pro-
pose a framework for congestion management in drone-cells network.
The solution of drone-cells as relay or repeater for existent macro-
cells are considered in [67, 69]. Studies as, [67, 69, 70] addressed the
drone-cells problem in a public safety context.

Contrary to previous studies that aim to optimize the placement
of drone-cells while deployment, [71] investigates path optimization
issues during drone-cells formation.

We aim in our thesis to propose a framework for dynamic and
proactive deployment of drone-cells to assist existent cellular networks
during mass event such as sport events. Our solution uses a predicted
time-series of users data demand based on a real traces of cellular net-
work demands that was proposed in the third chapter. Our proposed
contribution draws on advances not only in the issues of optimal net-
work deployment for drone-cells, but also in how dynamically manage
this deployment in order to enhance the existent infrastructure using
a multi-agent reinforcement learning approach.

Most of these innovative techniques are suffering from data avail-
ability and some study that are proved to be efficient theoretically,
fail to be applied in realistic networking contexts. We are addressing
in this thesis network resource management and optimization from
a realistic perspective by using real network dataset traces. Mining
this plethora of traces helps to understand more the real behavior of
users data consumption and how the network reacts in return. There-
fore, these network analysis results help us to propose more efficient
network resource optimization techniques that are more adequate to
the real-world bandwidth consumption. Note also that cognitive ra-
dios approaches differentiate primary and secondary users and aim at
most of times to promote primary users. Whereas, in our work we aim
to classify users based on their data consumption behaviors.
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2.2 Network traces analysis: Data mining approach

2.2.1 Network classification

Before rethinking cellular network deployment, operators must be-
gin by analyzing the existing architecture and optimize the huge num-
ber of data flows. CDRs can be very useful for this step due to the rich
quantity of information that they offer. Operators can propose new
algorithms for the optimization of the actual resource allocation. In
addition to that, an online prediction algorithm made to forecast the
load or the number of users attached to each antenna can be very use-
ful as well to build a dynamic set of resource distribution techniques.

CDR and mobile network datasets provide rich quantity of infor-
mation. This recently attracted many researchers focusing on mining
datasets. With the help of several techniques such as classical statistics
or artificial intelligence algorithms, we can extract useful knowledge
for characterizing and modeling mobile networks. These results are
essential to understand users’ behavior and their needs in terms of
transportation systems [72, 73], urban planning [14], telecommunica-
tion, etc.

Mobile traces analysis are important for city planning projects
and may help to categorize cities and understand their structures
[74, 72, 75]. In [76], authors exploit mobile traces to extract the most
visited sites. This is used to develop tourism applications [77] and to
semantically annotate those places [78].

Other studies focused on analyzing the behavior of users’ consump-
tion of network resources. M. Fiore et al. [79] have analyzed a CDR
dataset in order to classify BS call profiles based on traffic volume
snapshots defined within a time interval T. After identifying the class
of each snapshot within T, they classify the remaining time interval
snapshots using k-means. The method results on classifying BS’ snap-
shots according to traffic level and time. The drawback of this work
is that it does not provide a straightforward classification of the BS
itself and you need to analyze all the BS resulting snapshot classes in
order to infer the nature of users’ activity within it. In [15], authors
propose a classification method for geographic zones based on loca-
tion signatures analysis. The signature is measured on (aggregated)
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compressed data (week) and then clustered using k-means. However,
the compression level may impact the classification because the pro-
file may change from a day to another in some places and compression
may hide some outliers or special events.

Authors in [80] analyze the relationship between the service appli-
cations used by customers and the correspondent type of land-use and
they inferred three land-use profile as home, work and mixed areas.
Their analysis is only based on the types of application and not on
the quantity of data consumed per subscriber number which may be
more accurate. J. Toole et al. [14] propose a classification of cell pro-
files using a CDR dataset and zoning regulation dataset containing
administrative information about land-use from which they inferred
the different classes to train a supervised machine learning. Actually,
it is very useful to correlate CDR dataset with zoning regulation infor-
mation to enhance the classification outlines but the latter dataset is
not easy to access in some countries. It is hence preferable to restrict
the study on CDR dataset to infer profiles and classify the BSs.

Authors in [13] analyze users’ behavior by investigating their activ-
ities dynamics and use k-means to cluster similar patterns and identify
the structure of the cities. These two contributions ([13, 14]) result
in clustering network patterns into several classes. The problem is
that some of these classes have very similar shapes. These results in
numerous similar users’ activity patterns. As we will explain later, it
is important to group similar patterns into a small number of classes
rather than to have a multitude of patterns that are correlated. More-
over, most of these studies use k-means, with the classical euclidean
distance, to classify network patterns.

2.2.2 Network data prediction

In addition to network classification, CDR can be exploited to inves-
tigate the seasonality and periodicity characteristics of users’ network
activities. Literature shows that the users’ data consumption pattern
can be divided into two components. The first one is a seasonal com-
ponent and the second one is stochastic. Study in [81] proved that
the second component is unpredictable which leads to the difficulty
of predicting mobile traffic time-series with a simple identification of
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the deterministic trends or using analytic tools as in [73]. Therefore,
it is necessary to use more efficient tools like machine learning which
preserve the required stochastic generality such as SVR. Moreover,
authors in [82] proved that SVR is more accurate than other machine
learning tools for network traffic prediction.

Authors in [83] propose a Markov chain model to predict Internet
traffic. They used a one-week aggregated dataset to analyze network
periodicity. But, the dataset size allows only to capture daily cycles
which can not be efficient for long-term prediction. In our study, we
capture all network cycles (daily, weekly, monthly ..) which is more
accurate. In addition, they propose two sub-models to predict traffic
for weekdays and weekends. Our prediction model is more general and
performs prediction for all day types. It even captures the change of
BS profile throughout the week.

In our work, we use SVM rather than classical K-means or Marko-
vian algorithms. It helps to consider all details of the dataset without
the need of additional semantic information and to treat on-line data.
Moreover, the DTW is proposed for time series similarity comparison
instead of the ED distance. The choice of three daily classes is pro-
posed and it is shown to be optimal with respect to DTW distances.
The designed SVM algorithm will automatically classify all BSs pro-
files into the three traffic classes. We finally prove that the BS load is
predictable for short and long term cycles.

2.2.3 Network data mining for anomaly detection

Anomaly detection covers a wide variety of domains and its defini-
tion depends on the idea that normal behavior can be distinguished
from abnormal (i.e anomalous) behavior. A general definition of anomaly
or outliers detection is given by Chandola et al. in [84], and it con-
sists on signaling an anomalous observation if it presents a deviation
from known normal data. Outliers detection can be divided into two
main domains. The first one looks for individual objects from the
data and these kind of applications may refer for genetics domain,
medicine, image processing etc. The second one focuses on extracting
anomaly from a large set of ordered sequence data or time-series and
this domain covers a large set of applications like economy, financial
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analysis, energy, e-commerce , etc. We focus on the latter category
since we address in our contribution the issue of detecting anomalous
sequence (or sub-sequence) within network activities time-series. A
deeper analysis reveals that different techniques actually address dif-
ferent problem formulations of outliers detection. Most of the existing
research focuses on one of the following problem formulations:

Table 2.1: Sequence Anomaly detection related works
Sequence-Based Subsequence-Based Pattern frequency Contextual
Unsupervised & Semi-
supervised techniques
[85, 86, 87]

window scoring techniques [88] Subsequence occur-
rence based [89]

Window based [90]

Window-based [17, 91] Segmentation techniques [92] Non-contiguous subse-
quence occurrence[93]

Proximity-based[94]

Markovian & HMM
models [95, 96, 86, 97]

Anomaly dictionary [98, 99] subsequence permuta-
tion based [100]

Prediction based[101]

• Sequence-Based approach: consists on Detecting anomalous
sequences from a dataset of test sequences.

• Subsequence-Based approach: aims to detect anomalous con-
tiguous subsequences within a large sequence.

• Pattern-based approach: Detects patterns in a test sequence
with anomalous frequency of occurrence.

• Contextual anomaly detection approach: Detects a group
of points or periods of time that are anomalous regarding its
normal behavior.

Table 2.1 summarizes these approaches and highlights contributions
of each solution.

Moreover, anomaly detection in networking and telecommunication
fields is recent. Researches on cellular access networks anomaly de-
tection are limited due to the difficulty of accessing network data, but
since operators networks are publishing some of these data, it becomes
possible to explore and model these information in order to analyze
networks issues. Some studies about networks anomaly detection have
applied their proposed method on simulated data or limited set of
network traces datasets which may decrease the generalization abil-
ity of some algorithms and affect their performance. Authors in [102]
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propose a KPI-based faults detection method to monitor radio mea-
surements and comparing them to normal behavior. They extracted a
dataset of Key Performance Indicator (KPI) generated from a devel-
oped network simulator. A Bayesian method is proposed in [103] for
anomaly detection in GSM and UMTS networks but they only con-
sider the call drop rate to detect anomalies which cannot be efficient
to monitor the network. In [104], authors proposed a framework for
automatic fault detection and diagnosis in cellular network based on
a set of Operations Support Systems (OSS) KPIs. The issue with this
contribution is that the solution does not allow an on-line detection of
faults which guarantee an proactive monitoring of the network, since
they use an unsupervised clustering techniques for detection. More-
over, these contributions just address one type of network anomaly;
fault detection, although many types of outliers features may be cap-
tured within network data and we need a general method able to detect
them. A K-Nearest Neighbor (KNN) based algorithm was proposed
in [87] to detect sleeping cell in LTE networks. Obviously, K-NN is
a robust and fast unsupervised machine learning but it suffers from
high-dimensional input data. On-line semi-supervised anomaly detec-
tion techniques are used for other types of networking applications.
One-class SVM-based algorithm is proposed in [105] for malware de-
tection. In [106], authors use random forest for network intrusion
detection. Random forest is considered to be one of the most accu-
rate methods for anomaly detection and is proved to avoid over fitting
issues with less sensitivity toward noisy data [107, 108]. In [109], an
Isolation Forest algorithm, which is an enhanced variant of random
forest, is proposed for video streaming outliers detection.

In addition to the spatial anomaly, our framework is able also to
detect with precision the network outliers in a temporal scale. An
SVR [110] based prediction algorithm is used for this task. In [111],
SVR algorithm is used to predict the daily BS time-series and results
show high accuracy of the algorithm. Moreover, authors in [82] com-
pared the SVR prediction with other algorithms and they proved that
SVR provides better results. Furthermore, in [91], authors are propos-
ing a tool for network anomaly detection based on arbitrarily defined
thresholds. They label time slots as outliers if they are strongly devi-
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ated from the expected normal values. These kind of approaches need
a deep analyzes for all BS and time slot in order to fix the so-called
normal threshold for each BS time-slot. This constitutes a heavy duty
and is not efficient at all since thresholds are base-station and time
dependent. Hence, the SVR based prediction approach avoid this is-
sues by predicting the daily normal behavior for each BS (which is
defined then as a threshold to be compared to the testing time-series)
with high precision.

We propose in this thesis a general framework for network anomaly
detection that allows to detect any type of network spatio-temporal
anomalies, either fault detection or sudden peak of occupancy (data
consumption) or abnormal behavior within a cell. To the best of
our knowledge, no previous contributions propose a general spatio-
temporal anomaly detection framework based on OCSVM and SVR
for cellular radio access network and using real-world CDRs dataset.
Besides, our model can be easily adapted to other types of network
and wireless architectures with little modification.
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Chapter 3

Base station profiles classification

3.1 Introduction

High user mobility and various data consumption behaviors induce
several load patterns and network fluctuation. Therefore, network
operators must face these challenges to deal with user consumption
dynamics. They need to abandon the classical techniques such as stat-
ically sharing the licensed spectrum, which cannot efficiently manage
instantaneous users demand dynamics. Hence, new techniques and ra-
dio resource allocation mechanisms must be designed to dynamically
manage user demands and provide better quality of service (QoS) [19].

Moreover, rich information about user consumption behaviors and
network load fluctuation trends can be extracted from mobile network
datasets like call detail records (CDR). The first step toward enhancing
network performance is to mine and analyze the relevant information
hidden into the huge metadata of CDR datasets.

CDR datasets have been exploited in many fields such as studying
human mobility [112, 113, 114, 115, 116], analyzing urban planning
[72, 75, 117] and studying the structures of cities. Several studies
focused on human mobility from an urban perspective (city structure,
tourism, etc, ...) [118, 72, 119, 120]. They mainly address problems
in spatial scale, such as inferring places of interest (POI). Whereas,
analyzing these POI as well as their evolution in time is important for
cellular network planners.

Network planning is crucial for network operators to enhance ser-
vices that are cost-effective and QoS-dependent. Tools allowing the in-
ference of instantaneous bandwidth demand permit network operators
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to dynamically manage the bandwidth and to implement innovative
techniques for radio resource sharing between BSs. In this chapter,
we aim to exploit CDR and data analysis techniques in networking
context. More precisely, the goal of this work is to apply data mining
on real datasets of CDR to assist operators in optimizing the net-
work resource consumption. This prevents both under-provisioning
and over-provisioning. Hence, network operators can innovate their
network by integrating intelligent solutions to optimize dynamically
their cellular access network to guarantee a better quality of service.

In order to enhance the continuity of network services, it is impor-
tant to estimate with high confidence how the bandwidth demand on
a base station (BS) at a given time t is shared among all the BSs in
the following instants. In this chapter, we propose a method to derive
a Temporal Origin-Destination Matrix (TODM) describing how band-
width request at a BS at a given time is spread over the other BSs in
the next time instant. TODM is a temporal matrix because it depends
obviously on the time of the day and the day of the week. Note also
that it is very different from classical traffic [121] origin-destination
matrices : it includes network load measurement and expresses the
part of the load on BS i that moves at t towards BS j. Actually, when
a user moves from a BS i to a BS j, network resources must be moved
accordingly and the TODM is a tool intended for that. But, besides
the continuity of service, bandwidth dimensioning on the BS requires
to know the evolution of the bandwidth demand on this BS, taking
into account also newly arrived users in the network and other ones
which just left it. TODM helps to estimate the amount of bandwidth
that moves from one place to another. However, it does not provide
information about the total instant load locally (in each BS).

But before deriving the Temporal Origin-Destination Matrix (ODM),
we start by characterizing the daily bandwidth consumption for each
BS and we propose an on-the-fly algorithm for BS load classification
based on Support Vector Machine (SVM). First, in order to have refer-
ence classes for our SVM classification, we infer typical BS load classes
from a modified K-means algorithm. The obtained profile classes are
then used to run an SVM-based algorithm which allows assigning BSs
on-the-fly to different classes with high accuracy and efficiency. We
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propose in this chapter a modified K-means technique based on DTW
distance, instead of classical Euclidean distance, to detect BS load
profile. Besides, clustering load profiles is not sufficient for operator
networks, since a BS class may change throughout a period of days.
An automated classification technique is needed to adjust the on-the-
fly classification by taking into consideration the most recent history.
That is why we propose a classification method based on SVM to
classify the large scale dataset of BS load profile. We then exploit the
classification results to estimate the bandwidth mobility.

This chapter is organized as follows. Section 2 presents the data
processing scheme and the CDR dataset used. Section 3 presents the
clustering model of BS load profile. Section 4 presents the classifica-
tion model and shows its results evaluation. In Section 5 we present
the temporal network flows evolution and the TODM. After a discus-
sion on section 6, we finally conclude in section 7.

3.2 Base station clustering and classification

3.2.1 Framework description

Figure 3.1: Framework scheme and methodological process

The framework in figure 3.1 describes the full processing sequence
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for bandwidth management. It is composed of an initialization step
and a training step. The initialization step consists of two phases:
choice of the pertinent number of clusters and data clustering based
on K-means. The initialization phase helps to label a subset of BS
data. The resulting labeled data is used to train the SVM module.
The resulting classes are also used as input for the network bandwidth
mobility analysis in order to infer the amount of bandwidth that moves
between different areas. The pre-processed traces are finally used as in-
put for the regression (prediction) module which consists on predicted
the local BS load and complete the bandwidth mobility information
in order to provide a complete bandwidth management framework.

Figure 3.1 also depicts the methodological approach of the sec-
tion: Section 3 bloc incorporates the BS clustering and classification
process, Section 4 addresses the network load mobility and Section 5
bloc develops the BS load prediction part. Mobility analysis based on
TODM and SVR load prediction are described in subsequent sections,
while in this section we present section 3 bloc.

3.2.2 CDR dataset description

For our study, we use a real dataset of CDR provided by the network
operator Orange Senegal in the context of a challenge for development
named D4D-Senegal [12]. The D4D dataset contains call detail records
of phone calls and short messages (SMS) exchanges of about 9 millions
users for the year 2013. The data-set is divided into 3 sets: one set
contains the antenna-to-antenna traffic for 1666 antennas on an hourly
basis, another contains one year of coarse-grained mobility data at
district level, and a last one contains fine-grained mobility data on a
rolling 2-week basis for a year for about 300,000 randomly sampled
users. Table 3.1 presents an example of raw data contained in the
latter set. In this study, We exploit the last set to analyze the traffic
load and its distribution between BSs over the country. We extract
important information such as user temporal location according to BS
attachment, so we can track users and infer their most visited places.
We also obtain information about instant traffic load and BS capacity
for the whole day. This allows us to identify the daily load profile of
each BS.
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Table 3.1: Example of raw data
User ID Time BS ID
1 2013-03-18 21:10:00 275
1 2013-03-18 21:20:00 275
1 2013-03-18 21:40:00 280
2 2013-03-21 08:30:00 763
2 2013-03-21 08:40:00 761

Fine-grained mobility dataset contains raw data which can not be
exploited directly. Therefore, for our needs, we have to extract more
relevant knowledge about BS activities. We start by applying a sta-
tistical analysis on the dataset to extract time-series of the instant
numbers of attached users to each BS and within each time interval
of 10 min (granularity assessed by the dataset) along the day. Figure
3.2 represents a graphic visualization of BSs’ load evolution through-
out the day in three different districts of Dakar (each horizontal line
represents one BS). We notice from Figure 3.2 that the load pattern
differs from one BS to another and we have different BS profiles which
is analyzed in the next parts.

The extracted data is strongly representative and proportional to
the network load and this is one of the goals of our work. Figure 3.3
(top) shows the load of a BS in a typical week. The middle figure
corresponds to a real daily user average bandwidth consumption on
this BS. The bottom figure is the product of the two traces and gives
the exact data consumption in Gb/s.

29



Figure 3.2: Data visualization of BS time-series: each plot correspond to a district
and each plot line correspond to a BS time-series
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Figure 3.3: Realistic network load extracted from CDR data combined to extra
network information

3.3 Base station profile categorization

The set of BS’ time-series S, extracted from the dataset, is defined
as S = {(BSi, d)} with:

(BSi, d) = {N(t), t ∈ T}, i ∈ B
Where BSi corresponds to the ith BS ID from the set B of BSs and

d stands for the day date. N(t) corresponds to the number of attached
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user at time interval t (with ten minutes duration) and T is the set of
time interval of a day.

We notice from figure 3.2 that the dynamics of BS load along the
day can be represented by different profiles. As these profiles can not
be recognizable directly from the dataset, a non-supervised clustering
is applied at first to the set of BS time-series. The objective of data
clustering algorithms is to partition data into different groups while
guaranteeing a maximum intra-group similarity, so that elements in
the same cluster are very similar, while the similarity between groups
is minimal. Usually, clustering tools use the ED as a similarity mea-
surement between data features, but this measurement is not suitable
for time-series as it is very sensitive to time distortion. Therefore, we
propose to use dynamic time warping (DTW) as a similarity measure-
ment for BS time-series.

3.3.1 Dynamic time warping

We present in this section the dynamic time warping (DTW) tech-
nique that aims to measure the similarity between BSs’ time-series.

Studies such as [13, 14, 15] have analyzed the daily cell load patterns
and classified them according to users activities or land-use. Most of
them have applied K-means tools with euclidean distance (ED) as
similarity measurement to cluster load time-series. However, in [16] it
was proved that dynamic time warping (DTW) is more efficient than
ED for measuring time-series similarities due to its insensitivity to
time distortion.

DTW [16] was introduced to replace Euclidean distance for time
series processing. Given the following two time-series:

X : x1, x2, x3, ...xn (3.1)

Y : y1, y2, y3, ...ym (3.2)

To align these two sequences using DTW, we first construct an
n × m matrix where the (ith, jth) element of the matrix corresponds
the squared distance:

d(xi, yj) = (xi − yj)2 (3.3)
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Figure 3.4: Example of DTW path for different load time-series

which is the alignment between points xi and yj.
The challenge of the DTW method is to discover the optimal warp-

ing path that minimizes the total cumulative distance between time-
series. The optimal path is the path that minimizes the warping cost
across the matrix:

DDTW =
∑
wopt

D(xi, yj) = min

(
K∑
k=1

wk

)
. (3.4)

where wk is the matrix element (i, j)k that also belongs to kth ele-
ment of a warping path W, a contiguous set of matrix elements that
represent a mapping between X and Y. This warping path can be found
using dynamic programming to evaluate the following recurrence:

D(i, j) = d(i, j) + min{D(i− 1, j− l),D(i− 1, j), D(i, j− 1)}

where d(i, j) is the distance found in the current cell and D(i, j)
is the cumulative distance of d(i, j) and the minimum cumulative dis-
tances from the three adjacent cells.

Figures 3.4 and 3.5 show two examples for measuring and searching
the shortest warping path between two time-series of load belonging
to two different BSs extracted from the D4D dataset (that should
be classified into different classes). Figure 3.4(a) shows load time-
series of two different profiles (representing time-series X and Y of the
model described earlier) and figure 3.4(b) shows the shortest warping
path between both time-series. We can notice that the path does not
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(b) DTW path illustration

Figure 3.5: Example of DTW path for similar load time-series

pass through the diagonal of the matrix. The DTW distance for this
example is equal to 1.96 while the euclidean distance is equal to 1.28.
Hence, the DTW distance is more precise for measuring the similarity
between these two different profiles.

Figure 3.5 shows an example of two very similar load profiles, where
the shortest warping path cross the matrix diagonal. The DTW dis-
tance for this example is equal to 0.74 while the euclidean distance
is equal to 0.82. These results confirm that DTW is more accurate
and suitable for time-series similarity measurement than the euclidean
distance.

3.3.2 Similarity measurement comparison and choice of K-
clusters parameter

Figure 3.6 presents a comparison between DTW-based clustering
and Pearson Correlation Coefficient (PCC) based clustering. The com-
parison is based on silhouette measure [122]. It measures how close
each point in one cluster is compared to points in the neighboring
clusters. The silhouette ranges from −1 to +1, where positive values
indicate that the object is well matched to its own cluster and poorly
matched to neighboring clusters. We used this metric because it does
not need prior knowledge of the real BS profiles (An information that
we want to extract from clustering). In this analysis, since we need to
classify the BS profile day by day, we applied correlation coefficient to
normalized daily signatures (Same signature used for DTW cluster-
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ing) to more efficiently manage the bandwidth. We notice from figure
3.6 that DTW-based clustering is always positive for different K val-
ues while the Pearson coefficient-based clustering has negative values.
This means bad matching within each cluster. Therefore, DTW-based
clustering is more efficient than the Pearson’ method.
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Figure 3.6: Silhouette coefficient comparison between DTW and Pearson coefficient
clustering

The K-means can render so many classes. However, we place the
study in a wide-scale national network context with a network that
has to be managed in terms of bandwidth. We think that a typical
operator or a researcher that is willing to analyze the massive coarse
grain variations of such massive data has very sufficient and perti-
nent information with k = 3. To find this value, we measured the
variance of the cluster number K. We applied the Elbow method to
determine the optimal clusters number K. The Elbow method looks at
the percentage of variance as a function of K. The number of clusters
is chosen in manner that adding another cluster does not give much
additional information. Figure 3.7 shows the evolution of the Elbow
score (Variance measure) in function of K-clusters. This evaluation
shows that we can stop at k = 4.
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Figure 3.7: K choice: Elbow method

3.3.3 BS time-series clustering

To detect patterns from BS load set, we use then K-means [123]
algorithm but with DTW distance instead of classical ED and PCC.

Figure 3.8: Clusters centroid for k=4

Figure 3.8 depicts the centroid of clusters in the case of k = 4, i.e.
four classes of data traffic. We notice that we have 3 different clus-
ters with different profiles: one cluster shape with an almost constant
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activity during the day (will be referred hereafter as the ’Almost-
Constant’ class or class 1), a cluster shape with peak activity at the
morning (will be referred hereafter as the “Morning-Peak” class or
class 2), and another one with peak activity during the night (will be
referred hereafter as the “Night-Peak” class or class 3). We also ob-
tained two similar demand profiles (blue and sky blue curves) which
correspond to data demand behavior related to the night peak profile,
but with different amplitudes. As our goal, is to categorize BS profile
which deal better with our main goal of dynamic resource allocation,
we logically choose, for the rest of the work, to classify the BS pro-
files into three classes only (and not four) that are proportional to
users data consumption behaviors (i.e. morning peak profile, constant
profile and night peak profile).

3.4 Classification algorithm for base station pro-

file

3.4.1 Support Vector Machine

Let x denote the variable of the input space X , y denote the vari-
able of the output space Y , and f : X → Y denote the learning
function between the input space and output space. Note that Y can
be arbitrary; thus, it is called the structured output. For example,
in a binary classification problem, Y ∈ {−1,+1}; and in tracking, Y ,
represent all possible transformations of the target.

The objective of structured SVM is to learn a discriminant function
(or hyperplane) F : X × Y → R over inputoutput pairs (x, y). Then
the classification function f for a given input x can be derived by
maximizing F

f(x) = arg max
y∈Y

F (x, y). (3.5)

Assume that F has the following form:

F (x, y) = 〈w,Φ(x, y)〉 (3.6)

where Φ(x, y) is the combined feature mapping of the inputoutput
pair (x, y), and w is the parameter. Thus, F is linear in Φ.
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Given a set of inputoutput example pairs (x, y)(i = 1, . . . , N ; y ∈
Y), F can be learned by solving the following objective function (pri-
mal formulation):

min
w

1

2
‖w‖2+C

∑
i

ξi

s.t. ∀i ∀y 6= yi : 〈w, δΦi(y)〉 ≥ ∆(yi,y)− ξi, ξi ≥ 0

(3.7)

where C is the trade-off parameter and δΦi(y) = Φi(xi,yi) −
Φi(xi,y). ∆(yi,y) is the loss function, which can be used to eval-
uate the importance of the sample (xi,y)

To solve the quadratic problem of the primal formulation, the pre-
vious equation can be converted into its dual form by Lagrangian
duality and we obtain the following dual formulation:

max
α

∑
i,y 6=yi

∆(yi,y)αy
i −

1

2

∑
i,y 6=yi
j,ȳ 6=yj

αy
i α

ȳ
j 〈δΦi(y), δΦj(ȳ)〉

s.t. ∀i ∀y 6= yi : αy
i ≥ 0,

∑
y 6=yi

αy
i ≤ C (3.8)

where αy
i represents the Lagrangian multiplier, ȳ ∈ Y denotes the

auxiliary output variable, which has the same meaning as y, and
δΦj(ȳ) = Φj(xj, ȳj)−Φj(xj, ȳ)

3.4.2 Kernel functions

Some pre-defined kernel functions are used for solving the dual
problem formulation of the SVM model. Table 3.2 depicts some ex-
amples of kernel functions that are used in the literature.

Table 3.2: Examples of SVR kernel functions
Kernel function equation
Linear K(xi, xj) =< xi.xj > +b
Polynomial K(xi, xj) =< xi.xj >

d +b
Sigmoid K(xi, xj) = tan(< xi.xj >) + b
RBF K(xi, xj) = exp(−γ‖xi − xj‖)2
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For our model, we used the Radial Basis Function (RBF) due to its
adaptability to handling non-linear and multidimensional time-series
as the datasets that we use on all the thesis works.

3.4.3 Multi-class SVM

SVM is essentially a binary method and data is divided into two
classes of +1 and −1. Most of rotating machinery fault diagnosis
require more than two classes. Two multi-class SVM methods will be
mentioned below:

One-against-all approach

In this approach, SVM classifiers are trained as a single classifier,
i.e for an individual class, which is labeled by ” + 1” for a specific
data class, where all the rest of data classes are considered as a second
entire class and are labeled by ”1”. Then, a SVM multi-class network
will be created by combining developed SVM series. This algorithm
is presented in fig 3.9. Here, four classes are considered including
healthy state, and three unbalance conditions associated with faults
in the first, second and third discs. To obtain a four class classifier, it is
required to consider a set of binary classifiers SVMl, SVM2 and SVM3.
At each step, one class separate from the others, then by combining
the classifiers, multi-class classification is performing according to the
maximum output before sign function applying. In fig 3.9, the flow
chart for OAA procedure is presented. As it is shown, the ith SVM
classifier is trained by using all of the dataset in the ith class. This class
has positive label and all other classes with have negative labels. In the
classification, the classifier with the maximal output is the estimated
class label of the current input vector.
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Figure 3.9: One-against-all approach of multi-class svm

One-against-one approach

In this approach, a SVM classifier is trained per each couple of
classes. In other words, we obtain K(K − 1)/2 classifiers for trained
by each pair of data classes. The process of this approach is described
by fig 3.10.

In the one-against-one approach the numbers of classifiers are usu-
ally larger than the number of classifiers in one-against-all technique.
In OAO, for k individuals, it is required to evaluate the K(K − 1)/2
classifiers, while only (k1) classifiers would be required in OAA. For
example, if k = 4, the OAO approach requires six binary classifiers
that should be trained while only three classifiers is sufficient for the
OAA approach. However, the OAO approach needs more computa-
tional efforts and is much more time consuming at training stage;
therefore, always employed for the problems with smaller number of
faults. In order to classify a given pattern, it is necessary to evaluate
all 6 binary classifiers and rank them according to their accuracy.
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Figure 3.10: One-against-one approach of multi-class svm

3.4.4 K-fold cross validation

In order to train effectively the SVM classifier, the hyper-parameters
need to be tuned and selected carefully. The k-fold cross-validation
is a commonly used technique to evaluate the accuracy of SVMs with
the selected hyper-parameters.

Cross-validation is a statistical approach to verify the classification
performance of the model. It has attracted more and more attention
in the ensemble of classifier models. The Cross-validation process can
be executed through the following steps:

• Divide the dataset into K groups.

• Select some groups as training data to build the train model.

• Use the rest of the dataset as validation points (testing dataset) to
verify the train model. Usually we use 20% of the whole dataset
as testing data.

• Repeat the previous steps K times. Each subset is verified once.
The results of the test are averaged or selecting the best verifica-
tion result as a single estimation.

On these partitioned folds, training and testing is performed in k
iterations. The accuracy obtained in each iteration is then averaged
to get the model accuracy.

40



The advantage of the method lies in the repeating use of randomly
generated sub samples for training and validation, and each result
is verified once. Cross validation can prevent over fitting, and the
disadvantage is time consumption.

3.4.5 SVM-based classification model

Some works from the literature propose to classify the network pat-
terns using some mobile traffic signatures [124, 125, 13, 15]. Network
signature is usually identified by its ’support’, which defines the data
aggregation level. Unlike the works mentioned above, we train and
test our model with the normalized daily BS time-series, i.e the signa-
ture support is only for one day. Moreover, the BS profile classification
is made for each day apart, so that we can detect whether the BS class
changes throughout the days.

The SVM classification procedure considered in our research is
based on the Multi-class SVM algorithm proposed by Weston and
Watkins in [126].

Training step

The first step of the supervised classification consists in training
the model with labeled data. Therefore, we use a training set of BS
load time-series. The related class is defined with the help of the
previous clustering analysis. The training vector (BSi, d) (defined
earlier), which represents the daily variation of the number of users
(load) attached to BSi, is then tagged with its adequate label yi.
Figure 3.11 shows some examples of training BS profiles corresponding
to class 1, class 2 and class 3 respectively. We use the RBF kernel
function because our training data are non-linear and it gives better
results than other kernel functions. Globally, the training data (TD)
are represented as following:

TD : (BS1, y1), (BS2, y2), ..., (BSn, yn)

where BSi ∈ Rd represents the training vectors and d is the vector
features number while yi ∈ R represents the class labels.
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Figure 3.11: Training data for SVM classification

Testing step

Once the classification model is trained, we must ensure that it
works well and has a good performance to classify on–the-fly new
instances of BS load. The testing step is mandatory to fix and optimize
the parameters of the SVM algorithm especially the choice of kernel
function and its parameters. For that, we used another set of BSs
whose class is predetermined to make sure that our model is capable
to classify the remaining set. We use the cross validation technique
during testing step to adjust the model with the best parameters.
We consider the accuracy (Acc) metric as a criterion for the model
optimality. The accuracy is defined as follows:

Acc =
TP + TN

N

where TP is the total number of true positives, TN is the total
number of true negatives and N is the total number of vectors used
for testing. Hence, the objective of the testing step is to find the
optimal values of the model parameters that maximize the accuracy.

3.4.6 K-means based classification

To validate the SVM classification model we should compare its
performance to another classifier. We choose a modified K-means
algorithm for this task.
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Supervised K-means based model

We use k-means in a two-step manner. First, we run it on the train-
ing data used for SVM classification, under the constraint to obtain
three clusters. The trained data are then classified into three reference
clusters. We observed that we obtain almost the same classification
as the one used to train SVM. Then, each cluster is averaged to ob-
tain three reference time-series (Figure 3.12) which will be used as a
centroid for the next step.

After this training phase, the second step consists in assigning a
BS to a cluster by calculating its distance to the nearest reference of
the three training clusters and then the classification is generated.

Figure 3.12: Normalized references of training clusters used for k-means classification

3.4.7 Simulation and classification performance results

The main objective of this part is to have an automatic and daily
classification of all BS load time-series extracted from the whole dataset
and also for new instances of BS load profiles. The results showed in
this part corresponds to the classification of BSs installed in one dense
district (Dakar plateau) of Dakar capital city. Figures 3.13-3.15 give
a graphic comparison between the results obtained from the classi-
fication by k-means (left plot), SVM (middle plot) and real labeled
traces (right plot) (These latter traces are extracted from the cluster-
ing step). Each line in each plot belongs to the load vector of one BS,
i.e each color line in the left plot of figure 3.13 corresponds to a BS
which is class 1 labeled by K-means. We present in these figures the
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normalized BS time-series using the ”min-max” normalization. These
figures depict the result visualization of one typical day (Monday) and
they include the curves of all BS installed in ’Dakar Plateau’ district.
It is the most crowded district of Dakar with 72 BSs and represents
16% of all Dakar BSs).

Table 3.3 resumes the numerical comparison between both classi-
fier results compared to the real classification. This results analysis
represents an average performance result. We choose some statistical
performance measurements extracted from the confusion matrix such
as the Precision, the Recall and the F1-score. We notice from the
table that SVM is more efficient than k-means for class 1 and class 3
results while both classifiers results are close for class 2, which means
that SVM classification globally outperforms K-means.
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Figure 3.13: Classification visualization results for class 1

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
K−means classification

day time

N
or

m
al

iz
ed

 u
se

rs
 n

um
be

r

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SVM classification

day time

N
or

m
al

iz
ed

 u
se

rs
 n

um
be

r

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Real classification

day time

N
or

m
al

iz
ed

 u
se

rs
 n

um
be

r

Figure 3.14: Classification visualization results for class 2
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Figure 3.15: Classification visualization results for class 3

We notice that k-means results are close to SVM classification re-
sults and real ones. So, we can as well use k-means tool to construct
the training set for SVM instead of preparing it by ourselves. How-
ever, we cannot use it to classify a big set of traces because it uses
all data vectors to decide to compare the similarity and then decide
the class of a new instance. Hence, k-means consumes more time and
computational resource, unlike SVM which is more suitable for large
scale data classification.

As shown, SVM is better suited to data classification, analysis and
regression than K-means. The choice of SVM rather than K-means
is motivated by the fact that network operators need an online and
less time consuming solution to infer the daily class of their BS. K-
means is a batch method that needs to take all the available data
and classify them. Then we have to apply the previously explained
variance coefficient to find the adequate number of clusters. So, K-
means cannot be applied every time we have fresh arriving data. It is
used only once to verify classification precision. Fresh online real-time
data needs another classification tool, that is in our case, SVM. In
terms of speed, we compared the time execution between the SVM
model and the Kmeans to classify 1450 BS. SVM needs only 32 ∗ 10−4

seconds to complete the classification while Kmeans need 29 ∗ 10−3

seconds. So, the SVM gives faster results than the Kmeans.

Additional results are shown in figure 3.16. Figure 3.16(a) maps the
classifications results on Dakar city chart where class 1 BSs are blue,
class 2 BSs are green and class 3 BSs are red. The classification results
allow us to divide Dakar into significant zones (Figure 3.16(b)) and
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also add semantic interpretation for these areas. The red-highlighted
areas, for example, are almost dense with “Night-Peak” class BSs, so
it can be assumed as residential areas. The green-highlighted area
are dense with “Morning-peak” class BSs, it hence can stand to a
business area. While the blue areas can correspond to mixed areas.
The objective of the next section is to study the transitions between
these areas and infers its impact on bandwidth management.

Table 3.4 resumes the average distribution of BSs w.r.t the identi-
fied 3 classes. We distinguish 2 distributions, one related to BSs mean
percentage for weekdays and the second is related to weekends. We
notice that the percentage of class 2 BSs (morning peak profiles) de-
crease during the weekend while the class 3 BS increase. This is due
to fact the users tend to stay at home or in night-life location during
the weekend.

Table 3.3: Performance comparison between SVM and K-means for each class

Performance Class 1 Class 2 Class 3
Classifiers SVM Kmeans SVM Kmeans SVM Kmeans
Precision 0.72 0.67 0.94 0.9 0.93 0.85
Recall 0.82 0.75 0.88 0.89 0.94 0.84
F1-score 0.78 0.68 0.91 0.92 0.94 0.84

Table 3.4: Classes Distribution Comparison between weekday and weekend
BS distribution Class 1 Class 2 Class 3
Day type Weekday Weekend Weekday Weekend Weekday Weekend
Percentage 26% 22% 14% 6% 60% 72%

3.5 Network load mobility analysis

In the third section, we automatically classify BS profile accord-
ing to three class references in order to characterize the in-cell users
consumption patterns. In this section, we investigate the user mobil-
ity behavior and study its relationship with the previous load clas-
sification in order to provide prediction for the temporal bandwidth
mobility across the network.

Note that this set of traces does not give any fine grain network
signaling data relative to cell handovers. We hence cannot detect phe-
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nomena such as “phantom movements” [127]. It would give us exact
arrival and departure instants of each client. Each cellular dataset is
different and has to be treated according to the available information.

We may consider in this study different users’ mobility features like
taking into account oscillations between BSs which does not mean
effective users mobility but it expresses bandwidth mobility.

(a) Dakar Classified base station dis-
playing with corresponding Voronoi cell
mapping

(b) Potential transitions between clas-
sified areas

Figure 3.16: Classification results visualization over Dakar Map

3.5.1 Motivations

In order to enhance the continuity of network services, it is impor-
tant to estimate with high confidence how the bandwidth demand on
a BS at time t is shared among all the BSs in the following instants.
In this section, we propose a method to derive a Temporal Origin-
Destination Matrix (TODM) describing how bandwidth request at a
BS at time t is spread over the other BSs in the next time instant.
TODM is a temporal matrix because it depends obviously on the time
of the day and the day of the week. Note also that it is very differ-
ent from classical traffic [121] origin-destination matrices : it includes
network load measurement and expresses the part of the load on BS
i that moves at t towards BS j. Actually, when a user moves from a
BS i to a BS j, network resources must be moved accordingly and the
TODM is a tool intended for that. But, besides the continuity of ser-
vice, bandwidth allocation on the BS requires to know the evolution
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of the bandwidth demand on this BS, taking into account also newly
arrived users in the network and other ones which just left it. TODM
helps to estimate the amount of bandwidth that moves from one place
to another. However, it does not provide information about the total
instant load locally (in each BS).

3.5.2 User mobility analysis

We start by extracting from the raw CDR dataset the daily trajec-
tory time-series of each user. Thus, we obtain a set of time-stamped
set containing, in a chronological order, the IDs of BSs where users
were captured. For example, the trajectory time-series of user i Tri is
as follows:

Tri : {BS1, BS1, BS2, BS3, .., BS2, BS1}

at the correspondent instant:

Ti : {t1, t2, ..., tk, ..., tn}

where tk corresponds to the kth position time-stamp. Figure 3.17
shows an example of a user trajectory made between 8am and 9am on
a workday. As shown in this figure, the first BS in the trajectory is
located in a residential area while the last one is located in a business
area so that, it stands for an ordinary user trajectory while moving
from his home to his work place. For this example, it is easy to infer
the semantics of user trajectory semantic behavior, but there are many
other users that are commuting between different places at different
times during the day for many reasons, such as going to homes, schools,
entertainment places, etc. This causes a diversity of users trajectories
patterns, especially when we deal with an amount of 300.000 users. In
order to understand these patterns, we start by a statistical study.

Figure 3.18 depicts the distribution of the number of places visited
by users during one hour of time interval, i.e, the percentage of users
in function of the number of visited places. We notice that almost
80% of users spend the time-interval in the same place. The box-plot
in figure 3.19 shows the behavior of these non-moving (static) users at
different one-hour time intervals. It represents the average percentage,
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over one week period of study, of the users that still immobile in the
following time-intervals. We can notice from the plot that there is
a little variation from the median values for all time intervals. This
shows that most people in Dakar are non-moving while using mobile
devices and this behavior is the same for a long period of the time.
The remaining 20% of users represent the moving users that results
on a bandwidth mobility.

Figure 3.17: A sample of a user trajectory between 8am to 9am

Figure 3.18: Distribution of the users in function of the number of visited places
during one hour
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Figure 3.19: Evolution of static users percentage along the day and during one week

As we want to study the bandwidth propagation between different
zones, we focus on users mobility w.r.t BS classification. We propose
in the following parts a general method which infers the behavior
of nomadic users and estimates the load transition between different
areas. The method is general and can be easily used and adapted for
other datasets.

Note that, we develop an algorithm here that catches automatically
user mobility. In our traces of Dakar, it is not much seen but it does
not mean that in other cities such as Paris and London, it has the
same pattern.

3.5.3 Origin-Destination matrix estimation

The goal of this section is to infer the trends of users mobility
while they move from a place to another in order to track the temporal
propagation of the bandwidth. For this part also, we consider only the
study-case of Dakar city, since it is the most crowded city in Senegal
(population size in 2013 is equal to 3,137,196) with the highest cellular
subscriber numbers and to also avoid some noisy patterns from rural
areas.

Users mobility trends can be captured in “Origin and Destination”
(OD) matrices which are extracted from users trajectory sets. They
provide us with a global overview of the different flows of users’ tran-
sitions. An OD matrix contains the numbers of users moving from
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an “Origin” to a “Destination” BS. Origin BS can be homes while
Destination BS can be work places, school, etc. Before extracting
OD matrices, we must identify Origins and Destination BS from daily
users trajectories sets. This step is explained in details in the next
part.

Origin-Destination BS identification

We aim here to capture, from the set of daily user trajectories
(extracted in section IV.A), each couple of (Origin, Destination) BSs
to identify users transition flows. Each user trajectory consists of
a chronological series of BS (geographical positions). “Origin” BS
refers to the BS where a user starts a series of brief-time transitions
(transitions occurring within few seconds) through some intermediate
BS. “Origin” BS can also consists on the start position of a user sub-
trajectory. “Origin” BS is easy to identify, it is generally the first BS
of the whole daily trajectory or the first different BS, if it exists, after a
“Destination” BS. “Destination” BS refers to a BS where users spend
long time. The identification of a “Destination” BS belongs to a stop
time threshold ts, i.e, if the user spends a time higher than ts in the
same BS so this BS is considered as a “Destination” BS. We choose
here ts to be equal to 30 minutes. Figure 3.20 depicts an example
of “Origin” and “Destination” BS identification process. Note that
several (Origin, Destination) couples can be extracted from one user
daily trajectory time-series. Algorithm 1 explains the procedure of
extracting these “Origin” and “Destination” BS.

The output of algorithm 1 is then used to estimate the n×n origin
and destination matrix M, where Mi,j represents the number of users
commuting from Origin BSi to Destination BSj. Figure 3.21 shows
an example of a global Origin destination matrix which aggregates all
users transitions during one day. Note that we neglect in this study
all static users, i.e, the diagonal elements of the matrix are null.
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Figure 3.20: Illustration of the “Origin” & “Destination” BS identification process

Figure 3.21: Example of a raw Origin-Destination Matrix

Algorithm 1 Start & Stop extraction

1: Input: Time-stamped Set of Trajectories Time-series TTS and a Stop time
threshold Ts

2: Output: Time-stamped Set of (Start,Stop) tuple
3: procedure ODExtraction(TTS, Ts)
4: StartBs← pos[1]
5: t1 ← Tstamp(StartBS) . Tstamp returns a position timestamp
6: j ← 2
7: while j ≤ length do
8: t2 ← Tstamp(pos[j])
9: if (t2 − t1) ≤ ts then

10: LastPos← pos[j]
11: j ← j + 1
12: else
13: if StartBs 6= LastPos then
14: [Start, Stop]← (pos[1], LastPos)
15: StartBS ← pos[j]
16: j ← j + 1

return (Start,Stop)
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Classified Origin-Destination Matrices

The global OD matrix depicted in figure 3.22 aggregates all tran-
sition flows in an unstructured manner, so it does not provide clear
details about users mobility through the network. Thus, We can not
directly infer daily user mobility patterns neither detect POI areas.

To get more details from the OD matrices, we exploit the classifi-
cation results of section 3. We map the previous three classes results
with the OD matrices and we re-arrange the global OD matrix rows
and columns accordingly. Therefore, Class 1 BS rows are re-ordered
in top rows of the matrix, then class 2 BS rows are re-ordered in the
middle and finally class 3 BS rows are re-ordered in the bottom of
the matrix. The same order is applied to columns. Figure 3.22(a)
shows an example of a classified OD matrix where we notice clearly
the separation between classified zones. We notice also that the clas-
sification permits to segment the OD matrix into 9 different blocs and
each bloc aggregates transition flows of a specific type of user’ mobility
pattern. These blocs are illustrated in figure 3.22(b). In this figure,
the notation Fi,j specify the flows type and its direction, i.e F1,1 bloc
corresponds to transition flows between BSs belonging to the same
class 1 areas, while F2,3 bloc corresponds to transition flows from class
2 BSs areas (Business areas) toward class 3 BSs (Residential areas).

(a) Example of Classified Origin
Destination matrix

(b) Flow blocs interpretation of the
Classified OD matrix

Figure 3.22: Illustration of classified Origin and Destination matrices

The classified OD matrix provides more details about the transition
flows across the city. These matrices aggregate flows in a spatial scale
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since they aggregate all transitions during the day and neglect the
temporal aspects of these transitions. In the following part we propose
to add the temporal scale to the classified OD matrix.

Spatio-Temporal OD matrices

Origin Destination matrices presented above capture all aggregated
users commuting flows during the day. This representation permits
to infer the spacial behavior of user mobility and allows to detect
the place of interest (POI) [73, 128] within the studied city, thus, the
most important places that people are moving between. But they omit
the temporal scale of these flows, i.e, the temporal evolution of these
transitions is not included, so the Time of Interest (TOI) cannot be
evaluated. We mean by Time of interest here the important moments
(or time) which characterize user mobility flows, i.e. when there is a
transition peak between two given regions, or when a specific transition
flow starts to become weaker (stagnant flow), etc.

As the goal of this study is to infer users mobility trends, not only
in spatial context but also temporal scale and estimate the spatio-
temporal evolution of transition flows, we propose then in this part
to include the time scale to Origin and Destination matrices. For
this need, a new dimension is added to the previous OD matrix to
obtain a 3-Dimension (3D) array with n× n× T dimension, where n
represents the number of BSs (spatial dimension) and T represents the
time dimension. The latter dimension is divided into T equal time-
windows and each one represents an OD matrix, i.e Mt aggregates all
transitions flows at time interval t, while Mi,j,t captures the transitions
flows from BSi to BSj at time t. The fact that we propose at section
IV.B.1 to extract a time-stamped set of (Origin,Destination) couple
makes the constitution of such a 3D array more obvious. This new
representation of Origin and Destination matrix helps to estimate the
instant propagation of users flows within the city and hence provides
a spatio-temporal insight of bandwidth migration.
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Transition probability

In the previous section, we analyze the network activity patterns in
a fine-grained (or micro) scale. Based on the used dataset, we find that
network resource consumption may differ depending on day time and
the BS profile. In this part of the study, we aim to study the network
load transitions in a macro-scale according to previous classification
which provides interesting perspectives to optimize cellular networks.

Once temporal classified OD matrices are extracted, we aggregate
all transition flows of each bloc to obtain an aggregated 3D origin and
destination array, but here origin and destination represent an aggre-
gated zone rather than a single BS. We then calculate the transition
probability flows between different zones at different time interval.

The transition probability is defined as follows:

TPi,j(t) = Ni,j(t)/Ni(t− 1)

where TPi,j is the transition probability from source i to destination
j at time t, Ni,j(t) represents the aggregated flow of users that are
moving from classified zone i to classified zone j at time t and Ni(t−1)
represents the aggregated users’ number that were present in zone i
during the previous time slot t−1. The latter component is evaluated
as follows:

Ni(t− 1) =
∑
j

Ni,j(t− 1)

Figures 3.23 shows the mean of transition probability of an aggre-
gated data during a period of three weeks in addition to its standard
deviation (figure 3.23(a) ) and two examples of daily probability tran-
sition (figure 3.23(b)).

We notice from curves that the probability transition results are in
accordance with the classification. For example, the curve F1,3, which
represents the evolution of probability transition flows from class 1
area to class 3 area, has low probability at the morning and then it
increases at evening (from 7am). This is obvious since users tend to
leave their residences at the morning (to go to work or study etc ...)
and they return it back at night. Same interpretations are made for
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curve F1,2. In the other hand, Curve F3,2 shows the inverse, and this
is due to the fact that class 2 zones contain BS with ”morning peak”
load profile which can represents business areas.

Moreover, we can infer clearly from the figures the TOIs defined ear-
lier. For example, at 8am there is a peak of transition of users moving
from residential areas (Class 3) to business areas (Class 2) while tran-
sition flows toward residential areas (F1,3, F2,3) are represented with
lower transition probability. Hence, extra network resource must be
allocated to the business areas at this period. Besides, between 12am
and 1pm the trend of user mobility starts to be inverted and users
start to move to residential areas, i.e the slope of the F.,3 transition
probability curves is increasing while the complementary flow curves
slope is decreasing. In the other hand, mobility flows toward residen-
tial areas reach their maximum transition probability between 7pm
and 8pm. So, the bandwidth must be moved from class 2 areas to
class 3 areas in order to serve this high rate demand. After 8pm, most
of users are in their homes, so that their mobility is limited and that
explains why all transition flows are decreasing.

We notice also that the behavior still very similar during several
weeks (low standard deviation). This information is crucial for the
forecast of bandwidth mobility in the future, hence allows network
operators to pro-actively manage their resource allocation sharing.
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3.6 Discussion

The CDRs data set used in this work does not include information
about device types and low level signaling information [127]. We can
imagine the presence of ’light’ and ’heavy’ users that don’t consume
the same amount of data. Figure 3.3 for example gives the average
amount of a “heavy” user with a typical smartphone. All users in our
study belong to the same usage profile. If this extra data is available
from the core network, a small adjustment will be necessary in the
pre-processing step of the framework. We hence can use our proposed
framework by weighting the mobility values with different classes of
cellular users (i.e. heavy or light). Moreover, we can also have a
different classification per device type.

3.7 Conclusion

We show in this first chapter a general process about how to exploit
real data-set of CDR to analyze the network subscribers and network
usage behaviors. We propose algorithms that aim to analyze large
scale cellular networks data traffic, to classify this traffic and to infer
the bandwidth mobility behavior. We propose a classification model
based on SVM to classify the BSs into three principal classes according
to daily load profile. The SVM algorithm allows to efficiently process
and classify large datasets on-the-fly. We also use the Dynamic Time
Warping distance instead of the Euclidean distance which is more
suitable for time series similarity measurement. We demonstrate, with
multiple simulation results, the efficiency of our DTW choice. Results
show also the high accuracy of the automatic classification algorithm.

We then study the user mobility behavior from a bandwidth man-
agement perspective. This helps to forecast the network load transi-
tions and to estimate the amount of data migration, or in other term,
the bandwidth mobility, between zones throughout a day.

Dynamic allocation network techniques such TV-white space spec-
trum allocation [19] and drone-assisted networks may exploit this
bandwidth mobility information to share bandwidth accordingly be-
tween different areas in real-time (to ensure service continuity for mov-
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ing users).
The sequence that we adopted in this chapter may become the

skeleton of a precise and scalable methodology to analyze cellular net-
work traffic and to dynamically plan resource provisioning on access
networks. Moreover, the process we presented in this chapter will take
part of a global framework, that we present later in this thesis, that
allows to dynamically plan and allocate network resources.
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Chapter 4

Base Station load prediction

4.1 Introduction

Most of the techniques for network resource allocation are based
on a static sharing of the licensed spectrum, so that the access net-
work can not efficiently manage instantaneous dynamics of user de-
mands,i.e. when the number of users increases quickly, the access
network starts to the reject some of them and the quality of service
decreases drastically. Therefore and with the help of our field classifi-
cations, we can say that this allocation seems to have some waste for
the radio resource as some base stations (BS) may not consume all the
resource allocated because the low number of its attached users. In
the same time, there can be some BSs where the number of users is too
high and then it demands extra resources to satisfy all the users with-
out affecting the quality of service. This hypothesis is proved by the
CDR analysis and the BS profile classification of the previous chapter.
Dynamic Techniques for radio resource allocation must substitute the
classic ones, so that we can exploit dynamically the unused resources
on a given period of time on another places and allocate them to BS
when there can be a bottleneck at that moment.

Network operators can use innovative techniques to make more dy-
namic and efficient resource allocation policies such as machine learn-
ing techniques for on-line load prediction. Predicting the near future
load of the cell allow to infer the profile class for which the BS will
belong and then dynamic decision for resources allocation would be
possible.

The previous chapter addresses the topic of network load profile
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classification and bandwidth mobility between classified areas. In this
chapter, we propose a proactive techniques based on SVR to make
an online prediction for the load of BS according to its history. Re-
sults from both sections combined give the precise global bandwidth
dynamics.

We propose in this chapter a machine learning technique based on
(SVR) to predict the load of each cell. Hence, we propose a framework
that allows network operators to monitor their network resources and
to provide new mechanisms that take into account the dynamics of
user data demands and adapt the network resource allocation accord-
ingly to enhance the QoS and users’ QoE. Prediction outputs make
using dynamic resource allocation techniques, such as TV-white space
spectrum allocation [19] and drone-assisted networks, more accurate.

Moreover, on-line load prediction provides a pro-active tool that
ensures a bandwidth sharing mechanisms between areas and to dy-
namically allocate resources for new attaching users.

The chapter is organized as follows. Section 2 introduces the sup-
port vector regression algorithm. Section 3 presents the data analysis
results and the load prediction model. The comparison and perfor-
mances evaluation of our model are presented in section 4 and we
conclude in section 5.

4.2 Prediction models

4.2.1 Support Vector Regression

We propose a model based on Support Vector Regression (SVR)
algorithm [110] for BS load prediction. Let (xi,t, yi,t)

N be a time-series
training sample , wherexi,t stands for the features vector that describes
our data at timestamp t (t ∈ 1, ..., N) and for BS i, yi,t stands for the
label of each features vector or, in our case, the instant users’ density
at timestamp t and Ni stands for the number of timestamps of data
collected from the BS i used for training.
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Primal formulation

The SVR model aims to find a linear function (or hyperplane) f
which maps xi,t with yi,t in a feature space F (usually with higher
dimension) that provides a linear projection of the data. Hence, the
linear function f will be the solution of the optimization problem into
the F. The function is formulated as follows:

f(x) =< W T .φ(x) > +b . (4.1)

W is a weighting vector in F space, b is a bias and φ is the mapping
function corresponding to F. To find this function, the following risk
function should be minimized as stated in by this primal problem
formulation:

min
W,b

1

2
‖W‖2+C

N∑
i=1

(ξi + ξ∗i ) . (4.2)

s.t. (< W.xi > +b)− yi ≤ ε+ ξi, i = 1, 2, . . . , N

yi − (< W.xi > +b) ≤ ε+ ξi, i = 1, 2, . . . , N

ξ∗i ≥ 0, i = 1, 2, . . . , N ,

where ξi and ξ∗i are slack variables introduced to deal with predic-
tion errors higher than the insensitive loss parameter ε and C is the
penalty parameter.

The above function is called the Structural Risk Minimization (SRM)
function. SVR is different from conventional regression techniques be-
cause it uses SRM, which was proven to be more efficient than Em-
pirical Risk Minimization (ERM) used in neural networks [129] and
which is equivalent to minimizing an upper bound on the generaliza-
tion error and not the training error. Using SRM results in better
performance of generalization and performs better than conventional
techniques which may suffer from possible over fitting.

Dual formulation

To solve the quadratic programming of the primal formulation, La-
grange multipliers,(αi), are introduced and problem formulation be-
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come as follows:

(4.3)

min
α,αi

1

2

N∑
i

N∑
j

K(xi, xj)(αi − α∗i )(αj − α∗j)

+ ε

N∑
i

(αi + α∗i )−
N∑
i

yi(αi − α∗i )

s.t.

N∑
i=1

(αi − α∗i ) = 0,

0 ≤ αi, α
∗
i ≤

C

N
, i = 1, 2, . . . , N

The optimal prediction function obtained after resolving the previ-
ous optimization problem is as follows:

f(x) =
l∑

i=1

(αi − α∗i )K(xi, x) + b , (4.4)

where K(xi, xj) is the Kernel function and its equation is as follows:

K(xi, xj) = φ(xi)
Tφ(xj)

Table 4.1 depicts some examples of kernel functions that are used
in the literature.

Table 4.1: Examples of SVR kernel functions
Kernel function equation
Linear K(xi, xj) =< xi.xj > +b
Polynomial K(xi, xj) =< xi.xj >

d +b
Sigmoid K(xi, xj) = tan(< xi.xj >) + b
RBF K(xi, xj) = exp(−γ‖xi − xj‖)2

4.2.2 Auto-regressive Integrated and Moving Average model

In order to provide a reliable evaluation of our prediction model
based on SVR, we provide a benchmarking analysis and comparison
between our model and other prediction technique from literature.
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We choose to evaluate our SVR-based model against Auto-regressive
and Integrated Moving Average (ARIMA) models which is, according
to the literature , one of the most used and efficient technique for
time-series forecasting.

ARIMA forecasting models is an extension for the classical Auto-
Regressive and Moving Average (ARMA). The ARMA model was
developped for the stationnary data prediction, wheras the ARIMA
model is proposed as a generalization to the non-stationnary time-
series. Moreover, BS load data are presented by non-stationary time-
series that can be modeled by an ARIMA model.

The ARIMA models are generally denoted ARIMA(p, d, q) where
parameters p, d, and q are non-negative integers, p is the order of the
auto-regressive model, d is the degree of differencing, and q is the order
of the moving-average model. Given a time-series {Xt : 1 ≤ t ≤ n},
the ARIMA model is written as follows:

φ(B)∇dXt = θ(B)Et (1)

where B represents the backshift operator and it is expressed as
follows:

BXt = Xt−1 (2)

while φ(B) is the auto-regressive operator, represented as a poly-
nomial in the back shift operator:

φ(B) = 1− φ1B − · · · − φpBp (3)

and θ(B) is the moving-average operator, represented as a polyno-
mial in the back shift operator:

θ(B) = 1− θ1B − · · · − θqBq (4)

Et is the independent disturbance, also called the random error.
It is assumed to be independently and identically distributed with a
mean of zero and a constant variance of σ2 (white noise). The roots
of φ(X) = 0 and θ(X) = 0 should all lie outside the unit circle. ∇d

describes differencing operation to data series to make the data series
stationary, and d is the number of differencing.
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4.3 Load prediction model

4.3.1 Periodicity analysis

Power spectral density estimation models

A primordial step toward time-series prediction is to study and
analyze their periodicity. Periodicity analysis is made by studying the
Power Spectral Density (PSD) of the time-series.

FFT-based estimation : One of the common methods is to applying
Fast Fourier Transform (FFT) that maps the time-series into the fre-
quency domain so that we can extract the most significant frequencies
that describe the BS load cycles. FFT is suitable for our periodicity
analysis because it is a non-parametric method to extract periodicity
and provides a periodogram that is easily interpretable. The peri-
odogram based on FFT is expressed by the following equation:

Sn(α) =
1

n
(
∑

06=i≤n

(X(i) exp(−jiα))2) (4.5)

The issue of this periodogram is that it represents a biased peri-
odogram of the BS time-series PSD estimation.

Welch estimation method : The Welch’s periodogram [130] is a mod-
ified version of the previous mentioned method and it was proposed
to come up with the bias of the FFT method. Welchs method is also
called the weighted overlapped segment averaging (WOSA) method
and periodogram averaging method. The method is carried out by di-
viding the time signal into successive blocks, forming the periodogram
for each block, and averaging.

Let denote the mth windowed, zero-padded frame from the BSi
time-series by:

Xm(i) = w(i)X(i+mR), 0 ≥ i ≤ n− 1, 0 ≥ m ≤ K (4.6)

where w(i) represents the window function. R is defined as the
window hop size, and K denotes the number of available frames. Then
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the Welch’s power spectral density estimation is given by the following
equation:

SWper(w) =
1

K
(
∑

06=m≤K−1

PXm,M(αk)) (4.7)

where PXm,M(αk) represents the FFT periodogram of the m − th

block. In other words, it’s just an average of periodograms across
time.

Base station load PSD estimation

Since the classical periodogram based on FFT provides a biased
estimator of the BS load PSD, we adopt here the Welch’s method
to estimate the time-series PSD and analyze their periodic patterns.
Welch’s periodogram is an improvement of the standard periodogram
spectrum estimation method that it reduces the noise in the estimated
power spectrum density.

Let {BSi : {X(1), ..., X(n), n = 21024}, i ∈ Bd} be the set of all
Dakar BS (Bd) time-series. BSi represents the load time-series of the
ith BS at each time interval of ten minutes granularity, for a period of
4 months.

At first, we normalize the whole time-series of the set using the
“min-max” normalization method. We then divide each BSi time-
series from the previous set into equal blocks of one week window size,
i.e M is equal to 1008. Finally, we applied the welch’s estimation
method to infer the PSD signal of each BSi load time-series. The
normalized PSD Welch’s estimation is represented in figure 4.1.

65



Figure 4.1: Welch’s periodogram: Time-series periodicity analysis

According to this figure, we obviously notice some frequencies with
high amplitude values. These relevant frequencies belong to the cycles
that can model the periodic component of the BS time-series. These
cycles are highlighted by the zoomed-in box in the figure and are
interpreted as follows:

• Daily periodicity: corresponds to the peak at 100 which describes
one cycle per day.

• Mid-day periodicity: corresponds to the peak at 100.3 which de-
scribes two cycle per day.

• Weekend periodicity: corresponds to the peak at 10−0.54 which
describes one cycle per weekend.

• Weekday periodicity: corresponds to the peak at 10−0.14 which
describes one cycle per weekend.

• Weekly periodicity: corresponds to the peak at 10−85 which de-
scribes one cycle per week,i.e, 0.14 cycles per day.

• Monthly periodicity: corresponds to the peak at 10−1.47 which
describes one cycle per month.

This analysis proves that BS activity has a periodicity on differ-
ent scales and these information will be exploited latter to build the
prediction model.
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On the other hand, study in [81] shows that the BS load time-series
is made with two components: one periodic component, which can
be re-constructed from the previous cycles. And another stochastic
component, that it is hard to model and predict and which needs
advanced algorithm such as SVR model.

4.3.2 SVR-based prediction model description

For our prediction model, we use SVR to predict the load of each
BS. Similarly, to the classification model, there are two steps for the
prediction model: the training and the testing steps and the princi-
ples of those steps are very similar to the classification ones. The
difference here concerns the features of the training vectors. For the
classification, we used the daily BS load time-series which is extracted
from the D4D traces data-set. For this purpose, we defined a set of
five pertinent features for each BS to predict its load. The choice of
features depends on the periodicity analysis results. For our dataset
study-case, the periodicity analysis reveals four dominant cycles, so
that we choose the following features.

Each training vectors Xi,t ∈ R is described as follows, Xi,t =
{x1

i,t, x
2
i,t, x

3
i,t, x

4
i,t, x

5
i,t}, where:

• x1
i,t ∈ {1, 2 . . . 144} stands for the chronological order of the ten-

minute time interval within a day. The choice of this feature is
based on the daily cycles inferred from the periodicity analysis.

• x2
i,t ∈ {0, 1} indicates whether the training data belongs to week-

end (x2
i,t = 1) or a weekday (x2

i,t = 0). The choice of this feature is
based on the weekend cycle extracted from the PSD periodogram.

• x3
i,t ∈ {1, 2 . . . 7} indicates the weekday standing for the train-

ing data. We choose this feature according to the weekly cycles
inferred from the periodicity analysis made previously.

• x4
i,t ∈ {1, 2 . . . 52} represents the chronological order of training

data week. We choose this feature because some yearly behavior
can occurred like holidays or seasonal periods, etc.
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• x5
i ∈ {1, 2 . . . N} corresponds to the year of the training day. N

can vary according to the number of years with which to train the
prediction model. In our case we have just a one year of traces.

• t stands for the timestamp of the time-series data, i.e, t ∈ N as
defined earlier.

• i stands for the index of the BS concerned by the prediction.

The choice of these features is made based on the periodicity analy-
sis presented previously in this chapter, where we find daily and weekly
cycles. In other cases, datasets may contain more than four cycles and
then SVR training model must be adapted. Note that we neglect the
mid-day and monthly cycles because are less representative in the pe-
riodogram and has less weight on the prediction compared to other
cycles.

Like the classification model, each training vector must be associ-
ated with its corresponding label. In the prediction case, the label
yi represents the load of the BS at the time interval x1

i . To find the
optimal value for parameters C, γ (for RBF) and ε we used the cross
validation technique. Then we adjust the SVR model with these pa-
rameters and test its efficiency.

4.3.3 model tuning and prediction Results

To evaluate our prediction model, we test it with the D4D traces
dataset and considered the Mean squared Error (MSE) as a criterion
for the evaluation. The mean squared error is measured between the
predicted BS instant load and the real data.

Choice of kernel function

Table 4.2 shows a comparison between the mentioned kernel func-
tion. We use here the MSE as a criterion for comparison. All compared
kernel functions are used with the same training dataset.

The table results prove that SVR with RBF has a larger accu-
racy compared than other kernel functions. These results validate our
choice of RBF as kernel function for our prediction model.
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Table 4.2: comparison between SVR kernel functions
Kernel function MSE
RBF 4.3 ∗ 10−4

Linear 44 ∗ 10−4

Polynomial 24.06 ∗ 10−4

Sigmoid 43.8 ∗ 10−4

model parameter optimization

We adopt the grid-search algorithm combined to the cross-validation
algorithm to select the optimal combination of SVR and RBF hyper-
parameters, such as the penalty parameter C and RBF γ parameter
as well as defining the optimal training dataset size.

The principal of grid-search algorithm is to set the parameters of
C, γ and a steps size, so as to form a grid by search points. Thus,
the SVR model is trained for each pair of hyperparameters within the
grid. The best training model is selected in manner that it provides
the lower MSE value. An improved grid-search algorithm is used in
this chapter, the search is performed in multiple phases. At first, we
set the parameters range and an initial higher steps size for coarse
search, and then evaluate the MSE for each step and select a smaller
parameters range that provide the lowest MSE. The following phases
consists on fine ranging the search by training the SVR model with the
values range selected in the previous phase but with smaller steps size.
In our algorithm the step size is divided by ten at each phase. Thus,
the computing cost can be shortened while the prediction accuracy
can be improved. The steps of the grid-search algorithm are detailed
as follows:

1 Set the initial range values of the couple (C, γ)

2 Set the initial steps size

3 Train iteratively, according the steps size, SVR model with each
couple of (C, γ) chosen from the respective ranges and calculate
the MSE at each step.

4 Select the range of parameters (C, γ) that provides lower MSE
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5 Divide the steps size by ten and re-train the SVR models accord-
ing the new selected ranges and steps size

6 Repeat the steps (3), (4) and (5) until the convergence to a lowest
MSE.

To validate this tuning parameters algorithm, we evaluated against
different training dataset using the cross-validation method (explained
in the previous chapter). Although, for the SVR prediction model, it is
important to respect the order of samples, instead of the classification
task where we divide the training set into k-folds and evaluate the
classification model against a mixed selection of folds. Hence, for the
SVR model, we use a sliding-window cross validation, which accounts
for data order and preserves the notion of history data for predicting
future data.

We initialize the grid-search algorithm with the following parame-
ters range [0, 1] and [0, 100] and steps size 0.1 and 1 for γ and C pa-
rameters respectively. Figure 4.2 depicts an example of the evolution,
during the grid-search selection algorithm, of the MSE in function of
γ parameter using three weeks as training data size. The figure shows
that the optimal value at the convergence of the algorithm is 1.4∗10−3.
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Figure 4.2: Variation of MSE in function of γ parameter

Figure 4.3 shows also the evolution of MSE in function of C pa-
rameter during the execution of the tuning parameters algorithm. The
figure shows that the the optimal C is equal to 85.
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Figure 4.3: Variation of MSE in function of γ parameter

Once the SVR model optimal parameter are selected, we aim to
select the best training data size that provide better prediction per-
formance. Figure 4.8 shows the evolution of MSE in function of the
training data size. We notice that from eleven weeks, the MSE start
to be stable and the deviation, using higher size, is negligible. Then,
we choose to fix the training window on eleven weeks. This choice will
be used for prediction in this chapter and other chapters.

4.4 Benchmarking analysis and performance eval-

uation

Once the optimal parameters of the SVR model are selected as well
as the optimal training set size is inferred, we train our prediction
model we the selected hyperparameters and evaluate in this section
its performance.

Figures 4.4, 4.5 and 4.6 show the comparison between the real data
(in red) and the predicted one (in blue) for constant load, day-peak
load and night-peak load class profiles respectively.

We notice clearly from these figures that the prediction is very
close to the real load profile of the BS, with an average MSE equal
to 4.82 ∗ 10−4 for the three different class of weekly time-series. This
MSE value is a global value for the whole set of BS time-series.

We notice also that the SVR-based model predicts correctly the
class profile, i.e for example, in figure 4.5 the weekdays BS profile
stands for the day-peak load class, whereas on weekends and especially
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on Sundays, the profile changes and corresponds to the constant load
profile.

Despite the accurate prediction of the whole bulk of time-series,
the issue with this prediction models that it under-predicts the peaks.
In order to come up with this issue (especially noticed in figure 4.4),
we used the max error (ME) metric as an optimization criterion to
adjust the SVR parameters and the prediction results is presented
in figure 4.10. We notice that the peaks are well predicted whereas
the predicted load is over-fitted in almost the time which may cause
an over-sized network. So we can adopt both metric (The MSE and
the ME) according to the objective of the network operator: either
predicting with high accuracy the load out of peak hours or predicting
the load spikes.
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Figure 4.4: Comparison between real BS load and SVR prediction based on ME:
”Morning-Peak” profile use-case
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Figure 4.5: Comparison between real BS load and SVR prediction based on ME:
”Almost-constant” profile use-case
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Figure 4.6: Comparison between real BS load and SVR prediction based on ME:
”Night-Peak” profile use-case

We go further in our study and we provide a benchmarking analysis.
Figures 4.7 and 4.8 give a comparison between our SVR prediction
model and several ARIMA models with different orders. We use a
deterministic pattern extracted from the same SVR training time-
series to fit the ARIMA models. Figure 4.7 shows the evolution of
MSE in function of ARIMA order p (A comparison between SVR
model and ARIMA models with different order). We can notice that
MSE decreases as the ARIMA order increase and become stable from
the 10th order. The figure also shows that the ARIMA MSE still
higher than SVR MSE especially for lower order (k ≤ 5) where the
difference is more than 35%. Figure 4.8 shows a comparison between
SVR models and ARIMA model using order equal to 10, using different
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size for training data. We notice that the SVR’ MSE decrease when
training set size increase and it still always lower than ARIMA MSE.
Whereas, ARIMA MSE still almost constant and the difference error
is about 30%. We conclude from these two figures than SVR is more
efficient than ARIMA models even with higher orders.
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Figure 4.7: MSE comparison between ARIMA models and SVR
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Figure 4.8: Training set size evaluation: comparison between ARIMA(10) and SVR
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Figure 4.9: Comparison between real BS load and SVR prediction based on MSE
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Figure 4.10: Comparison between real BS load and SVR prediction based on ME

4.5 Conclusion

We design in this chapter a prediction algorithm to perform online
and local load prediction for each BS. Our proposed model is based
on SVR. It helps to complete the framework with the adequate tool
to predict the total cell load. we validate our algorithm with the D4D
dataset and we evaluate its performance against an ARIMA model.
The obtained results show the high accuracy of our model compared
to the other prediction method.

The model that we present in this chapter, as well as the previous
chapter, will be combined into a framework that allows to analyze
cellular network traffic and to dynamically plan resource provision-
ing on access networks. But before, we exploit the SVM and SVR
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based models to incorporate a real bandwidth allocation scenario in a
wireless mesh networks with fault-tolerance ability.
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Chapter 5

Fault-Tolerant and Dynamic
Planning for Wireless Mesh
Networks

5.1 Introduction

In the previous chapters, we present a methodological data mining
process that , firstly, analyze real data-sets of cellular network call
detail records (CDR), classify the base station profiles into three rel-
evant classes as well as the inference of the bandwidth mobility. The
process allows also to predict efficiently the base stations’ load.

We exploit in this chapter that process to present our framework for
network dynamic planning. This chapter will demonstrate an example
of direct application for the framework on a real-world architecture of
wireless mesh network.

Firstly, We validate our framework on an innovative architecture
that combines WMN with cellular femto-cells (3GPP based) to de-
ploy cellular services for small MVNO in developing countries or for
special periodic mass events. Wireless mesh networks (WMN) [4] are
an easy and low cost alternative for network operators to provide a
high speed connectivity access to some areas where installing a cellular
access network is difficult. Thus, WMN can extend cellular network
femtocell-based coverage areas with a backhaul internet dorsal and
then satisfy more users anywhere.

The framework is made with the proposed classification and predic-
tion algorithm proposed in previous chapter, as well as the planning
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algorithm. The planning algorithm is based on a multi-integer linear
programming model, that takes as input, the results of the previously
presented algorithm to deliver a dynamic WMN planning decisions
and optimize the initial main topology.

Furthermore, WMN reliability constitutes a major concern for re-
searchers. In this context, we propose, in addition to the main topol-
ogy optimization, a dynamic optimized backup topology in case of
mesh node failure. Hence, fault-tolerance is also supported by our
framework.

The rest of the chapter is organized as follows. Section 2 presents
the framework and the context of the study. Section 3 presents in de-
tails our proposed network planning tool and the optimization prob-
lem. Section 5 presents the simulation and planning results with var-
ious scenarios and we conclude in section 6.

5.2 Topology and context

5.2.1 LCI4D network architecture

Our contribution constitutes a part of a research and development
project; LCI4D (Low cost infrastructure for development). LCI4D is a
French project, which aims to deploy, as the name indicates, a low cost
wireless network infrastructures in developing countries (like those in
Africa). The objective of the project is to provide areas, where no
network infrastructure is already installed, with a high-speed cellular
network using femto-cells, interconnected through a mesh topology.
The project proposes a core network for the cellular architecture that
does not conform to the standards found in the 3GPP.

The project architecture is presented in figure 5.1. It is essentially
based on femtocells, using an LTE base station with a small coverage,
offering high speed access. The access network is composed of the
following parts:

- An ”inter-home” backhaul based on a wireless mesh network. The
backhaul mesh routers are equipped, in addition to the mesh interface,
with a second interface (wireless or wired) to ensure the connection
with the femtocell-based access network part.
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Figure 5.1: LCI4D Network Architecture

- An ”Amount backhaul” which supports the ”inter-home” back-
haul. It ensures a point-to-multi-point link with mesh routers provid-
ing them with high speed connectivity with the core network. This
part of the architecture replaces the classic wired backbone usually
used in wireless mesh networks.

In our contribution we focus on the inter-home backhaul part and
we propose a dynamic planning solution for its wireless mesh network.

5.2.2 Wireless mesh network

The project proposes to deploy an inter-home network layer with
wireless mesh nodes as a backhaul relay to support the main access
network made with multiple femtocells. The technologies defined by
the 3GPP (i.e. X2 interface) and in IEEE 802.11s [4] can be used. The
latter presents a low-cost alternative for broadband network intercon-
nection with high speed connectivity but may suffer from interference
issues. Wireless mesh nodes ensure a multi-hop connectivity based on
routing protocols like AODV [131], OLSR [132], BATMAN [133] (an
open source routing protocol which operates not only on OSI layer 3
but also on layer 2) etc. Note that in this work, we are not focusing
on mesh routing issues as we focus on mesh network planning tasks
and energy efficiency, but we show that our model also optimizes the
routing paths while always guaranteeing a better network efficiency.

On the other hand, Mesh nodes also provide other functionalities
such as dynamic configuration, neighbor discovery and self-healing.
Mesh nodes adopt self-healing techniques in order to select alternative
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paths if one path fails. But an important question still remains: how
can the network react if one of the installed mesh nodes fails and the
available active nodes and paths are inefficient to serve the required
data traffic and its routing to the final destination?

In our contribution we present an answer to that question by propos-
ing a dynamic planning solution that allows the selection of an optimal
main topology made of mesh nodes to serve each femtocell (FC) de-
mand, and guarantees at the same time the reliability of the network
if one mesh node fails by proposing an optimized backup topology.

5.2.3 Fault-Tolerant inter-home backhaul

LCI4D has the main objective of providing emerging countries in
Africa with a low-cost wireless access network topology guaranteeing
high speed connectivity based on wireless mesh routers and femtocells.
Some of these countries can have bad meteorological conditions or
insecure zones that may result in damaging the wireless mesh routers
installed. Therefore, one of the challenges for the operators on this
project is how to ensure the reliability of the network in case of mesh
router failure.

In our work, we propose a fault-tolerant planning model that opti-
mizes the main topology even when one of the mesh routers fails. Thus
the model guarantees the service stability in case of node failure. Note
that Optimizing under fault-tolerance constraints also serves to avoid
lengthy path routing when node failures occur.

We assume that only one mesh router can fail during a time interval
Tt, which is a reasonable assumption since usually during that time it
will be repaired or replaced, and the probability that another node fails
during this time is very small, especially if the number of mesh routers
covering a defined service area cannot be very large. Hence, consid-
ering this assumption will keep the cost of topology low. Allowing
the failure of more than one mesh router will require the installation
of additional nodes and increases the total cost, but can easily be in-
tegrated into our model, albeit at an increase in the computational
complexity.
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5.3 Wireless mesh network planning tool

We assume that, within the service area, there is a set of potential
wireless access locations where femtocells (FCs) are installed. Let F
be the set of all the FCs installed in the service area and ri,t, r

k
i,t, i ∈

F, k ∈ M, t ∈ T , represent respectively, the rate demands of each FC
for the main topology (i.e. with no failures) and its rate in the case
of failure of mesh router k.

5.3.1 Network planning tool scheme

In previous chapters, we proposed machine learning models that
are able to enhance the performance of the network and guarantees
an efficient energy-saving for the system. The output of these algo-
rithms allows to define dynamic network resource allocation strategies
such as turning on/off remotely the network access nodes or to allo-
cate additional channels [19] to the system in order to enhance the
connectivity.

We are focusing in this work on the first case, where the tool must
take as input a set of wireless nodes with the capability to be turned on
or off. We propose to test the performance of our tool on a topology as
proposed on LCI4D architecture, more precisely on the wireless mesh
backhaul.

We propose in this chapter the network dynamic planning frame-
work whose the scheme is shown in figure 5.2. The framework in-
cludes, in addition to the network classification and load prediction
algorithms, a planning algorithm component that is presented in this
chapter. We implement for this part an optimization algorithm which,
given a set of candidate mesh routers, selects an optimal number to be
active during a given time interval Tt and then the network is able to
serve the variable demand of femtocells to be managed dynamically.
Hence, the tool permits to a network composed of a set of candidate
mesh routers. The algorithm proposes also a proactive solution in case
of mesh router failure. The planning algorithm considers in parallel
the traffic profiles, delivered by the classification and prediction algo-
rithms, in order to deal with the users’ demand dynamics during the
day so that it provides a more realistic optimization. The optimization
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algorithm is explained in detail in the ”optimization model” section.

Figure 5.2: Framework scheme and methodological process

5.3.2 Optimization model

The planning algorithm component included in our network plan-
ning framework is based on an optimization algorithm that can be
applied to different types of wireless networks, so it remains useful for
different situations and topologies. In this chapter, we test it with a
wireless mesh backhaul network proposed in the LCI4D architecture.
The model not only proposes a dynamic optimization for the planning
and placement of the main topology Mesh Routers, but also a dynamic
backup topology in case of mesh node failure.

The model takes as input the locations of the initial main topology’s
Mesh Routers (MRs), Gateways (GWs), and femtocells (FCs). It
also takes the load profiles which indicate the femtocells data request
rate in Mbits/s at each time interval (this information is provided by
the load predictor and BS classifier components). Finally, it takes
other wireless nodes parameters like transmission power, noise level,
path loss exponent or maximum link capacity in the case where the
interference is neglected. The output will indicate the state of every
mesh router (active or not), thus the optimal number and placement
for main and backup topologies. It indicates also the state of each
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link and the flow transmitted through it. The possible links in our
topology are presented as follows:

- GW-to-MR: link between a gateway and a mesh router.
- MR-to-MR: link between two mesh routers.
- MR-to-FC: link between a mesh router and a femtocell.
Note that we suppose that there is no possible link between a gate-

way and a femtocell. Note also that we only consider the downlink
traffic, since loads over uplinks are often lower and that downlinks’
optimization is still valid for uplinks.

Decision variables

In this part we present the problem decision variables for the main
and backup topologies. Decision variables for the main topology are
as follow:

dRi,t =

{
1 if MRi is active at Tt ; i ∈M
0 Otherwise.

dGRi,j,t =


1 if a link is active between GWi and RSj at
Tt; i ∈ G ; j ∈M

0 Otherwise.

dRRi,j,t =


1 if a link is active between MRi and MRj at
Tt; i ∈M ; j ∈M

0 Otherwise.

dRTi,j,t =


1 if a link is active between MRi and FCj at
Tt; i ∈M ; j ∈ F

0 Otherwise.

where G, M, F are respectively the index set of gateways, mesh routers
and femtocells. Backup topology decision variables are similarly de-
fined as above with the following notation: dRk

i,t, dGR
k
i,j,t, dRR

k
i,j,t and

dRT ki,j,t where k ∈M , represents the index of failed MR at time inter-
val Tt. It is assumed that there is an MR failure detection mechanism
that identifies the failed MR.
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In addition to defining decision variables corresponding to node (or
links) states at different time slots, we also define other decision vari-
ables corresponding to data flows over each active link. These variables
are defined as follows: fGRi,j,t and fRRi,j,t correspond respectively
to the link flow from node GWi to node MRj at time Tt and the link
flow from MRi to MRj. Similarly, we define the decision variables of
link flows for the backup topology as fGRk

i,j,t and fRRk
i,j,t.

These flow variables may depend on the SINR level of each link and
the requested rate ri,t i ∈ F ; of each femtocell. This point is explained
in the next subsection.

Topology constraints

In this part, we begin by defining constraints related to topology
issues. These constraints allow us to identify when an MRi should
be turned to active mode or when to activate the link between two
different nodes.

The following constraint ensures that when a link is active between
a gateway GWi and a mesh router MRj at time Tt, node MRj should
be active:

dGRi,j,t ≤ dRj,t; ∀i ∈ G ; ∀j ∈M ; (5.1)

If at Tt, the link between MRi and MRj is active, then these two
mesh routers should be in active mode and thus, we can define the
following constraint to ensure that:

dRRi,j,t ≤ 1/2 (dRi,t + dRj,t); ∀i, j ∈M ; (5.2)

When a link is active between MRi and FCj at instant Tt , the
femtocell FCj should be attached to the selected mesh router, and
the latter’s active mode must be turned on. This is ensured by the
following constraint:

dRTi,j,t ≤ dRi,t; ∀i ∈M ; ∀j ∈ F ; (5.3)

As our model allows fault-tolerance for the main topology, we should
define as well topology constraints for the backup topology when an
active MR node at Tt fails. Similar to the previous constraints, the
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following constraints correspond to the backup topology where k ∈ M

designate the failed MR.

dGRk
i,j,t ≤ dRk

j,t; k 6= j ∀ i ∈ G ; ∀k, j ∈M ; (5.4)

dRRk
i,j,t ≤ 1/2 (dRk

i,t + dRk
j,t); k 6= i, j ∀k, i, j ∈M ; (5.5)

dRT ki,j,t ≤ dRk
i,t; ; k 6= i ∀k, i ∈M ; ∀j ∈ F ; (5.6)

As each active femtocell can be attached to only one MR, we de-
fine the following constraints that ensure this fact and guarantee the
sending of the FC requested data through one MR link:∑

i∈M

dRTi,j,t = 1; ∀j ∈ F (5.7)∑
i∈M

dRT ki,j,t = 1; k 6= i∀j ∈ F, ∀k ∈M (5.8)

Flow balance constraints

Flow constraints guarantee the conservation of data flow, from the
gateways to all users, distributed over the different links of the network
and ensure that these flows are sufficient to serve the demand of all
the femtocells.

Flow balance at gateways The following constraints guarantee that
all the traffic going out from all the Gateways deployed on the net-
work should be equal to the sum of the data rate requested by all the
installed femtocells: ∑

i∈G

∑
j∈M

fGRi,j,t =
∑
l∈F

rl,t (5.9)

fGRi,j,t ≤ Q.dGRi, j, t; i ∈ G, j ∈M (5.10)

where Q is evaluated as follow :

Q =
∑
l∈F

rl,t. (5.11)
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The same flow balance is applied to the backup topology as follows:∑
i∈G

∑
j∈M

fGRk
i,j,t =

∑
l∈F

rkl,t ∀k ∈M (5.12)

fGRk
i,j,t ≤ Qk.dGRk

i,j,t ∀k ∈M (5.13)

where Qk is defined similarly to Q.

Flow balance at MR nodes: Flow balance at an MR guarantees that
the total incoming and outgoing amount of data must be equal. For
example at the MRj, the sum of the incoming traffic from all the
gateways installed in the network and which have a direct link with
the mesh router, and the incoming traffic from the neighboring MRs
is equal to the sum of the traffic transmitted to its neighboring MR
and its attached femtocells. The following constraints ensure this:

∑
i∈G

fGRi,j,t +
∑

n∈Mn6=j

fRRn,j,t =
∑

n∈M,n6=j

fRRj,n,t +
∑
l∈F

rl,t; ∀j ∈M

(5.14)

fRRi,j,t ≤ Q.dRRi, j, t, ∀i, j ∈M (5.15)

For backup topology, the flow conservation is ensured by the fol-
lowing constraint:

∑
i ∈ GfGRk

i,j,t+
∑

n∈Mn6=j

fRRk
n,j,t =

∑
n∈Mn6=j

fRRk
j,n,t+

∑
l∈F

rkl,t; ∀j ∈M

(5.16)

Where fRRk
i,j,t, i, j ∈ M , is defined similar to that in equation

15 for the main topology.

FLow balance at FCs These constraints mean that the traffic com-
ing to the FC should be delivered by just one MR, i.e the FCi is
attached to just one mesh router, and the amount of traffic delivered

86



by the serving MR should be equal to the full required rate ri. This
is formulated by the following constraints:∑

j∈M

fRTj,i,t = ri; ∀i ∈ F (5.17)

fRTj,i,t ≤ Q.dRTj,i,t ∀i ∈ F ; ∀j ∈M (5.18)

Similarly for backup topology, we should have the following con-
straint: ∑

j∈M

fRT kj,i,t = rki ; ∀i ∈ F ; ∀k ∈M (5.19)

fRT kj,i,t ≤ Qk.dRT kj,i,t ∀i ∈ F ; k 6= j; ∀k, j ∈M (5.20)

link capacity constraints

In the above subsections, we presented constraints related to the
states of the links and nodes and the conservation of the traffic trans-
mitted into the deployed network, but no constraints ensure or indicate
the quantity of the flow over each active link. These constraints are
presented in this subsection. The flow over each link depends on the
maximum capacity of this link that should be calculated first.

In our model, we study two cases of mesh link capacity. In the
first case, the effect of interference is neglected and the link capacity
is fixed, i.e. orthogonal channel allocation is used, while the second
case takes into consideration the interference, which is more realistic.
For the first case we have the following constraints:

fGRi,j,t ≤ Ci,j,t; ∀i ∈ G, ∀j ∈M (5.21)

fRRi,j,t ≤ Ci,j,t; ∀i, j ∈M (5.22)

fRTi,j,t ≤ Ci,j,t; ∀i ∈M, ∀j ∈ F (5.23)

Where Ci,j,t is the static link capacity of the corresponding link.

For the second case, which models frequency reuse, link capacity
should be calculated according to the measured interference level and
SINR at each receiver mesh node. The SINR measured at a node i
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when receiving transmission from a node j, is calculated by the fol-
lowing expression:

SINRj,i =
βPj,i

dαj,i(N0 + Ij,i)
(5.24)

where Pj,i corresponds to the transmission power of the node j, dj,i
is the distance between two nodes, α is the path loss exponent, β is
the antenna gain, N0 is the noise power and the term Ij,i represents
the interference value caused by other nodes to the signal received at
node i.

As we focus here only on downlinks, we will consider evaluating
the SINR just at MRs nodes while receiving transmissions from other
nodes whether is a mesh router or mesh gateway.

Let I(i) be the set of mesh nodes (mesh routers or mesh gateways)
causing interference at MRi when receiving traffic from mesh node j
(it can be MR or GW). The interference term Ij,i can be evaluated
as the sum of all transmissions made by nodes which belong to the
set I(i) to obtain the following expression which should be replaced in
eq.24:

Ij,i = ∑Pl,i
dαl,i

l∈I(i), l 6=j

(5.25)

Afterward, we calculate the maximum capacity over this link mod-
eled with the Shanon-Hartley equation [134] and given as follows:

Cj,i = B. log (1 + SINR(j, i)) (5.26)

where B represents the bandwidth.

The later equation is general and allows the link capacity to be
calculated without considering the activity state of interferers’ nodes.
We propose in our work to modify the equation by adding a new pa-
rameter, ”Activity percentage” (Ap(t)), to evaluate the link capacity.
As known, within a time interval Tt the mesh node can-not transmit
signals over all this interval (typically it is controlled by a CSMA-
like or slotted mechanism), even if it is active, but it uses a specific
time slot to deliver data traffic. Thus, the effect of the interference
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over the current link can not be calculated for the whole interval, and
the ”activity percentage” allows us to determine the real transmission
percentage of the mesh during the given time interval. This param-
eter indicates the global probability of interferers’ node transmission
during Tt, then, it is proportional to the requested rates of femtocells.
Therefore, the link capacity becomes as follows:

Ci,j,t = B. log (1 + Ap(t).SINR(i, j)) (5.27)

After calculating the maximum capacity over each link, we are now
able to define the constraints related to the maximum flow that can be
transmitted over the link. This maximum flow is limited by the trans-
mission power, interference level and link distance, i.e. the maximum
flow assigned to the link from the GWj to RSi at time Tt is limited
by the maximum capacity CGRi,j,t of this link. A similar notation is
used for all the other links and the constraints that ensure the upper
bound are given as follows:

fGRi,j,t ≤ CGRi,j,t; ∀i ∈ G; ∀j ∈M (5.28)

fGRk
i,j,t ≤ CGRk

i,j,t; ∀i ∈ G; k 6= j∀j, k ∈M (5.29)

fRRi,j,t ≤ CRRi,j,t; ∀i, j ∈M (5.30)

fRRk
i,j,t ≤ CRRk

i,j,t; k 6= i, j; ∀i, j ∈M (5.31)

fRTi,j,t ≤ CRTi,j,t; ∀i ∈M ; ∀j ∈ F (5.32)

fRT ki,j,t ≤ CRT ki,j,t; k 6= i; ∀k, i ∈M ; ∀j ∈ F (5.33)

Due to the log operator in capacity link formula, the previous con-
straints become non-linear. As we are interested in keeping the sys-
tem linear, we propose a piece-wise approximation to the link capacity
curves. Piece-wise approximation consists in approximating the link
capacity curve by a limited number, P , of linear function defined at
a segment Sgp, as we see in figure 5.3), so that the primal link capac-
ity function is replaced by a set of linear functions for each segment
p ∈ 1, ..., P . The function is represented as follows:

CXXp,i,j,t = bp,i,j,t + ap,i,j,t.sp,i,j,t; ∀p ∈ {1, ..., P} (5.34)
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Figure 5.3: An illustration of piece-wise approximation for the link capacity curve

where XX ∈ {GR,RR,RT}, ap,i,j,t is the line slope at segment Sgp,
sp,i,j,t is a variable representing the SINR level and bp,i,j,t is a constant.

Once the approximation is made, link capacity constraints for a
segment Sgp can be written as follows:

fXXp,i,j,t ≤ CXXp,i,j,t; ∀p ∈ {1, ..., P} (5.35)

Similar to the backup topology, the constraints become as follows:

fXXk
p,i,j,t ≤ CXXk

p,i,j,t; ∀p ∈ {1, ..., P} (5.36)

The linear system can now be resolved at each segment with a
simple MILP.

Objective function

The main objective in this section, is implementing an optimiza-
tion model aiming to dynamically minimize the number of active MRs
and take also into consideration different base station profiles (defined
in Section 3) that deliver a variable level of rates requested by the
installed femtocells during the whole period of the day. So our opti-
mization reduces the OPEX charges by selecting at each time interval
the essential number of nodes to be active and turns off the other ones.

We define the variable Si which indicates if an MRi is active either
in the main topology or in the backup topology:
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Si,t ≥ dRi,t; ∀i ∈M (5.37)

Si,t ≥ dRk
i,t; k 6= i; ∀i ∈M (5.38)

To minimize the total number of MRs that are active,
∑

i∈M Si,t
should be minimized.

We also aim at reducing the number of MRs used in the backup
topology. Minimizing the number of MRs used in every topology al-
lows us to remove lengthy paths. For example, if an FC can connect
to the network by going through one MR only, it is better not to use
two MRs for this FC. Thus, minimizing the number of MRs in the
backup topology will make an FC use the minimum necessary number
of MRs it needs to connect. The variable Uk,t designates the number
of MRs used in the backup topology when MRk fails. We have the
following constraint:

Uk,t ≥∑dRk
i,t

i∈M, i6=k

; ∀k ∈M (5.39)

Similarly, we aim to minimize the number of MRs used in the main
topology, designated by the term V . We have the constraint:

V ≥∑dRi,t

i∈M

(5.40)

The objective function, which is denoted by Obj, combines the
terms above. The main term of the optimization problem is

∑
i∈M Si,t

because it gives, for both topology, the total number of MRs that
should be active. Then, it should be given a higher weight than the
other terms. The maximum value of

∑
k∈M Uk,t is |M 2| and the maxi-

mum value of V is |M | (|M |=N). Thus, we assign the weight N 2 +N

to the term with Si:

obj = (N 2 +N)∑Si,t

i∈M

+
∑
k∈M

Uk,t + V. (5.41)

We then obtain the objective function as:

Minimize Obj (5.42)
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This model is evaluated in the next section.

5.4 Simulations and results

5.4.1 Implementation and development tools

The first part of our implementation concerns the initialization of
the main network topology. We implement a topology generator tool
in JAVA that takes as input the maximum number of gateways, mesh
routers, femtocells and their positions. The tool also takes the power
transmission of each gateway and mesh router, other parameters like
the path-loss, and the instantaneous ”Activity Percentage” parameter,
Ap(t), defined earlier. This topology generator allows us to calculate
the amount of interference caused at each receiver mesh node as well
its SINR. Taking into consideration these parameters, it evaluates then
each link capacity which is useful for the optimization algorithm.

For the optimization part, the formulation of the model constraints
and objective functions were stated in a mathematical language and
solved with CPLEX which is an optimization software package ad-
equate for MILP problems. Note that we propose in this work a
Mixed Integer Programming (MIP) algorithm with some non-linear
constraints. The MIP model is an NP-hard algorithm. We then pro-
pose a relaxation for the non-linearity issues by adopting a piece-wise
linear approximation to make these constraints linear so that the prob-
lem becomes a MILP (Mixed Integer Linear Programming). The re-
laxation of the constraints reduces the complexity of the problem and
makes it easier to solve with CPLEX. Note that, the run time in av-
erage of the program for a one-day planning optimization is almost
11.37 seconds (in the context of real deployment we consider this time
to be acceptable).

5.4.2 Simulation scenarios

For all simulation scenarios, we choose a simple topology where
the MRs are deployed in a square grid. The set of MRs used in the
topology are supposed to be outdoor WiFi routers which can provide
a large coverage for the network. Figure 5.4 shows the initial deployed
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topology which is composed of 8 femtocells, 8 mesh routers and 2 mesh
gateways.

In fact, we do not focus especially in our study on the topology as
much as we focus rather on how the topology components react to data
demand fluctuations. Moreover, we mentioned that we suppose that
we are using outdoor mesh nodes with a high coverage range (One of
the requirements of the LCI4D project for the inter-home backhaul),
which are able to provide subscribers with high speed connectivity in
a large area, i.e. our proposed topology can cover a service area of
more than 1400 m2 like a university campus, a shopping mall or even
a residential district. Note also that the inter-home backhaul serves
users data requests via an access layer made up of several femtocells
which must guarantee at least a downlink throughput of 36 Mbits/s
(a requirement of the LCI4D project also). Therefore, we notice from
our experiments that using a huge number of mesh nodes may cause a
high level of interference and consequently poor network performance,
so that the throughput requirements can-not be achieved. Thus, our
proposed topology model may be a good compromise. On the other
hand, the optimization model that we propose is scalable and can be
used for other types of topology (pure Wifi, 5G, Smart-citie, LORA,
etc.) with little modification.

Planning results without interference

We present here a mesh topology where the effect of interference
caused by nearby nodes is minimal (for example, due to orthogonal
channel allocation) and then the maximum link capacity is kept static
over the simulation time. We assume that we use outdoor mesh nodes
with high range and equipped with multiple antennas, so that each
node uses different channels to transmit traffic to other mesh nodes in
its vicinity in addition to an extra antenna to serve femtocell clients in
its vicinity. Table 1 presents some parameters specific to this scenario.

Figure 5.5 represents an example of an input load profile which
represents the instantaneous data rate requests in Mbits/s over each
one hour time interval. This profile type is applied in this scenario to
all femtocells in the topology. Figures 5.6 and 5.7 show respectively
the planning results and the energy gain of this scenario. We notice
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Table 5.1: No interference scenario parameters
Description Value

MR-MR link capacity 60 Mbits
MR-FC link capacity 45 Mbits

GW range 600m
MR range 300m

Energy consumption 15W

Figure 5.4: Main network topology

that the optimal number of mesh routers to be active also follows the
data demand fluctuation indicated by the used traffic profile. The
topology reaches a maximum number of active mesh nodes equal to
six at peak hour while during very low request time interval we need
only two MRs.

With this dynamic planning, the energy consumption also differs
from the classic static planning where mesh nodes continue working
all day and the network consumes the maximum amount of energy.
To study the dynamics of energy consumption we use the following
equation to determine the energy gain at each time interval: Gt =
(1 − Pt/Pf), where Gt represents the energy gain at interval Tt, Pt
represents the power consumption by the total number of active MRs
at time interval Tt and Pf represents the full energy consumption of
all the MRs installed in the service area.

Figure 5.7 depicts the energy gain evolution throughout the day.
The total average energy gain of this traffic profile is equal to 58.3%.
The results show also that this evolution is inversely proportional to
the traffic profile with a low energy gain at the peak hour and a high
energy saving during low data requirements, especially between mid-
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Figure 5.5: Traffic profile (demand in Mbits/s)

Figure 5.6: Optimal number of mesh routers

night and 8am.

Planning results with interference

In the previous section, we present planning results in the best ra-
dio conditions where interference has no effect on link capacity, but
in reality, even using multiple antennas with dynamic channel assign-
ment techniques, the interference may be reduce but is not completely
canceled. Thus, a mesh router may share the same channel within a
transmission time slot, with at least one of mesh routers in its range.

In this part we use the same topology presented in figure 5.5 and
take into consideration the interference and the piece-wise approxima-
tion to measure the maximum link capacity. We assume that only the
mesh routers installed within one unit grid may cause interference to
the receiver mesh router. Unlike in the previous scenario, in this case
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Figure 5.7: Energy gain

we fix the transmission power of mesh nodes.

Homogeneous demand profiles We suppose in this part that the set
of femtocells installed in the service area has the same traffic profile
type and we show the planning results for each traffic profile case.
To simplify the problem, we normalized these profiles to obtain three
traffic profile references which represent the percentage of data rate
requests of each femtocell, then these profiles are multiplied by the
maximum rate requested (in Mbits/s) by femtocell users. Note also
that the traffic profiles used in our study has a granularity of one hour.
Figure 5.8 shows an example of three types of traffic profiles that rep-
resent an instant data requests in Mbits/s at each time interval with
a maximum data rate equal to 36.6 Mbits/s.

Homogeneous data rate requests

In this scenario, the transmission power is set respectively to 30dbm
and 15 dbm for gateways and mesh routers. We also set the maximum
data requests rate to 36.6 Mbits/s which is the same as all femtocells
at each time interval.

Figure 5.9 shows respectively the planning results of the main topol-
ogy respectively in case of “Morning-peak” profile, “constant load”
profile and “night-peak” profile. These results show how dynamically
the planning tool reacts with a variable traffic demand throughout the
day.

We notice that the common characteristic of these three profiles is
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Figure 5.8: Traffic profiles

that between midnight and 10 am, only 2 active MRs must be active
to serve all the femtocell demands and then we can save more energy
(75% of energy during this period). Otherwise, during the peak hours
of each traffic profile, just 5 out of 8 MRs installed are needed to be
active. It is clear also from these figures that the evolution of active
MRs number fits closely the traffic profiles trends for the three cases,
i.e. the maximum number of active MRs occurs at each profile peak
time (midday and 10 pm), while outside this period the number is
reduced according to the demand.

The fact that all profiles have the same maximum data requests,
lets us conclude that the ”always loaded” profile needs more active
MRs for the whole day compared to the two other profiles and then
the average energy gain is reduced. We show later, that this issue can
be compensated by the two other profiles when they co-exist in the
same service area.

Figure 5.10 shows the optimal topology at each profile peak hour.
We notice that only MRi, i ∈ {0, 2, 4, 5, 7} should be active in the
main topology. We notice also that each of the following RS: MR2,
MR4 and MR7 serve two FCs and MR0 (respectively MR5) serves
just one FC.

Our planning algorithm also proposes a backup topology when one
MR fails. The middle and right graphs in figure 5.10 show the optimal
backup topology at the peak hour, with the same data request rates
as the main topology, respectively when MR0 and MR7 fail. For both
cases, MR1 becomes active in the place of the failed MRs to handle
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(a) Planning with ”Morning Peak” profile (b) Planning with ”constant load” profile

(c) Planning with ”night peak” profile

Figure 5.9: Evolution of Optimal MRs number for homogeneous data rate

the data request of the femtocell in its vicinity; it serves FC1 in the
first case, while in the second case it serves FC1 and FC5. The figures
also show how the femtocells’ attachment change according to each
case.

We notice for both cases that only 5 MRs should be active which
is logical since the backup request rates remain unchanged. The same
data rate service for backup topology is ensured due to the fact that
there are still 3 more MRs available to be used in case of failure,
which guarantees the same throughput for all femtocell attached users
without the need to reduce it.

We mention that the common maximum rate of femtocells in this
scenario for the main and backup topology is 36.6 Mbits/s. This com-
mon rate can not be increased since the maximum link capacity of
some mesh nodes is reached and can not be exceeded due to the effect
of interference. Therefore, when the interference effect is not taken
into consideration the maximum rate achieves 45 Mbits/s.

Heterogeneous data rate requests

In this scenario, we aim to show a more realistic topology where
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(a) Main topology (b) Backup topology when
MR0 fails

(c) Backup topology when
MR7 fails

Figure 5.10: Topology placement results for homogeneous data rate request

(a) Planning with ”Morning peak” profile (b) Planning with ”Constant load” profile

(c) Planning with ”Night peak” profile

Figure 5.11: Evolution of Optimal MRs number for heterogeneous data rate
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maximum rate requests are not common for all femtocells. We con-
tinue using the same normalized profiles in this scenario but with
heterogeneous maximum data requests. In fact, assigning different
maximum data requests allows each femtocell to have different data
requests compared to other femtocells in any time interval, unlike the
previous scenario where femtocells have the same demand for all time
intervals. Thus, each femtocell will have its own data request profile,
even if the same normalized load profile is used. The maximum rates
assignment is described in Table 2.

Figure 5.11 shows the variation of active MRs numbers all over the
day for each traffic profile type. In this scenario, we notice that with
the chosen maximum rate assignment policy, we obtain a full active
topology in the peak hour of each profile, where each femtocell should
be attached to its nearest MR to satisfy the high user demand, but
this lasts for a brief time.

Table 5.2: Maximum requested data rate
Femtocell rate (in Mbits/s)
FC0,FC1 40
FC2,FC3 36.6

FC4,FC5,FC6,FC7 44.5

The first graph of figure 5.12 shows an example of the optimal main
topology between 1pm and 2pm of the ”morning peak” profile when
the data rate request is heavy. Although not yet at its maximum, only
6 MRs are active. MR0 and MR1 are responsible for serving two FCs
each, while the rest of the active MRs serve just one FC each. We
notice also from the figure that some data flow are routed between
MRs over an MR-MR active link, for example, a data flow is routed
through MR2 from MR5 in order to assist MR0 to serve its attached
FCs, while MR3 is assisting MR1.

The second graph of figure 5.12 shows the backup topology when
MR2 fails within the same time interval mentioned above. Similarly,
6 active MRs are needed for this scenario. Therefore, femtocells are
attached to only 5 MRs: MR0, MR1 , MR4 (become active), MR5

and MR7 while MR3 is needed to assist MR4 and MR5 and forward
them the requested data flow routed from the GWs.
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(a) Main topology (b) Backup topology when MR2

fails

Figure 5.12: Topology placement results

To evaluate the impact of dynamic planning over the network, we
investigate more the energy gain throughout the day. Figure 5.13
shows the energy gain of each traffic profile case.

We notice from these results that the gain is zero at the peak hours
of each profile, which is logical, but this can be compensated by other
periods of the day when the gain reaches a value of 75% for a large
time interval from midnight to 10 am. Table 3 sums up the daily
average energy gain of each profile.

Table 5.3: Profiles’ Energy gain
Profile Energy Gain

”Morning Peak load” 65.6%
”Constant load” 52%

”Night Peak load” 65.1%

We notice that the “Constant load” profile has the lowest energy
gain compared to other profiles while the same requested rate distri-
bution is assigned to the system. This low energy gain can be com-
pensated by other service areas of the cellular network where the two
other load profiles are assigned.

Finally, we conclude from this scenario that some femtocells can be
served with higher rates, then satisfy more demand and enhance the
QoS of their attached users. Moreover, by assigning a common rate
to all FCs, the rate requests may reach a threshold that if exceeded,
the optimization system may become unfeasible, but when assigning
a heterogeneous rate some FCs can reach higher rate requests.
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Figure 5.13: Energy gain

Heterogeneous traffic profiles Some service areas may cover a set of
locations that may have different semantic annotations, for example,
a campus university is composed of residential buildings, universities
and entertainment areas. This diversity of locations causes an imbal-
ance of user concentration over the time and space in such a manner
that each location will be crowded by users at a specific period of the
day. Thus, each location will have a specific demand profile. This part
will look at such a scenario, where a specific traffic profile will be as-
signed to each femtocell in our topology according to the user activity
it covers. Here we use the same network topology and configuration
as in the previous scenario. The traffic profile assignment is described
in table 4.

Table 5.4: Femtocell traffic profile types
Femtocell Traffic profile type
FC1, FC3 ”Morning peak” profile
FC5, FC6 ”Constant load” profile

FC0, FC2, FC4, FC7 ”Night peak” profile

Figure 5.14 shows the planning results for this scenario. We notice
from the results that there are two peak traffic demand in the whole
service area. During the first peak, which occurs at 12 pm, only 5 MRs
should be active to serve the heavy request of FC1, FC3,FC5 and FC6.
The second one occurs at 8 pm and 6 MRs should be turned on to
satisfy the request of FCs having a “night peak” profile. We also
notice that this topology reaches a maximum of 6 active MRs, while
in the previous scenario 8 MRs must be active at the peak time, this
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Figure 5.14: Planning results for heterogeneous profiles

Figure 5.15: Energy gain for heterogeneous profiles

decrease in the number of MRs at peak hours is due to the diversity
of data request behavior during the day over the geographical area of
the network leading to a spatio-temporal load distribution over the
network.

This also has an effect on the energy gain represented in figure
5.15 where the average energy gain for the whole day is evaluated at
66% which is greater than previous cases. This lets us say that the
planning algorithm guarantees an efficient optimization for a service
area with an heterogeneous traffic profile and thus a better bandwidth
and resource management during the day in such an area.

The first graph of figure 5.16 depicts the placement of MRs that
should be active at 12 pm (first peak hour). In this time period, the
amount of data requested by the set of FCs: FC1, FC3, FC5 and
FC6 is higher than other FCs, this justifies the fact that many MRs
in the vicinity of these nodes are active. On the other hand, the
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second figure corresponds to the second peak hour, at 8 pm, and at
this moment the set FC0, FC2, FC4 and FC7 has high data requests,
which explains why more MRs are active in their vicinity. These
results prove again that the dynamics of our proposed WMN planning
follow the fluctuation of data requests throughout the day and deploy
more resources in locations where more data is requested.

(a) planning results at midday (b) planning results at 8pm

Figure 5.16: Topology placement results for heterogeneous profiles

This scenario also shows that the bandwidth can be managed in
a better way if load profiles in the service area are unbalanced; i.e
for some periods of the day, the data demand is low for some FCs,
and then the data flow serving these FCs will be reduced, hence more
bandwidth and channels become available for the FCs with higher
data requests and then the bandwidth will be divided dynamically
according to the data request fluctuation.

Figure 5.17: Planning results for the predicted profile against the real one
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Prediction-based planning As presented in the framework scheme 5.2,
our network planning tool includes a load prediction algorithm based
on SVR. It provides the network operators with a proactive solution
to dynamically manage their networks.

In this part, we aim to validate the prediction algorithms’ perfor-
mance in a dynamic network planning and management context. For
this purpose, we use a real traffic profile, extracted from the Orange
senegal dataset as well as its predicted load profile, resulting from
SVR, as an input for the optimization algorithm in order to compare
their planning results. We continue using the same topology and con-
figurations as previously.

Figure 5.17 shows the comparison between the real and predicted
dynamic planning. We notice that the planning profile corresponding
to the prediction is very similar to the real one, i.e the optimal MRs
number is the same for both profiles for most of the time. Therefore,
there are just 3 time intervals where the planning results correspond-
ing to the prediction exceed the real one. This similarity is confirmed
also by the results of the energy gain which is equal to 63% for the
predicted profile and 66.3% for the real profile. All these results en-
courage the use of the load prediction in order to design a wireless
network dynamic planning and to provide proactive resource manage-
ment.

5.5 Conclusion

We propose a dynamic planning tool for mesh networks with fault-
tolerance capability considering instantaneous user demand provided
by base station profiles predicted from real experiences. We propose a
mixed-integer linear programming (MILP) algorithm to formulate the
optimization problem that is resolved in two cases: with and without
interference caused by mesh router nodes. We also propose a piece-
wise linear approximation to divide the link capacity curve into linear
functions with defined segments and then deal with non-linearity is-
sues caused by interference. The model is applied to wireless mesh
networks with different scenarios. The optimization results show how
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our model can efficiently deal with user demand dynamics throughout
the day and prove that taking these dynamics into account allows an
enhancement of network performance and provides better bandwidth
management and energy saving, compared to the classical static plan-
ning, even with fault-tolerance considerations.
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Chapter 6

Spatio-Temporal Anomaly
Detection Framework for Mobile
Networks

6.1 Introduction

Large Spatio-Temporal fluctuations in cellular network traffic may
cause important network misbehavior and at least abnormal drops
in quality of experience. These anomalous behavior may affect the
efficiency of network prediction tools because they are very hard to
predict earlier. Moreover, these unusual fluctuations affect certainly
the mechanis of network resource allocation and drop drastically the
performance of the network affecting the QoS and QoE.

In this context, an on-line dynamic prediction framework is pre-
sented to detect these network anomalies and to allow network oper-
ators to pro-actively monitor a variety of real-world phenomena and
with less damage to the overall experience. It is important for a net-
work manager to identify these anomalies; it can help him to protect,
manage and gain insight into its network.

In the other hand, the expansion and development of new services
and networks such Device-to-Device (D2D), Internet of Things (IoT)
and eHealth applications consist a new and rich sources of data in-
jected into the network that need extra bandwidth to be handled.
These applications may change the bandwidth consumption behavior
of customers and may add new dynamics and peaks on data requests.
Hence, our framework helps on detecting these new and unusual data

107



consumption pattern. It consists on analyzing these new behaviors,
evaluate the readiness of existent network architectures and even pre-
pare the integration of these new services on the network.

The framework is based on data mining techniques. It is a double-
stage process which allows us to detect both spatial and temporal
anomalies. The first stage, based on One-Class SVM (OCSVM) al-
gorithm, is able to detect the cell presenting an anomaly, thus its
geographical location. The second stage, based on SVR prediction al-
gorithm, provide more precision to the framework and allow detecting
the time-interval in which occurred the network anomaly. OCSVM
and SVR are known to be efficient with large data processing since
they do not need to use all the training dataset, but only support
vectors.
On the other hand, combining both algorithms allow to implement
more accurate framework for network anomaly detection, since we
need to detect outliers in a spatio-temporal context. In fact, the
OCSVM is insensitive to the temporal scale, but it allows to opti-
mize the processing by detecting the anomalous base station activity
within a large scale dataset. Thus the temporal anomaly detection is
only performed on the detected set of anomalous activity instead of the
entire large set. Moreover, using the SVR based prediction for the tem-
poral detection avoids employing the OCSVM with a window-based
approach [17] for anomaly detection for time-series. So it permits to
save the computational resource since the window-based techniques
divide the time-series into many sub-sequences to be processed. In
addition, the choice of the window size and the manner to split the
time-series is complex.

On the other hand, since anomalies can be hidden within large net-
work datasets, we adopt OCSVM which is trained with normal data.
It guarantees the ability to detect any type of outliers. We validate
our framework with two CDRs datasets; one from Telecom Italia [135]
and the second from Orange Senegal [12]. In fact, using real cellular
network datasets increases the reliability of the model and allows to
enhance its efficiency since they are richer than simulated data, used
usually in other contributions, and provide various real-world patterns
examples. We also compare it with Isolation Forest [136], an enhanced
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variant of random forest, which ensures low computational cost with
linear time complexity. Random Forest is proved to be very efficient
for outliers detection with less sensitivity to noisy patterns [107, 108].
Otherwise, our results outperform Isolation Forest which fails on de-
tecting some anomalies as its performance is affected by noisy data.

We present at the end of this chapter a direct application for our
spatio-temporal anomaly detection framework. We use the frame-
work to detect anomalous bandwidth consumption pattern caused by
eHealth-enabled data. Our framework helps to analyze the impact
of these new sources of data on the normal behavior of the cellular
networks.

The chapter is organized as follows. Section 2 presents our moti-
vations behind proposing the STAD framework. The network outliers
detection framework is presented in Section 3, while Section 4 shows
the testbeds and presents the results of our experiments with per-
formance comparisons. Section 5 presents a direct application of the
STAD framework in a cellular network eHealth data enabled. Finally,
we conclude in Section 6.

6.2 Motivations and context

6.2.1 Motivations

On July 2012, a general system failure occurred in the network of
Orange Telecom, the historic national French operator. The break-
down was very severe and most of Orange subscribers (almost 26 mil-
lion subscribers) were out of service during 9 hours. They were unable
to make calls, texting or to use data services. The failure has also af-
fected the Orange MVNOs (Mobile virtual network operators) and the
interconnection with other Network operators. Due to the lack of ade-
quate management tools that can rapidly detect this kind of anomaly,
the operator was unable to avoid the blackout in its network or even
reduce its impact. In addition, it was forced to deploy more resources
to fix the failure and added extra cost in addition to its subscribers
dissatisfaction. Investigations showed that an earlier update of a soft-
ware stack was the origin of this blackout and the anomaly has not
been notified by any alarm signal (Probably it was identified as a true
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positive alarm). From this incident and many others, it appears that
there is a need to upgrade management and alarm systems with effi-
cient automated techniques that, by the analysis of real-time traces,
can detect on the fly network anomalies. These tools can also help the
operators to monitor their infrastructures and more accurately man-
age their networks. Strong by their learning capabilities, they avoid
the long and fastidious hand work to build evolving traffic profiles.

In fact, network outliers detection techniques aim to automatically
identify and detect abnormal and anomalous patterns which differ
from the normal behavior or may present a local deviation from the
normal data. In our contribution, we address the problem of detect-
ing outliers within radio access network. The exponential growth of
mobile devices and users’ demand dynamics, may create several spatio-
temporal bandwidth consumption profiles [111], difficult to handle and
manage by network operators. Next-generation cellular systems and
cognitive networks aim to introduce more flexible techniques to better
react to these dynamics. On the other hand, a major issue for network
operators is to handle and detect sudden and local anomalous behav-
ior within the network, whether it is a sharp peak of users demands
(occurred during mass events for example), an abnormal brief decrease
or even an non-common daily data consumption patterns. If the first
anomaly type needs a fast reaction to guarantee network resilience and
service survivability avoiding users rejections, the second one may be
due to some technical issues of the network infrastructure that need an
instant maintenance. These anomalies are also time-Dependant and
need not only geographic identification but also temporal detection of
the time interval in which they occur with high precision.

6.2.2 Network anomaly detection context

The application of anomaly detection may concern a wide variety
of domains. Therefore, we can at first, classify its application into two
principal categories:

1- Individual object applications

2- Ordered sequences applications
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The first category covers domains such as image processing, genet-
ics or medicine. It aim detect anomalous objects within a large testing
dataset of objects, independently to their order or temporal aspects.
While the second category is applied to a time-ordered sequences (or
time-series) and it takes into consideration the time-order of the se-
quences. As we are interested in analyzing network time-series in this
thesis, our application of anomaly detection take part into the second
category.

Furthermore, the latter category can be also divided into four sub-
categories as follows:

• Sequence-Based approach: This approach consists on detect-
ing an entire anomalous time-series from a dataset of testing time-
series.

• Subsequence-Based approach: This category aims to de-
tect anomalous contiguous sub-sequences within a large sequence.
Generally this category takes as input a single large time-series
extracted from only one source. As an example, it considers the
load time-series of one base station for a whole day or week.

• Pattern frequency-based approach: This approach consists
on detecting patterns in a test sequence with anomalous fre-
quency of occurrence.

• Contextual anomaly detection approach: This approach
detects a group of points within a period of time that are anoma-
lous regarding to usual normal behavior of this period of time.
As an example, the usual load of the base station installed in a
beach resort in the summer is higher than other periods. So that,
an peak of load out of this period may represents an anomalous
behavior.

For our proposed anomaly detection framework, we choose to com-
bine two different approaches, a first contextual anomaly detection ap-
proach for the geographic anomaly detection and a second subsequence-
based approach for the temporal anomaly detection. Hence, our model
consists on two stages of anomaly detection. The choice of this method-
ology is explained along this chapter.
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6.3 Spatio-Temporal outliers detection model

The network anomaly detection model that we propose is a two
stage anomaly detector. It is able to detect the BS with anomalous
behavior (geographic anomaly) in the first stage and it goes further by
detecting the time-interval when the anomaly occurred. As depicted in
Figure 6.1. The first stage, based on One-class SVM [137] algorithm,
aims to detect geographic anomalies. In case of anomaly detection,
the second stage detects the anomaly temporal scale. It uses support
vector regression (SVR).

Figure 6.1: STAD: Spatio-Temporal anomaly detection framework scheme

One-Class SVM outliers detection

Anomalous or abnormal network activity patterns are not recurrent
within network datasets. Thus modeling a machine learning algorithm
to automatically recognize them may not be efficient. Even training a
supervised classification model with both normal and outliers data will
be a hard task since we need anomalous data as well as normal data.
Since anomalous data may have several patterns, two-class or multi-
class training models will only be able to detect the trained anomaly
patterns Therefore, training a machine with only normal data, that is
more available in the dataset, is more straightforward and convenient

112



for our framework in the first stage. We propose to use the One-Class
SVM classifier trained with normal network data to detect the outliers.

One-class SVM is a semi-supervised variant of SVM proposed by
Scholkopf et al. [137] for outliers detection. One-class SVM attempts
to find the decision boundary that achieves the maximum separation
between the normal training samples and the origin (supposing that
anomalies are close to the origin). To achieve that, it maps the data
into a higher dimensional space using a transformation function Φ(.).
The formulation of OCSVM model is a way different from standard
SVM and SVR presented in chapters 3 and 4 respectively. The formu-
lation aim to solving at first the following primal optimization prob-
lem:

min
ω,ξ,φ

1/2||ω||2+1/νl
∑
i≤l

ξi − ρ (6.1)

s.t. (ω.Φ(xi)) ≥ ρ− ξi, ξi ≥ 0 .

where ν is a regulation parameter, ξi is a slack variable for the
i-th pattern. The constraint verifies that the pattern xi belongs to
normal data. To solve the quadratic programming of the primal model,
Lagrangian multipliers, αi, βi are introduced to obtain the following
dual problem:

max
α

1/2
l∑

i=1

l∑
j=1

αiαjK(xi, xj) (2)

s.t.

l∑
i=1

αi = 1, 0 ≤ αi ≤
1

νl
.

where K(xi, xj) = (Φ(xi)).Φ(xj))) is the kernel function. The solu-
tion of the problem is ω =

∑l
i=1 αi.Φ(xi) and the decision function is

as follows:

f(x) =
l∑

i=1

αiK(xi, x)− ρ.

The pattern x is considered as normal if f(x) > 0 and vice versa.
For our model, we train the One-class SVM with the extracted normal
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network activities time-series using an RBF as kernel function that has
the following equation:

K(xi, xj) = exp(−γ‖xi − xj‖)2 (6.2)

Previous experiments (in chapter 4) show that RBF kernel function
is much efficient with non-linear patterns as well network time-series
used in our work to validate the model. We use cross validation tech-
nique with a testing dataset to fix the best OCSVM parameters, such
as γ, ν and ξ.

In our model, the patterns x will be the base station load time-series
extracted from the CDR datasets.

Outliers time detection

Once the spatial anomaly is detected, the anomalous time-series
are handled by the second stage in order to detect precisely the time-
interval of the anomaly. This stage is relevant especially in case of local
anomaly that occurs in a limited subsequence of the BS time-series.
We propose for this module, an algorithm based on SVR. Using history
data as a training set, SVR aims to estimate an optimal function which
fits the maximum of input samples.

In our study, we train the SVR model with the current BS past nor-
mal data in order to predict afterwards the appropriate future of daily
BS users occupancy data. We continue here on using an RBF kernel
function for the same reasons mentioned earlier. A testing step is cru-
cial to fix the best parameters of the SVR model such as C (penalty
parameter of the error term), γ (RBF kernel function coefficient) and
ε (tolerance for termination criterion). We use for that normal pat-
terns (testing data) compared to the predicted one using the MSE as
criterion and best parameters that guarantee the minimal MSE are
chosen. We use here the same tuning and optimization parameters
methodology that we used in chapter 4.

Once the testing step is validated with the best combination of pa-
rameters, SVR model is applied now to anomaly patterns. We also
compare the anomalous data with the predicted one using MSE mea-
surement between each point of both time-series. Hence, a new time-
series E(t) is obtained with the temporal evolution of the MSE. Then,
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anomalous time-interval k is detected if E(k) is higher than an appro-
priate error threshold chosen according each pattern.

6.4 Experiment testbeds and result comparison

6.4.1 Testbed datsets description

The anomaly detection framework we propose aims to be general,
so that it can be applied to any dataset of users’ activity times-series.
The algorithm is embedded in a tool that takes as input, massive
dataset records. We tested our method with data extracted from two
different call detail records (CDRs) datasets: the first one is provided
by Telecom Italia as part of the big data challenge context while the
second dataset is provided by Orange for the Senegal D4D challenge
context [12].

Milan dataset testbed

The Telecom Italia dataset is an open multi-source aggregation of
weather, news, electricity and telecommunication data. We focus on
the last data source which provide call, Short Messages exchanges
(SMS) and data usage. The data provide, in a geographical square cell
aggregation, the telecommunication activities of Milan city. In fact,
the city is divided into 10,000 squares having a 235m x 235m size.
Each square aggregates all network traffic data of the base stations
installed into it, thus, no more information are given about the actual
deployment of these base stations. The raw data contains information
about subscribers’ communications, such as the amount of in/out call,
in/out SMS and data. It indicates also for each user’ interaction, the
geographical location (square ID), the time when it occurred and the
country code. The collection of these data covers the time period from
November 1st, 2013 to January 1st, 2014 and the measurements are
aggregated in time slot of ten minutes granularity. To exploit these
data, we extract at first a set of time-series for each square which
indicates the daily evolution of each users’ network interaction. We
focus in our performance study on two use-case testbed studies:

- San Siro stadium use-case which represents an anomalous peak
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of consumption for some hours during the weekends. The time-series
dataset used for for validation contains 4320 data points whose 72 are
anomalous

- End of year festivities use-case which contains some anomalous
patterns that occurred during the last week of the year (from Christ-
mas to new year eve). The data-set used for this use-case contains
time-series of users consumption in Duomo square, one of the most at-
tractive touristic places in Milan. The dataset contains almost 42,000
data points whose 5184 are anomalous.

Figure 6.2: Example of an ACP study for Milan Christmas Eve anomalies testbed

Dakar dataset testbed

The second dataset we use to validate our framework is extracted
from the D4D-Senegal challenge dataset [12]. This dataset collects
call detail records of phone calls and SMS of about 9 million users for
the year 2013. The dataset is divided into 3 sets: one set contains
the antenna-to-antenna traffic for 1666 antennas on an hourly basis,
another contains one year of coarse-grained mobility data at district
level and a last one contains fine-grained mobility data on a rolling
2-week basis for a year with bandicoot behavioral indicators at indi-
vidual level for about 300,000 randomly sampled users. We extract
from the last set information allowing us to monitor the instant num-
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ber of users in each cell and thus, estimate the instant instant BS
load ( or users’ occupancy) for the whole day. Unlike the previous
dataset, D4D CDRs set provides user’ communication information at
fine-grained space scale, i.e, at each base stations instead of geographic
square aggregation. Hence, we can monitor each cell apart and detect
network outliers precisely. Similarly to Italia Telecom, We extracted
from these CDRs a dataset of times-series relative to Dakar city, whose
each one describes the daily evolution of users occupancy within a BS
cell. As Milan data-set use-case, We also focus here on two use-case
testbed studies:

• Friday noon use-case which represents an anomalous decrease of
consumption during some hours. The time-series dataset used to
validate our framework with this testbed contains almost 17,000
data points whose 5760 are anomalous

• Tuesday the 5th of February use-case which present a sudden
decrease of users consumption at night. The data-set used for
validation contains contains almost 43,000 data points whose 720
are anomalous.

Figure 6.3: Example of an ACP study for Dakar Friday anomalies tesbed
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Figure 6.4: Example of an ACP study for Dakar Friday anomalies tesbed

Figure 6.5: Example of an ACP study for Dakar 5th February anomalies testbed
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6.4.2 Geographic anomaly detection results & performance
evaluation

Milan dataset

Figure 6.6: San Siro stadium square Call amount evolution from Sunday November
3th to Sunday November 10th

SanSiro stadium study case: While analyzing Milan dataset, using
Principal Component Analysis (PCA) on network activity time-series,
we discovered some abnormal behaviors within the geographical square
where San Siro stadium is located. In fact, these anomalies consist on
a huge increase of users network activity with a time-limited peak
of SMS, call or even Internet packets. Figure 6.6 shows an example
of Call activity evolution during one week in San Siro square: the
first anomaly occurred on Sunday November 3th while the second oc-
curred on Saturday 9th. These strange behaviors occur especially on
the weekend and it last for almost 2 hours. We verify the time inter-
val in which these heavy networks activities take place with San Siro
sports events calendar and we realize that it is strongly correlated with
football matches time. To detect automatically these anomalous pat-
terns, we train our model first-stage with the current square workdays
normal data, hence, OCSVM can find the appropriate normal data
boundary.

To better evaluate the performance of our model, we used Isolation
Forest (iForest) algorithm to compare both algorithms performances.
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Table 6.1: Performance comparison between OCSVM and Isolation Forest for Milan
dataset

Performance San Siro Christmas eve Christmas & Saint Silvester days Saint Stephen’s day Global
Classifiers OCSVM iForest OCSVM iForest OCSVM iForest OCSVM iForest OCSVM iForest
Accuracy 100% 91.6% 98.2% 96.1% 100% 87% 100 97.9% 99.7% 92.6%
Sensitivity 100% 90% 97.8% 97.6% 100% 97.6% 100 97.6% 99.6% 93.8%
Specificity 100% 100% 100% 87.5% 100% 50% 100 100% 100% 86.5%
Precision 100% 100 100% 97.6% 100% 87.2% 100 100% 100% 97.3%
FOR 0% 33.3% 11.1% 12.5% 0% 14.2% 0 14.2% 1.8% 23.8%

Isolation Forest [136] is an enhanced variant of random forest machine
learning which consists on generating a tree-classifiers ensemble based
on training data and try to segment data until isolating anomalies.
Both method are evaluated based on performance metrics extracted
from the corresponding confusion matrix and numerical results are
resumed in table 6.1. Results show that One-class SVM is able to
detect correctly all tested anomalies with an accuracy of 100% unlike
Isolation Forest which signals some false positive samples.

End of year festivities study case: PCA analysis reveals also some
non-common patterns of users consumption which has occurred dur-
ing the last week of the year. Figure 6.2 depicts a representation of a
portion of the data (Christmas eve data) after applying a PCA decom-
position. The red points represent the anomalous time-series which
their projections are distant from the normal time-series cluster (Blue
points). Some of The anomalous time-series are related to Christmas
holidays, i.e. anomalies occurred during Christmas eve on Tuesday
24th, Christmas day on Wednesday 25th and also Saint Stephen’s
day on Thursday 26th. During these dates, a non-common decrease
of users’ network activity is noticed. Another types of anomalies is
related to new year eve, with a brief peak of network activities dur-
ing the first hour of 2014, and also Wednesday January 1st holiday
with a decrease of network activities throughout the day. Figure 6.7
shows the call amount during November (top), December and January
1st 2014 (bottom) of the square where is located the touristic site of
Duomo. We can notice clearly from these two figures the anomalous
call amount patterns occurred on the mentioned days (red curves).

Unlike the first case study, we can not model here the OCSVM
model with all workdays time-series as normal training data because
each day has its own behavior (or profile class) [111]. Hence, w.r.t
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Figure 6.7: Duomo square Call amount evolution

the weekly cyclic characteristics, a given anomalous day is detected
by training the model with its past normal data in a weekly basis.
For example, we train the OCSVM model with all previous Tuesdays
data from November 5th to December 17th in order to detect the
Christmas eve anomaly. Although, the issue with this formulation is
that the number of training instances are few (almost 7 days data for
training) which may cause under-fitting problems. To handle it, we
consider data from squares directly adjacent to the target square. We
also verified that data from adjacent squares are very similar whether
in normal days or outliers. This allows us to built the OCSVM model
with more relevant training data which guarantees its efficiency. We
compare also the performance of our model with iForest model using
the same training dataset and results are resumed in table 6.1. It
shows that SVM performances are better than Isolation forest which
reaches a global accuracy of 99,7% against 92.6% for iForest.

Dakar Dataset study case

For Dakar use-case, the study is more refined since the data repre-
sents users’ activity inside a cell instead of a larger square as Milan
dataset and it is more accurate to analyze the network from a fine-
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grained perspective. Prior data analysis (also with PCA) allow us to
capture some outliers behavior within Dakar dataset but due to space
limitations we present some examples of these anomalies (Figure 6.3-
6.5). Figure 6.3 and 6.4 depict an example of PCA decomposition
of two different BS time-series data during the period of study (2
months). In the first example the separation between normal and
anomalous data is clear while in the second example the separation is
not so obvious and margin between the normal and anomalous clus-
ters is low. Hence, a simple PCA is not very efficient to cluster the
data and we will show in the results that the OCSVM provides high
accuracy even with this kind of data.

Figure 6.8 outlines some examples of Dakar outliers patterns. A
local decrease of users’ number into the cell is noticed for some BSs
which lasts for one hour usually between 12am and 1pm (top red curve
of figure 6.8). These untypical behaviors, compared to other days (top
blue curves of figure 6.8), occur usually on Fridays. Thus, we used
workdays data except Fridays to train our first stage part which allow
us to detect automatically these kind of outliers. Table 6.2 resumes the
numerical results to compare our model performance against iForest.
OCSVM model attempts an accuracy of 94.2% against 75% for iForest
which confirm the efficiency of our method.

Another example of anomaly (Bottom graph of figure 6.8) is de-
tected by our algorithm. We notice on Tuesday February 5th that
the BS activity decrease heavily between 10pm and 11pm, and this
abnormal observations is noticed for all BSs installed in Dakar, other-
wise, this sudden decrease is not present neither in days of the same
week or in other Tuesdays. This kind of anomalies may occur due
to technical incidents in the network equipment or electricity issues.
This anomaly is detected by training our model with the history of
Tuesdays data anterior to February 5th. The results are compared to
iForest and are presented on Table 6.2. Results shows that OCSVM
is able to detect all anomalous BSs patterns with a full specificity
and an accuracy of 95% while Random forest fails in detecting some
of them and signals more false negative samples with an accuracy of
65%. Furthermore, for Dakar use-case the global accuracy of OCSVM
reaches 93.5% against 70% for iForest.
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We notice, for Dakar dataset, that iForest results decrease drasti-
cally compared to those of Milan dataset. This may be due to the
data aggregation scale, whose is very small in the case of Dakar which
may cause some noise in time-series. On the other hand, OCSVM re-
sults remain also accurate for Dakar dataset which confirm its ability
of generalization and then avoid false alarms signaling.

Figure 6.8: Examples of Dakar anomalies use-case: the top figure depicts an example
of Friday anomaly (red curve) and its previous workdays normal data (blue curves).
The bottom figure shows an BS examples of February 5th anomaly (red curve) and
some other Tuesdays normal data

Table 6.2: Performance comparison between SVM and Isolation Forest for Dakar
Dataset

Performance Fridays February 5th Global
Classifiers OCSVM iForest OCSVM iForest OCSVM iForest
Accuracy 92% 75% 95 65% 93.5% 70%
Sensitivity 94.8% 77% 94.6 63.3% 94.7% 70.1%
Specificity 81.5% 66.6% 100 80% 90.8% 73.3%
Precision 94.8% 90.2% 100 97.2% 97.4% 93.7%
FOR 18% 57.8% 37% 83% 27.5% 70.4%

6.4.3 Temporal anomaly detection results

In this part we evaluate the prediction based method for temporal
anomaly detection based on SVR. In the study [82], authors investi-
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(a) Anomaly results on November 9th (Serie
A match)
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(b) Anomaly results on November 15th
(FIFA day match)
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(c) Anomaly results on December 1st (Serie
A match)

Figure 6.9: Temporal Anomaly detection result for SanSiro testbed

gate the efficiency of mobile network traffic prediction by comparing
SVR to artificial neural networks (ANN). Results showed that SVR
outperforms ANN for multidimensional data (which is our time-series
case study). Furthermore, we present also in this part a comparison
between our model and an ARIMA based detection anomaly model
[138].

The second phase of our solution consists in enhancing the precision
of outliers detection by pointing out the duration and the time-interval
when the anomaly occurred. This phase consists on a prediction-based
model, hence, we choose to compare our solution to ARIMA which
take part of this category.

For each use-case studied previously, we use the same OCSVM
training data to train also the SVR algorithm. Hence, the so-called
normal behavior is predicted which is then compared to the current
anomaly pattern in order to outline the temporal anomaly. The fea-
tures model we adopted for the prediction is the same we used in a
previous work [111].

We present here the results and comparisons of temporal anomaly
detection between the two models and for both datasets, Milan and
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(a) Anomaly results on January 18th
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(b) Anomaly results on February 8th
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(c) Anomaly results on March 1st

Figure 6.10: Temporal Fridays Anomaly detection results for Dakar testbed

Dakar cellular networks. Figures 6.9 show some examples of San Siro
network activity anomalous patterns. We notice from these figures
that the anomalous time-interval detected (highlighted in green) by
the SVR-based model is synchronized with the untypical peak of net-
work activity while the ARIMA-based model is less accurate. In these
figures, we notice that the ARIMA-base model signals a false anomaly
around 10pm, contrary to the SVR-model, due to its overrated time-
series prediction at this time-stamp. In addition, in figure 6.9(b) we
see that the ARIMA model starts signaling the anomalous pattern
prior its exact occurring time, while the SVR-based detection is well
synchronized.

Figures 6.10 depicts some examples related to Dakar Fridays anomaly,
and we can clearly notice that the detected anomalous time-interval is
also synchronized with the time in which occur the abnormal decrease
of BS users’ occupancy and for the same duration. We notice also in
figure 6.10(c) that the detected temporal anomaly lasts for more time
compared to others (usually for one hour almost) and it covers almost
the day activity time and this may be due to a special event in that
area which cause a sudden decrease of users throughout the whole day.

In the other hand, the ARIMA-based model fails in detection the
anomalous time window for all examples. Instead of detecting the
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drastic decrease of cell load occurring between 1pm and 4pm, it detects
two false anomalies: the first one around 11am and the second one
around 5pm.

6.5 Anomaly detection for eHealth-enabled Data

We show in this section a use case for anomaly detection applied
on new applications such as IoT.

6.5.1 Context and motivations

We present in this section a direct application of our STAD frame-
work. The objective of this part is to provide analysis study of the
potential impact of eHealth and IoT application data on the future
networks generation (such as cognitive networks, 5G networks, etc)
and to evaluate the performance of our framework against a new source
of data injected in the network. STAD framework is hence applied on
a semi-synthetic dataset, combining the real load time-series presented
earlier in this chapter and a simulated eHealth data generated from
IoT applications.

In fact, Internet of Things (IoT) is an ever-growing technological
paradigm that is expected to boost the development of a plethora of
services and applications like eHealth services. The growth of such
technologies will with no doubt impact the cellular networks. The
massive amount of data generated by eHealth applications will be
handled by the cellular architecture. Due to the additional eHealth
data, cellular networks may suffer from some anomalies which need
intelligent and autonomic mechanisms to be avoided. Network opera-
tors must integrate to their architecture pro-active tools able to detect
and signal these anomalous patterns and then mitigate the issue of
overloaded base-stations.

Moreover, this exponential growth of IoT application may generate
new users’ demand dynamics, and then create heavy spatio-temporal
data consumption patterns in the network[111]. These data patterns
can be difficult to be managed by network operators. On the other
hand, a major issue for network operators is to handle and detect
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sudden and local anomalous behavior within the network, whether it
is a sharp peak of users demands (occurred during mass events like
a marathon), which needs intelligent tools to guarantee network re-
silience and service survivability avoiding users rejections. We present
in this context our STAD framework as a solution able to provide net-
work operators with an on-line and pro-active solution to face these
anomalies. Our framework is applied to a pre-analyzed semi-synthetic
data set of eHealth-enabled cellular data in the context of a mass event
(Marathon event) in Milan city.

6.5.2 eHealth semi-synthetic data-set
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Figure 6.11: Sample of a daily eHealth-enabled application data

The concept of Information Communication Technology (ICT) pas-
sage in health care delivery popularly known as e-Health has at-
tracted international initiatives with huge budgets, as an action for
guaranteeing a global and equitable care delivery. The International
Telecommunication Union (ITU) argue that successful wellness and
eHealth deployment depends on three major links between patient
and care provider telecommunication infrastructure, back-end com-
puting/storage infrastructure and User-end platforms [139].

From gathered ehealth and wellness data application point of view,
the nature of information exchange events (IEE) within the trans-
actions was studied and graded in terms of its purpose(for example
discharge summaries, prescriptions, conferencing streams, Radiology
reports, etc.), the representation (video/image/text/etc.), the data
size, the urgency of delivery (real time, offline) and mobility.
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(a) Scenario: IoT users = 20% and NRT ap-
plication = 50%
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(b) Scenario: IoT users = 80% and NRT ap-
plication = 80%

Figure 6.12: Simulation results for storage capacity = 10%

The ITU [139] paper exhibits that the distribution of information
exchanges that require the two types of information transfer; store-
and-forward real time data transfer (including buffered transmission)
methods. It can be spotted that over 85% of the transactions can in-
volve store and forward methods. Prescription, surveillance diagnos-
tics and special reporting transactions and more then 80% of program
management can be handled with store forward mode. On the other
hand, disaster, ambulance services care and some wellness transac-
tions are expected to happen in real-time mode. One can judiciously
choose the mode of information exchange to save on the complexity
and cost of infrastructure required for real time exchange. The patents
wellness/medical records aforementioned in figure 6.11 are composed
from a day records of real time and store-and-forward data appli-
cations. The gathered data concern ECG, EMG, Blood Saturation,
Glucose Monitor, Temperature, Motion Sensor, Audio Medical Imag-
ing Video, Voice, Capsule Endoscope, Artificial Retina and Cochlear
Implant Internet of Things medical/wellness data.

6.5.3 Impact evaluation of eHealth data on cellular network:
Testbed and Interpretations

We present in this part a testbed of the eHealth-enabled cellular
data and we evaluate its impact on the network. The testbed is used
later to validate our anomaly detection model. We investigate espe-
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(a) Scenario: IoT users = 20% and
NRT application = 50%
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(b) Scenario: IoT users = 60% and
NRT application = 80%
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(c) Scenario: IoT users = 80% and NRT
application = 70%

Figure 6.13: Simulation results for storage capacity = 25%
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cially the effect of IoT data capacity storage, eHealth users percentage
and non-real time (NRT), as well as real time (RT) eHealth application
(for each eHealth user) percentage parameters. The storage capacity
expresses the amount of NRT data to be stored in the smart-phone be-
fore forwarding it to the network, so it determines when these IoT data
should be sent. It is chosen to be beyond the maximal smartphone
storage capacity so that it does not affect its performance. Results
are presented by Figures 6.12-6.14.

We notice from these figures that the IoT data traffic will add an
important load to the normal cellular network and it drastically impact
the network in some configurations.

In figure 6.12, we are fixing the storage capacity for eHealth data
to 10% out of the total capacity storage of the smartphone. We notice
from the figure 6.12(a) that even for a low IoT users percentage (20%),
the eHealth generated data cause an overrated peak of data (around
2 pm). This load peak impacts the radio channel occupancy causing
then an anomaly. In figure 6.12(b), the eHealth users percentage is
increased to 80% of the total users within the cell. We notice that we
still have just one load peak (the same one as the first scenario, but
with higher amplitude). However, the aggregated data load (eHealth
and cellular data) increases by 40% (especially before the load peak
hour). Otherwise, this extra load still less than the maximal cellular
data consumption.

The network load peaks caused by eHealth applications can be
avoided by increasing the capacity storage. This is shown in figures
6.13(a) and 6.14(a) where the storage capacity is increased to 25% and
60% respectively while keeping the same configuration as in 6.12(a).
So, we notice that the eHealth data has no drastic impact on the
cellular network and we also avoid to overload the network at peak
hours. This due to the fact that the forward time for the non-real
time application (the most data consumer in our case-study) does not
coincide with the usual network peak hour. Figure 6.13(b) shows that
in case of eHealth users and NRT percentage increasing, the global
data load still beyond the maximal usual cellular data (without net-
work anomalies), but the overall data consumption is importantly in-
creased causing many data peak compared to the usual cellular data.
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However, these load peaks has no big effect on the network since they
cause no anomaly. In this storage capacity configuration, the eHealth
data are impacting the cellular network from 80% of IoT users and
80% non-real time application (Fig 6.13(c)).

In figure 6.14, the storage capacity is fixed to 50% and we can
notice that the load peak caused by the eHealth data (either beyond
or above the usual maximal cellular data amount) are lesser. We
notice from figure 6.14(b) that the eHealth users percentage can reach
50% without affecting drastically the network or causing a network
anomaly (data peak above the maximal cellular data). But this is still
true if the percentage of non-real time application still less than 20%.
In figure 6.14(c), the storage capacity and the eHealth users percentage
still unchanged but the NRT percentage is fixed to 50%. We notice
that this configuration causes two network anomalies (around 9am
and 5pm). In the first anomaly, the global amount of network data is
doubled compared to the usual cellular amount. This fact could have
a huge negative impact in the performance of cell and the network
operator must find efficient solution to manage it.

We conclude from all these scenario that the choice parameters are
inter-dependent. In some cases, the parameters are proportional as
for the scenario in figures 6.13(a) and 6.13(b): The network operator
can enable more eHealth users within the cell if their storage capacity
is increased so that the forwarding of eHealth data occurs out of peak
hours. In other cases, the parameters are inversely proportional like
in scenarios depicted by figures 6.14(b) and 6.14(c). In these scenario,
the network operator can enable more eHealth users but with lesser
percentage of the non-real time eHealth applications.
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(a) Scenario: IoT users = 20% and
NRT application = 50%
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NRT application = 20%
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Figure 6.14: Simulation results for storage capacity = 45%
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6.5.4 Anomaly detection results and network management
recommendations
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Figure 6.15: Anomaly detection results for eHealth enabled Cellular data

In this part we present results of our network anomaly detection
applied to the semi-synthetic eHealth-enabled data that we analyzed
earlier. This algorithm is based on SVR normal cellular data pre-
diction. Based on the results of [111, 82], we choose to use SVR to
integrate it into our model.

We use the history of the cell data to train the SVR algorithm at
first. The features model we adopted for the SVR-based prediction is
presented in a previous work [111]. After adjusting the optimal set of
parameter for the SVR prediction model (discussed in section V.A.),
the so-called normal cellular behavior is predicted. Then, the pre-
dicted data is compared to the instantaneous collected data (eHealth
enabled cellular data) in order signal the network anomaly if it occurs.

We present here some results of network anomaly detection algo-
rithm for eHealth semi-synthetic dataset. Figures 6.15(a) and 6.15(b)
show some examples of anomalous patterns from the previous pre-
sented scenario. We notice from these figures that the anomalous
time-interval detected (highlighted in black) is synchronized with the
abnormal peak of network activity. We also notice in figure 6.15(b)
that our model detects and distinguishes with precision two sparse
anomalous load peak and it doesn’t fail to signal the whole period
between these anomalies as anomalous time interval even it contains
a usual cellular load peak. Our model is able to detect other types of
anomalies, but due to lack of space we omit extra results.
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The efficiency of our model is proved by these results. Hence, it
constitutes a accurate and autonomic tool for network operator to
monitor and manage on-line their network even with eHealth-enabled
data and then avoid pro-actively the network QoS degradation caused
by the extra IoT data. Also, the network operator could recommend
to use WiFi connection if it is available in order to forward eHealth
data. So that allows to alleviate the cellular network resources. Note
that WiFi will be enabled in next 5G networks.

6.6 Conclusion

Network anomalies are abnormal behaviors that occur suddenly af-
fecting the performance of mobile networks and causing expensive lost
for the operator. In this context, we propose a new efficient framework
which provides an automatic and on-line detection of network spatio-
temporal anomalies to prevent such aforementioned issues. This tool
allows network operators to monitor their infrastructure dynamically
and permits them to manage new challenges in next-generation net-
works. The framework combines two machine learning techniques:
OCSVM for spatial detection and SVR for temporal anomalies detec-
tion. The framework is validated with real datasets of CDRs from two
different urban cities and its high accuracy is proved. A comparison is
also made with the iForest algorithm and results show that our model
performance is better. The SVR part allows to predict accurately the
normal behavior of the network in order then to detect the timestamps
of the network outliers with high precision.

Predicting network outliers may be difficult since they are very
diverse, but detecting them may help on predicting their propagation
nearby. Ongoing work is carried on to study it.

We also investigate in this section the impact of the potential
growth of data generated by eHealth/wellness applications on the cel-
lular networks and we show that, in some cases, it could drastically
degrade the network performances.

Machine Learning has been identified as the key tool to implement
autonomous adaptability and take advantage from experience when
making decisions.
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Results show that our model allows to predict and detect anomalies
with high precision. The proposed tool helps network operators to
efficiently manage efficiently their infrastructure. It also allows them
to implement self-organized and autonomous networks that can face
the plethora of eHealth and IoT data.
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Chapter 7

Drone-assisted cellular network
optimization: A Multi-Agent
Reinforcement Learning Approach

7.1 Introduction

The growth of data demands and the increase in wireless traffic
rates in new mobile networks need intelligent and dynamic technolo-
gies for telecommunication management. Recent studies predict that
the new generation cellular standards (like 5G) will rely much more
heavily on a dense and less power consuming network to serve the
dynamic users’ data rate requests [3].

Small cells mounted on unmanned aerial vehicles (UAVs) or drones
(we call them drone-cells hereafter) are proposed, as an alternative to
fixed femto-cells, to support existing macro-cell infrastructure. The
deployment of these mobile small cells consists on move these small
cells toward a target position (usually within the range of the macro-
cell to support) based on the decision made by a mobile network op-
erator. The drone-cells movement toward adequate positions must be
correlated with the amount of data requested, i.e. drone-cells should
support overloaded cells (Figure 7.1). Hence, an intelligent entity may
be added to the network that monitor instantly the network state and
find the optimal decision to control drone-cells.

In the other hand, we presented, in the previous chapter, a frame-
work able to detect pro-actively anomalous pattern of bandwidth con-
sumption, either heavy load scenario like in a mass event or a dras-
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tic decrease of load that can be due to a network failure. Since the
abnormal decrease needs some investigations to identify the network
failure, the unexpected peak of load needs a fast deployment of extra
resources to cover the users demand. In this chapter, we propose a
dynamic network access topology based on drone-cells that assists the
existent architecture and helps network operator to face unexpected
heavy bandwidth demand in mass event scenarios. Due to the fast
deployment and dynamic behavior these small cells can be deployed
in an area of high users’ traffic, a group of UAVs is instructed to oc-
cupy positions above high concentrations of User equipement (UE)
and serve the UEs below.

Several studies have discussed the theoretical ability of cellular net-
works to use drone-cells to support their existent macro-cells [66, 64]
Although, the readiness of networks to integrate such dynamic entities
has not been discussed. For example, drone-cells require coordinated
insertion to the network infrastructure while serving subscribers and
smooth recess at the end of their activity (low battery, low data de-
mand ...). This requires an efficient network configuration. It also
adds management flexibility and self-organizing capabilities for the
networks. Hence, updating the network, such as for integrating new
tools, and technologies, becomes essential. Also, massive amounts of
information about users and networks must be continuously collected
and analyzed by intelligent algorithms.

In this work, we propose a dynamic solution for drone-cells networks
that exploits real traces of demand profiles and adapts in real time
the deployment of drones-cell according these demands. We propose
to optimize the deployment using the machine learning programming
instead of classical linear programming models. Our solution is based
on a multi-agent reinforcement learning (MARL) approach which con-
sists on two steps: an off-line step corresponding to exploration step
and an on-line exploitation step. The off-line step consists especially
on a learning phase where the drone-cells of the multi-agent topology
learn, in a cooperative re-reinforcement learning context, how to react
and move according to different scenario of bandwidth demands. Real
Traces of network time-series load are used for this phase. In the on-
line phase, the pre-learning agents demonstrate how they are adapted
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instantly on a real scenario of load peak signaled by the STAD frame-
work (Framework of the chapter 6). The cooperative reinforcement
learning is based on a joint action selection that aim to choose the
optimal set of agents action. We propose on in this chapter our joint
action selection algorithm and we compare it against the grid selection
algorithm.

The chapter is organized as follows. Section 2 presents reinforce-
ment learning approaches. Section 3 develops our MARL-based model.
Section 3 presents simulations uses-cases and results and we conclude
in section 4.

Figure 7.1: Graphical illustration of a Drone-assisted network

7.2 Reinforcement learning concept

In this section, we introduce the background on both “single-agent”
and “multi-agent” reinforcement learning approaches. First, the single-
agent approach is presented as well as its solution. Second, the multi-
agent approach is defined. We also discuss the choice of using multi-
agent approach in our contribution by presenting its benefits and ad-
vantages against the single-agent one.

7.2.1 Single reinforcement learning approach

Reinforcement Learning is a computational model for reward based
learning implemented using the Markov Decision Process (MDP) frame-
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work. In the single agent reinforcement learning approach, an agent
interacts with its environment, at each iteration, by choosing actions
to execute. By executing the action, the agent moves to a new state
and perceive a reward signal. The reward value may be positive indi-
cating whether he reaches some goal. Negative reward value represent
a penalization for the agent.

The single reinforcement learning approach is modeled by a finite
Markov decision process which is represented by a tuple< X,A, f, r >,
where X is the set of environment states, A is the finite set of agent
actions, f : X × A × X → [0, 1] is the state transition probability
function, and r : X × A × X → R represents the reward function.
The environment is described, at each discrete time step k, by the
state xk ∈ X. The agent examines the state and selects an action
ak ∈ A. After executing the action ak ∈ A the state environment
changes to xk+1 ∈ X according to the transition probability given
by f(xk, ak, xk+1). Hence, the agent perceives a reward rk+1 ∈ R
calculated by the reward function as follows: rk+1 = r(xk, ak, xk+1).
The reward value evaluates the effect of taking the action ak when
moving from the state xk to the next state xk+1.

The agent acts according to its policy which defines the behavior of
the agent when choosing its actions in a given the state. The agents
objective is to find a policy that maximizes, from every state x, the
expected discounted return:

Rh(x) = E

{ ∞∑
i=1

(γkrk+1|x0 = x, h)

}
(7.1)

where 0 ≥ γ < 1 is the discount factor such that the expectation
is taken over the probabilistic state transitions under the policy h. R
is the return and it represents the reward accumulated by the agent
during many iterations. The discount factor γ can be considered as en-
coding an increasing uncertainty about the future perceived rewards,
or as a means to bound the sum which could increase unbounded.

The agent aims then to maximize its long-term return, while only
receiving feedback (reward) about its immediate, one-step performance.
This can be achieved by computing the optimal state-action value
function, the Q− function which gives the expected return obtained

140



according to the policy h from any state-action pair:

Qh(x, a) = E

{ ∞∑
i=1

(γkxk+1|x0 = x, ak = a, h)

}
(7.2)

The optimal Q-function is defined as Q∗(x, u) = maxhQ
h(x, u) and

it is evaluated so that it satisfies the Bellman optimality equation:

Q∗(x, a) =
∑
x′∈X

f(x, a, x′)[r(x, a, x′) + γmax
a′

Q∗(x′, u′)] (7.3)

This equation express that the optimal value of executing a in x is
the expected immediate reward plus the expected (discounted) opti-
mal value attainable from the next state (the expectation is explicitly
written as a sum since X is finite).

Several studies addressed single-agent RL algorithms such as propos-
ing model-free methods [140, 141]. Other models are based on dynamic
programming [142, 143]. A well-known model derived from a model-
free algorithms called Q-learning [144, 145, 146] which will be used
also in this study.

Q-learning transforms the previous equation to an iterative approx-
imation procedure. Q-learning updates after each transition the Q-
function as follows:

Qk+1(xk, ak) = Qk(xk, ak) + αk[rk+1 + γmax
a′

Qk(xk+1, a
′)Qk(xk, ak)]

(7.4)
The second term is the temporal difference, i.e. the difference be-

tween the current state estimation Qk(xk, ak) of the optimal Q-value
and the next state estimation: rk+1 + γmaxa′ Qk(xk+1, a

′).

7.2.2 Multi-agent reinforcement learning

As the wireless topology is composed of multiple drone-cells, and
since modeling a single reinforcement learning model for each sin-
gle drone-cell is complex and leads to an exponential explosion of
the (action, state) space, we propose to employ a multi-agent rein-
forcement learning model for the drone-cells network optimization and
management.
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The multi-agent reinforcement learning approach is a generalization
of the single model and its modeled by a stochastic game. The multi-
agent RL employs a joint action, which is the combination of actions
to execute by each agent at state k.

The stochastic game is represented by the tuple:

< X,A1, ..., An, f, r
1, ..., rn >

with n is the total number of agents. Ai with 1 ≥ i ≤ n is the set
of possible actions of agent i. So we can define the joint action as
A : A1 × A2 × ... × An. r

i : X × A ×X → R is the reward function
of agent i that is assumed to be bounded. f : X × A × X → [0, 1]
is the transition probability function. In the multi-agent approach,
the transitions between states are the result of a joint action of all the
agents which is expressed as: jak = [a1,k, ..., an,k] where ai,k ∈ An. The
reward ri,k+1 (ri(xk) = ri,k+1) resulting from executing the action ai,k
is computed according to the joint policy jh and the joint expected
return is expressed as follows:

Rjh
i (x) = E

{ ∞∑
i=1

(γkrk+1|x0 = x, jh)

}
(7.5)

The Q− learning function depends also on the joint action and the
joint policy and it is expressed as follows:

Qjh
k+1(xk, jak) = Qk(xk, jak)+αk[rk+1+γmax

ja′
Qk(xk+1, ja

′)Qk(xk, jak)]

(7.6)

In our model, we are adopting the fully coordinated multi-agent
RL, and in this case all reward functions are the same for all agents,
r1 = ... = rn = r

7.2.3 Motivations of using MARL approach

Along with advantages due to the distributed feature of the multi-
agent systems, as the acceleration becomes possible by parallelizing
the computation, MARL approaches emerge with the benefit of shar-
ing experiences between agents. Experience sharing helps agents to
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learn faster and reach better performances. Hence, the agents can
communicate between each other to share experience and learning so
that the better learned agents may speed up the learning phase of
other agents. Moreover, multi-agent systems facilitate the insertion of
new agents into the system which leads to came up with scalability
issues affecting classic method such as linear programming.

Otherwise, in addition to challenges inherited from single-agent re-
inforcement learning such as the curse of dimensionality (due to the
(action,state) space dimentionality) and the exploration-exploitation
trade-off, other challenges arise in multi-agents reinforcement learning
approaches. One of these challenges stands for the difficulty of specify-
ing a learning goal, the non-stationarity of the learning problem, and
the need for coordination. The need for coordination is motivated by
the fact that the effect of any executed action by any agent on the
environment depends also on other agents’ actions. So, the agents ac-
tion selection should be mutually consistent in order to achieve their
goal. So, coordination is necessary in cooperative MARL models.

Due the advantages explained earlier and as our network model
consists of employing dynamic cells-drones, cooperative and coordi-
nated MARL model become essential to ensure an efficient and faster
optimization. Coordinated MARL models will allow us to propose a
general framework for deploying dynamic drone-cells topology due to
its scalability feature.

7.3 Drone-cells network agent model

In this section we present our proposed model for drone-cells opti-
mization and management and we explain the mapping between our
model parameters and the theoretical model presented in the previous
section.

7.3.1 Model framework description

Our drone-assisted network model is based on a centralized multi-
agent reinforcement learning approach. The framework consists of a
multi-agent system implementation based on MESA [147] package. It
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is composed of model entities that describes the system parameters
and manage the interaction between the different agents. The frame-
work is described in figure 7.2.

Since the approach is centralized, we need a coordinator agent that
collects information from different agents and intervenes in the actions
selection process. In our framework, this coordinator agent is repre-
sented by the network operator agent (which can be also a centralized
entity in the network architecture).

The framework is composed also of a set other agents. We distin-
guish two type of agent: Active agent who executes the model actions
and passive agent that participates in the system interaction but with-
out executing any action. The active agents are the drone-cells that
are represented by the “Drones” entity in our framework. The actions
to be executed by a drone is whether to move to a cell location in or-
der to serve it or to go back to the facility location (in case of battery
running out or no cell left to serve). The “Drones” entity defines the
battery level BTd,t of a drone d at time-stamp t, the bandwidth offer
level BWd,t, the status of drone d (whether is serving, idle or charging)
and other parameters.

The passive agents are the cell (represented by “Cells” entity) and
the facility (represented by “Facility” entity) agents. The cell agent
entity defines the bandwidth demand rate at each time-stamp, the
geographic location of the cell and the status of the cell (whether it
is served or not). The facility agent constitutes the initial location of
all drones and where drones can be charged. If a drone is not serving
a cell, it should move to the facility location. We suppose that the
facility location is situated in the middle of the service area in order
to optimize the flight time toward cells.

7.3.2 Model states

The model states provide information about the network status at
each time-stamp t such as drones parameters, facility instant capac-
ity or cells demand rates. In our MARL model, each drone agent d
has it own state St which describes the actual parameters at time t.
These parameters are the drone battery level BTd,t, the bandwidth
offer capacity level BWd,t.

144



Figure 7.2: Graphical illustration of the MARL Drone-assisted network Framework
and the relationship between the Agents

Moreover, each cell agent C state is represented by the aggregated
throughput demand TdC,t at time t that exceeds the maximum ca-
pacity of the macro base station that covers it, and that should be
assisted by drones. The facility agent state is also described by the
current number of drones that are placed in it and either they are
charged or not. All these information are gathered by the network
operator agent (The coordinator agent) in order to choose the joint
action to take for all drones in order to maximize the total network’
QoS.

7.3.3 Model actions

The action that a drone agent can execute, at each state, is either
to move and serve a cell and serve it or to move to the facility (to
charge its battery or in case of no cell left to serve). Unlike single
agent models, the action of each drone agent is taken by the coor-
dinator (centralized approach) to maximize the global network QoS.
Hence, it is not always straightforward that the chosen agent action
maximize its own reward. Otherwise, the coordinator agent choose a
joint action (set of action for all drones) that maximizes the global
network performance.

7.3.4 Reward function

The reward function for each drone agent is measured at each state
and after choosing the action to execute. The reward function mea-
sures the local network service ratio and it is the fraction of the served
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throughput by the drone d at time t and the throughput request of the
cell to be served by d at the same time. Its expression is as follows:

rd,t =
Bandwidth Servedd,t
Bandwidth RequestC,t

7.3.5 Coordinated multi-agent RL

The multi-agent model we propose in this chapter is a fully coor-
dinated model. The model needs a coordinator agent which plays the
role of a network orchestrator. Hence, the coordinator agent ensures
the communication between all drone-cells agents, collects the current
status of each agent and the whole network (such as cells load). The
coordinator also has access to the Q-table so that it ensures the se-
lection of the joint optimal action at each iteration. We choose the
coordinator to be a central network nodes such as a macro-cells that
is able to communicate with all drone-cells agents and decides the
actions of each agents at each state and updates the Q-tables entries.

Choosing the optimal joint action is a critical step for the multi-
agent RL model. The criteria of choosing a better joint action selec-
tion algorithm is first, to reduce the computational cost of searching
the joint action, which is exponential in the agents number and sec-
ond, provide a better performance. We present in this section the hill
climbing search algorithm (HCS) which is proposed in [148]. Then,
we propose an enhancement of the Hill climbing search algorithm for
an optimal joint action selection (eHCS) algorithm that speed up the
actions search. The model is then compared to the HCS algorithm.

Hill climbing search algorithm

The main objective of hill climbing algorithm is to examine the
neighboring agents one by one and to select the first neighboring agent
action which optimizes the current reward as next node. The algo-
rithm is resumed by the following steps:

1- Initialization step: Select an initial joint action JA by picking the
action of each agent that maximizes the reward.
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2- Randomly choosing an agent and its action in the previous JA is
changed by a neighboring action.

3- The new formed action is evaluated. If it provides better network
service ratio, it is stored as optimal JA.

4- Repeat steps 2 and 3 until testing all combinations.

Enhanced joint optimal action selection algorithm

Our multi-agent reinforcement learning model is based on a semi-
centralized cooperative solution. The centralized part consists of adding
a coordinator agent (Which is the network operator agent here) which
is able to collect all drone agents and other model agents information
in order to select the “joint optimal action” to be executed by drones.
The centralized approach reduces the complexity of the system, speeds
up the selection process and alleviates the system information sharing
among all agent. Unlike the distributed approach which consists on
forwarding all information between all agents, that may be a time con-
suming. Many centralized joint action selection algorithms exist in the
literature such as hill climbing search [148], Stackelberg Q-Learning
[149] etc. In our model we propose a modified version of hill climbing
search algorithm which fits our drone actions selection problem.

The main objective of this algorithm is described as follows: at first,
each drone agent, at a state St at time-stamp t, chooses its own opti-
mal action to execute without taking into consideration other drones
configuration. Then, the coordinator agent collects all drone infor-
mation (Battery level, remaining bandwidth) as well as their chosen
actions. It collects also cells and facility agents information. After
that, the coordinator sorts decreasingly the set of cell demands (re-
spectively the set of drone offers). Then, it tries, at each iteration, to
find a match between the drone actions (the position to move toward)
and the demand positions (cell positions) and assigns the adequate
drone to the cell. Then, if the cell is totally served, the coordinator
looks for drone agents whose action is identical to the served cell posi-
tion and re-selects a new action for the drone according a new Q-table.
The new Q-table is formed with the remained possible actions (except
the selected prior).
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The coordinator repeats the same process over all drones. This
selection method avoids assigning many drones to the cells with higher
demand and try to share drones all over the network.

The semi-centralized joint action selection algorithm is presents in
algorithm 2.

Algorithm 2 Centralized Joint action selection

1: Input: (Action,State) space, Q-tables, ServedCell˙list
2: Output: Joint Action JAt

3: Collect system information
4: for d in Drones do:
5: if Actiond,t ∈ ServedCell list then
6: ExtractNewQ− table(d)
7: ActionSelection(NewQ table(d))

8: Verify NewAction(d,t)
9: Find MatchAction(Cell)

10: if Matched Action then
11: Actualize ServedCell list
12: Add NewAction(d) to JAction List

return JAction List

Note that the joint action selection algorithms are used only during
the exploration phase (training phase). Once the Q-tables are calcu-
lated and their entries are the optimal values, they are used then for
the on-line exploitation phase.

7.4 Simulation and results

7.4.1 Drone-cells network architecture

The architecture of the drone-cells network used here is composed
of 2 kinds of infrastructure: A fixed infrastructure and a mobile in-
frastructure. The fixed infrastructure consists on six cells covering
the areas represented by the figure 7.3. The area covers the Sansiro
stadium and the car parks nearby the stadium. The infrastructure
include the facility. The facility is placed in the center of the area.
The facility is the initial location of the drones and is also used to
store and charge the drones.

The mobile infrastructure is composed by the drone-cells. The
drone-cells are either placed into the facility or fly over cells to serve
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the mobile users. The drone-cells can serve only one cell during a
time-interval of one hour. The battery run out after serving during
two time-intervals consecutively. In this case, the drone-cells should
turn back to facility in order to charge its battery. The battery charge
lasts for one time-interval, thus the discharged drone-cell stays non-
operational during this time-interval.

7.4.2 Scenario use-case description

We validate our framework by using real data-set of cell demand
time-series extracted from Milan CDRs dataset.

We simulate in this contribution the use-case of mass event where
macro-cells are assisted by drone-cells managed by our framework in
order to cover the unusual peaks of user demands. As shown and an-
alyzed in the previous chapter, we detected some unusual behavior of
demand around the SanSiro stadium during football match compared
to workdays. Figure 7.3 represents the cells segmentation of the San-
siro stadium and areas around. Figure 7.4 depicts the daily demands
time-series of these cells and we can notice that the SanSiro stadium
cells have a high peak of user demand around 8pm (football match
time) while nearby cells have two peaks: one before the match and
another after it. This behavior may correspond to the arrival time of
supporters and their departure time after the match. We can notice
also that these cells are covering in a parking areas and some metro
stations which make our assumptions logic.

We apply our framework to these demand time-series in order to
manage the abnormal increase of users demand during this period of
the day and we show results in the next part.

7.4.3 Results

The framework is applied on cell demands between 6pm and 11pm,
the period of time when the abnormal demand peak are occurring.
During this period, drone-cells will attempt to support the existent
macro-cell and serve the additional demand. Table 7.1 resumes the
simulation parameters.
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Figure 7.3: Graphical illustration of cell segmentation of SanSiro area
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Figure 7.4: Example of demand time-series of SanSiro areas cells
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Table 7.1: Simulation Parameters and Values
Parameters Values
Initial Drone-cells battery level 100%
Drone-cells max rate 50 Mb/s
Cell max rate demand at peak hours 120 Mb/s
Battery life-time factor 0.5
Number of cells 6
Learning rate 0.75
Learning period (exploration) 300
exploitation period 50

As performance metric, we choose to use the network service ratio
which is defined as follows:

Network service ratio =
Total Bandwidth served

Total bandwidth demand
where Total Bandwidth served is the sum of the served bandwidth

by all drones and Total bandwidth demand is the sum of all cell de-
mands.

Our MARL model based on the enhanced hill climbing algorithm
is compared to a MARL model with the classic hill algorithm. Figures
7.5-7.11 shows the simulations and comparison results between both
models.

Figure 7.5 depicts the scenario simulation at 6pm (Fig 7.5(a)) and
7 pm (Fig 7.5(b)), the time of supporters arrival before starting the
football match. We use in this scenario 8 drones to cover the area for
both models. We can notice that after finishing the learning period
(after 300 steps) the network service ratio converges to 1. During the
learning period, the drones are exploring several options of action and
communicating their decision to the coordinator. At the end of this
period, the coordinator selects successfully the optimal joint action for
all drones and then all cells are fully served. We also notice that 8
drones are sufficient, for our eHCS-based model, to serve the network.
Whereas, the concurrent model based on HCS performs worse than
our model. We notice that in this use-case scenario, that after the
exploration phase the model fails to converge to 1 and the network
service ratio converges to 0.9 and 0.6 at 6pm and 7pm respectively.
Hence, the HCS based model performs 10% lower than our model at
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6pm and %40 lower at 7pm at which the demand is much higher.
So, we can say that our model performs much better than the other
model during peak hours. Moreover, the exploration period was not
sufficient for the HCS based model to achieve the optimality and we
conclude that our model is faster with 8 drones for the period between
6pm and 7pm.

Figures 7.6-7.11 show simulation and comparison results using 14
drones. We notice that for all time periods, the network service ratio
converges to 1 after the learning period for our model. Whereas, the
HCS based model success to converge to 1 only for three time periods;
at 6pm, 7pm and 11pm while its network service ratio is lower than
1 for the rest of periods. Furthermore, for scenarios at 6pm, 7pm
and 11pm, even that the HCS based model converges to 1 after the
exploration period, it is slower that our model. Whereas, our model
converges rapidly to one and even during the exploration period and
this is due to the high number of drones and their availability at these
periods.

Out of these periods, the HCS model fails to attempts optimality
contrary to our model. The exploration period was again not sufficient
to learn and find the optimal joint action at these periods. This is also
due to the fact that most of drone batteries are discharged (Battery
life-time is 2 slots) and they need one time slot to recharge. That is
why the model re-reaches the optimality at 11pm again. Hence, in
order to satisfy the global demand during the exploration period with
the same period size, the HCS based model needs then more drones to
serve all demands in shorter time, contrary to our model which success
to serve the network efficiently with the same constraints.

Moreover, with this configuration, our enhanced model needs only
11 drones at total to cover the whole area during the whole football
match event. These 11 drones alternate to serve the requested amount
of data according to their battery life level.

Figure 7.12 depicts the deployment of drone-cells using our en-
hanced model at 9pm , time-slot corresponding to a heavy demand
behavior. The colors represent the demand intensity at each cell. We
can notice that 9 drones of 14 are deployed at cell locations that guar-
antee serving the total required bandwidth. Note that at this time 4
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Figure 7.5: Network QoS evolution in function of execution steps
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Figure 7.6: Network QoS evolution in function of execution steps with 14 drones
and at 6pm
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Figure 7.7: Network QoS evolution in function of execution steps with 14 drones
and at 7pm
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Figure 7.8: Network QoS evolution in function of execution steps with 14 drones
and at 8pm
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Figure 7.9: Network QoS evolution in function of execution steps with 14 drones
and at 9pm
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Figure 7.10: Network QoS evolution in function of execution steps with 14 drones
and at 10pm
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Figure 7.11: Network QoS evolution in function of execution steps with 14 drones
and at 11pm

Figure 7.12: Illustration of drone-cells deployment at 9pm
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drones are out of charge while 1 drone is not serving at all.

7.5 Conclusion

Drone-cells technology is emerging as a solution to support cellular
network architectures. Drone-cells are flexible and provide a more
dynamic solution for resource allocation in both scales, i.e, spatial and
temporal. They allow to increase the bandwidth availability anytime
and everywhere according the continuous rate demands. Their fast
deployment provides network operators with a reliable solution to face
sudden network overload or peak data demands during mass events,
without interrupting services and guaranteeing better QoS. Although,
their management is still complex and needs advanced and intelligent
algorithms. Even their fast deployment, drone-cells networks suffer
usually from coordination issues. In addition, battery technology is
still limited and since drone-cells are equipped with battery that serves
drone’ movement and antenna transmission, energy presents a major
constraints for their deployment.

We present in this chapter a solution based on drone-cells to sup-
port macro cells of the classic cellular network during mass event when
data rate demand increases. To came up with management complex-
ity we use a multi-agent reinforcement learning approach for this dy-
namic network deployment. We also propose an enhanced joint action
selection algorithm to alleviate the coordination complexity between
drone-cells agents and also speed up the search phase of the opti-
mal joint action. Our model takes also into consideration the battery
life constraints while aiming to maximize the network service ratio.
Our solution is validated with real network traces and we provide a
benchmarking analysis. Our model based on the enhanced joint ac-
tion selection that we propose is compared with a model based on
hill climbing search algorithm. Results show that our model outper-
forms the second model not only when the rate demand is lower but
especially at peak time service.

Our model presents a better solution for network operators to man-
age their network dynamically and to provide efficiently a better QoS
for users during mass events.
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Chapter 8

Conclusions and Perspectives

8.1 Conclusions

This thesis constitutes a toolbox that consists on a collection of
frameworks and tools for the mobile network data mining in such a
manner that these frameworks complete each others. The main topic
of the thesis is centered around the idea of real mobile network datasets
analysis and network resource management and optimization. These
datasets consist of CDRs metadata that include detailed information
about users interactions with the networks. These datasets contain
also important information for our analysis such as temporal and geo-
graphic scale information of mobile users activities. Given their large
size and the fact that these are real-world datasets, information ex-
tracted from these datasets have intensively been used in this thesis to
implement new algorithms that aim to enhance the network resource
management and optimize the bandwidth allocation.

The issue with these CDR metadata is that they are provided in a
raw format and the most relevant information are hidden within the
large scale of datasets. This needs advanced tools, such as data min-
ing technique and machine learning algorithms, to extract the relevant
knowledge. In this context, we provide in this thesis a data mining
study of a real-world CDRs dataset such as D4D challenge dataset pro-
vided by Orange Senegal and the big data challenge dataset provided
by Telecom Italia. Our analysis method consists in clustering the base
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stations daily load time-series into relevant classes. We use for that
a modified k-means clustering algorithm based on the dynamic time
warping (DTW) distance. This clustering results in dividing the base
station load time-series, extracted from the D4D challenge dataset,
into three relevant classes. Each class belong to a specific base station
load profile, such as a day-peak load profile, Constant load profile and
Night-peak load profile. This first analysis phase permits to tag each
base station with its corresponding profile class. The profiled data are
used then to implement an automatic classification machine learning
based on support vector machine (SVM). The classification algorithm
allowed us to infer automatically the daily class of each base station
time-series contained into the large-scale dataset. These information
are important for network operators to propose dynamic algorithms
for radio resource allocation that follow the instantaneous load fluctu-
ation. To enhance the continuity of network services, it is important
to estimate with high confidence how the bandwidth demand on a base
station at a given time is shared among all the base stations in the
following instants. We exploit then the classification of base stations
profiles to analyze the mobility of the network bandwidth between ar-
eas. We use for this objective a novel form of the “origin-destination
matrix based on the classification. This classified OD matrix provides
aggregate information about the mobility of the load usage. In other
words, it projects the mobility of the bandwidth between areas.

The second chapter of this thesis respond to the following question:
Is it possible to use the CDRs dataset to implement an algorithm able
to predict with higher accuracy the future network load? In the con-
tinuity of the first chapter, we address this issue in this thesis and we
provide an analysis to study the characteristics of the base stations
load time-series and we propose a prediction model based on support
vector regression. Our solution is compared to other prediction tech-
niques and the results proved the high efficiency of the SVR-based
prediction model. We combine the network classification, bandwidth
mobility and load prediction algorithms into a global framework that
propose a dynamic network resource allocation techniques based on
real data analysis. We evaluate the framework in the third chapter
where we optimize the planning of a wireless mesh network proposed
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in the LCI4D project. In this chapter, we propose a MILP algorithm
that provide a dynamic and fault-tolerant planning for a wireless mesh
network that takes as input the cell load time-series resulting from the
machine learning tools presented previously.

In the continuity of the CDRs dataset analysis and the load pre-
diction, we propose in our thesis a second framework that consists
on detecting pro-actively the anomalous load patterns of the network
that may occur during mass events or network technical issues. Our
anomaly detection framework is based on One-class SVM (OCSVM)
and SVR algorithms. It is tested and validated with D4D challenge
CDR and Italia telecom datasets. Comparison results show that our
model outperforms other techniques. We use our framework to analyze
the impact of the proliferous e-health data generated by the medical
smart-phone applications.

To complete the on-line network anomalies detection framework,
we propose another framework which consists on an innovative and
dynamic network architecture based on drones-cells that is able to
support the existent network macro-cells when abnormal bandwidth
consumption occurs. Hence, we propose a dynamic solution for drone-
cells networks that exploit real traces of demand profiles, output from
the framework, and adapt in real time the deployment of drones-cell
according these demands. In this part, we propose to optimize the
deployment using the machine learning paradigm instead of classical
linear programming models. Our proposal is based on a multi-agent
reinforcement learning (MARL) approach. To provide a better MARL
system, we need an efficient algorithm for joint action selection. There-
fore, we propose a enhanced Hill Climbing search algorithm to speed
up the selection of the optimal joint action and results show that our
algorithm is much better and provide fast decision for drone-cells de-
ployment.

To conclude this work, we remind that we integrate semi-synthetic
data from our work into the network simulator NS3 and we published
the code into an open-source platform [150] so that it is available and
free-access for further research topics.
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8.2 Perspectives

In this thesis, we are aiming to provide a general methodological
process for analyzing CDR metadata and exploiting them for network
optimization purposes. From the work presented here, several major
lines of future work are available: First, we proposed a framework for
classifying automatically base station profiles and we validate it using
CDR from Dakar city. It is desirable to validate it also on traces and
CDR dataset from other cities like London, New York etc. This we
constitutes a more solid analysis study for the worldwide behavior of
users bandwidth consumption.

In the other hand, our work focuses only on CDRs datasets from
cellular networks. Therefore, we can also complete our research and
analysis with other dataset such as WiFi consumption traces, HTTP-
based datsets, social networks traces and combine them to infer a more
detailed profiles of users bandwidth consumption behaviors.

In chapter 6 we provided an analysis study for the potential impact
of eHealth data on cellular network but with used a simulated eHealth
data. As the 5G network are under standardization and constitutes a
hot topic of research, it will be interesting to enriches our datasets by
a real eHealth data from real world applications and even other IoT
applications data and D2D communications in order to prepare the
road for the deployment of 5G networks.

Moreover, in chapter 7 we propose and evaluates a solution based
on MARL for the dynamic deployment of Drone-cells networks. The
solution is based on a machine learning programming and it is worth
to evaluate it also against a linear programming solution. Linear pro-
gramming algorithms provides usually the exact solution of the opti-
mization problem but they suffers from processing time issues. Ongo-
ing works are carried on to explore this direction.

Finally, we are working in integrating the framework developed
in this thesis into a network simulator to provide researchers with a
complete toolbox for networks analysis and optimization.
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