Nanostructuration de particules de silice et élaboration de biomatériaux composites

par Dounia Dems

Thèse de doctorat en Physique et chimie des matériaux

Sous la direction de Thibaud Coradin et de Carole Aimé.

Le président du jury était Christine Ménager.

Le jury était composé de Valérie Jeanne-Rose.

Les rapporteurs étaient Sébastien Lecommandoux, Gilles Subra.


  • Résumé

    Ce travail décrit l’élaboration de biomatériaux modulables pour l’ingénierie tissulaire. L’approche composite utilisée procure de nombreux avantages pour améliorer l’adhésion cellulaire et contrôler la bioactivité en jouant sur des paramètres structuraux et fonctionnels. La matrice du composite est composée d’une macromolécule, le collagène, ou d’auto-assemblages supramoléculaires synthétiques (peptides amphiphiles). Des nanoparticules de silice fonctionnalisées y sont incorporées et jouent le rôle de plateformes capables de modifier les paramètres structuraux de la matrice et/ou d’apporter des signaux biochimiques pour créer le meilleur environnement pour les cellules. La combinaison de peptides amphiphiles et de ces nanoparticules permet de présenter un ou deux épitopes de façon homogène ou sous forme de clusters. Elle a permis de démontrer que l’organisation des signaux chimiques est essentielle à la bioactivité du matériau. Dans un deuxième temps, afin de contrôler l’organisation spatiale des ligands à la surface des nanoparticules, nous avons établi une stratégie originale utilisant des précurseurs alkoxysilanes qui s’auto-assemblent pour former des domaines transférables à la surface de la particule pour former des patches. Une bibliothèque de particules mono ou bi-fonctionnalisées a été synthétisée et incorporée dans des fils de collagène dont la modularité a été utilisée dans un modèle de régénération nerveuse périphérique. Enfin, nous avons développé un protocole pour l’électrofilage du collagène respectant son intégrité structurale afin de créer des membranes 3D fines et poreuses qui offriraient un meilleur accès des cellules aux particules.

  • Titre traduit

    Nanostructuration of silica particles and design of composite biomaterials


  • Résumé

    This work describes the design of tunable biomaterials for tissue engineering. The composite approach provides numerous advantages to enhance cell adhesion and control bioactivity by complying both with structural and functional requirements. The host matrix, made from a natural macromolecule (collagen), or from synthetic supramolecular polymers (peptide amphiphiles), provides a suitable structural environment to the cells and can also display intrinsic biochemical cues to influence cell behavior. Functionalized silica nanoparticles can be added to be used as platforms either to further tune the architecture of the scaffold or display additional bioactive ligands. The combination of peptide amphiphiles with such nanoparticles led to composite biomaterials with high modularity allowing to compare different displays of one bioactive epitope and the simultaneous grafting of two epitopes known to work in a distance-dependent manner. The next step was to achieve the control of the spatial organization of several functions on the surface of a single nanoparticle. We have developed an original and challenging strategy based on the synthesis of self-assembling alkoxysilane precursors that could form pre-organized domains to be transferred at the silica nanoparticle surface to create patches. A large library of mono- and bifunctional particles were prepared that were incorporated in collagen-based threads evaluated in a model of peripheral nerve regeneration. Finally, we have elaborated thin porous scaffolds by electrospinning collagen in non-denaturing conditions that should allow to improve the cells access to the functional nanoparticles.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Sorbonne Université. Bibliothèque des thèses électroniques.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.