Thèse soutenue

Méthodes numériques pour prédire le signal d'optique gravitationnelle comme outil pour sonder la matière dans l'Univers
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Céline Gouin
Direction : Christophe PichonRaphaël Gavazzi
Type : Thèse de doctorat
Discipline(s) : Astrophysique
Date : Soutenance le 25/09/2018
Etablissement(s) : Sorbonne université
Ecole(s) doctorale(s) : École doctorale Astronomie et astrophysique d'Île-de-France (Meudon, Hauts-de-Seine ; 1992-....)
Partenaire(s) de recherche : Laboratoire : Institut d'astrophysique de Paris (1936-....)
Jury : Président / Présidente : Michael Joyce
Examinateurs / Examinatrices : Massimo Meneghetti, Dominique Aubert
Rapporteurs / Rapporteuses : Oliver Hahn, Geneviève Soucail

Résumé

FR  |  
EN

Les relevés à venir comme Euclid, LSST et WFIRST vont nous ouvrir la perspective d’étudier l’univers profond. Pour ces grands relevés, l’astigmatisme cosmique correspond à une sonde indispensable pour étudier la nature de l’énergie noire et la matière noire. Compte tenu de la précision attendue par ces observations, nous devons faire des prédictions basées sur des simulations correspondant à l’état de l’art afin de quantifier avec précision la variance, les biais et les dégénérescences potentielles liés aux baryons. Dans ce contexte, ma thèse se focalise sur la construction d’estimateurs précis basés sur les observables de lentillage. La première partie de ma thèse consiste à caractériser la géométrie des grandes structures par astigmatisme cosmique (Gouin et al. 2017). Une décomposition multipolaire du signal est appliquée afin de quantifier la distribution azimutale de la matière noire, centrée sur les amas. Les propriétés statistiques de ces moments sont estimées à partir d’une simulation cosmologique. Les distorsions harmoniques calculées dans le voisinage des amas tracent la structure filamentaire. Un plus grand nombre de filaments semblent connectés aux amas de forte masse. Dans la dernière partie de ma thèse, je synthétise le signal d’astigmatisme cosmique dans le cône de lumière de la simulation Horizon AGN. Pour ce faire, je propage les rayons de lumière le long du cône dans l’approximation des plans de lentillage multiples. L’effet des baryons est significatif dans la statistique du cisaillement aux échelles angulaires inférieures à l’arc-minute. Le signal de cisaillement galaxie-galaxie est comparée aux observations récentes, et semble être en bon accord.