Thèse soutenue

Etude multi-échelle des propriétés élastiques de l'os cortical humain mesurée par spectroscopie par ultrasons résonants
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Xiran Cai
Direction : Pascal LaugierQuentin Grimal
Type : Thèse de doctorat
Discipline(s) : Acoustique physique
Date : Soutenance le 19/06/2018
Etablissement(s) : Sorbonne université
Ecole(s) doctorale(s) : École doctorale Sciences mécaniques, acoustique, électronique et robotique de Paris
Partenaire(s) de recherche : Laboratoire : Laboratoire d'imagerie biomédicale (Paris ; 2014-....)
Jury : Président / Présidente : Françoise Peyrin
Examinateurs / Examinatrices : Harry Van Lenthe, Renald Brenner
Rapporteurs / Rapporteuses : Rachel Allena, Cédric Payan

Résumé

FR  |  
EN

L’os présente la propriété remarquable de s’adapter à son environnement et s’est forgé au cours de l’évolution des caractéristiques exceptionnelles qui fascinent les scientifiques mais aussi les ingénieurs : léger mais d’une rigidité à toute épreuve, une capacité de résistance à la fracture hors norme tout en gardant une certaine flexibilité. Ces propriétés mécaniques de l’os sont l’œuvre d’une optimisation de sa composition et d’une structure fortement hiérarchisée et organisée en multiples niveaux allant de l'échelle nanométrique à l'échelle macroscopique. L’amélioration de la prise en charge des maladies osseuses, l’optimisation des implants orthopédiques et la conception de nouveaux matériaux bio-inspirés passent par une connaissance approfondie des multiples facteurs qui déterminent les propriétés mécaniques de l’os. Dans ce travail, nous mettons l’accent sur les propriétés élastiques de l'os cortical humain à la fois aux échelles millimétrique et micrométrique. Nous avons caractérisé l’élasticité (à l’échelle mésoscopique), la composition et la microstructure de l’os cortical, à partir d’échantillons de fémur, tibia et radius prélevés sur des donneurs âgés, à l’aide d’une batterie de tests expérimentaux comportant des mesures en résonance ultrasonore spectroscopique, micro-tomographie par rayonnement synchrotron, microscopie infrarouge à transformée de Fourier et analyse biochimique. Ces mesures mettent à jour le rôle prépondérant joué par la porosité et le degré de minéralisation dans la détermination de l’élasticité et suffisent à eux seuls à en expliquer les variations. En particulier, les caractéristiques de la microstructure, comme la forme des pores, leur nombre, taille ou connectivité ne semblent pas avoir d’effets mesurables sur l’élasticité à l’échelle mésoscopique. Dans un second temps, une nouvelle approche d’homogénéisation inverse introduite dans cette thèse a permis l’estimation du tenseur des coefficients élastiques de la matrice osseuse à l’échelle microscopique. Connaissant l’élasticité de la matrice, nous avons évalué la gamme des microdéformations qui se produisent localement en réponse à des contraintes physiologiques. Les microdéformations étant à l’origine des signaux qui déclenchent la réponse des cellules mécanosensibles, ce dernier résultat devrait contribuer à une meilleure compréhension du comportement mécanique osseux au niveau microscopique. En conclusion, ce travail de thèse a permis l’obtention d’une base de données unique sur les caractéristiques élastiques de l’os cortical humain et la caractérisation des relations qui existent entre l’élasticité, la microstructure et la composition.