Thèse soutenue

Analyse de l'hystérésis de courant-tension et des caractéristiques de vieillissement pour les cellules solaires à couche mince de perovskite à base de CH3NH3PbI3-xClx

FR  |  
EN
Auteur / Autrice : Heejae Lee
Direction : Yvan Bonnassieux
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 24/01/2018
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Interfaces : matériaux, systèmes, usages (Palaiseau, Essonne ; 2015-....)
Partenaire(s) de recherche : Établissement opérateur d'inscription : École polytechnique (Palaiseau, Essonne ; 1795-....)
Laboratoire : Laboratoire de physique des interfaces et des couches minces (Palaiseau, Essonne) - Commissariat à l'énergie atomique et aux énergies alternatives (France)
Jury : Président / Présidente : Emmanuelle Deleporte
Examinateurs / Examinatrices : Yvan Bonnassieux, Patrick Chapon, Philippe Lang, Bernard Geffroy, Ruediger Berger
Rapporteurs / Rapporteuses : Jef Poortmans, Johann Bouclé

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Les perovskites organiques-inorganiques en halogénures de plomb sont des matériaux très prometteurs pour la prochaine génération de cellules solaires avec des avantages intrinsèques tels que leur faible coût de fabrication (grande disponibilité des matériaux de base et leur mise en œuvre à basse température) et leur bon rendement de conversion photovoltaïque. Cependant, les cellules solaires pérovskites sont encore instables et montrent des effets d'hystérésis courant-tension délétères. Dans cette thèse, des résultats de l’analyse physique de couches minces de pérovskite à base de CH3NH3PbI3-xClx et de cellules solaires ont été présentés. Les caractéristiques de transport électrique et les processus de vieillissement ont été étudiés avec différentes approches.Dans une première étape, la synthèse du matériau pérovskite a été optimisée en contrôlant les conditions de dépôt des films en une seule étape telles que la vitesse de rotation (6000 rpm) de la tournette et la température de recuit des films (80 °C). Dans un second temps, des cellules solaires perovskites à base de CH3NH3PbI3-xClx ont été fabriquées en utilisant la structure planaire inversée et caractérisées optiquement et électriquement.Grace à l’utilisation de la spectroscopie optique à décharge luminescente (GDOES), un déplacement des ions halogénures a été observé expérimentalement et de façon directe sous l’application d’une tension électrique. Une longueur de diffusion ionique de 140 nm et un rapport de 65% d'ions mobiles ont été déduits. Il est montré que l'hystérésis courant-tension dans l'obscurité est fortement affectée par la migration des ions halogénures provoquant un écrantage substantiel du champ électrique appliqué. Nous avons donc trouvé sous obscurité un décalage de la tension à courant nul jusque 0,25 V et un courant de fuite jusque 0,1 mA / cm2 en fonction des conditions de mesure. Grâce aux courbes courant-tension en fonction de la température, nous avons déterminé la température de transition de la conductivité ions/électrons à 260K et analysé les résultats expérimentaux en utilisant l'équation de Nernst- Einstein donnant une énergie d'activation de 0.253 eV pour les ions mobiles.Enfin, le processus de vieillissement de la cellule solaire a été étudié avec des mesures optiques et électriques. Nous avons déduit que le processus de vieillissement apparaît d'abord à la surface des cristaux de pérovskite ainsi qu’aux joints de grains. Les mesures GDOES nous indiquent que les caractéristiques électriques des cellules pérovskites sont perdues par une corrosion progressive de l'électrode supérieure en argent causée par la diffusion des ions iodures.