Thèse soutenue

Vers l'efficacité et la sécurité du chiffrement homomorphe et du cloud computing

FR  |  
EN
Auteur / Autrice : Ilaria Chillotti
Direction : Louis GoubinNicolas Gama
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 17/05/2018
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences et technologies de l'information et de la communication (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de Mathématiques de Versailles
établissement opérateur d'inscription : Université de Versailles-Saint-Quentin-en-Yvelines (1991-....)
Jury : Président / Présidente : Renaud Sirdey
Examinateurs / Examinatrices : Jean Sébastien Coron, Caroline Fontaine, Vanessa Vitse, Pascal Paillier
Rapporteurs / Rapporteuses : Damien Stehlé, Daniele Micciancio

Résumé

FR  |  
EN

Le chiffrement homomorphe est une branche de la cryptologie, dans laquelle les schémas de chiffrement offrent la possibilité de faire des calculs sur les messages chiffrés, sans besoin de les déchiffrer. L’intérêt pratique de ces schémas est dû à l’énorme quantité d'applications pour lesquels ils peuvent être utilisés. En sont un exemple le vote électronique, les calculs sur des données sensibles, comme des données médicales ou financières, le cloud computing, etc..Le premier schéma de chiffrement (complètement) homomorphe n'a été proposé qu'en 2009 par Gentry. Il a introduit une technique appelée bootstrapping, utilisée pour réduire le bruit des chiffrés : en effet, dans tous les schémas de chiffrement homomorphe proposés, les chiffrés contiennent une petite quantité de bruit, nécessaire pour des raisons de sécurité. Quand on fait des calculs sur les chiffrés bruités, le bruit augmente et, après avoir évalué un certain nombre d’opérations, ce bruit devient trop grand et, s'il n'est pas contrôlé, risque de compromettre le résultat des calculs.Le bootstrapping est du coup fondamental pour la construction des schémas de chiffrement homomorphes, mais est une technique très coûteuse, qu'il s'agisse de la mémoire nécessaire ou du temps de calcul. Les travaux qui on suivi la publication de Gentry ont eu comme objectif celui de proposer de nouveaux schémas et d’améliorer le bootstrapping pour rendre le chiffrement homomorphe faisable en pratique. L’une des constructions les plus célèbres est GSW, proposé par Gentry, Sahai et Waters en 2013. La sécurité du schéma GSW se fonde sur le problème LWE (learning with errors), considéré comme difficile en pratique. Le bootstrapping le plus rapide, exécuté sur un schéma de type GSW, a été proposé en 2015 par Ducas et Micciancio. Dans cette thèse on propose une nouvelle variante du schéma de chiffrement homomorphe de Ducas et Micciancio, appelée TFHE.Le schéma TFHE améliore les résultats précédents, en proposant un bootstrapping plus rapide (de l'ordre de quelques millisecondes) et des clés de bootstrapping plus petites, pour un même niveau de sécurité. TFHE utilise des chiffrés de type TLWE et TGSW (scalaire et ring) : l’accélération du bootstrapping est principalement due à l’utilisation d’un produit externe entre TLWE et TGSW, contrairement au produit externe GSW utilisé dans la majorité des constructions précédentes.Deux types de bootstrapping sont présentés. Le premier, appelé gate bootstrapping, est exécuté après l’évaluation homomorphique d’une porte logique (binaire ou Mux) ; le deuxième, appelé circuit bootstrapping, peut être exécuté après l’évaluation d’un nombre d'opérations homomorphiques plus grand, pour rafraîchir le résultat ou pour le rendre compatible avec la suite des calculs.Dans cette thèse on propose aussi de nouvelles techniques pour accélérer l’évaluation des calculs homomorphiques, sans bootstrapping, et des techniques de packing des données. En particulier, on présente un packing, appelé vertical packing, qui peut être utilisé pour évaluer efficacement des look-up table, on propose une évaluation via automates déterministes pondérés, et on présente un compteur homomorphe appelé TBSR qui peut être utilisé pour évaluer des fonctions arithmétiques.Pendant les travaux de thèse, le schéma TFHE a été implémenté et il est disponible en open source.La thèse contient aussi des travaux annexes. Le premier travail concerne l’étude d’un premier modèle théorique de vote électronique post-quantique basé sur le chiffrement homomorphe, le deuxième analyse la sécurité des familles de chiffrement homomorphe dans le cas d'une utilisation pratique sur le cloud, et le troisième ouvre sur une solution différente pour le calcul sécurisé, le calcul multi-partite.