Thèse soutenue

Analyse expérimentale et modélisation du comportement faiblement magnétostrictif de l'alliage Fe-27%Co

FR  |  
EN
Auteur / Autrice : Maxime Savary
Direction : Anne-Laure Helbert
Type : Thèse de doctorat
Discipline(s) : Chimie
Date : Soutenance le 19/12/2018
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences chimiques : molécules, matériaux, instrumentation et biosystèmes (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Institut de chimie moléculaire d'Orsay. Laboratoire de synthèse de biomolécules
Entreprise : Aperam
Jury : Examinateurs / Examinatrices : Anne-Laure Helbert, Eric Hug, Benjamin Ducharne, Afef Kedous-Lebouc, Nicolas Buiron, Thierry Baudin, Olivier Hubert
Rapporteurs / Rapporteuses : Eric Hug, Benjamin Ducharne

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Dans le contexte du « Tout Electrique », les fabricants de l’aéronautique cherchent à augmenter la puissance embarquée tout en limitant la masse de ces dispositifs électriques. Une des solutions envisagées est d’augmenter la densité de flux magnétique des matériaux magnétiques de ces appareils. L’inconvénient de l’emploi de ces matériaux réside dans leurs déformations sous l’effet du champ magnétique. Dans le cas des noyaux magnétiques de transformateurs, ceux-ci sont composés d’un empilement d’une centaine de tôles magnétiques d’épaisseur variant entre 0,2 et 0,5mm. La déformation successive des tôles du transformateur est à l’origine d’un bruit acoustique indésirable. La source principale de ces déformations est la magnétostriction qui provient du réarrangement sous champ magnétique de la structure en domaines du matériau. Dans le cadre de ces travaux de thèse, nous nous intéressons à l’alliage Fe-27%Co produit par la société APERAM Alloys Imphy, commercialement appelé AFK1. Le choix de cet alliage provient du fait qu’il présente une aimantation à saturation la plus élevée de tous les matériaux ferromagnétiques (2,4T). Son emploi permettrait alors un gain certain de densité de puissance. Selon une gamme métallurgique particulière, l’AFK1 présente une basse magnétostriction isotrope, qui s’illustre par une déformation nulle jusqu’à 1,5T puis par une déformation à saturation de l’ordre de 10ppm. L’objectif principal de ces travaux de thèse consiste à déterminer l’origine d’un tel comportement et les mécanismes associés. Les résultats expérimentaux montrent que les conditions de traitements thermiques semblent avoir un effet sur le comportement magnétostrictif. On montre par ailleurs que la magnétostriction est indépendante de l’orientation cristallographique de l’AFK1. Des essais de magnétostriction sous contrainte mécanique ont permis de supposer que l’AFK1 disposait d’une structure en domaines principalement composée de parois à 180°. La mise en place de cette structure a pu être confirmée par microscopie magnéto-optique (effet Kerr). Afin de mieux comprendre l’origine de l’orientation des domaines dans le matériau, l’influence de la géométrie d’échantillon sur le comportement magnétostrictif a également été étudiée au cours de ces travaux de thèse. Une modélisation du comportement faiblement magnétostrictif a finalement été proposée par le biais d’une approche multi-échelle. Le modèle met en évidence la nécessité de considérer une proportion non négligeable de domaines séparés par des parois à 180° pour restituer la basse magnétostriction de l’AFK1.