Thèse soutenue

Représentations de monoïdes et structures de treillis en combinatoire des groupes de Weyl.

FR  |  
EN
Auteur / Autrice : Joël Gay
Direction : Florent Hivert
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 25/06/2018
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences et technologies de l'information et de la communication (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de recherche en informatique (Orsay, Essonne ; 1998-2020) - Laboratoire d'informatique de l'École polytechnique (Palaiseau, Essonne)
Jury : Président / Présidente : Marc Baboulin
Examinateurs / Examinatrices : Florent Hivert, Marc Baboulin, Nantel Bergeron, Riccardo Biagioli, Vincent Pilaud, Viviane Pons, Jean-Christophe Novelli, Patrick Dehornoy
Rapporteurs / Rapporteuses : Nantel Bergeron, Riccardo Biagioli

Résumé

FR  |  
EN

La combinatoire algébrique est le champ de recherche qui utilise des méthodes combinatoires et des algorithmes pour étudier les problèmes algébriques, et applique ensuite des outils algébriques à ces problèmes combinatoires. L’un des thèmes centraux de la combinatoire algébrique est l’étude des permutations car elles peuvent être interprétées de bien des manières (en tant que bijections, matrices de permutations, mais aussi mots sur des entiers, ordre totaux sur des entiers, sommets du permutaèdre…). Cette riche diversité de perspectives conduit alors aux généralisations suivantes du groupe symétrique. Sur le plan géométrique, le groupe symétrique engendré par les transpositions élémentaires est l’exemple canonique des groupes de réflexions finis, également appelés groupes de Coxeter. Sur le plan monoïdal, ces même transpositions élémentaires deviennent les opérateurs du tri par bulles et engendrent le monoïde de 0-Hecke, dont l’algèbre est la spécialisation à q=0 de la q-déformation du groupe symétrique introduite par Iwahori. Cette thèse se consacre à deux autres généralisations des permutations. Dans la première partie de cette thèse, nous nous concentrons sur les matrices de permutations partielles, en d’autres termes les placements de tours ne s’attaquant pas deux à deux sur un échiquier carré. Ces placements de tours engendrent le monoïde de placements de tours, une généralisation du groupe symétrique. Dans cette thèse nous introduisons et étudions le 0-monoïde de placements de tours comme une généralisation du monoïde de 0-Hecke. Son algèbre est la dégénérescence à q=0 de la q-déformation du monoïde de placements de tours introduite par Solomon. On étudie par la suite les propriétés monoïdales fondamentales du 0-monoïde de placements de tours (ordres de Green, propriété de treillis du R-ordre, J-trivialité) ce qui nous permet de décrire sa théorie des représentations (modules simples et projectifs, projectivité sur le monoïde de 0-Hecke, restriction et induction le long d’une fonction d’inclusion).Les monoïdes de placements de tours sont en fait l’instance en type A de la famille des monoïdes de Renner, définis comme les complétés des groupes de Weyl (c’est-à-dire les groupes de Coxeter cristallographiques) pour la topologie de Zariski. Dès lors, dans la seconde partie de la thèse nous étendons nos résultats du type A afin de définir les monoïdes de 0-Renner en type B et D et d’en donner une présentation. Ceci nous conduit également à une présentation des monoïdes de Renner en type B et D, corrigeant ainsi une présentation erronée se trouvant dans la littérature depuis une dizaine d’années. Par la suite, nous étudions comme en type A les propriétés monoïdales de ces nouveaux monoïdes de 0-Renner de type B et D : ils restent J-triviaux, mais leur R-ordre n’est plus un treillis. Cela ne nous empêche pas d’étudier leur théorie des représentations, ainsi que la restriction des modules projectifs sur le monoïde de 0-Hecke qui leur est associé. Enfin, la dernière partie de la thèse traite de différentes généralisations des permutations. Dans une récente séries d’articles, Châtel, Pilaud et Pons revisitent la combinatoire algébrique des permutations (ordre faible, algèbre de Hopf de Malvenuto-Reutenauer) en terme de combinatoire sur les ordres partiels sur les entiers. Cette perspective englobe également la combinatoire des quotients de l’ordre faible tels les arbres binaires, les séquences binaires, et de façon plus générale les récents permutarbres de Pilaud et Pons. Nous généralisons alors l’ordre faibles aux éléments des groupes de Weyl. Ceci nous conduit à décrire un ordre sur les sommets des permutaèdres, associaèdres généralisés et cubes dans le même cadre unifié. Ces résultats se basent sur de subtiles propriétés des sommes de racines dans les groupes de Weyl qui s’avèrent ne pas fonctionner pour les groupes de Coxeter qui ne sont pas cristallographiques