Thèse soutenue

Détection de ruptures multiples – application aux signaux physiologiques.

FR  |  
EN
Auteur / Autrice : Charles Truong
Direction : Nicolas VayatisLaurent Oudre
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées
Date : Soutenance le 29/11/2018
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale de mathématiques Hadamard (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : École normale supérieure Paris-Saclay (Gif-sur-Yvette, Essonne ; 1912-....)
Laboratoire : Centre de mathématiques et de leurs applications (1990-2019 ; Cachan, Val-de-Marne)
Jury : Président / Présidente : Patrick Gallinari
Examinateurs / Examinatrices : Nicolas Vayatis, Laurent Oudre, Céline Lévy-Leduc
Rapporteurs / Rapporteuses : Fabrice Rossi, Zaid Harchaoui

Résumé

FR  |  
EN

Ce travail s’intéresse au problème de détection de ruptures multiples dans des signaux physiologiques (univariés ou multivariés). Ce type de signaux comprend par exemple les électrocardiogrammes (ECG), électroencéphalogrammes (EEG), les mesures inertielles (accélérations, vitesses de rotation, etc.). L’objectif de cette thèse est de fournir des algorithmes de détection de ruptures capables (i) de gérer de long signaux, (ii) d’être appliqués dans de nombreux scénarios réels, et (iii) d’intégrer la connaissance d’experts médicaux. Par ailleurs, les méthodes totalement automatiques, qui peuvent être utilisées dans un cadre clinique, font l’objet d’une attention particulière. Dans cette optique, des procédures robustes de détection et des stratégies supervisées de calibration sont décrites, et une librairie Python open-source et documentée, est mise en ligne.La première contribution de cette thèse est un algorithme sous-optimal de détection de ruptures, capable de s’adapter à des contraintes sur temps de calcul, tout en conservant la robustesse des procédures optimales. Cet algorithme est séquentiel et alterne entre les deux étapes suivantes : une rupture est détectée, puis retranchée du signal grâce à une projection. Dans le cadre de sauts de moyenne, la consistance asymptotique des instants estimés de ruptures est démontrée. Nous prouvons également que cette stratégie gloutonne peut facilement être étendue à d’autres types de ruptures, à l’aide d’espaces de Hilbert à noyau reproduisant. Grâce à cette approche, des hypothèses fortes sur le modèle génératif des données ne sont pas nécessaires pour gérer des signaux physiologiques. Les expériences numériques effectuées sur des séries temporelles réelles montrent que ces méthodes gloutonnes sont plus précises que les méthodes sous-optimales standards et plus rapides que les algorithmes optimaux.La seconde contribution de cette thèse comprend deux algorithmes supervisés de calibration automatique. Ils utilisent tous les deux des exemples annotés, ce qui dans notre contexte correspond à des signaux segmentés. La première approche apprend le paramètre de lissage pour la détection pénalisée d’un nombre inconnu de ruptures. La seconde procédure apprend une transformation non-paramétrique de l’espace de représentation, qui améliore les performances de détection. Ces deux approches supervisées produisent des algorithmes finement calibrés, capables de reproduire la stratégie de segmentation d’un expert. Des résultats numériques montrent que les algorithmes supervisés surpassent les algorithmes non-supervisés, particulièrement dans le cas des signaux physiologiques, où la notion de rupture dépend fortement du phénomène physiologique d’intérêt.Toutes les contributions algorithmiques de cette thèse sont dans "ruptures", une librairie Python open-source, disponible en ligne. Entièrement documentée, "ruptures" dispose également une interface consistante pour toutes les méthodes.