Thèse soutenue

Accélérations algorithmiques pour la simulation numérique d’impacts de vagues. Modèles de type "roofline" pour la caractérisation des performances, application à la CFD

FR  |  
EN
Auteur / Autrice : Ahmed Amine Mrabet
Direction : Jean-Michel GhidagliaPhilippe Thierry
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées
Date : Soutenance le 15/05/2018
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale de mathématiques Hadamard (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : École normale supérieure Paris-Saclay (Gif-sur-Yvette, Essonne ; 1912-....)
Laboratoire : Centre de mathématiques et de leurs applications (1990-2019 ; Cachan, Val-de-Marne)
Jury : Président / Présidente : Vianney Perchet
Examinateurs / Examinatrices : Jean-Michel Ghidaglia, Philippe Thierry, Vianney Perchet, Christophe Calvin, Fayssal Benkhaldoun, Joris Costes, Laurent Brosset, Daniel Bouche
Rapporteurs / Rapporteuses : Christophe Calvin, Fayssal Benkhaldoun, Christophe Calvin

Résumé

FR  |  
EN

Au cours de ces dernières années les processeurs sont devenus de plus en plus complexes (plusieurs niveaux de cache, vectorisation,...), l’augmentation de la complexité fait que l’étude des performances et les optimisations sont eux aussi devenus de plus en plus complexes et difficiles à comprendre. Donc développer un outil de caractérisation simple et facile d’utilisation des performances d’applications, serait de grande valeur. Le Modèle Roofline [17] promet un début de réponse à ces critères, mais reste insuffisant pour une caractérisation robuste et détaillée. Dans la première partie de cette thèse, Nous allons développer plusieurs versions améliorées du Roofline, robustes et précises, en passant par une version du Roofline en fonction du temps, des blocs et enfin la nouvelle version du Roofline introduite dans la suite de caractérisation Vtune d’Intel. Pour valider ces modèles, nous utilisons le benchmark LINPACK, STREAM ainsi qu’une mini-application développée au cours de cette thèse, qui résout l’équation de l’advection et qui servira de prototype pour l’évaluation de codes hydrodynamiques explicites. Nous portons aussi cette mini-application sur les co-processeurs d’Intel Xeon Phi KNL et KNC. Dans la deuxième partie de cette thèse nous nous intéressons à la simulation d’impact de vagues, à l’aide de codes industriels compressibles et incompressibles. Nous rajoutons plusieurs fonctionnalités dans le code compressible FluxIC, nous effectuons un chaînage de codes incompressible et compressible et enfin nous introduisons un nouveau schéma numérique appelé liquide incompressible et gaz quasi-compressible, qui permet de réaliser une simulation d’impact d’une vague via un code incompressible avec une correction compressible dans les zones où la compressibilité du gaz est importante.