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patience à toute épreuve et pour la confiance qu’il m’a accordé.
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cette thèse. Merci également à Mr Maurice Baudry, Administrateur Système et
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Résumé

Depuis la dernière décennie, le développement rapide des technologies de génotypage
a profondément modifié la façon dont les gènes impliqués dans les troubles mendéliens
et les maladies complexes sont cartographiés, passant d’approches gènes candidats
aux études d’associations pan-génomique, ou Genome-Wide Association Studies
(GWAS). Ces études visent à identifier, au sein d’échantillons d’individus non appar-
entés, des marqueurs génétiques impliqués dans l’expression de maladies complexes.
Ces études exploitent le fait qu’il est plus facile d’établir, à partir de la population
générale, de grandes cohortes de personnes affectées par une maladie et partageant
un facteur de risque génétique qu’au sein d’échantillons apparentés issus d’une même
famille, comme c’est le cas dans les études familiales traditionnelles.

D’un point de vue statistique, l’approche standard est basée sur le test d’hypothèse:
dans un échantillon d’individus non apparentés, des individus malades sont testés
contre des individus sains à un ou plusieurs marqueurs. Cependant, à cause de
la grande dimension des données, ces procédures de tests classiques sont souvent
sujettes à des faux positifs, à savoir des marqueurs faussement identifiés comme
étant significatifs. Une solution consiste à appliquer une correction sur les p-valeurs
obtenues afin de diminuer le seuil de significativité, augmentant en contrepartie le
risque de manquer des associations n’ayant qu’un effet faible sur le phénotype.

De plus, bien que cette approche ait réussi à identifier des marqueurs génétiques
associés à des maladies multi-factorielles complexes (maladie de Crohn, diabète I et
II, maladie coronarienne,), seule une faible proportion des variations phénotypiques
attendues des études familiales classiques a été expliquée. Cette héritabilité man-
quante peut avoir de multiples causes parmi les suivantes: fortes corrélations entre
les variables génétiques, structure de la population, épistasie (interactions entre
gènes), maladie associée aux variants rares,. . .

Les principaux objectifs de cette thèse sont de développer de nouvelles méthodes
statistiques pouvant répondre à certaines des limitations mentionnées ci-dessus.
Plus précisément, deux nouvelles approches ont été développées: la première ex-
ploite la structure de corrélation entre les marqueurs génétiques afin d’améliorer la
puissance de détection dans le cadre des tests d’hypoths̀es tandis que la seconde est
adaptée à la détection d’interactions statistiques entre marqueurs métagénomiques
et génétiques permettant une meilleure compréhension de la relation complexe entre
environnement et génome sur l’expression d’un caractère.
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Abstract

Since the last decade, the rapid advances in genotyping technologies have changed
the way genes involved in mendelian disorders and complex diseases are mapped,
moving from candidate genes approaches to linkage disequilibrium mapping. In
this context, Genome-Wide Associations Studies (GWAS) aim at identifying genetic
markers implied in the expression of complex disease, those occurring at different
frequencies between unrelated samples of affected individuals and unaffected con-
trols. These studies exploit the fact that it is easier to establish, from the general
population, large cohorts of affected individuals sharing a genetic risk factor for
a complex disease than within individual families, as it is the case in traditional
linkage analysis.

From a statistical point of view, the standard approach in GWAS is based on hy-
pothesis testing, with affected individuals being tested against healthy individuals
at one or more markers. However, classical testing schemes are subject to false pos-
itives, that is markers that are falsely identified as significant. One way around this
problem is to apply a correction on the p-values obtained from the tests, increasing
in return the risk of missing true associations that have only a small effect on the
phenotype, which is usually the case in GWAS.

Although GWAS have been successful in the identification of genetic variants as-
sociated with complex multifactorial diseases (Crohn’s disease, diabetes I and II,
coronary artery disease,) only a small proportion of the phenotypic variations ex-
pected from classical family studies have been explained. This missing heritability
may have multiple causes amongst the following: strong correlations between ge-
netic variants, population structure, epistasis (gene by gene interactions), disease
associated with rare variants,. . .

The main objectives of this thesis are thus to develop new methodologies that can
face part of the limitations mentioned above. More specifically we developed two
new approaches: the first one is a block-wise approach for GWAS analysis which
leverages the correlation structure among the genomic variants to improve statistical
power in the context of univariate hypothesis testing while the second focuses on
the detection of interactions between groups of metagenomic and genetic markers
to better understand the complex relationship between environment and genome in
the expression of a given phenotype.
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General introduction

Background

The foundations of modern genetics laid down in Johann Gregor Mendel’s pio-
neering work have resulted in the understanding that certain hereditary traits can
exist in different versions (alleles), introducing the notion of homozygosity and
heterozygosity. It paved the way for the comprehension of heredity mechanisms
with the establishment of the first genetic maps by Thomas Hunt Morgan and the
definition of genetic heritability by Ronald Fisher which suggests that the expres-
sion of a trait (phenotype) is subject to both genetic and environmental factors.
These groundbreaking works led to the linkage analysis studies whose purpose is
to map genes involved in the expression of diseases. These approaches, effective in
locating genes involved in the expression of a simple qualitative trait, have proven
less reliable in mapping complex diseases. Indeed, there may be multiple inter-
action between genes underlying these phenotypes and the effects of these genes
may vary with exposure to environmental and other non-genetic risk factors.

These limitations have driven the development of another discipline: Genome-
Wide Associations Studies (GWAS). These studies aim to identify single nucleotide
polymorphisms (SNP), i.e. genetic markers that occur at different frequencies
between unrelated samples of affected individuals and unaffected controls, implied
in the expression of a given phenotype. These studies exploit the fact that it is
easier to establish large cohorts of affected individuals sharing a genetic risk factor
for a complex disease in the general population than within individual families, as
it is the case with traditional linkage analysis.

In addition, recent advances in genotyping technology have made it possible to
genotype the entire DNA sequence of an individual at a moderate cost and within a
reasonable time. Therefore, it became necessary to develop new statistical methods
able to process this type of massive data.

Problematic

From a statistical point of view, looking for these genetic markers can be supported
by hypothesis testing. The standard approach in GWAS is based on univariate
linear regression, with affected individuals being tested against healthy individuals
at one or more loci. Classical testing schemes are subject to false positives, that is
SNP that are falsely identified as significant. One way around this problem is to
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apply a correction for the False Discovery Rate [FDR, Benjamini and Hochberg,
1995]. Unfortunately, this increases the risk of missing true associations that have
only a small effect on the phenotype, which is usually the case in GWAS.

Although GWAS have been successful in the identification of genetic variants as-
sociated with complex multifactorial diseases (Crohn’s disease, diabetes I and II,
coronary artery disease. . . [WTCCC, 2007]), only a small proportion of the pheno-
typic variations expected from classical family studies have been explained [Mano-
lio and Visscher, 2009]. This missing heritability may have multiple causes amongst
the following: strong correlations between genetic variants, population structure,
epistasis (gene by gene interactions), disease associated with rare variants. . .

Objectives

The main objectives of this thesis are to develop new methodologies, in the context of
GWAS, that can face part of the limitations mentioned above. More specifically we
developed two new approaches: the first one, entitled LEOS, is a blockwise approach
for GWAS analysis which leverages the correlation structure among the genomic
variants to reduce the number of statistical hypotheses to be tested, while the second,
named SICOMORE, focuses on the detection of interactions between groups of
metagenomic and genetic markers to better understand the complex relationship
between environment and genome in the expression of a given phenotype.

Contributions

This thesis work gave rise to the writing of two scientific articles, one for each
methodology. The method LEOS described in Chapter 4 is under minor review in
the journal BMC bioinformatics while the method SICOMORE described in Chapter
5 has been published as an article of a national conference (50th Journées de la
statistique) but the extended version was still in a preprint status at the time this
manuscript was written.

The proposed methods have been implemented in computer programs: LEOS is
proposed as a webserver tool while SICOMORE is available through an R package
(a vignette, added at the end of the manuscript, is available for this package).

This work has also led to several oral communications and poster presentations in
the following conferences:

– Statistical Methods for Post Genomic Data in 2017 (poster presentation LEOS)

– International Society for Computational Biology conference in 2017 (poster
presentation LEOS)

– Statistical Methods in Biopharmacy in 2017 (oral presentation LEOS).

– Journées de statistique in 2018 (oral presentation SICOMORE)
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Contents of the manuscript

This manuscript is composed of five different chapters. The first three chapters
will focus on the genetic, statistical and GWAS context while our two proposed
methodologies will be presented in chapters 4 and 5. Chapter 1 will remind the
genetic precepts fundamental to the understanding of our work while Chapter 2 will
introduce the concept of statistical learning and Chapter 3 will provide an extensive
introduction to GWAS by presenting some state-of-the-art statistical methods. We
will also discuss the results obtained on our proposed approaches at the end of
chapters 4 and 5 before providing a general conclusion in a last section.
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Chapter 1

Genetic context

The purpose of this chapter is to provide the basic concepts in genetics necessary
to the understanding of the Genome-Wide Associations Studies. The first section
focuses on the description of the genome, sequencing analysis and introduces the
notion of genetic mapping. The second section brings some concepts in population
genetics necessary to a good understanding of linkage disequilibrium and associa-
tion studies. The last section gives the definition of linkage disequilibrium and its
origins. This section also explains the notion of haplotype structure, which is a key
feature of the human genome that we leveraged with the methodology described
in Chapter 4.
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1.1 Basic concepts of molecular genetics

1.1.1 Genome description

The common point to all organisms is to own a genome containing the biological in-
formation necessary to their construction, maintenance and survival. Most genomes
are made of DNA (deoxyribonucleic acid), with the exception of viruses that have
an RNA (ribonucleic acid) genome. DNA and RNA are both polymeric molecules
composed of chains of monomeric subunits called nucleotides.

The human genome, which is representative of the genomes of all multicellular ani-
mals, consists of two parts:

– The nuclear genome including about 3.2×109 nucleotides of DNA divided into
24 linear molecules, the chromosomes. These 24 chromosomes consist of 22
autosomes and two sex chromosomes, X and Y.

– The mitochondrial genome is a circular DNA molecule present in multiple
copies in the organelles called mitochondria. The human mitochondrial genome
contains 37 genes.

In the animalia taxon, the vast majority of cells are diploid which means that each
autosome are present in two copies plus two sex chromosomes, XX for females and
XY for males. These cells are known as somatic cells in contrast to sex cells, or
gametes, which are haploid and possess only one copy of each chromosome. The
use of the biological information contained in the DNA requires the coordinated
action of several proteins participating in a series of complex biochemical reactions
referred to as genome expression. The direct product of genome expression is the
transcriptome, a collection of RNA molecules derived from the protein-coding genes.
The transcriptome is maintained by the process of transcription, in which individual
genes are copied into RNA molecules. The indirect product of genome expression
is the proteome, the cell’s collection of proteins. The proteins constituting the
proteome are synthesized by translation of the individual RNA molecules present in
the transcriptome.

DNA is a polymer, a polynucleotide, in which the monomeric subunits are four
chemically distinct nucleotides linked together in chains that can reach length of
thousands, even millions of units in length (Figure 1.1). Each nucleotide in a DNA
polymer is made up of three components: a deoxyribose, which is a pentose, a
nitrogenous base (cytosine, thymine, adenine or guanine) and a phosphate group.
A molecule made up of just the pentose and base is called a nucleoside and adding
a phosphate group converts it into a nucleotide.

What makes DNA such a unique molecule is its famous double-helix structure dis-
covered by Crick and Watson [1954]. The key feature of the double-helix structure
that convinced biologists that genes are made of DNA is the constrained base pairing
between the nucleotides. Indeed, the limitation that adenosine can only be paired
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Figure 1.1: Double-Helix
structure of DNA molecule.
c©University of Leicester /

Licence Creative commons

with thymine, and guanine with cytosine, means that DNA replication can result in
perfect copies of a parent molecule simply by using the sequences of the pre-existing
strands to build the sequences of the new strands.

1.1.2 Genome sequencing

DNA sequencing

Several methods for DNA sequencing exist, among them the chain termination
method first developed by Sanger et al. [1977] is the most popular but alterna-
tive techniques such as chemical degradation sequencing [Maxam and Gilbert, 1977]
and pyrosequencing [Nyrén et al., 1993] are also used.

Chain termination method is based on the principle that single-stranded DNA
molecules that differ in length by just a single nucleotide can be separated by poly-
acrylamide gel electrophoresis∗. This procedure is illustrated and explained in Figure
1.2.

Pyrosequencing is a method generally used for the rapid determination of very short
sequence of DNA and does not required electrophoresis or any fragment separation
procedure as with chemical degradation sequencing. Since it can only generate a
few tens of base pairs per experiment, it is used when many short sequences must
be generated as fast as possible, for instance in single-nucleotide polymorphism
typing. With this technique, the template is copied in a straightforward manner
without added ddNTP and, as the new strand is being made, the order in which the
deoxynucleotide are incorporated can be followed (see Figure 1.3 for more details).

∗Polyacrylamide gel electrophoresis (PAGE) is a technique widely used in genetics to separate
biological macromolecules, sush as nucleic acids, according to their electrophoretic mobility.
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(D) 

(E) 

Figure 1.2: Chain termination DNA sequencing [Brown et al., 2007]. (A)
Use of universal primers for the synthesis of DNA complementary of a single-
stranded template. (B) Incorporation of small amount of fluorescent dideoxynu-
cleotides (ddATP, ddTTp, ddCTP and ddGTP), each with a different fluorescent
label. (C) The ddNTP block the synthesis of DNA because they have a hydrogen
atom rather than a hydroxyl group attached to the 3’ carbon. (D) Each labelled
DNA strand passes through a polyacrylamide gel electrophoresis, migrating more
or less according to their length, and after separation a fluorescent detector is ca-
pable of discriminating the labels attached to the ddNTP. (E) The information is
passed to the imaging system and a sequence of DNA is printed out. The sequence
is represented by a series of peaks, one for each nucleotide position.

Figure 1.3: Pyrosequencing
[Brown et al., 2007]. Each de-
oxynucleotide is added individually,
along with a nucleotidase enzyme
that degrades the deoxynucleotide
if it is not synthesized. The incor-
poration is detected by a flash of
chemiluminescence induced by the
pyrophosphate released from the
deoxynucleotide. The order in which
the deoxynucleotide are added to
the growing strand can therefore be
followed.
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Sequence assembly

One of the main challenges in genome sequencing is to master the assembly of the
multitude of short sequences generated by DNA sequencing techniques in order to
reconstruct the complete continuous sequence of chromosome that can reach a length
of several tens of megabases. The most straightforward method to sequence assembly
is to build up the master sequence by directly searching for overlaps between all the
short sequences. This method is known as the shotgun method [Anderson, 1981].
The shotgun method is the standard approach for sequencing small prokaryotic∗

genome but it is not suited to the analysis of larger genome because the required
data analysis becomes too complex as the number of fragment increases (for n
fragments, the number of possible overlaps is 2n2 − 2n). Moreover it can lead to
errors when repetitive regions of a genome are analysed because when a repetitive
sequence is broken into fragments, many of the resulting pieces contain the same
sequence motifs.

To overcome these issues, techniques that make use of a genome map to guide
the assembly are used, namely the whole-shotgun method and clone contig method
(Figure 1.4):

– Whole-genome shotgun method. This method takes the same approach
as the standard shotgun procedure but uses the distinctive features on the
genome map as landmark to assemble the whole sequence. Reference to the
map ensures that regions containing repetitive DNA are assembled correctly.

– Clone contig method. In this method the genome is broken into manageable
segments which are short enough to be assembled accurately by the shotgun
method. Once the sequence of a segment has been completed, it is positioned
at its correct location on the map

1.1.3 DNA polymorphism

Restriction Fragment Length Polymorphisms (RFLP)

RLFP are detected using a certain type of enzymes that cut DNA (restriction en-
zymes) at specific restriction site. Some restriction sites are polymorphic with one
allele displaying the correct sequence for the restriction site while the second allele
have an altered sequence so the restriction site is no longer recognized by the en-
zyme. The consequence is that the two adjacent restriction fragments remain linked
together after treatment with the enzyme, leading to a polymorphism known as
RFLP. The RFLP markers can be detected using molecular biology techniques such
as southern hybridization or polymerase chain reaction (PCR) (see Garibyan and
Avashia [2013] for more detail).

∗A prokaryote is a unicellular organism that lacks a membrane-bound nucleus, mitochondria,
or any other membrane-bound organelle.
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Figure 1.4: Clone contig and whole-genome shotgun for sequence assembly
[Brown et al., 2007]. To illustrate both techniques, a genome map of linear DNA
molecule of 2.5 Mb has been represented together with the location of 8 known
markers(A-H). On the left, the clone contig approach starts with a segment of DNA
whose position on the genome is known since it contains the markers A and B. The
segment is sequenced by the shotgun method and the master sequence placed at
its known position on the map. On the right, the whole-genome shotgun method
involves random sequence of the entire genome resulting in pieces of contiguous
sequence. If a contiguous sequence contains a marker then it can be positioned on
the map.

Simple Sequence Length Polymorphisms (SSLP)

SSLP are repeated nucleotidic sequences displaying different numbers of repeat units
in each allele. There are two types of SSLP: minisatellites with repeat unit up to 25
base pair∗ (bp) in length and microsatellites with shorter repeated sequences (13 bp
or less). Microsatellites are more commonly used than minisatellites because they
are more frequent and evenly spread on the genome (5 × 105 with repeat units of
6 bp or less in the human genome). Furthermore, the PCR used to type a length
polymorphism is more efficient and accurate with sequences less than 300 bp in
length.

∗A base pair (bp) is a unit consisting of two nucleobases bound to each other by hydrogen
bonds.
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Single Nucleotide Polymorphisms (SNP)

A single nucleotide polymorphism is a variation in a single nucleotide that occurs
at a specific position in the genome (see Figure 1.5). In a given population, most
individuals may have a specific nucleotide at one position (e.g., a C) but a minority
of individuals could have a different nucleotide at the same position (e.g., a G). The
two possible nucleotide variations at a particular genomic position (locus) are said
to be alleles, this type of polymorphism is extremely frequent in the human genome
(a few millions).

Figure 1.5: Schematic rep-
resentation of a single
nucleotide polymorphism.
c©David Hall / Licence Creative

Commons

The vast majority of SNP are biallelic because they originate from a point mutation
in the genome, converting a nucleotide into another. For an SNP to be more than
biallelic, it would be necessary for a new mutation to appear, after the first has been
fixed in the population, to exactly the same position in the genome, which is highly
unlikely. SNP typing methods are based on oligonucleotide hybridization analysis
where an oligonucleotide (short single-stranded DNA molecule) will hybridize with
another DNA molecule only if the oligonucleotide forms a completely base-paired
structure with the other molecule (under precise temperature conditions).

Oligonucleotide hybridization can discriminate between the two alleles of an SNP
if there is at least one mismatch at one position between the oligonucleotide and
the target DNA. Several screening methods based on oligonucleotide hybridization
exists: DNA chip (microarray) which use fluorescent markers to detect hybridiza-
tion, oligonucleotide ligation assay (OLA) using capillary electrophoresis and am-
plification refractory mutation system (ARMS test) based on PCR primers and
electrophoresis.

Recent breakthroughs in microarray technology have meant that hundreds of thou-
sands of SNP can now be densely genotyped at moderate cost. As a result, it has
become possible to characterize the genome of an individual with up to a million
genetic markers. DNA chip technology makes use of piece of glass, or silicon, carry-
ing many different oligonucleotides in a high-density array (Figure 1.6). To prepare
really high-density arrays, oligonucleotides are synthesized in situ on the surface
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of the piece of glass resulting in a DNA chip. A density of up to 300,000 oligonu-
cleotides per cm2 is possible and 150,000 polymorphisms can be typed in a single
experiment [Brown et al., 2007].

Figure 1.6: Visualization of
the hybridization of a fluo-
rescent labelled probe to a
microarray. The DNA to be
tested is labelled with a fluores-
cent marker and put onto the sur-
face of the microarray. Hybridiza-
tion is detected by examining
with a fluorescence microscope
the position at which the fluo-
rescent signal is emitted indicat-
ing which oligonucleotides have
hybridized with the target DNA
[Brown et al., 2007].

Today, DNA microarrays are used in clinical diagnostic tests for some diseases.
With the advent of new DNA sequencing technologies, some of the tests for which
microarrays were used in the past now use DNA sequencing instead. Nevertheless,
microarray tests being less expensive than sequencing, they remain used for very
large studies as well as for some clinical tests.

1.1.4 Linkage and partial linkage for genetic mapping

Genetic mapping is based on the use of genetic techniques to construct maps showing
the positions of genes and other sequences features on a genome. Historically, the
first markers used to construct genetic maps were genes coding for mendelian traits
(qualitative traits that are highly heritable) with distinguishable phenotypes for each
allele (see Sturtevant [2001] for more details on early gene mapping works). Although
genes are useful markers, genetic maps based only on them are not precise in large
genomes due to the gaps existing between successive coding region. Furthermore,
only a part of the genes exist in allelic forms that can be distinguished conventionally.
That is why DNA markers having at least 2 alleles are preferable, i.e. RFLP, SSLP
or SNP previously described.

Genetic mapping makes use of the principle of inheritance at first described by
Gregor Mendel Mendel [1865] and the resulting genetic linkage properties to estimate
the relative position of each DNA markers on a chromosome. The principle of genetic
linkage arises from the fact that, while chromosomes are inherited as intact units,
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the alleles of some pairs of genes located on the same chromosome should also
be inherited together. However, this principle, deriving from the Second Law of
Mendel which states that pairs of alleles segregate independently is not what we
observe in reality. Indeed, genetically linked genes are sometimes inherited together
and sometimes are not, resulting in what we call partial linkage.

This partial linkage property is explained by the behaviour of chromosomes dur-
ing meiosis, where homologous chromosomes can undergo physical breakage and
exchange fragment of DNA in a process called crossing-over (or recombination).
These recombination events explain why linked genes and therefore linked DNA
markers are sometimes not inherited together. This allows to develop a way to map
the relative position of DNA markers since markers which are close together will be
separated less frequently than two markers that are far away. Furthermore, the fre-
quency with which markers on a same chromosome are unlinked by crossovers will be
directly proportional to the distance between them. The recombination frequency
is therefore a measure of the distance between two markers and if we estimate the
frequencies for several pairs of markers, we can construct a map of their relative
positions.

Comparisons between genetic maps and the actual positions of genes on DNA
molecules, as revealed by DNA sequencing, have shown that some regions of chro-
mosomes, called recombination hotspots, are more likely to be involved in crossovers
than others. This results in shared chromosomic region among individuals of the
same population, although each individual has a unique DNA sequence, and is known
as haplotype structure. We will see in Section 1.3.5 that different populations have
their own haplotypic structure.

1.2 Basic concepts in population genetics

1.2.1 Hardy-Weinberg equilibrium in large population

We consider a biallelic locus with alleles A and a present in a population at fre-
quencies p and q respectively. If we assume that the two copies of the gene that
an individual carries are inherited independently, then the number of copies of the
allele A will follow a binomial distribution, B(2, p), that is, that the probabilities of
the three possible genotypes (aa, aA and AA) will follow the Hardy-Weinberg law
[Weinberg, 1908]:

p2 + 2pq + q2 = 1 (1.1)

with
p2 = p(AA); q2 = p(aa) and 2pq = p(Aa).

Hardy-Weinberg’s law states that in an isolated population of unlimited size, not
subject to selection, and in which there are no mutations, the allelic frequencies
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remain constant. If the couplings are panmictic (random mating), the genotypic
frequencies are deduced directly from the allelic frequencies and also remain con-
stant. The assumption of random mating says that the probability that any pair of
individual mates is unrelated to their genotype (except for the X chromosome) or
their ethnic origin. However, in practice it is not truly the case since couples tend
to mate within their ethnic group and are likely to select partners with compatible
traits, some of which may be influenced by specific genes. Such non-random mating
is commonly ignored in many genetic analyses of chronic disease traits, for which its
effect may be negligible. Nevertheless, to the extent that it occurs, its major effect
is to slow down the rate of convergence to Hardy-Weinberg equilibrium rather than
to distort the equilibrium distribution [Thomas, 2004].

Parental
Genotype

Genotype
probability

Probability of
transmitting A

Joint
probability

AA p2 0 0

Aa 2p(1− p) 1/2 p(1− p)
aa (1− p)2 1 (1− p)2

Total 1 - p

Table 1.1: Expected frequency of an allele transmitted from an individual sampled
from a population in Hardy-Weinberg Equilibrium

1.2.2 Genetic drift in small population

In small populations, the results presented above will still be true in expectation,
but the allele frequencies will vary from generation to generation simply as a result
of chance (sampling error). It follows that, in finite populations, the expected value
of the allele frequency will remain constant but its variance will increase from one
generation to the next. This means that in generation, there is a non-zero probability
that one allele might not be transmitted to any offspring, in which case that allele
becomes extinct and the other becomes fixed. In fact, with absence of mutation and
selection, one of the alleles will eventually become extinct, and the probability that
it is the allele a that disappears turns out to be simply 1− q.

At first glance, this might seem to contradict the claim that in expectation, the allele
frequency remains constant, but in fact with probability q the allele frequency will
eventually become 1 and with probability 1−q it will become 0; hence in expectation,
the allele frequency remains q × 1 + (1− q)× 0 = q. This phenomenon is known as
genetic drift and was first introduced by Sewall Wright, one of the founders in the
field of population genetics, [Wright, 1929].

Figure 1.7 illustrates the effect of genetic drift on allelic frequencies for 2 alleles A
and a at 1 locus for different population neither subject to selection nor mutation.
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Figure 1.7: Illustration of genetic drift in finite, small, populations. The
plots show the evolution of allelic frequencies for 2 alleles A and a at 1 locus over
1000 generations for 3 population sizes (100, 500 and 1000). The 2 alleles are set to
have the same proportions in the 3 populations at generation 1 (p = q = 1/2) and
the frequencies of both allele evolve to be either fixed or extinct more or less quickly
depending on the size of the population.

1.2.3 Concept of heritability

Sewall Wright and Ronald Fisher first introduced the concept of heritability in the
context of family studies. Wright’s heritability is based on the analysis of corre-
lation and its estimate is based on the path analysis method [Wright, 1921] while
the definition of Fisher is based on the analysis of variance and is defined as the
proportion of total variance in a population for a particular measurement, taken at
a particular time or age, that is attributable to variation in additive genetic or total
genetic values [Fisher, 1919].

An observed phenotype for a trait of interest can be partitioned into a statistical
model representing the contribution of the unobserved genotype and unobserved
environmental factors:

Phenotype = Genotype + Environment.

The variance of the observed phenotype (σ2
P ) can thus be partitioned into the sum

of unobserved genotype and environmental variances (σ2
G and σ2

E):

σ2
P = σ2

G + σ2
E.
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Following the definition of Fisher, the broad-sense heritability (H2) can be expressed
as a ratio of variances by expressing the proportion of the phenotypic variance that
can be attributed to variance of genotypic values:

H2 =
σ2
G

σ2
P

.

The genetic variance σ2
G can further be partitioned into additive genetic effects (σ2

A),
dominance genetic effects (σ2

D) and epistatic genetic effects (σ2
I ) and the narrow-sense

heritability (h2) is defined as:

h2 =
σ2
A

σ2
P

.

Heritabilities can be estimated from empirical data of the observed and expected
resemblance between relatives. The expected resemblance between relatives depends
on assumptions regarding its underlying environmental and genetic causes [Visscher
et al., 2008]. To estimate the heritability from population sample rather from family
studies, we can resort on the use of the generalized linear mixed model (GLMM∗),
this heritability is known as the genomic heritability [Dandine-Roulland and Perdry,
2015].

1.3 Linkage disequilibrium

Every human genome has a unique DNA sequence, in part due to the few hun-
dred novel mutations inherited from their parents, and by chromosomal segregation
combined with crossovers that shuffle existing variation. However, although every
human genome may be unique, certain combination of variants (e.g. SNP) may
be shared by few individuals and sometimes by a large fraction of the population,
resulting in allelic association also known as haplotype structure. The term linkage
disequilibrium (LD) is broadly used to refer to the non-random association of com-
bination of variants, therefore LD neither requires genetic linkage nor is particularly
a disequilibrium.

Particular alleles at neighbouring loci tend to be co-inherited. For tightly linked
loci, this might lead to associations between alleles in the population resulting in
high LD between these loci. LD has recently become the focus of intense study
in the hope that it might facilitate the mapping of complex disease loci through
whole-genome association studies. This approach depends crucially on the patterns
of LD in the human genome [Ardlie et al., 2002].

∗The generalized linear mixed model is an extension of the generalized linear model [Mc Cullagh
and Nelder, 1989] in which the linear predictor contains random effects in addition to the usual
fixed effects (see Stroup [2012] for thorough introduction to GLMMs).
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1.3.1 Definition

We consider two neighbouring biallelic loci A and B (A and a for locus A, and B
and b for locus B) with allele frequencies fA, fa, fB and fb respectively.

Under linkage equilibrium, the four haplotypes formed by these loci have the fre-
quencies shown in Table 1.2. These frequencies are equal to the product of the
component allele frequencies. These equalities are valid only when the alleles are
independent, i.e. when the two loci are not genetically linked.

Haplotype Expected frequency

AB fA × fB
Ab fA × fb
aB fa × fB
ab fa × fb

Table 1.2: Haplotype frequencies under linkage equilibrium

However, when the two loci are in linkage disequilibrium, the haplotypes are not
observed at the frequencies expected if the alleles were independent.

Positive linkage disequilibrium exists when two alleles occur together on the same
haplotype more often than expected, and negative LD exists when alleles occur
together on the same haplotype less often than expected (Table 1.3).

Haplotype
Observed
frequency

Positive LD Negative LD

AB f̂AB f̂AB > f̂A × f̂B f̂AB < f̂A × f̂B
Ab f̂Ab f̂Ab > f̂A × f̂b f̂Ab < f̂A × f̂b
aB f̂aB f̂aB > f̂a × f̂B f̂aB < f̂a × f̂B
ab f̂ab f̂ab > f̂a × f̂b f̂ab < f̂a × f̂b

Table 1.3: Haplotype frequencies under linkage disequilibrium.

1.3.2 Measure of LD

The deviation of the observed from expected haplotype frequencies can be quantified
by several linkage disequilibrium measures. The very first linkage disequilibrium
measure was introduced by Robbins [1918] and is defined as:

DAB = fAB − fAfB
= fABfab − fAbfaB, (1.2)
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where fAB is the observed frequency of haplotypes carrying the A and B alleles and
fA, fB are the marginal allele frequencies of alleles A and B. Any deviation from
this expectation results in a non-zero value for DAB, with a positive value indicating
that the AB haplotype is found more often than expected assuming independence
and a negative value indicating that it is found less frequently than expected.

Although this measure is easy to calculate, it has for disadvantage to be sensitive
to allele frequencies at the extreme values of 0 to 1. Indeed, if we let DAB be the
population coefficient for LD, then the sample coefficient D̂AB has the following
properties [Hill, 1974]:

DAB = f̂AB − f̂Af̂B,

E(D̂AB) =
(n− 1)

n
DAB,

Var(D̂AB) =
1

n
[fAfafBfb + (fA − fa)(fB − fb)DAB −D2

AB], (1.3)

Here f̂AB is the estimate of fAB (the population frequency) from the sample and is
given, by nAB/n where nAB is the number of haplotype AB in the sample. Equation
(1.3) shows that the variance in the estimate is strongly influence by the allele
frequencies at the two loci as for the range of values that D̂AB can take. If we
arbitrarily define A and B as minor allele at each locus and enforce f̂B ≤ f̂A, then
it follows that

− f̂Af̂B ≤ D̂AB ≤ f̂af̂b.

The strong dependency on allele frequency of the standard measure of LD is an
undesirable property because it makes comparison between pairs of alleles with
different allele frequencies difficult. That is why methods less sensitive to marginal
allele frequencies have been developed [Hedrick, 1987].

Lewontin [1964] suggested another measure

D′ =
D

Dmax

,

where Dmax is the theoretical maximum LD value for the observed allele frequencies.

D′ thus ranges from 1 to 1 and reflects both positive and negative linkage dise-
quilibrium. We can also use the absolute value of D′ to measure the evidence of
recombination between two loci.

|D′| =


−D̂AB

min(f̂Af̂b, f̂af̂B)
D̂AB < 0

D̂AB

min(f̂Af̂b, f̂af̂B)
D̂AB > 0

The greater the rate of recombination between loci, the more likely the alleles are
to be in linkage equilibrium so a value of |D′| = 1 can be interpreted as evidence
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of no recombination while a value close to 0 can be viewed as evidence for strong
recombination. However, even if all four haplotypes are present in the population, it
may be unlikely that all four haplotypes are observed in a finite sample if at least one
allele is very rare [Devlin and Risch, 1995, Hill, 1974] leading to an interpretation
of |D′| = 1 dependent on the sample allele frequencies.

Due to the sensitivity of measurements D and D′ to allele frequencies, another
measure of LD is more commonly used which is the r2 measure [Hill and Robertson,
1968]. If we assign an allelic value, XA, to locus A as XA = 1 for allele A and XA = 0
for allele a and we assign an allelic value, XB, to locus B with the same properties,
then the quantity measured by (1.2) can be interpreted as the covariance in allelic
value between the 2 loci. One way to transform the covariance is to measure the
squared Pearson correlation coefficient:

r2AB =
Cov(XA, XB)2

Var(XA)Var(XB)
=

D2
AB

fAfafBfb
. (1.4)

The r2 measure has for advantage to be insensitive to how the two loci are labelled,
as indicated by the lack of subscripts for D in (1.4). Moreover there is a direct
relationship between the sample estimate r̂2 and the power to detect significant
association, i.e. to reject the null hypothesis H0 : D = 0 [Pritchard and Przeworski,
2001, Chapman et al., 2003]. As a proof, we can consider the contingency table test
where, under the null hypothesis, the test statistic:

X2 =
∑
ij

=
(Oij − Eij)2

Eij
, (1.5)

is χ2 distributed with 1 degree of freedoms the sample size tends to infinity. Here
Oij and Eij are the observed and expected counts, respectively, of the ij haplotype.
The relation between (1.5) and r2 is therefore

X2 = nr̂2.

Consequently, the null hypothesis of no association can be rejected at a specified
level α if nr̂2 is greater than the critical value of the test statistic.

1.3.3 Estimation of linkage disequilibrium

Estimation of linkage disequilibrium between alleles at two loci requires observations
of haplotype frequencies which is usually not the case. Therefore, haplotype frequen-
cies are often estimated using statistical tools such as the expectation maximization
(EM) algorithm [Weir et al., 1990]. These methods take as input the observed com-
bined genotype frequencies at the two loci (for example, the distribution of the nine
possible combinations of AA, Aa, and aa, with BB, Bb, and bb).
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An example of pairwise linkage disequilibrium (r2) plot for three different popula-
tions (as given by the software Haploview [Barrett et al., 2004]) is illustrated in
figure 1.8.

ACB pop CEU pop JPT pop 

Figure 1.8: Plots of pairwise linkage disequilibrium for polymorphisms in
the ACE (Angiotensin I Converting Enzyme) genomic region genotyped
in three populations by the International HapMap Project. CEU, Utah residents
with ancestry from northern and western Europe; ACB, African Caribbean in Bar-
bados; JPT, Japanese in Tokyo; white, r2 = 0; black, r2 = 1; HapMap Release 22;
chromosome 17 NCBI Build 37.

1.3.4 Origins of linkage disequilibrium

Founder mutations

Assume that a new mutation was introduced into the population at some point in
the recent past. That mutation would have occurred on a single chromosome and
would be transmitted with all alleles that are on the same chromosome, at least
until recombination occurs. Thus, for many generations, the mutant allele would
be associated with certain alleles at linked loci, and the strength of that association
would diminish over time as a function of the recombination rate. If we look many
generations later, the strength of the LD can be seen as an inverse measure of
the distance between the loci. Of course, this presumes that the mutation was
transmitted to an offspring and, through the process of genetic drift, expanded to
sufficient prevalence to account for a significant burden of disease in present-day
descendants of the affected founder.

Admixture

We consider a population that consists in a mixture of two subpopulations and two
alleles, A and B, having the following frequencies p1 = q1 = 0.9 and p2 = q2 = 0.1.
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If the two loci were independently distributed within each sub-population, then, in a
50-50 mixture of these two subpopulations, we would expect the following observed
haplotypes distribution:

Subpopulation 1 Subpopulation 2 Total

a A a A a A

b 0.01 0.09 0.81 0.09 0.41 0.09

B 0.09 0.81 0.09 0.01 0.09 0.41

Table 1.4: Expected distribution of haplotypes under population admixture.

Through this example, we see an apparently very strong LD in the total population
that is in fact spurious, leading to a complete artefact of population stratification.
In statistical term, it is simply a reflection of Simpson’s paradox [Simpson, 1951] or
confounding by ethnicity in epidemiologic term.

Others factors that influence LD

Mutation and recombination may have the most evident impact on linkage disequi-
librium, but there exist other factors that influence the distribution of disequilibrium.
Most of these involve demographic aspects of a population, and tend to sever the
relationship between LD strength and the physical distance between loci:

– Genetic drift: Increased drift of small, stable populations tends to increase
LD, as haplotypes are lost from the population.

– Population growth: Rapid population growth decreases LD by reducing
genetic drift.

– Gene flow: LD can be created by gene flow (migration) between populations.
Initially, LD is proportional to the allele frequency differences between the
populations, and is unrelated to the distance between markers. In the next
generations, the “artificial” LD between unlinked markers quickly fades, while
LD between nearby markers is more slowly broken down by recombination.

– Population structure: Various aspects of population structure are thought
to influence LD. Population subdivision is likely to have been an important
factor in establishing the patterns of LD in humans [Gabriel et al., 2002].

– Natural selection: There are two principal ways by which selection can
affect the level of LD. The first is an hitchhiking effect (genetic draft) [Smith
and Haigh, 1974], in which an entire haplotype that flanks an advantageous
variant can highly increase in frequency or even be fixed. Although the effect
is generally weak, selection against deleterious variants can also inflate LD,
as the deleterious haplotypes are swept from the population [Charlesworth
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et al., 1993]. The second way in which selection can affect LD is through
epistatic selection for combinations of alleles at two or more loci on the same
chromosome. This form of selection leads to the association of particular alleles
at different loci.

– Variable recombination rate: Recombination rates are known to vary by
more than an order of magnitude across the genome. Because breakdown of
LD is primarily driven by recombination, the extent of LD is expected to vary
in inverse relation to the local recombination rate. It is even possible that
recombination is largely confined to highly localized recombination hot spots,
with little recombination elsewhere. According to this view, LD will be strong
across the non-recombining regions and break down at hotspots.

1.3.5 Structure of haplotype blocks in the human genome

The distribution of linkage disequilibrium patterns along the genome can be seen as
being noisy and unpredictable. For example, pairs of loci that are tens of kilobases
apart might be in complete LD due to population structure or population size for
instance, whereas nearby loci from the same region might be in weak LD if close to
a recombination hotspot for instance [Wall and Pritchard, 2003].

It is often observed that LD in non-African populations extends over longer distances
than in Africans, which might reflect a population bottleneck at the time when
modern humans first left Africa [Frisse et al., 2001, Reich et al., 2001]. Similarly,
there have been reports that certain isolated or admixed populations show LD over
large distances [Laan and Pääbo, 1997, Kaessmann et al., 2002].

However, despite the apparent complexity of observed patterns, some studies have
proposed that the underlying structure of LD in the human genome can be described
using a relatively simple framework in which the data are parsed into a series of
discrete haplotype blocks [Daly et al., 2001, Gabriel et al., 2002], neighbouring blocks
being separated by regions of numerous recombination events [Daly et al., 2001].

In response to these results, the United States National Human Genome Research
Institute initiated a project, called the International HapMap Project, which aims
to create a genome-wide map of LD and haplotype blocks. The HapMap Project
seeks identify chromosomal regions where genetic variants are shared by comparing
the DNA sequences among individuals. There are approximately ten million SNP
estimated to be present in the human genome. Testing all of these SNP in chromo-
somes of individuals, however, can be extremely expensive and cost-inefficient. The
development of the HapMap enables geneticists to take the advantage of how SNP
and other genetic variants are organized on the same chromosome.

The number of tag SNP that capture most of the information of genetic variation
patterns is estimated to be between 300,000 and 600,000, far fewer than the ten
million common SNP.
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Definition of haplotype blocks

A definition of haplotype block has been proposed by Gabriel et al. [2002] where they
focused on |D′| measure of LD and defined haplotype blocks as sets of consecutive
sites between which there is little or no evidence of historical recombination. For each
pair of loci, the data are used to construct a confidence interval on the population
value of |D′| and the values of |D′| are thus divided into three categories:

– strong LD: |D′| near 1, which implies little or no evidence of historical re-
combination;

– weak LD: |D′| significantly < 1, implying historical recombination;

– intermediate/unknown LD: The category includes pairs of sites with in-
termediate values of |D′|, as well as pairs for which the confidence intervals
are relatively wide.

Two or more sites can be grouped together into a block if the outermost pair of
sites is in strong LD, and if, for all pairwise comparisons in the block, the number
of pairs in strong LD is at least 19-folds greater than the number of pairs in weak
LD.

Patterns in human genome

To illustrate the patterns of LD in human genome, we refer to the results obtained
by Gabriel et al. [2002] where they characterized haplotype patterns across 51 au-
tosomal regions (spanning 13 megabases of the human genome) in samples from
Africa, Europe, and Asia and the analysis of these data by [Wall and Pritchard,
2003].

In Figure 1.9 are represented, for 4 different samples of population, the total pro-
portions of sequence that was contained in haplotype blocks of various sizes. The
results show that both the European-American and East Asian population samples
have more extensive haplotype blocks than the African-American and sub-Saharan
African samples and it is worth mentioning that in all four populations less than
half of the total sequence is contained in identified haplotype blocks.

In Figure 1.10 are represented the values of |D′| for all pairs of markers in a region.
In this type of representation, the haplotype blocks appear as triangular regions
of red (or light brown) squares that along the diagonal. These plots highlight the
strong heterogeneity of LD within same regions: areas of strong LD that correspond
well to the haplotype-block definition are often surrounded by equally large regions
with little or no LD.
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Figure 1.9: Proportion
of sequence contained
in haplotype blocks of
various sizes from Wall
and Pritchard [2003]. (a)
European-American sample;
(b) African-American sample;
(c) East Asian sample; (d)
Sub-Saharan African sample.
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Figure 1 | Pairwise |D′| plots for representative regions from different studies. Each square in the triangle plots the level of
linkage disequilibrium (LD) between a pair of sites in a region; comparisons between neighbouring sites lie along the diagonal. Red
colouring indicates strong LD, green indicates weak LD and light brown indicates intermediate or uninformative LD (see BOX 2 and
REF. 32 for details). The long diagonal line indicates the physical length of the region, and the short black lines plot the position of
each marker in this region. We include the physical length and estimated recombination rate53 for each region. EGP, Environmental
Genome Project; SNP, single nucleotide polymorphism.

Figure 1.10: Pairwise | D′ | plots for representative regions from different
population samples from Wall and Pritchard [2003]. Each square in the
triangle plots the level of linkage disequilibrium (LD) between a pair of sites in a
region; comparisons between neighbouring sites lie along the diagonal. Red color
indicates strong LD, green indicates weak LD and light brown indicates intermediate
or uninformative LD. The long diagonal line indicates the physical length of the
region, and the short black lines plot the position of each marker in this region.
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Chapter 2

Statistical context

This chapter is intended to introduce statistical learning and hypothesis testing.
We will present some state-of-the-art linear statistical methods and also a thor-
ough introduction to splines and generalized additive models. The understanding of
these methods is required to grasp the statistical concepts used in the methodology
presented in Chapter 4 and 5.
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2.1 Notations

Let T be a training set consisting of n pairs of examples labelled on a space Z =
X×Y : T = {(xi, yi)}ni=1, with (xi, yi) ∈ Z, ∀i. Each couple (xi, yi) is the realization
of an ith independent copy of a random vector couple (X,Y) distributed according
to U , an unknown but fixed distribution on Z.

Generally, we will represent the vectors in bold lowercase letters and the matri-
ces in bold capital letters. Thus, when X ∈ RD, the vector of the ith component
of T represented by D variables, will be designated by the column vector xi =
(xi1, . . . , xid, . . . , xiD)T ∈ RD and its associated matrix by X = (xT1 , . . . ,x

T
i , . . . ,x

T
n )T ∈

Rn×D.

2.2 Concepts of statistical learning

Assuming that there is some relationship between an observed response vector y ∈
Rn and D different predictors in X ∈ Rn×D, we can write this relationship in the
very general from

y = f(X) + ε,

where f : X → Y is some fixed but unknown function† of X and ε ∼ N (0, Iσ2) is a
random error term, independent of X and with I ∈ Rn×D being the identity matrix.

By definition, statistical learning refers to a set of approaches designed to estimate
f for 2 main reasons: prediction and explanation.

Prediction

In the setting where we have a set of input variables X easily observable but where
the output response y cannot be readily obtained, then, since the error term averages
to zero, y can be predicted using

ŷ = f̂(X),

where f̂ is the estimate of f and ŷ is the resulting prediction for y. In this con-
figuration, we are not especially concerned with the exact form of f̂ as long as it
yields to an accurate prediction for y. In this context, we want to find a function
f̂ that approximate the true function f as well as possible by means of statistical
learning method. We will make “as well as possible” in the sense of minimizing
a particular cost function which must reflect how accurate we are in predicting y.
The most commonly used cost function in statistical regression is the mean-squared
error (MSE) defined as:

‖y − f̂(X)‖22
†In the remainder we will refer to the function f : X → Y as f and its estimate as f̂ .
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Most of statistical learning methods aim to minimize the MSE (also known as the
quadratic loss function) to estimate f̂ but other cost functions are also used in
machine learning, depending on the task considered such as classification, regression
or ranking (see for example the log loss, relative entropy, hinge loss, mean absolute
error).

Bias-variance decomposition of mean squared error Considering a couple
of random variables (X,Y) defined on a training set T , then it can be shown that
the expected mean squared error ET [(Y − f̂(X))2], conditionally to T and a noise
term ε, can be parsed into two errors terms, bias and variance:

ET {[Y − f̂(X)]2} = ET [f̂(X)2]− E2
T [f̂(X)]︸ ︷︷ ︸

Variance(f̂(X))

+ (ET [f̂(X)]− E[f(X)])2︸ ︷︷ ︸
Bias[f̂(X)}

+ σ2︸︷︷︸
Variance(ε)

.

Since the function f̂ has been constructed on a training set T , it is interesting to
know how accurate it is on predicting y when applied to a new data set, this measure
is represented by the variance term in the MSE. Estimates with high variance will
tend to perform poorly when seeing new data, in general more complex models tend
to have a higher variance.

On the other hand, the bias error term refers to the error that is introduced by
approximating the real, generally complex, function f . For instance, if we try to ap-
proximate a non-linear function using a learning method designed for linear models,
there will be error in the estimate f̂ due to this assumption. The more complex the
model is, the lower the bias will be but at a cost of a higher variance.

That is why when we try to fit a model on some data, we always search for the
best compromise between variance and bias (the so-called bias-variance trade-off)
and therefore between complexity and simplicity. The fact that highly complex
models have a lower bias but generalize poorly on new data is known as overfitting
and occurs when the model fit too closely the data, going so far as to interpolate
them in the most extreme case (see Figure 2.1 for an illustration of bias-variance
trade-off).

The last term, σ2, corresponds to the variance of the noise, also called the irreducible
error because the response variable is also a function of ε which, by definition,
cannot be predicted using the observations. Since all terms are non-negative, this
error forms a lower bound on the expected error on unseen samples [Friedman et al.,
2001].

Explanation. We can also be interested in understanding the relationship between
Y and X. In this situation we are more interested by the exact form of f̂ and we may
want to answer the following questions: Which predictors are associated with the
response? What is the relationship between the response and each predictor? Can
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Figure 2.1: Bias and variance contribution to the total error. The bias (red
curve) decreases as the model complexity increases unlike variance, which increases.
The vertical dotted line shows the optimal model complexity, i.e. where the error
criterion is minimized (image taken from http://scott.fortmann-roe.com/docs/

BiasVariance.html)

the relationship be described using a linear equation or with a non-linear smoother?
To answer these questions, we will tend to use more interpretable, i.e. simpler,
models and to rely on the theory of hypothesis testing developed by Neyman and
Pearson [1933]. We will introduce the theory of hypothesis testing and the most
common tests in Section 2.6.

Estimation of f . All statistical learning methods can be roughly characterized
as either parametric or non-parametric.

– Parametric methods: They are model-based approaches that reduce the
problem of estimating f down to estimating a set of parameters. Assuming a
parametric form for f simplifies the estimation problem because it is generally
easier to estimate a set of parameters, as in the linear model, than to fit an
entirely arbitrary function. The main drawback is that the chosen model is
generally too far for the true form of f leading to a poor estimate. Even if more
flexible models, such as polynomial models, can fit more closely the true form
of f , they require in general to estimate a greater number of parameters which
can lead to overfit the data, meaning that they follow the errors to closely
and cannot be generalized to other data. We will present in Section 2.3.1 the
linear model with its extension known as generalized linear models and some
penalized approaches in Section 2.3.2.

– Non-parametric methods: These approaches do not make explicit assump-
tions about the functional form of f but instead seek an estimate that fit closely

http://scott.fortmann-roe.com/docs/BiasVariance.html
http://scott.fortmann-roe.com/docs/BiasVariance.html
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the data to some degree to avoid overfitting. These methods have the advan-
tage of being able to fit a wider range of form for f since no assumption about
the functional form for f is made. However, they require a larger number of
observations than is typically needed for a parametric approach to obtain an
accurate estimate for f . We will present in Section 2.4 some non-parametric
models such as the regression splines and the generalized additive model∗.

2.3 Parametric methods

2.3.1 Linear models

Linear models are statistical models where a univariate response y ∈ Rn is modelled
as the sum of D linear predictor X ∈ Rn×D weighted by some unknown parameters,
β ∈ RD, which have to be estimated, and a zero mean random error term, ε. A
linear model is generally written in the following matrix form:

y = βX + ε.

Statistical inference with such models is usually based on the assumption that the
response variable has a normal distribution, i.e.

ε ∼ N (0, Iσ2).

To estimate the unknown parameter, a sensible approach is to choose a value of
β that makes the model fit closely the data. One possible way to proceed is to
minimize a relevant cost function, defined by the residual sum of squares (RSS) of
the model, with respect to β, known as the least squares method [Gauss, 1809]:

RSS(β) = ||y −Xβ ||22. (2.1)

The least squares estimator is obtained by minimizing RSS(β). To that end, we set
the derivative of (2.1) equal to zero to obtain the normal equations:

XTXβ = XTy. (2.2)

Solving (2.2) for β, we obtain the ordinary least squares estimate:

β̂
OLS

= (XTX)−1XTy,

provided that the inverse of XTX exists, which means that the matrix X should have
rank D. As X is an n×D matrix, this requires in particular that n > D, i.e. that
the number of parameters is smaller than or equal to the number of observations.

∗To be more specific, we will present the semi-parametric forms of these models using a linear
basis expansion.
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2.3.2 Penalized linear regression

The Gauss-Markov theorem [Aitkin, 1935] asserts that the least squares estimates

β̂
OLS

have the smallest variance among all linear unbiased estimates. However, there
may well exist biased estimators with smaller mean squared error that would trade
a little bias for a larger reduction in variance. Subset selection, shrinkage methods
(ridge regression, lasso regression, . . . ) or dimension reduction approaches such as
Principal Components Regression or Partial least Squares are useful approaches if
we want to obtain such biased estimates with smaller variance. In this section we
will only detailed the most commonly used shrinkage methods, as they are the ones
used in association genetics.

Ridge regression

The least squares estimates are the best unbiased linear estimators but this estima-
tion procedure is valid only if the correlation matrix XTX is close to a unit matrix
or full-rank, i.e. when the predictors are not orthogonal. If not, Hoerl and Kennard
[1970] proposed to base the estimation of the regression parameters on the matrix
(XTX + λI), λ ≥ 0 rather than on XTX and have developed the method named

ridge regression to estimate the biased coefficients β̂
ridge

. This method shrinks the
coefficients of the regression towards zero by imposing a penalty on the sum of the
squared coefficients. The ridge coefficients minimize a penalized residual sum of
squares which can be written as follow:

β̂
ridge

= argmin
β

{
||y −Xβ||22 + λ||β||22

}
, (2.3)

or can be equivalently written as a constrained problem:

argmin
β

{
||y −Xβ||22 subject to

D∑
d=1

βd ≤ t

}
,

with t > 0 a size constraint and λ > 0 a penalty parameter that controls the amount
of shrinkage: the larger the value of λ, the greater the amount of shrinkage. The
ridge regression estimates can then be written as:

β̂
ridge

= (XTX + λI)−1XTy, (2.4)

We can notice that the solution adds a positive constant to the diagonal of XTX
before inversion, which makes the problem non-singular even if XTX is not full rank.

The penalty parameter λ can be chosen either by K-fold cross-validation, leave-one-
out cross-validation or by using the generalized cross-validation [Golub et al., 1979].
In generalized cross-validation, the estimate λ̂ is the minimizer of V (λ) given by

V (λ) =
1

n

||(I−A(λ))y||22
[1/nTrace(I−A(λ))]2

,
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where A(λ) = X(XTX + nλI)−1XT and is known as the hat matrix.

Moreover Hoerl and Kennard [1970] have shown that the total variance of the ridge
coefficients decrease as λ increases while the squared bias decrease with λ and that

there exists values λ for which the MSE is less for β̂
ridge

than it is for β̂
OLS

. These
properties lead to the conclusion that it is advantageous to take a little bias to
substantially reduce the variance and thereby improving the mean square error of
estimation and prediction.

Lasso

The lasso [Tibshirani, 1996] is also a shrinkage method but unlike ridge regression,
it may set some coefficients to zero and thus perform variable selection. The lasso
estimate is close to the ridge regression in the sense that it is a penalized linear
regression with a penalty on the sum of the absolute value of the coefficients:

β̂
lasso

= argmin
β

{
||y −Xβ||22 + λ||β||1

}
, (2.5)

which can be equivalently written as the constrained problem:

argmin
β

{
||y −Xβ||22 subject to

D∑
d=1

|βd| ≤ t

}
,

with t > 0 a size constraint and λ > 0 a penalty parameter.

Comparing (2.3) and (2.5), we can see that the difference between lasso and ridge
regression is found in the penalized term, the ||β||22 term (`2 squared norm) in ridge
regression penalty has been replaced by ||β||1 (`1 norm) in the lasso penalty. The
`1 penalty has the effect of forcing some of the coefficient estimates to be exactly
equal to 0 when the penalty parameter λ is sufficiently large. This leads to sparse
models much easily interpretable than those produced by ridge regression. Figure 2.2
illustrates how the lasso procedure can achieve sparsity while the ridge coefficients
are only shrinking to zero.

However, the constraint put on the `1 norm of the coefficients makes the solution of
the lasso non-linear in y and therefore there is no closed form expression to calculate
the solutions as in ridge regression. Efficient algorithms are available for computing
the entire path of solutions as λ varied, with the same computational cost as for the
ridge regression (see homotopy methods [Osborne et al., 2000] such as LARS [Efron
et al., 2004], or also proximal algorithms [Parikh et al., 2014] for more details).

As for ridge regression, the tuning parameter λ needs to be chosen but with the
lasso we cannot rely on the generalized cross-validation to calculate the best value
for λ. However, it is possible to use an ordinary cross-validation where we choose
a grid of λ values and compute the cross-validation error for each value of λ. We
then select the tuning parameter for which the value of the cross-validation error is
minimized and re-fit the model using all the available observations with the best λ.
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(B)

Figure 2.2: Geometrical representation of sparsity in penalized linear re-
gression. (A) A 2-dimensional representation of space of the coefficients β1 and
β2. The blue geometric form represents two types of constraints, ||β||1 and ||β||22,
applied to the coefficients. The circular coloured lines represent the contour of the
cost function and the red dotted point is the true parameter β we seek to reach.
(B) 3-dimensional view of (A) where the constraints are represented as a tube in
which the penalized methods are forced to stay to estimate the coefficients β1 and
β2 (Image credit: Yves Grandvalet).

Group-Lasso

In some problems, the predictors belong to pre-identified groups; for instance genes
that belong to the same biological pathway, SNP included in the same haplotype
block or collections of indicator (dummy) variables for representing the levels of a
categorical predictor. In this context it may be desirable to shrink and select the
members of a group together. The group-lasso regression [Yuan and Lin, 2006] is
one way to achieve this.

If we suppose that D predictors are divided into G groups, with pg the number
of variables in the group g then the group-lasso solution minimizes the following
penalized criterion:

β̂
GL

= argmin
β

{
||y −

G∑
g=1

Xgβg||22 + λ

G∑
g=1

√
pg||βg||2

}
, (2.6)

with Xg the matrix of predictors corresponding to the gth group,
√
pg the terms
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accounting for the varying groups sizes and ||βg||2 the `2-norm of the coefficients
corresponding to group g. Since the Euclidean norm of a vector βg is zero only if all
of its components are zero, this model encourages sparsity at the group level.

Generalizations include more general `2 norms ||νT ||K = (νTKν)1/2 as well as over-
lapping groups of predictors [Jacob et al., 2009, Jenatton et al., 2011].

2.3.3 Generalized linear models

Generalized linear models (GLMs) [Nelder and Wedderburn, 1972] are an extension
of linear models where the strict linearity assumption of linear models is somewhat
relaxed by allowing the expected value of the response to depend on a smooth
monotonic function of the linear predictor and has the basic structure:

g(θ) = Xβ = β0 + β1x1 + · · ·+ βDxD,

where θ ≡ E(Y|X), g is a smooth monotonic ’link function’, X the n×D model ma-
trix and β the unknown parameters. In addition, the assumption that the response
should be normally distributed is also relaxed by allowing it to follow any distribu-
tion from the exponential family. The exponential family of distribution includes
many distributions useful for practical modelling such as the Poisson, Binomial,
Gamma and Normal distribution (see [Mc Cullagh and Nelder, 1989] for compre-
hensive reference on GLMs). A distribution belongs to the exponential family of
distributions if its probability density function can be written as

gθ(y) = exp

[
yθ − b(θ)
a(φ)

+ c(y, φ)

]
,

where a, b and c are arbitrary functions, φ the dispersion parameter and θ known
as the canonical parameter of the distribution.

Furthermore, it can be shown that

E(Y) = b′(θ) = µ, (2.7)

and
V ar(y) = b′′(θ)φ. (2.8)

Estimation and inference with GLMs are based on maximum likelihood estimation
theory [RA Fisher, 1922]. The log-likelihood for the observed response y is given by

l(fθ(y)) =
n∑
i=1

yiθi − b(θ)
a(φ)

+ c(yi, φ).

The maximum-likelihood estimate of β are obtained by partially differentiating l
with respect to each element of β, setting the resulting expression to 0 and solving
for β:

∂l

∂βd
=

n∑
i=1

(yi − b′i(θi))
φb′′i (θi)

∂µi
∂βd

= 0.
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Substituting (2.7) and (2.8) into this equation gives

n∑
i=1

(yi − µi)
Var(µi)

∂µi
∂βd

= 0 ∀d. (2.9)

There are several iterative methods to solve the equation (2.9) and estimate the
maximum likelihood estimates β̂d. One can use the well-known Newton-Raphson
method [Fletcher, 1987], Fisher scoring method [Longford, 1987] which is a form of
Newton’s method or the Iteratively Reweighted Least Squares method developed by
Nelder and Wedderburn [1972].

Logistic regression

The logistic regression model [Cox, 1958] is a generalized linear model where the
logit function, defined as

logit(t) = log

(
t

1− t

)
, with t ∈ [0, 1],

is used as the ’link’ function for g and is applied in the case where we want to model
a qualitative random variable Y with K classes. The logit function allows to model
the posterior probability P(Y = k) via linear function of the observations while at
the same ensuring that they sum to one and remain in [0, 1]. The model has the
form:

log

(
P(Y = 1|X = x)

1− P(Y = K|X = x)

)
= β10 + βT1 x,

log

(
P(Y = 2|X = x)

1− P(Y = K|X = x)

)
= β20 + βT2 x,

...

log

(
P(Y = K − 1|X = x)

1− P(Y = K|X = x)

)
= β(K−1)0 + βTK−1x,

and equivalently

P(Y = k|X = x) =
exp(βk0 + βTkx)

1 +
∑K−1

k=1 exp(βk0 + βTkx)
, with k ∈ [1, . . . , K − 1].

When K = 2 the model becomes simple since there is only a single linear function.
It is widely used in biostatistics when we want to classify an individual as being a
case or a control in genome-wide association studies for instance.
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Logistic regression models are usually fit by maximum likelihood using the condi-
tional likelihood of the response given the observations. In the two class case where
y is encoded as 0/1, the log-likelihood of the estimator can be written as:

l(β) =
n∑
i=1

[
yi log

(
eβ

Txi

1 + eβ
Txi

)
+ (1− yi) log

(
1− eβ

Txi

1 + eβ
Txi

)]

=
n∑
i=1

[
yiβ

Txi − log(1 + eβ
Txi)

]
.

2.4 Splines and generalized additive models:

Moving beyond linearity

2.4.1 Introduction

So far, we have been interested in estimating a function f̂ linear in X, but in reality, it
is unlikely to be true. Linear models have the advantage of being easily interpretable
and the approximation of f by a simple linear function can avoid overfitting. On the
other hand, when the true function is highly non-linear, they are often limited if one
wants to be able to model a complex phenomenon or to make accurate prediction.

In this section we will describe some methods that allow to take into account the
non-linear form of f by working on a linear basis expansion of the initial features.
The idea is to augment/replace the matrix of inputs X with additional variables,
which are transformations of X, and then use linear models in this new space of
derived input variables.

We define the linear basis expansion of x ∈ R by:

s(x) =
K∑
k=1

βkhk(x),

with hk(x) : R 7→ R the kth transformation of x, k ∈ [1, . . . , K]. The function s(x)
is also referred as a smoother since it produces an estimate of the trend that is less
variables than the response variable y itself. We call the estimate produced by a
smoother a smooth.

The linear basis expansion offers a wide range of possible transformations for x such
as:

– Third order polynomial transformation: h1(x) = x, h2(x) = x2, h3(x) = x3,

– non-linear transformation: hk(x) = log(x),
√
x, . . . ,
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– Piecewise constant transformation: h1(x) = I(x < ξ1), h2(x) = I(ξ1 ≤ x ≤
ξ2), . . . , hK(x) = I(x ≥ ξK−1).

In the following sections we will present some methods based on the linear basis
expansion such as the regression splines (Section 2.4.2), smoothing splines (Section
2.4.4) and generalized additive models (Section 2.4.5). Note that the splines are
methods applied to a univariate function x while the generalized additive models
extend the uses of splines and other non-linear functions to the multivariate case.

2.4.2 Regression splines

Piecewise polynomials regression splines.

Here the data are divided into different regions, each being defined by a polynomial
function and separated by a sequence of knots, ξ1, ξ2, . . . , ξK and each piece are
smoothly joined at those knots. For example, with one knot ξ, dividing the data
into two regions and with third-order polynomial pieces, we can write:

s(x) =

{
β01 + β11x+ β21x

2 + β31x
3 + ε if x < ξ,

β02 + β12x+ β22x
2 + β32x

3 + ε if x > ξ.

Piecewise cubic polynomials are generally used and constrained to be continuous
and to have continuous first and second derivatives at the knots. For any given
set of knots, the smooth is computed by multiple regression on an appropriate set
of basis vectors. These vectors are the basis functions representing the family of
piecewise cubic polynomials, evaluated at the observed values of the predictor x.

Cubic regression splines.

A simple choice of basis functions for piecewise-cubic splines (truncated power series
basis) derives from the parametric expression for the smooth

s(x) = β0 + β1x+ β2x
2 + β3x

3 +
K∑
k=1

βk(x− ξk)3+, (2.10)

which have the required properties:

– s is cubic polynomial in any subinterval [ξk, ξk+1],

– s has two continuous derivatives,

– s has a third derivative that is a step function with jumps at ξ1, . . . , ξK .

The sequence of knots can be placed over the range of the data or at appropriate
quantiles of the predictor variable (e.g., 3 interior knots at the three quartiles).
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A cubic spline satisfies the following properties:

s(x) ∈ C2[ξ0, ξn] =


s0(x), ξ0 ≤ x ≤ ξ1,
s1(x), ξ1 ≤ x ≤ ξ2,
. . .
sn−1(x), ξn−1 ≤ x ≤ ξn,

and

s(x) :


sk−1(xk) = sk(xk)
s′k−1(xk) = s′k(xk)
s′′k−1(xk) = s′′k(xk)

, for k = 1, 2, . . . , (n− 1).

The choice of a third-order polynomial allows the function s(x) to be continuous at
the knots.

Natural splines

A variant of polynomial splines are the natural splines: these are simply splines with
an additional constraint that forces the function to be linear beyond the boundary
knots. It is common to supply an additional knot at each extreme of the data
and impose linearity beyond them. Then, with K − 2 interior knots (and two
boundary knots), the dimension of the space of fits is K. The lesser flexibility at
the boundaries of natural splines tends to decrease the variance we can get when
fitting regular regression splines.

We add the following condition to get a natural cubic spline:

s′′(ξ0) = s′′(ξn) = 0.

Figure 2.3 illustrates the use of natural cubic splines for the construction of an
interpolating smooth curve.

2.4.3 B-splines

The B-spline basis functions provide a numerically superior alternative basis to the
truncated power series. Their main feature is that any given basis function Bk(x) is
non-zero over a span of at most five distinct knots which means that the resulting
basis function matrix B is banded. The Bk are piecewise cubics and we need K + 4
of them (K+2 for natural splines) if we want to span the entire space. The algebraic
definition is detailed in de Boor [1975].

With the B-spline basis, the functions are strictly local - each basis is only non-zero
over the interval between m + 3 adjacent knots, where m is the order of the basis
(m = 2 for cubic spline). To define a K parameters B-spline basis, we need to define



2.4. Splines and generalized additive models 39

Figure 2.3: Interpolating natural cubic splines. The black dashed line corre-
sponds to the true distribution y = 1

1+x2
and each n = 11 black dots correspond

to observations drawn from this distribution (with a little noise). In (A) we have
represented the polynomial functions at each K = 11 knots, constituting the natural
cubic splines basis and (B) the truncated polynomials to construct the smoother.

k+m+ 1 knots, x1 < x2 < · · · < xm+k+1, where the interval over which the spline is
to be evaluated lies within [xm+2, xk] (so that the first and last m+ 1 knot locations
are essentially arbitrary). An (m+ 1)th order B-spline can be represented as

s(x) =
K∑
k=1

Bm
k (x)βk,

where the B-spline basis functions are most conveniently defined recursively as fol-
lows:

Bm
k (x) =

x− xk
xk+m+1 − xk

Bk−1
k (x) +

xk+m+2 − x
xk+m+2 − xk+1

Bx−1
k+1(x) for k = 1, . . . , K,

and
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B−1k (x) =

{
1 xk ≤ x < xk+1

0 otherwise
.

For more detailed computational aspects see Annexe B.3 and for a representation
of B-spline functions see Figure 2.4.
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Figure 2.4: Quadratic B-spline basis function representation (for m = 2 and
with K = 4 internal knots). Each Bk(x) functions are piecewise cubic and K+4 = 8
of them are need to span the entire space.

2.4.4 Cubic smoothing splines

This smoother is constructed as the solution to an optimization problem: among all
function f(x) with two continuous derivatives, find one that minimizes the penalized
residual sum of squares

n∑
i=1

||yi − s(xi)||22 + λ

∫ b

a

s′′(t)
2
dt, (2.11)

where λ is a penalty factor, and a ≤ x1 ≤ · · · ≤ xn ≤ b. The first term measures
closeness to the data while the second penalizes curvature in the function, this
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criterion insuring a trade-off between bias and variance. The first term insures
to fit as close as possible the data while the second penalizes the wiggliness of the
smoothing curve to avoid interpolating the data. Large values of λ produce smoother
curves while smaller values produce more wiggly curves.

As λ → ∞, the penalty term dominates, forcing s′′(x) = 0 everywhere and thus
the solution is the least-squares line. On the contrary, as λ → 0, the penalty term
becomes unimportant and the solution tends to an interpolating twice-differentiable
function.

Furthermore, it can be shown that this optimization problem has an explicit, unique
minimizer which proves to be a natural cubic spline with knots at the unique value
of xi (see [Reinsch, 1967]).

We consider the smoothing function in the form:

s(x) =
K∑
k=1

Nk(x)βk, (2.12)

where the Nk(x) are an (K)-dimensional set of basis functions for representing the
family of natural splines. The natural cubic splines basis is computed as follow:

N1(x) = 1,

N2(x) = x,

Nk+2(x) = dk(x)− dk−1(x),

for k ∈ [0, . . . , K − 1] and with

dk =
(x− ξk)3+ − (x− ξK)3+

ξK − ξk

At first glance it would seems that the model (2.12) is over-parametrized since there
are as many as K = n knots implying as many degrees of freedom. However, the
penalty term converts into a penalty on the splines coefficients themselves, which
are shrunk toward the linear fit.

Using this cubic spline basis for s(x) means that (2.11) can be written in the following
minimization problem:

argmin
β
||y −Nβ||2 + λβTWβ, (2.13)

where

Nik = Nk(xi),

Wkk′ =

∫ 1

0

N ′′k (x)N ′′k′(x)dx,

with W ∈ Rn×n the penalty matrix and N ∈ Rn×n the matrix of basis functions.
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Following Gu [2002], it can be shown that

Wi+2,i′+2 =

[(
xi′ − 1

2

)2 − 1
12

] [(
xi − 1

2

)2 − 1
12

]
4

−[(
|xi − xi′ | − 1

2

)4 − 1
2

(
|xi − xi′| − 1

2

)2
+ 7

240

]
24

,

for i, i′ ∈ [1, . . . , K] with the first 2 rows and columns of W are equal to 0. For a
given λ, the minimizer of (2.13), the penalized least squares estimator of β, is:

β̂ = (NTN + λW)−1NTy.

It is interesting to note that this solution is similar to the ridge estimate (2.4),
relating the smoothing splines to the shrinkage methods. Similarly the hat matrix,
A, for the model can be written as

A = N(NTN + λW)−1NT .

However, in spite of their apparent simplicity, these expressions are not the ones to
use for computation. More computationally stable methods are preferred, i.e. the
linear smoother described in Buja et al. [1989], to estimate the smooth function s(x)
(see Annexe B.1 for more details). For the choice of the smoothing parameter λ, see
Annexe B.2 and for an illustration of the cubic smoothing spline fit see Figure 2.5.

2.4.5 Generalized additive models (GAM)

A generalized additive model [Hastie and Tibshirani, 1990] is a generalized linear
model with a linear predictor involving a sum of smooth functions of D covariates.

g(θ) = β0 +
D∑
d=1

sd(xd) + ε, (2.14)

where θ ≡ E(Y|X), Y belongs to some exponential family distribution and g a
known, monotonic, twice differentiable link function.

To estimate such model we can specify a set of basis functions for each smooth
function sd(x).

For instance, with natural cubic splines, we get the following model:

g(θ) = β0 +
D∑
d=1

Kd∑
k=1

βdkNdk(xd) + ε,

where Kd is the number of knots for variable d.
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Figure 2.5: Cubic smoothing splines with different values of the regularization
parameter λ. The black dashed line corresponds to the true distribution y = 1

1+x2

and each black dot corresponds to observations drawn from this distribution (with
a little noise). In red is represented the fit at the best value of λ (chosen by GCV),
in blue the fit with a value of lambda close to 0 and in green the fit with a high
value for λ. We can see that, as λ increase, the fit pass from a ’wiggly’ interpolating
curve (as in Figure 2.3) to a very smoothed curve, which will eventually lead to a
straight line as λ become very large.

Furthermore, if we use cubic smoothing splines for each smooth function sd(x), we
can define a penalized sum of squares problem of the form:

RSS(β0, s1, . . . , sD) =
n∑
i=1

[yi − β0 −
D∑
d=1

sd(xid)]
2 +

D∑
d=1

λd

∫
s′′d(td)

2dtd. (2.15)

Each smoothing spline function sd(x) are then computed as described in Section
2.4.4 and the general model (2.14) can be fitted with several methods such as back-
fitting or P-IRLS (Penalized-Iteratively Reweighted Least Squares) [Hastie and Tib-
shirani, 1990].

Fitting GAMs by backfitting

Backfitting is a simple procedure to fit generalized additive models which allow to
use a large range of smooth function to represent the non-linear part of the model.
Each smooth component is estimate by iteratively smoothing partial residuals from
the additive model, with respect to the covariates that the smooth relates to. The
partial residuals relating to the dth smooth term are the residuals resulting from
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subtracting all the current model term estimates from the response variable except
for the estimate of dth smooth.

Given the following additive model:

y = β0 +
D∑
d=1

sd(xd) + ε.

Let ŝd denote the vector whose ith element is the estimate of sd(xid). The backfitting
algorithm is given in Algorithm 1.

Algorithm 1: Backfitting algorithm

1. Set β̂0 = ȳ and ŝd = 0 for d = 1, . . . , D

2. for d = 1, . . . , D do
1. Calculate partial residuals:

ed = y − β̂0 −
∑
k 6=d

ŝd.

2. Set ŝd equal to the result of smoothing ed with respect to xd.
end
3. Repeat 2 until convergence.

2.4.6 High-dimensional generalized additive models (HGAM)

We consider an additive regression models in an high-dimensional setting with a
continuous response y ∈ Rn and D � n covariates x1, . . . ,xD ∈ RD connected
through the model

y = β0 +
D∑
d=1

sd(xd) + ε,

where β0 is the intercept term, ε ∼ N (0, Iσ2) and sd : R→ R are smooth univariate
functions. For identification purposes, we assume that all sd are centered to have
zero mean.

Sparsity-smoothness penalty

In order to get sparse and sufficiently smooth function estimates, Meier et al. [2009],
proposed the sparsity-smoothness penalty

J(sd) = λ1

√
||sd||2n + λ2

∫
[s′′d(xd)]

2dx.
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The two tuning parameters λ1, λ2 ≥ 0 control the amount of penalization. The
estimator is given by the following penalized least squares problem:

ŝ1, . . . , ŝD = argmin
s1,...,sD∈F

||y −
D∑
d=1

sd||2n +
D∑
d=1

J(sd),

where F is a suitable class of functions and the same level of regularity for each
function sd is assumed.

Computational algorithm

For each functions sd we can use a cubic B-spline parametrization with K interior
knots placed at the empirical quantile of xd.

sd(x) =
K∑
k=1

βdkbdk(xd),

where bdk(x) are the B-spline basis functions and βd = (βd1, . . . , βdK)T ∈ RK is the
parameter vector corresponding to sd.

For twice differentiable functions, the optimization problem can be reformulated as

β̂ = argmin
β=(β1,...,βD)

||y −Bβ||2n + λ1

D∑
d=1

√
1

n
βTdBT

dBdβd + λ2β
T
dWdβd,

= argmin
β=(β1,...,βD)

||y −Bβ||2n + λ1

D∑
d=1

√
βTd

(
1

n
BT
dBd + λ2Wd

)
βd,

where B = [B1|B2| . . . |BD] with Bd is the n×K design matrix of the B-spline basis
of the dth predictor and where the K ×K matrix Wd contains the inner products
of the second derivative on the B-spline basis function.

The term (1/n)BT
dBd+λ2Wj can be decomposed using the Choleski decomposition

(1/n)BT
dBd + λ2Wd = RT

dRd

to some quadratic K ×K matrix Rd and by defining

β̃d = Rdβd and B̃ = BdR
−1
d ,

the optimization problem reduces to

ˆ̃β = argmin
β=(β1,...,βD)

||y − B̃β̃||2n + λ1

D∑
d=1

||β̃d||, (2.16)
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where ||β̃d|| =
√
K||β̃d||K is the Euclidean norm in RK . This is an ordinary group

lasso problem for any fixed λ2, and hence the existence of a solution is guaranteed.
For λ1 large enough, some of the coefficient groups βd ∈ RK will be estimated to be
exactly zero. Hence, the corresponding function estimate will be zero. Moreover,

there exists a value λ1,max <∞ such that ˆ̃β1 = · · · = ˆ̃βD = 0 for λ1 > λ1,max. This
is especially useful to construct a grid of λ1 candidate values for cross-validation
(usually on the log-scale). By rewriting the original problem in this last form,
already existing algorithms can be used to compute the estimator. Coordinate-wise
approaches as in Meier et al. [2008] and Yuan and Lin [2006] are efficient and have
rigorous convergence properties.

2.5 Combining cluster analysis and variable selec-

tion

2.5.1 Hierarchical clustering

Hierarchical clustering is a method of cluster analysis which aims at building a
hierarchy of clusters and result in a tree-based representation of the observations
called a dendrogram. The term hierarchical refers to the fact that clusters obtained
by cutting the dendrogram at a given height are necessarily nested within the clusters
obtained by cutting the dendrogram at any greater height.

Strategies for hierarchical clustering generally fall into two types [Rokach and Mai-
mon, 2005]:

– Agglomerative: This is a “bottom up” approach where each observation starts
in its own cluster, and pairs of clusters are merged as one moves up the hier-
archy.

– Divisive: This is a “top down” approach where all observations start in one
cluster, and splits are performed recursively as one moves down the hierarchy.

Ω being the training set to classify and dist a measure of dissimilarity (metric) on
this set, we define a distance LC (linkage criterion) between the parts of Ω. The
agglomerative hierarchical clustering algorithm is described in Algorithm 2.

Metric. The choice of an appropriate metric will influence the shape of the clus-
ters, as some clusters may be similar according to one distance or farther away
according to another. Given two sets of observations A ⊂ Ω and B ⊂ Ω with i the
index of the ith observation, the most commonly used metrics are:

– Euclidean distance: ||A−B||2 =
√

(
∑

i(Ai −Bi)
2)

– Manhattan distance: ||A−B||1 =
∑

i |Ai −Bi|

– Maximum distance: ||A−B||∞ = max
i
|Ai −Bi|
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Algorithm 2: Agglomerative hierarchical clustering

1. Begin with n observations and a measure of all the n(n− 1)/2 pairwise
dissimilarities and treat each observations as its own cluster.

2. for i = n, n− 1, ..., 2 : do
1. Examine all pairwise inter-cluster dissimilarities among the i clusters and

identify the pair of clusters that are the most similar.
2. Fuse these 2 clusters. The dissimilarity between these two clusters indicates

the height in the dendrogram at which the fusion should be placed.
3. Compute the new pairwise inter-cluster dissimilarities among the i− 1

remaining clusters
end

Linkage criteria. The linkage criterion determines the distance between sets of
observations as a function of the pairwise distances between observations. Some
commonly used linkage criteria between two sets of observations A ⊂ Ω and B ⊂ Ω
are:

– Single linkage: The dissimilarity between two sets is measured as the minimum
dissimilarity between the observations of the sets:

LC(A,B) = min{dist(i, i′), i ∈ A and i′ ∈ B}

– Complete linkage: The dissimilarity between two clusters is measured as the
maximum dissimilarity between the observations of the groups:

LC(A,B) = max{dist(i, i′), i ∈ A and i′ ∈ B}

– Average linkage: The dissimilarity between two clusters is measured as the
averaged dissimilarity between the observations of the groups:

LC(A,B) =

∑
i∈A
∑

i′∈B dist(i, i
′)

card(A).card(B)

Ward’s method

When the set Ω ∈ RD to classify is measured by D variables and where each element
of Ω is represented by a vector x, we could use the method developed by Ward [1963]
to construct a hierarchy among these variables. We note G = {G1, . . . ,Gs, . . . ,GS}
the group partitions coming from the S levels of the hierarchical clustering performed
on the matrix X ∈ Rn×D.

Given Gs = (Gs1, . . . ,Gsg , . . . ,GsGs
) a partition of Ω in Gs groups at a particular level

s of the hierarchy, the within-group inertia is defined as

IW (Gs) =
Gs∑
g=1

∑
x∈Gsg

dist2(x, x̄g),
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where x̄g is the centroid of group Gsg .

Equivalently we define the inter-group inertia as

IB(Gs) =
Gs∑
g=1

card(Gsg)dist2(x̄, x̄g),

where x̄ is the centroid of Ω.

It can be shown that the total inertia, at a given level s, can be decomposed as

Is = IW (Gs) + IB(Gs).

A partition will then be all the more homogeneous as the within-group inertia will be
close to 0 and it can be shown that the fusion of two groups necessarily increases the
total inertia. It is then possible to propose an agglomerative hierarchical clustering
algorithm that fuse, at each step, the two groups Gsg ∈ Gs and Gsg′ ∈ Gs that minimize
the Ward’s minimum variance criterion:

LC(Gsg ,Gsg′) =
card(Gsg).card(Gsg′)

card(Gsg) + card(Gsg′)
d2(x̄g, x̄g′),

where x̄g and x̄g′ are the centroids of groups Gsg and Gsg′ respectively.

Estimation of the number of clusters

The choice of the number of groups in cluster analysis is often ambiguous and
depends on many parameters of the dataset. Several model selection criteria have
already been investigated to makes such a decision [Tibshirani et al., 2001, Caliński
and Harabasz, 1974, Krzanowski and Lai, 1988]. These methods are based on the
measure of within-group dispersion IW .

The gap statistic was developed by Tibshirani et al. [2001] to find a way to com-
pare the distribution of log IW (Gs), Gs = (Gs1, . . . ,Gsg , . . . ,GsGs

), with its expectation
E∗[log IW (Gs)] under a reference distribution, i.e. a distribution with no obvious
clustering. The gap statistic for a given number of groups Gs is then defined as

Gap(Gs) = E∗[log IW (Gs)]− log IW (Gs).

To obtain the estimate E∗[log IW (Gs)], B copies of log IW (Gs) are generated with a
Monte Carlo sample drawn from the reference distribution and averaged.

The gap statistic procedure to estimate the optimal number of groups Ĝ∗s can be
summarized as follows.

Step 1: Construct the hierarchy on X ∈ Rn×D, varying the total number of clusters
from G = (G1, . . . , GS) and compute the within-group inertia IW (G) for each
partition G = (G1, . . . ,Gs, . . . ,GS).
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Step 2: Generate B reference data sets from a uniform distribution over the range
of observed values and cluster each one giving I∗W (Gb) for each bootstrapped
partition Gb = (Gb1, . . . ,Gbs, . . . ,GbS), b = (1, . . . , B). Compute the estimated
gap statistic

Gap(Gs) =
1

B

B∑
b=1

log I∗W (Gbs)− log IW (Gs).

Step 3: Compute the standard deviation

sd(Gs) =

√√√√ 1

B

B∑
b=1

[log I∗W (Gbs)− b̄]2,

where b̄ = 1/B
∑B

b=1 log I∗W (Gbs), and define SDs = sd(Gs)
√

1 + 1/B.

Step 4: Choose the estimated optimal number of clusters via

Ĝ∗s = smallest Gs such that Gap(Gs) ≥ Gap(Gs+1)− SDs+1.

2.5.2 Hierarchical Clustering and Averaging Regression

Hierarchical Clustering and Averaging Regression (HCAR) is a method developed
by Park et al. [2007] that combines hierarchical clustering and penalized regression
in the context of gene expression measurement.

The Algorithm 3 can be summarized as follows: At first a hierarchical clustering
is applied to the gene expression data to obtain a dendrogram that reveals their
nested correlation structure. At each level of the hierarchy, a unique set of genes and
supergenes is created by computing the average expression of the current clusters.
Then, the different sets of genes and supergenes are used as inputs for a Lasso
regression.

Hierarchical clustering proved to be especially adapted in this context because it
provides multiple levels at which the supergenes can be formed. Due to the fact
that the Euclidean distance measure among the genes is a monotone function of
their correlation (when the genes are properly standardized), hierarchical clustering
provides flexibility in model selection in such a way that the genes are merged into
supergenes in order of their correlation.

Park et al. [2007] proved that, in the presence of strong collinearity among the
predictors, an averaged predictor yields to an estimate of the OLS coefficients with
lower expected squared error than the raw predictors. The authors claimed that this
theorem could easily be generalized to a block-diagonal correlation structure. The
average features within each block may yield a more accurate fit than the individual
predictors.
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Algorithm 3: Hierarchical Clustering and Averaging Regression

1. Apply hierarchical clustering of the genes to yield the nested correlation
structure. We define Gs = (Gs1, . . . ,Gsg , . . . ,GsGs

) a group partition in Gs

groups and Xs
Gs =

[
Xs
Gs1
, . . . ,Xs

GsGs

]
the concatenated matrix of variables for

the partition Gs.
2. for s = 1, . . . , S do

Create supergenes matrix X̃s = X̃s
Gs1
, . . . , X̃s

GsGs
by averaging the gene

expressions at each cluster of the current group partition Gs:

x̃sig =
1

Gs

∑
g∈Gs

xsiGsg with i = 1, . . . , n

Fit Lasso, using the supergenes matrix X̃s as input and retrieve the set of
solution paths of the coefficients

end
3. Using cross-validation, find the optimal degree of shrinkage and level of the
hierarchy.

2.5.3 Multi-Layer Group-Lasso (MLGL)

Grimonprez [2016] define the Multi-layer Group-Lasso (MLGL) as a two-step proce-
dure that combines a hierarchical clustering with a Group-Lasso regression. It is a
weighted version of the overlapping Group-Lasso [Jacob et al., 2009] which performs
variable selection on multiple group partitions defined by the hierarchical clustering.
A weight is attributed to each possible group identified at all levels of the hierarchy.
Such weighting scheme favours groups creating at the origin of large gaps in the
hierarchy.

We note G = {G1, . . . ,Gs, . . . ,GS} the group partition coming from the s = 1, . . . , S
levels of the hierarchical clustering performed on the matrix X ∈ Rn×D. Gs =
(Gs1, . . . ,GsGs

) is the group partition at the level s of the hierarchy and Gs the total
number of groups at the current level.

A group-lasso procedure is then fitted on the concatenated matrix of all group
partition at all levels of the hierarchy

XG =
[
X1
G1 , . . . ,X

s
Gs , . . . ,X

S
GS
]

where Xs
Gs =

[
Xs
Gs1
, . . . ,Xs

GsGs

]
.

The Multi-Layer Group-Lasso solution is defined by:

β̂MLGL = argmin
β

{
1

2
||y −XGβ||22 + λ

S∑
s=1

ρs

Gs∑
g=1

√
Card(Gsg)||βGsg ||2

}
, (2.17)

with λ > 0 the penalty parameter, Gsg ∈ Gs the gth cluster coming from level s of the
hierarchy. The parameter ρs is a weight attributed to each group Gsg and its purpose
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is to quantify the level of confidence in each level of the hierarchy. This weight is
defined by:

ρs =
1√
ls

with ls = hs−1 − hs the length of the gap between two successive levels of the
hierarchy. Thus, the weight ρs is minimal when the length of the gap is maximal
with the consequence of less penalizing in (2.17) the groups at the origin of large
gaps in the hierarchy.

2.6 Statistical testing of significance

2.6.1 Introduction

In statistical hypothesis testing, statistical significance refers to the acceptance or
reject of the null hypothesis and corresponds to the likelihood that the difference
between a given variation and the baseline is not due to random chance. For a given
study, the defined level of significance α is the probability to reject the true null
hypothesis and the p-value, p, is the probability of obtaining a result at least as
extreme given that H0 is true. We can therefore state that the result is statistically
significant, by the standard of the study, if p < α.

Ronald Fisher first advanced the idea of statistical hypothesis testing in his famous
publication Statistical Methods for Research Workers [Fisher, 1935]. He suggested a
probability of 5% has an acceptable threshold level to reject the null hypothesis and
this cut-off was later taken over by Jezzy Neyman and Egon Pearson in Neyman
and Pearson [1933] where they named it the significance level α.

They proposed the following hypothesis testing procedure:

(a) Before getting the experimental measures:

1. Define the null hypothesis H0 and the alternative hypothesis H1.

2. Choose a level α.

3. Choose a test statistic, T , which is larger under H1 than under H0:

Reject H0 ⇔ T ≥ u.

4. Study the distribution of T under H0 and set the following condition:

P(T ≥ u) ≤ α.

5. Deduce the threshold u.

6. Give the test with the value retained for u and the real level:

Reject H0 ⇔ T ≥ u.
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(b) Once the measures are done:

7. Perform the numerical application and conclude if we accept or reject H0

based on the p-value = P(T ≥ tobs).

with

– Type I error: α = P(accept H1, H0 is true),

– Type II error: β = P(accept H0, H1 is true),

– Power of the test: 1− β = P(accept H1, H1 is true).

and the confusion matrix defined in Table 2.1.

Decision
Reality

H0 true H1 true

H0 accepted True Positive False Positive

H1 accepted False Negative True Negative

Table 2.1: Confusion matrix

2.6.2 χ2 test

The chi-squared test, also written as χ2 test, is a statistical hypothesis test developed
by Karl Pearson and first published in Pearson [1900]. It is used when the sampling
distribution of the test statistic under the null hypothesis follows a chi-squared
distribution.

The χ2 distribution with k degrees of freedom is the distribution of a sum of the
squares of D independent standard normal random variables. If X1, ...,XD are in-
dependent, normally distributed random variables, then the sum of their squares:

Z =
D∑
d=1

X2
d, (2.18)

is distributed according to the χ2 distribution with D degrees of freedom. This is
usually denoted as Z ∼ χ2(D) or Z ∼ χ2

D. The chi-squared distribution has one
parameter: D a positive integer that specifies the number of degrees of freedom.

The chi-squared test is used to determine whether there is a significant difference
between the expected frequencies and the observed frequencies in one or more cate-
gories. Test statistics that follow a chi-squared distribution arise from an assumption
of independent normally distributed data, which is valid in many cases due to the
central limit theorem.
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2.6.3 Likelihood ratio test

The likelihood ratio test is used for comparing the goodness of fit of two statistical
models, a null model against an alternative model. The log-likelihood ratio statistic
is generally used to compute a p-value to decide whether or not to reject the null
model.

Given the null H0 : θ = θ0 and the alternative hypothesis H1 = θ = θ1 for a
statistical model f(x|θ), the likelihood ratio is defined as

Λ(x) =
l(θ0|x)

l(θ1|x)
,

where θ 7→ l(θ|x) is the likelihood function and with α = P(Λ(x) ≤ u|H0) the
significance level at a threshold u.

In practice we define the test statistic as

T = −2 log

(
l(θ0|x)

l(θ1|x)

)
= 2× [log(l(θ1|x))− log(l(θ0|x))]

The Neyman-Pearson lemma introduced in Neyman and Pearson [1933] states that
the likelihood ratio test is the most powerful test at a significance level α.

2.6.4 Calculation of p-values in GAM

Let βj ∈ RK be the coefficients vector of the k covariates for a single smooth term j
and Vβj

the covariance matrix of βj. In the context of generalized additive models,
if the covariates of the smooth are uncorrelated with other smooth terms in the
model, then E(β̂j) = 0, otherwise there is little bias and E(β̂j) ' 0.

Under the null hypothesis H0 : βj = 0 we have

β̂j ∼ N (0,Vβj
).

It follows that if Vβj
is of full rank, then under the null hypothesis

β̂j
T
V−1βj

β̂j ∼ χ2
k.

However, applying a penalty on the coefficients of the smooth, as it is the case
with smoothing splines, often suppress some dimensions of the parameter space
and consequently the covariance matrix Vβj

is not of full rank. If so, the test is
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performed using the rank r = rank(Vβj
) pseudo-inverse of the covariance matrix

Vr−
βj

and under the null,

β̂j
T
V−rβj

β̂j ∼ χ2
r.

As stated in Wood [2006], as long as the p-values give a clear cut result it is usu-
ally safe to rely on them, but when they are close to the threshold of accepting or
rejecting the null, they must be carefully treated. Indeed, as the uncertainty on
the smoothing parameter estimation has been neglected in the reference distribu-
tion used for testing, these distributions are typically too narrow and attribute too
low a probability to moderately high values in the test statistics. In that case, to
obtain more accurate p-values, it may be preferable to perform test on overspecified
unpenalized models even if it induces a cost in terms of statistical power.

2.7 Multiple testing comparisons

In some context, as it is the case with the analysis of genes expression data or in
Genome-Wide Association Studies (GWASs) for instance, we may need to perform
simultaneously a very large number, d ∈ [1, . . . , D], of tests and therefore the same
large number of p-value. If we reject, for the dth tests, the null hypothesis H0,d when
its associated p-value p̂d is not larger than α, then for each tests d, the probability
to reject wrongly H0,d is at most α. Nevertheless, if we consider the D tests simul-
taneously the number of hypothesis H0,d wrongly rejected (false positive or type I
error) can be very large. Actually, the expectation of the number of false positives
in given by:

E[False Positives] =
D∑

d:H0,d

PH0,d(Td ≥ uα) = card{d : H0,d is true} × α,

if the threshold uα is such that PH0,d = α for every d. For instance, for a typical
value of α = 5% and card {d : H0,d is true} = 1000, then we obtain on average
500 false positives. It is therefore necessary to adjust the threshold uα at which we
reject the null hypothesis in order to control for the number of false positives while
not losing too much power.

2.7.1 Controlling the Family-Wise Error Rate

There exist many adjustments methods for multiple testing, including controls of
the Family-Wise Error Rate (FWER), i.e. the probability of rejecting H0 when it is
true at least one time, noted as

FWER = P(card(False Positives) ≥ 1).
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Bonferroni procedure: The most commonly used method for controlling the FWER
is the Bonferroni method [Bonferroni, 1936]. The test of each Hd is controlled
so that the probability of a Type I error is less than or equal to α/D, ensuring
that the overall FWER is less than to a given α.

Šidák method: The method of Šidák [1967] is closely related to Bonferroni’s pro-
cedure where the p-value are adjusted as:

padjd = 1− (1− pd)D,

where pd is the unadjusted p-value for the dth test.

Holm method: A less conservative adjustment method is the Holm [1979b] method
that orders the p-values and makes successively smaller adjustments. Let the
ordered p-values be denoted by p1 ≤ p2 ≤ · · · ≤ pD. Then, the Holm method
calculates the adjusted p-values by

padj1 = D × p1,
padj1 = max{pd−1, (D − d+ 1)× pd} 1 ≤ d ≤ D.

The principal issue with these approaches is that they control the probability of at
least one false positive regardless of the number of hypothesis being tested. They
reduce the number of type I error but tends to be very conservative in the sense
that the number of type II error is increased resulting in a loss of power. That is
why less conservative methods are preferred in high-dimensional settings.

2.7.2 Controlling the False Discovery Rate

The False Discovery Proportion (FDP) corresponds to the proportion of false posi-
tives among the positive FP/(FP+TP). The False Discovery Rate, introduced in the
seminal paper of [BH, Benjamini and Hochberg, 1995], is defined as the expected
value of the FDP:

FDR = E
[

FP

FP+TP
1FP+TP≥1

]
. (2.19)

Controlling the FDR quantity offers a less conservative multiple-testing criterion
than the FWER control. Benjamini and Hochberg [1995] proved that their approach,
referred as the BH procedure, control the FDR at level α under the condition that the
p-values following the null distribution are independent and uniformly distributed.

The BH procedure can be described as follow:

Step 1. Let p1 ≤ p2 ≤ · · · ≤ pD be the observed p-values.

Step 2. Calculate
k̂ = argmax

1≤k≤D
{k : pk ≤ αk/D}.
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Step 3. If k̂ exists, then reject the null hypothesis corresponding to p1 ≤ · · · ≤ pk.
If not, accept the null hypothesis for all tests.

Benjamini and Hochberg [1995] have shown that the FDR is upper-bounded by:

FDR ≤ αd0/D,

with d0 the number of true null hypothesis and have shown that this upper bounding
is also true for positively dependent test statistics, i.e. when the distribution of p-
values fulfils the Weak Positive Regression Dependency Property (WPRDS).

Since the BH procedure controls the FDR at a level of αd0/D instead of α, a lot of
work has been done in order to achieve a better level, mainly by trying to estimate
d0 (see Roquain [2010] and references therein for more details).
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Chapter 3

Genome-Wide Association Studies

This chapter focuses on Genome-Wide Associations Studies. It aims at explaining
the principles and limitations of such studies. Section 3.2 exposes the critical points
to consider in terms of genotyping quality control to avoid false positives. Section
3.3 introduces the concepts of disease penetrances and odds ratio generally used
in genetic epidemiology. Section 3.5 places emphasis on the problem of population
structure in GWAS. In section 3.4 is explained the classical single marker approach
used in GWAS while Section 3.6 focuses on multi-marker methods to which we will
refer in Chapter 4 and 5.
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3.1 Introduction

Linkage analysis (Section 1.1.4) was the traditional approach for disease gene map-
ping, where the co-segregation of marker alleles with disease within large pedigrees or
smaller family is studied. This approach is efficient for locating genes contributing to
simple Mendelian disorders where there is a strong relationship between phenotype
and genotypes at the underlying functional polymorphisms. However, it proved to
be less reliable regarding mapping of complex diseases as there may be multiple in-
teracting genes underlying these phenotypes and that the effects of these genes may
vary according to exposure to environmental and other non-genetic risk factors.

Whole Genome Association studies (WGA) focus on identifying genetic markers
that occur with different frequencies between samples of unrelated affected individ-
uals and unaffected controls, exploiting the fact that it is easier to establish large
cohorts of affected individuals sharing a genetic risk factor for a complex disease
across the whole population than within individual families, as it is required for
traditional linkage analysis. WGA rely in two types of association study: direct
association and indirect association. On one hand, direct association focus on di-
rectly genotyping and studying functional polymorphisms which have relatively high
prior probability of functional relevance such as non-synonymous polymorphisms∗,
splice-site variants†, and copy number polymorphisms (CNP‡). One the other hand,
indirect association, also referred as Genome-Wide Association Study (GWAS), fo-
cuses on both functional SNP, such as non-synonymous SNP, and those flanking
them. Even if the flanking SNP are themselves unlikely to be directly associated
with the phenotype, at sufficiently high density one or more is likely to be correlated
(i.e. in linkage disequilibrium, see Section 1.3) with the underlying causal variants.

Furthermore, recent breakthroughs in micro-array technology have meant that hun-
dreds of thousands of SNP can now be densely genotyped at moderate cost. As a
result, it has become possible to characterize the genome of an individual with up
to a million genetic markers. These rapid advances in DNA sequencing technologies
have also made it possible to carry out exome and whole-genome sequencing studies
of complex diseases. In this context, Genome-Wide Association Studies have been
widely used to identify causal genomic variants§ implied in the expression of differ-
ent human diseases (rare, Mendelian or multifactorial diseases). Thanks to the Next
Generation Sequencing techniques, it is now possible to genotype the complete DNA
sequence of an individual at a moderate cost, around 1000 $ in 2016 [Wetterstrand,

∗A non-synonymous SNP is a SNP that modifies the protein sequence in opposition to a
synonymous SNP.

†A genetic alteration in the DNA sequence that occurs at the boundary of an exon and an
intron (splice site). This change can disrupt RNA splicing, resulting in the loss of exons or the
inclusion of introns leading to an altered protein-coding sequence.

‡A CNP is a normal variation in DNA due to the varying number of copies of a sequence within
the DNA. Large-scale copy number polymorphisms are common and widely distributed throughout
the genome.

§In the remainder of the paper, the terms variant, marker, locus, SNP or polymorphism will
equivalently refer to the variable studied in GWAS.
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2016], and in a very short time. Consequently, it is reasonable to think that the SNP
will be abandoned in favour of a complete genotype and it is therefore necessary to
develop statistical methods that can handle this kind of massive data.

3.2 Genotype quality control

In GWAS, the data filtering step used to identify genotyping mistakes is of primary
importance since it can determine whether real discoveries are made or just false
positives wrongly interpreted. With such large numbers of SNP being studied at the
same time and with relatively moderate sample sizes, even small genotyping error
rates can have a significant impact on the results.

As stated in Wright and Hastie [2001], genetic effects on most multifactorial phe-
notypes follow an L-shaped distribution, with a few alleles having large effects and
many alleles with a small effect size. This means that GWAS principally aim to
identify small differences in allele frequencies between case and control, therefore
even small experimental error can have strong effects on the results, particularly in
the presence of rare alleles [Clayton et al., 2005, Barrett and Cardon, 2006]. The
following paragraphs describe some of the filtering procedures designed to identify
issues on specific SNP.

Deviation from HWE. Neutral genetic variants in a large random-mating pop-
ulation are expected to display HardyWeinberg Equilibrium (see Section 1.2.1).
However, observed frequencies might be modified by genotyping error, leading to
a deviation from HWE. A traditional approach for detecting genotyping errors is
to test such deviation using the Pearson goodness-of-fit statistic (Section 2.6.2) and
to look for significant deviations from the HWE [Weir and Cockerham, 1996]. We
usually perform this test only in the control sample since a deviation from HWE
may also indicate an association with the disease. This test is insensitive to small
deviations that are most often observed and, in a setting where there is a huge
number of SNP to test for HWE deviation, an appropriate threshold of significance
is therefore difficult to determine. Taking in account these considerations, the most
prudent use of HWE tests for genotyping error may be only to exclude the most
important deviations by setting an extreme significance threshold such as 1.10−7 or
less, and using exact tests for rare alleles [Weir et al., 2005].

Missing data. In case-control studies, markers having large differences in missing
data rates between cases and controls often yield false positives [Clayton et al.,
2005]. One can use the normal approximation to the binomial distribution to test
for significant differences in missing data rates between cases and controls:

z =
mc −mt√

m(1−m)(1/n0 + 1/n1)
,
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with mc and mt the proportion of missing genotypes among cases and controls
respectively, n0 and n1 the samples sizes of missing and non-missing data and m the
overall missing genotype rate at the marker.

Distribution of test statistics. When there are many significant loci coming out
of a particular study it may more likely reflect systematic genotype error in some
of those markers than reflect real discoveries. Indeed, remembering the L-shaped
distribution of effect sizes, a study with 105− 106 genetic markers genotyped on one
or two thousand cases and equal numbers of controls should reveal few genuine loci
with single locus p-values below 1.10−6 [Zondervan and Cardon, 2004]. Quantile-
Quantile plot (Q-Q plot) is an efficient graphical way to examine the distribution
of p-value and to evaluate whether there are too many data points in the tail. Q-
Q plots are constructed by ordering test statistics and plotting them against the
corresponding ordered expected values (see Figure 3.1 for an example).

Figure 3.1: Example of Quantile-
Quantile plot (Q-Q plot) repre-
senting the distribution of the test
statistic for a classical GWAS study
(results from GWAS analysis on Bipo-
lar disorder data coming from the
Welcome Trust Case-Control Consor-
tium [WTCCC, 2007]). In this exam-
ple we can see that the smallest p-
value is equal to 4.5.10−5 and there
are relatively few data points in the
tail. Thus, based solely on the study
of this distribution, there is therefore
no reason to suspect genotyping er-
rors.

3.3 Disease penetrance and odds ratio

Considering a biallelic locus with alleles A and a, the possible genotypes are then
A/A, A/a and a/a. The disease penetrance associated with a given genotype is the
risk of disease in individuals carrying this genotype. Assuming a genetic penetrance
parameter γ > 1, the main disease penetrance models in association genetics can be
summarized as:

– Multiplicative model: The risk of disease is increased by a factor of γ with
each additional a allele

– Additive model: The risk of disease is increased by a factor of γ for genotype
A/a and by a factor of 2γ for genotype a/a.



3.3. Disease penetrance and odds ratio 61

– Recessive model: The risk of disease is increased by a factor of γ for genotype
a/a only.

– Dominant model: The risk of disease is increased by a factor of γ both for
genotype A/a and a/a.

A commonly used measure of the strength of an association between phenotype and
genotype is the relative risk (RR), which compares the disease penetrances between
individuals carrying different genotypes (Table 3.1).

Penetrance Relative risk

Disease model A/A A/a a/a A/a a/a

Multiplicative f0 f0γ f0γ
2 γ γ2

Additive f0 f0γ 2f0γ γ 2γ

Recessive f0 f0 f0γ 1 γ

Dominant f0 f0γ f0γ γ γ

Table 3.1: Disease penetrances for genotype A/A, A/a and a/a and the associated
relative risks for genotypes A/a and a/a with f0 the disease penetrance of baseline
genotype A/A and γ the genetic penetrance parameter.

To estimate the RR it is therefore necessary to assess the disease penetrances which
can only be derived directly from prospective cohort studies. In these studies, a
group of exposed and unexposed individuals from the same population are followed
up to evaluate who develop the disease of interest. However, in a case-control study,
in which the case-control ratio is controlled by the investigator, it is not possible
to make direct estimates of disease penetrance, and hence of RRs. In this type of
study, the strength of an association is measured by the odds ratio (OR) [Clarke
et al., 2011].

In a case-control study, the odds of disease are defined as the probability that the
disease is present compared with the probability that it is absent in exposed ver-
sus non-exposed individuals. Because of selected sampling, odds of disease are not
directly measurable. However, conveniently, the disease OR is mathematically equiv-
alent to the exposure OR (the odds of exposure in cases versus controls), which can
be calculated directly from exposure frequencies [Balding et al., 2008]. Two types
of OR can be calculated:

– Allelic OR: It is estimated by comparing the odds of disease in an individual
carrying allele A to the odds of disease in an individual carrying allele a.

– Genotypic OR: It represents the association between disease and genotype by
comparing the odds of disease in an individual carrying one genotype to the
odds of disease in an individual carrying another genotype.
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The risk factor for case versus control status is the genotype or allele at a specific
marker. For each SNP with minor allele a and major allele A in case and control
groups comprising n individuals, it is possible to represent the data as a 2 × k
contingency table of disease status by either allele (k = 2) or genotype (k = 3)
count (Table 3.2).

Genotype count Allelic count

A/A A/a a/a Total A a Total

Cases n01 n11 n21 n.1 m01 m11 m.1

Controls n00 n10 n20 n.0 m00 m10 m.0

Total n0. n1. n2. N m0. m1. N

Table 3.2: 2 × 3 contingency table of genotype counts and 2 × 2 contingency table
of allelic counts for a single locus with alleles A and a. The genotype count nij
corresponds to the observed frequency of individuals carrying i copies of the minor
allele a with phenotype j = 1 for cases and j = 0 for controls. The allelic count mij

can be summarized in different ways according to the disease penetrance models:
for the dominant model, i = 0 if an individual is A/A and i = 1 otherwise, for a
recessive model i = 0 if an individual is A/A or A/a and i = 1 otherwise.

Using the genotype count and allelic count exposed in Table 3.2, we define the allelic
odds ratio (ORA), the allelic relative risk (RRA) as:

ORA =
m01m10

m00m11

, RRA =
ORA

1− p0 + p0ORA

,

with p0 is the estimated disease prevalence.

The genotypic odds ratio for genotype a/a relative to genotype A/A and for genotype
A/a relative to genotype A/A is estimated by:

ORaa =
n21n00

n01n20

, ORAa =
n11n00

n01n10

.

Given a disease prevalence p0, the relative risk of disease in individuals carrying a
genotype a/a compared with an A/A genotype is:

RRAA =
ORAA

1− p0 + p0ORAA

.

Figure 3.2 illustrates the relationship between allele frequency and disease pene-
trance in terms of disease representation. Low-frequency alleles which also have a
low penetrance are very difficult to identify with common approaches while high-
frequency alleles are those most commonly identified.
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Figure 3.2: Relationship between allele frequency and penetrance on disease repre-
sentation. (source: McCarthy et al. [2008])

3.4 Single Marker Analysis

The standard statistical method to identify variants associated with a disease is to
test the effect of each SNP one at a time using standard hypothesis testing methods.
The goal is to identify genetic variants statistically associated with the phenotype,
these variants being themselves in linkage disequilibrium with a potential causal
polymorphism. Here we will review some of the most commonly used tests.

3.4.1 Pearson’s χ2 statistic

The expected value under the independence hypothesis of the genotype count nij,
as defined in Table 3.2, is noted as:

E(nij) =
ni.n.j
N

.

It is thus possible to construct a genotypic association test by testing the indepen-
dence between the rows and columns of the contingency table using the standard
Pearsons χ2 statistic for independence given by:

χ2
genotypic =

∑
i=[0,1,2]

∑
j=[0,1]

(nij − E(nij))
2

E(nij)
.

This genotypic association test statistic has an approximate χ2 distribution with 2
degrees of freedom (d.f.) under the null hypothesis H0 of independence between the
rows and columns of the contingency table.
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As shown in Table 3.1, it is also possible to consider alternative models of penetrance
by focusing on allele count rather than genotype count. In this situation the allelic
association test is performed using a 2 × 2 contingency table and its associated χ2

statistic is defined as:

χ2
allelic =

∑
i=[0,1]

∑
j=[0,1]

(mij − E(mij))
2

E(mij)
.

This allelic association test, which have 1 d.f., will be more powerful than the geno-
typic test with 2 d.f., as long as the penetrance of the heterozygote genotype is
intermediate compared to those of the two homozygous genotypes [Clarke et al.,
2011].

3.4.2 Cochran-Armitage trend test

Any penetrance model specifying a trend in risk with increasing numbers of alleles a
can be examined using the Cochran-Armitage trend test [Cochran, 1954, Armitage,
1955] given by:

χ2
CA =

[∑2
i=0wi(n.1n2. − n.2n1.)

]2
n1.n2.

n

[∑2
i=0w

2
i n.i(n− n.i)− 2

∑1
j=0

∑2
i=j+1wjwin.jn.i

] , (3.1)

where w = (w0, w1, w2) are weights chosen to detect particular types of association.
For instance, with a dominant model w = (0, 1, 1) is optimal while for a recessive
model weights w = (0, 0, 1) are rather chosen.

Under the null hypothesis of no association between the SNP and disease (H0 :
independence between rows and columns of the contingency table), χ2

CA has an
approximate χ2 distribution with 1 d.f.. The power of this test is often improved as
long as the disease risks associated with the A/a genotype are intermediate to those
associated with the a/a and A/A genotypes. In GWAS, in which the underlying
genetic model is unknown, the additive version of this test, i.e. with w = (0, 1, 2),
is most commonly used.

3.4.3 Logistic regression and likelihood ratio test

Another possible framework for modelling the relationship between a case-control
phenotype and SNP genotype is to use the logistic regression model, as described in
Section 2.3.3. The logistic regression model is parametrised in terms of the log-odds
of disease for each SNP genotype, denoted by β. The log-likelihood of observed
phenotype data, y and genotype data G, is given by:
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l(y|G,β) =
n∑
i=1

[
yi log

(
eηi

1 + eηi

)
+ (1− yi) log

(
1− eηi

1 + eηi

)]
,

where the linear predictor ηi = β0 + βgi.

Under the null hypothesis of no association H0 : β = 0 , we expect each genotype to
have equal odds of disease, so that ηi = β0. Under the additive model and treating
allele A as baseline, the linear predictor becomes:

ηi = β0 + βAz(A)i,

where βA corresponds to the additive effect of allele a and z(A)i is a variable rep-
resenting the additive component of the ith genotype (see Table 3.3 for the SNP
coding in different disease penetrance models).

Genotype
Additive

component z(A)i

Dominance
component z(D)i

Recessive
component z(R)i

AA 0 0 0

Aa 1 1 0

aa 2 1 1

Table 3.3: Coding of additive, dominance and recessive components of SNP geno-
types.

In this framework, tests of association can be conducted with likelihood ratio (LR)
methods in which inference is based on the likelihood of the genotyped data given
disease status. The likelihood of the observed data under the proposed model of
disease association is compared with the likelihood of the observed data under the
null model of no association. For example, the log-likelihood ratio statistics,

ΛGen = l(y|G, β̂0, β̂A)− 2l(y|G, β̂0, β̂A = 0),

provides a genotype-based test of association which have an approximate χ2 distri-
bution with 2 d.f. under the null hypothesis. In large samples, it can be shown that
χ2 and LR methods are equivalent under the null hypothesis [Rice, 2006].

Furthermore, by using the flexible logistic regression framework, it is straightforward
to incorporate additional covariates in the linear component, to allow the modelisa-
tion of environmental effects or to correct for population structure as we will see in
the following section. The linear predictor ηi can thus be extend to:

ηi = β0 +

p∑
j=1

αjxij + βAz(A)i,
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where xij is the response of the ith individual to the jth covariate and αj its cor-
responding coefficient. Covariate adjustment reduces spurious associations due to
sampling artefacts or biases in study design, but adjustment comes at the price of
using additional degrees of freedom which may impact statistical power.

3.4.4 Limitations

The classical Single Marker Analysis approach is subject to false positives (i.e. SNP
that are falsely identified as significant variables) due to the number of tests per-
formed at the same time. One way around this problem is to apply a correction
for multiple comparisons as described in Section 2.7. Unfortunately, this increases
the risk of missing true associations that have only a small effect on the phenotype,
which is usually the case in GWAS. Indeed, simultaneously testing 1.105 SNP with
single marker analysis would require that the associated p-value reach a threshold
of at least 5.10−5, using a Bonferroni correction, to be consider as significant and a
little higher with FDR control method.

Furthermore, another commonly used approach for multiple testing comparisons in
GWAS relies on the concept of genome-wide significance. It is based on the distri-
bution of LD in the genome for a specific population and consider that there are
an effective number of independent genomic regions, and thus an effective number
of statistical tests that should be corrected for. For European-descent populations,
this threshold has been estimated at 7.2.10−8 [Dudbridge and Gusnanto, 2008]. This
approach should however be used with caution since the only scenario where this
correction is appropriate is when hypotheses are tested on the genome scale. Can-
didate gene studies or replication studies with a focused hypothesis do not require
correction to this level, as the number of effective, independent statistical tests is
much lower than what is assumed for genome-wide significance [Bush and Moore,
2012].

Furthermore, as stated in Maher [2008], these approaches face other limitations:

– It does not directly account for correlations among the predictors, whereas
these correlations can be very strong as a result of linkage disequilibrium (LD).
SNP can be correlated even where they are not physically linked, because of
population structure or epistasis (gene by gene interactions).

– It does not account for epistasis, i.e. causal effects that are only observed when
certain combinations of mutations are present in the genome.

– It does not directly provide predictive models for estimating the genetic risk
of the disease.

– It focuses on identifying common markers with minor allele frequency (MAF)
above 5%, although it is likely that analysing low-frequency (0.5% < MAF
< 5%) and rare (MAF < 0.5%) variants would be able to explain additional
disease risks or trait variability [Lee et al., 2014].
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Uncovering some of the missing heritability can sometimes be achieved by taking
into account correlations among variables, interaction with the environment, and
epistasis, but this is rarely feasible in the context of GWAS because of the multi-
ple testing burden and the high computational cost of such analyses [Manolio and
Visscher, 2009]. That is why, knowing these limitations, we propose in Chapter 4 a
new approach that take benefit of the correlation structure among SNP to improve
statistical power in GWAS.

3.5 Population structure

One of the most important covariate to consider in GWAS is the measure of popu-
lation structure which, if not accounted for, can inflate the false positive error rate.
As stated in Section 1.3.4, we know that population stratification as an important
impact on patterns of LD and allele frequencies are highly variable across human
subpopulations, meaning that in a sample with multiple strata, strata-specific SNP
will likely be associated to the trait due to population structure. As a result, SNP
with allele frequency differences between the strata will appear to be associated
with disease, even if there is no association within each stratum. Several methods
to identify and adjust for population stratification have been developed of which
the most commonly used are genomic control, structured association and principle
components correction [Balding et al., 2008].

3.5.1 Genomic control

Under the null hypothesis of no disease association, the distribution of Cochran-
Armitage test statistics is χ2

CA with 1 d.f. However, in a stratified population, we
expect different allele frequency at many SNP and hence an excess of false positive
signals of association. As a result, the observed distribution of association statistics
will be inflated by a genomic inflation factor λ [Devlin and Roeder, 1999]. The
genomic inflation factor λ is defined as the ratio of the median of the empirically
observed distribution of the test statistic to the expected median:

λ = median(χ2
CA)/0.456.

The genomic control method takes account of structure by a linear rescaling of
observed test statistics to approximately restore the χ2

CA with 1 d.f null distribution:

χ2
CA−adj = χ2

CA/λ.
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3.5.2 Structured association

The method known as structured association, implemented in the STRUCTURE
software [Pritchard et al., 2000], uses an admixture model∗ where the proportion of
an individual’s genome into K specific ancestral strata is treated as unknown. The
posterior distribution of ancestry for each individual is then approximated using
bayesian Markov Chain Monte Carlo (MCMC) methods based on genotype infor-
mation from several hundred genome-wide SNP and the estimated structure is then
included as covariates in a logistic regression framework. The main drawback of this
approach is that the number of ancestral subpopulations must be inferred using an
ad hoc estimation procedure and the computational load of the MCMC algorithm
is such that it cannot accommodate for the numbers of markers commonly used in
GWAS.

3.5.3 Principle components correction

This method makes use of the Principal Component Analysis (PCA) to detect and
correct for population structure. In PCA, the few first principal components, cal-
culated using the eigen-decomposition of a matrix, explain the greatest amount of
variation in the data and has long been used to study population structure in genetic
data [Reich et al., 2008]. In GWAS, PCA has been used to explicitly model ancestry
differences between cases and controls along continuous axes of variation and the
first principle components may be used as covariates in a logistic regression model
to adjust for the population structure effect. PCA being a computationally efficient
algorithm, this approach has the advantage that it can be applied to datasets with
more than 1.105 SNP.

The software EIGENSTRAT [Price et al., 2006] use this approach by computing an
adjusted test statistic defined as follow:

χ2
eigen = (n− k − 1)r2(zadjm ,yadj),

where zadjm is the adjusted genotype at marker m, defined as the residuals after re-
gressing genotypes on the top k principal components. The adjusted phenotype yadj

is similarly defined. The test statistic χ2
eigen approximately follows a χ2 distribu-

tion with 1 d.f under the null hypothesis of no association. It has been shown that
the EIGENSTRAT method has a higher power than genomic control because the
correction in EIGENSTRAT is specific to a variation in frequency of a candidate
marker across ancestral populations, which will minimize spurious associations as
well as maximize power to detect true associations [Price et al., 2006] .

∗An admixture model is a statistical model taking in account the phenomenon known as pop-
ulation admixture (see Section 1.3.4).
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3.6 Multi-locus analysis

As previously mentioned, in GWAS it is necessary for the SNP to be correlated
to the causal polymorphisms in order to have an efficient disease mapping and,
in complex disease, each single SNP have small effects on the phenotype. In this
section we will show that we can take benefit from performing joint association tests
of multiple SNP flanking a causal polymorphism to increase power in the case of
rare-variant analysis or when the genetic effects are too small to be detected by
single-locus approaches.

Several ways of grouping SNP together for multi-locus analysis are possible; we may
consider to group SNP that fall within an established biological context such as
a biochemical pathway, protein family, or gene. We can also consider working at
haplotypes level rather than the genotypes and used the haplotype structure of the
genome to define relevant groups (Section 3.6.2 and 3.6.3).

Performing multi-locus analysis is not as straightforward as single marker analysis
and presents some computational and statistical challenges. The most commonly
used model to regress multiple SNP is the multiple linear regression with which we
can simultaneously fit all SNP in the same gene or small genomic region. To reduce
the problem of collinearity and overfitting that may arise, we can resort to penal-
ized approaches, as described in Section 2.3.2, such as ridge, lasso or group-lasso
regression models. Furthermore, with such models, it is also possible to examine
statistical interactions among genetic variants and so to investigate epistatic effects
as in Stanislas et al. [2017].

Other methods using multiple linear regression take into account the linkage dise-
quilibrium within the genes to improve power [Yoo et al., 2016] or cluster variants
with weak association around known loci to increase the percentage of variance ex-
plained in complex traits [Par et al., 2015]. Finally, other approaches will focus on
the aggregation of summary statistics of single SNP within a same gene with for
instance the data-driven aggregation of summary statistics described in Kwak and
Pan [2016] or the procedures of p-value combination in Petersen et al. [2013].

3.6.1 Haplotype-based approaches

One approach to multi-locus analysis is to focus on haplotype effects. As seen in
Section 1.3.5, the human genome can be partitioned into haplotype blocks where
most of the intra-block variability is imputable to mutation rather than recombi-
nation. As a result, much of common genetic variation can also be structured into
haplotypes within blocks of LD that are rarely disturbed by meiosis.

It is common to assume that each of the pair of haplotypes, Hi1 and Hi2, labelled
according to their relative frequency in the population and forming the diplotype
Hi of the ith individual, contributes independently to the disease risk. Under this
assumption the logistic regression model can be parametrised in terms of the log
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odds of disease for each haplotype [Balding et al., 2008]. The linear predictor ηi of
the ith individual, as defined in Section 3.4.3, can thus be defined as:

ηi = β0 +

p∑
j=1

αjxij + βHi1
+ βHi2

,

where xij is the response of the ith individual to the jth covariate and αj its cor-
responding coefficient. βk denotes the log-OR of the kth most frequent haplotype,
relative to the baseline haplotype, usually the most common, so that β1 = 0.

One major issue with this approach is that we do not directly observe the diplotype
H from the unphased genotype data. One solution is to take a point estimate
of the diplotype for each individual, using statistical methodology, such as PHASE
[Stephens et al., 2001] or by maximum likelihood using the expectation-maximisation
algorithm [Excoffier and Slatkin, 1995]. However, due to the uncertainty in the
haplotype reconstruction process, the variances of the model parameters are under-
estimated leading to an inflation of type I error [Balding et al., 2008].

3.6.2 Rare-variant association analysis

In the context of rare-variant association analysis, a number of region- or gene-based
multimarker tests have been proposed as burden tests [Asimit et al., 2012], variance-
component tests [Wu et al., 2011] or combined burden and variance-component
tests [Lee et al., 2012]. Instead of testing each variant individually, these methods
evaluate the cumulative effects of multiple genetic variants in a gene or a region,
increasing power when multiple variants in the group are associated with a given
disease or trait.

We first introduce the statistical model used in various rare-variant tests and that
is again based on the logistic regression framework defined in Section 3.4.3. We
assume that n individuals have been genotyped in a region comprising M genetic
markers and defined the linear predictor ηi of the ith individual as:

ηi = β0 +

p∑
j=1

αjxij +
M∑
m=1

βmzim, (3.2)

where zim = z(A)im is the variable representing the additive component of the ith

individual for the mth marker and xij the response of the ith individual to the jth

covariate. We define the score statistic of the model for variant m as

Sm =
n∑
i=1

zim(yi − ηi).

Note that Sm is positive when marker m is associated with increased disease risk or
trait values and negative when marker m is associated with decreased risk or trait
values.
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Burden tests

Burden tests [Asimit et al., 2012, Li and Leal, 2008] compute a single genetic score
from multiple genetic markers and test for association between this score and a
phenotype of interest. A simple approach summarizes genotype information by
counting the number of minor alleles across all variants in the set. The summary
genetic score is then:

Ci =
M∑
m=1

ωmzim, (3.3)

where wm is a weight attributed to marker m. The linear predictor (3.2) can thus
be written as:

ηi = β0 +

p∑
j=1

αjxij + β1Ci.

To compute a p-value for a set of M markers, the specific test statistic Qburden is
calculated and compared to a χ2 distribution with 1 d.f.:

Qburden =

[
M∑
m=1

ωmSm

]2
.

This framework is flexible in the sense that we can attribute different weights to
the markers or define the genetic score Ci to accommodate for different assumptions
about disease mechanism. For instance, the cohort allelic sums test [CAST, Mor-
genthaler and Thilly, 2007] assumes that the presence of any rare variant increases
disease risk and sets the genetic score Ci = 0 if there are no minor alleles in a region
and Ci = 1 otherwise. Furthermore, to focus on rarer variants, we can assign wm = 1
when the MAF of variant m is smaller than a prespecified threshold and wm = 0
otherwise. Alternatively, a continuous weight function can be used to upweight rare
variants with for instance ωm = 1/

√
MAFm(1−MAFm) as proposed by Madsen

and Browning [2009].

The burden methods make a strong assumption that all rare variants in a set are
causal and associated with a trait with the same direction and magnitude of effect
(after adjustment for the weights) which may in a substantial loss of power if these
assumptions prove to be false [Lee et al., 2014].

Sequence Kernel Association Test (SKAT)

In Wu et al. [2010], the authors proposed to group SNP into sets on the basis of their
proximity to genomic features such as genes or haplotype blocks and then to identify
the joint effect of each set via a logistic kernel-machine-based test. This approach
lays the foundation for the Sequence Kernel Association Test method [SKAT, Wu
et al., 2011].
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SKAT uses the same logistic regression framework and the linear predictor (3.2) as
with burden tests but instead of testing the null hypothesis H0 : β1, . . . , βM = 0,
it assumes that each βm follows an arbitrary distribution with a mean of zero and
variance of ωmτ where τ is a variance component and ωm the weight attributed to
marker m. With this assumption, we can see that H0 : β1, . . . , βM = 0 is equivalent
to test H0 : τ = 0 which can be efficiently tested with a variance-component score
test as used in generalized linear mixed model (GLMM) and is known to be a locally
most powerful test [Lin, 1997]. An advantage of this score test is that it requires
to fit only the null model and to compute the following variance-component score
statistic:

QSKAT =
n∑
i=1

n∑
i′=1

(yi − ηi)K(zi, zi′)(yi′ − ηi′)

where ηi = β0 +
∑p

j=1 αjxij is the linear predictor of the null model including only

the p covariates for individual i, and where K(zi, zi′) =
∑M

m=1 ωmzimzi′m.K(·, ·) is
called the kernel function and measures the genetic similarity between individuals i
and i′, weighted by a factor ωm, via the M genetic markers in the region of interest.
This particular form of K(·, ·) is called the weighted linear kernel function and can
take several forms to accommodate for epistatic effects for instance. In fact, any
positive semi-definite function can be used as a kernel function and in their paper,
[Wu et al., 2011] tailored the following commonly used kernels specifically for the
purpose of rare-variant analysis:

– The weighted linear kernel:

K(zi, zi′) =
M∑
m=1

ωmzimzi′m

implies a linear relationship between the trait of interest and the genetic vari-
ants and is equivalent to the classical linear and logistic model described in
Section 3.4.3.

– The weighted quadratic kernel:

K(zi, zi′) = (1 +
M∑
m=1

ωmzimzi′m)2

assumes that the model depends on the main effects and quadratic terms for
the gene variants and the first-order variant by variant interactions.

– The weighted identity by state (IBS∗) kernel:

K(zi, zi′) =
M∑
m=1

ωmIBS(zim, zi′m)

defines similarity between individuals as the number of alleles that share IBS.

∗A DNA segment is identical by state (IBS) in two or more individuals if they have identical
nucleotide sequences in this segment.
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Under the null hypothesis, QSKAT follows a mixture of chi-square distributions,
which can be closely approximated with the computationally efficient Davies method
[Davies, 1980].

3.6.3 LD based approach to variable selection in GWAS

Region-based multi-marker analysis necessarily need that we define a group structure
among SNP either by using the gene definition or biochemical pathway. However,
these approaches limit the search for association to coding region only and therefore
potential interesting associations located in non-coding region∗ are set aside.

One way to circumvent this issue is to use non-supervised clustering techniques such
as hierarchical clustering described in Section 2.5.1. In their paper, Dehman et al.
[2015] proposed an approach where they used a modified version of the hierarchi-
cal clustering combined with a group-lasso regression to select groups of markers
associated with phenotype of interest. The clustering method used is a spatially
constrained agglomerative hierarchical clustering based on Ward’s criterion in which
the measure of dissimilarity is not based on the Euclidean distance but rather on
the linkage disequilibrium level between two markers: 1− r2(m,m′). The algorithm
also makes use of the fact that the LD matrix can be modelled as block-diagonal
by allowing only groups of variables that are adjacent on the genome to be merged,
which significantly reduces the computation cost [adjclust, Dehman, 2015b].

The number of groups is then determined using a modified version of the gap statistic
defined in Section 2.5.1:

Gap(g) =
1

B

B∑
b=1

(IbWg
− IWg),

where for b = 1, . . . , B, IbWg
denotes the within-cluster dispersion of clustering the

reference dataset b in g groups. They decided to use the IWg instead of log(IWg) in
estimation since they noticed that it led to better estimation of the number of groups
in the simulation studies, which were performed under a variety of parameters and
on several data sets.

Finally, once the LD-defined groups structure have been determined, a group-lasso
regression is performed in order to select groups of SNP associated with the pheno-
type. Given a phenotype vector y and a scaled matrix Z of additively coded SNP,
the group-lasso estimate is defined as:

∗Non-coding DNA (formerly referred as ’junk’ DNA) represents 99% of the genome and does not
provide instructions for making proteins. However, recent studies have shown that non-coding DNA
sequences can act as regulatory elements like sites for transcription factors implied in the control
of gene transcription (source: https://ghr.nlm.nih.gov/primer/basics/noncodingdna).

https://ghr.nlm.nih.gov/primer/basics/noncodingdna
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β̂GL = argmin
β

[
||y − Zβ||22 + λ

G∑
g=1

√
pg||βg||2

]
,

where ||.|| denotes the euclidean norm, λ > 0 is a penalty factor and βg the vector

of regression coefficients corresponding to the gth group, so that β = (β1, . . . ,βG).
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Chapter 4

Learning the optimal scale in GWAS

The present chapter proposes a block-wise approach for GWAS analysis which lever-
ages the LD structure among the genomic variants to reduce the number of hypoth-
esis testing. We named this method LEOS for LEarning the Optimal Scale in
GWAS. Section 4.1 introduces some related works that have been studied to de-
velop our methodology. The method is presented in Section 4.2. In Section 4.3, we
compare our method in different scenarios with the baseline approach, i.e. univariate
hypothesis testing [Purcell et al., 2007] and with the logistic kernel machine method
presented in Section 3.6.2 on both synthetic and real datasets from the Wellcome
Trust Case Control Consortium [WTCCC, 2007] and on ankylosing spondylitis data
[International Genetics of Ankylosing Spondylitis Consortium (IGAS) et al., 2013].
Finally, an example of an application using the generalized additive models in the
context of GWAS is exposed in Section 4.5.
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4.1 Related work

Although classical GWAS have limitations that prevent a full understanding of the
heritability of genetic and/or multifactorial diseases, there are nevertheless ways of
overcoming these limitations to some degree. For instance, it is possible to take
into account the structure of the data in the hypothesis testing procedure. As an
illustration, Meinshausen [2008] proposed a hierarchical testing approach which con-
siders the influence of clusters of highly correlated variables rather than individual
variables. The statistical power of this method to detect relevant variables at single
SNP level was comparable to that of the Bonferroni-Holm procedure [Holm, 1979a],
but the detection rate was much higher for small clusters, and it increased further
at coarser levels of resolution.

In the broad family of linear models, Listgarten et al. [2013] introduced a likelihood
ratio-based set test that accounts for confounding structure. The model is based
on the linear mixed model and uses two random effects, one to capture the set
association signal and one to capture confounders. They demonstrate a control of
type I error as well as an improved power over more traditionally used score test.

Other methods focus on multiple linear regression either by taking into account
the linkage disequilibrium within the genes to improve power [Yoo et al., 2016]
or by clustering variants with weak association around known loci to increase the
percentage of variance explained in complex traits [Par et al., 2015].

Finally, other approaches will focus on the aggregation of summary statistics of
single SNP within a same gene with for instance the data-driven aggregation of
summary statistics described in Kwak and Pan [2016] or the procedures of p-value
combination in Petersen et al. [2013]. In the cited articles, the methods are used on
SNP located in coding region (or extended intronic region in Petersen et al. [2013])
but can be extended to any set of SNP as long as we pre-specified a set of variants
within a region. However, the power for each test remains dependent of the true
disease model. Furthermore, this kind of approaches may also lose statistical power
in comparison to single-variant-based tests when only a very small number of the
variants in a gene are associated with the trait, or when many variants have no effect
or causal variants are low-frequency variants [Lee et al., 2014].

4.2 Method

In this section we describe a new method for performing GWAS using a four-
step method that combines unsupervised and supervised learning techniques. This
method improves the detection power of genomic regions implied in a disease while
maintaining a good interpretability.
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This method consists in:

Step 1: Performing a spatially constrained Hierarchical Agglomerative Clustering
of the additively coded SNP matrix Z ∈ Rn×D using the algorithm 3.6.3 de-
veloped by Dehman et al. [2015].

Step 2: Applying a function to reduce the dimension of Z using the group definition
from the constrained-HAC. This step is described and illustrated in Figure 4.2.

Step 3: Estimating the optimal number of groups using a supervised learning ap-
proach to find the best cut into the hierarchical tree (cut level algorithm).
This algorithm combines Steps 1 and 2 into an iterative process.

Step 4: Applying the function defined in Step 2 to each group identified in Step 3
to construct a new covariate matrix and perform multiple hypotheses testing
on each new covariate to find significant associations with a disease phenotype
y.

We entitled this method LEOS for LEarning the Optimale Scale in GWAS, imple-
mented in a web server too available at http://stat.genopole.cnrs.fr/leos.

Step 1. Constrained-HAC

To take into account the structure of the genome in haplotype blocks, we group the
predictors (SNP) according to their LD in order to create a new predictor matrix
which reflects the structure of the genome. We use the algorithm adjclust developed
by Dehman et al. [2015] which consists in only allowing adjacent clusters to be
merged, as described in Section 3.6.3. This algorithm is available via the R package
at https://cran.r-project.org/web/packages/adjclust.

A similar adjacency-constrained hierarchical clustering using Ward’s linkage have
already been proposed in Grimm [1987], together with an algorithm called CONISS
for Constrained Incremental Sums of Squares. However, the quadratic complexity
of its implementation prevents it from being used on large genomic data sets.

In the context of GWAS, it is nevertheless possible to circumvent this problem by
assuming that the similarity between physically distant SNP is small due to the
particular LD structure of the genome, as seen in Section 1.3.5.

More specifically, we assume that the D ×D matrix of pairwise similarities defined
as S = dist(i, j)1≤i,j≤D is a band matrix of bandwidth h+ 1, where h ∈ [1, . . . , D] :
dist(i, j) = 0 for |i−j| ≥ h and D the number of naturally ordered objects (SNP) to
classify. This assumption is not restrictive, as taking h = D always works. However,
considering the large dimension of genomic data, we are mostly interested in the case
where h� D.

Adjclust is an algorithm that uses this band similarity assumption to improve time
and space complexity in the context of a genome-wide hierarchical clustering. The
main features of this algorithm are the constant-time calculation of each of the

http://stat.genopole.cnrs.fr/leos
https://cran.r-project.org/web/packages/adjclust
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Ward’s linkage involved in the spatially-constrained HAC and the storage of the
candidate merges in a min-heap.

Ward’s linkage as a function of pre-calculated sums. To decrease the com-
plexity in the calculation of each of the Ward’s linkage, the trick is to note the sum
of all similarities in any cluster K = {u, . . . , v − 1} of size k = v − u as a sum of
elements in the first min(h, k) subdiagonals of S.

To see this, we define, for 1 ≤ r, l ≤ D, the sum of all elements of S in the first l
subdiagonals of the upper-right r × r block of S as

P (r, l) =
∑

1≤i,j≤r,|i−j| <l

dist(i, j),

and symmetrically, P̄ (r, l) = P (p+1−r, l). Because P and P̄ are sums of elements in
pencil-shaped areas, they are called forward pencil and backward pencil, as illustrated
in Figure 4.1.

P (v, k)P (v, h)

P̄ (u, k)P̄ (u, h)

kh

SKK

u

u

v

v

P (v, k)P (v, h)

P̄ (u, k)P̄ (u, h)

kh

SKK

u

u

v

v

Figure 4.1: Example of forward pencils (in yellow and green) and backward
pencils (in green and blue), and illustration of Equation (4.1) for cluster K =
{u, . . . , v − 1}. Left: cluster smaller than bandwidth (k ≤ h); right: cluster larger
than bandwidth k ≥ h.

The advantage of computing the sums P and P̄ is that they can be used to calculate
the sum SKK of all similarities in cluster K following the identity:

P (v, hk) + P̄ (u, hk) = SKK + P (p, hk) , (4.1)

where hk := min(h, k) and P (p, hk) is the “full” pencil of bandwidth hk (which
also corresponds to P̄ (1, hk)). By construction, all the bandwidths of the pencils
involved are less than h. Therefore, only pencils P (u, k) and P̄ (u, k) with 1 ≤ u ≤ p
and 1 ≤ k ≤ h have to be pre-calculated, so that the total number of pencils to
calculate and stored is less than 2ph. By calculating these pencils recursively using
cumulative sums, the time complexity of the pre-calculation step is ph (see proof in
Dehman [2015a]).
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Storing candidate fusions in a min-heap. Each iteration i of the hierarchi-
cal agglomerative clustering (Algorithm 2, Section 2.5.1), consists in finding the
minimum of D − i elements, corresponding to the candidate fusions between the
D − i + 1 clusters, stored in a sorted list, and merging the corresponding clusters.
However, as the cost of deleting and inserting an element in a sorted list is linear
in D, adjclust choose to reduce the complexity by storing the candidate fusions in
a partially-ordered data structure called a min-heap [Williams, 1964].

A min-heap is a binary tree structure constructed such that the value of each node is
smaller than the value of its two children. The advantage of such structure is the cost
trade-off they achieve between maintaining the structure and finding the minimum
element at each iteration. More specifically, at the beginning of the clustering, the
heap is initialized with D − 1 candidate fusions in O(D log(D)). Then, each of the
D iteration involves at most O(log(D)) operations as:

– finding the best candidate fusion (root of the min heap) in O(1),

– creating a new cluster corresponding to this fusion in O(1),

– deleting the root of the min heap in O(log(D)),

– inserting two possible fusions in the min heap in O(log(D)).

Globally, with a space complexity ofO(Dh), corresponding to the 2Dh pre-calculated
pencils, and a time complexity of O(D(h + log(D)), where O(Dh) comes from the
pre-calculation of pencils and O(D log(D)) from the D iterations of the algorithm,
adjclust achieves a quasi-linear time complexity and linear space complexity when
h� D.

In a GWAS application, the choice of h will mainly depends on the genotyping
density and on the strength of the LD structure in the studied population. In
the evaluation of our method in both numerical simulations 4.3.2 and real data
application (Section 4.4.2), we set the value at h = 100, having observed that higher
values had no impact on the performance of the method.

Step 2. Dimension reduction function

One way of addressing issues related to high-dimensional statistics (and in particular
the multiple testing burden that we mentioned in Section 2.7) is to reduce the
dimensionality of the predictor matrix Z ∈ RN×D by creating a reduced matrix X̃
with new covariates that nevertheless remain representative of the initial matrix.
This means reducing the number of predictors D to G � D, with row x̃i the
G-dimensional vector of new predictors for observation i. In this study we use a
blockwise approach to construct a matrix of new uncorrelated predictors X̃ ∈ RN×G,
with G the number of groups in linkage disequilibrium identified via the constrained
agglomerative hierarchical clustering described in Step 1.

While classical methods use the initial set of covariates to predict a phenotype,
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we propose combining a clustering model with a dimension reduction approach in
order to predict y. For each group identified with the constrained-HAC, we apply
a function to obtain a single variable defined as the number of minor alleles present
in the group. For each observation i and in each cluster g ∈ [1, . . . , G], the variable
is defined as:

x̃ig =
∑
d∈g

zid. (4.2)

We note that this function (4.2) is close to the function (3.3) used in the burden
tests (Section 3.6.2) where we attribute a weight ωd = 1 to each SNP since we do
not particularly focus on rare variants but rather on variants having a MAF ≥ 5%.
In order that the values for the different groups are comparable, we eliminate the
effect of group size by centering and scaling the matrix X̃ to unit variance. In
the remainder of the paper we will refer to the covariates in X̃ as aggregated-SNP
variables.
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Figure 4.2: Schematic view of Step 2 of the algorithm to calculate the matrix
of predictors X̃s at a given level s of the hierarchy.

Step 3. Optimal number of groups estimation

Estimating the optimal number of groups to select, i.e. the level at which the
hierarchical clustering tree should be cut, is a fundamental matter which impacts
the relevance of the association analysis. As we have seen in Section 1.3.5, it is
known that the human genome is structured into haplotype blocks with little or no
within-block recombination, but it is not easy to determine how these blocks are
allocated throughout the genome for a given set of SNP.

In the literature, in an unsupervised learning context, a number of models have
been proposed for determining the optimal number of groups in a hierarchical clus-
tering (see Section 2). However, since GWAS consist in evaluating the likelihood of
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the disease from genetic markers, we propose an algorithm that makes use of the
phenotype y to determine the optimal number of clusters.

We propose here a supervised validation set approach to find this optimum. Since
this algorithm aims to identify phenotype-related SNP clusters, it is necessary to
split the dataset into two subsets to avoid an inflation of type I errors in the testing
procedure. One subset, [yS1,ZS1] with sample size t1 = n/2 is used to choose the
optimal cut and the second one, [yS2,ZS2] of sample size t2 = n/2, to perform the
hypothesis testing in Step 4.

The algorithm we propose can be summarized as follows:

– Apply the constrained-HAC described in Step 1 on a training set T = Xtrain
S1 ⊂

XS1, and for a given level s of the hierarchy we apply the dimension reduction
function defined above (Step 2) to each of the Gs clusters to construct the

matrix T̃s =
{

T̃s
g

}GsGs

g=Gs1
.

– Fit a ridge regression model to estimate the coefficients of the predictors in
T̃s. We chose to resort on the ridge regression model because, as we explained
in Section 2.3.2, it is known to have a better stability in comparison to other
penalized-regression models such as lasso regression [Bousquet and Elisseeff,
2002].

– Once the ridge coefficients are estimated, we predict the phenotypic values on
the test set using the matrix U = Xtest

S2 and calculate either the mean test set
error when the phenotype is quantitative or the Area Under the ROC curve
(AUC-ROC) when it is binary.

– Repeat with procedure for different levels in the hierarchy and defined the
optimal cut level s∗ (or equivalently the optimal number of groups Gs∗) as the
level which maximizes the prediction accuracy criterion.

Algorithm 4: Supervised learning cut level algorithm

input : Training set T = Ztrain
S1 and test set U = Ztest

S1

output: Matrix X̃(s∗) of aggregated-SNP at best cut level s∗

hierarchy ← Constrained-HAC on T
cutlevel ← Initialize levels where to cut hierarchy
for s← Sequence(cutlevel) do

T̃s ← Aggregating(T, hierarchy, cutlevel[s]);

Ũs ← Aggregating(U, hierarchy, cutlevel[s]);

ridgecoef ← RidgeRegression(ytrainS1 ∼ T̃);

ypredS1 ← Predict(Ũ,ridgecoef);

AUC[s]← ROC(ytestS1 ,y
pred
S1 );

end
s∗ ← Which(cutlevel, Max(AUC));

X̃(s∗) ← Aggregating(Z, hierarchy, bestlevel);
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At last, once the optimal number of groups G∗ has been determined, we apply the
function (4.2) to each selected group and construct the matrix X̃(s∗).

Step 4. Multiple testing on aggregated-SNP variables

Here we use a standard Single Marker Analysis, has described in Section 3.4, to find
associations with the phenotype, but instead of calculating p-value for each SNP in
Z, we calculate p-value for each aggregated-SNP variable in X̃

(s∗)
S2 ⊂ X̃(s∗).

For each single-predictor model, we perform a Likelihood Ratio Test (Section 2.6.3)
where we compare the intercept-only model against the single-predictor model and
get for each predictor a p-value using the χ̃2 distribution.

As seen in Section 2.7, we need to compute an appropriate significance threshold to
control either the Family-Wise Error Rate or the False Discovery Rate. However, as
the FWER control methods reduce the significance level according to the number
of tests carried out in the study, it is preferable, in this context, to control for the
FDR to be less stringent on the significance threshold. We therefore chose to use the
Benjamini-Hochberg procedure described in Section 2.7.2 to adjust the significance
threshold.

4.3 Numerical simulations

The performance evaluation described below was designed to assess the ability of
our method to retrieve causal SNP or causal clusters of SNP under different simu-
lation scenarios. For each scenario, we use a matrix ZHAPGEN of SNP generated by
the HAPGEN2 software [Su et al., 2011] with a sample size of 1000 individuals. This
software allows to simulate an entire chromosome conditionally on a reference set
of population haplotypes (from HapMap3) and an estimate of the fine-scale recom-
bination rate across the region, so that the simulated data share similar patterns
with the reference data. We generate the chromosome 1 (103 457 SNP) using the
haplotype structure of CEU population (Utah residents with Northern and West-
ern European ancestry from the CEPH collection) as reference set. The HAPGEN2
software allows to generate a controls-only matrix of SNP (no disease allele). We
filtered this matrix according to the minor allele frequency to only keep SNP with
a MAF greater than 5% thus reducing the size of ZHAPGEN to 60 179 SNP.

We generate a posteriori the phenotype using the logit model with a given set of
causal SNP or cluster of SNP. The main difference between the different scenarios
is to be found in the way that the case-control phenotype y is simulated.
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4.3.1 Simulation of the case-control phenotype

For each scenario, we simulated a case-control phenotype y under a logistic regres-
sion model. The case-control phenotype is generated following a Bernoulli distribu-
tion function, following the conditional probability P(Y = 1|H) with H ∈ Rn×` a
matrix constructed by sampling ` causal variables from ZHAPGEN.

The conditional probability is calculated using the logit model:

P(Y = 1|H) =
exp(β0 + βTH)

1 + exp(β0 + βTH)
,

where β = [β1, . . . , β`] is the vector of coefficients corresponding to the ` predictors

and β0 is the intercept defined as log
(

π
(1−π)

)
, with π the true prevalence of the

disease in the population. The predictors are centered to have zero-mean before
generating the vector of probability.

One way to have an association between the response and the predictors strong
enough to be detected is to set large β coefficients on the predictors. Indeed, there
is a direct relationship between the odd ratio of a covariate and its corresponding
coefficients in the logistic regression model given by ORi = e(βi) [Diaz-Quijano,
2012]. In our simulations, the difficulty of the problem, i.e. the power to detect an
association, is linked to the number of causal predictors used to generate y and the
OR set to each predictor.

To simulate different scenarios, we considered the following parameters:

1. Nature of the causal predictors:

– Clusters of SNP: For each replicate, ` = {1, 2, 3} genomic regions have
been identified to be causal. These regions have been chosen among
the matrix ZHAPGEN to have different levels of LD among the SNP that
compose them. The average correlation coefficient among the SNP in
these regions varies from r2 = 0.6 to r2 = 0.85 and the size of the region
varies from 20 SNP to 60 SNP. Once identified, the causal regions were
aggregated using the function described in Step 4.2 to construct a matrix
H̃ of aggregated-SNP predictors. This matrix was then used to generate
the case-control phenotype following P(Y = 1|H̃). We will refer to this
scenario as the SNPclus scenario.

– Single SNP: In this scenario the phenotype was simulated by directly
sampling SNP from the same causal regions identified in the SNPclus
scenario. For each replicate, we chose 10 individuals SNP among each of
these regions to construct a matrix H with ` = {10, 20, 30} single SNP
predictors, depending on the number of causal regions . This matrix is
then used to generate the case-control phenotype. The chosen SNP have
a MAF varying from 10% to 30%. We will refer to this scenario as the
singleSNP scenario.



84 Chapter 4. Learning the optimal scale in GWAS

2. Number of causal predictors ` and number of replicates:

We performed 5 replicates for each combination `×2 scenarios and we evaluate
the average performance over these 5 replicates. For each scenario we consid-
ered from 1 to 3 causal genomic regions, thus, for SNPclus scenario, we used
up to 3 causal aggregated -SNP predictors, and for the singleSNP scenario, up
to 10× 3 = 30 causal single-SNP predictors to generate the phenotype.

3. Odds ratio (β coefficients) of the causal predictors:

For the SNPclus scenario we chose an equal OR of 2.7 for each causal aggre-
gated predictor, corresponding to a β coefficient equal to 1. For the singleSNP
scenario we chose an equal OR of 1.1 for each causal predictor, corresponding
to a β coefficient equal to 0.1. The rationale behind these coefficients arises
from the hypothesis that the combined effect of several low-effect SNP on the
phenotype is stronger than the effects of each individual SNP.

As previously mentioned, we generated the phenotype using causal SNP simu-
lated with the HAPGEN2 software. However, as commercial micro-arrays such as
Affymetrix and Illumina arrays do not genotype the full sequence of the genome,
some SNP are thereby unmapped and the marker density is in general lower than
the HapMap marker density. That is why we chose, in our numerical simulation, to
generate the phenotype with causal variables chosen from ZHAPGEN and to assess the
performance of the methods using only those SNP which are mapped on a standard
Affymetrix micro-array (about 23 823 mapped SNP in our case). By doing so, some
causal SNP are not mapped on the commercial SNP set and thus simulations are
more similar to real genome-wide analysis conditions.

4.3.2 Performance evaluation

Competitors

The objective of our method being to identify the optimal scale at which to perform
association studies, we compared our proposal with several methods working at
different genomic scales. The purpose is to assess the ability of each method to
retrieve true causal genomic regions in the different simulation scenarios.

For each scenario, four approaches have been considered:

– SKATtree, a SKAT model, as described in Section 3.6.2, which use our group
definition,

– SKATnotree, a SKAT model using an alternative group definition produced
by successive chunks of 20 SNP,

– SMA, the classical Single Marker Analysis described in Section 3.4,
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– SASA (Single Aggregated-SNP Analysis) a method close to SMA, where in-
stead of testing the genotype-phenotype association using each single SNP, we
are testing it using aggregated-SNP variables.

We chose to consider two different group definitions for SKAT in order to evaluate
the impact of the group structure on the association findings. The comparison with
SMA allows to highlight the advantage of working at a group scale. We hypothesize
that grouping low-effect SNP should have a better statistical power than testing the
main effects at single-SNP level.

For all methods, we compare the results using 2 types of multiple testing corrections:
the methods of Holm-Bonferroni [Holm, 1979a] and Benjamini and Hochberg [1995].

True and False Positive definitions

The problem of retrieving true causal associations can be represented as a binary
decision problem where the compared methods are considered as classifiers. The
decision made by a binary classifier can be summarized using four numbers: True
Positives (TP ), False Positive (FP ), True Negatives (TN) and False Negatives
(FN). We represent True Positive Rate (Recall or Power = TP/(FN + TP )) versus
Precision (Precision = TP/(FP + TP )). In this context, a true positive corresponds
to a true causal genomic region associated to significant p-value. The definition
of what can be considered as the true causal genomic region may nevertheless be
subject to some ambiguity. In GWAS, the presence of LD between SNP often leads
to consider the signal associated to multiple neighbouring SNP as indicating the
existence of a single genomic locus with possible influence on the phenotype.

In our simulations, a causal genomic region is defined a priori as a causal predictor
in the logit model. However, since the clusters of SNP identified by our algorithm
are not totally independent, some residual correlation may remain between clus-
ters. This leads to question the notion of relevant variable when the variables are
structured into strongly correlated groups. Should all the variables of the block be
considered as explanatory, or should we define as only true positives the causal vari-
ables used to generate the phenotype? In order to circumvent this issue, we chose
to relax the definition of a false positive joining the work of Brzyski et al. [2017] and
Yi et al. [2015] where they propose to control the FDR in GWAS by considering
significant SNP correlated to the true causal variables as true positives.

For the simulation of the phenotype, we hypothesize an underlying multivariate
regression model, but test for univariate model as it is the usual practice, which
leads to reconsider the definition of true positive. As in Yi et al. [2015] we consider
the set of true positive as the union of the causal true positive and the linked true
positive, which are regions adjacent to the causal regions and correlated with them
at a level of at least 0.5. Regarding the single-marker analysis approach, since it
works at the single SNP level, we compare it with the others in the singleSNP
scenario only.
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4.4 Results

4.4.1 Results and discussions of the numerical simulations

Area Under the ROC Curve

For each simulation, the cut level algorithm was applied. We recall that this algo-
rithm calculates a prediction error on a test set for several levels in a constrained-
HAC tree with a ridge regression model and chooses the level for which this error is
the smallest. The AUC-ROC is plotted for the different levels, and the best cut level
corresponds to the level for which AUC-ROC is the greatest. The results from the
simulation scenario clusSNP and singleSNP described in Section 4.3.1 are shown in
Figure 4.3.
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Figure 4.3: Area under ROC curves according to the number of clusters in
the clusSNP and singleSNP scenarios: the vertical lines indicate the number
of aggregated-SNP (clusters) obtained with Algorithm 4, i.e. the level where the
prediction error is minimized (AUC-ROC at its maximum).

Our algorithm cuts the hierarchy either at a fairly high level (few large clusters) or
at a low level (many small clusters), depending on the number of causal variables we
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used to generate the phenotype. The more the number of causal regions decreases,
the higher the algorithm cuts in the hierarchical tree. In either case our algorithm
is able to increase the predictive power by aggregating SNP with the function (4.2).
We are thus able build a matrix of uncorrelated aggregated-SNP predictors that are
representative of the initial SNP matrix and strongly linked to the phenotype.

Performance results for simulated data.

As previously described, we evaluate and compare the methods using two metrics,
namely Recall and Precision.

Here the precision metric is somewhat relaxed compared to its true definition since
we adapted the definition of a true positive and false positive to the GWAS context.
It is important to note that for all the methods, we compare the Benjamini-Hochberg
method to control FDR with the Bonferroni correction to control FWER at a thresh-
old of 5%. However, since there are residual correlations between SNP clusters and
that the replication of numerous samples per combination of parameters is difficult
in this realistic setting of simulations, the observed Type I error rate may be greater
than 5%. What we think is important to put forward to in these simulations is the
ability of our algorithm to define groups of relevant clusters that will be detected on
average with more precision and more power (SASA and SKATtree) than using an
arbitrary group definition (SKATnotree) or no definition of groups at all (SMA).

The results represented in Figure 4.4 show that the methods using our algorithm
for the cluster definition (SASA and SKATtree) have in average a better precision
than the two other methods. The approach SASA, which combine our clustering
algorithm and the aggregating function (4.2) to test the association of aggregated-
SNP with the phenotype, perform poorly in term of Recall but is far better in
term of Precision compared to SMA and SKATnotree. These results suggest that
it is better to combine our algorithm with the SKAT method than with the SASA
method. We also note that applying the SKAT approach on an arbitrary group
definition (SKATnotree) lead to a good recall but a very poor precision, showing
the benefit of using our custom group definition in this context. Regarding the SMA
approach in the singleSNP scenario, we can observe a loss in term of Recall compare
to the SKATtree and SKATnotree method suggesting that we can take benefit of
grouping low effect SNP to improve the power to detect causal genomic regions.

In GWAS, having a method with a good precision is as important, or even more
important, than having a good recall. It is better to spot a few significant associa-
tions with a high certainty than to spot numerous significant associations but with
only a low level of certainty for most of them. For this reason, we believe that our
method represents an improvement in terms of precision without loss of power in-
sofar as SKATtree seems able to detect significant genomic regions associated with
the phenotype with a higher degree of certainty than standard approaches.
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Figure 4.4: Recall vs Precision for each method (shape and colours in plot).
In rows are the simulation scenarios. In columns, we evaluate performance using
Benjamini-Hochberg threshold (left) and bonferroni correction threshold (right).
The second row illustrates the performance to retrieve the true causal genomic
region under the SNPclus scenario, thus only group-based approaches are considered
(SASA, SKAT.tree and SKAT.notree). The numbers inside the points correspond to
the number of causal predictors and each point is the average value of 5 replicates.

4.4.2 Application in Wellcome Trust Case Control Consor-
tium(WTCCC) and Ankylosing Spondylitis (AS) stud-
ies

To evaluate the performance of our method on real data, we performed GWAS anal-
ysis on datasets made available by [WTCCC, 2007]. The WTCCC data collection
contains 17000 genotypes, composed of 3000 shared controls and 14000 cases rep-
resenting 7 common diseases of major public health concern: inflammatory bowel
disease (IBD), bipolar disorder (BD), coronary artery disease (CAD), hypertension
(HT), rheumatoid arthritis (RA), and Type I (T1D) and Type II (T2D) diabetes.
Individuals were genotyped with the Affymetrix 500K Mapping Array Set and are
represented by about 500,000 SNP (before the application of quality control filters).
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In parallel to the analysis of the WTTCC data, we decided to assess our method on
another dataset from a different study. The ankylosing spondylitis (AS) dataset con-
sists of the French subset of the large study of the International Genetics of Ankylos-
ing Spondylitis (IGAS) study [International Genetics of Ankylosing Spondylitis Con-
sortium (IGAS) et al., 2013]. For this subset, unrelated cases were recruited through
the Rheumatology clinic of Ambroise Paré Hospital (Boulogne-Billancourt, France)
or through the national self-help patients association: “Association Française des
Spondylarthritiques”. Population-matched unrelated controls were obtained from
the “Centre d’Etude du Polymorphisme Humain”, or were recruited as healthy
spouses of cases. The dataset contains 408 cases and 358 controls, and each in-
dividual was genotyped for 116,513 SNP with Immunochip technology.

To remove the bias induced by population stratification in Genome-Wide analysis,
we added the first 5 genomic principal components into the regression model as
described in Section 3.5.3. Since the methods evaluated here do not deal with
missing values, we chose to impute the missing genotypes with the most frequent
genotypic value observed for each SNP.

For each dataset, we filtered the values to keep only those SNP having a MAF
greater than 5%. The minor allele frequencies of each dataset are represented in
Figure 4.5.

Figure 4.5: Histograms of Minor Allele Frequencies (MAF) distribution
in each datasets. (BD) Bipolar disorders; (CAD) Coronary artery disease; (IBD)
Inflammatory bowel disease; (HT) Hypertension; (RA) Rheumatoid arthritis; (T1D)
Type I diabetes; (T2D) Type II diabetes.

We applied our cut level algorithm to find relevant clusters of SNP and we per-
formed single marker analysis on single SNP (SMA) and on groups of SNP (SASA,
SKATtree, SKATnotree).
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4.4.3 Results in WTCCC and AS studies

AUC-ROC curves

In this section, we compare the AUC-ROC curves generated by our cut level algo-
rithm for each disease (WTCCC and AS data).

Concerning the WTCCC diseases, given that patients were all genotyped using the
same micro-array, their genotypes have the same LD structure, and therefore the
shapes of the AUC-ROC curves should be very similar between the different diseases.
As can be observed in Figure 4.6 (WTCCC diseases), the shapes of the AUC-ROC
curves are closely similar, with a chosen cut level located around 100 000 clusters of
SNP, suggesting a shared LD pattern among patients.
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Figure 4.6: AUC-ROC for different cut levels in a HAC-tree of 7 WTCCC
diseases after quality control filters. Each point corresponds to an AUC value
computed on a test set from a logistic ridge regression model for a given level in the
constrained-HAC tree.

In contrast, the AUC-ROC from the AS data (Figure 4.7) behaves differently from
the WTCCC data. Predictive power is substantially improved if aggregated-SNP
predictors are used at a fairly high level in the hierarchical tree (7478 optimal clusters
identified by the cut level algorithm). It is relevant to note that the pattern we
observe on this real dataset is similar to the pattern we observed in the numerical
simulations, especially under the clusSNP scenario.

As we remarked concerning the WTCCC results, the algorithm identifies a relatively
high number of clusters in relation to AS and simulated data. This difference is
certainly due to the LD level among the genetic markers in the Affymetrix array.
The correlation levels among SNP for a given bandwidth are similar between the
simulated and the AS data, but greater than for the WTCCC data (Table 4.1 and
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Figure 4.7: AUC-ROC for different cut levels in a HAC-tree of the
spondylitis arthritis disease (Immunochip micro-array). Each point cor-
responds to an AUC value computed on a test set from a logistic ridge regression
model for a given level in the constrained-HAC tree.

Figure 4.8). This suggests that there is a stronger LD pattern between blocks of SNP
in AS and simulated data, implying that the optimal number of clusters identified
by the algorithm is dependent on the LD level among variables.

Dataset SNP/kb Median Mean

Simulated data 1.3.10−27 1.10−2 0.11

WTCCC data 7.10−32 9.10−4 0.03

AS data 9.10−9 3.10−2 0.27

Table 4.1: Comparison of marker density and averaged LD level between markers
in a region of 300 SNP for the different datasets

WTCCC data Simulated data Spondylitis dataset
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Figure 4.8: Comparison of linkage disequilibrium level among SNP for
3 different types of dataset: WTCCC, simulated and ankylosing spondylitis
datasets. LD computation is based on R2 between SNP.
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GWAS analysis on AS and WTCCC datasets

To evaluate the ability of our procedure to discover new associations between SNP
and ankylosing spondylitis, we compare our procedure with the univariate approach
(SMA) and SKAT model with our group definition and arbitrary group definition (20
SNP). For SASA, we perform multiple hypotheses testing on the aggregated-SNP
predictors in order to unravel significant associations with the phenotype. Figure 4.9
presents the results of the association analysis. For each method the logarithm of
the p-value of the different predictors is plotted along their position on the genome.

Figure 4.9: Manhattan plots showing results of GWAS analysis on anky-
losing spondylitis data. For each Manhattan plot, the Benjamini-Hochberg (BH)
threshold is represented by the blue line and the Bonferroni threshold by the red
line. According to the BH threshold, there are: (A) 64 significantly associated
aggregated-SNP; (B) 602 significantly associated single SNP; (C) 80 significantly
associated groups of SNP and (D) 138 significantly associated groups of SNP.
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Either method highlight a region on chromosome 6 strongly associated with the phe-
notype. This region corresponds to the Major Histocompatibility Complex (MHC),
and Human Leukocyte Antigen (HLA) class I molecules HLA B27 belonging to
this region have been identified as a genetic risk factor associated with ankylos-
ing spondylitis [Woodrow and Eastmond, 1978]. The approach SASA succeeds in
detecting this risk locus with a good precision, 64 aggregated-SNP variables are
significantly associated with the phenotype compared to 602 significantly associated
SNP with the standard SMA.

For the analysis of the WTCCC datasets, we represent the results, in Figure 4.10, by
plotting the expected p-value against the observed p-value. We perform the analysis
using the approach SASA only.

Figure 4.10: Q-Q plots of group-based genome-wide analysis on WTCCC
data using the SASA approach. For each Manhattan plot, the Benjamini-
Hochberg (BH) threshold is represented by the green dotted line and the Bonferroni
threshold by the red dashed line. (A) Bipolar disorder - 13 significant clusters of
SNP; (B) Coronary artery disease - 4 significant clusters of SNP; (C) Inflammatory
bowel disease - 356 significant clusters of SNP ; (D) Hypertension - 47 significant
clusters of SNP ; (E) Rheumatoid arthritis - 202 significant clusters of SNP ; (F)
Type I diabetes - 358 significant clusters of SNP ; (G) Type II diabetes - 28 significant
clusters of SNP.
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4.5 Generalized additive models in GWAS

So far, we have modelled the phenotype as a linear function of the predictors using
the logistic linear regression framework but we could also be interested to put for-
ward non-linear relationships. One way to achieve this would be to use smoothing
splines and generalized additive models (Section 2.4.4 and 2.4.5). Implementation
of such methods in classical GWAS is not straightforward because the predictors are
ordinal variables which take at most three different values ({0, 1, 2} with additive
coding), making the use of smoothing splines irrelevant. However, in our context
where we average the values of the SNP in each group, the use of smoothing splines
becomes appropriate and may lead to the identification of non-linear otherwise un-
detectable with classical linear regression framework. We can nevertheless qualify
this statement by mentioning that the SKAT model may also be able to identify non-
linear relationships with an appropriate choice of kernel function, e.g. the weighted
quadratic kernel.

We chose to focus on smoothing splines rather than other functions because they
are, in our opinion, more easily interpretable. More specifically we seek at first to
investigate what benefit we could take from replacing the ridge regression model in
Algorithm 4 by the high-dimensional additive models (HGAM) described in Section
2.4.6 to estimate the optimal number of groups. Secondly, we would like to highlight
non-linear behaviour between groups of SNP and the phenotype by fitting cubic
smoothing splines on each of the aggregated -SNP predictors constructed at best
level in the hierarchy.

4.5.1 Comparison of predictive power

To evaluate the contribution of generalized additive models in our methodology,
we compare the results in term of predictive power of four different regression
model used to estimate an optimal number of clusters for the ankylosing spondylitis
dataset. Specifically, we compare the AUC-ROC curves obtained from Algorithm 4
when using respectively lasso, group-lasso, HGAM and ridge regression as the learn-
ing method. The results are presented in Figure 4.11. Note that for the group-lasso,
the algorithm was applied at the single-SNP level rather than the aggregated -SNP.
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Figure 4.11: AUC-ROC plot illustrating the predictive power of four statistical
learning approaches for several levels of a hierarchical clustering applied on the
ankylosing spondylitis dataset

We observe a similar pattern between the ridge regression curve and the HGAM
curve, with about the same optimal number of clusters identified. The use of cubic
smoothing splines in the model greatly increase the predictive power compare to the
others regression model. The group-lasso regression has a good predictive perfor-
mance but is outperform by HGAM when we fit the model on the aggregated-SNP
predictors at the best cut-level.

4.5.2 Results of univariate smoothing splines on aggregated-
SNP

Manhattan plot

The best cut-level identified using high-dimensional additive model is set to 2750
aggregated-SNP. Firstly, to each of these variables, a univariate additive model
using cubic smoothing splines with knots at each unique value is fitted. Secondly,
we calculate p-value for each smooth as described in Section 2.6.4. The results are
shown in Figure 4.12, where 23 significant aggregated-SNP have been identified.
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Figure 4.12: Manhattan plot of p-value calculated for 2750 aggregated-SNP using
cubic smoothing splines.

Fitted values of the most significant aggregated-SNP

In this section, the plots in Figure 4.13 represent the fitted value of the 23 most
significant aggregated-SNP variables previously identified. These aggregated-SNP
are almost all located on the same region, on chromosome 6, region having already
been identified as genetic risk factor for the disease (see Section 4.4.3). We only
observe a new signal on chromosome 18 which could be interesting to investigate.

We observe that the significant regions identified on chromosome 6 have a non-linear
behaviour. However, since these regions have also been identified with a classical
linear regression approach, we cannot conclude that we have detected these regions
thanks to the smoothing splines. Whether or not there is a non-linear behaviour,
this region on chromosome 6 is always identified as associated with the disease.
However, we could have thought that the new signal on chromosome 18 could be
due to the non-linear nature of the association with the phenotype, but it is not the
case. Indeed, if we look at the plot of the fitted value for this cluster, we can see
that it is a straight line, leading to the conclusion that this signal might be a false
positive.

4.6 Discussion

Overall, accounting for the linkage disequilibrium structure of the genome and ag-
gregating highly-correlated SNP is seen to be a powerful alternative to standard
marker analysis in the context of GWAS. In terms of risk prediction, our algorithm
proves to be very effective at classifying individuals given their genotype, while in
terms of the identification of loci, it shows its ability to identify genomic regions
associated with a disease with a higher precision than standard methods.
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Figure 4.13: Representation of the smooth fits for the 23 most significant
aggregated-SNP using cubic smoothing splines.

It is also worth mentioning that our algorithm can also accommodate imputed vari-
ables as imputation in GWAS uses the linkage disequilibrium between variables to
improve the coverage of variants. Our method being based on LD to define groups of
common variants, we expect the group structure not to be impacted by imputation.

In this work we propose a four-step method explicitly designed to utilize the linkage
disequilibrium in GWAS data. Our method combines, on the one hand, unsupervised
learning methods that cluster correlated-SNP, and on the other hand, supervised
learning techniques that identify the optimal number of clusters and reduce the di-
mension of the predictor matrix. We evaluated the method on numerical simulations
and real datasets and compared the results with standard single-marker analysis and
group-based approaches (SKATtree and SKATnotree). We remarked that the com-
bination of our aggregating function with a ridge regression model leads to a major
improvement in terms of predictive power when the linkage disequilibrium structure
is strong enough, hence suggesting the existence of multivariate effects due to the
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combination of several SNP. These results remained consistent across two applica-
tions involving several binary traits (WTCCC and ankylosing spondylitis datasets).

In terms of the identification of associated loci in different simulation scenarios, our
method demonstrates its ability to retrieve true causal SNP and/or clusters of SNP
with substantially higher precision coupled with a good power. On real GWAS data,
our method has been able to recover a genomic region associated with ankylosing
spondylitis (HLA region on chromosome 6) with a higher precision than standard
single-marker analysis.

By making use of the continuous nature of aggregated-SNP variables (in contrast
to the ordinal nature of single SNP variables), we were able to further improve our
method using generalized additive models and natural cubic splines. In terms of
predictive power, the implementation of such models to the analysis of the AS data
proved to be more efficient compared to linear regression models such as group-
lasso, lasso and ridge regression. As for the detection of non-linear behaviour, the
results obtained on the AS dataset show interesting non-linear patterns between
some aggregated-SNP in the specific HLA region of chromosome 6 and the pheno-
type. However, the use of cubic splines has not been able to identify chromosome
regions different from those previously identified with a classical linear regression
model. It could thus be interesting to analyse other datasets with this methodology
to see if we are able to detect any relevant associations ever identified before.
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Chapter 5

Selection of interaction effects in com-
pressed multiple omics representa-
tion

This chapter is organized as follows. Section 5.2 introduces the setting related
to linear models of interactions and proposes a framework to learn with comple-
mentary datasets. Section 5.3 describes the method, entitled SICOMORE for
Selection of Interaction effects in COmpressed Multiple Omics REpresentation,
which combines hierarchical clustering, data compression, variable selection with a
lasso procedure and model testing for recovering relevant interactions. Our approach
is illustrated with numerical simulations in Section 5.4 and with an application to
study the interactions between the genome of the species Medicago truncatula and
the microbial community of its rhizosphere in Section 5.5.
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5.1 Introduction

Background. GWAS are a powerful tool for investigating the genetic architecture
of complex diseases and have been successful in identifying hundreds of associated
variants. However, they have been able to explain only a small proportion of the
disease heritability calculated from classical family studies. As previously stated in
Section 3.4.4, it is nonetheless possible to uncover some of the missing heritability by
taking into account correlations among variables, interaction with the environment
and epistasis, but not without some difficulties due to the multiple testing burden.

Other avenues to explain the variability in some traits of interest have yet to be
explored, for instance an interesting lead would be to consider the contribution of
microbial communities on the expression of a phenotype. Indeed, there is grow-
ing evidences of the role of gut microbiota in basic biological processes and in the
development and progression of major human diseases such as infectious diseases,
gastrointestinal cancers, metabolic diseases. . . [Wang et al., 2017]. In plants, the
role of rhizosphere∗ microflora on plant growth is well known and has been widely
studied [Mukerji et al., 2002, Pinton et al., 2007].

Analysis equivalent to GWAS have been conducted using the metagenome† rather
than the genome of an individual and are known as Metagenome Wide Associa-
tion Study (MWAS) [Wang and Jia, 2016, Segata et al., 2011]. Those metagenome
association analyses may often explain larger variation of the phenotype than clas-
sical GWAS and have been successful in finding relevant association for complex
pathologies such as obesity, Crohn’s disease, colorectal cancer. . .

Combining genome and metagenome analyses. One possible way to relate
genetic and metagenomic data consists in considering the metagenome as pheno-
type and thus performing quantitative trait locus (QTL) mapping. This kind of
metagenome QTL analysis demonstrates the role of host genetics in shaping metage-
nomic diversity between individuals [Wang et al., 2016, Srinivas et al., 2013].

Another possibility for taking into account both type of variables consists in in-
cluding metagenomic variables as environmental variables in GWAS. In that case
interactions may naturally be modelled using a classical generalized linear model
with interactions terms [Lin et al., 2013].

The main drawback of the later idea lies in the number of interactions to test, both
datasets having a large number of variables. In order to reduce the dimension of the
problem, variable selection or variable compression may be of use.

∗The rhizosphere is the term used to describe the zone of intense activity around the roots
of leguminacea (Fabaceae) which contains a considerable diversity of microbial and mycorrhizal
species.

†The metagenome corresponds to all the genetic material present in an environmental sample,
consisting of the genomes of many individual organisms.
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Taking structures into account in association studies. Data compression
for dimension reduction may be achieved in various ways. A usual distinction is
often established between feature selection and feature extraction. Feature selection
consists in selecting few relevant variables among the original ones, while feature
extraction consists in computing new representative variables.

In our problem of association study, feature selection is often preferred to feature
extraction for interpretative purposes. In this chapter, we advocate for a mixed
approach which combines feature extraction and feature selection. The basic idea
relies in grouping close variables via an unsupervised approach. Supervariables are
computed to summarize the information of each cluster of variables and eventually
the best supervariables are selected using a penalized regression approach.

We already investigate the idea of considering groups of variables in Chapter 4. It
also has already been suggested in the context of MWAS in Qin et al. [2012]. In the
context of prediction from gene expression regression, the method HCAR developed
by Park et al. [2007] described in Section 2.5.2 show that regressing over supergenes
improves the precision if the correlation structure is strong enough. Moreover, Mary-
Huard and Robin [2009] proposed a strategy to deal with large-dimension datasets
in classification, called aggregation. It consists in a clustering step of redundant
variables, using kNN or Classification and Regression Tree (CART) algorithms, and
a group-compression step. They develop a statistical framework to define tailored
aggregation methods that can be combined with selection methods to build reliable
classifiers with possible applications on microarray data.

The method SICOMORE presented in this chapter can be summarized as follows:
(1) it uses a hierarchical clustering algorithm to identify a group structure within
the data; (2) it compresses the hierarchical structure by averaging the groups as in
HCAR; (3) it performs a lasso procedure on the compressed variables as in HCAR
with a penalty factor weighted by the length of the gap between two successive levels
of the hierarchy as in MLGL; (4) it performs multiple hypothesis testing in a linear
model with interactions.

5.2 Learning with complementary datasets

This section introduces the setting with the notations. It also sketches the approach
to define a compact model of interactions between complementary datasets.

5.2.1 Setting and notations

Let us consider observations stemming from two complementary views, G (for Ge-
nomic data) and M (for Metagenomic data), which are gathered into a training set
T = {(xG

i ,x
M
i , yi)}Ni=1, where (xG

i ,x
M
i , yi) ∈ RDG × RDM × R.
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We assume an underlying biological information on G and M encoded as groups.
The group structure over G is defined by NG groups of variables G = {Gg}NG

g=1.
We denote xgi ∈ RDg , the sample i restricted to the variables of G from group
Gg. Similarly, the group structure over M is defined by NM groups of variables
M = {Mm}NM

m=1 and xmi ∈ RDm is the sample i restricted to the variables of M
from group Mm.

We also introduce DI = DG ·DM and NI = NG ·NM , the number of variables and
the number of groups that may interact.

Finally, we use the following convention: vectors of observations indexed with i,
such as xi, will usually be row vectors∗ while vectors of coefficients, such as β, will
usually be column vectors.

5.2.2 Interactions in linear models

Interactions between data stemming from views G and M may be captured in the
model

yi = xG
i γG + xM

i γM + xG
i ∆GM (xM

i )T + εi , (5.1)

where the vectors γG ∈ RDG and γM ∈ RDM respectively denote the linear effects
related to G and M , the matrix ∆GM ∈ RDG×DM contains the interactions between
all pairs of variables of G and M and εi ∈ R is a residual error.

Underlying notions in models of interactions are the one of strong dependency (SD)
and weak dependency (WD), the first one being more common (see for instance
[Bien et al., 2013] and the discussion therein). Under the hypothesis of strong
dependency, an interaction is effective if and only if the corresponding single effects
are also effective while the hypothesis of weak dependency implies that an interaction
is effective if one of the main effect is also effective. Formally, for all variables j ∈ xG

and for all variables j′ ∈ xM , if γj, γj′ and δjj′ are the coefficients related to γG , γM

and ∆GM , then

(SD) δjj′ 6= 0 ⇒ γj 6= 0 and γj′ 6= 0 ,

(WD) δjj′ 6= 0 ⇒ γj 6= 0 or γj′ 6= 0 .

In this context, Bien et al. [2013] have proposed a sparse model of interactions
which faces computational limitations for large dimensional problems according to
Lim and Hastie [2015] and She et al. [2016]. While Lim and Hastie [2015] intro-
duce a method for learning pairwise interactions in a regression model by solving a
constrained overlapping Group-Lasso [Jacob et al., 2009] in a manner that satisfies
strong dependencies, She et al. [2016] propose a formulation with an overlapping
regularization that fits both kind of hypotheses and provide theoretical insights on
the resulting estimators†.

∗For the sake of clarity, we use these lightened notations which slightly differ from those used
in the previous chapters.

†To our knowledge, their implementation based on alternating direction method of multipliers
is not publicly available.
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Yet, the dimension DG + DM + DI involved in Problem (5.1) to estimate γG , γM

and ∆GM may be large especially for applications with an important number of
variables such as in biology with genomic and metagenomic data. To reduce the
dimension, we propose to compress the data according to an underlying structure
which may be defined thanks to a prior knowledge or be uncovered with clustering
algorithms.

5.2.3 Compact model

Assuming we are given a compression function for each group of G and M , we can
shape Problem (5.1) into a compact form

yi =
∑
g∈G

x̃giβg +
∑
m∈M

x̃mi βm +
∑
g∈G

∑
m∈M

(x̃gi · x̃mi )︸ ︷︷ ︸
φgmi

θgm + εi , (5.2)

where x̃gi ∈ R is the ith compressed sample of the variables that belong to the group
g for the view G and βg ∈ R is its corresponding coefficient. The counterparts on
the group m for the view M are x̃mi ∈ R and βm ∈ R. Finally, θgm ∈ R is the
interaction between groups g and m.

We can reformulate Problem (5.2) in a vector form. Let x̃G
i ∈ RNG , βG ∈ RNG ,

x̃M
i ∈ RNM and βM ∈ RNM be

x̃G
i = (x̃1i · · · x̃

g
i · · · x̃

NG
i ) , βG = (β1 · · · βg · · · βNG

)T ,

x̃M
i = (x̃1i · · · x̃mi · · · x̃

NM
i ) , βM = (β1 · · · βm · · · βNM

)T .

We denote by φi ∈ RNI , the vector whose general component is given by φgmi in
Equation (5.2), that is

φi =
(
φ11
i · · ·φ

1NM
i · · ·φgmi · · ·φ

NG1
i · · ·φNGNM

i

)
,

and θ ∈ RNI , the corresponding vector of coefficients, by

θ = (θ11 · · · θ1NM
· · · θgm · · · θNG1 · · · θNGNM

)T .

Finally, Problem (5.2) reads as a classical linear regression problem

yi = x̃G
i βG + x̃M

i βM + φiθ + εi , (5.3)

of dimension NG +NM +NI .

5.2.4 Recovering relevant interactions

Compared to Problem (5.1) and provided that NG and NM are reasonably lower
than DG and DM , the dimension of Problem (5.3) decreases drastically so that
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it might be solved thanks to an appropriate optimization algorithm coupled with
effective computational facilities. For instance, Donoho and Tsaig [2008] give an
overview of `1 regularized algorithms to solve sparse problems like Lasso, which in
our case could take the form:

argmin
βG ,βM ,θ

n∑
i=1

(
yi − x̃G

i βG − x̃M
i βM − φiθ

)2
+ λG

NG∑
g=1

|βg|+ λM

NM∑
m=1

|βm|+ λI

NI∑
g,m=1

|θgm| , (5.4)

with λG , λM and λI being the positive hyperparameters that respectively control the
amount of sparsity related to coefficients βG , βM and θ. Still, the dimension may
remain large regarding the dimension NG + NM + NI compared to the number of
observations N . Also, note that without additional constraints, such a formulation
would not induce the dependences hypothesis (SD) and (WD). For that purpose,
one could adapt the works of Bien et al. [2013], Lim and Hastie [2015] or She et al.
[2016] mentioned above. We present in the next Section another way to reduce
further the dimension and fulfil the strong dependency hypothesis.

5.3 Method

In this section, we provide some elements to enhance Problem (5.3) for biological
problems involving metagenomic and genomic data. After a brief discussion related
to the preprocessing of the data, we explain how to obtain the group structure on G
and M using hierarchical clustering strategies and describe how to efficiently take
into account the different scales of the groups defined by each level of the hierarchies.
We then present some compressions that may be used to summarize the groups.
Finally, we propose a linear model testing to recover the relevant interactions.

We entitled the proposed approach SICOMORE for Selection of Interaction effects
in COmpressed Multiple Omics REpresentations, implemented in the R package
SICoMORe available at https://github.com/fguinot/sicomore-pkg.

5.3.1 Preprocessing of the data

To tackle problems that involve genomic and metagenomic interactions, some prior
transformations are mandatory. Also, a first attempt to reduce the dimension may
be achieved at this step.

https://github.com/fguinot/sicomore-pkg
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Preprocessing of metagenomic data

Normalization. In shotgun metagenomics,∗ microorganisms are studied by se-
quencing DNA fragments directly from samples, without the need for cultivation of
individual isolates [Sharpton, 2014].

Shotgun metagenomic sequencing data are often produced by analysing the presence
of genes and their abundances in and between samples from different experimental
conditions. The gene abundances are then estimated by matching each generated
sequence read against a comprehensive and annotated reference database and by
counting the number of reads matching each gene in the reference database [Pereira
et al., 2018].

Gene abundance data generated by such analysis are however affected by systematic
variability that significantly increases the variation between samples and thereby
decrease the ability to identify genes that differ in abundance [Jonsson et al., 2017,
Wooley et al., 2010, Pereira et al., 2018]. The process known as normalisation
therefore referred to the methods designed to remove such systematic variability.

A wide range of different methods has been applied to normalize shotgun metage-
nomic data. The majority of these normalization methods are based on scaling,
where a sample-specific factor is estimated and then used to correct the gene abun-
dances. For instance, one can simply calculates the scaling factor ψi as the sum of
all reads counts in a sample i:

ψi =

DM∑
j=1

xMij .

A more robust method to estimate the scaling factor is the Trimmed Mean of M-
values (TMM) [Robinson and Oshlack, 2010] which compares the gene abundances
in the samples against a reference, typically set as one of the samples in the study.
We note ti the scaling normalization factors for raw library sizes calculated using
the TMM normalization method for sample i; li = xM

i ti is then the corresponding
normalized library size for sample i and

ψi =
li∑n

t=1 lt/n
,

is the associated normalization scaling factor.

The raw counts xMij , with j ∈ [1, . . . , DM ], are then divided by the scaling factor to
obtain the normalized counts:

x̃Mij = xMij /ψi.

Transformation. Metagenomic shotgun sequencing results in features which take
the form of proportions in different samples, referred in the statistical literature

∗see Section 1.1.2 for details on shotgun sequencing.
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as compositional data [Aitchison, 1982]. These data are known to be subject to
negative correlation bias [Pearson, 1896, Aitchison, 1982]) and the assumption of
conditional independence among samples is unlikely to be true for the vast majority
of metagenomic datasets.

Several data transformations have been suggested for RNA-seq data, most often in
the context of exploratory or differential analyses. These transformations include
log transformation (where a small constant is typically added to read counts to avoid
0s), a variance-stabilizing transformation [Tibshirani, 1988, Huber et al., 2003], mod-
erated log counts per million [Law et al., 2014], and a regularized log-transformation
[Love et al., 2014].

Rau and Maugis-Rabusseau [2017] also proposed to calculate normalized expression
profiles for each feature, that is, the proportion of normalized reads observed for
gene j with respect to the sum of all samples in gene j:

pij =
x̃Mij + 1∑n
t=1 x̃

M
tj + 1

,

where a constant of 1 is added to the numerator and denominator due to the presence
of 0 counts.

However, the vector of values pj are linearly dependent, which imposes constraints
on the covariance matrices that can be problematic for most standard statistical ap-
proaches [Rau and Maugis-Rabusseau, 2017]. One solution is to apply the commonly
used centered log ratio (CLR) transformation for compositional data [Aitchison,
1982]. It is defined as:

CLR(pj) =

[
ln

(
p1j
g(pj)

)
, . . . , ln

(
pnj
g(pj)

)]
,

where g(pj) is the geometric mean of pj.

A first selection of variables

As seen in Section 5.2, we assume strong dependencies on interactions, which means
that an interaction can be effective only if the two simple effects making up the in-
teraction are involved in the problem. Then, it may be clever to apply a first process
of selection to discard the inoperative single effects on G and M respectively. Differ-
ent approaches may be envisioned to proceed this selection. Among them, screening
rules can eliminate variables that will not contribute to the optimal solution of a
sparse problem sweeping all the variables upstream to the optimization. When such
a screening is appropriate, we may use the work of Lee et al. [2017] focused on
Lasso problems, which present a recent overview of these techniques together with
a screening rule ensemble. Once the screening is done, the optimization of a Lasso
problem gives the final set of variables.
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5.3.2 Structuring the data

Once the data are preprocessed, we can resort to hierarchical clustering using Ward
criterion with appropriate distances to uncover the tree structures.

Clustering of metagenomic data

A common approach to analyse metagenomic data is to group sequences into taxo-
nomic units. The features stemming from metagenome sequencing are often mod-
elled as Operational Taxonomic Units (OTU), each OTU representing a biological
species according to some degree of taxonomic similarity. Chen et al. [2013] propose
a comparison of methods to identify OTU that includes hierarchical clustering.

While the structure on microbial species could be defined according to the underlying
phylogenetic tree, it also makes sense to use more classical distances, such as the
Ward criterion, to define a hierarchy based on the abundances of OTU. In our
application we use an agglomerative hierarchical clustering with the Ward criterion
(see Section 2.5.1)

Clustering of genomic markers

On the other hand, when the genomic information is available through SNP, the
tree structure on G will be defined using a Ward spatially constrained hierarchical
clustering algorithm which integrates the linkage disequilibrium as the measure of
dissimilarity using the adjclust algorithm [Dehman et al., 2015].

5.3.3 Using the structure efficiently

Different approaches related to the problem of finding an optimal number of clusters
may be envisioned to find the optimal cut in a tree structure obtained with hier-
archical clustering (see for instance Milligan and Cooper [1985] or Gordon [1999]).
Whatever the chosen approach, a systematic exploration of different levels of the
hierarchy is mandatory to find this optimal cut. We define an alternative strategy
to bypass this expensive exploration which consists in:

(a) Expanding the hierarchy considering all possible groups at a single level;

(b) Assigning a weight to each group based on gap distances between two consec-
utive groups in the hierarchy;

(c) Compressing each group into a supervariable.

The different steps of this strategy are illustrated in Figure 5.1, from the original tree
structure in Figure 5.1(a) to a final flatten, weighted and compressed representation
in Figure 5.1(c).
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h0 = 5

h1 = 3.5

h3 = 1

h4 = 0

x1 x3 x4 x2 x5

s1 = 1.5

s2 = 2.5

s3 = 1

(a) Original hierarchy

ρ1 ρ2 ρ3

x2 x5 x1 x4x3 x1 x3 x4x2 x5

(b) Expanded representation

ρ1x̃
1 ρ2x̃

2 ρ3x̃
3

(c) Compressed rep-
resentation

Figure 5.1: Dimension reduction strategy. (a) Original hierarchical tree with
an example for 5 variables. (b) Expanded representation of the tree with all possible
weighted groups derived from the original hierarchy. (c) Compressed representation
of the tree after construction of the supervariables.

Expanding the hierarchy (a)

To reduce the dimension involved in Problem (5.3), the first step consists in flatten-
ing the respective tree structures obtained on views G and M so that only a group
structure remains. Thus, each group of variables defined at the deepest level may
be included in other groups of larger scales, as shown in Figure 5.1(b).

Assigning weights to the groups (b)

To keep track of the tree structure, we may integrate an additional measure quan-
tifying the quality of the groups on two successive levels. More specifically, for a
tree structure of height H and for 1 ≤ h ≤ H − 1, we define sh as the gap between
heights sh and sh−1. Following the lines of Grimonprez [2016] for the Multi-Layer
Group-Lasso described in Section 2.5.3, we define this quantity as ρh = 1/

√
sh. The

process is shown in Figure 5.1(a) and 5.1(b).

Compressing the data (c)

To summarize each group of variables, the mean, the median or other quantiles
may be used as well as more sophisticated representations based on eigen values
decompositions such as the first factor obtained with a PCA. This step is similar to
the dimension reduction step of the method presented in Section 4.2.
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5.3.4 Identification of relevant supervariables

With this compressed representation at hand, we can recover relevant interactions
with a multiple testing strategy.

Selection of supervariables

The compression is a key ingredient to reduce significantly the dimension involved in
Problem (5.3). Yet, we are going a step further with an additional feature selection
process applied to the compressed variables, as suggested at the begin of this section
to preprocess the data, using screening rules and / or applying a Lasso optimization
on each view G and M :

argmin
βG

n∑
i=1

(
yi − x̃G

i βG

)2
+ λG

NG∑
g=1

ρg|βg| ,

and

argmin
βM

n∑
i=1

(
yi − x̃M

i βM

)2
+ λM

NM∑
m=1

ρm|βm| ,

with penalty factors being defined by ρg = 1/
√
sg and ρm = 1/

√
sm as explained in

Section 5.3.2.

Linear model testing

In a feature selection perspective, the relevant interactions may be recovered sep-
arately considering each selected group g ∈ G coupled with each selected group
m ∈ M in a linear model of interaction and by performing an hypothesis test on
the interaction parameter:

yi = x̃giβg + x̃mi βm + (x̃gi · x̃mi ) θgm + εi . (5.5)

This strategy has the advantage of highlighting all the potential interactions be-
tween the selected simple effects in an exploratory rather than predictive analysis
perspective. Also, it may be regarded as an alternative shortcut to Problem (5.3)
in that it involves NI problems of dimension 3 instead of a potentially large prob-
lem of dimension NG +NM +NI . Finally, this scheme of selection preserves strong
dependencies by construction.

5.4 Numerical simulations

We provide here numerical simulations to assess the ability of SICOMORE to recover
relevant interactions against three other methods. We also show that our method
is computationally competitive compared to the others.
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5.4.1 Data generation

Generation of metagenomic and genomic data matrices

Genomic data. In order to get a matrix XG close to real genomic data, we used
the software HAPGEN2 software [Su et al., 2011]. This software allows to simulate an
entire chromosome conditionally on a reference set of population haplotypes (from
HapMap3) and an estimate of the fine-scale recombination rate across the region,
so that the simulated data share similar patterns with the reference data. We
generate the chromosome 1 using the haplotype structure of CEU population (Utah
residents with Northern and Western European ancestry from the CEPH collection)
as reference set and we selected DG = 200 variables from this matrix to obtain our
simulated dataset. An example of the linkage disequilibrium structure among the
simulated SNP is illustrated in Figure 5.2(a).

Metagenomic data. The data matrix XM , with DM = 100 variables, has been
generated using a multivariate Poisson-log normal distribution [Aitchison and Ho,
1989] with block structure dependencies.

The Poisson-log normal model is a latent gaussian model where latent vectors Li ∈
RDM are drawn from a multivariate normal distribution

Li ∼ NDM
(0,Σ),

where Σ is a covariance matrix that allows to obtain a correlation structure among
the variables.

The centered phenotypic count data Yi are then drawn from a Poisson distribution
conditionally on Li

Yij|Lij ∼ P
(
eµj+Lij

)
,

with µj = 0.

The block structure, pictured in Figure 5.2(b), has been obtained by drawing a latent
multivariate normal vector using a covariance matrix Σ such that the correlation
level between the latent variables of a group are between 0.5 and 0.95. By simulating
this way, we obtain a matrix of count data with a covariance structure close to what
is observed with metagenomic data. As stated in Section 5.3.1, we calculated the
proportions in each random variable and transformed them using centered log-ratios.
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(a) Correlation matrix of XG (b) Correlation matrix of XM

Figure 5.2: Examples of hierarchical structures: correlations observed on (a)
genomic data XG and (b) metagenomic data XM .

Generation of the phenotype

For all simulations, we used a fixed value of NM = 6 groups for the matrix XM and
for the case of the matrix XG , since we cannot exactly control the block structure
with HAPGEN2, we used the Gap Statistic (see Section 2.5.1) to identify a number of
groups in the hierarchy. For instance, in Figure 5.2(a), the Gap Statistic identified
NG = 16 groups. The supervariables were then calculated using averaged groups of
variables to obtain the two matrices of supervariables, X̃G and X̃M .

To generate the phenotype, we considered a data structure for which the data to
regress has been generated using supervariables according a linear model with in-
teractions of the form:

yi =
∑
g∈SG

x̃giβg +
∑
m∈SM

x̃mi βm +
∑
g∈SG

∑
m∈SM

(x̃gi · x̃mi )︸ ︷︷ ︸
φgmi

θgm + εi , (5.6)

where SG and SM are subsets of randomly chosen effects from the matrices X̃G

and X̃M respectively, x̃gi is the ith sample of the g effect and βg its corresponding
coefficient, x̃mi is the ith sample of the m effect and βm its corresponding coefficient.
Finally, θgm is the interaction between variables x̃gi and x̃mi .

We considered I ∈ {1, 3, 5, 7, 10} true interactions between the supervariables to
generate the phenotype so that I blocks of the coefficients of θgm have non-zero
values. The process was repeated 30 times for each couple of parameters in N =
{50, 100, 200} ×mean(ε) = {0.5, 1, 2}.



5.4. Numerical simulations 113

5.4.2 Comparison of methods

To evaluate the performance of our method, SICOMORE, to retrieve the true causal
interaction, we compared it with three other methods, namely HCAR [Park et al.,
2007], MLGL [Grimonprez, 2016] and glinternet [Lim and Hastie, 2015]. It is
worth mentioning that, as we already stated, SICOMORE is an approach that
borrow from HCAR and MLGL and that is designed to detect interactions. We
had then to adapt these approaches to our problematic, as we will describe it in
the following sections, they are therefore not evaluated in the context they were
meant to be used. Thus, the purpose of this evaluation is to know if SICOMORE
is capable of improving the individual performance of these methods by combining
them to detect statistical interactions.

Hierarchical Clustering and Averaging Regression (HCAR)

This methodology can be simply adapted to our problematic by performing two
hierarchical clustering on each data matrix XG and XM and then compute the
unweighted compressed representations of those hierarchies as explained in Sec-
tion 5.3(c) and illustrated in Figure 5.1(c). We can then fit a Lasso regression model
on both compressed representations with interactions between all possible groups.
We consider that HCAR is able to retrieve a true causal interaction if the Lasso
procedure selects the interaction term at the correct levels of the two hierarchies.

Multi-Layer Group-Lasso (MLGL)

The model is fitted with weights on the groups defined by the expanded represen-
tation of the two hierarchies as illustrated in Figure 5.1(b). This method does not
work on the compressed supervariables but on the initial variables. Our evaluation
considers that the method is able to retrieve real interactions if it selects the cor-
rect interaction terms between two groups of variables at the right level in both
hierarchies.

Group-Lasso interaction network (glinternet)

glinternet [Lim and Hastie, 2015] is a procedure that considers pairwise interactions
in a linear model in a manner that satisfies strong dependencies between main and
interaction effects: whenever an interaction is estimated to be non-zero, both its
associated main effects are also included in the model. This method uses a Group-
Lasso model to accommodate with categorical variables and apply constraints on
the main effects and interactions to result in interpretable interaction models.

The glinternet model fits a hierarchical group-lasso model with constraints on the
main and interactions effects as specified in the equation (5.4) whilst accommodating
for the strong dependence hypothesis by adding an appropriate penalty to the loss
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function (we refer the reader to [Lim and Hastie, 2015] for more details on the form
of the penalty). For very large problems (with a number of variables ≥ 1.105 ), the
group-lasso procedure is preceded by a screening step that gives a candidate set of
main effects and interactions. They use an adaptive procedure that is based on the
strong rules [Tibshirani et al., 2012] for discarding predictors in lasso-type problems.

Since this method can only work at the level of variables, it was necessary to include
a group structure into the analysis. Therefore, we decided to fit the glinternet model
on the compressed variables and to constraint the model to only fit the interaction
terms between the supervariables of the two matrices X̃G and X̃M . We explicitly
removed all interaction terms between supervariables belonging to the same data
matrix.

For a fair comparison with the other methods, we considered two options namely
GLtree and GLgap. On one hand, option GLtree works on the unweighted com-
pressed representations of the two hierarchies (Figure 5.1(c)) thus considering all
the possible interactions between the supervariables of the two datasets. On the
other hand, option GLgap considers only the interactions between the compressed
variables constructed at a specific level in the hierarchies, chosen by the Gap Statis-
tic.

Given that DG and DM are the number of variables in XG and XM , the dimension
of the compressed matrices X̃G and X̃M are respectively D̃G = DG + (DG − 1) and
D̃M = DM + (DM − 1). Thus, for GLtree the number of interactions to investigate
are D̃G × D̃M while for GLgap this number will depend on the level chosen by the
Gap statistic but will be either way smaller since we consider only a specific level of
the hierarchy in this option. In the numerical simulations, given that DG = 200 and
DM = 100, the use of strong rules to discard variables is therefore not necessary as
Lim and Hastie [2015] argued that glinternet can handle very large problems without
any screening (360M candidate interactions were fitted when evaluating the method
on real data examples).

5.4.3 Evaluation metrics

For each run, we evaluated the quality of the variable selection using Precision and
Recall. More precisely, we compared the true interaction matrix θ that we used
to generate the phenotype with the estimated interaction matrix θ̂ compute for
each model. For all possible interactions {gm}, we then determined the following
confusion matrix:

θ̂gm = 0 θ̂gm 6= 0

θgm = 0 True Negative False Positive

θgm 6= 0 False Negative True Positive

Table 5.1: Confusion matrix for the hypothesis test on interaction parameter
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and hence compute Precision = TP
(FP+TP )

and Recall = TP
FN+TP

.

In this context, a true positive corresponds to a significant p-value on a true causal
interaction, a false positive to a significant p-value on a noise interaction, and a false
negative to a non-significant p-value on a true causal interaction. An example of the
interaction matrix θ̂ is given in Figure 5.3 for I = 5 blocks in interaction.
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Figure 5.3: Illustration of the true interaction matrix θ̂ with I = 5, σ = 0.5
and n = 100. Each non-zero value in this matrix is considered as a true interaction
between two variables.

For all methods, we correct for multiple testing by controlling the Family Wise Error
Rate using the method of Holm-Bonferroni. Even though it is known to be stringent,
we chose to rely on Holm-Bonferroni method to adjust for multiple testing because
the number hypothesis tests performed in our simulation context is not that high.
In a high-dimensional context such as with the analysis of real DNA chip data,
we would rather use the Benjamini-Hochberg method for the control of the false
discovery rate.

5.4.4 Performance results

The performances of each method to retrieve the true causal interactions are illus-
trated in Figure 5.5 for precision and Figure 5.6 for recall. For the sake of clarity
we only show the results for I = 7 blocks of variables in interaction. The results for
I ∈ {1, 3, 5, 10} are provided in Annexes C as a supplementary material.

The results in terms of recall reveal good abilities of MLGL and SICOMORE to
retrieve True Positive interactions, with an overall advantage for our method. HCAR
achieves a lower performance due to the fact that it favours the selection of small
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groups which are only partly contained in the groups that generate the interactions
showing that the weighting scheme of MLGL and SICOMORE is efficient. GLgap is
not able to retrieve relevant interactions but the way to define the structure among
variables, using the Gap Statistic, is also quite different than for the three other
methods.

In terms of precision, all methods perform poorly with a significant number of false
positive interactions. MLGL and SICOMORE tend to select groups of variables
and supervariables too high in the tree structure, inducing false positives which
are spatially closed to the true interactions. HCAR, which favours small groups as
explained above, is less subject to that. The behaviour of GLgap may vary according
to the selected cut with the Gap statistic into the tree structure while option GLtree
exhibit slightly better precision. Still, the method glinternet is globally not able to
retrieve correctly the true interactions whether or not it uses the compressed or
original representation. The plots in Figure 5.4 represent the recovered confusion
matrices of interaction θgm for each compared algorithm for one particular set of
simulation parameters (I = 5, σ = 0.5, n = 100).

MLGL SICOMORE

GLtree HCAR
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Figure 5.4: Confusion matrices of interactions θgm for each compared algorithm
with the following simulation parameters: I = 5, σ = 0.5, n = 100. We can see
in this example that MLGL and SICOMORE behaves similarly with very large
genomic regions identified while HCAR tends to work with smaller genomic and
metagenomic regions.



5.4. Numerical simulations 117

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

0.5 1 2

50
100

200

GLgap GLtree MLGL HCAR SICOMORE GLgap GLtree MLGL HCAR SICOMORE GLgap GLtree MLGL HCAR SICOMORE

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

pr
ec

is
io

n

Figure 5.5: Boxplots of precision for each couple of parameters N (number of
examples in rows) and ε (difficulty of the problem in columns) for I = 7.
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Figure 5.6: Boxplots of recall for each couple of parameters N (in rows) and ε (in
columns) for I = 7.
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5.4.5 Computational time

In order to decrease the calculation time in our algorithm, we chose to restrain the
search space in the tree to a certain amount, depending on the number of initial
features. We can choose to limit the search in the area of the tree where the jumps
in the hierarchy are the highest and arbitrarily set the number of groups to evaluate
at five times the number of initial features. By doing so, we are reducing the number
of variables to be fitted in the Lasso regression without affecting the performance in
terms of Recall or Precision.

We compared the computational performance of our method with the three others
by varying DG (we fixed DM = 100 and n = 200). We repeated the number of
evaluation five times for each DG and averaged the calculation time.

DG 50 100 500 1000 1500 2000 3000 4000

SICOMORE 0.01 0.01 0.02 0.03 0.03 0.04 0.05 0.06

HCAR 0.21 0.34 0.82 0.76 0.75 0.96 0.93 1.09

MLGL 0.06 0.09 3.35 0.86 3.12 4.52 8.02 24.20

GLgap 0.07 0.28 0.67 3.83 11.69 26.31 88.17 210.64

Table 5.2: Results of averaged calculation time (in minutes) over 5 replicates for
varying DG .

We can conclude from the results presented in table 5.2 that two methods, MLGL
and glinternet, are not suitable for large-scale analysis of genomic data since the
calculation time increase drastically as soon as the dimension of the problem exceed
a few thousand variables. HCAR and SICOMORE behave similarly. That being
said, remember that HCAR is tuned with an unweighted compressed representation
avoiding having to choose the optimal cut in the tree, as in SICOMORE. With
its original strategy based on a K cross validation, there is no doubt that the gap
between HCAR and SICOMORE would have been much larger. Indeed, the com-
putational cost of an additional exploration to find the optimal cut in HCAR grows
with the number of variables and therefore with hT , the height of the tree. HCAR
has to evaluate hT ×K compressed models while SICOMORE only has to compress
hT − 1 groups to evaluate the final model.
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5.5 Application on real data: rhizosphere of Med-

icago truncatula

5.5.1 Material

In order to study the interactions between Medicago truncatula and the microbial
community of its rhizosphere, a core collection of 154 accessions have been anal-
ysed. The purpose of the study is to identify significant interactions between the
plant genome and the microbial metagenome to better understand the effect of the
microbial community on the growth of the plant.

Each accession was grown in a controlled environment and phenotyped for several
traits related to the growth and nutritional strategy:

– Measure of total biomass (BMtot).

– Root Shoot Ratio (RTR).

– Specific Nitrogen Uptake (SNU). It is the correlation between the total amount
of nitrogen and below-ground biomass

The distributions of the phenotypic values are shown in Figure 5.7.
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Figure 5.7: Distribution of the phenotypic values for the BMtot, RTR and
SNU traits.

In addition to the phenotypic measurement, the rhizosphere of each accession was
also analysed to determine the microbial diversity in terms of number of species and
abundance of each species. The metagenomic composition of the rhizosphere has
been analysed by DNA extraction and shotgun sequencing. A total of 848 different
species were found in the rhizosphere of the plants (repartition shown in Figure 5.8).
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Figure 5.8: Repartition of the most abundant microbial species in the
rhizosphere of M.truncatula.

Finally, 154 accession were genotyped with a DNA microarray chip for a total num-
ber of 6 372 968 SNP. The missing values were imputed using the ‘snp.imputation‘
function from the SNPstats R package. Given two set of SNP typed in the same
subjects, this function calculates rules which can be used to impute one set from
the other in a subsequent sample.

Some SNP having too many missing values to be imputed at 100%, we only kept
the SNP which have been completely imputed, thus reducing the size of the data to
2 148 505 SNP. We also looked at the linkage disequilibrium level among some SNP
to get an overview of the genome structure (Figure 5.9).

Figure 5.9: Heatmap of LD level among SNP of chromosome 4 (position
17448921 to 22706884).



5.5. Application on real data: rhizosphere of Medicago truncatula 121

5.5.2 Analysis

The algorithm SICOMORE requires that we choose several hyper-parameters in
order to run properly:

– Aggregating function: For both metagenomic and genomic data we define
the mean value of the group as supervariable.

– Clustering algorithm: For the metagenomic data we used 2 types of cluster-
ing: a hierarchical clustering using Ward’s distance as the measure of similarity
and a phylogenetic clustering using the taxonomic information to construct a
tree. The first method does not use information a priori while the second uses
phylogenetic information to build a tree. For the genomic data, we used spa-
tially constrained hierarchical clustering algorithm which integrates the linkage
disequilibrium as the measure of dissimilarity. It is also possible not to specify
any hierarchy for one the 2 datasets, in that case we are looking for interaction
between groups of variables in one dataset and single variables in the second
dataset.

– Search space: For computational reasons, we searched at first for interaction
between a subset of the SNP data and the metagenomic data. We chose
arbitrarily a subset of 10% of the initial data matrix (214 851 SNP). We also
chose to divide the analysis chromosome by chromosome.

To summarize we performed an exhaustive search for interaction by setting different
parameters:

Option 1 Hierarchical clustering on metagenomic data + spatially constrained hi-
erarchical clustering on subset of genomic data (214 851 SNP) + chromosome
by chromosome.

Option 2 Hierarchical clustering on metagenomic data + spatially constrained hi-
erarchical clustering on subset of genomic data (214 851 SNP) + all chromo-
somes combined.

Option 3 Hierarchical clustering on metagenomic data + spatially constrained hi-
erarchical clustering on all genomic data (2 148 505 SNP) + chromosome by
chromosome.

Option 4 Phylogenetic clustering using taxonomic information on metagenomic
data + spatially constrained hierarchical clustering on subset of genomic data
(214 851 SNP) + chromosome by chromosome.
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selected groups
in Metagenome

selected groups
in Genome

signif interactions
chr by chr

signif interactions
on all chr

Option 1 14 157 1 0

Option 2 12 4 0 0

Option 3 14 84 0 0

Option 4 39 96 0 0

Table 5.3: Results from SICOMORE analysis on total biomass

5.5.3 Results

Results on Total Biomass

One significant interaction was found for the phenotype Total Biomass when we ap-
plied a BH correction chromosome by chromosome (column 3) instead of correcting
on the all set of p-value, all chromosome confounded:

Metagenomic
group

Chromosome
Genomic

position (pb)
number of SNP

in genomic region
p-value

’Hyalangium’ 5 30921278 1 2.5e.10−4

Results on Root Shoot Ratio

selected groups
in Metagenome

selected groups
in Genome

signif interactions
chr by chr

signif interactions
on all chr

Option 1 9 16 7 0

Option 2 9 4 0 0

Option 3 4 38 0 0

Option 4 6 16 10 0

Table 5.4: Results from SICOMORE analysis on Root Shoot Ratio

We found some significant interactions when we applying a BH correction chromo-
some by chromosome (column 3). We observe different results according to the
clustering applied on the metagenomic data. We found 7 significant interactions for
the phenotype Root Shoot Ratio when we applied a hierarchical clustering and 10
significant interactions when we applied a phylogenetic clustering.
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1. Option 1 (hierarchical clustering on Metagenomic data and subset of SNP
data):

Metagenomic
group

Chromosome
Genomic

position (pb)
number of SNP

in genomic region
p-value

’Ramlibacter’ 1 41164000:52989926 5414 2.1.10−3

’Ramlibacter’ 2 37760407:45726447 3699 5.10−3

’Ramlibacter’ 5 38102314:40264975 1184 1.10−2

39 species 6 13605:2142611 1016 1.2.10−3

’Ramlibacter’ 6 13605:2142611 1016 4.8.10−3

’Ramlibacter’ 6 2142998:35275274 19060 1.9.10−3

’Ramlibacter’ 7 1383 23535 4.6.10−3

2. Option 4 (phylogenetic clustering on Metagenomic data and subset of SNP
data):

Metagenomic
group

Chromosome
Genomic

position (pb)
number of SNP

in genomic region
p-value

’Ramlibacter’ 1 823:33141394 19400 8.4.10−3

’Ramlibacter’ 1 41164000:52989926 5414 2.1.10−3

’Ramlibacter’ 2 531:37759102 21196 2.5.10−2

’Ramlibacter’ 2 37760407:45726447 3699 5.10−3

’Ramlibacter’ 3 38120792:41521643 1737 6.9.10−3

’Ramlibacter’ 3 54877971:55514282 286 2.9.10−3

5 species
(’Sphingobacteriia’)

5 38102314:40264975 1184 8.8.10−2

’Ramlibacter’ 5 38102314:40264975 1184 1.10−2

’Ramlibacter’ 6 13605:2142611 1016 4.8.10−3

’Ramlibacter’ 6 2142998:35275274 19060 1.9.10−3
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Results on Specific Nitrogen Uptake

selected groups
in Metagenome

selected groups
in Genome

signif interactions
chr by chr

signif interactions
on all chr

Option 1 4 15 0 0

Option 2 4 2 0 0

Option 3 4 32 4 2

Option 4 4 34 0 0

Table 5.5: Results from SICOMORE analysis on Specific Nitrogen Uptake

2 significant interactions (on a total 128 potential interactions) were found between
2 groups of microbial species and 2 groups of SNP when assessing all the genomic
data (Option 4) and applying the BH correction on the all set of p-value:

Metagenomic
group

Chromosome
Genomic

position (pb)
number of SNP

in genomic region
p-value

140 species 2 15784171:15825022 462 5.4.10−5

140 species 2 37906624:37914488 53 1.7.10−3

613 species 5 15072986:15100311 251 3.4.10−3

140 species 5 15072986:15100311 251 3.5.10−4

The 140 microbial species found in the interactions with chromosome 2 and 5 are
the same species. The repartition in phylum of these species are illustrated in Figure
5.10, there is a total of 13 phylum represented with a vast majority of Proteobacteria.
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Figure 5.10: Microbial phylum found in interaction with chromosome 2 and
chromosome 5 of Medicago truncatula for the Specific Nitrogen Uptake
phenotype.

5.6 Discussions

Although the detection of interaction effects in a high-dimensional remain a difficult
problem, on one hand due to the multiple testing burden and on the other hand
to the small effect sizes in term of significance, our approach has demonstrated the
ability to recover interaction effects with a high statistical power. In our simu-
lations, whether we varied the sample sizes, noise or number of true interactions,
SICOMORE always exhibited the strongest recall compared to MLGL, HCAR or
glinternet. This can be explained mainly by the fact that we advantageously use
the strengths of different methods to combine them in a powerful single algorithm.

Regarding the results in terms of precision, we can see that all methods exhibit
weak performance mainly due to the fact that the algorithms select groups which
are too high in the hierarchy, i.e. that the selected supervariables, or groups of
single variables for MLGL, contain too many variables. This results in the detection
of interactions between the complementary datasets with a good power but a weak
resolution. One solution would be to constrain the algorithm to work only on the
lowest levels of the two hierarchies at a potential cost in terms of recall.

As for the application of our method to the Medicago truncatula dataset, we were
able to find significant interactions between genomic and metagenomic features in
relation with 3 phenotypes. Particularly we notice than one particular microbial
species, ‘Ramlibacter’, seems to highly interact with the genome of the plant. We
detected a lot of interactions for the RTR phenotype with potentially interesting
genomic regions to look at in more details. The results on the phenotype SNU
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are more difficult to interpret because it is a very large group of microbial species
which interact with the genome. Furthermore, we can notice in these results that
the variable selection step suffers from instability. Indeed, as we used the same
metagenomic data across the different options, the number of selected groups should
also remains the same, but it is not the case. This instability could be due to the
cross-validation step necessary to estimate the hyper-parameters and would need
some adjustments to be corrected.

To conclude we can state that SICOMORE is able to find significant metagenomic-
genomic interactions in a high dimensional context within a reasonable computa-
tional time. Indeed, the algorithm is able to work very fast even with large genomic
dataset, an analysis of the full genomic data only takes a few hours to run and only
a few tens of minutes if we work on a small subset of the data.
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Conclusion

Since the last decade, the rapid advances in genotyping technologies have changed
the way genes involved in mendelian disorders and complex diseases are mapped,
moving from candidate genes approaches to linkage disequilibrium mapping, of which
GWAS is a large-scale example. In the mid-1990s, some researchers already foresaw
the coming of the GWAS era and the crucial contribution of high-throughput geno-
typing technologies in the field of genetic epidemiology. Indeed, Risch and Merikan-
gas [1996] noted that small genetic effects could be detected with greater power by
association analyses and proposed that genome-wide LD mapping (GWAS) could
be applied if technologies were developed to study SNP frequencies in all genes, con-
trasting in ill cases vs. control subjects. On another side, Lander [1996] suggested
the common disease common variant (CDCV) hypothesis and proposed cataloguing
common SNP (with MAF ≥ 5%) and studying their association to disease in large
samples. GWAS strategy under the CDCV hypothesis assumed that many different
common SNP have small effects on each disease, and that some could be found by
testing enough SNP in enough people.

Since 2005 ([Klein et al., 2005]), GWAS have produced strongly significant evidence
that specific common DNA sequence differences among people influence their genetic
susceptibility to many different common diseases [Manolio et al., 2008]. However,
they are also subject to several limitations intrinsic to the types of data but also to
the statistical methods used. On one side the strong correlations between genetic
variants, population structure, epistasis or effect size of rare-variant are partly re-
sponsible for the missing heritability. But on the other hand, although the single
marker method remains the most widely used approach in GWAS, its relevance may
be called into question in the context of complex diseases.

The new methodologies developed during this PhD are therefore part of this con-
text. We try with this manuscript to provide a thorough introduction to GWAS
by reminding in a first time the genetic precepts fundamental to the understanding
of our works but also by introducing the concept of statistical learning. We chose
not only to detail several state-of-the-art methods used in GWAS but also to put a
particular emphasis on statistical learning by devoting an entire chapter to it. This
choice was motivated by the conviction that a multidisciplinary approach combin-
ing both biological and statistical learning knowledges can help to understand the
limits of traditional methods used in GWAS but also to imagine potential levers for
improvement in terms of methodology.
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Discussions on LEOS algorithm

Based on the observation that baseline single-marker analysis in GWAS is strongly
affected by the multiple testing burden due to the high dimensionality of the data
leading to the inability to identify variants having small effect on phenotype, we
first came up with the idea of aggregating SNP within a same LD block for a
dimension-reduction purpose. This reasoning led to the development of the method
LEOS, described in Chapter 4. In this work we proposed a four-step algorithm
explicitly designed to take benefit of the linkage disequilibrium structure in GWAS
data. LEOS combines, on the one hand, unsupervised learning methods that cluster
correlated-SNP, and on the other hand, supervised learning techniques that identify
the optimal number of clusters and reduce the dimension of the predictor matrix.

The evaluation of the method was carried out from both a predictive and explana-
tory point of view. One part of the method consist in finding the optimal group
structure to construct a matrix on new aggregated-SNP variables using supervised
learning techniques. We noticed, in the assessment of the method on simulated and
real datasets, that the combination of our aggregating function with a ridge regres-
sion model leads to a major improvement in terms of predictive power when the
linkage disequilibrium structure is strong enough, hence suggesting the existence of
multivariate effects due to the combination of several SNP. Furthermore, when us-
ing high-dimensional generalized additive model (HGAM) in place of linear models,
we remarked that we were able to further increase the predictive accuracy. These
results suggest a first interesting feature of our method if one wants to predict a
phenotype based solely on genetic markers, with possible application in personal-
ized medicine. However, these preliminary results, although encouraging, must be
subjected to additional tests such as a comparative analysis with other machine
learning algorithms specialized in the predictive aspect. It also seems important to
confirm the robustness of these results on other data sets and on replicative studies.

Although the predictive aspect of the algorithm is of crucial importance, the main
objective we had in mind while developing the method was to find a way to increase
statistical power and precision in GWAS. Regarding this matter, accounting for the
linkage disequilibrium structure of the genome and aggregating highly-correlated
SNP is seen to be a powerful alternative to standard marker analysis. Indeed,
LEOS demonstrates its ability, in different simulation scenarios, to retrieve true
causal SNP and/or clusters of SNP with substantially higher precision coupled with
a good power than standard approaches. Even though it has been able to recover
a genomic region known to be associated with ankylosing spondylitis, we have not
been able to detect new genomic regions significantly associated with the disease,
certainly suggesting that some effects might still be too small to be detected or that
there are other causes that cannot be detected with this type of approach, such as
effects of interactions with the environment or epistasis. We also investigated, using
HGAM on the aggregated-SNP matrix, the possibility to detect non-linear relation-
ship with the phenotype. Albeit the regions identified did not differ from those
previously identified with a classical linear regression model, the results obtained on
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the AS dataset still point interesting non-linear patterns between some aggregated-
SNP in the specific HLA region of chromosome 6 and the phenotype. Nevertheless,
we remain convinced that generalized additive models could be of great benefit in
GWAS, particularly in terms of predictive power but also in the identification of
non-linear behaviour.

Discussions on SICOMORE algorithm

One possible way to understand the expression of certain diseases is to consider gene-
environment interactions. Sensitivity to environmental risk factors for a disease may
be inherited, leading to cases where individuals exposed to the same environment
but with different genotypes can be affected differently, resulting in different dis-
ease phenotypes. In the context of medical genetics and epidemiology, the study
of gene-environment interactions is of great importance. Indeed, if we estimate
only the separate contributions of genes and environment to a disease, and ignore
their interactions, we will incorrectly estimate the fraction of phenotypic variance
attributable to genes, environment, and their joint effect. Restricting analysis of
environmental factors in epidemiological studies to individuals who are genetically
susceptible to the exposure should increase the magnitude of relative risks, increas-
ing the confidence that the observed associations are not due to chance [Hunter,
2005].

A possible lead to investigate gene-environment interactions is take into account
the contribution of microbial communities on the expression of a phenotype. As
previously stated, there is growing evidences of the role of microbiome in basic
biological processes whether in progression of major human diseases or in plant
growth. These facts motivated the development of a new statistical method to
tackle the detection of such interactions in a GWAS context. This topic offers
many statistical challenges, among which the way to deal with the multiple testing
burden. That is why we choose to use the idea to compress the data, as with the
LEOS method, and to combine several statistical learning methods to develop an
algorithm dedicated to the search for statistical interactions, with a focus on genomic
and metagenomic data.

The SICOMORE method, described in chapter 5, advantageously uses the strengths
of different existing methods to combine them in a powerful single algorithm. First
of all, we constructed the hierarchy of the genetic data with a well-proven spatially-
constrained hierarchical clustering adapted to SNP data developed by Dehman et al.
[2015]. Secondly, taking the average values of strongly correlated predictors, such as
SNP within the same LD-block, and use them into a predictive model has already
proved by Park et al. [2007] to be a powerful approach. Finally, we took benefit
of the weighting scheme proposed by Grimonprez [2016] for the selection of the
supervariables in the lasso procedure where we used a penalty factor defined by the
length of the gap in the hierarchical tree, as explained in Section 5.3.2.

We evaluated and compared the performance SICOMORE with others methods
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in terms of power and precision. The results have put forward that, in terms of
precision, all methods exhibit weak performances mainly due to the fact that the
algorithms select groups which contain too many variables. As for the statistical
power, SICOMORE always exhibited in the numerical simulations the strongest
recall compared to the other methods. The application of our method to the Med-
icago truncatula dataset highlighted some significant interactions between genomic
and metagenomic features in relation with three different phenotypes. However,
although promising, these results need to be confirmed by a relevant biological in-
terpretation that will be carried out by a discussion with our collaborators from
INRA who have gracefully provided us these data. This should allow to append a
biological interpretation to these results in the paper to come (currently in a preprint
state).

Despite these interesting results, SICOMORE is nonetheless subject to some limi-
tations that need to be addressed in future works. First of all, although the lasso
procedure to select the supervariables in both complementary datasets is relevant
for a dimension-reduction purpose, it may induce some biases in the multiple test-
ing procedure we use afterwards because we perform a variable selection step before
adjusting the p-values. One way around this problem could be to use post-hoc
inference for multiple comparisons [Goeman et al., 2011].

Secondly, as observed in the analysis of the Medicago truncatula dataset, the sta-
bility of the variable selection step is problematic. The use of a variable selection
model other than the lasso may circumvent this issue, with for instance the Bo-
lasso model [Bach, 2008] where the author proposed to intersect the supports of
replicated bootstrapped Lasso estimates for consistent model selection. In the same
fashion, Meinshausen and Bühlmann [2010] introduced the stability selection based
on subsampling in combination with high-dimensional selection algorithms.

Perspectives

The works presented in this thesis are the result of a reflection on ways to improve
GWAS studies through the creation of new data-driven methodologies. Still, the
possible contributions to the field of GWAS brought by the development of new
statistical methods are not limited to those mentioned in this manuscript and can
fall into a number of categories depending on their objectives. To conclude, we will
therefore suggest some avenues of research not mentioned so far but worthwhile to
be explored in future works.

At first, we can mention methods designed to better modelled population structure
and relatedness between individuals in a sample during association analyses such as
the works on linear mixed models in Listgarten et al. [2012], Segura et al. [2012],
Kang et al. [2010] or the methods for estimating and partitioning genetic (co)variance
[Finucane et al., 2015, Yang et al., 2010].

In another fashion, methods combining classical statistical approaches with Machine
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Learning are of interest for exploratory purposes as in Mieth et al. [2016] where mul-
tiple hypothesis tests are combined with support vector machine (SVM) to increase
statistical power. Similarly, for purely predictive purposes, several machine learning
methods such as random forest [Geurst et al., 2014], classification-regression trees
(CRT) [Maciukiewicz et al., 2018] or even Deep Learning (Neural Network) [Fergus
et al., 2018] are also worthwhile considering in GWAS.

At last, the discovery of causal pathways between genomes and molecular traits
such as gene expression, DNA methylation, or metabolites is of great importance
to unravel cause and consequence in genetic epidemiology. The combination of se-
quence variation with molecular phenotypes, disease data and environmental covari-
ates with novel analytical methods such as Mendelian randomization [Davey Smith
and Ebrahim, 2003, Zhu et al., 2018] or causal Bayesian networks as in [Rau et al.,
2013] have great potential in this respect.
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Annexes

A Derivation of the MSE bias-variance decompo-

sition

For the sake of brevity, we will abbreviate f = f(x) and f̂ = f̂(x) estimated on a
training set T .

ET [(Y − f̂)2] = ET [Y2 + 2Yf̂ + f̂ 2] (5.7)

= ET (Y2) + ET [f̂ 2]− 2ET [Yf̂ ].

Remembering the following properties of the variance and expectation:

V ar(X) = E(X2)− E2(X),

E(XY) = E(X)E(Y) + Cov(X,Y),

V ar(X + Y) = V ar(X) + V ar(Y) + 2Cov(X,Y),

V ar(X− Y) = V ar(X) + V ar(Y)− 2Cov(X,Y),

Cov(X,Y) = 0 if X and Y are independent,

and using them in (5.7) we get:

ET [(Y − f̂)2] = V ar(Y) + E2
T (Y) + V ar(f̂) + E2

T (f̂)− 2ET [(f + ε)f̂ ]. (5.8)

Developing the expression:

2ET [(f + ε)f̂ ] = 2ET (ff̂) + 2ET (f̂ ε)

= 2ET (ff̂) + 2[ET (f̂)ET (ε)︸ ︷︷ ︸
=0

+ cov(f̂ , ε)︸ ︷︷ ︸
=0

]

= 2[ET (f)ET (f̂) + Cov(f, f̂)],

and remplacing V ar(Y) = V ar(f) + V ar(ε) = V ar(f) + σ2 in (5.8), we get:
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ET [(Y − f̂)2] = V ar(Y) + E2
T (Y) + V ar(f̂) + E2

T (f̂)− 2[ET (f)ET (f̂) + Cov(f, f̂)]

(5.9)

= V ar(f) + V ar(f̂)− 2Cov(f, f̂)︸ ︷︷ ︸
V ar(f−f̂)

+σ2 + E2
T (Y) + E2

T (f̂)− 2E(f)ET (f̂)

= V ar(f − f̂) + σ2 + E2
T (Y) + E2(f̂)− 2E(f)ET (f̂)

Knowing that E2
T (Y) = E2

T (f + ε) = E2(f) and replacing in 5.9, we finally obtain:

ET [(Y − f̂)2] = V ar(f − f̂) + σ2 + E2(f) + E2
T (f̂)− 2E(f)ET (f̂) (5.10)

= V ar(f − f̂)︸ ︷︷ ︸
V ariance

+ [E(f)− ET (f̂)]2︸ ︷︷ ︸
Bias

+ σ2︸︷︷︸
noise

B Computational aspect of splines calculation

B.1 Linear smoother [Buja et al., 1989]

One can also show that the smoothing spline is a linear smoother, and hence we
can write down a smoother matrix. The following is taken from Green and Yandell
[1985].

Let hi = xi+1− xi, i = 1, 2, . . . , n− 1, ∆ be a tridiagonal (n− 2)×n matrix such as

∆ii =
1

hi
, ∆i,i+1 = −(

1

hi
+

1

hi+1

), ∆i,i+2 =
1

hi+1

,

and let C be a symnetric tridiagonal matrix of order n− 2 with :

Ci−1,i = Ci,i−1 =
hi
6
, Cii =

hi + hi+1

3
,

Then is can be showned that solving

n∑
i=1

||yi − s(xi)||2 + λ

∫ b

a

s′′(t)
2
dt,

is equivalent to minimizing

||y − s(x)||2 + λs(x)Ks(x) where K = ∆TC−1∆

with solution ŷ = ŝ(x) = Sy, where S = (I + λK)−1.
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B.2 Smoothing parameter λ for smoothing splines

A suitable criterion to choose λ can be the mean-square error:

MSE =
1

n

n∑
i=1

(ŝi − si)2,

However s is unknown so theMSE cannot be used directly but it is possible to derive
an estimate of E(MSE) + σ2, which is the expected squared error in predicting a
new variable. We define the ordinary cross validation score as

CVo =
1

n

n∑
i=1

(ŝ[−i] − yi)2

Substituting yi = si + εi,

CVo =
1

n

n∑
i=1

(ŝ
[−i]
i − si − εi)2

=
1

n

n∑
i=1

(ŝ
[−i]
i − si)2 − (ŝ

[−i]
i − si)εi + ε2i .

Since E(εi) = 0 , and that εi and f̂ [−i] are independent, the second term in the
summation vanishes if expectations are taken:

E(CVo) =
1

n
E

(
n∑
i=1

(ŝ
[−i]
i − si)2

)
+ σ2.

ŝ[−i] ≈ ŝ with equality in the large sample limit, so E(CVo) ≈ E(MSE) + σ2 also
with equality in the large sample limit. Choosing λ in order to minimize CVo is
known as ordinary cross validation.

It can be shown that ordinary leave-one-out cross validation is defined as follow

LV OCVo =
1

n

n∑
i=1

(yi − ŝi)2/(1− Aii)2,

where ŝ is the estimate from fitting all the data and A is the corresponding influ-
ence matrix. In practice the weights, 1 − Aii, are often replaced the mean weight,
trace(I−A)/n in order to get the generalized cross validation score

GCV =
n
∑n

i=1(yi − ŝi)2

trace(I−A)2
.
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B.3 B-spline basis

Given that the solution of the optimization problem is a natural cubic spline with
n− 2 interior knots, we can represent it in terms of B -spline basis functions.

We can write s(x) =
∑n+2

1 γdBd(x), where γj are coefficients and the Bd are the
cubic B -spline basis functions. We define the n × (n + 2) matrix B and the (n +
2)× (n+ 2) matrix Ω by

Bid = Bd(xi)

and

Ωii′ =

∫
B ′′i (x)B ′′i′(x)dx

The optimization criterion

n∑
i=1

||yi − s(xi)||2 + λ

∫ b

a

s′′(t)
2
dt,

can be rewrite as:

(y −Bγ)T (y −Bγ) + λγTΩγ (5.11)

We set the derivative of (5.11) to 0 with respect to γ to get the solution:

∂[(y −Bγ)T (y −Bγ) + λγTΩγ]

∂γ
= 0

∂[yTy − 2BTyγ + BTγTBγ + λγTΩγ]

∂γ
= 0

−2BTy + 2BTB + 2λΩγ = 0

(BTB + λΩ)γ = BTy (5.12)

γ̂ = (BTB + λΩ)−1BTy

For computational purpose, it can be shown [Hastie and Tibshirani, 1990] that the
B -spline basis function of size n× (K + 4) can be expressed as a n× (K + 2) basis
matrix N for the natural cubic splines with the same interior and boundary knots
at the extreme of X.

The solution vector ŝ can be write as
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ŝ = Nβ̂ = N(NTN + λΩ)−1NTy = (I + λK)−1y

where K = N−TΩN−1 and β̂ the transformed version of γ̂ corresponding to the
change in basis. In terms of the candidate fitted vector f and K, the cubic smoothing
spline f̂ minimizes

(y − s)T (y − s) + λsTKs

over all vectors s.

To compute all of this efficiently, the natural spline basis functions should be chosen
so that N and (4) are band limited which thereby allow the fitted values to be
computed in O(n) calculations [Eubank, 1999]. Specific ways to obtain such band
limited structures are given in Reinsch [1967]. In our case, where the natural spline
basis is a cubic spline basis, we can use the piecewise polynomial representation for
the estimator describe in de Boor [1975] to show that

ŝ = y − λQ(λQTQ + ∆)−1QTy, (5.13)

where QT is an (n− 2)× n tridiagonal matrix with ith row

(0, . . . , 0︸ ︷︷ ︸
i−1

,
1

ti+1 − ti
,− 1

ti+2 − ti+1

− 1

ti+1 − ti
,

1

ti+2 − ti+1

, 0, . . . , 0︸ ︷︷ ︸
n−i−2

)

and ∆ is symmetric, (n− 2)× (n− 2), tridiagonal matrix having first and last rows
(t2 − t1, t3 − t2, 0, . . . , 0︸ ︷︷ ︸

n−4

) and (0, . . . , 0︸ ︷︷ ︸
n−4

, tn−1 − tn−2, tn − tn1), and with ith row

(0, . . . , 0︸ ︷︷ ︸
i−2

, ti+1 − ti, 2(ti+2 − ti), ti+2 − ti+1, 0, . . . , 0︸ ︷︷ ︸
n−i−3

)

for i = 2, . . . , n− 3.

The fitted values for the cubic smoothing splines can therefore be obtained in O(n)
operations by first solving the 5-banded system

(λQTQ + ∆)γ = QTy

and then using ŝ = y − λQγ.
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C Supplementary materials for SICOMORE
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Figure 5.11: Boxplots of Recall obtained on the numerical simulations with a
Bonferroni-Holm correction for I = {1, 3, 5, 10} blocs. The lines show the results
for different number of observations (top: N = 50, middle: N = 100 and bottom:
N = 200) and the columns the difficulty of the problem (left: ε = 0.5, middle: ε = 1
and right: ε = 2).
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(c) I = 5
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Figure 5.12: Boxplots of Precisions obtained on the numerical simulations with
a Bonferroni-Holm correction for I = {1, 3, 5, 10} blocs. The lines show the results
for different number of observations (top: N = 50, middle: N = 100 and bottom:
N = 200) and the columns the difficulty of the problem (left: ε = 0.5, middle: ε = 1
and right: ε = 2).
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Vignettes of SIComORe package



Illustration of getHierLevel function for finding and
selecting relevant groups of variable

Contents
1 Data generation 1

1.1 Input matrix of predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Phenotype/Response vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Adjusting a single hierarchy 3
2.1 Retreiving a hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Variable selection along the hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Comparison of computation time between the 3 options: 5

We consider here a single data with correlated predictors related to a phenotype.

Let us first load some packages for data generation.
library(SIComORe)
library(Matrix)
library(mvtnorm)

1 Data generation

1.1 Input matrix of predictors

Now, let us to draw some data: we consider 200 variables spreaded in 3 groups of 30 variables + 110 groups
with a single variable. Only groups 1 and 2 will be relevant for the phenotype
p <- 200 # the number of features
K <- 113 # number of groups
## 2 relevants groups with 30 variables
## 1 irrelevant group with 30 variables
## 110 irrelevant groups with a single variable
grp.size <- c(30, 30, 30, rep(1,110))

We draw 100 observation of a Gaussian vector the covariance of which has a block structure faithfull to the
original grouping of the variables.
## covariance defined blockwise
n <- 100
rhos <- runif(K,.5,.95) # correlation within groups
Sigma <- bdiag(lapply(1:K, function(k)

return(matrix(rhos[k],grp.size[k],grp.size[k]))))
diag(Sigma) <- 1
grp <- rep(1:length(grp.size), grp.size)
X <- Sigma %>%

as.matrix() %>%
rmvnorm(n, sigma=.) %>%
scale()

1



The matrix of empirical correlation is rather convincing:
X %>%

cor() %>%
Matrix %>%
image(main="cor(X)", useRaster = TRUE)

cor(X)

Dimensions: 200 x 200
Column
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1.2 Phenotype/Response vector

The phenotype will be a linear combinason of the compressed version of the predictors. Here, we use the
mean to compressed the variable which are in the same group:
X.comp <- t(rowsum(t(X), grp)/tabulate(grp))

The vector of regression parameters is sparse, chosen such that the first two group are predictive:
dim.theta <- ncol(X.comp)
theta <- rep(0, dim.theta)
theta[c(1,2)] <- runif(2, min=5, max=10) ## simple effects on the first two groups

Finally, the response vector is drawn from a linear model. The level of noise is such that the R2 is approximately
0.75.
sigma <- 5
epsilon <- rnorm(n) * sigma
epsilon.test <- rnorm(n) * sigma
y <- X.comp %*% theta + epsilon
r2 <- 1-sum(epsilon^2) / sum((y-mean(y))^2)

2



r2

## [1] 0.6171634

2 Adjusting a single hierarchy

Now, we try to recover the correct level of compression only from the original input matrix and the response
vector. We test all the level of a hierarchy obtained by a WARD hierarchical clustering. The grouping is
rather obvious in this case:

2.1 Retreiving a hierarchy

hierarchy <- X %>%
scale() %>%
t() %>%
dist() %>%
hclust(method="ward.D2")

plot(hierarchy)
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2.2 Variable selection along the hierarchy

We try the 3 available options in our package for simultaneously finding and selecting the groups of variables
related to the phenotype:

3



out.hcar <- getHierLevel(X, y, hierarchy, choice="lambda.1se", selection="hcar")
out.mlgl <- getHierLevel(X, y, hierarchy, choice="lambda.1se", selection="mlgl")
out.sicomore <- getHierLevel(X, y, hierarchy, choice="lambda.1se", selection="sicomore")

The three models show comparable estimated prediction error on the best level of the hierarchy:
all.cv <- rbind(cbind(out.hcar$cv.error , method="hcar"),

cbind(out.sicomore$cv.error, method="sicomore"),
cbind(out.mlgl$cv.error , method="mlgl"))

all.cv %>%
ggplot(aes(x=lambda, y=mean, colour=method, group=method)) +
geom_smooth(aes(ymin=mean-sd, ymax=mean+sd), stat="identity") +
labs(y = "Mean cross-validation error", x = "Lambda") +

coord_trans(x="log")
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In terms of variables selections,
out.mlgl$getGrp()

## [[1]]
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
## [24] 24 25 26 27 28 29 30
##
## [[2]]
## [1] 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
## [24] 54 55 56 57 58 59 60
out.hcar$getGrp()
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## [[1]]
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
## [24] 24 25 26 27 28 29 30
##
## [[2]]
## [1] 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
## [24] 54 55 56 57 58 59 60
out.sicomore$getGrp()

## [[1]]
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
## [24] 24 25 26 27 28 29 30
##
## [[2]]
## [1] 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
## [24] 54 55 56 57 58 59 60

3 Comparison of computation time between the 3 options:

SICOMORE <- expression(getHierLevel(X, y, hierarchy, choice="lambda.1se",
selection="sicomore"))

MLGL <- expression(getHierLevel(X, y, hierarchy, choice="lambda.1se",
selection="mlgl"))

HCAR <- expression(getHierLevel(X, y, hierarchy, choice="lambda.1se",
selection="hcar"))

bench <- microbenchmark(eval(SICOMORE) , eval(MLGL), eval(HCAR), times = 50)

autoplot(bench)

eval(SICOMORE)

eval(MLGL)

eval(HCAR)

1000 10000

Time [milliseconds]

5



Illustration of sicomore function to detect interactions
between 2 datasets

Contents
1 Data sets generations 1

1.1 Input Matrices generations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Phenotype/Response vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Adjusting multiple hierarchies 4
2.1 Comparison of available options for variable selection . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Comparison of computation time between the 3 options: . . . . . . . . . . . . . . . . . . . . . 7

1 Data sets generations

Let us first load the package plus some basic functions for data generation that can be found in the “inst”
directory.
set.seed(1234)
library(SIComORe)
library(Matrix)
library(mvtnorm)

1.1 Input Matrices generations

This goes pretty much just like in the example on an single data set (see the corresponding vignette), but
two data set are required. The sample size is common to both data sets:
n <- 100

Now, the first data set:
## FIRST DATA
p1 <- 50 # number of variables
K1 <- 5 # number of groups
rhos <- K1 %>%

runif(.5,.95) # correlation within groups
grp1.size <- rmultinom(1,p1,rep(p1/K1,K1)) ## group sizes
Sigma1 <- lapply(1:K1, function(k) return(matrix(rhos[k],grp1.size[k],grp1.size[k]))) %>%

bdiag()
diag(Sigma1) <- 1
grp1 <- rep(seq(grp1.size),grp1.size)
X1 <- Sigma1 %>%

as.matrix() %>%
rmvnorm(n, sigma=.) %>%
scale()

And the second data set:
p2 <- 40
K2 <- 10

1



rhos <- K2 %>%
runif(.5,.95) # correlation within groups

grp2.size <- rmultinom(1,p2,rep(p2/K2,K2)) ## group sizes
Sigma2 <- lapply(1:K2, function(k) return(matrix(rhos[k],grp2.size[k],grp2.size[k]))) %>%

bdiag()
diag(Sigma2) <- 1
grp2 <- rep(seq(grp2.size), grp2.size)
X2 <- Sigma2 %>%

as.matrix() %>%
rmvnorm(n, sigma=.) %>%
scale()

We show the matrix of empirical correlation exhibiting the block structure of both matrices:
image(Matrix(cor(X1)), main = "cor(X1)", useRaster = TRUE)

cor(X1)
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image(Matrix(cor(X2)), main = "cor(X2)", useRaster = TRUE)
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1.2 Phenotype/Response vector

Generation of the response vector and vector of coefficient is a little more tricky this time

First, we need first to compress each input matrices,
simple.effects.1 <- t(rowsum(t(X1), grp1)/tabulate(grp1))
simple.effects.2 <- t(rowsum(t(X2), grp2)/tabulate(grp2))

Then, we compute the corresponding matrix of data interaction
interactions <- lapply(1:ncol(simple.effects.2), function(i)

sweep(simple.effects.1, 1, simple.effects.2[, i], "*")) %>%
do.call(cbind,.)

The parameters in the linear model originating the response variable are chosen such that there is s = 2
non-null interactions. The simple effect associated with these interactions are non-null too.
s <- 2 ## number of non-null interactions
# vector of true parameter at the correct level of the hierarchies
dim1 <- ncol(simple.effects.1)
dim2 <- ncol(simple.effects.2)
dim.inter <- dim1 * dim2

ind.inter <- sample(1:dim.inter, s)
theta.inter <- rep(0, dim.inter)
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theta.inter[ind.inter] <- runif(s, min=2, max=4) ## interactions : sparse
theta.block.inter <- Matrix(theta.inter, dim1, dim2)

ind.simple.effects <- which(theta.block.inter!=0, arr.ind=TRUE)
theta1 <- rep(0, dim1)
theta1[ind.simple.effects[,1]] <- runif(nrow(ind.simple.effects), min=1,max=2)

theta2 <- rep(0, dim2)
theta2[ind.simple.effects[,2]] <- runif(nrow(ind.simple.effects), min=1,max=2)

Finally we can draw the response vector
sigma <- 3
epsilon <- rnorm(n) * sigma
mu <- 3
y <- mu + interactions %*% theta.inter + simple.effects.1 %*% theta1 +

simple.effects.2 %*% theta2 + epsilon
r2 <- 1-sum(epsilon^2) / sum((y-mean(y))^2)
r2

## [1] 0.6161374

2 Adjusting multiple hierarchies

Let us run the main sicomore function using Ward’s algorithm for the hierarchical clustering:

We can plot the most striking interactions with the method plot() and compare with the “true” model:
theta.full <- theta.block.inter[rep(1:nrow(theta.block.inter), table(grp1)),

rep(1:ncol(theta.block.inter), table(grp2))] %>%
as.matrix()

theta.true <- reshape2::melt(theta.full) %>%
ggplot(aes(Var1, Var2, fill=value)) +
geom_tile(show.legend=FALSE, colour = "grey80") +
scale_fill_gradient2(high = "grey40") +
theme_minimal() +
ggtitle("Matrix of true interactions") +
labs(x = TeX('Variables in $\\mathbf{X}_1$'), y = TeX('Variables in $\\mathbf{X}_2$$')) +
coord_fixed()

theta.estimated <- res$plot(main="Estimated matrix of interactions", threshold=.05)

4



cowplot::plot_grid(theta.estimated,theta.true, ncol=2)
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2.1 Comparison of available options for variable selection

To compare the 3 possible options “mlgl”,“hcar and”sicomore" in selection, we consider the performance in
term of variable selection. So let us first define an simple function to compute basic statistics:
getSelPerf <- function(theta, theta.star) {

ones.true <- which(theta.star != 0)
zero.true <- which(theta.star == 0)

ones.hat <- which(theta != 0)
zero.hat <- which(theta == 0)

tp <- sum(ones.hat %in% ones.true)
tn <- sum(zero.hat %in% zero.true)

fp <- sum(ones.hat %in% zero.true)
fn <- sum(zero.hat %in% ones.true)

if ((tp+fn)==0) recall <- 0 else recall <- tp/(tp+fn)
if ((fp+tn)==0) fallout <- 0 else fallout <- fp/(fp+tn)
if ((tp+fp)==0) precision <- 0 else precision <- tp/(tp+fp)

return(c(recall=recall, fallout=fallout, precision=precision))
}

And let us compare the 3 options in selection:
out.sicomore <- sicomore(y, list(X1, X2), selection="sicomore", verbose = FALSE)
out.mlgl <- sicomore(y, list(X1, X2), selection="mlgl", verbose = FALSE)
out.hcar <- sicomore(y, list(X1, X2), selection="hcar", verbose = FALSE)

We compute the matrix of interactions effects with the method getSignificance(effect = "theta") for
each option:
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theta.mlgl <- out.mlgl$getSignificance(effect = "theta")
theta.hcar <- out.hcar$getSignificance(effect = "theta")
theta.sicomore <- out.sicomore$getSignificance(effect = "theta")

Finally we evaluate the ability to recover the true interaction term for several significance thresholds:
seq.thres <- seq(0,1,len=100)
res.sicomore <- sapply(seq.thres, function(threshold)

getSelPerf(theta.sicomore>=threshold, theta.full)) %>%
t() %>%
data.frame()

res.mlgl <- sapply(seq.thres, function(threshold)
getSelPerf(theta.mlgl>=threshold, theta.full)) %>%
t() %>%
data.frame()

res.hcar <- sapply(seq.thres, function(threshold)
getSelPerf(theta.hcar>=threshold, theta.full)) %>%
t() %>%
data.frame()

res.df <- data.frame(method = rep(c("sicomore","mlgl","hcar"), each = 100),
rbind(res.sicomore, res.mlgl, res.hcar))

res.df %>%
ggplot(aes(x = fallout, y = recall, color = method)) +
geom_line()
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2.2 Comparison of computation time between the 3 options:

SICOMORE <- expression(sicomore(y, list(X1, X2), selection="sicomore", verbose=FALSE))
MLGL <- expression(sicomore(y, list(X1, X2), selection="mlgl", verbose=FALSE))
HCAR <- expression(sicomore(y, list(X1, X2), selection="hcar", verbose=FALSE))
bench <- microbenchmark(eval(SICOMORE) , eval(MLGL), eval(HCAR), times = 50)

autoplot(bench)

eval(SICOMORE)

eval(MLGL)

eval(HCAR)

1000

Time [milliseconds]
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Maris Laan and Svante Pääbo. Demographic history and linkage disequilibrium in
human populations. Nature genetics, 17(4):435, 1997.

Eric S Lander. The new genomics: global views of biology. Science, 274(5287):
536–539, 1996.

Charity W Law, Yunshun Chen, Wei Shi, and Gordon K Smyth. voom: Precision
weights unlock linear model analysis tools for rna-seq read counts. Genome biology,
15(2):R29, 2014.

S. Lee, M. C. Wu, and X. Lin. Optimal tests for rare variant effects in sequencing
association studies. Biostatistics, 13(4):762–775, 2012.

S. Lee, G. R. Abecasis, M. Boehnke, and X. Lin. Rare-variant association analysis:
study designs and statistical tests. American Journal of Human Genetics, 95(1):
5–23, 2014.

Seunghak Lee, Nico Görnitz, Eric P. Xing, David Heckerman, and Christoph Lip-
pert. Ensembles of Lasso screening rules. IEEE Transactions on Pattern Analysis
and Machine Intelligence, PP(99):1–1, 2017.

R. C. Lewontin. The interaction of selection and linkage. i. general considerations;
heterotic models. Genetics, 49(1):49–67, 1964.

Bingshan Li and Suzanne M Leal. Methods for detecting associations with rare
variants for common diseases: application to analysis of sequence data. The
American Journal of Human Genetics, 83(3):311–321, 2008.

https://academic.oup.com/bioinformatics/article/32/8/1178/1744180
https://academic.oup.com/bioinformatics/article/32/8/1178/1744180


164 References

Michael Lim and Trevor Hastie. Learning interactions via hierarchical group-Lasso
regularization. Journal of Computational and Graphical Statistics, 24(3):627–654,
2015.

Xihong Lin. Variance component testing in generalised linear models with random
effects. Biometrika, 84(2):309–326, 1997.

Xinyi Lin, Seunggeun Lee, David C. Christiani, and Xihong Lin. Test for interac-
tions between a genetic marker set and environment in generalized linear models.
Biostatistics, 14(4):667–681, 2013.

J. Listgarten, C. Lippert, E. Y. Kang, J. Xiang, C. M. Kadie, and D. Heckerman.
A powerful and efficient set test for genetic markers that handles confounders.
Bioinformatics, 29(12):1526–1533, 2013.

Jennifer Listgarten, Christoph Lippert, Carl M. Kadie, Robert I. Davidson, Eleazar
Eskin, and David Heckerman. Improved linear mixed models for genome-wide
association studies. Nature Methods, 9(6):525–526, June 2012. ISSN 1548-7091.
doi: 10.1038/nmeth.2037. URL http://www.nature.com/nmeth/journal/v9/

n6/full/nmeth.2037.html.

Nicholas T Longford. A fast scoring algorithm for maximum likelihood estimation in
unbalanced mixed models with nested random effects. Biometrika, 74(4):817–827,
1987.

Michael I Love, Wolfgang Huber, and Simon Anders. Moderated estimation of fold
change and dispersion for rna-seq data with deseq2. Genome biology, 15(12):550,
2014.

Malgorzata Maciukiewicz, Victoria S Marshe, Anne-Christin Hauschild, Jane A Fos-
ter, Susan Rotzinger, James L Kennedy, Sidney H Kennedy, Daniel J Müller, and
Joseph Geraci. Gwas-based machine learning approach to predict duloxetine re-
sponse in major depressive disorder. Journal of psychiatric research, 99:62–68,
2018.

Bo Eskerod Madsen and Sharon R Browning. A groupwise association test for rare
mutations using a weighted sum statistic. PLoS genetics, 5(2):e1000384, 2009.

B. Maher. Personal genomes: The case of the missing heritability. Nature News,
456(7218):18–21, 2008.

T. A. Manolio and P. M. Visscher. Finding the missing heritability of complex
diseases. Nature, 461(7265):747–753, 2009.

Teri A Manolio, Lisa D Brooks, and Francis S Collins. A hapmap harvest of insights
into the genetics of common disease. The Journal of clinical investigation, 118
(5):1590–1605, 2008.

http://www.nature.com/nmeth/journal/v9/n6/full/nmeth.2037.html
http://www.nature.com/nmeth/journal/v9/n6/full/nmeth.2037.html


Bibliography 165

Tristan Mary-Huard and Stephane Robin. Tailored aggregation for classification.
IEEE transactions on pattern analysis and machine intelligence, 31(11):2098–
2105, 2009.

Allan M Maxam and Walter Gilbert. A new method for sequencing dna. Proceedings
of the National Academy of Sciences, 74(2):560–564, 1977.

Peter Mc Cullagh and J. A. Nelder. Generalized Linear Models,
Second Edition, August 1989. URL https://www.crcpress.com/

Generalized-Linear-Models-Second-Edition/McCullagh-Nelder/p/book/

9780412317606.
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Titre : Apprentissage statistique pour les études d’association et d’intéraction entre données omiques fondée
sur une approche de compression structurée.

Mots clés : Apprentissage statistique, étude d’association pangénomique, classification hiérarchique,
réduction de dimension, interactions.

Résumé : Depuis la dernière décennie le
développement rapide des technologies de
génotypage a profondément modifié la façon dont
les gènes impliqués dans les troubles mendéliens et
les maladies complexes sont cartographiés, passant
d’approches gènes candidats aux études d’associa-
tions pan-génomique, ou Genome-Wide Association
Studies (GWASs). D’un point de vue statistique, l’ap-
proche standard des GWAS est basée sur le test d’hy-
pothèse: dans un échantillon d’individus non appa-
rentés, des individus malades sont testés contre des
individus sains à un ou plusieurs marqueurs. Cepen-
dant, à cause de la grande dimension des données,
ces procédures de tests classiques sont souvent su-
jettes à des faux positifs, à savoir des marqueurs
faussement identifiés comme étant significatifs. Une
solution consiste à appliquer une correction sur les
p-valeurs obtenues afin de diminuer le seuil de si-
gnificativité, augmentant en contrepartie le risque de
manquer des associations n’ayant qu’un effet faible
sur le phénotype.
De plus, bien que cette approche ait réussi à identi-
fier des marqueurs génétiques associés à des mala-

dies multi-factorielles complexes (maladie de Crohn,
diabète I et II, maladie coronarienne,. . . ), seule une
faible proportion des variations phénotypiques atten-
dues des études familiales classiques a été expliquée.
Cette héritabilité manquante peut avoir de multiples
causes parmi les suivantes: fortes corrélations entre
les variables génétiques, structure de la population,
épistasie (interactions entre gènes), maladie associée
aux variants rares,. . .
Les principaux objectifs de cette thèse sont de
développer de nouvelles méthodes statistiques pou-
vant répondre à certaines des limitations men-
tionnées ci-dessus. Plus précisément, deux nouvelles
approches ont été développées: la première ex-
ploite la structure de corrélation entre les marqueurs
génétiques afin d’améliorer la puissance de détection
dans le cadre des tests d’hypoths̀es tandis que la
seconde est adaptée à la détection d’interactions
statistiques entre marqueurs métagénomiques et
génétiques permettant une meilleure compréhension
de la relation complexe entre environnement et
génome sur l’expression d’un caractère.

Title : Statistical learning for omics association and interaction studies based on blockwise feature compres-
sion.

Keywords : Statistical learning, GWAS, hierarchical clustering, dimension reduction, interactions.

Abstract : Since the last decade, the rapid advances
in genotyping technologies have changed the way
genes involved in mendelian disorders and complex
diseases are mapped, moving from candidate genes
approaches to Genome-Wide Associations Studies
(GWAS). From a statistical point of view, the standard
approach in GWAS is based on hypothesis testing,
with affected individuals being tested against healthy
individuals at one or more markers. However, clas-
sical testing schemes are subject to false positives,
that is markers that are falsely identified as significant.
One way around this problem is to apply a correction
on the p-values obtained from the tests, increasing in
return the risk of missing true associations that have
only a small effect on the phenotype, which is usually
the case in GWAS.
Although GWAS have been successful in the iden-
tification of genetic variants associated with com-
plex multifactorial diseases (Crohn’s disease, dia-
betes I and II, coronary artery disease,. . . ) only a

small proportion of the phenotypic variations expec-
ted from classical family studies have been explained.
This missing heritability may have multiple causes
amongst the following: strong correlations between
genetic variants, population structure, epistasis (gene
by gene interactions), disease associated with rare
variants, . . .
The main objectives of this thesis are thus to develop
new methodologies that can face part of the limita-
tions mentioned above. More specifically we develo-
ped two new approaches: the first one is a block-wise
approach for GWAS analysis which leverages the cor-
relation structure among the genomic variants to im-
prove statistical power in the context of univariate hy-
pothesis testing while in the second we focus on the
detection of interactions between groups of metage-
nomic and genetic markers to better understand the
complex relationship between environment and ge-
nome in the expression of a given phenotype.
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