
THÈSE DE DOCTORAT DE

L’UNIVERSITE DE RENNES 1
COMUE UNIVERSITE BRETAGNE LOIRE

Ecole Doctorale No 601
Mathèmatique et Sciences et Technologies
de l’Information et de la Communication
Spécialité : (voir liste des spécialités)

Par

Paul TEMPLE
Investigate the Matrix : Leveraging Variability to Specialize Software and

Test Suites

Thèse présentée et soutenue à RENNES , le 7 décembre 2018
Unité de recherche : Equipe DiverSE, IRISA
Thèse No :

Rapporteurs avant soutenance :

Philippe COLLET, Professeur, Université Nice Sophia Antipolis / Université Côtes d’Azur, Nice, FRANCE

Myra B. COHEN, Professeur, Iowa State University, Ames, USA

Composition du jury :
Attention, en cas d’absence d’un des membres du Jury le jour de la soutenance, la composition ne comprend que les
membres présents

Président : Philippe COLLET, Professeur, Université Nice Sophia Antipolis / Université Côtes d’Azur, Nice,
FRANCE

Examinateurs : Philippe COLLET, Professeur, Université Nice Sophia Antipolis / Université Côtes d’Azur, Nice,
FRANCE

Myra B. COHEN, Professeur, Iowa State University, Ames, USA

Patrick PÉREZ, Directeur Scientifique, Valeo.ai, Paris, FRANCE

Yves LE TRAON, Professeur, Université de Luxembourg, Luxembourg, LUXEMBOURG

Mathieu ACHER, Maître de conférences, Université Rennes 1, Rennes, FRANCE

Dir. de thèse : Jean-Marc JÉZÉQUEL, Professeur, Université Rennes 1, Rennes, FRANCE

Résumé en français

Contexte

Aujourd’hui, les logiciels sont présents partout autour de nous. On les trouve dans

nos téléphones, ordinateurs et toutes sortes d’objets high-tech ; plus récemment, ils

se sont introduits directement dans les télévisions, les véhicules, etc. Dans le même

temps, ils permettent également de traiter de nouvelles tâches. Leur omniprésence a

pour conséquence une hausse des attentes des consommateurs en terme d’efficacité,

de performances, etc. En marge de cela, puisque personne n’a les mêmes attentes ni

les mêmes demandes, le besoin de personnaliser les logiciels s’est développé.

Malgré tout cela, de nouveaux logiciels continiuent d’être développés chaque jour

pour traiter des problèmes qui sont parfois similaires. Par exemple, suivre le ballon

durant un match de football ou une voiture de sport lors d’une course ou bien même

des personnes piétonnes dans la rue sont autant de tâches exprimées de manière

différente. Mais, d’un certain point de vue, en utilisant les bonnes abstractions, nous

pouvons voir toutes ces tâches sous le même œil : repérer et suivre des entités. Les

tâches précédemment citées sont seulement des instances spécifiques de la plus abs-

traite. Cela veut dire que, d’une certaine manière, ces tâches, individuellement, ne

prennent qu’une partie de l’ensemble des exigences possibles (par exemple, en ne

considérant qu’un champ visuel fixe, avec une caméra qui ne peut pas bouger). Dans

le cas plus général des logiciels, cela se traduit par une optimisation particulière : une

consommation d’énergie, de mémoire ou de processeur plus basse, un temps d’éxé-

cution minimisé ou encore essayer de produire les résultats les plus précis possibles

en sont quelques exemples.

L’exemple potentiellement le plus représentatif de logiciels personnalisables (ou

configurables) est le noyau Linux qui compte à peu près 13000 options de configu-

ration. Si l’on suppose que chacune de ces options ne peuvent être qu’activée ou

désactivée, le nombre de combinaisons possibles est de 213000 soit à approximative-

ment 103250 possibilités. Dû à ce nombre titanesque, essayer d’exécuter chacune de

ces combinaisons dans le but d’évaluer laquelle est la plus appropriée à des besoins

définis par l’utilisateur est impossible. Il est donc difficile pour un utilisateur de réussir

à trouver au moins une configuration (i.e., une combinaison d’options) qui satisfasse

tous ses besoins. De plus, la relation existante entre les options de configuration et

les besoins est souvent mal définie ou mal documentée ce qui ajoute de la difficulté à

3

cette phase de configuration pour l’utilisateur.

Même si l’on met ce problème de côté et que l’on suppose que toutes les confi-

gurations peuvent être générées, le temps et les ressources allouées à l’activité de

test sont souvent limités, ne permettant d’en exécuter qu’un sous-ensemble et d’en

analyser les résultats. Ces résultats sont souvent utilisés pour trouver des bugs dans

les programmes mais les besoins exprimés par l’utilisateur peuvent aussi contenir des

objectifs de performance (par exemple, le programme doit s’exécuter en un temps in-

férieur à un certain seuil, la consommation de mémoire ne doit pas excéder un certain

seuil, etc.). Pour vérifier qu’un programme respecte les besoins de l’utilisateur (que

ce soit en terme de performances ou non), plusieurs tests sont souvent nécessaires

pour pouvoir observer le comportement du système dans différents contextes d’utilisa-

tion. En plus de cela, différents apsects peuvent venir influencer les performances d’un

programme. L’utilisation d’oracles (définissant les résultats attendus d’une exécution)

devient alors difficile rendant, de fait, l’évaluation de performances délicate. Prenons

par exemple le cas d’un encodeur vidéo, ses perfromances (e.g., le temps d’exécution

ou la qualité de la vidéo en sortie) peuvent dépendre de la vidéo d’entrée elle-même :

la vidéo peut être de mauvaise qualité avec du bruit, ce qui la rend difficile à encoder

correctement (diminuant la qualité en sortie) ou bien un algorithme pour enlever le bruit

peut être ajouté dans le processus de traitement mais cela augmentera le temps d’exé-

cution comparé à d’autres exécutions qui ne nécessitent pas l’ajout de cet algorithme.

Au final, il faut prendre en compte deux dimensions distinctes : tout d’abord, la

phase de configuration du système qui consiste à sélectionner des options et à leur

donner des valeurs ; et également sélectionner des cas de tests, pertinents pour une

tâche, qui permettent d’observer les comportements des programmes, générés par la

dimension précédente, dans des conditions différentes rendant possible de définir si

un système respectent les besoins utilisateurs.

Dans cette thèse, nous représentons ces deux dimensions comme une matrice.

Une dimension représente les systèmes que l’on génère grâce à la phase de configu-

ration tandis que l’autre dimension représente l’ensemble des cas de tests qui seront

exécutés sur chacun des systèmes. De ce fait, chaque cellule représente l’exécution

d’un programme particulier sur un cas de test donné et l’on y reporte les performances

observées. Dans le cas général, plusieurs performances peuvent être observées lors

d’une seule exécution afin de décider si le système respecte bien tous les besoins de

l’utilisateur, la celllule peut alors être représentée sous la forme d’un vecteur.

4

Programmes

Cas de tests

Programme 1 Programme 2 ... Programme N
Test 1 12 1 ... 5
Test 2 1 348 ... 10

...
Test M 50 101 ... 260

FIGURE 1 – Un exemple de matrice de performance exploitée dans cette thèse.
Chaque cellule est le résultat d’une exécution d’un programme (colonne) sur un cas de
test (ligne). Dans cet exemple le temps d’exécution a été mesuré et reporté dans les
cellules de la matrice exprimé en secondes.

La figure 1 donne un exemple de représentation de cette matrice. Dans cet exemple,

les colonnes représentent différents programmes (réalisant tous la même tâche mais

avec des paramètres différents) à comparer pour que l’utilisateur final puisse choisir

celui qui lui convient le mieux alors que les lignes représentent les différents cas de

test à exécuter qui sont représentatifs de l’environnement dans lequel le programme

sera plongé pour réaliser sa tâche. Pour chaque exécution, le temps d’exécution est

mesuré (en secondes) et reporté dans la cellule adéquate de la matrice.

Nous nous intéressons à cette matrice car une simple analyse des valeurs reportés

dans les cellules montre déjà un certain intérêt :

— Le programme 1 a l’air plutôt stable sur l’ensemble des cas de tests car il produit

des temps d’exécution qui ont l’air relativement bas (moins d’une minute) par

rapport à d’autres exécution ;

— Le premier cas de test a l’air relativement simple à traiter puisque les valeurs

rapportées sur la première ligne sont très basses (quelques secondes unique-

ment) ;

— Le second cas de test semble difficile pour le second programme la valeur cor-

respondante étant élevée (plusieurs minutes).

On a donc une analyse qui prend en compte les deux dimensions (soit de manière

indépendante soit les deux à la fois). Cette première analyse est donc intéressante

que ce soit du point de vue des logiciels (les paramétrisations des logiciels peuvent

être mises en relation avec les performances ce qui peut aider du point de vue de la

sélection du programme adéquat) ou du testeur (puisque les variations de performance

des différents programmes peuvent être observées pour un cas de test donné ce qui

peut soulever par la suite des interrogations et des analyses plus poussées).

5

Contributions

Cette thèse prétend que cette matrice de performance est un concept fondamental

qu’il faut exploiter car elle apporte des informations essentielles que ce soit du point

de vue de la pertinence des cas de tests utilisés ou du point de vue de la performance

des programmes à comparer. Dans les mains d’ingénieurs du logiciel, cette matrice

devrait permettre de réaliser différentes tâches utiles (que ce soit pour améliorer des

logiciels existants mais aussi dans les phases de test avant production etc.).

Dans cette thèse, deux contributions principales sont mises en avant.

Tout d’abord, le problème de configuration et de sélection d’une configuration est

difficile dû au nombre gigantesque de possibilités que les logiciels modernes proposent

grâce aux options de configuration. Malheureusement, pour l’utilisateur final, c’est sou-

vent un sous-ensemble de cet immense espace de configuration qu’il est nécessaire

d’analyser afin de trouver une paramétrisation suffisante pour réaliser une tâche spé-

cifique sous certaines conditions. Une pratique commune est alors de tester une pa-

ramétrisation (aussi appeler configuration) d’un programme et de voir si elle convient

ou pas, si ce n’est pas le cas, il faut changer la valeur des paramètres et recommen-

cer jusqu’à réussir. L’utilisateur se retrouve donc un processus de sélection basé sur

l’essai-erreur. Dans le meilleur des cas, l’utilisateur va trouver en quelques essais une

configuration qui lui convient, dans le cas contraire, il faudra plus d’essais. Un autre

aspect a prendre en compte est que la paramétrisation peut prendre un certain temps

(par exemple, dans le cas où le système doit être recompilé), dans ce cas, même

quelques essais peuvent être chronophage et énergivore ce qui n’est pas désirable.

Notre but est donc de réussir à réduire cet espace de configuration en amont afin que

l’utilisateur est un nombre moindre de programmes à prendre en compte. Nous pro-

posons d’utiliser une technique d’apprentissage automatique afin de réaliser cette ré-

duction. A partir d’un sous-ensemble de programmes, d’exécutions sur des cas de test

ainsi qu’une fonction oracle qui réfère aux besoins de l’utilisateur. Le principe est alors

d’utiliser l’oracle sur les résultats des exécutions afin d’apposer un label définissant si

le programme (ou plus précisemment sa paramétrisation) doit être gardée dans l’en-

semble des programmes qui peuvent être utilisés par l’utilisateur final ou non. Une fois

toutes ces exécutions annotées, l’algorithme d’apprentissage automatique peut créer

une fonction séparatrice entre les paramétrisations à garder et les autres afin de ré-

duire automatiquement l’espace de configuration. Grâce à l’approche statistique et au

pouvoir de généralisation de l’algorithme d’apprentissage automatique, cette approche

6

permet d’écarter un certain nombre de configurations tout en gardant les programmes

avec un fort potentiel d’adéquation aux critères de l’utilisateur. Un problème subsis-

tant est alors de ne pas faire trop d’erreurs de classification ce qui pourrait réduire

les possibilités de configuration de l’utilisateur plus que nécessaire ou au contraire ne

pas être capable d’écarter assez de configurations ce qui reviendrait au processus

d’essais-erreurs initial. Cette première contribution vise donc à réduire la première di-

mension de notre matrice de performance. Nous validons cette approche sur différents

systèmes, notamment un générateur de séquence vidéos.

La seconde contribution majeure de cette thèse est une nouvelle méthode qui vise

à évaluer la capacité de suites de tests à révéler des différences significatives dans

les performances des différents programmes qui réalisent une même tâche. En effet,

le temps et les ressources alloués à l’activité de tests étant limités, il est nécessaire de

réduire au maximum le nombre d’exécutions à réaliser et donc il faut pouvoir proposer

un nombre de cas de tests suffisant mais minimal afin d’optimiser cette activité. Le pro-

blème est que le choix des cas de tests à utiliser reste un problème ardu. Par exemple,

les banques de données d’images utilisés dans les compétitions d’algorithmes de re-

connaissance d’objets sont de plus en plus grandes ce qui allongent le temps de cal-

cul et qui désavantages les compétiteurs qui ne peuvent pas se permettre d’avoir de

grosses puissances de calcul ; mais est-ce que toutes ces images sont vraiment néces-

saires ? Ne peut-on pas réduire ces données de tests tout en conservant la capacité

de l’ensemble de tests à discriminer les compétiteurs ? Dans ce contexte, une suite

de tests nous paraît intéressante si elle est capable de donner une vue d’ensemble

des performances des programmes que l’utilisateur pensent pouvoir utiliser. Ainsi, il

est nécessaire de garder dans cette suite de tests des cas de tests qui sont capables

de montrer que, par exemple, ils ont été traîtés de manière beaucoup plus longues

que d’autres par certains programmes, ce qui peut être décisif dans le cas où le pro-

gramme est plongé dans un environnement où il nécessite de répondre en temps réel.

Dans cette contribution, nous introduisons la notion de "couverture de performance".

Pour mesurer cette couverture, nous proposons d’utiliser le score de dispersion. Il se

construit sur la base d’un histogramme qui va permettre de séparer le domaine de

définition d’une performance donnée en plusieurs sous-domaines disjoints. Le but est

qu’au moins une exécution permette de peupler chaque sous-domaine. Plus le nombre

de sous-domaine représenté est élevé, plus la suite de tests est considérée comme

étant intéressante et devrait être conservée puisqu’elle permet d’observer différents

7

comportements provenant de différents programmes. Cette approche a été évaluée

sur différents domaines d’applications et nos résultats montrent d’une part l’efficacité

du score de dispersion tel que nous l’avons défini pour conserver des suites de tests

qui semblent plus intéressantes que d’autres et d’autre part la possibilité d’utiliser cette

approche pour différentes tâches comme par exemple réduire un ensemble de suite de

tests ou encore mettre en avant des comportements de programmes qui semblent "bi-

zarres" (i.e., déviants par rapport au reste de l’ensemble des programmes considérés)

ce qui permet de pousser l’analyse plus loin pour peut-être découvrir des bugs dans le

code. Cette deuxième contribution s’attaque donc tout d’abord la deuxième dimension

de notre matrice de performances. En évaluant la qualité des suites de tests, il est

possible par la suite d’optimiser la phase d’exécution en réduisant le nombre de tests

à exécuter ou en donnant un ordre (par exemple, ceux qui ont un score de dispersion

plus élevé d’abord).

Au final, nos contributions visent à réduire l’une ou l’autre des deux dimensions

présentées par la matrice de performances permettant par la suite d’avoir un choix res-

treint mais toujours pertinent pour la suite du processus de génération de programmes

ou de tests.

8

Abstract

Nowadays, software have to be efficient, fast to execute, etc. They can be confi-

gured in one way or another to adapt to specific needs. Each configuration leads to a

different system and usually it is hard (if not impossible) to generate them all. Thus,

the exhaustive evaluation of their performance is impossible. However, a single user

has specific requirements and needs to find an appropriate configuration of a system.

To ensure the adequacy between performances and requirements, several executions

under different conditions are needed adding computation time to the daunting task of

selecting a proper configuration.

Two dimensions emerge from this description of performance testing : the selection

of relevant system configurations that influence the behavior of associated system and

the selection of test cases allowing to observe performances of systems under different

conditions.

We propose to represent those two dimensions as a (performance) matrix : one

dimension represents selected systems for which performances can be observed while

the other dimension represents the set of test cases that will be executed on each of

these systems. Each cell is the execution of a program variant regarding a test.

The contributions of this thesis are as follows :

First, we leverage Machine Learning techniques in order to specialize a Software

Product Line (in this case a video generator) helping the selection of a configuration

that is likely to meet requirements. End users must be able to express their require-

ments such that it results in a binary decision problem (i.e., configurations that are

acceptable and those that are not). Machine Learning techniques are then used to re-

trieve partial configurations that specialize a Software Product Line to guide end users

and reduce the configuration space. In the end, this work aims at diminishing the first

dimension of the matrix that deals with systems and programs.

Second, we propose a new method assessing the ability of test suites to reveal

significant performance differences of a set of configurations tackling the same task.

This method can be used to assess whether a new test case is worth adding to a test

suite or to select an optimal test set with respect to a property of interest. In the end,

it may help structuring the execution of tests. For instance, it can create an order of

execution resulting in using less test cases that are presented in the second dimension

of the matrix. We evaluated our approach on several systems from different domains

9

such as OpenCV or Haxe.

10

ACKNOWLEDGEMENTS

First, I would like to thank very warmly the members of the jury for accepting to

review the work I have conducted during the past three and a half years. This PhD was

a big step in my life and having such encouraging comments and relevant questions

coming from such a panel of researchers was way out of my consideration for a long

time. I would like to thank Prof. Philippe Collet for having taken the chair of this jury.

Having you, a mentor of one of my supervisor, in this jury was very challenging for

me considering that I knew very little about configurable systems a few years ago.

Thank you to Prof. Myra Cohen for accepting to listen to me despite it was very early

over there. Your comments and enthusiasm were very heart-warming. Thank you Prof.

Yves Le Traon for the every now and then talks we had during these three years and

for showing your interest in my work. Thank you very much to Patrick Pérez for being

the only representative (in this jury) of the image processing community. We have met

several times during this PhD, you were always careful about what I was presenting

and you were of great advice despite being so much busy. Furthermore, you were

constantly reminding me how interesting the ideas we were talking about could benefit

to industries giving me full of energy every time we met.

I would like to thank my former teachers who taught me everything I know about

video and image processing but also machine learning, computer graphics and much

more. From IUT to the ESIR, thank you all Pierre, Philippe, Adib, Sébastien, Kadi,

Rémi, Fabrice and the others.

Ewa and Laurent you were excellent advisers during my internship at TEXMEX

some years ago. You taught me so much during these few months about research in

general but also the level of expectation that I needed to reach to be an excellent re-

searcher. In addition, you introduced me to the security problems in Machine Learning

and put me in touch with Battista. I am very grateful to both of you for all of that.

Guillaume, you told me about configurable systems more than 5 years ago now,

almost immediately we talked about how similar this domain and research in machine

learning can be. This talk has driven my research and you were also the one telling me

about this PhD opening in DiverSE. I want to thank you very warmly for this.

11

While it was very hard for me to get anything from the first talks during breaks or

meetings, the atmosphere inside DiverSE always remained excellent. I want to say

thank you DiverSE (present and past members) for being so kind, curious (about my

knowledge) and understanding about the fact that not everybody knows software engi-

neering (even if you think that this is a big mistake) and to Olivier and Benoît for leading

the team. José, you were the person that put me on track and I am very pleased I was

able to work with you ; I must have been a pain in the butt during this first year when

I hardly knew anything about the stack behind variability, configurations, etc. You have

always been there to help me being very calm and willing to share your knowledge.

Thank you Pierre, Kévin, Fabien, Marcellino, Alejandro and Oscar for the all the mo-

ment we shared (about work but also the others). Special thanks to Johann with whom

I could always talk about tennis (even if I was disturbing you). Tifenn, we arrived at

the same time in the team, we were two costarmoricans in this foreign country that is

Rennes. You were also there to talk about anything but work, I really appreciated all

these moments with you. Caroline, DiverSE is lucky to have you, you are kind of the

"mom" of the team, thank you for everything.

Of course, Jean-Marc and Mathieu ! Thank you very much for giving me the op-

portunity to work with you. You were tremendous supervisors despite your very busy

schedules. Of course, I learnt a lot from your scientific guidance. Brainstorming ses-

sions were exhausting to me, yet, a lot of ideas, new directions long terms vision came

out of these. I am glad to know that the work I have begun will continue in the team un-

der your supervision and that somehow we started a new focus in the team. Apart from

that, you were always there when I needed explanations, when I was feeling uncom-

fortable or when I did not know where to go ; you always took one hour or more to talk

about all these problems and I cannot emphasize enough how much it was important

to me.

I am very proud of what I did at work, but I could not have accomplished that without

all the people I met outside the lab. The TCTF is the best tennis club I have ever seen.

I met a lot of people willing to play tennis just as much as I do. Thank you to all the

partners and teammates. Olivier B. you are the best trainer ever ! From the first hour of

training (in groups) to the last (in individual), you made far better than I could have ever

imagined. All those hours with you on the court improved my focus and my endurance

which were beneficial in my work. Thank you very much for everything. I hope you will

keep giving this good energy that you give to people and that you will be able to share

12

your passion with people for a long time.

M’man and Pierre... When I started my PhD, things were a bit complicated between

us : "why do you work that much ? Why do you work that late ?" were common questions

I heard every now and then. I think you know now why I did this. However, as the thesis

kept going, you were there to cheer me up, to comfort me and support me constantly.

This is also thank to both of you that we have a doctor in the family now.

Finally, to you, the person I met 8 years ago in Lannion. The three past years were

not easy for us. Despite all of this, you were the person that kept me alive, pushing me

to take vacations when I was exhausted and could not think straight a few weeks before

deadlines. You were there no matter what, even when you were just as exhausted as

I was. I think you lived this PhD like you were actually doing a PhD. I am sorry for the

hard time I made you live (and also for the numerous upcoming ones as long as we

stay together). I love you Marine.

13

REMERCIEMENTS

Tout d’abord, je voudrais remercier très chaleureusement les membres du jury qui

ont accepté de rapporter et d’évaluer les travaux que j’ai mené durant ces trois der-

nières années et six mois. Cette thèse a été un moment très important dans ma vie et

le fait d’avoir reçu ces commentaires encourageants et des questions aussi pertinentes

provenant de ces personnes m’a toujours paru hors de portée. Je souhaiterai remer-

cier Philippe Collet pour avoir accepter de présider ce jury. Vous avoir vous, un mentor

d’un de mes propres encadrants, dans ce jury a été très particulier pour moi surtout

en sachant que je ne connaissais pratiquement rien aux systèmes configurables il y a

quelques années de cela. Merci à vous, Myra Cohen pour avoir accepter de m’écouter

alors qu’il était très tôt aux Etats-Unis. Vos commentaires et votre enthousiasme m’ont

été très réconfortant. Merci à Yves Le Traon pour avoir montré autant d’intérêt à mes

travaux et pour les discussions que nous avons eu pendant ces trois ans. Patrick Pé-

rez, merci beaucoup d’avoir été le seul membre de ce jury a être le représentant de la

communauté du traitement de l’image. Nous nous sommes rencontrés régulièrement

durant cette thèse, vous avez toujours su vous montrer d’une écoute particulièrement

attentive, vous m’avez été de précieux conseils et tout ça même en étant extrême-

ment débordé. En plus de cela, vous m’avez toujours rappelé à quel point les idées

que j’avais pouvais être intéressantes pour le monde de l’industrie, me redonnant à

chaque fois de l’énergie pour continuer.

Je voudrais également remercier mes enseignants qui m’ont tout appris au sujet

du traitement de l’image et de la vidéo mais également tout ce qui traite du machine

learning, la synthèse d’images et plein d’autres choses. Depuis l’IUT jusqu’à l’ESIR,

merci à Pierre, Philippe, Adib, Sébastien, Kadi, Rémi, Fabrice et tous les autres.

Ewa et Laurent, vous avez été d’excellents maitres de stage pendant mon séjour à

TEXMEX, j’ai été extrêmement fier d’avoir pu travailler avec vous. Vous m’avez appris

tellement, pendant ces quelques mois, sur la recherche en général mais également

sur le niveau d’éxigence que je devais atteindre si je voulais être bon dans ce que je

fais. En plus de ça, vous m’avez aussi fait connaitre les problèmes de sécurité liés au

machine learning et j’ai pu, grâce à vous, être en contact avec Battista, je vous suis

14

très reconnaissant pour ça.

Guillaume, tu as commencé à me parler des systèmes configurables il y a 5 ans à

peu près, très rapidement nous avons parlé des similitudes qu’il existait entre ce do-

maine et celui du machine learning. Cette discussion m’a guidé régulièrement pendant

cette thèse et tu m’as également mis au courant que DiverSE recherchait un candidat

pour une thèse au parfait moment. Je veux te remercier énormément pour ça.

Même si il a été très difficile pour moi de comprendre quoi que ce soit aux pre-

mières pauses et premiers meetings, l’atmosphère au sein de DiverSE a toujours été

excellente. Je remercie beaucoup DiverSE (membres présents et passés) pour avoir

été si gentil, curieux (sur mon parcours et ce que je pouvais apporter à l’équipe) et

compréhensif sur le fait que tout le monde ne connaisse pas vraiment le génie logiciel

(même si, à priori, c’est une énorme bêtise) et à Olivier et Benoît pour organiser cette

équipe. José, tu m’as guidé au tout début et j’ai été très heureux d’avoir pu travailler

avec toi ; j’ai pourtant dû être une vraie plaie pendant ma première année, quand je

ne connaissais pratiquement rien à tout ce qui touchait à la variabilité, aux configura-

tions et tout ça. Tu as toujours été présent pour m’aider et tu as su toujours partager

tes connaissances. Merci à Pierre, Kévin, Fabien, Marcellino, Oscar et Alejandro pour

tous les moments partagés (boulot et autres). JMerci également à Johann avec qui

je pouvais toujours parler tennis (même si je sentais que je le dérangeais). Tifenn, on

est arrivé au même moment dans l’équipe, nous étions les deux costarmoricains dans

ce pays très lointain qui est Rennes. Tu étais toujours là pour parler de tout sauf du

travail, ça m’a fait énormément de bien. Caroline, DiverSE peut être vraiment content

de t’avoir, tu es un peu la "maman" de l’équipe, merci pour tout.

Bien sûr, il y a aussi Jean-Marc et Mathieu ! Merci énormément pour m’avoir permi

de travailler avec vous. Vous avez été tout simplement exceptionnels en tant que di-

recteur et encadrant bien que vous aviez un emploi du temps bien chargé à côté. J’ai

appris tellement de choses grâce à vous et votre sens de la recherche. Les sessions

de brainstorming ont été très éprouvantes pour moi au début, mais, il en ressortait

toujours tout un tas d’idées, des nouvelles directions à explorer et des visions à long-

terme. Je suis très fier de savoir que le travail que j’ai commencé va se poursuivre

au sein de l’équipe à vos côtés, mais je suis également fier du fait que l’on est pu

commencé, en quelque sorte, un nouvel axe de recherche. En plus de tout ça, vous

avez toujours su être là quand j’avais besoin d’explications ou de conseils, quand je

me posais tout un tas de questions ; vous avez toujours pris du temps pour parler de

15

tout ça et je n’ai pas les mots pour vous dire à quel point ça a été important pour moi.

Je suis très fier du travail que j’ai accompli, mais je n’aurais pas pu terminer tout ça

sans les personnes qui étaient là en dehors du labo. Le TCTF est le meilleur club que

j’ai connu. J’y ai rencontré des tas de personnes qui ont toujours au moins tout autant

motivées que moi pour jouer. Merci à tous mes partenaires de jeu et aux co-équipiers.

Olivier B., tu es au top ! Du premier entrainement (en groupe) jusqu’au dernier (en in-

div), tu m’auras fait devenir bien meilleur que ce que je n’aurais pu imaginer. Toutes

ces heures passées avec toi auront également amélioré ma concentration et mon en-

durance ce qui aura été très bénéfice pour le travail. Merci énormément ; j’espère que

tu réussiras à garder l’énergie que tu transmets et que tu pourras continuer à partager

ta passion pendant encore longtemps.

M’man et Pierre... Quand j’ai commencé ma thèse, ça n’a pas toujours été facile

pour nous : "Pourquoi tu travailles autant ? Pourquoi tu restes aussi tard?" ont été des

questions récurrentes. Je pense que maintenant vous comprenez pourquoi. Au fur et

à mesure que la thèse avançcait, vous avez toujours été là pour moi. C’est aussi grâce

à vous 2 que nous avons un docteur dans la famille.

Pour terminer, à toi la personne que j’ai rencontré il y a 8 ans à Lannion. Les trois

dernières années n’ont pas été faciles pour nous. Malgré tout cela, tu as été la per-

sonne qui m’a fait survivre, en me forçant à prendre des vacances quand j’étais totale-

ment exténué et que je n’arrivais plus à réfléchir alors que des deadlines arrivaient. Tu

étais là, tous les jours, même quand toi-même tu n’en pouvais plus. Au final, je pense

que tu as vécu cette thèse tout autant que moi. Désolé pour tous les mauvais moments

que je t’ai fait vivre (et aussi pour les prochains à venir). Je t’aime Marine.

16

TABLE OF CONTENTS

Résumé en français 3

Abstract 9

1 Introduction 20

2 Background 25

2.1 Software Product Lines . 25

2.1.1 Perks of reuse . 25

2.1.2 SPL development process . 26

2.2 Feature Models . 29

2.2.1 Fundamentals of feature models 30

2.3 Machine Learning . 34

2.3.1 Stages to use a machine learning algorithm 36

2.3.2 The training phase . 37

2.3.3 Evaluating prediction performances 38

2.3.4 Overfitting and underfitting . 39

2.3.5 Hyperparameters and validation set 40

2.4 Summary . 41

3 State of the Art 43

3.1 Software product lines and Testing . 44

3.1.1 Configuration sampling . 44

3.1.2 Fault Detection in software product lines 46

3.1.3 Metamorphic Testing . 48

3.2 Tests quality . 49

3.2.1 Traditional metrics . 49

3.2.2 Mutation Testing . 50

3.2.3 Quality of performance tests . 51

3.3 Machine learning and software product lines 51

17

TABLE OF CONTENTS

3.3.1 Performance prediction . 51

3.3.2 Testing machine learning techniques 53

3.4 Summary . 54

4 Automatic Specialization of software product lines using Machine Lear-

ning 57

4.1 Introduction . 57

4.2 Method . 60

4.3 Case Study . 64

4.3.1 Case and Problem . 64

4.3.2 Solution for Inferring Constraints 65

4.3.3 Generating a training set out of the variability model 66

4.3.4 Oracle . 67

4.3.5 Machine learning . 67

4.3.6 Extracting constraints . 68

4.4 Experiments . 71

4.4.1 Experimental Setup . 71

4.4.2 Results . 71

4.4.3 Threats to validity . 77

4.5 Discussions . 79

4.6 Conclusion . 81

5 Learning-based Performance Specialization of Configurable Systems 83

5.1 Introduction . 83

5.2 Motivation and Problem Statement . 85

5.2.1 Motivating scenario . 85

5.2.2 Approach . 87

5.2.3 Novel problems . 88

5.3 Discussions . 90

5.3.1 Impacts of performance objectives on the learning problem . . . 90

5.3.2 Measures to assess the prediction power of machine learning

models . 91

5.4 Experiments . 94

5.4.1 Subject systems and configuration performances 94

5.4.2 Experimental setup . 94

18

TABLE OF CONTENTS

5.4.3 Presentation of results . 96

5.4.4 RQ1) Does our method allow to accurately classify configurations? 96

5.4.5 RQ2) Does our method allow to maintain flexibility while being

safe ? . 103

5.5 Conclusion . 110

6 Multimorphic Testing 113

6.1 Introduction . 113

6.2 Multimorphic Testing . 116

6.2.1 Motivation . 116

6.2.2 The principle of Multimorphic Testing 117

6.2.3 Properties of a measure . 118

6.2.4 Design of dispersion measures 119

6.3 Empirical Evaluation . 123

6.3.1 Research questions . 123

6.3.2 Evaluation settings . 123

6.3.3 RQ1 : Is the dispersion measure right ? 128

6.3.4 RQ2 : Is the dispersion score a right measure ? 132

6.3.5 Concluding remarks over the method 137

6.3.6 Reproducibility of experiments 138

6.4 Discussions and Threats to Validity . 139

6.4.1 Internal threats . 139

6.4.2 External threats . 139

6.5 Conclusion . 142

7 Conclusion and Future Work 143

7.1 Conclusion . 143

7.2 Perspectives . 144

7.2.1 Machine Learning, Variability and Software Product Lines 144

7.2.2 Developing an appropriate sampling method 146

7.2.3 Adversarial Machine Learning and Software Product Lines . . . 147

7.2.4 Taking into account the surrounding context 148

Bibliography 158

19

CHAPITRE 1

INTRODUCTION

People are nowadays more and more demanding regarding the characteristics of

their software. They want software to be efficient, fast to execute and sometimes even

able to optimize several different aspects at once. In the meantime, software are taking

evermore importance in our daily activities : they are in our computers and smart-

phones ; for a few years now, they are helping us driving cars, etc. As the number of

programs increases, they tackle new problems that are more and more complex. Yet,

different software continue to be independently created to tackle similar tasks. For ins-

tance, tracking a ball in soccer games or cars in races or even tracking people in the

street might all seem different (because it does not aim to track the same entity) howe-

ver, at a certain level of abstraction, all of them track entities. Their differences come

from the fact that they take into account only a subset of users’ requirements but not

all at once. Some are optimized to consume less memory, others are tuned to produce

the most accurate results, etc.

One representative example of software trying to cope with different users’ requi-

rements is the Linux Kernel which contains about 13, 000 options. Assuming that all

options can only be activated or deactivated, the number of combinations of options is

up to 213,000 or about 103,250 possibilities. This number is so big that it is impossible to

review them all exhaustively in order to find which ones suit pre-defined requirements.

Thus, it is hard for users to choose and find a proper configuration (i.e., combination of

options) that complies with their requirements. Finding such a configuration is usually

difficult as the mapping between options and requirements is not straightforward and

the documentation might not reflect properly on how an option affects the behavior of

the program.

Even if all configurations of a system can be generated, time and resource budgets

conferred to the testing activity permit to generate only a few of them, restricting the

observation of performances to resulting programs. Besides the task of finding bugs in

systems, requirements might express some performance goals (e.g., run under a cer-

20

Introduction

tain amount of time, use at most a certain amount of memory). Usually, to assess that

a given program complies with requirements (being related to performances or not),

several tests are needed to observe the system under different conditions. Further-

more, because different aspects can influence performances, the definition of oracles

(or expected results) can be difficult, making the assessment of performances tricky.

For instance, considering a video encoding algorithm, its performances (e.g., its exe-

cution time or the quality of the output video) might depend on the input itself : if the

video is of poor quality, with dynamic noise, it might be hard to encode correctly or a

denoising algorithm can be used in the pipeline of the encoder resulting in an increase

in its execution time compared to other executions without this additional step.

In the end, two dimensions emerge : first, configuring a system which consists in se-

lecting options and assigning them a value ; and, second, selecting relevant test cases

that will allow to observe the behavior of generated systems under various conditions

in order to know whether they will meet requirements. We propose to represent those

two dimensions as a (performance) matrix : one dimension represents selected sys-

tems for which performances can be observed while the other dimension represents

the set of test cases that will be executed on each of these systems. Each cell is the

execution of a program variant regarding a test. In the general case, a cell might be a

vector as multiple measures being observed at the same time and needed to decide

whether a system meets requirements. Figure 1.1 illustrates how we represent this

matrix. In this example, columns represent program variants and rows represent test

cases of a test suite to execute. Let us consider that for each execution, the execution

time is measured (in seconds) and reported in cells of the matrix. Based on this matrix,

we can say a few things :

— Program 1 seems to be rather stable, providing rather low execution times (less

than a minute) ;

— Test Case 1 seems to be easily handled by most of the Program Variants ;

— Test Case 2 seems to be difficult for Program 2 which shows a high value.

All of these analyses are interesting either from the software system point of view (as

we can map configurations to performances) or from the test suite point of view (as we

can observe the diversity of performance results with regards to a test case).

This thesis claims that performance matrices are a fundamental concept that brings

interesting information regarding execution of tests and program variants and thus

should be leveraged by software engineers for several very useful tasks.

21

Introduction

Program Variants

Test cases

Program 1 Program 2 ... Program N
Test 1 12 1 ... 5
Test 2 1 348 ... 10

...
Test M 50 101 ... 260

FIGURE 1.1 – An example of the performance matrix we exploit in this thesis. Each cell
is the result of the execution of a Program Variant (columns) with a Test case (rows).
Let us consider that execution time is measured and expressed in seconds.

Contributions :

First, we leverage machine learning techniques in order to specialize a configurable

system. The goal is to help selecting a configuration that is likely to meet requirements.

In this context, machine learning will use a set of available configurations to predict

whether a specific configuration is likely to meet user-defined requirements. End users

must be able to express their requirements such that it results in a binary decision pro-

blem (i.e., configurations that are acceptable and those that are not). Machine learning

techniques are then used to retrieve partial configurations that specialize a configu-

rable system to guide end users and reduce the configuration space. In the end, it

aims at diminishing the first dimension of the matrix that deals with systems and pro-

grams. We validate this approach with a case study (a video generator) and answer the

following research questions : i) can we extract constraints from the machine learning

technique that actually make sense? ; ii) are machine learning techniques accurate in

their prediction regarding the fact that a product is able to meet users’ requirements? ;

iii) analyzing pros and cons of the proposed approach.

Second, we propose a new method assessing the ability of test suites to reveal

significant performance differences of a set of configurations tackling the same task.

More precisely, we propose a framework defining and evaluating the coverage of a test

set with respect to a quantitative property of interest, such as the execution time or

the memory usage. This framework can be used to assess whether a new test case is

worth adding to a test suite or to select an optimal test set with respect to the property

of interest. In addition, this technique might help structuring the execution of tests. For

instance, it can create an order of execution resulting in using less test cases that are

presented in the second dimension of the matrix. We validate this new method on three

different case studies and answering the following research questions : i) is our new

22

Introduction

measure used to evaluate test suites right ? Meaning that, does it reflect on the fact

that test suites can be discriminated ? And is the measure stable? ; ii) are new test

suites (created by optimizing our measure) efficient? In other words, is a test suite with

a higher score better than an other one with a lesser score?

Figure 1.2 shows rather intuitively how these contributions interact with the perfor-

mance matrix. The second contribution does not appear on Figure 1.2 as we presented

FIGURE 1.2 – Our two contributions in perspective of the performance matrix

it as an extension of the first contribution focusing on a specific aspect (i.e., the defini-

tion of users’ requirements) and their impact on the performances of machine learning.

The remaining of this thesis is structured as follows : Chapter 2 gives the main

concepts related to software product lines, variability models and machine learning.

In particular, we give the main motivation to use software product lines and software

reuse, we focus on a specific kind of variability models called feature models and we

finally present basics concepts behind machine learning.

Chapter 3 gives an overview of previous works that have been conducted in the field

of testing program variants, test suite optimization, performance evaluation and quality

of tests.

Chapters 4 to 6 detail the contributions of this thesis.

Chapter 7 concludes and discusses future works.

23

CHAPITRE 2

BACKGROUND

2.1 Software Product Lines

With today’s mass customization industry, the traditional software engineering deve-

lopment process has changed [54, 55, 74]. From building one single piece of software

answering requirements of a single user, it has come to the point where multiple similar

software systems are developed from a common base of code [53, 61].

Clements et al. [21] gives the following definition of a software product line :

Definition 1 (Software Product Lines) A software product line is a set of software-

intensive systems sharing a common, managed set of features that satisfy the specific

needs of a particular market segment or mission and that are developed from a com-

mon set of core assets in a prescribed way.

Definition 1 shows two aspects of the code of software product lines : a common part

and a "variable" part that answers specific needs. Common parts by definition are

shared by all products while "variable" parts are present only in certain products.

2.1.1 Perks of reuse

Today’s software are getting bigger and more complex in terms of customization

possibilities. As an example of customizable software, the Linux Kernel [21, 60, 91] is

probably the most complex piece of configurable software ever created with more than

13, 000 configuration options. With such a number of options, it is difficult to keep a clear

view of the structure of the system.

Pohl et al. [74] state the following benefits from reusing as many pieces of code as

possible :

— reducing development cost ;

— reducing time-to-market ;

25

Partie , Chapitre 2 – Background

— improving code quality.

Since reuse is at the heart of software product lines, developers have to think carefully

about the structure of their code. Capitalizing on code reuse is a way to reduce the

amount of code to develop by integrating already existing pieces in new software. With

less functionalities to be developed, new products (e.g., software or systems) can be

ready and accessible to customers more quickly. Finally, with variability, the structure

of code changes (e.g., with parameters and options activated at run-time or ifdef ins-

tructions at compile time). Since links are made between code and functionalities, it

can be easier to target specific parts of code in which a bug have been detected. Also

it results in fixing the bug at one place while being applied to every products that share

the modified piece of code. Since different functionalities can be split among several

options, ifdefs and if conditions at different places in the code, code become harder to

read and its flow might be broken making it harder to follow and understand.

In the end, commonalities are conceived only once ; remaining parts of the code

(i.e., variable or optional parts being specific to some requirements) are decoupled

and built such that they can be combined to generate the desired software.

Nowadays, software embed so much variable aspects that they are depicted as

variability intensive systems [29, 70].

Svahnberg et al. [95] defines software variability as follows :

Definition 2 (Variability) Software variability is the ability of a software system or

artifact to be efficiently extended, changed, customized or configured for use in a par-

ticular context.

As software variability becomes omnipresent (e.g., in video encoding, machine lear-

ning techniques, operating systems, code generators, etc.), the number of products to

manage increases quickly and becomes out-of-hand.

Hence, it can be hard to keep track of implemented functionalities and where can

be found in the code or, the other way around, what are the parts of the code that are

impacted by a certain functionality. Thus, there is a need to model and to document

code, functionalities, requirements, etc.

2.1.2 SPL development process

Figure 2.1 1 shows the typical development process of a software product line.

1. inspired from [85]

26

2.1. Software Product Lines

FIGURE 2.1 – Common view of the software product line development process.

27

Partie , Chapitre 2 – Background

Different entities appear in this table. First, columns decouple the Problem Space

and the Solution Space. According to Génova et al. [35], Problem and Solution refer to

the contrast between the system under study (i.e., to be modeled) and its application

domain. Thus, the Problem Space describes the system (using high-level abstractions)

in terms of requirements, specifications, etc. On the other hand, Solution Space tries to

implement or at least define artifacts in order to address those requirements. Artifacts

are mainly written by and for developers.

Moving from Problem Space to Solution Space is going from requirements and spe-

cifications expressed in natural language to code artifacts written in programming lan-

guages. There might be difficulties to link requirements to artifacts as they are not

expressed in the same language. One way to go from the first space to the other is the

explicit mapping between requirements and specifications via artifacts on one hand

and the establishment of features on the other.

Second, rows differentiate Domain Engineering and Application Engineering. Do-

main engineering refers to a rather abstract activity in which people try to define the

general/abstract scope for customers’ needs in term of software. Domain engineering

is about development for reuse since developed pieces of code will be used in a maxi-

mum of products created out of the software product line. It is usually composed of

four activities. First, the domain analysis in which commonalities and variable aspects

are identified. Then assets are developed in order to create the software product line

resulting in three more activities : domain design, domain coding and domain testing.

On the other hand, Application Engineering is centered around development for reuse.

Products are built by composing or assembling different assets developed in the pre-

vious engineering stage. Again, four activities compose the Application Engineering :

application requirements engineering, application design, application coding and appli-

cation testing. They are the pendant of the activities from Domain engineering. While

application design tries to understand the needs of end users, application coding builds

the final product and the last activity tests it. In other words, moving from Domain to

Application is moving from a global point of view of what can be done with the system

that is being developed to a user specific point of view in which it will have specific

expectations regarding the system they will use.

In any case, there is a need to describe and model variability and possibilities. This

is done by the use of variability models (on the top left corner of Figure 2.1). Variability

models offer a formalism to visualize variable aspects of a system, which of the features

28

2.2. Feature Models

are related or independent, etc.

Definition 3 (Variability Models) Variability modeling is the process of representing

commonalities and variabilities of a software product line. These aspects can be mo-

deled in different ways depending on the adopted viewpoint.

A variability model is a representation (i.e., a model) of commonalities and varia-

bilities of a software product line specific to a certain viewpoint. It documents variable

aspects but also it documents which combination of variables(i.e., both common and

variable aspects) are forbidden.

According to the previous definitions, we give the following definition to a configura-

tion of a variability model.

Definition 4 (Configurations) A configuration is an assignment of values for all va-

riables of a variability model.

As said before, information given by variability models can be mapped directly to

pieces of source code (i.e., going from the problem space to the solution space in Fi-

gure 2.1). Based on possibilities and constraints provided by the variability model, a

configurator can be set up in order to give feedback to users and help configure a pro-

duct (i.e., going from Domain Engineering to the Application Engineering in Figure 2.1).

Now that source code have been developed and end-users have selected require-

ments that should be addressed by the system (or modules that should be included in

the final product), pieces of source code can be assembled accordingly to the configu-

ration in order to provide the expected system. This is done by associating the selection

made in the configurator (i.e., bottom left part of Figure 2.1) with corresponding assets

that were previously developed (i.e., top right part of Figure 2.1). Once the system is

assembled, it is called a variant and the process of delivering a system is called Product

Derivation.

2.2 Feature Models

Feature models are a specific kind of variability models that focus on the represen-

tation of variability via features. Even if different languages exist to express variabi-

lity [5, 84], focusing on different aspects of it [74], feature models are the de facto most

popular approach to represent variability to date [8, 13, 14, 44].

29

Partie , Chapitre 2 – Background

FIGURE 2.2 – A feature model representing how to create a Video Sequence

Feature models provide information about how features can be assembled and

which choices can be made regarding the use of specific features or sub-features.

A feature model being an instance of a variability model, the definition given by

Def. 4 still hold as options become features.

The representation of a feature model is a combination of a graphical representation

and a textual description.

2.2.1 Fundamentals of feature models

Graphical representation

Different graphical representations exist, all representing the same information but

with different graphical code.

Feature models represent systems as a feature hierarchy. Hierarchy enables to

organize a large number of concepts (or features) into increasing levels of detail. The

hierarchy usually is represented as a tree with the system under study placed at the

root of the tree since it is the most general concept. Features are represented as nodes

while edges representing parent-child relationships between features. These relations

allow for specializing concepts (e.g., a feature is a sub-feature of an other feature or, the

other way around, a specific instance of a super-feature) or aggregate features (e.g., a

30

2.2. Feature Models

feature can require other sub-features to be selected). Other graphical elements can

be added to describe variability. For instance, a feature can be optional, meaning that

they can be used in certain products but not necessary all of them. In this thesis, we

consider that features are mandatory (i.e., have to be used in all products) if they are

not marked as optional.

Alternative groups can also be specified : Or can be defined to force one or several

choices among a set of possible features. Xor -group is the exclusive version of an Or

group meaning that only one feature can be selected at once.

In fact, feature models not only define how features can be combined and assem-

bled but they also describe which associations are forbidden via the use of constraints.

Implies and excludes constraints can be stated. These constraints are more com-

plex as they can put different features in relation that are not at the same level in the hie-

rarchy (or even not under the same parent feature). Even though implies and excludes

constraints can be represented graphically, it is usual to write them down in a tex-

tual form. Usually, constraints are written in propositional logic which allows a powerful

expressiveness using disjunction(∨), conjunction(∧), negation(¬), implication(⇒) and

bi-implication(⇔). However, sometimes it is not enough. Some constraints might be

hard to express in propositional logic or might involve a large number of propositions

(and features) and thus it may become clearer too simply right them in a different form

aside of the feature model. Then, the problem remains to connect these constraints

with the feature model and the whole automatic configuration and derivation process.

Configuring feature models

Assigning a value to each feature in the model also serves to select and discrimi-

nate the desired product from the ones encoded by the feature model. However, when

assigning values to features, constraints need to be checked otherwise it could result in

a product that cannot be created. In addition to expressed constraints (in propositional

logic in the feature model), the following rules must be followed :

rule 1 : if a feature is selected, its parents are also selected (the edge between

the two features not only defines a conceptual relationship but also a logical

dependency) ;

rule 2 : if a parent is selected, all mandatory sub-features must be selected ; exactly

one sub-feature in each of its Xor-group must be selected ; at least one sub-

feature in each Or group must be selected ;

31

Partie , Chapitre 2 – Background

rule 3 : constraints must hold (e.g., implication and exclusion constraints)

To illustrate those rules, let us consider Figure 2.2. Rule 1 states that, for instance, if

the feature called "Urban" is selected in a configuration, then the feature "Background"

also have to be included in the configuration. The same logic applies to "Background"

and "Scene", etc.

Rule 2 says if feature "Scene" is selected in a configuration, sub-features "Back-

ground" and "Objects" should also be selected in the configuration as they are both

mandatory.

Finally, Rule 3 specifies that constraints in propositional logic should not be violated.

For instance, if the following constrain was specified : Feature "Birds" implies Feature

"Forest", then every time the Feature "Birds" is selected, the associated Background

should be "Forest".

If all constraints and rules are respected, the configuration and resulting product

are said to be valid.

Definition 5 (valid configurations) A configuration is valid if values conform to constraints.

A variability model V M characterizes a set of valid configurations denoted JV MK.

Expressivity of feature models

Different kind of feature models exist bringing their own languages and own expres-

sivity [5]. Maybe the most simple form of feature model is the boolean one. In such

feature model, the only possibility for each feature is to be selected or deselected.

Figure 2.2 shows an example of a boolean feature model. It represents how tracking

algorithms 2 can be built out of different techniques.

As we said before, features (i.e., nodes or rectangles in Figure 2.2) not marked as

optional are mandatory. Thus, each tracking algorithm derived from this feature model

will embed a "Recognition" sub-system (which can be either a "Template Matching"

algorithm or a "Pyramidal" technique). Both "Detect" and "Tracking" can be selected or

deselected at the same time or independently. At the bottom of Figure 2.2, cross-tree

constraints are expressed further limiting the combination of features.

On top of that, more complex feature models can allow features to take real values

or values in a given domain (i.e., a set of values). Attributes can also be associated to

2. algorithms designed to recognize objects of interest and follow their paths in videos

32

2.2. Feature Models

features. They add even more complexity in the reasoning as it increases expressive-

ness.

Automated Reasoning

As the expressiveness of the model increases, the number of possible configura-

tions becomes too large and more constraints might be necessary. With more constraints,

it becomes harder to have a clear view and a clear mind map of allowed combinations

of features. Still, the modeling part via variability models is crucial since it is the starting

point of the configuration process as shown in Table 2.1. Unnecessarily constraining

feautures or missing some of the constraints can lead to undesired behaviors in the

next steps of the configuration process. Examples of undesired behaviors are : dead-

feature (i.e., features that are never used in any products), empty set of valid configu-

rations (i.e., no product can be derived), under-constrained features (i.e., features can

be activated in products that do not use them), etc. There is a need to ensure that

configurations can be derived for real and that the variability model is able to provide

the right configurations, no more, no less. Providing such insurances is not trivial as

configurations of feature models are expressed in propositional logic. That is, for each

configuration, all features are present in the formula separated by conjunctions or dis-

junctions. These kind of formulas are hard to follow for human beings especially when

they involve a large number of features.

Because of that, automated reasoning is needed as shown in [12, 13, 23, 63, 64,

112]. Automated reasoning tools have been developed and explored according to the

nature of the feature model. They usually take as input a formula expressed in propo-

sitional logic (representing the set of constraints expressed by the feature model) and

a partial configuration (i.e., not all values of a configuration have been specified) and

answer whether the configuration can be completed such that it satisfies all constraints.

Among explored solutions, SAT (satisfaisability) solvers or Binary Decision Diagram

seem to be viable solutions when dealing with Boolean feature models while, for more

complex feature models, Constraints Satisfaction Problem (CSP) solvers or Satisfiabi-

lity Modulo Theories (SMT) solvers are a better choice. Note that the goal of solvers is

to complete the partial configuration such that constraints are met and return a confi-

guration (or return an empty set is no solutions can be found).

Other tools have been developed in order to reason about software product lines.

FeatureIDE [48, 106] is a tool that aims at improving software product lines by analyzing

33

Partie , Chapitre 2 – Background

features and structures of the feature model and proposing fixes (e.g., removing dead-

features).

Familiar [2] is another tool that proposes a domain-specific language supporting the

separation of concerns in feature modeling. It provides, among other things, automatic

reasoning facilities about the structure of the feature model.

Being able to establish a proper variability model remains challenging and important

as it determines the configuration space in which configurations are selected. Work

presented in this section tackle the problem of verifying the structure of the variability

model. They also allow to automatically draw configurations that satisfy constraints

stated in the model which is important in our case as the performance matrix presented

in Figure 1.1 relies on an available set of product variants (and their configurations).

2.3 Machine Learning

Machine learning is a part of artificial intelligence gathering methods that try to mo-

del reality based on data, experience and statistics. Being experienced-driven, these

kind of algorithms are supposed to perform better as more and more data are provi-

ded. Via training, it aims to automatically induce models, such as rules or patterns, that

predict a value associated to an observation. Formally, it is noted as

y = f(x) (2.1)

where y is the value 3 to predict and x a vector representing observations.

Usually, machine learning is associated to decision problems : "According to what

have been seen previously, which value is the most probable for this particular obser-

vation?" Depending on the nature of the values to predict, the decision problem can be

either a classification problem (if values are discrete) or a regression problem (in the

case of continuous values).

To illustrate what has been said, we take as an example one of the oldest data sets

studied by machine learning researchers : the iris data set [33]. This data set gathers

150 examples of irises. The goal is to categorize these examples into one of three

classes, namely : iris versicolor, iris setosa, iris virginica. Figure 2.3 shows categories’

3. it can also be represented as a vector, for instance, to represent the confidence in belonging to a
particular category

34

2.3. Machine Learning

FIGURE 2.3 – 3 categories of irises with a representative of each category

FIGURE 2.4 – Irises are described by the length and width of their petals and sepals.

names as well as a representative of each category.

In this data set, examples are not raw data or images, examples consist of obser-

vations of 4 characteristics (also called features 4) that describe the plants. These 4

features are : length of the petal, width of the petal, length of the sepal and width of the

sepal as shown in Fig. 2.4.

Describing data with fewer information as it is done with irises can be viewed as

applying a first transformation (called feature representation) to data. This feature re-

presentation results in a vector that projects data in a feature space that is supposed to

be more interesting to perform the task at end (e.g., classifying irises into categories)

as illustrated in Fig. 2.5.

Note that the plan shown in this figure separating points into two areas (i.e., above

represented by blue points and below the plan represented by red points) is only one

solution of the separation problem and other solutions may exist. Taking this into ac-

count, in the case of algorithms looking for linear solutions, equation (2.1) changes and

4. feature is an other word to talk about descriptors that are used to describe data and examples in a
more concise way. Note that, in the software product line world, features can have a different meaning.

35

Partie , Chapitre 2 – Background

FIGURE 2.5 – the process which is used to learn how to separate configurations

becomes :

y = f(x, w) (2.2)

In this equation, w can be seen as a vector of weights that is applied to x. It can

give more importance to certain features than others which will, in the end, modify the

equation of the model.

Now, we detail the process to compute a model.

2.3.1 Stages to use a machine learning algorithm

Traditional stages to use machine learning algorithms are as follows :

— collect examples that would be given as the training set to the algorithm ;

— determine the feature space and transform data to retrieve a feature vector 5 ;

— choose a learning algorithm corresponding to the kind of problem to tackle as

well as the nature of data ;

— train the predictive model ;

— evaluate the performance of the algorithm’s decisions on new data

The first step consists in collecting data that are representative of the task at hand.

As machine learning algorithms are about statistics, collected data must also be re-

presentative of the variability that can be encountered in the nature. Said differently,

5. Deep Learning algorithms includes this step in the training phase (at least for multimedia data)

36

2.3. Machine Learning

they should follow the underlying probability distribution (e.g., outliers should not be

over-represented and modeling the distribution of data should globally fit the original

distribution).

Then, as we said with the iris data set, a feature space must be determined (which

is supposed to provide a better representation for the task to perform) and features are

computed over raw data.

The third step is also important since some machine learning algorithms are more

or less efficient to deal with the different nature of descriptors (i.e., discrete/continuous,

ordered, etc. .) and their homogeneity (i.e., are all dimensions of the feature space of

the same nature?).

The training phase will fix parameters of the model (i.e., vector of weights w in

equation (2.2)).

Finally, the evaluation of the performances assesses whether the model is general

enough to perform well on previously unseen observations.

Hereafter, we detail these two last steps which are at the heart of machine learning

techniques.

2.3.2 The training phase

This phase uses a part of collected examples 6 in order to build the function f(.)

from (2.2).

The goal is to set w such that the model is able to, ideally, assign the correct value

y for each given example x.

Machine learning algorithms are usually divided into two big families : unsupervised

and supervised 7. Those two families rely on different information to build their model.

Unsupervised vs Supervised

The main difference between unsupervised and supervised techniques appears in

the training phase of the algorithm. In the unsupervised family, only the description of

data are given to the algorithm. Defined features are supposed to structure the feature

space such that interesting properties of examples be grouped together. Usually, un-

supervised algorithms try to learn the probability distribution that generated the data

6. the remaining examples are used to evaluate the performances of the model
7. however, with the growing interest in the field, the frontier between the two families become fuzzier

37

Partie , Chapitre 2 – Background

set. The learning algorithm uses the proximity of examples and heuristics to determine

a model that separates two distributions (or more). These methods are typically used

to tackle clustering problems. For instance, using the 4 features of the iris data set,

we hope that the feature space will create 3 clusters that gather irises from the same

category while separating each category from the two others.

In the supervised family, the expected labels (or values) are given along with examples.

The algorithm can then try to discover relations between features and expected labels.

Typical applications of supervised algorithms are classification or regression problems.

The difference between the two applications is that classification tries to find categories

or labels while regression associates continuous values with data.

Since setting the best values for parameters w on the first try is unlikely, the training

process might result in an iterative process increasing performing prediction of the

model at each step. To do so, evaluating the prediction performance is necessary to

assess whether the model is "good enough" 8.

2.3.3 Evaluating prediction performances

Evaluating the prediction performances of a machine learning algorithm consists in

assessing the generalization capability of the model (i.e., whether the built model is

able to assign the correct value to previously unseen data). Data used in the evaluation

must not have been encountered before, however, their distribution should follow the

same distribution as the examples used to train the model. This set of data is usually

called test set.

In the regression case, assessing the generalization capability of a machine lear-

ning technique consists in computing the difference between the value given by the

algorithm with the expected one. Several methods can be used to compute these dif-

ferences. The most common being the Mean Squared Error (MSE) and the Mean Ab-

solute Error (MAE).

When talking about classification, the evaluation compares the output given by the

model on new data to the expected one (called ground truth). The ground truth is

usually defined by "experts" (or an oracle) that "knows the true nature of data" (i.e., their

exact distribution). Note that with the use of Mechanical Turks over the recent past

8. the notion of error acceptance is usually correlated to the context in which a machine learning
algorithm is used and to the task to tackle

38

2.3. Machine Learning

Ground truth
+1 -1

ML +1 True Positive (TP) False Positive (FP)
decision -1 False Negative (FN) True Negative (TN)

TABLE 2.1 – An example of a confusion matrix for a 2-class problem (i.e., class +1 and
-1).

years, the term "experts" does not necessary mean that people have great knowledge

about the field, etc. [77, 17].

Comparing decisions from the oracle and the machine learning model is usually

sum up into a confusion matrix.

Table 2.1 depicts elements of a confusion matrix of a machine learning algorithm

confronted to a ground truth over a 2-class problem. The two classes are represen-

ted as +1 and -1. In total, four possibilities are shown in this matrix (i.e., True Positive,

False Positive, False Negative and True Negative). True Positive, False Positive, False

Negative and True Negative refer to quantities that can be summed up into two situa-

tions. Either the machine learning decisions agree with the ground truth either they do

not. At every decision performed by the machine learning classifier, the amount in the

corresponding cell is increased. When the decision and the ground truth agree, only

the main diagonal can be impacted (i.e., True Positive or True Negative). When they

disagree, the other diagonal is impacted (i.e., False Positive or False Negative) and it

is, in fact, an error from the machine learning algorithm.

Based on the four quantities depicted by the cells of the matrix, ratios can be derived

in order to give an idea on how well a machine learning algorithm is able to take the

right decision. Probably the most commonly used ratios are :

— Accuracy : T P +T N
T P +F P +F N+T N

— Precision : T P
T P +F P

— Recall : T P
T P +F N

but others exist [31] and can be useful depending on what needs to be analyzed.

2.3.4 Overfitting and underfitting

As we said, combining training and evaluation steps can lead to an iterative process.

A straightforward approach to make this process iterative is to inject into the trai-

ning set examples from the test set that were wrongly predict. Nonetheless, by doing

39

Partie , Chapitre 2 – Background

so, there are no guarantees that the impact of adding such examples to the training set

will be positive (i.e., reducing prediction errors in the training set and/or test set). So-

metimes it can have negative impacts since adding examples to the training set might

reduce the generalization capability of the trained model. Meaning that it will perform

worse after retraining than before.

When a model is performing well on the training set but has little generalization

capability (i.e., producing a lot of prediction errors on the test set), it is said to overfit

the training set. On the contrary, if it does not even succeed in producing a few errors

on the training set, it is said to underfit the training set.

In the end, the performance of a machine learning algorithm can be determined by

its ability to : produce few training errors and make the gap between training and test

errors small (i.e., having a "good" generalization capability).

2.3.5 Hyperparameters and validation set

For now, we supposed that the learning step produced only one model, however,

some machine learning algorithms can have hyperparameters that can influence the

behavior of the algorithm. An example that is used by Goodfellow et al. [37] is finding

a polynomial that is able to fit some data points. The degree of the polynomial model

will affect its ability to fit or not those points. In this example, a quadratic function is

sufficient to fit data and increasing the degree of the polynomial degree might lead to

overfitting.

To avoid overfitting, when several models can be produced, a third data set can be

used. It is called the validation set and is usually a subset of the training set that was

set apart and not used in the training process. Thus, data from the validation set follows

the same distribution that the training set and contain examples that were never-seen

before by the algorithm.

The set is used to fix hyperparameters of the model and might help selecting a

model that will perform well on both the training and validation set.

A typical method to set hyperparameters is the cross-validation. It is really useful

in the case that the training set contains a rather small number of observations. Cross-

validation repeats the training and validation process on differently randomly chosen

subsets of the training set. K-fold cross-validation is the most common form of cross-

validation in which k disjoint subsets are created. k−1 folds are used for training and the

40

2.4. Summary

last fold is used for validation. The process is repeated k times, changing the validation

fold every time, and the average of the errors made over the k folds is computed. It

gives an idea of the generalization capability of the model.

Setting hyperparameters have influences on the performances of machine lear-

ning. They can affect different aspects of a machine learning technique, for instance,

considering neural networks, hyperparameters can set up the number of layers of the

network but also the activation functions of neurons, etc. Some parameters can even

impact algorithms in making more or less prediction errors during the training step to

enhance generalization capabilities afterwards.

2.4 Summary

In this chapter, we introduced basics of software product lines and variability models

and machine learning.

Software product lines are centered around customers’ requirements and code

reuse. Nowadays, there are plenty of techniques that tackle the same problem but

focusing on different aspects caused by the fact that customers have different needs

(e.g., minimal resources consumption, fast to execute, etc.). This results in changes in

the way software are conceived : because software tackle the same problem, it is rea-

sonable to think that a common part exists and should be developed once and reuse

for all program variants.

As a result of entering an area of mass software customization, software are be-

coming more and more complex and customers are evermore demanding regarding

their requirements. There is a need to model which parts of the code are common to

all products and which are variable (i.e., particular to a subset of software). Variability

models have been created to that end and feature models are the de facto standard to

reason about software variability. Using this formalism, a product (i.e., a specific piece

of software) is described by a configuration (i.e., a set of features selected from the

feature model).

Some bridges exist between the use of variability models and machine learning. For

instance the notions of valid and invalid products that remind a classification problem

usually associated to machine learning techniques.

Due to the increasing number of products that can be produced by software product

lines, trying to derive all products becomes unfeasible. But, users might be interesting in

41

Partie , Chapitre 2 – Background

only a sub-space of products that can be represented. Machine learning can be used

to restrict automatically large configuration spaces according to some user-defined

requirements. Since machine learning are data-based techniques, leveraging a sample

of previously used configurations and their configurations can help narrowing the scope

of products to cover.

42

CHAPITRE 3

STATE OF THE ART

This part gives an overview of previous work that are related to the problem we

tackle in this thesis.

From the performance matrix we have presented in Chapter 1 and illustrated in

Figure 1.2, we can understand that two different aspects are important. They are pre-

sented in the following figure, providing a complete overview of how work presented in

this thesis are positioned :

FIGURE 3.1 – The studied state of the art in relation with the performance matrix

Before being able to build the performance matrix, we can understand that variants

need to be derived and available which necessitates to test the underlying software

product line. Testing a software product line consists in two steps : checking the as-

sociated variability model and testing resulting products. Checking a variability model

corresponds to explore the configuration space in order to see whether problems can

occur (e.g., unauthorized combination of options) while testing derived products re-

quires to execute them and assess that they provide expected results including fulfilling

performance concerns.

The execution of variants relies on the use of test cases, that corresponds to the

other dimension of the matrix. From this perspective, the problem of building a test

43

Partie , Chapitre 3 – State of the Art

suite of good quality is important. Nonetheless, evaluating the quality of a test suite is

difficult and the definition of quality is dependent of what has to be assessed.

In the end, because of the sheer size of the matrix, the Cartesian product of both

dimensions (i.e., the number of executions to be made to fill the matrix) is too large to

be computed extensively. In the following, we discuss works that are related to software

product line testing, test quality assessment and machine learning techniques applied

to predict performances of software product lines.

3.1 Software product lines and Testing

As software product lines are becoming more complex, proposing evermore custo-

mization possibilities, it becomes difficult to know if bugs exist in the derivation process.

It is also difficult to know whether the model provided by the variability model is correct

or whether some parts of the model are useless, etc.

Testing a software product line consists in selecting a set of products that are de-

rived and then executed on test cases in order to assess their behavior (e.g., do not

crash, compile, do not take too long to be executed nor an excessive memory consump-

tion, etc.). The goal of the selection of products is to cover as many different and di-

verse configurations as possible in order to use all features at least once and check

that the derivation process is well-coded. The second part is to measure performances

and, thus, compare measures with respect to requirements. These two levels of tes-

ting correspond to the dimensions of the matrix we presented in the introduction of this

thesis : the first dimension represents products while the other dimension represents

test cases.

This section is dedicated to work tackling the first aspect of testing a software pro-

duct line. In particular, we focus on the following problems : configuration sampling and

verifying software product lines.

3.1.1 Configuration sampling

Since configurable systems become more customizable, being able to properly

sample configurations out of software product lines is important. It gives the oppor-

tunity to appreciate the panel of performances that products are able to reach.

44

3.1. Software product lines and Testing

Efficiently sampling configurations is a problem that has caught the interest of re-

searchers for several years. Empirical studies conducted by Sarkar et al. [79] and

Medeiros et al. [62] showed that sampling strategies can influence the number of

faults that have been detected. For instance, increasing the size of sample sets can

have positive effects on the fault-detection capability, but it also has a cost. Choosing

the right sampling strategy is still an open problem and many different methodologies

have been already proposed as shown by Medeiros et al. [62].

Different work [22, 42, 56]) point out that generating valid configurations by random

choices is extremely difficult in presence of constraints. Constraints may considerably

restrict the configuration space and may lead to inconsistent (or invalid) configurations

if not taken into account, in turn producing incorrect systems. Furthermore, constraints

might be complex as they can bring several features into the equation. These work try

to efficiently create configurations that cover combinations of features while taking into

account constraints of a variability model.

Other works have proposed to use a different approach in the derivation process.

Guo et al. [40] adapts genetic algorithms to derive products that satisfy constraints

producing only configurations that are valid w.r.t. the feature model. However, it does

not tackle the problem of covering the configuration space but rather to quickly produce

configurations that are valid thus reducing the try-and-error process that might occur in

previous works and helping debugging the variable-intensive system.

Al Hajjaji et al. [3] have proposed an approach which assumes that bugs occur via

feature interactions. This approach tries to find feature interactions and try as much as

possible to diversify configurations that are covered by the test set. Following a similar

idea, Johansen et al. [46] propose to focus on covering arrays that will produce a set of

configurations in order to cover all combinations of a fixed number of features (called t).

For instance, if t = 2, all pairs of features should be covered. Different work [113, 75],

in the context of quality assurance, use a sophisticated framework encompassing co-

vering arrays along with classification trees in order to characterize the configuration

options that are responsible for failures. Galindo et al. [34] present an approach that

optimizes a test suite following a t-wise criterion coupled with a multi-objective optimi-

zation function. This work considers a video generator automatically producing video

sequences in order to benchmark Computer Vision algorithms. The video generator is

modeled by an attributed feature model which contains both attributes and features that

can take real-values. The heterogeneous nature of the feature model makes previous

45

Partie , Chapitre 3 – State of the Art

work hard to use as they were designed for boolean feature models only. Attributes

and real-values are important as users can express an intention in the product they

want to create (e.g., create a dense environment with a lot of moving objects that can

partially occult each other) or a specific atmosphere (e.g., a scene recorded at night).

The multi-objective optimization is brought by the fact that users might be interested in

deriving variants with predefined value for some features. For example, regarding video

sequences, users might want to produce video sequences that take place during the

day and thus, they would like to produce only this kind of videos which limit values that

can be set to some features (e.g., features controlling light sources and their brightness

on the scene).

All those works aim at sampling the configuration space, trying to pick configura-

tions to cartography this space. Recently, Varshosaz et al. [109] proposed a survey

classifying different sampling techniques in order to provide a new, clearer structure

and trying to pinpoint new fundamental problems in the field. Being able to appropria-

tely sample a space is an important topic that remains crucial in the world of software

product line. However, presented work do not take into account the variability of per-

formance that can be reached. That is, despite knowing that configurations are linked

to performances of systems, they only consider covering the configuration space in

order to test the software product line. Being able to sample both diverse configura-

tions that also show diverse behaviors is important from our point of view since both

are important to end-users. Furthermore, we exploit both aspects in our performance

matrix (see Fig. 1.1) : diverse configurations represent the program variants (i.e., a first

dimension) which, hopefully, leads to diverse behaviors regarding various test cases

(i.e., the second).

3.1.2 Fault Detection in software product lines

Detecting faults and testing software product lines can be decomposed into two ac-

tivities : checking the structure of the underlying variability model and testing products

derived from this model.

Thüm et al. [104] proposed a survey analyzing a number of techniques and tools

that have been developed in order to verify software product lines. They are mostly

based on testing, type checking, model checking or theorem proving. Kim et al. [49]

applied static program analysis techniques to find irrelevant features for a test. SPLif,

46

3.1. Software product lines and Testing

proposed by Souto et al. [93], aims to detect bugs of software product lines with in-

complete feature models.

Once the structure has been checked, testing products require computations to

test their behaviors. It might still take a long time. Thus, there is also a need to order

the execution of test cases. The goal of ordering their execution is to execute, first,

test cases that are the most important (i.e., that provide the most information about

the behavior of variants). A typical application is to ensure that variants behave as

expected on common use cases. Besides ordering test cases, it can also be used to

reduce the test suite such that executions never exceed a given testing time budget.

A body of work [3, 26, 49, 50, 51, 66, 93, 104] has been developed focusing on

which tests should be executed first according to the time budget that is allocated to

the test activity. The problem here is the increasing number of products that can be

derived from a product line. As this number gets bigger, testing all of them becomes

increasingly time consuming up to a point that it is not feasible anymore (e.g., the linux

kernel can provide up to 213,000 different configurations which is more than the estimated

number of particles in the universe). Halin et al. [41] reported that an industrial project

(i.e., JHipster) only consider the most commonly used configurations in order to run

tests over the product line. Due to limited resources, developers were able to run tests

on only 12 configurations while the product line can provide more than 26, 000 confi-

gurations. Halin et al. showed that deriving and analyzing the behavior of all products

of a product line can provide useful information. In particular, in their study, they found

that more than 1

3
of the configurations did not provide a product able to compile caused

by a feature interaction that was not documented. In addition, authors used different

sampling techniques in order to check whether one of those strategies might fit into the

test budget but all of them failed, meaning that there is still room for improvement in

this area.

In previously discussed work, the order of execution of variants remains to be de-

termined by the tester. They provide a way to reduce a test suite by selecting a subset

of the test suite but no orders are applied on elements of the resulting set. Meaning

that no other guidance has been given to testers such that it could help them to decide

which test cases of the subset should be executed first. Retrieving an order of execu-

tion may give several benefits. First, it could avoid exceeding testing time budget while

minimizing the impact of not executing a bunch of test cases. Second, it could further

reduce the size of the test suite since the last test cases may not matter that much and

47

Partie , Chapitre 3 – State of the Art

thus could be discarded. Mustafa et al. [3] propose to use a similarity-based approach

to address this problem. That is, by analyzing configurations of systems, products can

be clustered as being "far" or "close" one to an other. Thus, the idea is to select first the

product that maximizes feature interactions (i.e., the product that activates the maxi-

mum of features), then to take the most dissimilar product, and so on with respect to

this set of products and a distance measure 1. The order in which products are drawn

corresponds to the order of execution that should be applied. This approach seems

to work very well for binary feature models but might be more difficult to use when

features can take real-values since similarity may rely on heuristics and the number of

products might quickly increase due to multiple interesting values taken by such fea-

tures. Furthermore, a threat that has been identified is the scalability of the approach.

This technique might take too long to identify products that maximize the hamming dis-

tance with the set of products under construction as constraints might be complex and

the set of valid products might be very large to explore.

3.1.3 Metamorphic Testing

Metamorphic testing is widely used when the definition of an oracle for tests is hard

to define. Metamorphic testing relies on the definition of so called Metamorphic Rela-

tions which are necessary properties stipulating the expected behavior of the software

under test. The goal is to check these Metamorphic Relations via multiple executions

of the software. If a single execution breaks one of the Metamorphic Relations then

bugs have been introduced into the code of the software.

A typical example is the implementation of the sinus function. One possible Me-

tamorphic Relations regarding the sinus function is sin(π − x) = sin(x) stating that

computing sin(x) should return the same value as computing sin(π − x).

Twisting a bit the idea, instead of considering different executions differing in only

the input (as it is the case for the previous example), one could consider different im-

plementations of the same functions. Since these programs are supposed to provide

the same function, results should be equal. Results being different is abnormal and, in

some sense, a bug has been introduced in one of the implementations. Further inves-

tigations might be needed to target more precisely which ones of the implementations

or which part of the code are faulty, meaning the potential use of more executions, in

1. authors proposed to use the Hamming distance

48

3.2. Tests quality

turn, involving more implementations and/or inputs.

The goal is thus to compare different programs using the same input and determine

whether some relations are kept from one execution to another [10]. For instance,

Donaldson et al. [27] applied metamorphic testing on computer graphics renderer, a

domain in which programs can be compiled with different compilers, using different li-

brairies, etc. However, in such a context, assessing that the rendered image and the

reference image are identical can be difficult (e.g., due to different optimization, me-

mory representations or color representations).

Furthermore, Liu et al. [59] conducted a study to assess the fact that metamor-

phic testing is able to catch bugs when oracles are hard to define. Since then, several

surveys have been conducted [10, 82].

Non-functional properties remain out of the scope of all discussed work. Non-

functional properties or performance properties are usually hard to assess with the

definition of a strict oracle (as it could be done with the sinus function) since the en-

vironment might affect these properties. For instance, assessing execution time might

depend on the processor of the machine or the workload of the processor might also

impact the execution time. Recently, some work discuss the use of metamorphic tes-

ting [15, 83] to alleviate the test oracle problem in the context of evaluating non-

functional properties.

3.2 Tests quality

Until now, we have talked about testing software code through the selection of confi-

gurations but different techniques have also tried to assess the performance of tests in

discovering bugs. We provide an overview of those techniques in the following.

3.2.1 Traditional metrics

Probably the first methods to test programs were the so-called "structural" software

testing [43]. The ultimate goal of structural testing is to find bugs in a program. Tests

must be executed in a white-box context (i.e., the code must be accessible in order

to assess how much have been covered by a test suite). Further works [67, 98] have

discussed benefits and limits of such approaches. Structural testing can be used as a

complementary approach to other testing techniques to report which portions of code

49

Partie , Chapitre 3 – State of the Art

have not been executed at all. Such parts of the code might be a problem as bugs can

loom there. This piece of information can be used to put more effort in producing new

test cases that will cover these parts. This kind of analysis can be done at different

scales, for instance : statement, branch, etc. The most simple scale is the statement-

level. In this case, a test suite will try to cover a maximum of lines of code. An associate

coverage measure is used and can be declined for every scale. In the case of statement

coverage, it is defined as the ratio of executed lines of code to the total number of

lines in the system under test. Based on this score, test suites are supposed to be

comparable.

In any case, structural testing does not focus on functional aspects of the code nor

other non-functional aspects (e.g., the execution time is "normal" w.r.t. requirements or

any other specifications, etc.).

3.2.2 Mutation Testing

In the software engineering community, Mutation analysis is a well-known technique

to assess the effectiveness of test suites or to support test generation [6, 7, 11, 36, 69,

78].

Mutation testing [7, 78] tries to assess how well a test suite can detect bugs in pro-

grams by running it against synthetic program variants (called mutants) in which faults

are injected. Different fault models can be used such as the removal of function calls,

changing operators in numerical operations, removing a set of instructions, etc. Test

effectiveness is measured based on the number of “killed” mutants (i.e., mutants failing

the test). Baudry et al. [11] proposed to adapt genetic algorithms to produce a bac-

teriological algorithm in order to produce a set of test cases. While genetic algorithms

tend to produce sets converging towards similar individuals, bacteriological algorithms,

on the contrary, try to provide a diverse set of individuals by starting with a common

"bacteria" that will mutate in different ways and create new individuals as new genera-

tions are computed. The goal is to build new test cases that are likely to find new bugs

in a system.

50

3.3. Machine learning and software product lines

3.2.3 Quality of performance tests

In the end, based on the body of work we presented, it seems that no approaches

exist in assessing the quality of performance tests. Structural testing does not care

about performances at all, it only reports on parts of the code that have been execu-

ted at least once, helping to find bugs or to create new test cases that will focus on

uncovered parts of the code.

Mutation testing assesses that tests are able to catch bugs in pieces of code. Once

again, fault models used to inject bugs only care about the structure of the code

(e.g., removing some of the pieces) but they do not focus on performance aspects,

and therefore are not able nor designed to detect such problems.

In the end, there is a lack of interest in the testing community to assess performance

aspects of systems. Because of that, the problem of building efficient test suites asses-

sing performances is also left apart. Probably a representative example is machine

learning algorithms. Every year, different competitions are organized proposing their

own data sets to evaluate competitors’ techniques. Proposed data sets have grown

over the years, up to a point that millions of images are given to competitors but no-

body knows whether every image in the data set are essential to the evaluation.

3.3 Machine learning and software product lines

Artificial intelligence is already present in the world of software product lines. Sol-

vers have been used, for many years, in configurators to help users know whether so-

lutions exist in the configuration space based on choices that they have already made.

However, nowadays, artificial intelligence is evermore assimilated to machine learning

and deep learning.

In the following, we propose an overview of synergies existing between machine

learning and software product lines.

3.3.1 Performance prediction

With the amount of products that can be derived from modern systems, trying to

predict performance of individual products is an important topic of research. Chen et

al. [20] emphasize the fact that for component-based systems, it is difficult to properly

51

Partie , Chapitre 3 – State of the Art

understand the influence of the use of components over the performances of systems.

It is even more difficult since interactions might occur between two components. In

the same vein, Tawhid et al. [97] remind that predicting performances of product va-

riants is difficult since products produced from a same software product line may be

used under different settings, in different contexts. To avoid that, generic performance

behaviors are built via the use of benchmarks. Chen et al. [20] proposed a method

to build more fine-grained models for components by observing their behaviors on a

benchmark while Tawhid et al. [97] proposed a succession of two model transforma-

tions starting from the software product line model to a performance annotated product

model and finally to a performance model. Sincero et al. [92] proposed a framework

in which (non-functional) performances of previously derived products are kept into a

database. As the database grows larger and larger, more information are gathered and

allow the analysis of the influence of features over performances of the system. Howe-

ver, this requires to select a configuration, derive the corresponding product and assess

its performances over a benchmark. These are systematic approaches that are unli-

kely to scale to modern variability-intensive systems. Instead, the proximity between

configurations should be exploited to predict the behavior of new configurations. The

underlying assumption is that similar configurations (i.e., presenting only a few diffe-

rences in the activation of options) should behave similarly since most options are the

same, thus, using similar pieces of code, etc.

With prediction models coming from machine learning, the promise is to avoid deri-

ving and measuring all products but to use a small number of initial configurations and

exploit similarities between configurations of this set and new configurations in order to

infer performances of the new product. In this case, regression techniques are widely

used as they are designed to predict continuous values.

[39, 79, 87, 88, 89, 108, 115] create a performance-influence model out of a few

configurations in order to predict performances of systems that will be derived in the

future. First of all, this model learns the influence of feature interactions on the perfor-

mances of a system. Then, it exploits discovered influences and interactions to predict

the performances of new configurations based on their activated features.

The effectiveness of statistical learning techniques and regression methods has

been empirically studied. Siegmund et al. [87] combined machine-learning and sam-

pling heuristics to compute the individual influences of configuration options and their

interactions. The approach has applications in performance-bug detection or configu-

52

3.3. Machine learning and software product lines

ration optimization. Because of these applications, the model needs to be understan-

dable by human beings. Siegmund et al. [39, 79, 89] have focused on using CART

(Classification And Regression Trees) in order to build models that can be easily inter-

preted. Produced models are binary trees which make a decision over a feature value

at every level of the tree.

However, these works tackle a regression problem and try, in the end, to predict the

exact performance (or at least a value as close as possible to the real one) of a system.

Providing user-guidance in order to specialize a software product line does not need to

predict the exact performance value of a configuration but rather to be close enough in

order to help users assessing whether performances of a given configuration are good

enough with respect to their requirements. In spite of being similar, these two problems

are rather different since they aim for two different objectives.

3.3.2 Testing machine learning techniques

Machine learning techniques have a strong mathematical background which should

ensure strong guarantees about convergence and the correspondence between the

output of the technique and the expected result of the task at hand. Despite this back-

ground, empirical evaluation is performed following the process we have presented in

Section 2.3.3.

Nonetheless, some efforts have been made in the world of Computer Vision 2 in

order to bring some validation methods from the Software Testing community to this

particular domain. Machine learning and deep learning based systems are rather dif-

ferent from "traditional" software systems. Indeed, results of computations are defined

by data that are fed in entry of the process (i.e., in the training phase) which affects the

behavior of the system later. As an example, we can imagine that the same machine

learning based system initially fed with two different data sets (following the same data

distribution) will produce separating functions that differ in some aspects, in turn produ-

cing differences in the classification of some inputs and finally activating different parts

of the code. Since the definition of separating functions is determined by the training

set (and sometimes even by the order in which data are fed to the algorithm), the final

behavior of the system is very hard to predict. Therefore, structural software testing

2. A domain initially trying to model and understand how human beings perceive, recognize, etc. ob-
jects surrounding them and thus relying a lot on machine learning techniques.

53

Partie , Chapitre 3 – State of the Art

techniques are unusable as testing the underlying code would not tell anything about

the behavior of the system.

Still, neural networks and deep learning become evermore used in computer vision.

Recently, DeepXplore [73] proposed a measure similar to structural testing applied

for deep learning algorithms. In this work, they adapt the underlying assumption of

structural tests from code to the structure of neural networks such that it becomes : test

suites should activate at least once every neuron of a network. DeepXplore remains

a white-box testing approach that assumes to have access to internal details of the

neural network under study, which might not always be the case. Based on this work,

DeepTest [107] is a tool automatically building test cases that activate as many neurons

as possible.

After that, Zhang et al. [114] proposed to use Generative Adversarial Networks to

create test cases automatically. Generative adversarial networks are a recent trend in

machine learning that breaks the fundamental assumption of machine learning stating

that training and test sets must be drawn following the same distribution function. They

validate their approach by using metamorphic testing presented in section 3.1.3.

3.4 Summary

This chapter overviewed different work conducted in research fields related to this

thesis. We have discussed techniques to test software product lines and other soft-

ware testing approaches before moving to the use of machine learning in the software

product lines field and vice-versa.

It appears that performance evaluation of software systems remains a difficult task.

However, this thesis tackles such problem. Long terms objective of this thesis would be

to guide users in future configuration selection of a system.

Most of research efforts have been put in efficiently detecting and fixing bugs in

software code while performances aspect are mostly left aside. For instance, testing a

software product line consists in first testing that the variability model is correct w.r.t. the

requirements of end-users. Meaning that, first, configurations are sampled before exe-

cuting them to check that products are not buggy. No performance aspects are present

in this process.

Choosing appropriate test cases is also a difficult problem. In particular, assessing

the quality of test suites is a difficult problem due to the potential large number of test

54

3.4. Summary

cases to consider. And again, those test cases do not focus on performance aspects.

In the end, it is difficult to properly assess performances of products derived from a

software product line and it is difficult to guide users in the selection of a product that

is able to meet users’ performance requirements.

Existing work on performance prediction are interesting but they target the selection

of the configuration that optimizes a certain criterion without letting possibilities for

users to choose a configuration among a set of potential interesting configurations.

Because these works use machine learning prediction power, they do not assess that

test suites used to evaluate performance criteria allow to observe a variety of different

behaviors (i.e., the quality of performance test suites are not evaluated).

The contributions of this thesis are addressing these two aspects. The first contri-

bution provides a method to restrain the number of configurations that needs to be

considered when trying to configure a product such that it meets specific goals. The

second contribution evaluates the quality of performance test suites in terms of their

ability to exhibit various behaviors of different products coming from a same software

product line.

The next chapters present and detail these contributions.

55

CHAPITRE 4

AUTOMATIC SPECIALIZATION OF

SOFTWARE PRODUCT LINES USING

MACHINE LEARNING

4.1 Introduction

This work focuses on the generation of program variants that will populate the first

dimension of the matrix presented in Figure 1.1. We remind that one goal of this matrix

(from the products perspective) is to assess performances of program variants coming

from a software product line. It helps to get an idea of the range of performances

that can be reached by products. This is especially important when trying to choose a

configuration that have to fit specific needs. In certain cases, for instance when requi-

rements are too strong, users will have poor chances to find a configuration that can

be derived into a product that meet requirements. Therefore, before trying to estimate

the range of performances, it is smart to reduce the number of configurations such that

available products have high probabilities to meet performance goals. Still after sco-

ping configurations, the number of remaining configurations can remain too big to be

manageable manually.

As presented in Section 3.3.1, a body of work is dedicated to predict performances

of system variants of a software product line. However, these works tackle the problem

of predicting accurately performance values for a given configuration of a software pro-

duct line. Being more accurate : considering a configuration, performance prediction

methods try to infer 1 performance values of the derived product associated with the

configuration. Work discussed in Section 3.3.1 consider a problem (e.g., optimizing a

specific performance measure) allowing to return a single configuration that meets pre-

1. meaning that performances are not actually measured

57

Partie , Chapitre 4 – Automatic Specialization of software product lines using Machine

Learning

defined requirements without taking into account that users might have unexpressed

preferences (e.g., requirements that are difficult to state. For instance, putting in rela-

tions different modules, requirements that are hard to check, etc.). In this situation,

users fall back into a try-and-error process in which they will ask for configurations,

check that preferences are reached, if not, selected configurations are added to the

constrain set and thus forbidden to be selected again. To tackle this problem, we ask

users (or any automated routine) to decide whether a configuration is interesting and

should be kept in the set of available configurations.

Keeping the idea of predicting performances of configurations (without having to

actually measures performances), we tackle the problem of specializing a software

product line which restrains the space of valid configurations such that they meet a

certain performance goal. Therefore, the space of actually interesting products for a

specific goal (defined by users) can be seen as a subspace of the initial space of

possible products given by a variability model. A typical way to go from the initial space

to the desired subspace is to add constraints to the variability model further restricting

the initial space down to the desired subspace. It can be equally seen as a way to

constrain the acceptable inputs of the variables of an automatic product derivator.

As a result, we aim at restricting configurations of a software product line such that

remaining valid configurations as defined by Def. 5 meet a certain goal defined by users

(e.g., an upper bound for execution time). Doing so, we aim to ease the selection of an

interesting configuration. Nonetheless, due to the number of configurations to check,

this kind of restriction cannot be done manually.

Except for the beginning of this section and the conclusion, the remaining of this

chapter is mainly copied from our paper published at the Software Product Line Confe-

rence 2016 [102]. We changed the terminology of faulty (resp. non-faulty) configura-

tions/products to not interesting (resp. interesting) configurations/products as it seems

more appropriate.

The challenge addressed in this work is to automatically synthesize a set of constraints

that would be both precise (allow all interesting configurations) and complete (never al-

low a configuration that do not respect performance goals). First, we assume that goals

can be stated as a routine that can be called automatically. It can take the form of a

function that tests configurations of a system and assesses that they can meet a per-

formance goal. First, this routine is used on randomly generated products from the

product line, keeping for each of them its resolution model (i.e., its configuration). The

58

4.1. Introduction

routine classifies those products into two categories (i.e., interesting or not interesting).

Based on the configurations and the decisions taken from the routine, we propose to

use a machine learning approach to discover combinations of features and/or range of

values producing a model that is able to categorize new configurations. Finally, based

on the classification model, we build new cross-tree constraints and add them to the

variability model in order to guide further generation of products.

We validate our approach on a product-line video generator developed in the indus-

try [1, 34], using a simple computer vision algorithm as an oracle.

The rest of this part is organized as follows. Section 4.2 presents the overall prin-

ciple of our approach and discusses the kind of product-lines it is suited for. Section 4.3

applies our method on an existing video generator. Section 4.4 presents the experimen-

tal results in terms of meaningfulness, precision and recall and discusses threats to va-

lidity. Section 4.5 indicates possible directions of improvements. Section 4.6 concludes

with perspectives open by this work.

59

Partie , Chapitre 4 – Automatic Specialization of software product lines using Machine

Learning

FIGURE 4.1 – Sampling, testing, learning : process for inferring constraints of product
lines

4.2 Method

Figure 4.1 describes our approach. We assume that there is a variability model

that documents the configuration options of the product line under consideration. In

such variability model, options can be Boolean features or numerical attributes. From a

configuration (see Def. 5), product line artifacts are assembled and parameters are set

to derive a product. The variability model may already contain some constraints that

restrict the possible values of options (e.g., the inclusion of a Boolean feature implies

the setting of a numerical value).

A first step in the process is configuration sampling. It consists in producing valid

configurations (see Def. 5) of the original variability model V M . The set of sampled

configurations is a subset of JV MK. Numerous strategies can be considered such as

the generation of T-wise configurations, random configurations, etc. [3, 22, 34, 42, 46,

56, 62, 79]

Second, an oracle is reused or developed. It tests the fact that a product (derived

from a configuration) meets users’ requirements. It may refer to the fact the product

does compile, does not crash at run-time, passes the test suite, and/or does meet a

particular quality of service (e.g., compute under a fix amount of time). The previously

mentioned oracle is used to create two classes of configurations. Labels are either

60

4.2. Method

interesting or not interesting as defined in Def. 6.

Definition 6 (Oracle and interesting configurations) An oracle is a function that takes

a derived product as input and returns true or false. An interesting configuration is a

configuration for which the oracle returns true when taking as input the corresponding

derived product. Conversely, configuration are said to not interesting if the oracle re-

turns false.

A third step is to use a machine learning procedure that operates on the pre-

viously labeled configurations and automatically infers constraints. A new variability

model V M ′ is created by adding the newly identified constraints to the original varia-

bility model. Therefore, the new variability model V M ′ is a specialization [105] of V M

and JV M ′K ⊂ JV MK. In other words, V M ′ forbids not interesting configurations that

were initially considered as interesting in V M .

Instead of using machine learning, an alternate and sound approach is to remove

not "manually" interesting configurations from the original variability model. It consists

in negating all not interesting configurations and then making their conjunctions (see

Definition 7). However, this approach is very limited since (1) it only removes a typically

small number of configurations – only those that have been sampled and tested ; (2)

it does not identify which configuration options and values are involved and the root

causes of the fault.

Definition 7 (Sound approach) Given a set of not interesting configurations

{fc1, fc2, ..., fcn}, a sound approach computes a new variability model V M ′ such that

V M ′ = V M ∧ ǫ where ǫ =
∧

i=1..n ¬fcn

Therefore, a simple removal of not interesting configurations is not a viable solution

for product lines exhibiting a large number of configuration options or numerical values.

As an oversimplified example, let say we have configurations {fc1, fc2, fc3, . . . , fcn}

that are not interesting. Among values of attributes and features, the attribute A varies

as follows : A = 0.265 in fc1, A = 0.26 in fc2, A = 0.275 in fc3, . . ., A = 0.29 in fcn. With

a basic case by case extraction, we cannot infer that (perhaps) A must not be in the

range [0.26; 0.3]. The use of machine learning can improve the inference of constraints

through the prediction of ranges of values that make configurations not interesting.

The expected benefit is to discard much more not interesting configurations with

the inference of constraints : Figure 4.2 summarizes the potential of machine learning.

61

Partie , Chapitre 4 – Automatic Specialization of software product lines using Machine

Learning

A rectangle is used to represent JV MK. The set of configurations that can be detected

as not interesting is represented as red clouds/rectangles in Figure 4.2. This set of not

interesting configurations is a priori unknown (some configurations might be known but

not all of them) which is precisely the problem.

Configurations detected by an oracle as not interesting are included in this set (see

crosses in Figure 4.2). The enumeration and testing of configurations for covering the

whole set of not interesting configurations would take a large amount of resources and

time. In response, machine learning infers a set of constraints delimiting sets of not

interesting configurations (instead of only forbidding individual configurations). Thanks

to learning and prediction, we expect the capture of additional configurations that are

not interesting without the cost of testing those configurations(i.e., without actually ge-

nerating variants and make them run against test suites).

In the ideal case, machine learning determines perfectly the contours of a set of not

interesting configurations. That is, this sub-space will contain only configurations that

are not interesting. We represented such behavior as the dashed rectangle exactly cor-

responding to the red rectangle (see left-hand side Figure 4.2). However, machine lear-

ning might produce false positives. That is, some configurations are classified as not

interesting whereas they are actually valid from the oracle’s perspective. An example

is given in Figure 4.2 with the red cloud and dashed rectangle at the bottom : some

configurations are included outside the red cloud and in the blank area. Another kind

of misclassification can happen when the dashed rectangle is included in the red cloud

(see right-hand side of Figure 4.2). In this case, machine learning failed to classify

some configurations as not interesting. The set is incomplete. Despite specific cases

in which machine learning can be unsound and incomplete, we expect that, in gene-

ral, learning constraints enables to capture more not interesting configurations than a

simple conjunction of negated configurations.

62

4.2. Method

original set of configurations

x
x

x

x x

(unknown) set of faulty configurations

x faulty configuration of the sampling

x
x

x

x

x

o

o

o

o

o

o

o

o

o o

o
o

o valid configuration of the sampling

set of faulty configurations discarded with

constraints inferred by machine learning

FIGURE 4.2 – Constraining the configuration space

63

Partie , Chapitre 4 – Automatic Specialization of software product lines using Machine

Learning

4.3 Case Study

We apply and evaluate the proposed method with a real-world product line called

MOTIV which is a highly-configurable video generator developed in the industry [1].

Our objective is to address the following research questions :

RQ1) Do extracted constraints make sense for a computer vision expert ?

RQ2) What is the precision and recall of our learning approach ?

RQ3) What are the strengths and weaknesses of our approach compared to existing

techniques?

4.3.1 Case and Problem

Given a configuration file, the MOTIV generator synthesizes a video variant with

specific properties (luminance, trajectory of vehicles, noises, distractors, etc.). The

software generator is written in Lua and implements numerous complex, parameterized

transformations for synthesizing variants of videos [1, 34].

The motivation behind the generator is that the current practice for benchmarking

tracking algorithms (e.g., algorithms that track objects of interests in a scene) is limited

to a manual collection of video sequences. Such manual effort is error-prone and time-

consuming since it requires to (1) shoot video sequences in real environments and

(2) annotate videos with a "ground truth". As a result, benchmarks with limited size and

diversity are usually employed. In response, this MOTIV generator has been developed

to automatically produce a large and diverse set of video sequences.

The generator comes with a variability model (an excerpt is shown in Fig. 4.3 similar

to the feature model presented in Fig. 2.2). The model organizes features and attributes

in a hierarchical tree. Some features are Boolean (i.e., included or not) while others,

called attributes, are defined over continuous ranges of numerical values (see bottom

of Figure 4.3). A given configuration is obtained by choosing a particular value for all

these features and attributes. The software generator finally exploits the selected va-

lues to produce a video sequence corresponding to a configuration. Users can control

the generation process to cover a large diversity of video variants and thus challenge

tracking algorithms under different setups.

Problem. Users quickly noticed that the specification of constraints in the variability

model is crucial for the video generator. Without constraints, many configurations lead

64

4.3. Case Study

to the generation of unrealistic video variants, due to the incompatibility between fea-

tures and attributes’ values. Generating such kind of videos is an issue for two major

reasons. First, the production of videos has a cost (about half an hour of computa-

tion on average per video variant). As a result, the synthesis of large datasets with

thousands of video variants (as originally planned by industrials) would create a lot of

irrelevant videos, thus wasting computation power as they would not be used. Second,

running tracking algorithms on videos are computationally expensive. Forcing them to

run on irrelevant videos (e.g., with too much noise, or no illumination) would be, again,

a waste of time and resources. Prior efforts [1, 34] were made to properly formalize the

variability but were not sufficient. As a consequence, we need to enforce the generator

with constraints to make it usable and useful for practitioners.

Although some basic constraints have been manually specified, the generator still

produced irrelevant video variants. In order to capture additional constraints and gather

some knowledge, we have made several iterations with the developers of the video

generator through meetings and mail exchanges. Finally, we came to the conclusion

that an analysis of the Lua source code or further efforts to manually specify constraints

present strong limitations. It is mainly due to the fact that (1) the configuration space is

extremely large (see hereafter for more details) ; (2) there is not enough knowledge to

comprehensively capture constraints over features and attributes’ values.

A manual exploration of the configuration space requires substantial efforts for both

setting configuration values, assessing the quality of the output (videos) and learning

from defects. We thus propose to use the method we described in the previous section

to automate all these tasks, including the inference of constraints via machine learning.

We now detail how we instantiated every part of our method (sampling, testing,

learning) within our case study.

4.3.2 Solution for Inferring Constraints

Figure 4.4 presents the entire process of extracting constraints of the video gene-

rator. First, a set of configuration files is sampled from the variability model ; the Lua

generator derives a video variant for each configuration. This set of video variants acts

as a training set for the machine learning technique to come. An oracle is then used

to label these videos as interesting or not by computing the quality of each video.

65

Partie , Chapitre 4 – Automatic Specialization of software product lines using Machine

Learning

As explained before, the goal is to test tracking algorithms, thus, a sufficient quality

(i.e., for which objects can be distinguished) results in the label "interesting" and "not

interesting" otherwise. Finally, a machine learning process is executed to extract the

constraints and re-inject them into the original variability model. We now detail each

step of the process.

4.3.3 Generating a training set out of the variability model

In the MOTIV case study, the variability model exhibits numerous features and attri-

butes whose range of values are reals and continuous. Figure 4.3 presents an excerpt

of its hierarchical structure and possible values for features and attributes. In total, the

variability model contains : 42 real attributes, 46 integer attributes, 20 Boolean fea-

tures, and 140 constraints (mainly constraints specified by the experts). Ranges vary

between 0 and 6 for the integers domains, and in average between 0.0 and 27.64 for

the real domains with a precision of 10−5. This would end up in approximately a total

of 10103 configurations (not considering constraints) : 220 (because of the boolean va-

riables) ×646 (because of the integer variables and) ×276400042 (because of the real

variables). Overall the variability model presents the particularities of encoding a large

configuration set with lots of non-Boolean values.

The nature of this model has encouraged us to develop a new version of the FAMI-

LIAR tool suite [2, 34]. We implemented a solution capable of natively coping with real

attributes which rely on the Ibea solver 2 provided with Choco 3 [76].

To generate a training set for the machine learning process, we need to produce

a set of valid configurations (gathering both interesting and not interesting products).

Different sampling techniques [3, 22, 34, 42, 46, 56, 62, 79]can be considered but some

of them are not applicable to our case since we have to deal with real and integer

values. We implemented the following procedure. First we randomly pick a value for

each attribute within the boundaries of its domain. Then, we propagate the attribute

values to other values with a solver ; the goal is to avoid invalid configurations (see

Def. 5). We continue until having a complete and valid configuration. We reiterate the

process for collecting a sample of configurations.

2. http://www.ibex-lib.org/

66

http://www.ibex-lib.org/

4.3. Case Study

4.3.4 Oracle

Some videos of the generator are not interesting for computer vision algorithms and

humans. Typically, these are videos in which the vision system cannot perceive any-

thing or cannot distinguish moving objects that should be tracked from other that should

not be (e.g., distractors). Image quality assessment tries to understand the conditions

under which the vision system is likely to fail this kind of distinction. We implemented

an image quality assessment oracle, presented in [28], that can automatically assess

whether a video is faulty. The principle is to perform a Fourier transformation and to

reason about the resulting distribution of Fourier frequencies. Such a technique eva-

luates the quality of a single image while we produce entire videos. To avoid calling the

oracle on every frame of a video and to save time, we sample a video into a smaller set

of images (i.e., taking one frame regularly out of the video stream). After applying the

image quality assessment method on sampled images, we aggregate results to decide

whether a video is interesting or not. We empirically set a threshold : if at least half

of the images are considered not interesting, then the whole video sequence is also

considered not interesting.

4.3.5 Machine learning

Using our oracle, we assigned a label (i.e., interesting or not interesting) to every

video of the sample. We use a machine learning algorithm to understand the rela-

tionship between videos being interesting and features/attributes’ values. Different ma-

chine learning methods exist. Some of them are sophisticated and perform only a few

classification errors while others are less advanced but are much more understandable

when visualizing the output model. In our case, we wanted to obtain a high level of un-

derstandability when extracting constraints. Specifically, we employed Binary Decision

Trees.

Figure 4.5 presents an excerpt of the decision tree obtained from the Weka 3 soft-

ware. In this tree :

— ovals represent features (written inside) on which decisions will have to be ta-

ken ;

— labels over edges represent threshold value to decide which path to take ;

3. http ://www.cs.waikato.ac.nz/ml/weka/

67

Partie , Chapitre 4 – Automatic Specialization of software product lines using Machine

Learning

— rectangles represent leaves of the tree and groups of configurations that are

mainly of the same class.

Leaves present several pieces of information. First, there is the label of the most re-

presented class. In our case it is either ’1’ (not interesting) or ’0’ (interesting). Second,

the number of configurations associated to the label. Finally, the number of configura-

tions of the other class. As previously discussed in Section 2.3, due to the nature of

machine learning algorithms, classification errors can be made (even at training time).

This is the case, for instance in this figure, considering the top right corner leaf in

which one configuration associated with the label "not interesting" have been grouped

with 110 configurations associated with the label "interesting". These are classification

errors, typically configurations that are at the boundary of two classes.

4.3.6 Extracting constraints

Once the decision model has been created, we traverse the tree and reach every

leaf. If a leaf is labeled ’1’, its path is extracted and remembered. We consider that a

path is a set of decisions, where each decision has to be taken regarding the value of a

single feature. We create new constraints by building the negation of the conjunction of

the different decisions to make along the path to reach a leaf labeled not interesting. If

features appear repeatedly (in different constraints for instance), some simplifications

are performed. In the example of Figure 4.5, we can extract the two following simplified

constraints :

! (s i g n a l _ q u a l i t y . luminance_dev > 1.01561 && s i g n a l _ q u a l i t y .

luminance_dev <= 18.1437)

! (s i g n a l _ q u a l i t y . luminance_dev <= 21.3521 && s i g n a l _ q u a l i t y .

luminance_dev > 18.1437 && capture . l o c a l _ l i g h t _ c h a n g e _ l e v e l

<= 0.481449)

68

4.3. Case Study

/ / D i s t r a c t o r s
r e a l d i s t r a c t o r s . b u t t e r f l y _ l e v e l [0 . 0 . . 1 . 0]
r e a l d i s t r a c t o r s . b i r d _ l e v e l [0 . 0 . . 1 . 0]
r e a l d i s t r a c t o r s . far_moving_vegetat ion [0 . 0 . . 1 . 0]
r e a l d i s t r a c t o r s . c lose_moving_vegetat ion [0 . 0 . . 1 . 0]
r e a l d i s t r a c t o r s . l i g h t _ r e f l e c t i o n [0 . 0 . . 1 . 0]
r e a l d i s t r a c t o r s . b l i n k i n g _ l i g h t [0 . 0 . . 1 . 0]
/ / Captur ing cond i t i ons
r e a l camera . v i b r a t i o n [0 . 0 . . 1 . 0]
r e a l camera . focal_change [0 . 0 . . 1 . 0]
r e a l camera . pan_motion [0 . 0 . . 1 . 0]
r e a l camera . t i l t _ m o t i o n [0 . 0 . . 1 . 0]
r e a l camera . a l t i t u d e [0 . 0 . . 5 . 0]
r e a l capture . i l l u m i n a t i o n _ l e v e l [0 . 0 . . 1 . 0]
/ / S igna l q u a l i t y
i n t s i g n a l _ q u a l i t y . force_balance [0 . . 1]
r e a l s i g n a l _ q u a l i t y . luminance_mean [0 . 0 . . 255.0]
r e a l s i g n a l _ q u a l i t y . luminance_dev [0 . 0 . . 255.0]

FIGURE 4.3 – Variability model excerpt of the generator

69

Partie , Chapitre 4 – Automatic Specialization of software product lines using Machine

Learning

Variability

model

Sampling

method

Configuration

files

Generating the training set

…

Derivation

(Lua generator)

Oracle (Video Quality

Assessment)

…

Labeling

Machine learning

J48 tree

signal_quality.luminance_dev

signal_quality.luminance_dev

signal_quality.luminance_dev

capture.local_light_change_level

0 (110.0/1.0)

0 (2.0)

1 (27.0)

1 (4.0) 0 (3.0)

> 21.3521<= 21.3521

<= 1.01561 > 1.01561

<=18.1437 >18.1437

<=0.401449 > 0.401449

Variability

model

+
cst1 ^
cst2 ^

…

Constraints

Constraints
extractor

Constraining the original variability model

Testing the training set

Separating model
using machine learning

FIGURE 4.4 – Learning method on the video generator

signal_quality.luminance_dev

signal_quality.luminance_dev

signal_quality.luminance_dev

capture.local_light_change_level

0 (110.0/1.0)

0 (2.0)

1 (27.0)

1 (4.0) 0 (3.0)

> 21.3521<= 21.3521

<= 1.01561 > 1.01561

<=18.1437 >18.1437

<=0.401449 > 0.401449

FIGURE 4.5 – An excerpt of the decision tree built from a sample of 500 configurations/-
videos

70

4.4. Experiments

4.4 Experiments

4.4.1 Experimental Setup

To generate a training set, we sampled 500 configuration files from the MOTIV va-

riability model. All of them are given to the video generator to create 20 seconds long

videos. The process of deriving associated video variants takes about 30 minutes in

average per video. As generating all those videos require time, we used a cloud-based

architecture for distributing the computations. To decrease the influence of randomly

creating training set (which could result in advantageous or disadvantageous settings),

we run the experiment of learning and validating results 20 times (see Section 4.4.2 for

more details). After the synthesis of videos, the oracle we presented in Section 4.3.4

assigned "interesting" or "not interesting" labels to videos. In total, the oracle labeled

53 videos as not interesting on average, i.e., roughly 10% of the videos.

Regarding the implementation of the machine learning algorithm, we used the Weka

framework. Weka offers different implementations of binary decision trees (and other

various machine learning techniques). We used J48 since it is the most widely used.

Various options can be tuned to increase the classification performances. This process

of selecting the best set of parameters is application-dependent, so we used the default

ones proposed by Weka.

In order to facilitate reproducing experiments, all experimentation data are available

at http://learningconstraints.github.io.

4.4.2 Results

RQ1) Do extracted constraints make sense for a computer vision expert ?

The first research question focuses on the readability and comprehensibility of ex-

tracted constraints from an expert point of view. To be able to answer this question, we

have asked a computer vision expert and advanced user of the video generator whe-

ther the extracted constraints did make sense or not. The expert told us that constraints

are globally understandable and actually help understanding interactions that can oc-

cur between features/attributes. Importantly, he noted that constraints are in line with

the definition of the oracle : Some combinations of values can indeed participate to the

degradation of the perception of video contents.

71

http://learningconstraints.github.io

Partie , Chapitre 4 – Automatic Specialization of software product lines using Machine

Learning

! (s i g n a l _ q u a l i t y . b l u r _ l e v e l > 0 && s i g n a l _ q u a l i t y .
s t a t i c _ n o i s e _ l e v e l <=0.135519)

(a)

! (s i g n a l _ q u a l i t y . b l u r _ l e v e l < 0 && s i g n a l _ q u a l i t y .
compress ion_ar te fac t_ leve l > 0.363438 && capture .
i l l u m i n a t i o n _ l e v e l <= 0.609669 && s i g n a l _ q u a l i t y .
compress ion_ar te fac t_ leve l >0.436673 && veh ic le5 . t r a j e c t o r y
>6 && veh ic le1 . i d e n t i f i e r <=11)

(b)

! (s i g n a l _ q u a l i t y . b l u r _ l e v e l <= 0 && s i g n a l _ q u a l i t y .
compress ion_ar te fac t_ leve l <= 0.363438 && s i g n a l _ q u a l i t y .
dynamic_noise_level <=0.428141 && s i g n a l _ q u a l i t y .
force_balance=0 && capture . i l l u m i n a t i o n _ l e v e l <= 0.12151)

(c)

FIGURE 4.6 – three constraint extracted from our case study

Specifically, Figure 4.6a shows a short constraint only constituted by two terms.

This constraint puts together two images quality criterion (blur and static noise) that

can indeed degrade the quality of videos. In Figure 4.6b, the constraint involves other

features that have an effect on the quality of videos : compression and illumination. In-

terestingly, blur is present again. In Figure 4.6c, blur, compression, and dynamic noise

are features that are related to quality criterion of videos as well. Overall, all features/at-

tributes previously mentioned make sense with regards to the oracle we implemented

(see Section 4.3.4). Too much noise, poor illumination and blurs : all these factors can

indeed degrade the quality of videos and produce the videos that our oracle detects as

not interesting.

In general, extracted constraints make sense and the answer to RQ1 is positive.

However there is room for improvement (see also Section 4.5). Specifically the expert

complains about the presence of features/attributes that are not relevant and disturb the

reading. For instance, in Figure 4.6b, vehicle1.identifier <= 11 does not make much

sense. Indeed, the kind of vehicles should not have any influence on the definition of

interesting videos. The expert has to somehow ignore this kind of information.

72

4.4. Experiments

RQ2) What is the precision and recall of our machine learning approach?

To answer this question, we consider that the constraints found by the decision tree

are added to the variability model, thus, resulting in a new variability model denoted

V M ′ such that V M ′ = V M ∧ ∆ where ∆ is a conjunction of inferred constraints. Then,

we used the performance evaluation process described in Section 2.3.

The evaluation protocol is decomposed into two steps. We first evaluate classifica-

tion performances on the training set to ensure that 500 configurations are enough to

learn a classification model that is sufficiently good. In this context, we expect at least

performances to be higher than 50% (equivalent to random assignments) but the hi-

gher, the better. Second, we perform an evaluation on the prediction performances of

the model (and thus V M ′) to ensure that learnt constraints do not overfit the training

set.

The overall classification performance of machine learning is not perfect, i.e., 93.6%

on average after performing a cross-validation with the training set on 500 configura-

tions/videos. Since the resulting tree is not large (i.e., containing only 8 leaves with a

maximum depths of 4 meaning that a maximum of 4 decisions have to be taken before

reaching a leaf), it is unlikely to overfit the training set. Errors might rather come from

the fact that a proper separation is hard to find between videos of "good" and "bad "

quality using our oracle. In this case, some configurations might be similar (e.g., with

only one feature value differing) but should be assigned to different labels which make

the problem of classification of machine learning techniques harder and the result error-

prone.

Now, to perform the second part of the evaluation (i.e., evaluate the prediction per-

formances of the solution), we generated another set of 4000 configurations and videos.

We used again a cloud-based infrastructure to synthesize these variants. Our oracle

labeled every video of this new data set. It resulted in 370 not interesting videos on

average. Then, we compared the decision of the oracle with the decision of the varia-

bility model augmented with extracted constraints. We run the experiment 20 times by

randomly picking configurations out of the 4500 4 we generated in order to establish the

training set, remaining configurations constituting the test set.

With this experiment, we are interested to know whether a configuration labeled

as not interesting by the oracle is now forbidden by V M ′. This comparison between

4. 4000 + 500 from the first part of the evaluation

73

Partie , Chapitre 4 – Automatic Specialization of software product lines using Machine

Learning

Oracle
Not interesting Interesting

variability
model (V M ′)

Not interesting 234 69.5
(invalid) (±57.899) (±26.973)

Interesting 141.1 3566.2
(valid) (±60.440) (±25.804)

TABLE 4.1 – Confusion matrix of our experiment

the two decisions is usually performed through a confusion matrix. Our results are

presented in Table 4.1.

In this table, columns are the labels given by the oracle and rows are labels given

by our variability model. Cells present the average of classification over 20 runs as well

as standard deviation (under brackets). The main diagonal of this matrix tells us where

the two labels agree. The other diagonal provides classification errors of our variability

model compared to the oracle :

False Positives (FP) are configurations considered as "not interesting" 5 in V M ′

whereas they are classified as interesting by the oracle. The machine learning

approach has inferred too restrictive constraints that now uselessly forbid "inter-

esting" configurations.

False Negatives (FN) are "interesting" configurations in V M ′ whereas they are

classified as "not interesting" by the oracle. The machine learning approach fails

to infer constraints that could have forbidden "not interesting" configurations.

Precision is the measurement assessing the number of correct classifications per-

formed for a label (main diagonal) regarding the total number of classification made for

this label (sum of a row). Over the 20 runs, the mean precision for the label "interesting"

is : Pmean−interesting = 3566.2
3566.2+141.1

≃ 0.96. Similarly, precision for the label "not interesting"

is Pmean−not−itneresting ≃ 0.77.

The overall precision is the mean of the two values : Poverall = 0.96+0.77

2
= 0.865,

i.e., the classification will roughly perform well 9 times out of 10.

Recall is the measurement assessing the number of correct classification perfor-

med for a label regarding the total number of configurations declared by the oracle

for this label (sum of a column). Similarly to the precision, recall can be computed for

5. Strictly speaking, configurations are invalid (resp. valid) in V M
′. We use the term "not interesting"

(resp. "interesting") for keeping an unified terminology with the oracle.

74

4.4. Experiments

each label and then combined into an overall measure. This gives : Rmean−interesting =
3566.2

3566.2+69.5
≃ 0.98 ; Rmean−not−interesting ≃ 0.62 and Roverall = 0.98+0.62

2
= 0.80. Here, re-

call is lower for the "not interesting" label which gives us an idea of how difficult it is

to understand the distribution of this class. This difficulty can come from the fact that

there are fewer examples assigned with the label "not interesting" than with the label

"interesting".

RQ3) What are the strengths and weaknesses of our approach?

We now compare the properties of a sound and a machine learning approach in line

with results of RQ1 and RQ2. We recall that a sound approach (see Def. 7) takes the

output of the oracle and built constraints out of "not interesting" configurations/videos.

It means that constraints will be very specific to the configurations given to the oracle,

involving every feature and attributes with their values.

Meaningfulness of constraints. A consequence is that constraints are typically

difficult to read with a case-by-case extraction. A sound approach would have produ-

ced the conjunction of 53 constraints, each constraint being constituted by the number

of features/attributes’ values of a configuration. As a configuration corresponds to 80+

values in our case, experts would have severe difficulties to review and understand

what are the precise features and attributes involved in the fault. Our proposed ap-

proach computed 5 constraints on average with only a few features/attributes. This

drastic reduction in size helps a video expert to better understand the constraints.

One can argue that techniques for reducing constraints (e.g., [110]) can be adap-

ted to numerical values and perhaps improve a sound approach. However, since the

configurations do not necessarily share common values, especially in continuous do-

mains, adaptations would not be straightforward. In fact, there is a more fundamental

issue : constraints of a sound approach are so precise they cannot be able to capture

other not interesting configurations even in their close neighborhood. Hence, the value

of a machine learning approach resides in the ability to produce more general and thus

meaningful constraints. The model deciding which label to assign to previously unseen

configurations is an approximation of the real nature of data. It can be seen as a convex

hull in the space of configuration. However, machine learning allow the hull to be com-

plex and capture asperities to reduce the number of classification errors provided that

the model can equally express this complexity.

Precision and recall. The strict strategy of a sound approach has another practical

75

Partie , Chapitre 4 – Automatic Specialization of software product lines using Machine

Learning

implication. In our case, the sound approach would only remove 53 configurations out

of 500 (no more no less). On the other hand, our machine learning method removes 234

more configurations than this first approach (see top left cell in Table 4.1). Indeed, when

validating our classification models with 4000 new configurations, the machine learning

model was able to recognize 234 (as a mean over 20 runs according to Table 4.1) confi-

gurations as not interesting – without having to produce and test the video variants.

The sound approach was unable to detect them because these 234 configurations were

simply not in the original sample. Hence, the prediction of not interesting configurations

with machine learning gives a factor improvement of (48 + 234)/53 = 5, 3. 48 referring

to the number of videos classified as not interesting by the machine learning model du-

ring the training process. 234 corresponds to the average number of videos classified

as not interesting when using the same model on 4000 new configurations. Finally, 53

is the number of not interesting videos that have been actually produced and fed to the

oracle which corresponds to what would be done by a sound approach.

What we try to highlight here is that even if initially (during the training phase), both

approaches seem equal (the sound approach performs even better), the real additional

value of using machine learning techniques resides in the exploitation of the output

model which allows to classify configurations that were never encountered before and

at almost no cost (in this case, going through the tree which is very quick to the low

number of decision to perform on a very low number of features) without ever having

to generate associated video sequences.

In order to scale (i.e., capture a similar set of not interesting configurations than a

machine learning approach), a sound approach has to sample a significant number

of additional configurations. In our case study, there are two major drawbacks. First,

covering a large percentage of the configuration space is simply not possible, mainly

due to numerical values. Second, the cost of testing a configuration is very high : half an

hour to generate a video and a few seconds to process it with the oracle. Concretely,

the cost in time and resources for 4000 configurations is 4000 ∗ 30 = 12000 ≈ 2000

hours for one machine. Hence, the use of a sound approach can be very costly since

we envision to generate even more videos in the future. Overall, the major strength of

machine learning resides in its ability to reduce the testing cost through the prediction

of not interesting configurations.

The prediction capability of machine learning is also a weakness since it induces

some errors. In our case, out of 4000 (see Table 4.1), in average 141 configurations were

76

4.4. Experiments

classified as interesting by the learnt model (despite being actually not interesting). A

sound approach is also unable to forbid such configurations in the first place since they

are not part of the sample. That is, a sound approach would have suffered from similar

issues. Finally, in average, 69.5 configurations out of 4000 were classified by machine

learning as not interesting (despite being actually interesting). In this case, a sound

approach would have kept these configurations and, thus, is superior to a machine

learning technique.

As a summary there is a trade-off to find. On the one hand, the ability of ma-

chine learning to be one step ahead can reduce testing effort, produce meaningful

constraints, and forbid more configurations that are not interesting (as in our case

study). On the other hand, a sound approach can be of interest when product line

practitioners do not want to unnecessarily lose some configurations.

4.4.3 Threats to validity

External validity. There are conditions that limit our ability to generalize the results.

A first threat is that we only used one product line. Thus, the results of our experiment

might not be extensible to other product lines. We selected an industrial product line

that has been used for more than two years now and that has passed several testing

phases. We consider the variability model as realistic since numerous experts were

involved in its design and there is a concrete connection with a product line. The pro-

duct line generates data (videos) that differ from more traditional artifacts like code or

models. However the implementation follows general principles of product lines with a

variability model and a software derivation engine.

The proposed method relies on supervised machine learning technique which as-

sumes that oracles are available. In our case we have to develop a specific oracle

based a computer vision algorithm. In other domains, oracles might be harder to de-

velop and only able to catch a few configurations that are not interesting. On the other

hand, traditional oracles relying on compilers or test suites can be used as well.

Internal validity. Since our earliest efforts [1, 34], the variability model has been

subject to several iterations mainly due to the evolution of configuration files handled

by the Lua code. Before applying the method, we considered the model as stable. Yet

the model may exhibit errors (e.g., wrong domains for the attributes). As part of our

testing experiments, we did not observe such inconsistency of configurations’ values.

77

Partie , Chapitre 4 – Automatic Specialization of software product lines using Machine

Learning

In fact, it could be the role of our method to detect such errors (if any).

A threat concerns the sampling of valid and not interesting configurations. We trai-

ned our machine learning algorithm with 500 videos and then verified the extracted

constraints in front of 4000 videos. To enhance internal validity, we run the experiment

of learning and validating results 20 times.

One could argue that it could have been better to compare inferred constraints with

existing ones. However we do not have any ground truth to rely on. We rather place

ourselves in a realistic situation : inferring constraints not already specified or sim-

ply a priori unknown by developers and experts. Thus, we measure whether added

constraints help to narrow the space of possible configuration w.r.t. a set of valid pro-

ducts (i.e., in our case : video variants that are not blurry nor noisy). On the qualitative

side, we also seek to understand whether constraints make sense for a video expert.

Another threat is that the oracle can be badly implemented, leading to incorrect

judgment of the quality of some videos. First it should be noted that the machine lear-

ning method we used does not seek to undermine what ’not interesting’ means ; we

rather learn from a set of authoritative decisions imposed by the oracle. Hence the

precision and recall of our machine learning method (see RQ2) is not affected. Howe-

ver an incorrect oracle can be problematic for the expert point of view and induces a

threat to RQ1. When implementing the oracle, we review a sample of dozens of inter-

esting and not interesting videos. Yet we cannot review all videos and there is a risk

that the oracle is still not correct. What is reassuring is that the expert considered that

constraints are in line with the oracle, hence giving confidence on the quality of the

oracle. In general a co-design of oracle and constraints seems needed in case there

are some uncertainties in the oracle’s implementation.

78

4.5. Discussions

4.5 Discussions

Based on our experience, we now highlight several points that could improve the

results of our general method.

Sampling techniques. In our case study, we used a fairly simple sampling tech-

nique that relies on randomly picking values of features/attributes. There are other sam-

pling techniques and strategies to address various kinds of problems. In validation &

verification, for instance, T-wise sampling is used to produce interactions between T

activated features [34, 42, 62]. The assumption is that a T-wise criterion can increase

the ability to detect faults. On the other hand, our basic strategy allows us to capture

some diversity and to explore different areas in the configuration space. Sophistica-

ted methods for uniform generation of configurations [19] can even be considered, but

deserve to scale for our cases in which we have numerous numerical options.

Another possible direction is to use expert knowledge to eventually guide the sam-

pling. The sampling can be done iteratively as well.

In general, other sampling methods could allow getting fewer configurations while

having a good configuration space coverage and a good intuitions over the classes’ dis-

tribution functions. Ensuring such properties can, in the end, increase the classification

performance of the machine learning algorithm.

Definition of oracles. We reused a method proposed in [28] to assess the quality

of images in terms of distribution’s frequencies in the Fourier domain. In our case, we

used the method on a sample of images constituting a video sequence. The oracle is

a non-trivial software procedure that may fail to detect some videos as not interesting.

One way to improve our oracle is to use humans (typically computer vision experts) for

better reasoning about perceptual details. The counterpart is that reviewing videos can

be time-consuming and even error-prone due to fatigue. Our oracle has the advantage

of being an automated procedure so that we can consider the analysis of much more

videos. A possible solution is to combine different oracles for mitigating the limits of

some oracles. As a summary, the choice of an oracle depends on (1) the quality of

its judgment and (2) its cost. Both factors can have an impact on our learning phase

and perhaps be in conflict (e.g., good quality but very high cost). It should be noted,

however, that the selection of an oracle can be much simpler in other settings (i.e., there

is no trade-off to find as oracle’s definition might be trivial). For instance, a compiler is

usually a fast and reliable procedure that can serve as an oracle for testing family of

79

Partie , Chapitre 4 – Automatic Specialization of software product lines using Machine

Learning

programs.

Machine learning algorithm.

One could wonder : why using decision trees and not other techniques? Or even,

can other machine learning algorithms do better regarding classification performances?

We chose to use decision trees as we knew the output would be very simple to un-

derstand compared to other techniques such as artificial neural network or support

vector machines. Moreover, decision trees are built according to the following rule :

features exposing more information entropy should be placed in the higher levels of

the tree which ease the readability and understandability of extracted constraints. No-

netheless, using other machine learning techniques might be worth since they could be

more discriminating. It would result in retrieving more constraints with higher precision

(i.e., without introducing errors in further prediction).

Although, we reported that our decision tree makes classification errors ; in our

case, miss-classifying interesting configurations as not interesting (false positives) is

not that problematic since we can produce other videos. We are aware that, in other

contexts, this kind of errors can be a problem. Overall different machine learning stra-

tegies can be employed to either increase precision or recall.

Readability of constraints.

Computer vision experts highlighted the fact that some features appear in constraints

whereas they should not be discriminant in the decision of interesting/not interesting

configurations. For instance, the feature "vehicle1.identifier" in the constraint of Fi-

gure 4.6b. This behavior clearly shows a need to reduce the numbers of features taken

into account when generating constraints. By lowering the number of features in the re-

presentation of data, the impact of the so-called "curse of dimensionality" will be redu-

ced and thus, it could help building more concise and meaningful constraints. Domain

knowledge can be explicitly employed for removing unnecessary features. The sam-

pling of additional configurations is yet another possibility to further refine constraints.

From this respect, an expert can incrementally guide the sampling strategy, based on

her understanding of constraints.

80

4.6. Conclusion

4.6 Conclusion

We addressed the problem of inferring constraints for a large, complex variability

model in order to restrict the space of possible configurations. We proposed a method

based on sampling, testing, and machine learning to identify which combinations of

features/attributes (and their values) are likely to produce products that are not interes-

ting. From the model produced by machine learning, constraints can be automatically

extracted and injected into the variability model, typically to enforce a product line.

We instantiated our method on a video generator developed in the industry that ori-

ginally produced irrelevant videos. Results showed that our method can classify with a

good precision and recall products (videos) that were never derived and tested before.

Furthermore extracted constraints express some interactions between features while

remaining readable and general enough. Thanks to constraints, we can now consider

the synthesis of very large datasets of truly relevant videos.

We believe the method is general enough to be applicable to product lines in other

contexts and domains. In the following chapter, we address this perspective by applying

this technique to both new systems and considering new applications in which the

classification is defined based on observed performance measures.

81

CHAPITRE 5

LEARNING-BASED PERFORMANCE

SPECIALIZATION OF CONFIGURABLE

SYSTEMS

5.1 Introduction

In this work, we extend the previous chapter and propose a generalization of the

specialization method. To this end, the new approach takes as input a performance

objective that has to be turned into an oracle function in the process. We evaluate it on

16 different systems that present different characteristics (e.g., size, nature of features,

observed performances).

In addition to these additional results, we introduce the notion of safety and flexibility

in the specialization process which might help assessing the adequacy of computed

prediction models with users’ performance requirements (represented by the oracle

function).

Even if we present this work as an extension of the previous one, it is part of the

main contributions of this thesis. The inclusion of human requirements (both fuzzy

and exact) to guide the specialization of a product line is novel as well as discussions

provided about the fact that traditional performance measures in machine learning are

not enough in our context significantly differentiate this work from the previous chapter.

This chapter is inspired from our technical report [101]. The report is available to

everyone and provides a more detailed view of this work, including discussions on

different points that we think being important.

This chapter is organized as follows : first we will present the motivation and pro-

blem statement of this work in Section 5.2 which are rather similar to the ones from the

previous chapter but emphasis differences. Then, in Section 5.3, we discuss two im-

83

Partie , Chapitre 5 – Learning-based Performance Specialization of Configurable Systems

portant points : the impact of the performance objective given by users on the learning

process and the inadequacy of precision and recall, the two well-known measures to

evaluate the capability of the machine learning algorithms to classify correctly data, to

assess that the specialized system is suitable for users in our context and the need to

find other measures. Section 5.4 provides experimental setup and global conclusions

that we find when conducting our experiments before concluding in Section 5.5.

84

5.2. Motivation and Problem Statement

5.2 Motivation and Problem Statement

Similarly to Chapter 4, we start from the observation that the configuration space

of configurable systems is huge and finding a configuration being both valid and meet

specific requirements is time-consuming, energy demanding and usually takes place

in a try-and-error process. If users are able to declare their expectations in terms of

performance properties (e.g., running under X seconds), then it should be easy to take

this piece of information into account and incorporate it in our previous framework. The

difficulty here is that performances are usually defined in continuous domains while

our solution considers a binary classification problem. The role of the oracle function is

now to take as input the performance objective defined by users and incorporate it in a

function such that the result is boolean allowing, in the end, to come back to a binary

classification problem.

5.2.1 Motivating scenario

Let us consider the x264 system. It is a tool to encode and transcode videos into

a specific format (usually H.264). In the world of video encoding, the quality of the vi-

deo is related to the notion of size and time needed to send the video to a different

computer (which is at the heart of todays videos on demand services). To adapt to dif-

ferent devices with different computational power and network bandwidth, x264 offers

configuration options such as output size, frames per second or encoding heuristics

(e.g., parallel encoding on multiple processors or encoding using specific data struc-

ture to minimize introduced errors). Users may configure x264 via command-line para-

meters or through a graphical user interface. Figure 5.1 shows an excerpt of options :

no_mbtree, qp, no_asm, and no_cabac are Boolean options (true or false values) and

crfRatio, ipratio, and b_bias are numerical values with different ranges.

The mix between Boolean features and numerical values makes the possible num-

ber of configurations very high (i.e., 1027 configurations) similarly to the MOTIV video

generator used in Chapter 4. Even if x264 provides a comprehensive documentation

of options 1, the description is in natural language and does not necessary capture all

interactions between options. Nonetheless, these interactions can have severe impacts

on performances (such as execution time or the quality of the video in the output).

1. http://www.chaneru.com/Roku/HLS/X264_Settings.htm

85

http://www.chaneru.com/Roku/HLS/X264_Settings.htm

Partie , Chapitre 5 – Learning-based Performance Specialization of Configurable Systems

task:

configuration

VM' = VM

^ cfrRatio > 26.7

^ no_mbtree =

false

Performance objective:

"speed < 145"

SPECIALIZATION

FIGURE 5.1 – Configuration of a specialized x264. Given a performance objective, the
specialization method infers and fixes some options values (no_mbtree and crfRatio) ;
users still have some flexibility to configure other options.

FIGURE 5.2 – Number of x264 configurations running under a certain time : X-axis
represents a number of configurations ; Y-axis represents the execution speed (in se-
conds) to encode a video benchmark ; e.g., about 25994 configurations can encode
the video in less than 145.01 seconds.

86

5.2. Motivation and Problem Statement

Figure 5.2 shows the distribution of the execution time w.r.t. configurations. Please

note that, as we said, x264 can provide about 1027 configurations but only about 70k are

presented on the figure. These configurations come from other studies [39, 79, 87, 88]

which have sampled a subset of the configuration space to conduct their work.

5.2.2 Approach

Following the same approach as in the previous chapter, we want to assist users

in reaching configurations that meet both functional requirements and performance re-

quirements. To do so, we want to both : (1) restrict the space of valid configurations

(w.r.t. the Variability Model) ; (2) let users decide among a set of interesting configura-

tions (as defined in Chapter 4 via Def. 5). In Figure 5.1, x264 is specialized in such a

way that valid configurations has an execution time less than 145 seconds.

Figure 5.2 shows that a large portion of sampled configurations are above this thre-

shold, meaning that users want to configure x264 such that it is rather fast to execute.

In the meantime, we do not want to impose users a unique configuration but rather we

want to let them choose among the set of configurations that meet their requirements

(in this case, we want to let them choose among the ≈ 26, 000 configurations).

Being a little more specific, once the threshold value of the performance objective

is defined, the system should be specialized such that valid configurations have high

probabilities to meet this objective. For instance, in Figure 5.1, the system has been

specialized such that the feature no_mbtree is deselected and the feature crfRatio can

only take values higher than 26.7 which is in adequacy with the documentation stating

that the quality of video tends to be lower as crfRatio takes higher values. As the quality

is lower, it takes less time to encode and thus these configurations can run faster than

others.

Again, we rely on the same process than given before and that is reminded in Fi-

gure 5.3. First, users define their objectives which will be turned into an automatic

procedure that will serve as an oracle to decide whether configurations are interesting

or not. Note that, as we presented until now, the objective is in fact a threshold re-

garding a performance value that acts as an upper or lower bound depending on the

application (i.e., we talked about the execution time which is usually an upper bound,

but regarding object detection algorithms, users could define a lower bound to reach

regarding the precision of the algorithm to retrieve objects of interest). Then, configu-

87

Partie , Chapitre 5 – Learning-based Performance Specialization of Configurable Systems

Objective

Variability

Model (VM)

VM' =

VM +

Constraints

Machine

Learning

Sampling

Execution (or
derivation)

and
Measurement

Oracle

labelled
configurations

Constraints
task: specialization

FIGURE 5.3 – Sampling, measuring, learning : given a performance objective, there is
an automated method for specializing a configurable system

rations are sampled and the oracle is applied on each of them in order to create two

classes. And the learning process begins, allowing the extraction of constraints that will

be injected into the original variability model.

The challenge in this situation remains to be able to learn a classification model that

is as close as possible from the real one 2 but considering only a small portions of the

configurations.

5.2.3 Novel problems

In Chapter 4, we have used an oracle defined as an approximation of the quality of

a video sequence. As it is an approximation, it may induce errors in the sense that the

oracle itself might state that a video sequence is not interesting while actually being in-

teresting when visually assessed and vice versa. It comes from the fact that the quality

of a video is not easy to quantify. In this chapter, we rather want to use our approach

on factual aspects. Users have to specify a performance objective (e.g., the execution

time must not exceed X seconds) that will be used by an oracle function in order to

define a separation between interesting and not interesting configurations. Keeping the

example of video sequences, their visual quality are related to the amount of noise (or

high frequency) which is hard to encode producing bigger video files. Instead of asking

users to define a "fuzzy" threshold (a user might think "I want my video to be of good

quality", whatever "good quality" means), we ask to be more factual and quantify a

2. We refer to the sound approach we depicted in the previous chapter (see Def. 7) which is usually
unfeasible on a practical way.

88

5.2. Motivation and Problem Statement

related property (e.g., "the resulting video file must not exceed X Mb").

Compared to state of the art approaches (see Section 3.3.1), this work is also quite

novel as it does not tackle the problem of assigning a performance value to a confi-

guration and then decide whether it is interesting or not. Instead, we measure the

performance of a sample of configurations and turn those measures into data used to

solve a binary classification problem. Related works tackle the problem of : "what is the

performance value of this configuration?" which implies to choose a configuration first.

Regarding this particular aspect, it is rather different from our approach which tries to

help users in selecting a configuration that has high probability to meet their goals.

89

Partie , Chapitre 5 – Learning-based Performance Specialization of Configurable Systems

5.3 Discussions

So far, we have talked about very important concepts in the context of this study wi-

thout naming them. First, the definition of the performance goal has an influence over

the number of configurations that are considered as interesting which in turn affects

the learning process making it easier or more difficult. Second, previously used perfor-

mance metrics to evaluate how machine learning techniques perform in predicting the

class of configurations (i.e., precision and recall) might not always be suited.

5.3.1 Impacts of performance objectives on the learning problem

Machine learning needs two data sets : the training set to learn a model and the

test set on which the model will be applied when predictions have to be made. In the

training set, both classes should be represented and the model might be better if both

classes are balanced (i.e., equally represented). Consider a training set in which only

10 examples are from one class and 10, 000, 000 examples from the other class. The

machine learning algorithm might consider that, since only 10 examples are from the

first class, they are rare events and most of data that will be encountered in the "na-

ture" (i.e., the test set) should be assigned to the second one. Thus, from the machine

learning algorithm’s point of view, it is easier to classify everything as being part of the

second class since the number of errors is very low, meaning that predictions will be

accurate most of the time.

In our case, users might fall in this situation. Considering the distribution of the exe-

cution time from x264 configurations given in Figure 5.2, if users want to push the ap-

proach to the limit, they will define a very low threshold as a performance goal (e.g., 50

seconds) which might correspond to only 100 configurations that are able to reach such

goal. In this situation, it is very unlikely that the sampling process (that comes prior to

the learning phase) is able to find enough configurations to balance classes. As the

majority of configurations leads to exceeding the performance goal, the machine lear-

ning algorithm will classify all configurations as not interesting. Retrieved constraints

will over-constrain the variability model up to a point that no configurations will be va-

lid anymore resulting in a product line on which cannot derive products. Similarly, the

other way around, users that define a performance goal of 950 seconds might build a

classification model that states that all configurations are interesting and thus do not

90

5.3. Discussions

2

non-
acceptable

acceptable

ML

non-
acceptable

acceptable

TP

TNFN

Oracle

FP

recall (true positive rate) = TP / (TP + FN) = 70%

precision = TP / (TP + FP) = 90%

specificity (true negative rate) = TN / (TN + FP) = 93%

NPV (negative predictive value) = TN / (TN + FN) = 78%

650

280

70

1000

accuracy = (TP + TN) / (TP + FP + FN + TN) = 82.5%

720

1280

1070930

(a) With machine learning

accuracy = 53.5%

precision ~ 0

recall = 0

specificity = 1

NPV = 53.5%

FN TN

FPTP

2000

non-
acceptable

acceptable

non-
acceptable

acceptable

Without

learning

Oracle

930 1070

0

930 1070

0 0

(b) Without learning

FIGURE 5.4 – Confusion matrix and classification metrics : with machine learning vs

without learning (example)

restrain anything.

Since the distribution of performances of a system is not known a priori, it might

be difficult to find a threshold that suits the machine learning algorithm on the first try.

Because of that, users should not have strong goals that cannot be changed but rather

be a bit flexible on the value to reach as it might help the training process.

Maybe users will have to try different threshold values or perform some analysis on

the system before establishing a goal value such that the prediction model can be as

precise as possible.

5.3.2 Measures to assess the prediction power of machine lear-

ning models

Another problem which is related to the balance of classes is the metrics used to

evaluate machine learning models.

We remind that performance evaluation of machine learning algorithms compare

predictions given by the algorithms to expected results given by the oracle. It gives a

confusion matrix as the ones shown in Figure 5.4. Several measures can be computed

on such matrix including accuracy, precision and recall which are the most common.

91

Partie , Chapitre 5 – Learning-based Performance Specialization of Configurable Systems

We have used precision and recall before but these measures only quantify the

classification power of the model and it can be a problem in the case of imbalanced

classes. Besides, from the user’s point of view, we do not solely want to assess the

ability of the model to discard not interesting configurations but also its ability to keep

interesting configurations. We want to assess, on one hand, chances to pick a confi-

guration that meets performance goals and, on the other, the portion of configurations

meeting performance goals that can still be chosen after constraints have been ad-

ded to the variability model. These quantities are correlated to the notion of Flexibility

and Safety of a variability model for a user.

To be a little more precise, we consider a variability model V M and V M ′, its specia-

lized version following our approach. However, we can use the number of interesting

and not interesting configurations in the test set (and their distributions in the resul-

ting confusion matrix) to assess those quantities. We define Safety and Flexibility as

follows :

Definition 8 (Flexibility and Plasticity) Flexibility is the notion of being able to choose

a configuration complying with users’ performance goal. To quantify this notion, we de-

fine the Plasticity of a specialized variability model regarding a set of configurations

s as : Plasticitys(V M ′) = Ns

Ms

, with Ns the number of interesting configurations obser-

ved in s and that are valid in V M ′ (represented by TN, in the bottom right cell of the

confusion matrix in Figure 5.4a) and Ms the number of interesting configurations in s

(i.e., the number of configurations labeled as interesting by the oracle which is repre-

sented by the second column in Figure 5.4a). It is a ratio defined in the range [0; 1] and

the closer to 1 it gets, the better is the flexibility.

Definition 9 (Safety and Sureness) Safety is the notion of being able to pick an in-

teresting configuration after specialization. Again, to quantify this notion, we define

the Sureness of a specialized variability model regarding a set of configurations s as :

Surenesss(V M ′) = Ns

JV M ′K
s

, with Ns the number of interesting configurations observed

in s and that are valid in V M ′ and JV M ′Ks the number of valid configurations from s

according to V M ′ (represented as the row "ML acceptable" in Figure 5.4a). Similarly

to plasticity, sureness is a ratio defined over the range [0; 1] and, again, the safety of a

variability model increases as this ratio gets closer to 1.

Plasticity and sureness are defined according to a confusion matrix and respectively

correspond to specificity and NPV explicited at the bottom of Figure 5.4a. To give an

92

5.3. Discussions

intuition on how to interpret these notions and quantities, we give an example based

on confusion matrices given in Figure 5.4.

In this example, 2000 configurations have been sampled from a system and an

oracle has been created taking into account some user’s performance goal. Figure 5.4a

refers to the specialized version of the system following our approach while Figure 5.4b

refers to the original system without any specialization. Labels "non-acceptable" and

"acceptable" respectively refer to labels "not interesting" and "interesting" we have used

before. Several measures can be used to assess the capability of a model learnt via

machine learning to take the same decisions as the corresponding oracle. The most

common are given at the bottom of Figure 5.4a. Since no specialization has been ap-

plied on the system associated with Figure 5.4b, the system cannot discarded not inter-

esting configurations leading to poor precision and recall measures. However, because

the system does not discard any configurations, choices left to users are large corres-

ponding to a high flexibility of the system. This is showed by a plasticity or (specificity)

of 1. Regarding safety, since no specialization have been applied and all configurations

have been generated from this system, the sureness (or NPV) is exactly the number

of interesting configurations over 2000, leading to about 0.53. The system is considered

as not safe as almost one configuration out of two is likely to not meet the performance

goal.

On the other hand, applying the specialization process, Figure 5.4a shows that the

machine learning process helps improving the safety of the algorithm by discarding

some of the configurations that do not meet performance goal (650 configurations over

930 to be precise). It improves the sureness of the specialized system compared to

the previous one. However, because the machine learning makes some classification

errors, 70 configurations are unnecessarily forbidden which makes the system less

flexible which is highlighted by a lower plasticity measure than in the previously discus-

sed case.

93

Partie , Chapitre 5 – Learning-based Performance Specialization of Configurable Systems

5.4 Experiments

We want to apply our method on real-life systems and assess that it is able too accu-

rately classify configurations as interesting or not w.r.t. any performance objective and

with a reasonably small training set. But as we said, classification performances are not

the only parameters to take care of, we want to avoid loosing to much flexibility in the

configuration process (i.e., let users choose among a set of interesting configurations

and not forcing them to use a unique configuration) while ensuring safety (i.e., users

should be able to select only configurations that are likely to meet performance goals).

We evaluate these aspects by answering the following research questions :

RQ1 Does our method allow to accurately classify configurations?

RQ2 Does our method allow to maintain flexibility while being safe ?

5.4.1 Subject systems and configuration performances

We performed our experiments on a publicly-available data set used by previous

works [39, 79, 87, 88]. The data set provides sets of configurations for several real-

world configurable systems. The configurations have been derived, products have been

executed and different performance measures measured.

Table 5.1 shows these configurable systems. They come from various domains and

are implemented in different languages (C, C++ and Java). The number of options

varies from as little as ten, up to about sixty ; options can be Boolean or take numerical

values. The two last columns of the Table show, first, the total number of possible

configurations existing for a system, and last, the number of configurations that have

been generated and measured in previous works ("All" meaning all configurations have

been measured).

It should be noted that most benchmarks measure a single performance value,

except for x264 which was evaluated regarding 7 different performance measures.

5.4.2 Experimental setup

We want to study the impact of the size of the training set over a system regarding

a specific performance measure for which a specific threshold (i.e., performance goal)

has been defined on our method. As said before, the threshold will define the portion

of configurations that will be labeled as "interesting" (and "not interesting") which may

94

5.4. Experiments

System Domain Lang. Features #JV MK Meas.
Apache Web Server C 9/0 192 All
BerkeleyC Database C 18/0 2560 All
BerkeleyJ Database Java 26/0 400 181
LLVM Compiler C++ 11/0 1024 All
SQLite Database C 39/0 106 4553
Dune Solver C++ 8/3 2304 All
HIPAcc Image Proc. C++ 31/2 13485 All
HSMGP Solver n/a 11/3 3456 All
JavaGC Runtime Env. C++ 12/23 1031 166k
x264 (Energy) Codec C 8/12 1027 69k
x264 (PSNR) Codec C 8/12 1027 69k
x264 (SSIM) Codec C 8/12 1027 69k
x264 (Speed) Codec C 8/12 1027 69k
x264 (Size) Codec C 8/12 1027 69k
x264 (Time) Codec C 8/12 1027 69k
x264 (Watt) Codec C 8/12 1027 69k

TABLE 5.1 – Features : number of boolean features / number of numerical features ;
#JV MK : number of valid configurations ; Meas. : number of configurations that have
been measured.

influence the difficulty of the machine learning algorithm to learn an appropriate predic-

tion model. For each experiment : precision, recall, specificity and negative predictive

value of the prediction model are measured.

Since we evaluate prediction performances, we need two data sets (i.e., the training

set and the test set). For each subsystem, we have randomly selected configurations

to build a training set (according to the size specified before) from the ones available in

the public data set. Remaining configurations constitute the test set on which prediction

performance are computed. For instance, the x264 data set contains 69, 000 different

configurations. If the training set size is 500, 500 randomly picked configurations will be

used to learn a model and the remaining configurations (i.e., 69, 000 − 500 = 68, 500)

will be used to evaluate prediction performances of the model.

For each configurable system, we make vary the sample size from 1 to the total

number of configurations with a step of 1% of the available configurations. Further-

95

Partie , Chapitre 5 – Learning-based Performance Specialization of Configurable Systems

more, we make vary the performance goal between the lower and upper bounds that

have been observed in each data set (i.e., each bounds are thus specific to a particular

system). Based on the observed distribution of performances, we selected 20 perfor-

mance goals corresponding roughly to 5%, 10%,15%, etc. of interesting configurations

in the data set. This method allows us to get an idea of the influence of the performance

goal on learning a classification model.

To reduce the fluctuations of the dependent variables caused by random generation,

we performed ten repetitions for each combination of the independent variables.

5.4.3 Presentation of results

Using 16 systems with varying parameters demand to analyze a large amount of

data which is hard to summarize. For a single system, as we explained before, we

need to make vary both the performance goal and the training set size independently

and evaluate their impact on the performances of the system. For each system, 100

training sets are created and 20 performance goals are considered. We also repeated

each measurements 10 times. In total, about 16∗100∗20∗10 = 320, 000 measurements

were made.

For each measure (i.e., precision, recall, plasticity and sureness), we present, in the

following, its average, min and max (that will be presented in separated tables). We also

show the conditions of executions (i.e., the number of configuration in the training set

as well as the performance objective) in which such results were produced. Because

of the heterogeneity of the different systems, we show the percentage of configurations

used in the training set compared to the number of available configurations (i.e., last

column of Table 5.1) and, under brackets, the actual number of configurations. We do

the same regarding the performance objective.

5.4.4 RQ1) Does our method allow to accurately classify configu-

rations?

Precision analysis

Regarding Figure 5.5, the average precision for all systems is above 0.80 which is

high from a general point of view. They range from 0.80 to 0.98 with an average of

0.89. However, execution conditions are really different from one system to another.

96

5.4. Experiments

Systems Avg Prec. % config. in train. set (# config.) % interest. config. (Perf. goal)
Apache 0.89 34 (65) 17 (1140)

BerkeleyC 0.98 93 (2376) 54 (21)
BerkeleyJ 0.92 43 (77) 86 (14627)

LLVM 0.89 1 (11) 19 (215.47)
SQLite 0.80 38 (1711) 42 (14.39)
Dune 0.94 25 (576) 27 (10175.53)
HIPAcc 0.97 30 (4021) 37 (42.576)

HSMGP 0.97 37 (1293) 10 (445.488)
JavaGC 0.98 81 (135190) 6 (830)

x264 (Energy) 0.85 74 (51061) 19 (1515.57)
x264 (PSNR) 0.84 44 (30361) 61 (47.124)
x264 (SSIM) 0.83 98 (67621) 99 (0.9967)
x264 (Speed) 0.88 87 (60031) 77 (612.38)
x264 (Size) 0.85 69 (47611) 26 (46.1)
x264 (Time) 0.85 63 (43471) 22 (11.3)
x264 (Watt) 0.81 44 (30361) 58 (154)

FIGURE 5.5 – Average Precision measures for all 16 systems along with execution
conditions. Because of the heterogeneity of systems, we present the percentage of
configurations used in the training set compared to the number of available configura-
tions (see last column of Table 5.1 and the absolute number under brackets. The last
column present the percentage of interesting configurations according to the distribu-
tion of performance and the performance goal (given under brackets).

Sometimes, only a few configurations are needed with a relatively difficult performance

goal to reach (see LLVM system), sometimes almost all configurations are required with

an easy target performance goal (see x264 (SSIM) system). Based on these averages,

SQLite and x264 seem rather difficult to learn on (with measures between 0.80 and

0.85) while other systems seem rather easy (with measures equal to 0.89 or above).

Considering now the worst case, in which the precision is the worst presented in

Figure 5.6, all systems can provide terrible results. All systems present a precision

measure of 0, meaning they were not able to build any constraints discarding configu-

rations. This behavior comes from extreme conditions in which only a single configu-

ration was given in the training set. In the meantime, performance goals were not hard

to achieve (with at least 25% of the configurations being able to reach the goal) except

for HSMGP system which had a performance goal allowing only 14% of configurations

to be interesting. In this case, training a machine learning model by only providing a

single configuration does not provide enough information even without taking into ac-

97

Partie , Chapitre 5 – Learning-based Performance Specialization of Configurable Systems

Systems Min Prec. % config. in train. set (# config.) % interest. config. (Perf. goal)
Apache 0 1 (1) 67 (1920)

BerkeleyC 0 <0.1 (1) 54 (21)
BerkeleyJ 0 <1 (1) > 99 (16399)

LLVM 0 <1 (1) 93 (262)
SQLite 0 <0.1 (1) 66 (15.13)
Dune 0 <0.1 (1) 54 (13508.69)
HIPAcc 0 <0.01 (1) 37(42.576)

HSMGP 0 <0.1 (1) 14 (568.792)
JavaGC 0 0.001 (1) 54 (3764.5)

x264 (Energy) 0 <0.01 (1) 56 (3740.36)
x264 (PSNR) 0 <0.01 (1) 60 (47.112)
x264 (SSIM) 0 <0.01 (1) 99 (0.9967)
x264 (Speed) 0 <0.01 (1) 65 (526.01)
x264 (Size) 0 <0.01 (1) 26 (47.12)
x264 (Time) 0 <0.01 (1) 75 (31.33)
x264 (Watt) 0 <0.01 (1) 92 (158.31)

FIGURE 5.6 – Minimum Precision measures for all 16 systems along with execution
conditions. Because of the heterogeneity of systems, we present the percentage of
configurations used in the training set compared to the number of available configura-
tions (see last column of Table 5.1 and the absolute number under brackets. The last
column present the percentage of interesting configurations according to the distribu-
tion of performance and the performance goal (given under brackets).

count the performance goal. No constraints can be learnt with only a single example

especially when the example is interesting. Again, machine learning algorithms are

based on statistics. Giving only one single example will result in an inference of every

remaining configurations to belong to the same class (which is obviously not realistic).

Moving to the other extreme case now (provided by Figure 5.7), all systems provide

precision higher or equal to 0.99. Most of the systems use a lot of information (the

training being composed of the vast majority of available configurations), only Apache

and BerkelyJ used less than 10% of available configurations (representing 17 and 8

configurations respectively). However, performance goals are rather hard to reach for

all systems (except x264 (SSIM)), meaning that most of configurations should be dis-

carded.

Sum-up over Precision : In the end, those extreme cases (worst and best cases),

do not provide useful information. In substance, we learn that not providing enough

information with the training set will lead to a bad model that will tend to keep all confi-

98

5.4. Experiments

Systems Max Prec. % config. in train. set (# config.) % interest. config. (Perf. goal)
Apache 1 9 (17) 35 (1410)

BerkeleyC 1 72 (1851) 4 (2)
BerkeleyJ 1 4 (8) 15 (5045)

LLVM 1 99 (1011) 4 (206)
SQLite 0.99 >99 (4546) <0.1 (13.16)
Dune 1 >99 (2301) <0.001 (6773.45)
HIPAcc 0.99 99 (13401) 0 (21.682)

HSMGP 1 43 (1497) 23 (852.556)
JavaGC 0.99 100 (66901) 0 (470.5)

x264 (Energy) 0.99 100 (69001) 4 (634.68)
x264 (PSNR) 0.99 100 (69001) 15 (39.59)
x264 (SSIM) 0.99 100 (69001) 76 (0.9857)
x264 (Speed) 0.99 100 (69001) 0 (52.09)
x264 (Size) 0.99 100 (69001) 0 (8.07)
x264 (Time) 0.99 100 (69001) 3 (4)
x264 (Watt) 0.99 100 (69001) <0.1 (146.95)

FIGURE 5.7 – Maximum Precision measures for all 16 systems along with execution
conditions. Because of the heterogeneity of systems, we present the percentage of
configurations used in the training set compared to the number of available configura-
tions (see last column of Table 5.1 and the absolute number under brackets. The last
column present the percentage of interesting configurations according to the distribu-
tion of performance and the performance goal (given under brackets).

gurations (if the example is able to reach the performance goal). On the other hand,

targeting a hard performance goal (a performance goal for which a few configurations

are able to reach it) is likely to create a model that will try to discard all configurations.

Apart from these extreme cases, in average, learnt models provide a fairly good preci-

sion measure. But, an "average" case is really dependent on the system under study

and might require a lot of experimental efforts to find a suitable training set and an

adequate performance goal.

However, evaluating only precision is not enough to understand if the learnt model

performs well or if it tries to put every configuration in a unique class. We have to

consider recall.

99

Partie , Chapitre 5 – Learning-based Performance Specialization of Configurable Systems

Systems Avg Recall % config. in train. set (# config.) % interest. config. (Perf. goal)
Apache 0.84 19 (37) 13 (1080)

BerkeleyC 0.97 1 (26) 0 (0.38)
BerkeleyJ 0.88 13 (24) 1 (3161)

LLVM 0.84 55 (561) 0.71 (248)
SQLite 0.73 87 (3961) 61 (14.96)
Dune 0.90 25 (576) 29 (10379.51)
HIPAcc 0.95 64 (8577) 65 (58.173)

HSMGP 0.94 61 (2109) 8 (376.219)
JavaGC 0.97 58 (96803) 1 (557.5)

x264 (Energy) 0.73 43 (29671) 4 (634.68)
x264 (PSNR) 0.74 47 (39331) 61 (47.124)
x264 (SSIM) 0.72 55 (37951) 86 (0.9904)
x264 (Speed) 0.78 55 (37951) 25 (236.51)
x264 (Size) 0.73 59 (40711) 21 (39.61)
x264 (Time) 0.73 44 (30361) 3 (4)
x264 (Watt) 0.67 51 (35191) 61 (154.46)

FIGURE 5.8 – Average Recall measures for all 16 systems along with execution condi-
tions. Because of the heterogeneity of systems, we present the percentage of confi-
gurations used in the training set compared to the number of available configurations
(see last column of Table 5.1 and the absolute number under brackets. The last co-
lumn present the percentage of interesting configurations according to the distribution
of performance and the performance goal (given under brackets).

Recall analysis

Compared to precision, the range of average recall are a bit lower. Values range

from 0.67 to 0.97 with an average of almost 0.83. Again, execution conditions vary a

lot from one system to another.

Worst cases are similar to the ones studied with precision. All systems retrieve a

recall of 0 when they use only one configuration in the training set. A recall measure

equals to 0 means that the model is not able to classify correctly any of the confi-

gurations that should be discarded. No trend emerges from the performance goal, it

depends on the system. Still, most systems have a performance goal fairly easy to

reach (with more than half of the configurations able to reach it) except for 3 systems.

In the best case, all systems are able to reach a recall of 1 (meaning that all confi-

gurations that are not defined as interesting by the oracle are also classified as not

interesting by the machine learning model). Except for x264 (SSIM), performance goal

100

5.4. Experiments

Systems Min Recall % config. in train. set (# config.) % interest. config. (Perf. goal)
Apache 0 1 (1) 67 (1920)

BerkeleyC 0 <0.1 (1) 54 (21)
BerkeleyJ 0 <1 (1) >99 (16399)

LLVM 0 <1 (1) 93 (262)
SQLite 0 <0.1 (1) 66 (15.13)
Dune 0 <0.1 (1) 54 (13508.69)
HIPAcc 0 <0.01 (1) 37 (42.576)

HSMGP 0 <0.1 (1) 14 (568.792)
JavaGC 0 <0.001 (1) 54 (3764.5)

x264 (Energy) 0 <0.01 (1) 56 (3740.36)
x264 (PSNR) 0 <0.01 (1) 60 (47.112)
x264 (SSIM) 0 <0.01 (1) 99 (0.9967)
x264 (Speed) 0 <0.01 (1) 65 (526.01)
x264 (Size) 0 <0.01 (1) 26 (47.12)
x264 (Time) 0 <0.01 (1) 75 (31.33)
x264 (Watt) 0 <0.01 (1) 92 (158.31)

FIGURE 5.9 – Minimum Recall measures for all 16 systems along with execution condi-
tions. Because of the heterogeneity of systems, we present the percentage of confi-
gurations used in the training set compared to the number of available configurations
(see last column of Table 5.1 and the absolute number under brackets. The last co-
lumn present the percentage of interesting configurations according to the distribution
of performance and the performance goal (given under brackets).

are hard to reach (with less than 5% of interesting configurations), and only one confi-

guration used in the training set. It means that, almost all configurations are not inter-

esting and providing only one configuration that is not interesting is enough to make

the algorithm infer that the rest of the configurations are not interesting too.

Sum-up over Recall : Again, extreme cases are not really useful. Similar conclu-

sions can be drawn when considering recall or precision. Not providing enough infor-

mation in the training set leads to a poor model that tends to keep all configurations (if

the given configuration is interesting, otherwise, it is likely that every configurations will

be discarded). On the other hand, targeting a hard performance goal (a performance

goal for which a few configurations are interesting) is likely to create a model that will try

to discard all configurations reaching a high recall measure. Apart from these extreme

cases, in average, learnt models provide a fairly good recall measure.

101

Partie , Chapitre 5 – Learning-based Performance Specialization of Configurable Systems

Systems Max Recall t% config. in train. set (# config.) % interest. config. (Perf. goal)
Apache 1 1 (1) 2 (900)

BerkeleyC 1 <0.1 (1) 0 (0.38)
BerkeleyJ 1 <1 (1) 0 (3065)

LLVM 1 <1 (1) 4 (206)
SQLite 1 <0.1 (1) <0.1 (13.16)
Dune 1 <0.1 (1) 0.001 (6773.45)
HIPAcc 1 <0.01 (1) 0 (21.682)

HSMGP 1 <0.1 (1) 0 (127.142)
JavaGC 1 <0.001 (1) 0 (470.5)

x264 (Energy) 1 <0.01 (1) <0.1 (405.04)
x264 (PSNR) 1 <0.01 (1) 0 (37.128)
x264 (SSIM) 1 <0.01 (1) 16 (0.9559)
x264 (Speed) 1 <0.01 (1) 2 (67.03)
x264 (Size) 1 <0.01 (1) 0 (8.07)
x264 (Time) 1 <0.01 (1) 1 (3)
x264 (Watt) 1 <0.01 (1) <0.1 (146.95)

FIGURE 5.10 – Maximum Recall measures for all 16 systems along with execution
conditions. Because of the heterogeneity of systems, we present the percentage of
configurations used in the training set compared to the number of available configura-
tions (see last column of Table 5.1 and the absolute number under brackets. The last
column present the percentage of interesting configurations according to the distribu-
tion of performance and the performance goal (given under brackets).

Concluding remarks

In the end, our method is able to provide constraints that are able to tell interesting

configurations apart from not interesting configurations rather accurately (with precision

and recall measures above 0.70 in average). However, as we saw, retrieving a very high

precision and recall measures (i.e., above 0.9) may not be enough. From a learning

point of view, presented results only evaluate the capability of the machine learning

model to exclude not interesting configurations from the variability model. Precision

and recall measures above 0.9 mostly occur when the performance goal is hard to

reach for configurations. This may result in an empty variability model in which no valid

configurations exist anymore. Precision and recall, in this case, tends to reduce choices

that users can make in the configuration process. We need to evaluate also this aspect

and this is the reason why flexibility and safety should be considered.

102

5.4. Experiments

5.4.5 RQ2) Does our method allow to maintain flexibility while being

safe ?

Flexibility analysis

Systems Avg Plast. % config. in train. set (# config.) % interest. config. (Perf. goal)
Apache 0.90 50 (96) 15 (1110)

BerkeleyC 0.98 3 (76) 100 (38.95)
BerkeleyJ 0.90 10 (18) 3 (3532)

LLVM 0.94 32 (331) 35 (225.62)
SQLite 0.77 28 (1261) 40 (14.34)
Dune 0.93 16 (369) 27 (10175.53)
HIPAcc 0.96 36 (4825) 4 (23.689)

HSMGP 0.95 42 (1463) 4 (262.707)
JavaGC 0.97 85 (141866) 0 (470.5)

x264 (Energy) 0.82 88 (60721) 2 (552.84)
x264 (PSNR) 0.90 2 (1381) 61 (47.235)
x264 (SSIM) 0.88 5 (3451) 88 (0.99)
x264 (Speed) 0.88 15 (10351) 33 (289.17)
x264 (Size) 0.83 32 (22081) 15 (29.81)
x264 (Time) 0.82 12 (8281) 15 (8.33)
x264 (Watt) 0.83 53 (36571) 66 (155)

FIGURE 5.11 – Average Plasticity measures for all 16 systems along with execution
conditions. Because of the heterogeneity of systems, we present the percentage of
configurations used in the training set compared to the number of available configura-
tions (see last column of Table 5.1 and the absolute number under brackets. The last
column present the percentage of interesting configurations according to the distribu-
tion of performance and the performance goal (given under brackets).

We have defined, in Def. 8, plasticity as a measure to quantify the flexibility of a

system between 0 and 1. The higher it gets, the more possibilities users have to confi-

gure their systems while meeting performance requirements. Figure 5.11 shows the

average plasticity retrieved for each system. For all systems, plasticity is high (above

0.75). Meaning that, the machine learning model is able to keep available most in-

teresting configurations. Again, execution conditions are different from one system to

another.

In the worst case, plasticity reaches 0 as shown in Figure 5.12. We fall back in

previous cases in which a few configurations are used in the training set (i.e., only one

103

Partie , Chapitre 5 – Learning-based Performance Specialization of Configurable Systems

Systems Min Plast. % config. in train. set (# config.) % interest. config. (Perf. goal)
Apache 0 <1 (1) 2 (900)

BerkeleyC 0 <0.1 (1) 0 (0.38)
BerkeleyJ 0 <1 (1) 0 (3065)

LLVM 0 <0.1 (1) 4 (206.23)
SQLite 0 <0.1 (1) 0 (13.16)
Dune 0 <0.1 (1) 0 (6773.46)
HIPAcc 0 <0.01 (1) 0 (21.682)

HSMGP 0 <0.1 (1) 0 (127.142)
JavaGC 0 <0.01 (1) 0 (470.5)

x264 (Energy) 0 <0.01 (1) 0 (405)
x264 (PSNR) 0 <0.01 (1) 0 (37.128)
x264 (SSIM) 0 <0.01 (1) 16 (95.586)
x264 (Speed) 0 0.01 (1) 2 (67.03)
x264 (Size) 0 <0.01 (1) 0 (8.07)
x264 (Time) 0 <0.01 (1) 1 (3)
x264 (Watt) 0 <0.01 (1) 0 (146.95)

FIGURE 5.12 – Minimum Plasticity measures for all 16 systems along with execution
conditions. Because of the heterogeneity of systems, we present the percentage of
configurations used in the training set compared to the number of available configura-
tions (see last column of Table 5.1 and the absolute number under brackets. The last
column present the percentage of interesting configurations according to the distribu-
tion of performance and the performance goal (given under brackets).

configuration) while defining a performance goal for which only a few configurations are

defined as interesting. Once again, the machine learning algorithm will classify every

configuration as not being able to meet the performance goal based on the ones given

in the training set. All configurations are discarded, users have no choices left, and the

systems is not usable anymore (in addition to not being configurable).

In the best case, the flexibility of the system is preserved with a plasticity of 1 as

shown in Figure 5.13. In this case, again, only one configuration is used in the training

set. We can make the assumption that the configuration is labeled as meeting the

performance goal, contrarily to the worst case, forcing the machine learning to not

build new constraints. In this case, machine learning has learnt nothing, and we are

back to a non-learning approach.

Sum-up over Plasticity : Plasticity measures have shown that, in average, the

machine learning model is able to keep in the valid set of configurations most of confi-

gurations that actually meet performance goals. It confirms previous results we had in

104

5.4. Experiments

Systems Max Plast. % config. in train. set (# config.) % interest. config. (Perf. goal)
Apache 1 <1 (1) 67 (1920)

BerkeleyC 1 <0.1 (1) 54 (21.25)
BerkeleyJ 1 <1 (1) >99 (16399)

LLVM 1 <0.1 (1) 93 (262.11)
SQLite 1 <0.1 (1) 66 (15.13)
Dune 1 <0.1 (1) 54 (13.508.70)
HIPAcc 1 <0.01 (1) 37 (42.576)

HSMGP 1 <0.1 (1) 14 (568.792)
JavaGC 1 <0.01 (1) 54 (3764.5)

x264 (Energy) 1 <0.01 (1) 56 (3740.36)
x264 (PSNR) 1 <0.01 (1) 60 (47.112)
x264 (SSIM) 1 <0.01 (1) 99 (99.67)
x264 (Speed) 1 <0.01 (1) 65 (526.01)
x264 (Size) 1 <0.01 (1) 26 (47.12)
x264 (Time) 1 <0.01 (1) 75 (31.33)
x264 (Watt) 1 <0.01 (1) 92 (158.31)

FIGURE 5.13 – Maximum Plasticity measures for all 16 systems along with execution
conditions. Because of the heterogeneity of systems, we present the percentage of
configurations used in the training set compared to the number of available configura-
tions (see last column of Table 5.1 and the absolute number under brackets. The last
column present the percentage of interesting configurations according to the distribu-
tion of performance and the performance goal (given under brackets).

Chapter 4 that machine learning can be used in the context of specializing configurable

systems as they are able to keep interesting configurations that meet performance

goals in the set of valid configurations of a variability model. However, as we showed,

it is easy to understand conditions in which low or high values of plasticity occur and

thus, we maintain that it is not the only aspect that we need to take into account.

Sureness analysis

Def. 9 defines the ability of a system to keep in the valid set of a variability model

only configurations that meet performance goals. We have called this ability the safety

of a system and proposed the sureness to quantify this notion (between 0 and 1).

Once again, average measures are high (above 0.70) for all systems. Meaning that, at

least 7 out of 10 configurations in the specialized variability model are configurations

able to meet the predefined performance goal showed on the last column of the figure.

105

Partie , Chapitre 5 – Learning-based Performance Specialization of Configurable Systems

Systems Avg Sure. % config. in train. set (# config.) % interest. config. (Perf. goal)
Apache 0.85 63 (121) 8 (990)

BerkeleyC 0.98 82 (2101) <1 (0.52)
BerkeleyJ 0.85 65 (118) 2 (3299)

LLVM 0.90 25 (251) 71 (248)
SQLite 0.73 44 (1981) 40 (14.34)
Dune 0.89 87 (2002) 2 (6980)
HIPAcc 0.94 10 (1341) 18 (31.9)

HSMGP 0.92 86 (3027) 0.6 (146.784)
JavaGC 0.95 34 (56747) 0.5 (501)

x264 (Energy) 0.70 62 (42781) 14 (1244.48)
x264 (PSNR) 0.82 94 (64861) 61 (47.285)
x264 (SSIM) 0.79 75 (51751) 69 (0.75)
x264 (Speed) 0.79 95 (65551) 48 (399.01)
x264 (Size) 0.71 18 (12421) 14 (28.11)
x264 (Time) 0.71 95 (65551) 15 (8.33)
x264 (Watt) 0.71 27 (18631) 67 (155.19)

FIGURE 5.14 – Average Sureness measures for all 16 systems along with execution
conditions. Because of the heterogeneity of systems, we present the percentage of
configurations used in the training set compared to the number of available configura-
tions (see last column of Table 5.1 and the absolute number under brackets. The last
column present the percentage of interesting configurations according to the distribu-
tion of performance and the performance goal (given under brackets).

Chances for users to select a configurations that is not interesting are thus reduced and

the original try-and-error process to configure the system tends to vanish. Performance

goals and number of configurations in the training set are too different from one system

to another for a general trend to emerge.

In the worst case (shown by Figure 5.15), sureness is equal to zero. For all systems,

only one configuration is used in the training set and we can see that performance goals

are very hard to reach. Only x264 (SSIM) had over 15% of configurations able to reach

this goal, for all other systems, less than 5% of configurations are interesting. Maybe

more than before, in this figure, we can see how difficult it can be for a machine learning

algorithm to learn anything. However, we can see also that the performance goal for

11 systems is so hard that none of the configurations are able to cope with it.

Maximum sureness for all systems is shown in Figure 5.16. Measures are above

0.98 which shows that systems can be very secure. Interesting trends show up. Except

for the BerkeleyJ and BerkeleyC systems, either the performance goal is very easy to

106

5.4. Experiments

Systems Min Sure. % config. in train. set (# config.) % interest. config. (Perf. goal)
Apache 0 <1 (1) 2 (900)

BerkeleyC 0 <0.1 (1) 0 (0.38)
BerkeleyJ 0 <1 (1) 0 (3065)

LLVM 0 <0.1 (1) 4 (206.23)
SQLite 0 <0.1 (1) 0 (13.16)
Dune 0 <0.1 (1) 0 (6773.46)
HIPAcc 0 <0.01 (1) 0 (21.682)

HSMGP 0 <0.1 (1) 0 (127.142)
JavaGC 0 <0.001 (1) 0 (470.5)

x264 (Energy) 0 <0.01 (1) 0 (405.04)
x264 (PSNR) 0 <0.01 (1) 0 (37.128)
x264 (SSIM) 0 <0.01 (1) 16 (0.95586)
x264 (Speed) 0 <0.01 (1) 2 (67.03)
x264 (Size) 0 <0.01 (1) 0 (8.07)
x264 (Time) 0 <0.01 (1) 1 (3)
x264 (Watt) 0 <0.01 (1) 0 (146.95)

FIGURE 5.15 – Minimum Sureness measures for all 16 systems along with execution
conditions. Because of the heterogeneity of systems, we present the percentage of
configurations used in the training set compared to the number of available configura-
tions (see last column of Table 5.1 and the absolute number under brackets. The last
column present the percentage of interesting configurations according to the distribu-
tion of performance and the performance goal (given under brackets).

reach either the number of configuration in the training is very large. From this Figure,

we can say that, apparently BerkeleyJ and BerkeleyC are very easy to learn on as only

a few configurations are needed to learn average to hard performance goals. Apache is

surprising as the performance goal is very difficult to reach (only 1% of configurations

are able to do so) but not all configurations are needed to reach 0.99 sureness. In

other cases, experiment conditions tend to show that, for a system to be safe, either it

must use all information at disposal in the training set or users must defined fairly easy

performance goals which might facilitate the learning task.

Sum-up over Sureness : Sureness measures have shown that, in average, the ma-

chine learning model is able to discriminate configurations such that a majority (more

than 7 out of 10 in average) of valid configurations are able to reach users defined per-

formance goals. It confirms previous results we had in Chapter 4 that machine learning

can be used in the context of specializing configurable systems as they are able to re-

move configurations that are not able to meet performance goals from the set of valid

107

Partie , Chapitre 5 – Learning-based Performance Specialization of Configurable Systems

Systems Max Sure. % config. in train. set (# config.) % interest. config. (Perf. goal)
Apache 0.99 88.5 (170) 1 (2430)

BerkeleyC 1 2 (51) 51 (20)
BerkeleyJ 1 5 (9) 16 (5186)

LLVM 0.99 94 (961) 100 (266.32)
SQLite 0.99 73 (3331) 100 (16.13)
Dune >0.99 89 (2048) 100 (19289.52)
HIPAcc >0.99 99 (13401) 100 (77.494)

HSMGP >0.99 99 (3435) 56 (1902.79)
JavaGC >0.99 100 (16901) 31 (2388)

x264 (Energy) >0.99 55 (37951) 100 (6404)
x264 (PSNR) 0.99 22 (15181) 100 (53.646)
x264 (SSIM) 0.99 38 (26221) 100 (0.997)
x264 (Speed) >0.99 50 (34501) 100 (779.44)
x264 (Size) >0.99 45 (31051) 100 (155.67)
x264 (Time) >0.99 67 (46231) 100 (41)
x264 (Watt) 0.98 48 (33121) 100 (159.25)

FIGURE 5.16 – Maximum Sureness measures for all 16 systems along with execution
conditions. Because of the heterogeneity of systems, we present the percentage of
configurations used in the training set compared to the number of available configura-
tions (see last column of Table 5.1 and the absolute number under brackets. The last
column present the percentage of interesting configurations according to the distribu-
tion of performance and the performance goal (given under brackets).

configurations of a variability model. However, as showed in Figure 5.16, it is easy to

make a system very safe but, once again, machine learning becomes useless as per-

formance goals might be reached by the vast majority (if not all) valid configurations of

the variability model. Removing extrema cases, safeness seems to be an interesting

indicator to consider as it balances the fact that good results might be retrieved with

only a few configurations in the training set. Doing so, more information can be taken

into account by the machine learning algorithm which may result in models that perform

better at shrinking the configuration space.

Concluding remarks

In the end, our method is able to provide constraints that are able to keep interesting

configurations in the specialized variability model while the number of not interesting

configurations is reduced. However, as we saw, retrieving a very high plasticity and

108

5.4. Experiments

sureness measures (i.e., above 0.9) may not be enough. In particular, we see that

high plasticity corresponds to not constraining anything, thus the learning process is

useless. On the other hand, sureness tries to ensure that all not interesting configura-

tions are removed from the set of valid configurations which might necessitate heavy

computations (needing all configurations at disposal) and thus becomes impossible in

practice.

109

Partie , Chapitre 5 – Learning-based Performance Specialization of Configurable Systems

5.5 Conclusion

This chapter followed the same approach of the one presented in Chapter 4 but

significantly differ as we focus this chapter on different aspects. We have conduc-

ted new experiments on various different systems which have different characteristics

(i.e., number of available configurations, number and nature of options, implementation

languages and application domains). Our experiments have focused on the definition

of performance goals that must be reached by configurations of the variability model.

Compared to our previous work, these performance goals are easier to define as they

are refer to quantities that can be measured (e.g., execution time or memory consump-

tion). Users only have to define a threshold value for a performance measure that, in

turn, is used in an oracle procedure in order to label configurations.

However, considering such kind of oracle procedures reveal several challenges.

First, the approach needed to be slightly adapted in order to go from performance

values (which are often numerical value) to a binary classification problem.

Second, as the distribution of performances of the configurations of a system are

not known a priori, classes might be unbalanced, it can be difficult to find configurations

that meet (respectively do not meet) performance goals which can be a problem for the

learning process.

Finally, our previous study has focused on evaluating the performance of the ma-

chine learning algorithm via precision and recall which are well-known in this domain.

In our case, we have to go further and evaluate that the machine learning model that

has been built does not restrict too much users possibilities in configuring their systems

nor does it allow too many not interesting configurations to be picked by users. To do

so, we relied on the definition of two notions : flexibility and safety of a configurable

system; and their measurable quantities : plasticity and sureness.

Based on our experiments, learning-based specialization is able to provide safer

systems while maintaining some flexibility in the choice of configurations’ features. Ho-

wever, our approach looses in flexibility compared to a non-learning based approach

as classification errors are made . Meaning that, some configurations meeting perfor-

mance goal might be wrongly forbidden. However, a learning-based technique can be

much more efficient to discard unsafe configurations than a non-learning-based ap-

proach. In general, our specialization method has shown to achieve a good trade-off

between flexibility and safety.

110

5.5. Conclusion

Future works include, among others, the exploration of other machine learning al-

gorithms, but also to pursue efforts to properly evaluate the benefits of a machine

learning approach. Even if, results were globally encouraging, we have shown that ex-

treme cases provide either very good or very bad measures but these cases are not

relevant as they excessively limit information taken into account in the training set or

target a performance goal that all (respectively none) configurations are able to meet.

Developing a framework that let users decide whether they want a safe system or a

flexible one or a trade-off between the two is also a very interesting idea to explore.

111

CHAPITRE 6

MULTIMORPHIC TESTING

6.1 Introduction

The two previous chapters focused on specializing a software product line such

that derived products are relevant to tackle a specific problem and meeting predefined

requirements. The proposed approach aims at helping populate the first dimension of

the matrix. But before the learning process can be launched, product variants still have

to be executed against test cases in order to evaluate their performances. Usually,

test suites contain a lot of test cases in order to cover different situations. Considering

the combination of test cases with all considered program variants can be very time

consuming. Furthermore, in some contexts, some test cases might be redundant with

others as measured performances will be close. This can come from the fact that confi-

gurations are close to each other. Taking the example of images, it would mean that

both conditions of capture as well as contents are similar. In such situation, keeping

all these kinds of test cases in the test suite do not provide any additional useful infor-

mation. Thus, a first problem is to find relevant test cases (i.e., the ones that provide

significant different measures) in order to execute them first. Doing so, we can have an

idea of the performances of programs at a reduced cost (i.e., without having to execute

all test cases).

In the mean time, different test suites or benchmarks may exist to evaluate perfor-

mances of different program variants. Since they provide different test cases, it makes

their comparison difficult resulting in an other problem : how to choose a benchmark/-

test suite among a collection in order to properly assess program variants at hand?

Taking the example of computer vision and object tracking, a lot of benchmarks

exist (through competitions and other evaluations) [25, 30, 38, 58, 71] with their own

emphasis of specific elements that make the object tracking task difficult. For this rea-

son choosing a specific benchmark when trying to tackle the object tracking problem

as broadly as possible is complicated. Futhermore, ImageNet [25] contains millions of

113

Partie , Chapitre 6 – Multimorphic Testing

images which might take time to process them all. We can wonder whether such a

number is useful and necessary. Even with such large benchmarks, on May 7, 2016, a

2015 Tesla Model S collided with a tractor trailer crossing an uncontrolled intersection

on a highway west of Williston, Florida, USA, resulting in fatal injuries to the Tesla dri-

ver. One might wonder why the computer vision program did not “see” this huge trailer

in the middle of the road. An analysis a posteriori showed that the videos recorded du-

ring the crash by Autopilot were not under ideal lighting conditions. Background objects

blended into vehicles that needed to be recognized, making it difficult for any computer

to process the video stream correctly. On top of that, no wheels were visible under the

trailer, which complicated its identification as a vehicle in the middle of the road. More

recently, on March 18, 2018, an autonomous Uber vehicle hit a pedestrian crossing a

road in Arizona, USA. The pedestrian crossed outside any near crosswalks, at night,

on a road where there were no public lighting. A video of the accident was released a

few weeks later showing that the vehicle did not even try to dodge or brake before it

hits the person and provokes her death.

Now taking a software engineering perspective, these situations clearly lead to the

usual question from the software testing community : how come that those systems

were deployed without being tested under such conditions? This is, of course, partly

due to a huge input data space. Going further, since the input space (e.g., videos for

testing video tracking) is orders of magnitude larger than typical data, we ask the fol-

lowing set of questions : how much effort should we put in the testing activity? How

can we build a “good” test suite ? How do we even know that a given test suite is “bet-

ter” than another one ? Depending on the software application’s goals (e.g., maximizing

speed, computations’ accuracy or even a tradeoff among several such quantitative pro-

perties), do we end up with the same “good” test set ? Structural code coverage metrics

for test suites seem indeed a bit shaky for that kind of software systems, especially for

handling quantitative properties related to performance aspects. To our knowledge, no

method exists to assess the “coverage” of test suites with respect to their ability to

reveal performance weaknesses in the software.

This general problem does not only apply to computer vision systems. For instance,

generative programming techniques have become a common practice in software de-

velopment to deal with the heterogeneity of platforms and technological stacks that

exist in several domains such as mobile or Internet of Things. Generative programming

offers a software abstraction layer that software developers can use to specify the de-

114

6.1. Introduction

sired system’s behavior and automatically generate software artifacts on different plat-

forms. As a consequence, multiple code generators (also called compilers) are used

to transform the specifications/models represented in graphical or textual languages

into different general-purpose programming languages such as C, Java, C++, etc. or

different byte code or machine code. In this case, from a testing perspective, the input

data space is made of models or programs. Defective code generators with respect to

performance (e.g., high resource usage, low execution speed, etc.) are then hard to

detect since testers need to produce and interpret numerous numerical results.

We propose a method to empirically assess the relative value of test suites. In parti-

cular, we propose a particular metric to build scores allowing us to compare test suites.

By analogy with mutation testing [7, 36, 78], the core idea of multimorphic testing is

to leverage the configurability of these software systems (synthetizing morphs through

the variation of parameters’ values and execute test cases over them) to check whe-

ther it makes any difference on the outcome of the tests : i.e., are some test cases

able to “kill” program’s configurations? “Killing” intuitively means exhibit high variations

w.r.t. quantitative properties of the morphs (e.g., some morphs are too slow). In this

work, we define the relative value of a test suite as a trade-off between the size of the

benchmark (i.e., the number of its elements) and its discriminative power (i.e., how well

it is able to differentiate the execution of multiple program configurations).

This chapter is mainly copied from an article that is under submission in a jour-

nal following the first submission [99] that we have performed at the 40th International

Conference of Software Engineering. The main differences with the article are written

in this introduction as we put back this method in the context of this thesis.

Section 6.2 presents our method including the definition of our dispersion score.

To show its applicability to various domains, we validate our approach on three dif-

ferent applications in Section 6.3 (i.e., video tracking, image recognition and code ge-

nerators). Section 6.4 discusses some threats of our method and evaluation process.

Section 6.5 concludes and proposes future investigation axis.

115

Partie , Chapitre 6 – Multimorphic Testing

6.2 Multimorphic Testing

6.2.1 Motivation

While functional tests check the output conformance of a program (with the help

of an Oracle giving a "pass"/"fail" verdict), performance testing aims to assess quanti-

tative properties through the execution of software under various conditions. This as-

sessment can be confronted to user-defined requirements (e.g., "I need a system that

is able to process inputs under a fixed amount of time"). In the end, the process (cha-

racterization and confrontation) can provide level of insurances about performances of

a system (e.g., "From the test I ran, I saw that the system was able to process inputs

under 30 seconds in 7 out of 10 cases") which can be crucial, in safety contexts for

instance. One important aspect of this process is that the assessment of performances

heavily depends on test cases (or inputs) fed to software systems.

Example 1. For instance, let us consider a Computer Vision (CV) system designed

to detect objects. A key performance indicator could be its precision, defined as the

ratio of correctly identified objects with respect to ground truth. Getting a low precision

on a given test case (e.g., an image) does not necessarily mean the test case is good

(and the CV program is weak), because it might simply be too difficult (e.g., a scene

with low contrast and poor illumination conditions resulting in objects being barely per-

ceivable). Conversely, if the precision is high, does it mean that the computer vision

program is efficient or that the video is simply not very challenging (e.g., just one big,

highly contrasted object under ideal illumination conditions) ?

Example 2. Let us consider another engineering context. The discovery of (perfor-

mance) bugs in generators (e.g., compilers) can be complex. In such a context, what

are the most useful test cases (from a test suite) that need to be ran in order to find

that a generated program using a particular programming language has performance

issues (e.g., unexpected high execution time)? Once again, we can understand that

very simplistic test cases are not interesting as computation times might be too short

(i.e., expressed in milliseconds). Conversely, executing unrealistic test cases may re-

sult in extremely long execution time or time-out. Here again, we see that what matters

is the fact that we are able to discriminate the execution of different programs.

Our general observation is that we cannot assess the performance of a software

system solely based on raw and absolute numbers ; the performance should rather

be put into perspective w.r.t. the difficulty of the task. For doing so, we consider two

116

6.2. Multimorphic Testing

Test suite

software

system

(M1)

Denoise=true

Confidence=0.5

OpticalFlow=true

...

Denoise=false

Confidence=0.7

HistogramMatching=true

...

Denoise=false

Confidence=0.9

Grayscale=true

...

software

morph (M2)
Multimorphing software

morph (M3)

software

morph (Mn)
...

Denoise=true

Confidence=0.7

OpticalFlow=false

...

Measurements
of quantitative

 property of

interest

Morphs

derivation

Test case (T1)

Test case (T2)

Test case (T3)

Test case (Tm)

...

Assessment

of the test

suite

Optimization
(e.g., minimization

of the test suite)

Score

2

1

3

performance matrix

FIGURE 6.1 – Multimorphic process : morphs are automatically produced (e.g., thanks
to parameters) ; for each morph test suite is executed and performance measurements
are gathered ; a dispersion score is finally computed to characterize the quality of a test
suite

main axes. First, a software system should be confronted to other competitors (called

morphs hereafter) in order to establish the relative difficulty of a task. Second, the

quality of a test case (and by extension of test suites) is crucial. A bad test suite may

not reveal the underlying difficulty in processing a certain task. We consider a good

test case as one being able to discriminate different program implementations based

on their observed performances. Overall, we aim to characterize the quality of test

suites when assessing quantitative properties of a software system.

6.2.2 The principle of Multimorphic Testing

In this section, we describe how we can associate a score to a performance test

suite 1, based on its ability to discriminate the performance behavior of variants of the

same software system (called morphs hereafter).

The core idea of Multimorphic testing is to evaluate test cases by varying configura-

tion settings and then comparing their outcomes. Said differently and by analogy with

mutation testing : Are some tests able to “kill” weak morphs ? Our basic assumption is

that a test is “good” when it is able to reveal significant quantitative differences in the

performance behavior of software system configurations. Following the same process

1. The score of a single test case is then defined as the score of the singleton test suite made of it.

117

Partie , Chapitre 6 – Multimorphic Testing

as for mutation testing, we derive and exploit morphs (instead of mutants) to reveal

significant quantitative differences (instead of pass/fail verdicts) and eventually assess

the quality of a test suite.

Our method, called Multimorphic testing, proactively produces morphs that are all

tested with the same set of test cases (i.e., test suite). A morph is a program variant that

implements the same functionality and can possibly exhibit performance differences.

Morphs typically correspond to different parameterizations of a system or to different

implementation choices (choice of an algorithm for video tracking, or a strategy in a

compiler) that can be selected at compile time or runtime. It can be done by leveraging

software product line automatic derivation techniques [8, 9].

In the example of Figure 6.1, morphs denoted M1, M2, M3, ..., Mn are derived

thanks to the settings of parameters’ values. For instance, in the case of computer vi-

sion systems, all morphs implement the same high-level functionality and realize the

same task (for instance, tracking objects in a scene). We use different values for pa-

rameters such as Denoise, Confidence, or OpticalFlow, because these can have a

significant influence on quantitative property such as execution time or precision. Once

morphs are derived, they can be fed with inputs (represented by the test cases on the

left part of Fig. 6.1) and their performances (e.g., execution time) are measured for

each pair (Mi,Ti). We represented (examples of) performances in cells of the perfor-

mance matrix of Fig. 6.1 which corresponds also to the one we presented in Fig. 1.1.

Ultimately, we need a measure (or score) that reflects the ability of a test suite to

exhibit different performance behaviors of a set of morphs of the same software system.

6.2.3 Properties of a measure

A measure is a function defined on a set which systematically assigns a number to

each subset of the set. According to the general measure theory [96, 111], a measure

must fulfill the following properties :

— (P1) non-negativity : the measure associated to a test suite should be ≥ 0

— (P2) null empty set : the measure associated with an empty test suite is 0

— (P3) monotony and sub-additivity : the measure associated with the combi-

nation of multiple test suites should not be less than the maximum measure

associated to each individual test suite. In other words, adding new test cases

to an existing test suite should not decrease the measure.

118

6.2. Multimorphic Testing

6.2.4 Design of dispersion measures

The three previous properties aim to restrict the design space of candidate mea-

sures and in turn eliminate some of them. For example, in this section, we demonstrate

that variance, an intuitive and widely used metric, cannot be chosen in our context. We

then propose a new measure that we call the dispersion score which does fulfill the

three properties of a measure.

Variance

Variance is probably the most commonly used indicator when analyzing the sprea-

ding of measures. It computes the difference between elements of a set with the mean

value of the set and average these differences to produce a value. It is usually descri-

bed as : V (X) = E

[

(X − E [X])2
]

with X, a set of observations over a random variable

and E, the expected value.

Variance could be interesting but it does not meet the third property (P3) of a mea-

sure (see Section 6.2.3). We give a counterexample in Table 6.1 : adding a new test

suite actually reduces the variance of a test suite. Specifically, Table 6.1 shows two test

suites (Test suite 1 and Test suite 2) both composed of two test cases. Six Morphs (one

per row) are executed on each test suite. Each execution yields a value in the range

[0.1; 0.6]. Let us compute variances of Table 6.1 :

— The variance of Test suite 1 is 0.041 ;

— The variance of Test suite 2 is 0.049 ;

— The variance of Test suite 1 and 2 is 0.043.

The variance of the combination of the two test suites lies in between the two va-

riances of individual test suite. This counterexample shows that (P3) is not always met

and thus variance cannot be used in our context.

Dispersion score

Instead, we propose to use a dispersion score that is based on histograms, as

they are one of the most popular ways of evaluating the distribution of a continuous

variable [80, 90]. An example of histogram based on values given by Test suite 1 of

Table 6.1 is shown in Figure 6.2.

The observed definition domain (i.e., the range of observed values) is presented

119

Partie , Chapitre 6 – Multimorphic Testing

Test suite 1
Test case 1.1 Test case 1.2

Morph 1 0.2 0.1
Morph 2 0.2 0.6
Morph 3 0.3 0.1
Morph 4 0.2 0.6
Morph 5 0.3 0.6
Morph 6 0.4 0.6

Test suite 2
Test case 2.1 Test case 2.2

Morph 1 0.1 0.2
Morph 2 0.6 0.3
Morph 3 0.1 0.1
Morph 4 0.6 0.2
Morph 5 0.6 0.3
Morph 6 0.6 0.1

TABLE 6.1 – An example for showing the inadequacy of variance and illustrating our
measure : performance observations gathered for 2 different test suites, each compo-
sed of 2 test cases over 6 morphs.

FIGURE 6.2 – An example of a histogram (based on Table 6.1).

120

6.2. Multimorphic Testing

on the X-axis, while frequency (between 0 and 1) of observations appears on the Y-

axis. From left to right, it reads as follows : 16, 5% of observed values lie in the range

[0; 0.12], 25% of observed values lie in the range [0.12; 0.24] ... and finally 33% lie in the

range [0.48; 0.6]. However, we are not interested in the frequency of each value nor

the absolute values but rather that at least one observation falls into each sub-range

(called bin) of the X-axis. In other words, we want to build a test suite for which the

retrieved histogram is as dense as possible (i.e., the definition domain of observations

is "covered").

Histograms are parametrized by their number of bins. Bins are defined to gather va-

lues which are close from each other (i.e., with insignificant differences). Considering a

small number of bins would yield a coarse histogram, gathering values with significant

differences. On the other hand, too many bins would yield a very fine-grained histo-

gram, providing more details but likely to separate observations with insignificant diffe-

rences. As a trade-off, we choose to fix the number of bins as the number of morphs to

execute 2. We then define the dispersion score of a test suite as the proportion of bins

activated (i.e., bins with a frequency different from 0) in its histogram.

To make this definition more precise, let’s consider n morphs and a test suite made

of m test cases. Executing the m test cases on the n morphs yields a matrix M with m

rows and n columns where each cell Mij holds the measured value for some property

of interest (precision, recall, execution time, etc.), as illustrated in Table 6.1).

When considering performance properties like execution time, it may however be

difficult to compare different sets of executions : one test might take a few seconds

while others could take minutes or more. We thus need to apply a normalization step

over these observations. That is, we consider the extrema of observed performances

and, for each performance, we apply the following transformation : x−min
max−min

where x

is an observed performance, min and max are respectively the minimal and maximal

observed performance of a test suite. After this normalization, all performance values

Mij are in the range [0; 1].

We now have to compute the histogram for M, which is a vector V of size n (because

2. We admit this choice is rather arbitrary, but empirical assessment already shows interesting results
with that choice (Section 6.3). In fact, finding the best number of bins is a well-known issue [81]. Finding
the optimum in our context remains an open question.

121

Partie , Chapitre 6 – Multimorphic Testing

we choose the number of bins to be the number of morphs) such that :

Vi =

∑n
i=1

∑m
j=1

(

i−1

n
≤ Mij < i

n

)

?1 : 0

n ∗ m

However we are not really interested in the histogram itself, but only on the propor-

tion of bins that have been activated by at least one test case (i.e., a column with a

value different from 0). We thus apply the following transformation on V :

Vi =

1, if Vi 6= 0

0, otherwise

Now, the vector only contains 0s and 1s and the dispersion score is :

Disp(V) =

∑n
i=1 Vi

n

This way, the best possible test suite would activate all the bins of its histogram

(e.g., exactly one observation falls into each bin) ; having a dispersion score of 1, mea-

ning it would be able to discriminate every morph. The worst test suite would have a

score close to 0 (exactly 1 over the number of morphs), because all morphs would

behave the same, thus filling only one bin. Dispersion score is thus defined in [0; 1]

satisfying the first property of a measure.

The dispersion score of an empty set (i.e., when no test suites are given) is 0 which

satisfies the second property. To go from M to V, we only used sums which ensures that

the number of activated bins cannot decrease as the number of test cases increases.

Thus, the dispersion score also fulfills the third property of a measure.

122

6.3. Empirical Evaluation

6.3 Empirical Evaluation

We have introduced the Dispersion Score as a new measure to assess the relative

merits of performance test suites. In the following, we want to empirically show that this

measure is right, and that it is a right measure to assess the quality of test suites.

6.3.1 Research questions

Is the measure right? We consider that the dispersion score is right if it is able to

effectively exhibit significant differences in terms of observed performances on a set of

morphs of a given software system. We also expect sufficient stability w.r.t. the set of

morphs ; the stability of the measure is evaluated via a sensitivity analysis.

Is it a right measure ? Here, we want to assess the correlation between the actual

(relative) effectiveness of performance test suites and their dispersion scores. Depen-

ding on the domain, this question will take several very different forms, from helping to

select test cases able to reveal performance bugs in code generators, to reducing a

test suite without loosing its ranking capabilities.

6.3.2 Evaluation settings

To answer these questions, we applied our method on several application domains

and evaluate its results. For each case, we detail : i) what are morphs ; ii) what are test

suites ; iii) how performance measurements are retrieved and used ; iv) how we perform

the evaluation. Table 6.2 summarizes the cases ; we can notice different scales both in

terms of available morphs and test cases.

Case App. Domain # morphs # tests

OpenCV Tracking in videos 252 49

COCO Obj. rec. in images 52 40k

Haxe Code generation 21 84

TABLE 6.2 – The three case studies

123

Partie , Chapitre 6 – Multimorphic Testing

OpenCV case (object tracking in videos)

In the field of video tracking, the use of large test suites helps building confidence

in the robustness of a system and its capability in performing well under various condi-

tions. However, are all those test cases necessary ? We consider OpenCV 3, a popular

library, written in C++, and implement different techniques for tracking object of interest

in videos.

Morphs. By reverse-engineering a part of OpenCV and using the feature modeling

formalism [2, 8, 9, 106], we have elaborated a variability model (including constraints) to

formally specify the possible values of parameters and their valid combinations. From

this variability model, we automatically sampled 212 configurations by assigning ran-

dom values to functions’ parameters. The configurations are valid w.r.t. the variability

model and are used to derive 212 morphs.

Test suites. We use a set of 49 synthetic video sequences as a test suite. Videos

have been obtained using MOTIV, the industrial video generator we have used in pre-

vious chapters [1, 4, 5, 34]. Videos are all different either in the composition of the

scene (presence or not of objects we do not want to track such as tree leaves) or in the

visual characteristics of the scene (different illumination conditions ; presence of heat

haze and/or noise). Importantly, a ground truth is automatically generated along videos

stating the position of every encrusted objects in every video images such that we can

assess the ability of our programs to track objects of interest.

Measurements. Following the Multimorphic method (see Fig. 6.1), we execute all

212 programs (morphs) on the 49 videos. For each execution, we measure several

quantitative properties such as : precision, recall, the execution time and the CPU

consumption to cite a few. Precision and recall measures are ratios given in the range

[0; 1]. They are measured by comparing objects’ positions computed by morphs to the

generated ground truth. Positions are usually defined by bounding boxes that surround

objects. Then, we considered an object as being detected if the intersection between

the bounding boxes retrieved by a morph and the one defined by the ground truth is

not null. The execution time is given in seconds while the CPU consumption is expres-

sed as a percentage of one CPU core usage (if the computations are distributed over

multiple CPUs then this measure can be higher than 100%). Note that to stay within

realistic computation boundaries, we set a time-out for every executions we launch. If

3. https://opencv.org/

124

https://opencv.org/

6.3. Empirical Evaluation

an execution exceed this amount of time, its process is killed and its measures are re-

ported as values showing that it has failed (high CPU and memory consumption, zero

precision and recall measures, etc.). We have considered 13 different quantitative pro-

perties for each execution. This yields a total of 212 ∗ 49 ∗ 13 = 135, 044 performance

measures.

Evaluation. Since our method yields a dispersion score associated to a test suite,

we evaluate that a test suite created to maximize the dispersion score is actually a

"better" test suite than random ones with lesser scores.

COCO case (object recognition benchmarks)

For many years, the computer vision community has been building large datasets

that are used as benchmarks [25, 38, 58, 71] in competitions to rank competing image

recognition techniques. Here we use the COCO dataset on which computer vision com-

petitions are conducted every year since 2014. Results of competitions are presented

on the leaderboard webpage 4. COCO competitions address different tasks (e.g., de-

tection of objects, segmentation of images, etc.). Our evaluation focuses on object

detection.

Morphs. Even if we do not know much about the specific details of techniques used

by competitors, we know that they are all designed to recognize objects in images,

which means that they can play the role of morphs when applying our Multimorphic

method. It should be noted that, for this case, morphs have not been obtained by

parameterization – they are simply existing competing systems realizing the same task

and potentially exhibiting performance differences.

Test suites. Competitions using COCO datasets have been running for several

years now and each year brings its own dataset. We focus on the 2017 challenge

that ended in late November 2017. The dataset is composed of more than 160,000

images. Different object classes are specified (80 in total) and more than 886,000 ob-

ject instances can be detected. Object classes are gathered into concepts. For ins-

tance, classes "dog", "giraffe" or "horse" are gathered under a concept called "animal".

Similarly, "hot dog" or "carrot" are gathered under the "food" concept. 12 such concepts

have been created in total.

To conduct the competition, organizers have decided to split the dataset into two

4. http://cocodataset.org/#detections-leaderboard

125

http://cocodataset.org/#detections-leaderboard

Partie , Chapitre 6 – Multimorphic Testing

main subsets : first, the set given to competitors along with associated ground-truth

so that they can train their models and also perform a validation step. This subset is

composed of 120,000 images. The second set is also given to competitors but without

associated ground-truth. It is composed of the remaining images and is used to eva-

luate competitors and thus to establish their ranking. We use this second subset as a

test suite in the Multimorphic testing method.

Measurements. In this study, we focus on the Average Precision performance mea-

sure 5 available for each technique on the leaderboard. This measure is computed over

the second set of images and corresponds to the overlap of bounding boxes from a

computer vision technique (i.e., a morph) and the ground truth (which is only known by

the server).

The process is the following : (1) each morph is executed on the test suite, gene-

rating an output for each test case (i.e., image) ; (2) all outputs of a morph are sent to

the server following a format specified by organizers ; (3) for each test case, the server

computes the overlap of the outputs of a morph and the ground truth ; (4) based on the

overlap, performance measures are updated ; (5) once performance measures are all

up-to-date, ranks are computed.

Even if we could have presented results for all 80 object classes, we decided to

focus on the 12 concepts for the sake of compactness and exhaustive presentation.

However, the method is not changed and conclusions that we present hereafter are

similar considering 12 or 80 items.

Evaluation. We consider the ranking computed by the server (available online) as

the ranking of reference. Using our dispersion score to rate test suites, we will try to

reduce the number of test cases (i.e., images) needed to evaluate competitors’ tech-

niques. We then will assess the capability of such a reduced test suite to yield a ranking

similar to the original one.

Haxe case (code generator)

Today’s modern generators or compilers (e.g., gcc, a C compiler) become highly

configurable, offering (numerous) configuration options (e.g., optimization passes) to

users in order to tune the produced code with respect to the target software and/or

hardware platform. Haxe is an open source toolkit 6 for cross-platform development

5. Note that we could have considered other measures, it would not have affected our method
6. With about 2500 stars on GitHub in June 2018.

126

6.3. Empirical Evaluation

which compiles to a number of different programming platforms, including JavaScript,

Flash, PHP, C++, C#, and Java. It involves many features : the Haxe language, multi-

platform compilers, and different native libraries. Moreover, Haxe comes with a set of

code generators that translate the manually-written code (in Haxe language) to different

target languages and platforms. One of the main objectives of Haxe is to produce code

that has better performance than a hand-written one [94] ; it shows the importance of

performance aspects of the code generator.

Morphs. Based on previous works [15, 16], we selected 4 popular target languages

(namely C++, C#, Java, PHP). Then, we tuned code generators according to several

optimization parameters they provide. More specifically, regarding C++, we chose to

apply the different optimization levels available via gcc compiler (O0, O1, O2, O3, Ofast

and Os). Regarding other languages, we derived different code generators by toggling

different parameters such as dead code elimination, the use (or not) of methods in-

lining or the use of code optimizations. For each of the generated variants in one target

language, we modified one of these parameters ; others are set to default values. In

total, we considered 21 different configurations of the Haxe code generator across the

four target languages.

Test suites. We used the same 84 test suites that were used in previous studies [15,

16]. Each test suite is composed a number of test cases ranging from 5 to 50.

Measurements. We used the same testing environment that was used by Bous-

saa et al. [15, 16], running the same test suites across the 21 morphs, focusing on

one property of interest, namely : execution time. We thus collected data relative to the

execution time of each generated program. To mitigate the fact that measures could

vary because of external factors (such as warm-up, or the charge of CPUs), we execu-

ted each test case several times on each morph (see [15] for details). Raw measures

have been transformed and normalized as follows : (1) Finding an execution of refe-

rence for each test cases and set it to 1. The reference execution is defined as the one

optimizing the considered quantitative property (e.g., minimizing execution time) ; (2)

expressing other observations relative to this test case as a multiplicative factor of the

execution of reference. For instance, let us consider two morphs and a single test case.

Assuming the property of interest is execution time, if one execution gives an observa-

tion of 35 and the other one of 70. Since the goal is probably to minimize the execution

time, the first one is the execution of reference. Thus, the measure is transformed into

1 while the second execution becomes 2 as it took twice the time to be executed. Such

127

Partie , Chapitre 6 – Multimorphic Testing

transformation has no impact on our proposed solution, since we are not interested in

the actual values, but their dispersion. After that first step, we carried on performing a

normalization in the range [0; 1] to build our histograms and compute dispersion scores

as explained in Section 2.

Evaluation. Here our criterion will be whether the dispersion score is helping us to

select test cases able to reveal performance bugs in code generators.

Presentation of results. Hereafter, we present results for each research question using

the three case studies, showing that the same method can be applied to various do-

mains.

6.3.3 RQ1 : Is the dispersion measure right ?

Videos Prog. 1 ... Prog. 212 Dispersion
vid 01 0.683228 ... 1 0.203

...
vid 35 0.000396 ... 0.001709 0.118

...
vid 49 1 ... 0.177966 0.080

TABLE 6.3 – Sample of observations for precision on the OpenCV case

Table 6.3 shows a representative excerpt of precision measures that were observed

considering the OpenCV case (similar tables for remaining examples are available in

Appendix 7.2.4). In this table, rows represent test cases and columns are different

morphs. As stated before, we used 49 test cases that were executed on 212 morphs.

Each cell of the table reports the performance measure of the execution of the program

on the video. Based on all retrieved performances for each video, we computed a

dispersion score for each individual video which is presented in the last column.

Can different dispersion scores be observed?

In the following, we want to validate the fact that we can observe variations in per-

formances inducing different dispersion scores.

128

6.3. Empirical Evaluation

OpenCV case. Computed dispersion scores range from 17

212
≃ 0.08 up to 44

212
≃

0.207. Over all 49 test cases, the mean value of dispersion scores is ≃ 0.145 and the

standard deviation ≃ 0.034. While these numbers are rather low (i.e., less than a quar-

ter of the bins are activated), it seems that behaviors of all 212 programs are not equi-

valent as shown in Table 6.3. Meaning that not all programs give the same performance

when executed on the 49 videos 7. For instance, Prog. 1 from Table 6.3 performs very

well on the last video while Prog. 2 is unable to detect anything.

COCO case. In this case, dispersion scores are larger (as shown in Appendix 1).

Scores range from 0.308 to 0.423. Among all 12 concepts, the mean value of dispersion

scores is ≃ 0.359 and the standard deviation ≃ 0.040. Performances of competitors over

each concept are available directly on the online leaderboard. Concepts "Electronic"

and "Sports" are tied with the maximum dispersion score (0.423), concepts "Indoor"

and "food" are also tied but they are associated with the lower minimum score (0.308).

Haxe case. Dispersion scores from Appendix 2 range from 1

21
≃ 0.047 to 3

21
≃ 0.143.

Over all 84 test cases, the mean value of dispersion scores is ≃ 0.0567 and the stan-

dard deviation ≃ 0.0202. These scores are low, showing consistent measures and insi-

gnificant differences in the observations. However, those numbers do not indicate the

quality of test cases per se. In fact, most of dispersion scores show that only one or

two bins are activated in associated histograms. In the case where two bins are activa-

ted, we assume that retrieved observations lie close to the separation between the two

bins. Variations make observations fall sometimes on one side of the separation and

sometimes on the other side. Only one test case (coming from the core test suite) is

associated with the highest measures dispersion score. In this test case, three bins are

activated due to variations. We will investigate deeper this situation in the next research

question.

Taking a step backwards, from the different examples we analyzed, variations in

performances can be shown and captured by the use of dispersion score. Every test

case can give a dispersion score that is more or less high depicting how different

morphs can perform differently on the same test case.

7. We obtained similar results for the other quantitative properties we have measured (such as recall,
performance, etc.).

129

Partie , Chapitre 6 – Multimorphic Testing

Is dispersion score stable and sensitive to the set of morphs ?

Our hypothesis is that the dispersion score associated with test cases only slightly

changes depending on morphs considered in the set that is used. In other words, we

want to perform a sensitivity analysis about the dispersion score.

To conduct this experiment, we randomly remove some morphs out of the original

pool. That is, we only build dispersion score taking into account the measures coming

from remaining morphs. Taking back the OpenCV case : at each iteration it ∈ 0..100, we

remove it morphs from the original set of morphs and observe the effect on dispersion

scores for each 49 videos. The removal of 100 programs boils down to the removal

of about half of our observations. The whole process of selecting up to 100 programs

and computing dispersion score is repeated 50 times in order to flatten the impact of

random choices in the removal of the morphs. Algorithm1 describes how measures

have been retrieved.

Algorithm 1 Procedure to assess stability of the method

(1) current_iter = 1;
(2) max_iter = 50;
(3) #_morph_remove = 0;
(4) #_max_morph_remove = 100
while #_morph_remove = 0 <= #_max_morph_remove do

for all videos in the set of videos do
while current_iter <= max_iter do

(5) select randomly current_iter morphs to remove ;
(6) compute dispersion score w.r.t. remaining morphs ;
(7) store and average dispersion score ;
(8) store best dispersion score ;
(9) store worst dispersion score ;
(10) current_iter + + ;

end while
(11) current_iter = 1 ;

end for
(12) #_morph_remove + +

end while

OpenCV case. Fig. 6.3 shows the evolution of the dispersion score of two videos

(i.e., with the best and worst score) depending on the number of morphs that have been

removed. On this figure, the X-axis represents the number of morphs that have been

removed (from 0 to 100) and the Y-axis represents the associated dispersion scores.

130

6.3. Empirical Evaluation

Six curves are plotted :

— the three top curves represent results for the video providing the best dispersion

score ;

— the three bottom curves represent results for the video with the worst dispersion

scores.

FIGURE 6.3 – Stability results for the property precision ; X-axis : number of morphs
removed ; Y-axis : dispersion score

Specifically, considering the best video : (1) The curve in the middle, called ave-

rage top, reports the average of the dispersion scores (it is obtained through line 7 of

Algorithm 1) ; (2) the top curve, called maximum top, reports the maximum dispersion

score (see line 8 of Algorithm 1) ; (3) The so-called minimum top reports the minimum

dispersion score (line 9 of Algorithm 1). We depict the same curves for the worst video.

For each curve, we can notice that the results are stable. The dispersion score

variations are less than 10%. The average curves (average top and average bottom)

are very stable. The four others (maximum top, minimum top, maximum bottom and

minimum bottom) tend to be noisy once fifty morphs or more have been removed.

However, despite those variations, none of the curves between the top plots and the

bottom ones cross each other. Overall, the results show a stability and consistency in

their positions 8.

COCO case We apply the same process on the COCO dataset but because there

are only 52 morphs available, we remove up to 26 morphs instead of 100 which corres-

8. Again, similar observations can be made for other quantitative properties (e.g., recall, performance
or even a composition of different properties).

131

Partie , Chapitre 6 – Multimorphic Testing

ponds to remove half our observations. Conclusions are similar to the previous case

and dispersion score remains stable and consistent in their positions.

Haxe case We run again the same sensitivity analysis over Haxe. For this case,

as we only have a small number of morphs, we remove only up to 10 morphs over the

21 available. Retrieved curves are stable as plateaus appeared. Similarly to previous

cases (e.g., Fig. 6.3), top curves and bottom curves never interchange.

6.3.4 RQ2 : Is the dispersion score a right measure?

We showed that our dispersion score was able to "rate" test suites with different

scores. In the following, we would like to evaluate whether those scores have the de-

sired intuitive meaning : is a test suite with a higher score really better than one with a

lesser score?

For addressing this qualitative question, we first used an exhaustive search to

create an optimal test suite (according to their dispersion score) of exactly 5 test cases

for each of our 3 cases studies. We then relied on domain specific ground truth to

assess whether these "optimal" test suites were indeed any good.

As the newly built test sets (of 5 test cases) maximize the dispersion score, we

can compare histograms from the original test set to this one and observe how far

they are one to the other. For instance, taking the Haxe case, the histogram of the

original test set (using 84 test cases) is presented in Fig. 6.4. Blue light bars represent

activated bins. Fig. 6.5 shows the histogram of the second test set. Red bars represent

differences in activated bins.

Only 4 bins are different (i.e., bins 3, 6, 18 and 21) between the two histograms.

Meaning that, at most, 4 test cases are needed, in the reduced test set, to retrieve the

same histogram as the original one. In the end, with those hypothetical 9 test suites,

we ensure to retrieve the same diversity in the observed quantitative properties but

drastically diminishing testing efforts.

(OpenCV case) Can we create a "good" test suite that is able to differentiate

morphs that perform well from others ?

The selected "optimal" test suite of 5 test cases was associated with a score of ≃ 0.6

activating 127 bins over 212 in total. From this perspective, this "optimal" test suite is at

least 3 times better than any individual test case. But is it really any good?

132

6.3. Empirical Evaluation

FIGURE 6.4 – The number of bins activa-
ted with the original test suite (composed
of 84 test cases)

FIGURE 6.5 – The number of bins activa-
ted with the smaller test suite composed
of 5 test cases that maximizes the disper-
sion score.

FIGURE 6.6 – On the X-axis are the index of the bins. On the left, the original histogram
when all test cases are taken into account. On the right is the histogram associated
with our smaller test suite. Bars in blue represent activated bins of histograms. Bars in
red are bins that are activated with the original test suite but that we fail to activate with
our smaller test suite.

To answer that question, we have asked a computer vision expert to cherry-pick

twelve new morphs in such a way that six of them are expected to perform well on

average and six others would be likely to perform poorly/moderately well. Note that we

did not ask the expert to choose very bad configurations (i.e., that would not recognize

anything) : since any test case would be able to tell that they are bad ; that would tell

us nothing about the relative merit of our test selection process.

Then we ran these 12 morphs on the test suite of 5 videos. For each of these

morphs, we plot in Fig. 6.7 the obtained precision averaged over the 5 executions. The

supposedly 6 moderately poor morphs correspond to index 1 to 6 on the X-axis while

indexes 7 to 12 correspond to the 6 others (supposed to perform well).

From Fig. 6.7, two classes of programs can be identified : programs which have

an average score below 0.4 and programs which reach an average score above 0.5.

This separation corroborates the expert’s classification since programs which reach an

average precision above 0.5 (respectively below 0.4) are exactly the ones expected to

perform well (respectively moderately poorly).

Even if our selected test suite is probably not the best possible one (it is just the best

set of exactly 5 test cases), it is already quite able to tell good from poor configurations

apart.

133

Partie , Chapitre 6 – Multimorphic Testing

FIGURE 6.7 – Average precision measures over the 5 videos from RQ2. On X-axis are
the CV morphs : first, the 6 first morphs that are supposed to perform moderately badly ;
the 6 last morphs are supposed to be good. Y-axis reports the averaged precision

measure over the test suite.

But is this test suite really better at that than any random test suite of size 5 ? To

answer this question, we created a test suite composed of 5 videos randomly picked

among our 49 videos. We ran the 12 selected programs on this randomly picked test

suite. For each program, we computed the precision measure averaged over the test

suite (similarly as presented in Fig. 6.7). Then, we confront the classification of morphs

(depending on whether the average of their performance is above 0.5 or below 0.4)

with the intuition of the expert and count how many times they disagree. To mitigate

the potential bias induced by random picking, we run this process 10 times. The result

is that a minimum of 2 programs out of 12 have been misclassified, with a worst case

of 5 misclassified programs.

In average, over the 10 runs, almost 4 programs over 12 are misclassified (with a

standard deviation of almost 1). As a conclusion, we got some evidence that our optimal

test suite of 5 videos performs significantly better that a random one of the same size

(and a lower score) to tell good from poor configurations apart.

134

6.3. Empirical Evaluation

Concepts Dispersion score
accessory

0.673
animal

appliance
electronic

food

TABLE 6.4 – The 5 concepts that maximize the dispersion score

(COCO case) Can a smaller test suite built such that it maximizes its dispersion

score provide a similar ranking of morphs as the original test suite ?

Again, we created a reduced test suite containing 5 concepts following the same

process as before. The 5 concepts are presented in Table 6.4 and yield a score of

0.673 (which is very close to the dispersion score of the entire COCO benchmark).

Note that, once again, the choice of these 5 concepts are not the same as picking the

5 top rows of Appendix 1.

With this new smaller benchmark, we rank again the competitors. We check that the

two rankings are similar in order to assess that not all categories are needed when per-

forming continuous evaluations of morphs’ performances. The similarity between the

two rankings is established using the Spearman correlation coefficient. This coefficient

indicates whether two ranked lists are strongly correlated when the value is close to 1

or -1, showing whether the evolution follows the same tendency or opposite directions.

On the other hand, if the coefficient is close to 0, then no correlation can be deduced.

Appendix 3 provides a comparison of performances of a sample of competitors’

techniques w.r.t. the two benchmarks. The first column presents competitors’ names.

We selected 13 techniques out of the 52 competitors that are shown on the leaderboard.

That is, we show approximately one out of five techniques. The second column shows

the performances provided by the leaderboard. We assume such performances to be

an average over all 12 concepts.

The third column shows the averaged performances over the set of 5 concepts (see

Table 6.4) that we retrieved from our method. Finally, the last column shows the ab-

solute difference between the two performances. The differences are rather low which

shows how close we are from the original measures but considering fewer data.

We also computed some statistics over all 52 techniques which compare the diffe-

rences between the two set of performances. The average difference in performances

135

Partie , Chapitre 6 – Multimorphic Testing

over all 52 techniques is ≈ 0.013 with a standard deviation of ≈ 0.004. This shows that,

most of the time, differences in retrieved performances are in the range [0.01; 0.02] ap-

proximately. We also searched for the maximum and minimum differences, they are

respectively ≈ 0.025 and 0.008.

Regarding ranks directly : Appendix 4 shows two rankings on the second and third

columns. First, the one retrieved from the COCO leaderboard. Second, the one we

computed considering our reduced benchmark.The two rankings are similar with only

some ranks that are permuted with the one above or below. The result Spearman

correlation coefficient of 0.998 shows a strong correlation between the two rankings.

This strong correlation shows that a small subset of test cases selected via the use

of dispersion score is nearly as powerful as the full test suite to rank competitors. The

concrete consequence of that is out of all concepts in COCO, only a smaller number

is needed to assess the global behavior of competitors. In the end, their continuous

evaluations could be reduced to assess performances on a smaller number of concepts

such that competitors can get an idea of their rank in the competition more quickly, with

fewer resources which in turn could help them improve their solutions more quickly and

more frequently.

(Haxe case) Can we discover bugs thanks to the dispersion score? Can we build

a smaller test suite that is able to select interesting test cases ?

For this case, we want to check that a higher dispersion score might be correlated

with the detection of performance bugs. In particular, we focus on the test case with a

maximal dispersion score (i.e., with 3 bins activated).

Because most dispersion scores activated one or two bins, we assumed that perfor-

mances observed lied close to a boundary between those two bins and little variations

caused observations to lie sometimes in one bin and sometimes in another. Howe-

ver, when three bins are activated, it is unlikely that little variations could cause this

behavior. There must be something else : we analyzed observations of the test case

associated with the highest retrieved dispersion score. Retrieved performances were

rather consistent except for code generator variants targeting the PHP language. Per-

formances regarding those morphs drastically increased. In fact, execution times were

at least 40 times longer than for morphs targeting other languages. Checking results

with authors from previous work [15, 16], they also have noticed this anomaly and re-

ported it to Haxe community in a bug report. Developers responded that they knew

136

6.3. Empirical Evaluation

about it, it was fixed already but the patch was not live when Boussaa et al. conducted

their study.

6.3.5 Concluding remarks over the method

In light of our results, we can answer to the research questions :

Performance diversity (RQ1). Is our dispersion score able to capture different perfor-

mance values and thus assign different scores to different test cases? Results showed

that we are able to build a dispersion score that assigns a higher value to test cases

able to capture significant differences in performance values. Giving an overview of

results we retrieved : the OpenCV case showed dispersion scores ranging from 0.08 to

0.207. The minimal score of 0.08 is assigned to a test case on which most of OpenCV

morphs performed similarly. On the other hand, with a score of 0.207, about a fifth of

morphs performed significantly different on this test case. Regarding COCO and Haxe,

dispersion scores ranged respectively from 0.308 to 0.423 and from 0.047 to 0.143. For

every case studies, dispersion scores were able to differentiate test cases by assigning

them different dispersion score whether they are able to capture more or less different

performance values.

Stability (RQ1). Are dispersion scores very sensitive to the use of particular morphs ?

Our sensitivity analysis showed that dispersion scores were rather stable regardless

of used morphs. Hence our method is able to deal with morphs having similar per-

formances ; we can certainly avoid the costly use of some equivalent morphs. It also

suggests that our method is robust even when the selection of morphs is realized in an

agnostic way (e.g., randomly). However, we cannot claim that domain knowledge will

not be beneficial to our method (e.g., for selecting optimal configurations and morphs,

see discussions in Section 6.4).

Applicability (RQ2). Can dispersion scores be correlated with an external evalua-

tion (for each case) of what would be "good" test cases? We showed that, dispersion

scores can be used to rank test cases in order of importance w.r.t. the different per-

formance values they are able to capture. They can also be used to build smaller test

suites that will maximize this score. With smaller test suites, we were able to :

— execute a set of OpenCV morphs (selected by a computer vision expert) and

match the intuition of the experts regarding morphs’ behaviors. That is, the 6

morphs supposed to perform better according to the expert were indeed the

137

Partie , Chapitre 6 – Multimorphic Testing

ones performing the best on our smaller test suite composed of 5 test cases ;

— retrieve a similar ranking of COCO competitors as the original one (available

online) with a strong Spearman correlation coefficient (i.e., 0.998) between the

two rankings. Our test suite took into account 5 of the 12 concepts originally

present in the COCO dataset ;

— exhibit a bug in generated PHP code with only 5 test cases out of the 84 compo-

sing the original test suite.

6.3.6 Reproducibility of experiments

Data, code and results are available in a public repository on Github at the following

link : https://github.com/templep/TSE_MM_test.git.

For practitioners interested in reproducing the analysis of our data, we provide all

configurations, test suites and observations through CSV files. Statistical results pre-

sented this article are available through text files or plots. The code for producing such

results is written in Scilab, an open-source software (close to Matlab) and is also inclu-

ded. For practitioners interested in reproducing the computation of performance data

(OpenCV and Haxe cases), we provide specific instructions as well as the code to

instrument the whole process.

138

https://github.com/templep/TSE_MM_test.git

6.4. Discussions and Threats to Validity

6.4 Discussions and Threats to Validity

6.4.1 Internal threats

To compute our dispersion score, we used histograms that provide information in a

2D graphical representation. Despite not being interested in the actual frequency va-

lue of each bin, we need to know which one are activated to compute our dispersion

score. While the frequency representation is questionable, histograms are a common

representation which provides information that we need even if not fully exploited.

On the X-axis, histograms define bins and their number is crucial in our method.

Defining the right number of bins remains an open question since it depends on the

application : trying to analyze a color distribution of an image, comparing two different

data distribution requires a very fine-grained analysis and thus a larger number of bins ;

while, in our case, requirements are different. Using a small number of bins would pro-

vide a coarse analysis of the variability in the results while more bins might isolate

every execution into its own single bin and thus would show differences that are not

significant. We fixed the number of bins to the number of used morphs as a reasonable

trade-off, but this is only true if the number of morphs is large enough.

In RQ2, we validate the usefulness of our dispersion score by building test suites

composed of 5 test cases that maximized the dispersion scores. 5 is an arbitrary value

chosen to limit the amount of time taken by the exhaustive search. We are aware that,

depending on the application domain, the number of test cases to consider may vary

and 5 is certainly not the optimal number to use in every occasion. However, test suites

that we created were already quite effective despite their small number of test cases.

In the end, our dispersion score, the histogram representation and exhaustive search

consist in only one instantiation of the Multimorphic testing approach. Even if it seems

to work surprisingly well (at least for the different application we have considered),

other options might perform better and need to be explored.

6.4.2 External threats

Applicability. Can Multimorphic testing and our proposed dispersion score be used

in different domains ? Our experiments took three different application domains (i.e., tra-

139

Partie , Chapitre 6 – Multimorphic Testing

cking of objects in videos, object recognition in images and program generation). The

method was able to detect test cases emphasizing interesting behaviors of morphs.

While two application domains are rather close, associated tasks were different. Re-

sults presented in Section 6.3 mitigate this first threat as it shows that, at least in pre-

sented situations, Multimorphic testing can be applied.

Performance dimensions and metrics. About generalization, we have presented

results regarding only one performance measure (i.e., precision or execution time) at

a time. Further experiments have been running taking into account other measures

(such as recall or memory consumption or even a combination of precision and recall

or else), similar conclusions were drawn from those extra experiments but we do not

show them in this document as it would not provide more insight about the method.

They are available on the companion GitHub repository though.

On test suites (OpenCV). Regarding the OpenCV case specifically, test sets were

composed of synthetic videos only. The merit of synthetic videos is that (1) the asso-

ciated ground truths are of high quality (by construction since they are synthesized) ;

(2) we can better control the properties of the videos and thus increase the diversity

of situations. Synthetic videos are getting more and more used in the industry or in re-

search as a substitute or complement of real assets [34, 47, 72, 86]. However, natural

videos may not provide as diverse behaviors and performance measurements as we

observed. Note that other experiments (e.g., the COCO case) used "natural" images

and still gave fairly good results which mitigates this threat.

On test suites (COCO). Focusing on the COCO data set, we did not have access

to raw images ; we only considered concepts and classes of objects. It seems realistic

to assume that object classes are not equally represented over all the images of the

dataset. For instance, there might be fewer objects labeled "hair dryer" than objects

labeled "cat". A hypothesis is that classes that are more represented might have more

chances to provide "extra diversity" and thus to show differences among competing

approaches. Results we present in Section 6.3 might be biased as they could simply

reveal that the reduced set of 5 concepts is composed of the 5 most represented ones.

However, it is only a hypothesis that does not necessarily hold in general, i.e., there is

not necessarily a correlation between the size of the data set and performance diversity.

In the context of COCO, we can hardly validate this hypothesis since concepts are

140

6.4. Discussions and Threats to Validity

coarse abstractions averaging performances of large subsets of images. In any case,

we have shown that our method is able to retain the key elements of the dataset that

exhibit diversity within the performances of competing systems.

Data preprocessing. In the Haxe case, our evaluation is based on results from

prior measures (on the same Haxe code generator). Measures that we retrieved were

preprocessed (as explained in 6.3.2) which might exacerbate or alleviate differences in

observed performances. However, the fact that we were able to retrieve a test case that

highlighted the presence of a bug in PHP generated code is encouraging. Furthermore,

the fact that measures were consistent, with only one or two bins activated, shows that

the dispersion score is somehow invariant to this preprocessing. Further investigations

should be conducted in order to understand which kind of preprocessings do not affect

drastically the dispersion score.

Morphs’ selection The ability of Multimorphic Testing to observe different perfor-

mance behavior is dependent of the nature of morphs. Using only very similar morphs

(with only a small delta in the value of one parameter) might not be enough to ob-

serve differences while the morphs will be different in their configurations. Used morphs

should be somehow representative of the whole population of morphs of a system. This

is an assumption that we used for all our experiments : we have generated morphs of

OpenCV for a specific task with the goal of exploring the configuration space as much

as possible ; we considered competitors to the COCO competitions to be representa-

tive of the state-of-the-art techniques in terms of object recognition ; and similarly for

the Haxe case, we considered that target languages and optimization options to be

representative of what users might look for.

The underlying problem is how to sample those morphs efficiently? This remains

an open problem in the Software Product Lines community that is addressed by several

works, mainly for finding functional bugs [24, 62, 68, 79].

141

Partie , Chapitre 6 – Multimorphic Testing

6.5 Conclusion

We applied multimorphic testing to assess the effectiveness of a test suite in revea-

ling performance weaknesses of different systems. We showed that our method can

be applied for quantitative properties such as precision, recall or execution time. The

core idea was to generate system variants (called morphs) by varying their parameters’

values and to check whether it makes any difference on the outcome of test cases in

terms of such quantitative properties. Intuitively a “good” test has a good discrimina-

ting power over the set of morphs. Conversely, a “bad” (or useless) test returns more or

less the same results whatever the morphs. We proposed to use the dispersion score

to embody this intuition, and have empirically shown over 3 different applications its

applicability. Also, we have shown its usefulness regarding different goals that are de-

tailed for every application. Above all, thanks to our method, we can envision to remove

unnecessary, redundant test cases from test suites, or improve existing test data sets.

Future work first includes investigating other dispersion metrics, since we do not

claim it is the best possible one. Also, we would like to pursue the idea of using this

method in different contexts. We could use different code generators and compilers

(e.g., ThingML, Num, TypeScript) but also try to investigate new domains like data-

bases. Other candidate domains are highly configurable systems featuring some form

of recognition (e.g., video or speech recognition) or more generally any software ap-

plications where quantitative properties are of prior importance. Another obvious re-

search direction would be to combine multimorphic testing to well-known test selec-

tion techniques (e.g., search-based techniques) in order to concretely build optimal

test suites, thereby providing cheaper and better test suites than current hand-crafted

benchmarks.

142

CHAPITRE 7

CONCLUSION AND FUTURE WORK

This chapter concludes this thesis by summarizing contributions and highlighting

some points that could be developed in the future.

7.1 Conclusion

Modern software are configurable in the sense that their behavior can be tuned

(via the use of parameters and options) to meet users’ defined requirements. However,

the number of options and parameters is getting out of hand fostering the generation

of tons of variants that are specifically tuned to meet particular goals. Considering a

specific user and associated goals, a number of variants are unlikely to meet these

goals. Thus, it can be hard to find a configuration leading to a variant that actually meet

requirements.

On the other hand, variants’ performances are assessed by executing configured

systems in various settings. Such assessment demands time and energy yelling to a

need to minimize test sets. But, how to choose a priori (i.e., before any executions)

which test cases to discard?

We conceptualized these two aspects (i.e., regarding the selection of program va-

riants and test cases) as a matrix in which a cell corresponds to the execution of a

program variant on a test case and contains observed performances. Each of our main

contributions aims at shrinking the size of the matrix along either dimension.

We proposed to use a machine learning based specialization approach in order to

automatically reduce the number of configurations that a user has to consider when

choosing a variant. The approach relies on the prediction capabilities of machine lear-

ning algorithms that will exploit configurations’ similarity and their observed perfor-

mances to build a model that will decide whether a configuration should be kept or

not. Based on this model, constraints are created and added to the variability model

143

underlying the configurable system, resulting in automatically discarding configurations

having a high probability not to meet users’ requirements. It succeeded in producing

understandable constraints (helping practitioners to understand interactions between

features of the variability model) and introduced few classification errors while conside-

ring a relatively low number of examples to train the model. We extended this approach

by focusing on user-defined requirements which make the use of machine learning pos-

sible. We have further analyzed how the definition of such requirements may impact the

performances of machine learning techniques in turn leading to more or less helpful

constrained software product lines. With both works, this approach has shown to work

well in various settings. We applied it to different configurable systems, considering

different performance objectives and different performance measures.

The second contribution proposes a new method to reduce the size of a test suite

based on observed performances on different program variants. This method, inspired

from metamorphic testing, is based on the assumption that a good test case is a test

case that is able to highlight differences in the behavior of product variants coming

from a unique software product line. Thus, the more significant differences are shown

by a test case, the higher the chance it has to be kept in the final, reduced test suite.

This method is also interesting, despite its initial cost (i.e., tests have to be made to

be able to observe performance differences), when more variants will be derived in the

future as the test suite will be reduced, saving time in the end. In its implementation,

the method gives a score to each test case of a test suite which creates an order. Users

can define a threshold or select a number of test cases according to budget allocated to

test. We proposed to use the dispersion score which measures how different observed

performances are. It relies on the use of histograms and the definition of bins, if two

observations fall into different bins, they are considered as significantly different.

In the following, we discuss different points and several thoughts that could help

improve the work we have presented in this thesis.

7.2 Perspectives

7.2.1 Machine Learning, Variability and Software Product Lines

In this thesis, we applied machine learning to configurable systems and variability

of systems. Still, we mentioned in Chapter 2 that machine learning algorithms contain

144

numerous parameters. They have to be tuned for every specific applications in order

to maximize classification performances. Therefore, we can consider machine learning

algorithms as being part of a software product line. However, a few works have also

studied variability of machine learning processes. Camillieri et al. [18] proposed a

model-based approach to help users define their machine learning framework. It re-

sults in a general framework that guides users to create a machine learning process

suited to their specific needs. This shows that machine learning can be a playground for

variability and software product lines methods which can be very interesting. Machine

learning is a domain that evolves fast and encompasses a lot of different techniques

that have their own particularities (in the task they tackle, in the way that they tackle pro-

blems, in the kind of data they take as inputs and their representations, etc.). All these

aspects can bring challenges in modeling these techniques using variability models.

In the end, taking a user perspective, modeling machine learning techniques as a

software product line can be interesting to produce reusable tools, easing the creation

of new machine learning based systems as they are likely to be based on already

developed functional bricks. Furthermore, it may help users to select a configuration

that is likely to meet their performance requirements more quickly instead of using

brute force methods in order to fine-tuned parameters of the algorithms.

Nonetheless, brute force methods are a first step. For instance, in 2015, ChaLearn 1

organized a challenge called AutoML [45] asking to create automatic machine learning

systems that are able to automatically self-organize their pipeline and adapt it to dif-

ferent tasks. From this challenge, other work [32, 52, 65, 103] pursued in the automatic

selection of a model and its hyper-parametrization. While most of these works have a

try-and-error approach, they have to deal with the variability of machine learning mo-

dels that can be created. Thorton et al. [103] have focused on applying this strategy

on the Weka software : a very popular software that gathers a large range of machine

learning techniques. Kotthoff et al. [52] proposed an improved version of autoWeka

while Feurer et al. [32] preferred to focus on scikit-learn, a Python library gathering

multiple machine learning algorithms, similarly to Weka, and that is probably more po-

pular nowadays. Finally, Mendoza et al. [65] propose to adapt the concept and applies

it on neural networks that are growing in interest with recent advances in deep learning.

From an academic point of view, it can be interesting to produce a Machine Learning

1. an organization running challenges, every year, around different aspects of machine learning tasks
and its framework.

145

Product Line that would gather existing machine learning techniques and that could be

easily extended to encompass new techniques to be created.

7.2.2 Developing an appropriate sampling method

Work presented in this thesis rely on sampling the variability space of a system.

We have proposed to use a simple random procedure to select configurations but it is

not really efficient in exploring the configuration space, especially when Boolean and

numerical values are mixed in the variability model or when constraints are expressed

(diminishing chances to explore some nested configurations).

A better sampling technique that is able to explore different facets of the configu-

ration space would help having a better overview of systems’ performances, in turn,

improving prediction performances of machine learning techniques since the entire

configuration space would be covered.

Novelty search based algorithms [57] or bacteriological algorithms [11] could be

used since they try to produce diverse set of data that may try to cover as much space

as possible. However, other problems remain : since the number of possible configu-

rations is very large, the number of configurations needed to build an accurate view

of performances is likely to require lots of configurations. In addition, novelty search

and bacteriological techniques may be resources demanding, taking a long time and a

large amount of power to establish a set of configurations.

The benefits of building such a diverse set that covers as many parts of the original

space as possible need to be evaluated and compared to other approaches that may

be less accurate but much faster to compute.

We have the certainty it is important to explore the configuration space for various

reasons. In particular : from the users’ perspective, to be aware, as much as possible,

of the range of possible performances that can be reached ; from the engineering point

of view, avoid unwilling behaviors from the machine learning (e.g., too much extra-

polation between configurations or connecting two sub-spaces that are very different

w.r.t. configurations that they contain).

146

7.2.3 Adversarial Machine Learning and Software Product Lines

Adversarial machine learning is a trend in the world of machine learning that is

getting evermore popular. The initial context of this field was to study how and why

machine learning algorithms could be fooled in such a way that they produce a lot

of prediction errors. By doing so, machine learning based systems can become unu-

sable and, with recent advances in autonomous vehicles, this behavior can have tragic

consequences.

We do not place ourselves in such a context. However, the idea seems interes-

ting to use adversarial machine learning techniques in order to better understand the

distribution of configurations of a software product line.

With the use of adversarial machine learning, we foresee that we could select new

configurations that are valid w.r.t. the variability model but that would not match users’

point of view (i.e., being not interesting). Getting back to the video generator used in

Chapter 4, we saw that the notion of interesting videos (for an object tracking algorithm)

was not easy to define. Using adversarial machine learning on the model given after

training might create new video configurations that are supposed to be valid but once

derived into a video sequence will be blurry or contain too many distractors, etc. After

being derived, we could use these new configurations to create new constraints that

could be added to the variability model and enter an iterative process in which adversa-

rial machine learning selects new configurations that have to be discarded, generating

new constraints etc. until configurations would always fit users requirements.

A major problem in this approach is that current adversarial machine learning tech-

niques are applied on derivable machine learning models which is not the case of deci-

sion trees (and other machine learning techniques). A simple solution would be to move

from decision trees to other derivable machine learning algorithms. However, derivable

machine learning techniques (such as support vector machines) might not produce

constraints which are easily understandable by users. This might be a problem when

trying to reason about interactions between features. An other solution might be to use

two different machine learning algorithms : a decision tree and a derivable machine

learning technique and make them co-evolve.

147

7.2.4 Taking into account the surrounding context

In this thesis, we have emphasized the fact that everything had to be done w.r.t. a

task, for a specific reason, taking into account what users wanted, etc. However, it is

really hard to take all of that into account despite potentially having crucial importance

on the outcomes of studies.

For instance, taking the example of Haxe and Multimorphic testing (see Chapter 6),

we have emphasized that test cases had to be executed under the same environment

(i.e., same machines, etc.). Another example is performances that can be observed

when testing a configuration of the x264 software to encode videos. Usually, perfor-

mances are measured in a specific context using a specific input, however, both as-

pects have their importance. Considering x264, inputs are videos and their content

might activate (or require to activate) specific options which will impact performances.

On the other hand, encoding a video on the fly for streaming or not necessitating a

real-time encoding, using a laptop machine to encode or a distributed architecture,

using GPU processing to parallelize computations or using only CPU are all aspects

that need to be evaluated as well and that are used in different contexts. As we said,

configurations are tuned to answer specific needs, these needs can come from users’

requirements but they are also driven by the context in which they are executed.

What would be interesting is to develop an approach allowing to map software confi-

gurations to specific contexts. Doing so, knowing the context of execution could improve

the selection process by proposing users partial configurations of a system such that

they can focus on options and features that matter.

We have discussed about such approach in [100]. We foresee a similar approach as

we proposed in Chapter 4, however, a major challenge will be to take into account even

more heterogeneous pieces of information, requirements, etc. and make a link between

them and features of the variability model representing the system. The particularity

was that we proposed to consider the context and the system (that can be modeled via

two different and separated variability model) as one such that bridges can be created

when trying to learn how features from one side impact the other.

148

Appendices

Concepts Dispersion Score
electronic 0.423

sports 0.423
animal 0.404

appliance 0.365
kitchen 0.365
person 0.365

accessory 0.346
vehicle 0.346

furniture 0.327
outdoor 0.327

food 0.308
indoor 0.308

TABLE 1 – Dispersion scores for all concepts in the COCO dataset

Test Cases Prog. 1 Prog. 2 ... Prog. 21 Disp.
tc 01 1.1425 93.4543 ... 1 0.143
tc 02 15.3550 1 ... 1.4269 0.095

...
tc 35 1 1.0634 ... 1.5155 0.047

...
tc 84 1.0255 18.4676 ... 1.0117 0.095

TABLE 2 – Sample of Execution time observations regarding generated Haxe programs.
(similar table regarding other examples are available in appendixes).

149

Concepts Init. Perf. Comp. Perf. Diff. Perf.
Megvii (Face++) 0.526 0.539 0.013

bharat_umd 0.482 0.494 0.012
IL 0.420 0.430 0.010

umd_det 0.408 0.416 0.008
Deformable R-FCN 0.375 0.391 0.016

HRI 0.367 0.392 0.025
Imagine Lab 0.357 0.372 0.015

CMU_A2_VGG16 0.324 0.338 0.014
Ttester 0.294 0.312 0.018

CMU_A2 0.256 0.276 0.020
drl 0.235 0.247 0.012

1026 0.178 0.196 0.018
IRONYUN 0.153 0.154 0.001

TABLE 3 – Excerpt of competitors’ performances differences between the original
benchmark (Initial Perf) and our reduced set of 5 concepts (Computed Perf)

Techniques’ names Init. Rank New Rank

Megvii (Face++) 1 1

UCenter 2 2

MSRA 3 3

FAIR Mask R-CNN 4 4

Trimps-Soushen+QINIU 5 6

bharat_umd 6 5

DANet 7 7

BUPT-Priv 8 8

DL61 9 10

DeNet 10 9

IL 11 12

G-RMI 12 11

VCA 13 13

LDL 14 14

PingAn AI Lab 15 15

umd_det 16 16

MSRA_2016 17 17

150

DeepInsight 18 19

RetinaNet (1 model) 19 18

DGIST-FATRC 20 21

Deformable R-FCN 21 23

MSRA_2015 22 20

HRI 23 22

FPN (single model) 24 25

Trimps-Soushen 25 24

Imagine Lab 26 26

mcc_lab 27 28

Wall 28 27

ANLV 29 30

FAIRCNN 30 29

CMU_A2_VGG16 31 31

DeNet 32 32

ION 33 33

CMU Cylab 34 34

COCO VGG16 Baseline 35 36

Ttester 36 35

ToConcoctPellucid 37 38

MCLAB 38 37

hust-mclab 39 39

MCPRL 40 40

CMU_A2 41 41

Darknet 42 43

UofA 43 42

FRCNN CNET 44 45

COCO Baseline 45 44

drl 46 46

Decode 47 47

Wall_2015 48 48

SinicaChen 49 49

151

UCSD 50 51

1026 51 50

iRONYUN 52 52

TABLE 4 – Excerpt of differences in the ranks for the 52 competitors : Initial Rank
is computed over the entire dataset while New Rank is computed over the reduced
dataset

152

TABLE DES FIGURES

1 Un exemple de matrice de performance exploitée dans cette thèse. Chaque

cellule est le résultat d’une exécution d’un programme (colonne) sur un

cas de test (ligne). Dans cet exemple le temps d’exécution a été mesuré

et reporté dans les cellules de la matrice exprimé en secondes. 5

1.1 An example of the performance matrix we exploit in this thesis. Each

cell is the result of the execution of a Program Variant (columns) with a

Test case (rows). Let us consider that execution time is measured and

expressed in seconds. 22

1.2 Our two contributions in perspective of the performance matrix 23

2.1 Common view of the software product line development process. 27

2.2 A feature model representing how to create a Video Sequence 30

2.3 3 categories of irises with a representative of each category 35

2.4 Irises are described by the length and width of their petals and sepals. . 35

2.5 the process which is used to learn how to separate configurations . . . 36

3.1 The studied state of the art in relation with the performance matrix . . . 43

4.1 Sampling, testing, learning : process for inferring constraints of product

lines . 60

4.2 Constraining the configuration space . 63

4.3 Variability model excerpt of the generator 69

4.4 Learning method on the video generator 70

4.5 An excerpt of the decision tree built from a sample of 500 configura-

tions/videos . 70

4.6 three constraint extracted from our case study 72

5.1 Configuration of a specialized x264. Given a performance objective, the

specialization method infers and fixes some options values (no_mbtree

and crfRatio) ; users still have some flexibility to configure other options. 86

153

5.2 Number of x264 configurations running under a certain time : X-axis

represents a number of configurations ; Y-axis represents the execution

speed (in seconds) to encode a video benchmark ; e.g., about 25994

configurations can encode the video in less than 145.01 seconds. . . . 86

5.3 Sampling, measuring, learning : given a performance objective, there is

an automated method for specializing a configurable system 88

5.4 Confusion matrix and classification metrics : with machine learning vs

without learning (example) . 91

5.5 Average Precision measures for all 16 systems along with execution

conditions. Because of the heterogeneity of systems, we present the

percentage of configurations used in the training set compared to the

number of available configurations (see last column of Table 5.1 and the

absolute number under brackets. The last column present the percen-

tage of interesting configurations according to the distribution of perfor-

mance and the performance goal (given under brackets). 97

5.6 Minimum Precision measures for all 16 systems along with execution

conditions. Because of the heterogeneity of systems, we present the

percentage of configurations used in the training set compared to the

number of available configurations (see last column of Table 5.1 and the

absolute number under brackets. The last column present the percen-

tage of interesting configurations according to the distribution of perfor-

mance and the performance goal (given under brackets). 98

5.7 Maximum Precision measures for all 16 systems along with execution

conditions. Because of the heterogeneity of systems, we present the

percentage of configurations used in the training set compared to the

number of available configurations (see last column of Table 5.1 and the

absolute number under brackets. The last column present the percen-

tage of interesting configurations according to the distribution of perfor-

mance and the performance goal (given under brackets). 99

154

5.8 Average Recall measures for all 16 systems along with execution condi-

tions. Because of the heterogeneity of systems, we present the percen-

tage of configurations used in the training set compared to the number of

available configurations (see last column of Table 5.1 and the absolute

number under brackets. The last column present the percentage of in-

teresting configurations according to the distribution of performance and

the performance goal (given under brackets). 100

5.9 Minimum Recall measures for all 16 systems along with execution condi-

tions. Because of the heterogeneity of systems, we present the percen-

tage of configurations used in the training set compared to the number of

available configurations (see last column of Table 5.1 and the absolute

number under brackets. The last column present the percentage of in-

teresting configurations according to the distribution of performance and

the performance goal (given under brackets). 101

5.10 Maximum Recall measures for all 16 systems along with execution condi-

tions. Because of the heterogeneity of systems, we present the percen-

tage of configurations used in the training set compared to the number of

available configurations (see last column of Table 5.1 and the absolute

number under brackets. The last column present the percentage of in-

teresting configurations according to the distribution of performance and

the performance goal (given under brackets). 102

5.11 Average Plasticity measures for all 16 systems along with execution

conditions. Because of the heterogeneity of systems, we present the

percentage of configurations used in the training set compared to the

number of available configurations (see last column of Table 5.1 and the

absolute number under brackets. The last column present the percen-

tage of interesting configurations according to the distribution of perfor-

mance and the performance goal (given under brackets). 103

155

5.12 Minimum Plasticity measures for all 16 systems along with execution

conditions. Because of the heterogeneity of systems, we present the

percentage of configurations used in the training set compared to the

number of available configurations (see last column of Table 5.1 and the

absolute number under brackets. The last column present the percen-

tage of interesting configurations according to the distribution of perfor-

mance and the performance goal (given under brackets). 104

5.13 Maximum Plasticity measures for all 16 systems along with execution

conditions. Because of the heterogeneity of systems, we present the

percentage of configurations used in the training set compared to the

number of available configurations (see last column of Table 5.1 and the

absolute number under brackets. The last column present the percen-

tage of interesting configurations according to the distribution of perfor-

mance and the performance goal (given under brackets). 105

5.14 Average Sureness measures for all 16 systems along with execution

conditions. Because of the heterogeneity of systems, we present the

percentage of configurations used in the training set compared to the

number of available configurations (see last column of Table 5.1 and the

absolute number under brackets. The last column present the percen-

tage of interesting configurations according to the distribution of perfor-

mance and the performance goal (given under brackets). 106

5.15 Minimum Sureness measures for all 16 systems along with execution

conditions. Because of the heterogeneity of systems, we present the

percentage of configurations used in the training set compared to the

number of available configurations (see last column of Table 5.1 and the

absolute number under brackets. The last column present the percen-

tage of interesting configurations according to the distribution of perfor-

mance and the performance goal (given under brackets). 107

156

5.16 Maximum Sureness measures for all 16 systems along with execution

conditions. Because of the heterogeneity of systems, we present the

percentage of configurations used in the training set compared to the

number of available configurations (see last column of Table 5.1 and the

absolute number under brackets. The last column present the percen-

tage of interesting configurations according to the distribution of perfor-

mance and the performance goal (given under brackets). 108

6.1 Multimorphic process : morphs are automatically produced (e.g., thanks

to parameters) ; for each morph test suite is executed and performance

measurements are gathered ; a dispersion score is finally computed to

characterize the quality of a test suite 117

6.2 An example of a histogram (based on Table 6.1). 120

6.3 Stability results for the property precision ; X-axis : number of morphs

removed ; Y-axis : dispersion score . 131

6.4 The number of bins activated with the original test suite (composed of 84

test cases) . 133

6.5 The number of bins activated with the smaller test suite composed of 5

test cases that maximizes the dispersion score. 133

6.6 On the X-axis are the index of the bins. On the left, the original histogram

when all test cases are taken into account. On the right is the histogram

associated with our smaller test suite. Bars in blue represent activated

bins of histograms. Bars in red are bins that are activated with the origi-

nal test suite but that we fail to activate with our smaller test suite. . . . 133

6.7 Average precision measures over the 5 videos from RQ2. On X-axis are

the CV morphs : first, the 6 first morphs that are supposed to perform

moderately badly ; the 6 last morphs are supposed to be good. Y-axis

reports the averaged precision measure over the test suite. 134

157

LISTE DES TABLEAUX

2.1 An example of a confusion matrix for a 2-class problem (i.e., class +1

and -1). 39

4.1 Confusion matrix of our experiment . 74

5.1 Features : number of boolean features / number of numerical features ;

#JV MK : number of valid configurations ; Meas. : number of configura-

tions that have been measured. 95

6.1 An example for showing the inadequacy of variance and illustrating our

measure : performance observations gathered for 2 different test suites,

each composed of 2 test cases over 6 morphs. 120

6.2 The three case studies . 123

6.3 Sample of observations for precision on the OpenCV case 128

6.4 The 5 concepts that maximize the dispersion score 135

1 Dispersion scores for all concepts in the COCO dataset 149

2 Sample of Execution time observations regarding generated Haxe pro-

grams. (similar table regarding other examples are available in appen-

dixes). 149

3 Excerpt of competitors’ performances differences between the original

benchmark (Initial Perf) and our reduced set of 5 concepts (Computed

Perf) . 150

4 Excerpt of differences in the ranks for the 52 competitors : Initial Rank is

computed over the entire dataset while New Rank is computed over the

reduced dataset . 152

158

BIBLIOGRAPHIE

[1] Mathieu Acher, Mauricio Alférez, José A Galindo, Pierre Romenteau, and Be-

noit Baudry. Vivid : A variability-based tool for synthesizing video sequences. In

Proceedings of the 18th International Software Product Line Conference : Com-

panion Volume for Workshops, Demonstrations and Tools-Volume 2, pages 143–

147. ACM, 2014.

[2] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France. Fami-

liar : A domain-specific language for large scale management of feature models.

Science of Computer Programming (SCP), 78(6) :657–681, 2013.

[3] Mustafa Al-Hajjaji, Thomas Thüm, Jens Meinicke, Malte Lochau, and Gunter

Saake. Similarity-based prioritization in software product-line testing. In Pro-

ceedings of the 18th International Software Product Line Conference-Volume 1,

pages 197–206. ACM, 2014.

[4] Mauricio Alférez, Mathieu Acher, José A Galindo, Benoit Baudry, and David Be-

navides. Modeling variability in the video domain : Language and experience

report. Software Quality Journal, pages 1–41, 2014.

[5] Mauricio Alférez, Mathieu Acher, José A Galindo, Benoit Baudry, and David Be-

navides. Modeling Variability in the Video Domain : Language and Experience

Report. Software Quality Journal, pages 1–28, January 2018.

[6] James H Andrews, Lionel C Briand, and Yvan Labiche. Is mutation an appro-

priate tool for testing experiments ? In Proceedings of the 27th international

conference on Software engineering, pages 402–411. ACM, 2005.

[7] James H Andrews, Lionel C Briand, Yvan Labiche, and Akbar Siami Namin.

Using mutation analysis for assessing and comparing testing coverage criteria.

IEEE Transactions on Software Engineering, 32(8) :608–624, 2006.

[8] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. Feature-oriented

software product lines. Springer, 2016.

159

[9] Kacper Bąk, Krzysztof Czarnecki, and Andrzej Wąsowski. Feature and meta-

models in clafer : mixed, specialized, and coupled. In International Conference

on Software Language Engineering, pages 102–122. Springer, 2010.

[10] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. The oracle pro-

blem in software testing : A survey. IEEE Transactions on Software Engineering,

41(5) :507–525, May 2015.

[11] Benoit Baudry, Franck Fleurey, Jean-Marc Jézéquel, and Yves Le Traon. From

genetic to bacteriological algorithms for mutation-based testing. Software Tes-

ting, Verification and Reliability, 15(2) :73–96, 2005.

[12] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated reasoning on feature

models. In International Conference on Advanced Information Systems Engi-

neering, pages 491–503. Springer, 2005.

[13] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated analy-

sis of feature models 20 years later : a literature review. Information Systems,

35(6) :615–636, 2010.

[14] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wasowski, and Krzysztof

Czarnecki. A study of variability models and languages in the systems software

domain. IEEE Transactions on Software Engineering, 39(12) :1611–1640, 2013.

[15] Mohamed Boussaa. Automatic Non-functional Testing and Tuning of Configu-

rable Generators. PhD thesis, Inria Rennes - Bretagne Atlantique ; University of

Rennes 1, 2017.

[16] Mohamed Boussaa, Olivier Barais, Benoit Baudry, and Gerson Sunyé. Auto-

matic non-functional testing of code generators families. In Proceedings of the

2016 ACM SIGPLAN International Conference on Generative Programming :

Concepts and Experiences, volume 52, pages 202–212. ACM, 2016.

[17] Michael Buhrmester, Tracy Kwang, and Samuel D Gosling. Amazon’s mechani-

cal turk : A new source of inexpensive, yet high-quality, data? Perspectives on

psychological science, 6(1) :3–5, 2011.

[18] Cécile Camillieri, Luca Parisi, Mireille Blay-Fornarino, Frédéric Precioso, Michel

Riveill, and Joël Cancela-Vaz. Towards a Software Product Line for Machine

Learning Workflows : Focus on Supporting Evolution. In 10th Workshop on

Models and Evolution co-located with ACM/IEEE 19th International Conference

160

on Model Driven Engineering Languages and Systems (MODELS 2016), Saint

Malo, France, October 2016.

[19] Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel, Sanjit A. Seshia, and

Moshe Y. Vardi. On parallel scalable uniform sat witness generation. In Pro-

ceedings of the 21st International Conference on Tools and Algorithms for the

Construction and Analysis of Systems - Volume 9035, pages 304–319, Berlin,

Heidelberg, 2015. Springer-Verlag.

[20] Shiping Chen, Yan Liu, Ian Gorton, and Anna Liu. Performance prediction of

component-based applications. Journal of Systems and Software, 74(1) :35–43,

2005.

[21] Paul Clements and Linda M. Northrop. Software Product Lines : Practices and

Patterns, volume 3. Addison-Wesley Professional, 2002.

[22] Myra B Cohen, Matthew B Dwyer, and Ieee Computer Society. Construc-

ting Interaction Test Suites for Highly-Configurable Systems in the Presence of

Constraints : A Greedy Approach. IEEE Transactions on Software Engineering,

34(5) :633–650, 2008.

[23] M. Cordy, P.-Y. Schobbens, P. Heymans, and A Legay. Beyond boolean product-

line model checking : Dealing with feature attributes and multi-features. In Soft-

ware Engineering (ICSE), 2013 35th International Conference on, pages 472–

481, May 2013.

[24] Krzysztof Czarnecki, Steven She, and Andrzej Wasowski. Sample spaces and

feature models : There and back again. In 12th International Software Product

Line Conference, pages 22–31. IEEE, 2008.

[25] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Image-

net : A large-scale hierarchical image database. In Computer Vision and Pattern

Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE,

2009.

[26] Ivan do Carmo Machado, John D. McGregor, and Eduardo Santana de Almeida.

Strategies for testing products in software product lines. ACM SIGSOFT Soft-

ware Engineering Notes, 2012.

[27] Alastair F. Donaldson and Andrei Lascu. Metamorphic testing for (graphics) com-

pilers. In Proceedings of the 1st International Workshop on Metamorphic Testing,

MET@ICSE 2016, Austin, Texas, USA, May 16, 2016, pages 44–47, 2016.

161

[28] Richard W. Dosselman and Xue Dong Yang. No-reference noise and blur detec-

tion via the fourier transform. Technical report, University of Regina, CANADA,

2012.

[29] Jose Angel Galindo Duarte. Evolution, testing and configuration of variability

intensive systems. PhD thesis, Université de Rennes 1 & Université de Séville,

2015.

[30] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and

A. Zisserman. The pascal visual object classes challenge : A retrospective. In-

ternational Journal of Computer Vision, 111(1) :98–136, January 2015.

[31] Tom Fawcett. An introduction to roc analysis. Pattern recognition letters,

27(8) :861–874, 2006.

[32] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Ma-

nuel Blum, and Frank Hutter. Efficient and robust automated machine learning. In

Advances in Neural Information Processing Systems, pages 2962–2970, 2015.

[33] Ronald A Fisher. The use of multiple measurements in taxonomic problems.

Annals of eugenics, 7(2) :179–188, 1936.

[34] José A. Galindo, Mauricio Alférez, Mathieu Acher, Benoit Baudry, and David Be-

navides. A variability-based testing approach for synthesizing video sequences.

In International Symposium on Software Testing and Analysis, ISSTA 2014,

pages 293–303. ACM, 2014.

[35] Gonzalo Génova, María Cruz Valiente, and Mónica Marrero. On the difference

between analysis and design, and why it is relevant for the interpretation of mo-

dels in model driven engineering. Journal of Object Technology, 8(1) :107–127,

2009.

[36] Milos Gligoric, Alex Groce, Chaoqiang Zhang, Rohan Sharma, Mohammad Amin

Alipour, and Darko Marinov. Comparing non-adequate test suites using coverage

criteria. In Proceedings of the 2013 International Symposium on Software Tes-

ting and Analysis, pages 302–313. ACM, 2013.

[37] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.

[38] Greg Griffin, Alex Holub, and Pietro Perona. Caltech-256 image dataset. 2007.

162

http://www.deeplearningbook.org

[39] Jianmei Guo, K. Czarnecki, S. Apel, N. Siegmund, and A. Wasowski. Variability-

aware performance prediction : A statistical learning approach. In Automated

Software Engineering (ASE), 2013 IEEE/ACM 28th International Conference on,

pages 301–311, 2013.

[40] Jianmei Guo, Jules White, Guangxin Wang, Jian Li, and Yinglin Wang. A genetic

algorithm for optimized feature selection with resource constraints in software

product lines. Journal of Systems and Software, 84(12) :2208 – 2221, 2011.

[41] Axel Halin, Alexandre Nuttinck, Mathieu Acher, Xavier Devroey, Gilles Perrouin,

and Benoit Baudry. Test them all, is it worth it ? assessing configuration sam-

pling on the jhipster web development stack. Empirical Software Engineering,

Jul 2018.

[42] Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, Patrick

Heymans, and Yves Le Traon. Bypassing the combinatorial explosion : Using

similarity to generate and prioritize t-wise test configurations for software pro-

duct lines. IEEE Trans. Software Eng., 2014.

[43] JC Huang. An approach to program testing. ACM Computing Surveys (CSUR),

7(3) :113–128, 1975.

[44] Arnaud Hubaux, Thein Than Tun, and Patrick Heymans. Separation of concerns

in feature diagram languages : A systematic survey. ACM Computing Surveys

(CSUR), 45(4) :51, 2013.

[45] F Hutter, Balázs Kégl, R Caruana, I Guyon, H Larochelle, and E Viegas. Auto-

matic machine learning (automl). In ICML 2015 Workshop on Resource-Efficient

Machine Learning, 32nd International Conference on Machine Learning, 2015.

[46] Martin Fagereng Johansen, Ø ystein Haugen, and Franck Fleurey. An algorithm

for generating t-wise covering arrays from large feature models. In Proceedings

of the 16th International Software Product Line Conference, volume 1, pages

46–55. ACM, 2012.

[47] Matthew Johnson-Roberson, Charles Barto, Rounak Mehta, Sharath Nittur Srid-

har, Karl Rosaen, and Ram Vasudevan. Driving in the matrix : Can virtual worlds

replace human-generated annotations for real world tasks ? In Robotics and Au-

tomation (ICRA), 2017 IEEE International Conference on, pages 746–753. IEEE,

2017.

163

[48] Christian Kästner, Thomas Thüm, Gunter Saake, Janet Feigenspan, Thomas

Leich, Fabian Wielgorz, and Sven Apel. Featureide : A tool framework for feature-

oriented software development. In ICSE, pages 611–614. IEEE Computer So-

ciety, 2009.

[49] Chang Hwan Peter Kim, Don S. Batory, and Sarfraz Khurshid. Reducing combi-

natorics in testing product lines. In Proceedings of the tenth international confe-

rence on Aspect-oriented software development, pages 57–68. ACM, 2011.

[50] Chang Hwan Peter Kim, Sarfraz Khurshid, and Don Batory. Shared execution

for efficiently testing product lines. In Software Reliability Engineering (ISSRE),

2012 IEEE 23rd International Symposium on, pages 221–230. IEEE, 2012.

[51] Chang Hwan Peter Kim, Darko Marinov, Sarfraz Khurshid, Don Batory, Sabrina

Souto, Paulo Barros, and Marcelo D.Amorim. Splat : Lightweight dynamic ana-

lysis for reducing combinatorics in testing configurable systems. In ESEC/FSE

2013, 2013.

[52] Lars Kotthoff, Chris Thornton, Holger H Hoos, Frank Hutter, and Kevin Leyton-

Brown. Auto-weka 2.0 : Automatic model selection and hyperparameter optimi-

zation in weka. The Journal of Machine Learning Research, 18(1) :826–830,

2017.

[53] Charles W Krueger. Software reuse. ACM Computing Surveys (CSUR),

24(2) :131–183, 1992.

[54] Charles W Krueger. New methods in software product line development. In

Software Product Line Conference, 2006 10th International, pages 95–99. IEEE,

2006.

[55] CharlesW Krueger. Easing the transition to software mass customization. In

International Workshop on Software Product-Family Engineering, pages 282–

293. Springer, 2001.

[56] Beatriz Pérez Lamancha and Macario Polo Usaola. Testing product generation in

software product lines using pairwise for features coverage. In IFIP International

Conference on Testing Software and Systems, pages 111–125. Springer, 2010.

[57] Joel Lehman and Kenneth O Stanley. Exploiting open-endedness to solve pro-

blems through the search for novelty. In ALIFE, pages 329–336, 2008.

164

[58] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco : Common ob-

jects in context. In European conference on computer vision, pages 740–755.

Springer, 2014.

[59] Huai Liu, Fei-Ching Kuo, Dave Towey, and Tsong Yueh Chen. How effectively

does metamorphic testing alleviate the oracle problem? IEEE Transactions on

Software Engineering, 40(1) :4–22, 2014.

[60] Rafael Lotufo. On the complexity of maintaining the linux kernel configuration.

Technical Report, Electrical and Computer Engineering, 2009.

[61] Alessandro Maccari and Anders Heie. Managing infinite variability in mobile ter-

minal software : Research articles. Softw. Pract. Exper., 35(6) :513–537, 2005.

[62] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Rohit Gheyi, and Sven Apel.

A comparison of 10 sampling algorithms for configurable systems. In Procee-

dings of the 38th International Conference on Software Engineering, ICSE ’16,

pages 643–654, 2016.

[63] Marcilio Mendonca, Moises Branco, and Donald Cowan. S.p.l.o.t. : Software pro-

duct lines online tools. In Proceedings of the 24th ACM SIGPLAN Conference

Companion on Object Oriented Programming Systems Languages and Applica-

tions, OOPSLA ’09, pages 761–762, New York, NY, USA, 2009. ACM.

[64] Marcilio Mendonca, Moises Branco, and Donald Cowan. S.p.l.o.t. : software pro-

duct lines online tools. In OOPSLA’09 (companion). ACM, 2009.

[65] Hector Mendoza, Aaron Klein, Matthias Feurer, Jost Tobias Springenberg, and

Frank Hutter. Towards automatically-tuned neural networks. In Workshop on

Automatic Machine Learning, pages 58–65, 2016.

[66] Hung Viet Nguyen, Christian Kästner, and Tien N Nguyen. Exploring variability-

aware execution for testing plugin-based web applications. In Proceedings of the

36th International Conference on Software Engineering, pages 907–918. ACM,

2014.

[67] Simeon C. Ntafos. A comparison of some structural testing strategies. IEEE

transactions on software engineering, 14(6) :868–874, 1988.

[68] Jeho Oh, Don Batory, Margaret Myers, and Norbert Siegmund. Finding near-

optimal configurations in product lines by random sampling. In Proceedings of

165

the 2017 11th Joint Meeting on Foundations of Software Engineering, pages

61–71. ACM, 2017.

[69] Mike Papadakis and Nicos Malevris. Automatic mutation test case generation via

dynamic symbolic execution. In Software reliability engineering (ISSRE), 2010

IEEE 21st international symposium on, pages 121–130. IEEE, 2010.

[70] Sachin Patel, Priya Gupta, and Vipul Shah. Feature interaction testing of varia-

bility intensive systems. In Product Line Approaches in Software Engineering

(PLEASE), 2013 4th International Workshop on, pages 53–56. IEEE, 2013.

[71] Luis Patino, Tom Cane, Alain Vallee, and James Ferryman. Pets 2016 : Dataset

and challenge. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition Workshops, pages 1–8, 2016.

[72] Matthew Patrick, Matthew D Castle, Richard OJH Stutt, and Christopher A Gil-

ligan. Automatic test image generation using procedural noise. In Automated

Software Engineering (ASE), 2016 31st IEEE/ACM International Conference on,

pages 654–659. IEEE, 2016.

[73] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore : Automated

whitebox testing of deep learning systems. In Proceedings of the 26th Sympo-

sium on Operating Systems Principles, SOSP ’17, pages 1–18, New York, NY,

USA, 2017. ACM.

[74] Klaus Pohl, Günter Böckle, and Frank J van Der Linden. Software product line

engineering : foundations, principles and techniques. Springer Science & Busi-

ness Media, 2005.

[75] Adam Porter, Cemal Yilmaz, Atif M Memon, Douglas C Schmidt, and Bala Na-

tarajan. Skoll : A process and infrastructure for distributed continuous quality

assurance. IEEE Transactions on Software Engineering, 33(8) :510–525, 2007.

[76] Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca. Choco3 Do-

cumentation. TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S.,

2014.

[77] Cyrus Rashtchian, Peter Young, Micah Hodosh, and Julia Hockenmaier. Col-

lecting image annotations using amazon’s mechanical turk. In Proceedings of

the NAACL HLT 2010 Workshop on Creating Speech and Language Data with

Amazon’s Mechanical Turk, pages 139–147, 2010.

166

[78] José Miguel Rojas, Mattia Vivanti, Andrea Arcuri, and Gordon Fraser. A detai-

led investigation of the effectiveness of whole test suite generation. Empirical

Software Engineering, 22(2) :852–893, 2017.

[79] Atri Sarkar, Jianmei Guo, Norbert Siegmund, Sven Apel, and Krzysztof Czarne-

cki. Cost-efficient sampling for performance prediction of configurable systems

(t). In Automated Software Engineering (ASE), 2015 30th IEEE/ACM Internatio-

nal Conference on, pages 342–352. IEEE, 2015.

[80] David W Scott. On optimal and data-based histograms. Biometrika, 66(3) :605–

610, 1979.

[81] David W Scott. Multivariate density estimation : theory, practice, and visualiza-

tion. John Wiley & Sons, 2015.

[82] Sergio Segura, Gordon Fraser, Ana B. Sánchez, and Antonio Ruiz Cortés. A

survey on metamorphic testing. IEEE Trans. Software Eng., 42(9) :805–824,

2016.

[83] Sergio Segura, Javier Troya, Amador Durán Toro, and Antonio Ruiz Cortés. Per-

formance metamorphic testing : Motivation and challenges. In 39th IEEE/ACM

International Conference on Software Engineering : New Ideas and Emerging

Technologies Results Track, ICSE-NIER 2017, Buenos Aires, Argentina, May

20-28, 2017, pages 7–10, 2017.

[84] Samuel Sepúlveda, Ania Cravero, and Cristina Cachero. Requirements modeling

languages for software product lines : A systematic literature review. Information

and Software Technology, 69 :16 – 36, 2016.

[85] Hazim Shatnawi and H. Conrad Cunningham. Mapping spl feature models to a

relational database. In ACM Southeast Regional Conference, 2017.

[86] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua Susskind, Wenda Wang,

and Russell Webb. Learning from simulated and unsupervised images through

adversarial training. In CVPR, volume 2, page 5, 2017.

[87] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Kästner.

Performance-influence models for highly configurable systems. In Proceedings

of the 2015 10th Joint Meeting on Foundations of Software Engineering, pages

284–294, 2015.

167

[88] Norbert Siegmund, Sergiy S Kolesnikov, Christian Kästner, Sven Apel, Don Ba-

tory, Marko Rosenmüller, and Gunter Saake. Predicting performance via au-

tomated feature-interaction detection. In Proceedings of the 34th International

Conference on Software Engineering, pages 167–177. IEEE Press, 2012.

[89] Norbert Siegmund, Marko RosenmüLler, Christian KäStner, Paolo G. Giarrusso,

Sven Apel, and Sergiy S. Kolesnikov. Scalable prediction of non-functional pro-

perties in software product lines : Footprint and memory consumption. Inf. Softw.

Technol., 2013.

[90] Bernard W Silverman. Density estimation for statistics and data analysis. Rout-

ledge, 2018.

[91] Julio Sincero, Horst Schirmeier, Wolfgang Schröder-Preikschat, and Olaf Spinc-

zyk. Is the linux kernel a software product line? In Proc. SPLC Workshop on

Open Source Software and Product Lines, 2007.

[92] Julio Sincero, Wolfgang Schroder-Preikschat, and Olaf Spinczyk. Approaching

non-functional properties of software product lines : Learning from products. In

Software Engineering Conference (APSEC), 2010 17th Asia Pacific, pages 147–

155. IEEE, 2010.

[93] Sabrina Souto, Divya Gopinath, Marcelo d’Amorim, Darko Marinov, Sarfraz Khur-

shid, and Don Batory. Faster bug detection for software product lines with in-

complete feature models. In Proceedings of the 19th International Conference

on Software Product Line, pages 151–160. ACM, 2015.

[94] Domagoj Štrekelj, Hrvoje Leventić, and Irena Galić. Performance overhead of

haxe programming language for cross-platform game development. International

Journal of Electrical and Computer Engineering Systems, 6(1) :9–13, 2015.

[95] Mikael Svahnberg, Jilles van Gurp, and Jan Bosch. A taxonomy of variability

realization techniques : Research articles. Softw. Pract. Exper., 35(8) :705–754,

2005.

[96] Terence Tao. An introduction to measure theory, volume 126. American Mathe-

matical Soc., 2011.

[97] Rasha Tawhid and Dorina C Petriu. Automatic derivation of a product perfor-

mance model from a software product line model. In Software Product Line

Conference (SPLC), 2011 15th International, pages 80–89. IEEE, 2011.

168

[98] Richard N. Taylor, David L. Levine, and Cheryl D. Kelly. Structural testing of

concurrent programs. IEEE Transactions on Software Engineering, 18(3) :206–

215, 1992.

[99] Paul Temple, Mathieu Acher, and Jean-Marc Jézéquel. Multimorphic testing.

In Proceedings of the 40th International Conference on Software Engineering :

Companion Proceeedings, pages 432–433. ACM, 2018.

[100] Paul Temple, Mathieu Acher, Jean-Marc Jezequel, and Olivier Barais. Learning

contextual-variability models. IEEE Software, 34(6) :64–70, 2017.

[101] Paul Temple, Mathieu Acher, Jean-Marc Jézéquel, Léo Noel-Baron, and José

Galindo. Learning-based performance specialization of configurable systems.

Technical report, Univ Rennes, Inria, CNRS, IRISA, 2017.

[102] Paul Temple, José A Galindo, Mathieu Acher, and Jean-Marc Jézéquel. Using

machine learning to infer constraints for product lines. In Proceedings of the 20th

International Systems and Software Product Line Conference, pages 209–218.

ACM, 2016.

[103] Chris Thornton, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Auto-

weka : Combined selection and hyperparameter optimization of classification al-

gorithms. In Proceedings of the 19th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 847–855. ACM, 2013.

[104] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake.

A classification and survey of analysis strategies for software product lines. ACM

Computing Surveys, 2014.

[105] Thomas Thum, Don Batory, and Christian Kastner. Reasoning about edits to fea-

ture models. In Software Engineering, 2009. ICSE 2009. IEEE 31st International

Conference on, pages 254–264. IEEE, 2009.

[106] Thomas Thüm, Christian Kstner, Fabian Benduhn, Jens Meinicke, Gunter Saake,

and Thomas Leich. Featureide : An extensible framework for feature-oriented

software development. Science of Computer Programming, 2012.

[107] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. Deeptest : Au-

tomated testing of deep-neural-network-driven autonomous cars. CoRR,

abs/1708.08559, 2017.

169

[108] Pavel Valov, Jianmei Guo, and Krzysztof Czarnecki. Empirical comparison of

regression methods for variability-aware performance prediction. In Proceedings

of the 19th International Conference on Software Product Line, pages 186–190.

ACM, 2015.

[109] Mahsa Varshosaz, Mustafa Al-Hajjaji, Thomas Thüm, Tobias Runge, Moham-

mad Reza Mousavi, and Ina Schaefer. A classification of product sampling for

software product lines. In Proceeedings of the 22nd International Conference on

Systems and Software Product Line-Volume 1, pages 1–13. ACM, 2018.

[110] Alexander von Rhein, Alexander Grebhahn, Sven Apel, Norbert Siegmund, Dirk

Beyer, and Thorsten Berger. Presence-condition simplification in highly configu-

rable systems. In Proceedings of the 37th International Conference on Software

Engineering-Volume 1, pages 178–188. IEEE Press, 2015.

[111] Nik Weaver. Measure theory and functional analysis. World Scientific Publishing

Company, 2013.

[112] Jules White, Brian Dougherty, Doulas C Schmidt, and David Benavides. Auto-

mated reasoning for multi-step feature model configuration problems. In Procee-

dings of the 13th International Software Product Line Conference, pages 11–20.

Carnegie Mellon University, 2009.

[113] Cemal Yilmaz, Myra B Cohen, and Adam A Porter. Covering arrays for efficient

fault characterization in complex configuration spaces. IEEE Transactions on

Software Engineering, 32(1) :20–34, 2006.

[114] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid.

Deeproad : Gan-based metamorphic autonomous driving system testing. arXiv

preprint arXiv :1802.02295, 2018.

[115] Yi Zhang, Jianmei Guo, Eric Blais, and Krzysztof Czarnecki. Performance pre-

diction of configurable software systems by fourier learning (t). In 2015 30th

IEEE/ACM International Conference on Automated Software Engineering (ASE),

pages 365–373. IEEE, 2015.

170

	Résumé en français
	Abstract
	Introduction
	Background
	Software Product Lines
	Perks of reuse
	SPL development process

	Feature Models
	Fundamentals of feature models

	Machine Learning
	Stages to use a machine learning algorithm
	The training phase
	Evaluating prediction performances
	Overfitting and underfitting
	Hyperparameters and validation set

	Summary

	State of the Art
	Software product lines and Testing
	Configuration sampling
	Fault Detection in software product lines
	Metamorphic Testing

	Tests quality
	Traditional metrics
	Mutation Testing
	Quality of performance tests

	Machine learning and software product lines
	Performance prediction
	Testing machine learning techniques

	Summary

	Automatic Specialization of software product lines using Machine Learning
	Introduction
	Method
	Case Study
	Case and Problem
	Solution for Inferring Constraints
	Generating a training set out of the variability model
	Oracle
	Machine learning
	Extracting constraints

	Experiments
	Experimental Setup
	Results
	Threats to validity

	Discussions
	Conclusion

	Learning-based Performance Specialization of Configurable Systems
	Introduction
	Motivation and Problem Statement
	Motivating scenario
	Approach
	Novel problems

	Discussions
	Impacts of performance objectives on the learning problem
	Measures to assess the prediction power of machine learning models

	Experiments
	Subject systems and configuration performances
	Experimental setup
	Presentation of results
	RQ1) Does our method allow to accurately classify configurations?
	RQ2) Does our method allow to maintain flexibility while being safe?

	Conclusion

	Multimorphic Testing
	Introduction
	Multimorphic Testing
	Motivation
	The principle of Multimorphic Testing
	Properties of a measure
	Design of dispersion measures

	Empirical Evaluation
	Research questions
	Evaluation settings
	RQ1: Is the dispersion measure right?
	RQ2: Is the dispersion score a right measure?
	Concluding remarks over the method
	Reproducibility of experiments

	Discussions and Threats to Validity
	Internal threats
	External threats

	Conclusion

	Conclusion and Future Work
	Conclusion
	Perspectives
	Machine Learning, Variability and Software Product Lines
	Developing an appropriate sampling method
	Adversarial Machine Learning and Software Product Lines
	Taking into account the surrounding context

	Bibliography

