Thèse soutenue

Améliorer les connaissances sur les processus écologiques régissant les dynamiques de populations d'auxiliaires de culture : modélisation couplant paysages et populations pour l'aide à l'échantillonnage biologique dans l'espace et le temps

FR  |  
EN
Auteur / Autrice : Benoit Bellot
Direction : Jacques BaudryNicolas PariseySylvain Poggi
Type : Thèse de doctorat
Discipline(s) : Statistiques/Modélisation en écologie, géosciences, agronomie et alimentation
Date : Soutenance le 18/04/2018
Etablissement(s) : Rennes 1
Ecole(s) doctorale(s) : École doctorale Écologie Géosciences Agronomie Alimentation (Rennes ; 2016-2022)
Partenaire(s) de recherche : ComuE : Université Bretagne Loire (2016-2019)
Laboratoire : Institut de Génétique, Environnement et Protection des Plantes

Résumé

FR  |  
EN

Une alternative prometteuse à la lutte chimique pour la régulation des ravageurs de culture consiste à favoriser les populations de leurs prédateurs en jouant sur la structure du paysage agricole. L'identification de structures spatio-temporelles favorables aux ennemis naturels peut se faire par l'exploration de scénarios paysagers via une modélisation couplée de paysages et de dynamiques de population. Dans cette approche, les dynamiques de populations sont simulées sur des paysages virtuels aux propriétés structurales contrôlées, et l'observation des motifs de populations associés permet l'identification de structures favorables. La modélisation des dynamiques de populations repose cependant sur une connaissance fine des processus écologiques et de leur variabilité entre les différentes unités du paysage. L'état actuel des connaissances sur les mécanismes écologiques régissant les dynamiques des ennemis naturels de la famille des carabidés demeure l'obstacle majeur à la recherche in silico de scénarios paysagers favorables. La littérature sur les liens entre motifs de population de carabes et variables paysagères permet de formuler un ensemble d'hypothèses en compétition sur ces mécanismes. Réduire le nombre de ces hypothèses en analysant les convergences entre les motifs de population qui leur sont associés, et étudier la stabilité de ces convergences le long d'un gradient paysager apparaît comme une première étape nécessaire vers l'amélioration de la connaissance sur les processus écologiques. Dans une première partie, nous proposons une heuristique méthodologique basée sur la simulation de modèles de réaction-diffusion porteurs de ces hypothèses en compétition. L'étude des motifs de population a permis d'effectuer une typologie des modèles en fonction de leur réponse à une variable paysagère, via un algorithme de classification, réduisant ainsi le nombre d’hypothèses en compétition. La sélection de l'hypothèse la plus plausible parmi cet ensemble irréductible doit s'effectuer sur la base d'une observation des motifs de population sur le terrain. Cela implique que ces derniers soient caractérisés à des résolutions spatiales et temporelles suffisantes pour sélectionner une unique hypothèse parmi celles en compétition. Dans la deuxième partie, nous proposons une heuristique méthodologique permettant de déterminer a priori des stratégies d'échantillonnage maximisant la robustesse de la sélection d'hypothèses écologiques. Dans un premier temps, la simulation de modèles de réaction-diffusion représentatifs des hypothèses écologiques en compétition permet de générer des données biologiques virtuelles en tout point de l'espace et du temps. Ces données biologiques sont ensuite échantillonnées suivant des protocoles différant dans l'effort total d'échantillonnage, le nombre de dates, le nombre de points par unité d'espace et le nombre de réplicats de paysages. Les motifs des populations sont caractérisés à partir de ces échantillons. Le potentiel des stratégies d'échantillonnage est évalué via un algorithme de classification qui classe les modèles biologiques selon les motifs de population associés. L'analyse des performances de classification, i.e. la capacité de l'algorithme à discriminer les processus écologiques, permet de sélectionner un protocole d'échantillonnage optimal. Nous montrons également que la manière de distribuer l'effort d'échantillonnage entre ses composantes spatiales et temporelles est un levier majeur sur l'inférence des processus écologiques. La réduction du nombre d'hypothèses en compétition et l'aide à l'échantillonnage pour la sélection de modèles répondent à un besoin fort dans le processus d'acquisition de connaissances écologiques pour l'exploration in silico de scénarios paysagers favorisant des services écosystémiques. Nous discutons dans une dernière partie des implications de nos travaux et de leurs perspectives d'amélioration.