Planification locale de trajectoires à deux étapes basée sur l’interpolation des courbes optimales pré-planifiées pour une conduite humaine en milieu urbain

par Fernando José Garrido Carpio

Thèse de doctorat en Informatique temps réel, robotique et automatique

Sous la direction de Fawzi Nashashibi.

Soutenue le 04-12-2018

à Paris Sciences et Lettres , dans le cadre de École doctorale Sciences des métiers de l'ingénieur (Paris) , en partenariat avec École nationale supérieure des mines (Paris) (établissement de préparation de la thèse) , Centre de robotique (Paris) (laboratoire) et de RITS - Robotics & Intelligent Transportation Systems (laboratoire) .

Le président du jury était Abdelaziz Bensrhair.

Le jury était composé de Vicente Milanes, Mohamed Cherif Rahal, Joshue Perez.

Les rapporteurs étaient José Eugenio Naranjo, Paul Honeine.


  • Résumé

    Les systèmes de transport intelligents (STI) sont conçus pour améliorer les transports, réduire les accidents, le temps de transport et la consommation de carburant, tout en augmentant la sécurité, le confort et l'efficacité de conduite. L'objectif final de ITS est de développer ADAS pour faciliter les tâches de conduite, jusqu'au développement du véhicule entièrement automatisé. Les systèmes actuels ne sont pas assez robustes pour atteindre un niveau entièrement automatisé à court terme. Les environnements urbains posent un défi particulier, car le dynamisme de la scène oblige les algorithmes de navigation à réagir en temps réel aux éventuels changements, tout en respectant les règles de circulation et en évitant les collisions avec les autres usagers de la route. Sur cette base, cette thèse propose une approche de la planification locale en deux étapes pour apporter une solution au problème de la navigation en milieu urbain. Premièrement, les informations statiques des contraintes de la route et du véhicule sont considérées comme générant la courbe optimale pour chaque configuration de virage réalisable, où plusieurs bases de données sont générées en tenant compte de la position différente du véhicule aux points de début et de fin des courbes, permettant ainsi une analyse réaliste. planificateur de temps pour analyser les changements de concavité en utilisant toute la largeur de la voie. Ensuite, la configuration réelle de la route est envisagée dans le processus en temps réel, où la distance disponible et la netteté des virages à venir et consécutifs sont étudiées pour fournir un style de conduite à la manière humaine optimisant deux courbes simultanément, offrant ainsi un horizon de planification étendu. Par conséquent, le processus de planification en temps réel recherche le point de jonction optimal entre les courbes. Les critères d’optimalité minimisent à la fois les pics de courbure et les changements abrupts, en recherchant la génération de chemins continus et lisses. Quartic Béziers est l'algorithme d'interpolation utilisé en raison de ses propriétés, permettant de respecter les limites de la route et les restrictions cinématiques, tout en permettant une manipulation facile des courbes. Ce planificateur fonctionne à la fois pour les environnements statiques et dynamiques. Les fonctions d'évitement d'obstacles sont présentées en fonction de la génération d'une voie virtuelle qui modifie le chemin statique pour effectuer chacune des deux manoeuvres de changement de voie sous la forme de deux courbes, convertissant le problème en un chemin statique. Ainsi, une solution rapide peut être trouvée en bénéficiant du planificateur local statique. Il utilise une discrétisation en grille de la scène pour identifier l'espace libre nécessaire à la construction de la route virtuelle, où le critère de planification dynamique consiste à réduire la pente pour les changements de voie. Des essais de simulation et des tests expérimentaux ont été réalisés pour valider l'approche dans des environnements statiques et dynamiques, adaptant la trajectoire en fonction du scénario et du véhicule, montrant la modularité du système.

  • Titre traduit

    Two-staged local trajectory planning based on optimal pre-planned curves interpolation for human-like driving in urban areas


  • Résumé

    Intelligent Transportation Systems (ITS) developments are conceived to improve transportation reducing accidents, transport time and fuel consumption, while increasing driving security, comfort and efficiency. The final goal of ITS is the development of ADAS for assisting in the driving tasks, up to the development of the fully automated vehicle. Despite last ADAS developments achieved a partial-automation level, current systems are not robust enough to achieve fully-automated level in short term. Urban environments pose a special challenge, since the dynamism of the scene forces the navigation algorithms to react in real-time to the eventual changes, respecting at the same time traffic regulation and avoiding collisions with other road users. On this basis, this PhD thesis proposes a two-staged local planning approach to provide a solution to the navigation problem on urban environments. First, static information of both road and vehicle constraints is considered to generate the optimal curve for each feasible turn configuration, where several databases are generated taking into account different position of the vehicle at the beginning and ending points of the curves, allowing the real-time planner to analyze concavity changes making use of the full lane width.Then, actual road layout is contemplated in the real-time process, where both the available distance and the sharpness of upcoming and consecutive turns are studied to provide a human-like driving style optimizing two curves concurrently, offering that way an extended planning horizon. Therefore, the real-time planning process searches the optimal junction point between curves. Optimality criteria minimizes both curvature peaks and abrupt changes on it, seeking the generation of continuous and smooth paths. Quartic Béziers are the interpolating-based curve algorithm used due to their properties, allowing compliance with road limits and kinematic restrictions, while allowing an easy manipulation of curves. This planner works both for static and dynamic environments. Obstacle avoidance features are presented based on the generation of a virtual lane which modifies the static path to perform each of the two lane change maneuvers as two curves, converting the problem into a static-path following. Thus, a fast solution can be found benefiting from the static local planner. It uses a grid discretization of the scene to identify the free space to build the virtual road, where the dynamic planning criteria is to reduce the slope for the lane changes. Both simulation and experimental test have been carried out to validate the approach, where vehicles performs path following on static and dynamic environments adapting the path in function of the scenario and the vehicle, testing both with low-speed cybercars and medium-speed electic platforms, showing the modularity of the system.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Paris Sciences et Lettres. Thèses électroniques.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.