Thèse soutenue

Mécanismes de déformations de matériaux thermoélectriques nanostructurés
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Matthieu Aumand
Direction : Ludovic ThillyKen W. White
Type : Thèse de doctorat
Discipline(s) : Milieux denses, Matériaux et Composants
Date : Soutenance le 12/09/2018
Etablissement(s) : Poitiers en cotutelle avec University of Houston
Ecole(s) doctorale(s) : École doctorale Sciences et ingénierie des matériaux, mécanique, énergétique et aéronautique (Poitiers ; 2009-2018)
Partenaire(s) de recherche : Laboratoire : Pôle poitevin de recherche pour l'ingénieur en mécanique, matériaux et énergétique - PPRIMME (Poitiers) - Institut Pprime / PPRIME
faculte : Université de Poitiers. UFR des sciences fondamentales et appliquées
Jury : Président / Présidente : Pradeep Sharma
Examinateurs / Examinatrices : Ludovic Thilly, Ken W. White, Christophe Tromas, Yashashree Kulkarni, Andrew Robertson
Rapporteurs / Rapporteuses : Robert Vajtai, Michael J. Demkowicz

Résumé

FR  |  
EN

L’amélioration de la figure de mérite ZT des matériaux thermoélectriques (TE) est actuellement entreprise via des procédés de métallurgie, tels que la nanostructuration et l’introduction contrôlée de dislocations. De tels niveaux de complexité de microstructure soulèvent la problématique du comportement mécanique associé. En effet, malgré les valeurs de dureté et module d’élasticité connues pour la plupart des matériaux TE, rares sont les données sur les mécanismes de déformation. Portant sur le Half-Heusler Hf0.44Zr0.44Ti0.12CoSb0.8Sn0.2 de type p, notre étude multi-échelle propose de caractériser les mécanismes de déformation de cet alliage. Les expérimentations menées aux échelles macroscopique, mésoscopique, et microscopique sont pensées pour déclencher puis examiner les mécanismes de plasticité. Les tests en compression sur échantillons massifs dans un environnement de pression de confinement et température ont aboutis à une rupture exclusivement fragile. Les mécanismes de rupture sont identifiés comme associés une propagation de fissure intra- et inter granulaire, dépendant de la taille de grain rencontrée par le front de fissure. La méthode « indentation toughness » à l’échelle mésoscopique permet l’insertion de fissures, où les analyses MET en front de fissure confirment une abscence d’activité de dislocations, également confirmé par 3D-EBSD. À l’échelle microscopique, les données de compression de micro-pilliers ainsi que les observations de faciès de fracture sont comparable avec les échantillons massifs. Ces résultats peuvent être utilisés comme guide pour produire des matériaux TE plus résistants à la fissuration.