Thèse soutenue

Optimisation décentralisée pour l’efficacité énergétique

FR  |  
EN
Auteur / Autrice : François Pacaud
Direction : Michel De Lara
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 25/10/2018
Etablissement(s) : Paris Est
Ecole(s) doctorale(s) : École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Centre d'enseignement et de recherche en mathématiques et calcul scientifique (Champs-sur-Marne, Seine-et-Marne) - Centre d'Enseignement et de Recherche en Mathématiques- Informatique et Calcul Scientifique / CERMICS
Jury : Président / Présidente : Ralph Tyrrell Rockafellar
Examinateurs / Examinatrices : Michel De Lara, Pierre Carpentier, Nicolas Petit, Nadia Oudjane
Rapporteurs / Rapporteuses : Andy Philpott, Frédéric Bonnans

Résumé

FR  |  
EN

Les réseaux électriques doivent absorber une production d'énergie renouvelable croissante, de façon décentralisée. Leur gestion optimale amène à des problèmes spécifiques. Nous étudions dans cette thèse la formulation mathématique de tels problèmes en tant que problèmes d'optimisation stochastique multi-pas de temps. Nous analysons plus spécifiquement la décomposition en temps et en espace de tels problèmes. Dans la première partie de ce manuscrit, Décomposition temporelle pour l'optimisation de la gestion de microgrid domestique, nous appliquons les méthodes d'optimisation stochastique à la gestion de microgrid de petite taille. Nous comparons différents algorithmes d'optimisation sur deux exemples: le premier considère une microgrid domestique équipée avec une batterie et une centrale de micro-cogénération; le deuxième considère quant à lui une autre microgrid domestique, cette fois équipée avec une batterie et des panneaux solaires. Dans la seconde partie, Décomposition temporelle et spatiale de problèmes d'optimisation de grande taille, nous étendons les études précédentes à des microgrids de plus grandes tailles, avec différentes unités et stockages connectés ensemble. La résolution frontale de tels problèmes de grande taille par Programmation Dynamique s'avère impraticable. Nous proposons deux algorithmes originaux pour pallier ce problème en mélangeant une décomposition temporelle avec une décomposition spatiale --- par les prix ou par les ressources. Dans la dernière partie, Contributions à l'algorithme Stochastic Dual Dynamic Programming, nous nous concentrons sur l'algorithme emph{Stochastic DualDynamic Programming} (SDDP) qui est actuellement une méthode de référence pour résoudre des problèmes d'optimisation stochastique multi-pas de temps. Nous étudions un nouveau critère d'arrêt pour cet algorithme basé sur une version duale de SDDP, qui permet d'obtenir une borne supérieure déterministe pour le problème primal