Option prices in stochastic volatility models

par Giulia Terenzi

Thèse de doctorat en Mathématiques

Sous la direction de Damien Lamberton.

Soutenue le 17-12-2018

à Paris Est en cotutelle avec l'Università degli studi di Roma "Tor Vergata" , dans le cadre de MSTIC : Mathématiques et Sciences et Technologies de l'Information et de la Communication , en partenariat avec Laboratoire d'Analyse et de Mathématiques Appliquées (laboratoire) et de Laboratoire de Mathématiques / LAMA (laboratoire) .

Le président du jury était Fabio Antonelli.

Le jury était composé de Damien Lamberton, Lucia Caramellino, Maya Briani, Aurélien Alfonsi.

Les rapporteurs étaient Andrea Pascucci, Andreas Neuenkirch.

  • Titre traduit

    Prix d’options dans les modèles à volatilité stochastique


  • Résumé

    L’objet de cette thèse est l’étude de problèmes d’évaluation d’options dans les modèles à volatilité stochastique. La première partie est centrée sur les options américaines dans le modèle de Heston. Nous donnons d’abord une caractérisation analytique de la fonction de valeur d’une option américaine comme l’unique solution du problème d’obstacle parabolique dégénéré associé. Notre approche est basée sur des inéquations variationelles dans des espaces de Sobolev avec poids étendant les résultats récents de Daskalopoulos et Feehan (2011, 2016) et Feehan et Pop (2015). On étudie aussi les propriétés de la fonction de valeur d’une option américaine. En particulier, nous prouvons que, sous des hypothèses convenables sur le payoff, la fonction de valeur est décroissante par rapport à la volatilité. Ensuite nous nous concentrons sur le put américaine et nous étendons quelques résultats qui sont bien connus dans le monde Black-Scholes. En particulier nous prouvons la convexité stricte de la fonction de valeur dans la région de continuation, quelques propriétés de la frontière libre, la formule de Prime d’Exercice Anticipée et une forme faible de la propriété du smooth fit. Les techniques utilisées sont de type probabiliste. Dans la deuxième partie nous abordons le problème du calcul numérique du prix des options européennes et américaines dans des modèles à volatilité stochastiques et avec sauts. Nous étudions d’abord le modèle de Bates-Hull-White, c’est-à-dire le modèle de Bates avec un taux d’intérêt stochastique. On considère un algorithme hybride rétrograde qui utilise une approximation par chaîne de Markov (notamment un arbre “avec sauts multiples”) dans la direction de la volatilité et du taux d’intérêt et une approche (déterministe) par différence finie pour traiter le processus de prix d’actif. De plus, nous fournissons une procédure de simulation pour des évaluations Monte Carlo. Les résultats numériques montrent la fiabilité et l’efficacité de ces méthodes. Finalement, nous analysons le taux de convergence de l’algorithme hybride appliqué à des modèles généraux de diffusion avec sauts. Nous étudions d’abord la convergence faible au premier ordre de chaînes de Markov vers la diffusion sous des hypothèses assez générales. Ensuite nous prouvons la convergence de l’algorithme: nous étudions la stabilité et la consistance de la méthode hybride par une technique qui exploite les caractéristiques probabilistes de l’approximation par chaîne de Markov


  • Résumé

    We study option pricing problems in stochastic volatility models. In the first part of this thesis we focus on American options in the Heston model. We first give an analytical characterization of the value function of an American option as the unique solution of the associated (degenerate) parabolic obstacle problem. Our approach is based on variational inequalities in suitable weighted Sobolev spaces and extends recent results of Daskalopoulos and Feehan (2011, 2016) and Feehan and Pop (2015). We also investigate the properties of the American value function. In particular, we prove that, under suitable assumptions on the payoff, the value function is nondecreasing with respect to the volatility variable. Then, we focus on an American put option and we extend some results which are well known in the Black and Scholes world. In particular, we prove the strict convexity of the value function in the continuation region, some properties of the free boundary function, the Early Exercise Price formula and a weak form of the smooth fit principle. This is done mostly by using probabilistic techniques.In the second part we deal with the numerical computation of European and American option prices in jump-diffusion stochastic volatility models. We first focus on the Bates-Hull-White model, i.e. the Bates model with a stochastic interest rate. We consider a backward hybrid algorithm which uses a Markov chain approximation (in particular, a “multiple jumps” tree) in the direction of the volatility and the interest rate and a (deterministic) finite-difference approach in order to handle the underlying asset price process. Moreover, we provide a simulation scheme to be used for Monte Carlo evaluations. Numerical results show the reliability and the efficiency of the proposed methods.Finally, we analyze the rate of convergence of the hybrid algorithm applied to general jump-diffusion models. We study first order weak convergence of Markov chains to diffusions under quite general assumptions. Then, we prove the convergence of the algorithm, by studying the stability and the consistency of the hybrid scheme, in a sense that allows us to exploit the probabilistic features of the Markov chain approximation


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Communautés d’Universités et d'Etablissements Université Paris-Est. Bibliothèque universitaire.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.