
 
 

 

Délivré par 

UNIVERSITE DE PERPIGNAN VIA DOMITIA 
 

 

 

Préparée au sein de l’école doctorale  

544 INTER-MED  

Et de l’unité de recherche 

CDED (EA UPVD 4216)  

 

Spécialité : 

Sciences économiques 

 

 

Présentée par 

RAVELOJAONA Mamiharivola 

 

 

 

 

 

 

 

 
 

 

 
Soutenue le 18 septembre 2018 devant le jury composé de 

 

 

 

M. Hervé BLANCHARD, MCF à l’Université de Perpignan Examinateur 

M. Jean-Philippe BOUSSEMART,  Professeur à 

l’Université de Lille 3 
Rapporteur  

M. Walter BRIEC, Professeur à l’Université de Perpignan Directeur 

Mme. Audrey DUMAS,  MCF à l’Université de Perpignan Co-directrice 

M. Hervé LELEU, Directeur de Recherche CNRS - Lille Examinateur 

M. Patrick LEONI, Professeur à KEDGE Business School-

Marseille 

Examinateur 

M. Stéphane MUSSARD,  Professeur à l’Université de 

Nîmes 

Rapporteur 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TITRE DE LA THESE 

Etude de l’Efficience en Economie de la Production : 

de Nouvelles Mesures de l’Efficacité et leurs Extensions 

Théorie et Applications 

 



L’Université n’entend donner aucune approbation ou improbation aux opinions émises dans la

thèse. Ces opinions doivent être considérées comme propres à l’auteur.





Remerciements

Je tiens à exprimer mes profonds remerciements à Monsieur le Professeur W. Briec pour avoir

accepté de diriger cette thèse. Sa disponibilité, sa rigueur scientifique et ses conseils m’ont permis

de mener à bien ces travaux. Je remercie également Madame A. Dumas, ma co-directrice, pour ses

conseils précieux quant à la réalisation de cette thèse.

Je remercie chaleureusement Monsieur H. Blanchard pour sa participation au jury de cette

thèse.

Je présente un remerciement appuyé à Monsieur le Professeur J-P. Boussemart pour avoir ac-

cepté de rapporter ces travaux.

J’exprime également mes sincères remerciements à Monsieur le Professeur H. Leleu, Directeur

de Recherche CNRS, pour sa présence et sa participation au sein de ce jury.

Je remercie chaleureusement Monsieur le Professeur P. Léoni pour avoir accepté de participer

au jury de cette thèse.

J’adresse aussi mes sincères remerciements à Monsieur le Professeur S. Mussard, qui a accepté

de rapporter cette thèse. Les remarques qu’il a exprimé, ont permis une exposition plus forte de

mes recherches.

Je présente un remerciement accentué à A. Abad pour nos discussions constructives et encou-

rageantes durant la conception de ces travaux et de mes activités de recherche.

Je remercie mes parents W. Razafinirina et Jouissance et, toute ma famille pour leur soutien.

J’exprime ma plus profonde reconnaissance à Mamisoa, Jessica et Mamitantely pour leurs sou-

tiens, leurs encouragements indéfectibles et pour les moments distractions.



Remerciements

Enfin, je tiens à adresser mes remerciements à toutes les personnes qui ont contribué de près

ou de loin à cette thèse : B. Solonandrasana, N. Peypoch, Dongmei, Marie-Claire, Agathe, ...

4



Sommaire

Introduction Générale 1

1 De la Caractérisation de la Technologie aux Mesures d’Efficacité et de Productivité 13

1 La Technologie de Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1 Généralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.1 La Correspondance en Inputs . . . . . . . . . . . . . . . . . . . 14

1.1.2 La Correspondance en Outputs . . . . . . . . . . . . . . . . . . 17

1.1.3 Le Graphe de la Technologie . . . . . . . . . . . . . . . . . . . 19

1.2 Modélisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.1 Les Fondements de la méthode DEA . . . . . . . . . . . . . . . 21

1.2.2 Les Modèles CCR, BCC et leurs Extensions . . . . . . . . . . . 23

1.2.3 Les Modèles Non Convexes . . . . . . . . . . . . . . . . . . . . 27

2 Les Mesures d’Efficacité et la Caractérisation de la Technologie . . . . . . . . . . 31

2.1 Les Fonctions de Distance . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 Les Mesures de Debreu-Farrell . . . . . . . . . . . . . . . . . . 31

2.1.2 La Fonction de Distance Directionnelle . . . . . . . . . . . . . . 35

2.1.3 La Fonction de Distance Proportionnelle . . . . . . . . . . . . . 39

2.2 La Théorie de la Dualité . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2.1 La Fonction de Coût . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2.2 La Fonction de Revenu . . . . . . . . . . . . . . . . . . . . . . 48

2.2.3 La Fonction de Profit . . . . . . . . . . . . . . . . . . . . . . . 51

3 Des Mesures d’Efficacité aux Mesures de la Productivité . . . . . . . . . . . . . . 54

3.1 Les Indices et les Indicateurs de Productivité Usuels . . . . . . . . . . . . 54

i



SOMMAIRE

3.1.1 Les Indices de Productivité de Malmquist . . . . . . . . . . . . 55

3.1.2 Les Indicateurs de Productivité de Luenberger . . . . . . . . . . 58

3.1.3 La Relation entre les Indices de Productivité de Malmquist et les

Indicateurs de Productivité de Luenberger . . . . . . . . . . . . 62

3.2 Les Extensions des Mesures de Productivité de Malmquist et de Luenberger 64

3.2.1 Les Indices de Productivité de Hicks-Moorsteen . . . . . . . . . 64

3.2.2 Les Indicateurs de Productivité de Luenberger-Hicks-Moorsteen 67

3.2.3 La Relation entre l’Indice de Hicks-Moorsteen et l’Indicateur de

Luenberger-Hicks-Moorsteen . . . . . . . . . . . . . . . . . . . 69

2 Une Approche Exponentielle de la Mesure de l’Efficience 73

1 Environnement et Outils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2 La Fonction de Distance Exponentielle . . . . . . . . . . . . . . . . . . . . . . . . 75

2.1 Définitions et Propriétés . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.1.1 Orientation dans le graphe . . . . . . . . . . . . . . . . . . . . . 76

2.1.2 Orientation en Input . . . . . . . . . . . . . . . . . . . . . . . . 78

2.1.3 Orientation en Output . . . . . . . . . . . . . . . . . . . . . . . 79

2.2 Contexte Logarithmique et Extensions . . . . . . . . . . . . . . . . . . . . 80

2.2.1 Définition et Propriétés . . . . . . . . . . . . . . . . . . . . . . 80

2.2.2 Fonction de Distance Népérienne en Input et en Output . . . . . 83

2.2.3 Équivalence entre les Mesures d’Efficience . . . . . . . . . . . . 85

3 La Théorie de la Dualité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.1 Pseudo Fonctions de Coût et de Revenu Cobb-Douglas . . . . . . . . . . . 89

3.1.1 Pseudo Fonction de Coût : Définitions et Propriétés . . . . . . . 89

3.1.2 Pseudo Fonction de Revenu : Définitions et Propriétés . . . . . . 92

3.1.3 Fonctions de Prix Ajustés . . . . . . . . . . . . . . . . . . . . . 96

3.2 Fonctions de Profit Cobb-Douglas et Log-linéaire . . . . . . . . . . . . . . 98

3.2.1 Pseudo Fonction de Profit Cobb-Douglas : définition, propriétés

et dualité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.2.2 Fonction de Profit népérienne . . . . . . . . . . . . . . . . . . . 100

ii



SOMMAIRE

3.2.3 Fonctions de Prix Implicites . . . . . . . . . . . . . . . . . . . . 102

4 Les Notions Additionnelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.1 Rendements d’Echelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.1.1 Rendements d’Echelle Constants . . . . . . . . . . . . . . . . . 103

4.1.2 Rendements d’Echelle Locaux et Spécifiques . . . . . . . . . . . 105

4.1.3 Facettes Cobb-Douglas et Approximation de la Technologie . . . 107

4.2 Cadre Non-Paramétrique . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.2.1 Efficience Technique, de Coût et de Revenu . . . . . . . . . . . 110

4.2.2 Approche Primale . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.2.3 Approche Duale . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3 Une Mesure Additive Non-linéaire de l’Efficience 121

1 Environnement et Outils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

2 La Fonction de Distance Directionnelle CES-CET . . . . . . . . . . . . . . . . . . 124

2.1 Définitions et Propriétés . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

2.1.1 Orientation dans le Graphe . . . . . . . . . . . . . . . . . . . . 124

2.1.2 Orientation en Input . . . . . . . . . . . . . . . . . . . . . . . . 126

2.1.3 Orientation en Output . . . . . . . . . . . . . . . . . . . . . . . 128

2.2 Des Propriétés Additionnelles . . . . . . . . . . . . . . . . . . . . . . . . 129

2.2.1 Graphe Translation Homothéticité . . . . . . . . . . . . . . . . 129

2.2.2 Translation Homothéticité Réciproque . . . . . . . . . . . . . . 133

2.2.3 Équivalence aux Mesures Radiales . . . . . . . . . . . . . . . . 134

3 Une Dualité Non-linéaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

3.1 Pseudo-Fonctions de Profit, de Coût et de Revenu CES-CET . . . . . . . . 135

3.1.1 Pseudo-Fonction de Profit CES-CET . . . . . . . . . . . . . . . 135

3.1.2 Pseudo-Fonction de Coût CES-CET . . . . . . . . . . . . . . . 137

3.1.3 Pseudo-Fonction de Revenu CES-CET . . . . . . . . . . . . . . 139

3.2 Dualité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

3.2.1 Formulations Duales . . . . . . . . . . . . . . . . . . . . . . . . 141

3.2.2 Fonctions de Prix Implicites Non-linéaires . . . . . . . . . . . . 144

iii



SOMMAIRE

3.2.3 Notions d’Efficience . . . . . . . . . . . . . . . . . . . . . . . . 147

4 Formalisation et Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.1 Cadre Non-Paramétrique . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.1.1 Technologie CES-CET et Hypothèse de Convexité . . . . . . . . 149

4.1.2 Estimation Primale . . . . . . . . . . . . . . . . . . . . . . . . 152

4.1.3 Programmation Duale . . . . . . . . . . . . . . . . . . . . . . . 155

4.2 Exemple Numérique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.2.1 Cadre d’analyse . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.2.2 Résultats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.2.3 Analyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4 Des Mesures de Productivité Exponentielles et Logarithmiques 163

1 Environnement et Outils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

2 Des Mesures de Productivité Exponentielles . . . . . . . . . . . . . . . . . . . . . 165

2.1 Indicateurs de Luenberger Exponentiels . . . . . . . . . . . . . . . . . . . 165

2.1.1 Définitions en Input . . . . . . . . . . . . . . . . . . . . . . . . 165

2.1.2 Orientation en Output . . . . . . . . . . . . . . . . . . . . . . . 168

2.1.3 Mesures dans le Graphe de la Technologie . . . . . . . . . . . . 170

2.2 Indicateur Exponentiel de Luenberger-Hicks-Moorsteen . . . . . . . . . . 173

2.2.1 Indicateur de la Période (t) . . . . . . . . . . . . . . . . . . . . 174

2.2.2 Indicateur de la Période (t + 1) . . . . . . . . . . . . . . . . . . 176

2.2.3 Indicateur Global de Luenberger-Hicks-Moorsteen Exponentiel 179

3 Notions Additionnelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

3.1 Dynamisme à Deux Périodes . . . . . . . . . . . . . . . . . . . . . . . . . 181

3.1.1 Fonctions de Distance Dynamiques . . . . . . . . . . . . . . . 181

3.1.2 Paramètre d’Influence Dynamique . . . . . . . . . . . . . . . . 183

3.2 Décomposition et Dynamisme des Indicateurs Exponentiels . . . . . . . . 185

3.2.1 Décomposition des Mesures de Productivité . . . . . . . . . . . 186

3.2.2 Mesures de Productivité Dynamiques . . . . . . . . . . . . . . . 188

4 Application Numérique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

iv



SOMMAIRE

4.1 Mesures de Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

4.1.1 Cadre d’Etude . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

4.1.2 Résultats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

4.1.3 Interprétations . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

4.2 Mesures de Productivité . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

4.2.1 Environnement d’Analyse . . . . . . . . . . . . . . . . . . . . . 195

4.2.2 Résultats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

4.2.3 Analyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

5 Mesures d’Efficacité et Rendements d’Echelle Optimaux 207

1 Contexte d’Analyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

2 Rendements d’Echelle Globaux . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

2.1 Mesures Radiales Non-paramétriques . . . . . . . . . . . . . . . . . . . . 210

2.1.1 Efficacité en Input . . . . . . . . . . . . . . . . . . . . . . . . . 210

2.1.2 Performance en Output . . . . . . . . . . . . . . . . . . . . . . 212

2.1.3 Extrapolation Minimale et Approche Globale . . . . . . . . . . 213

2.2 Mesures Directionnelles Non-paramétriques . . . . . . . . . . . . . . . . . 215

2.2.1 Orientation en Input et en Output . . . . . . . . . . . . . . . . . 216

2.2.2 Relations d’Equivalence . . . . . . . . . . . . . . . . . . . . . . 219

2.2.3 Orientation dans le Graphe . . . . . . . . . . . . . . . . . . . . 221

3 Rendements d’Echelle Spécifiques . . . . . . . . . . . . . . . . . . . . . . . . . . 223

3.1 Principes et Mesures de Debreu-Farrell . . . . . . . . . . . . . . . . . . . 224

3.1.1 Généralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

3.1.2 Mesure de Debreu-Farrell en Input . . . . . . . . . . . . . . . . 226

3.1.3 Mesure de Debreu-Farrell en Output . . . . . . . . . . . . . . . 228

3.2 Mesures CES-CET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

3.2.1 Orientation en Input . . . . . . . . . . . . . . . . . . . . . . . . 230

3.2.2 Orientation en Output . . . . . . . . . . . . . . . . . . . . . . . 233

3.2.3 Orientation dans le Graphe . . . . . . . . . . . . . . . . . . . . 235

4 Illustration Empirique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

v



SOMMAIRE

4.1 Rendements d’Echelle Globaux . . . . . . . . . . . . . . . . . . . . . . . 237

4.1.1 Cadre d’Etude . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

4.1.2 Résultats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

4.1.3 Analyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

4.2 Rendements d’Echelle Spécifiques . . . . . . . . . . . . . . . . . . . . . . 245

4.2.1 Environnement d’Analyse . . . . . . . . . . . . . . . . . . . . . 246

4.2.2 Résultats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

4.2.3 Interprétations . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Conclusion Générale 263

Annexe 1 : Présentation des Données 269

Annexe 2 : Notations et Notions Mathématiques 271

Bibliographie 273

vi



Table des figures

1 Correspondance en inputs et ses sous-ensembles . . . . . . . . . . . . . . . . . . 16

2 Correspondance en outputs et ses sous-ensembles . . . . . . . . . . . . . . . . . . 18

3 Graphe de la technologie et sous-ensembles . . . . . . . . . . . . . . . . . . . . . 20

4 Modèle à rendements d’échelle constants . . . . . . . . . . . . . . . . . . . . . . 24

5 Modèle à rendements d’échelle variables . . . . . . . . . . . . . . . . . . . . . . 25

6 Modèle à rendements d’échelle non décroissants . . . . . . . . . . . . . . . . . . . 25

7 Modèle à rendements d’échelle non croissants . . . . . . . . . . . . . . . . . . . . 26

8 Technologie Multiplicative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

9 Technologie CES-CET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

10 Rendements d’échelle croissants . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

11 Rendements d’échelle croissants . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

12 Mesure de Debreu-Farrell en input . . . . . . . . . . . . . . . . . . . . . . . . . . 34

13 Mesure de Debreu-Farrell en output . . . . . . . . . . . . . . . . . . . . . . . . . 34

14 Mesures de Debreu-Farrell dans le graphe de la technologie . . . . . . . . . . . . . 35

15 Fonction de Distance Directionnelle orientée dans le graphe . . . . . . . . . . . . 37

16 Fonction de Distance Directionnelle orientée en input . . . . . . . . . . . . . . . . 39

17 Fonction de Distance Directionnelle orientée en output . . . . . . . . . . . . . . . 39

18 Fonction de Distance Proportionnelle orientée dans le graphe . . . . . . . . . . . . 41

19 Fonction de Distance Proportionnelle orientée en input . . . . . . . . . . . . . . . 43

20 Fonction de Distance Proportionnelle orientée en output . . . . . . . . . . . . . . . 43

21 Mesures d’efficacité, fonction de coût et dualité. . . . . . . . . . . . . . . . . . . . 47

22 Mesures de performance, fonction de revenu et dualité. . . . . . . . . . . . . . . . 50

vii



TABLE DES FIGURES

23 Mesures d’efficience, fonction de profit et dualité. . . . . . . . . . . . . . . . . . . 53

24 Indice de productivité de Malmquist orienté en output. . . . . . . . . . . . . . . . 58

25 Indicateurs de productivité de Luenberger orientés dans le graphe. . . . . . . . . . 61

26 Indice de productivité de Hicks-Moorsteen. . . . . . . . . . . . . . . . . . . . . . 66

27 Indice de productivité de Luenberger-Hicks-Moorsteen. . . . . . . . . . . . . . . . 68

1 Ensemble de production approximé . . . . . . . . . . . . . . . . . . . . . . . . . 109

2 Efficacité de coût . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3 Efficacité de Revenu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4 Efficacité de Profit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5 Technologie Cobb-Douglas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6 Technologie népérienne log-linéaire par morceaux. . . . . . . . . . . . . . . . . . 115

1 Correspondance en inputs CES-CET pour α ≤ 1. . . . . . . . . . . . . . . . . . . 150

2 Correspondance en outputs CES-CET pour β ≥ 1. . . . . . . . . . . . . . . . . . 150

1 Indice de productivité exponentiel de Luenberger et infaisabilité. . . . . . . . . . . 173

2 Indice de productivité exponentiel de Luenberger-Hicks-Moorsteen. . . . . . . . . 180

3 Paramètre d’influence dynamique. . . . . . . . . . . . . . . . . . . . . . . . . . . 185

viii



Liste des tableaux

3.1 Scores d’efficacité CES-CET en inputs et en outputs pour α 6= β. . . . . . . . . . . 159

3.2 Scores d’efficacité CES-CET lorsque α = β. . . . . . . . . . . . . . . . . . . . . . 160

4.1 Scores d’efficacité exponentiels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

4.2 Indicateurs de productivité de Luenberger exponentiels . . . . . . . . . . . . . . . 197

4.3 Décomposition des indicateurs de productivité de Luenberger . . . . . . . . . . . . 198

4.4 Indicateurs de productivité de Luenberger-Hicks-Moorsteen . . . . . . . . . . . . 199

4.5 Paramètres d’influence dynamiques . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.1 Mesures de performance directionnelles CES-CET pour α 6= β (partie 1) . . . . . . 239

5.2 Mesures de performance directionnelles CES-CET pour α 6= β (partie 2) . . . . . . 240

5.3 Mesures de performance directionnelles CES-CET pour α 6= β (partie 3) . . . . . . 241

5.4 Scores d’efficacité CES-CET pour α = β . . . . . . . . . . . . . . . . . . . . . . 242

5.5 Indicateur d’ajustement en inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

5.6 Indicateur d’ajustement γ en outputs . . . . . . . . . . . . . . . . . . . . . . . . . 243

5.7 Indicateur d’ajustement γ dans le graphe . . . . . . . . . . . . . . . . . . . . . . . 243

5.8 Scores en inputs CES-CET lorsque α = 0, 5 . . . . . . . . . . . . . . . . . . . . . 248

5.9 Scores en input CES-CET lorsque α = 0, 75 . . . . . . . . . . . . . . . . . . . . . 249

5.10 Scores en input CES-CET lorsque α = 1 . . . . . . . . . . . . . . . . . . . . . . . 250

5.11 Scores en input CES-CET lorsque α = 1, 5 . . . . . . . . . . . . . . . . . . . . . 251

5.12 Scores en input CES-CET lorsque α = 1, 75 . . . . . . . . . . . . . . . . . . . . . 252

5.13 Scores en output CES-CET pour β = 0, 5 . . . . . . . . . . . . . . . . . . . . . . 253

5.14 Scores en output CES-CET pour β = 0, 75 . . . . . . . . . . . . . . . . . . . . . . 254

ix



LISTE DES TABLEAUX

5.15 Scores en output CES-CET pour β = 1 . . . . . . . . . . . . . . . . . . . . . . . 255

5.16 Scores en output CES-CET pour β = 1, 5 . . . . . . . . . . . . . . . . . . . . . . 256

5.17 Scores en output CES-CET pour β = 1, 75 . . . . . . . . . . . . . . . . . . . . . . 257

5.18 Indicateurs d’ajustement en input . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

5.19 Indicateur d’ajustement en output . . . . . . . . . . . . . . . . . . . . . . . . . . 261

5.20 Description des données en 2008 . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

5.21 Description des données en 2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

x





Introduction Générale

La science économique est une notion qui concentre plusieurs définitions selon les auteurs.

Étymologiquement, l’expression "économie" a pour origine le mot grec oikonomía qui signifie

"administrer la maison". Ainsi, Robbins (1932) indique que l’économie est "la science qui étudie

le comportement humain comme une relation entre des fins et des moyens rares qui ont des usages

alternatifs". Mankiw (2004), quant à lui, considère que cette science est "l’étude de la manière dont

la société gère ses ressources rares." Nous pouvons dire que cette notion est définie différemment

selon le courant de pensée dans lequel s’insère l’auteur.

Les prémices de la pensée économique, connus et prouvés, remontent à l’antiquité. Dans son

ouvrage, Poulalion (1995) stipule que l’absence de traces écrites rend difficile l’affirmation de

l’existence de réflexions économiques avant l’invention de l’écriture. Néanmoins, on peut raison-

nablement supposer que l’activité économique existait déjà à l’ère de ces civilisation anciennes.

Après l’apparition de l’écriture, certaines civilisations ont laissé des preuves témoignant de l’exis-

tence de pensées économiques rudimentaires. On peut citer comme exemples, les civilisations

égyptienne, mésopotamienne, phénicienne ou palestinienne. Poulalion (1995) constate que ces ré-

flexions montrent "la permanence de certains désirs de l’homme : recherche du mieux-être par

la production et par l’échange, recherche de la justice dans la répartition des ressources et dans

l’échange". L’histoire considère que les précurseurs de la réflexion économique remontent à la

Grèce antique avec les écrits de Platon, à travers ses ouvrages relatifs à la politique et à la philoso-

phie. Néanmoins, il est communément admis que l’économiste écossais Adam Smith est le père de

la science économique moderne avec son ouvrage intitulé "Recherches sur la nature et les causes

de la richesse des nations"(1776). Certaines idées émises par Adam Smith, ont été reprises et dé-

veloppées par d’autres auteurs tels Ricardo (1817), Malthus (1798), Stuart Mill (1848), etc. Ces

auteurs s’inscrivent dans l’école de pensée classique dont le principe majeur est le libre échange

1



Introduction Générale

suivant une logique d’accumulation de la richesse tel que le capital est la source du surplus. Leurs

théories reposent sur celles de la valeur et des prix tandis que de nouveaux auteurs tels Jevons

(1871), Marshall (1890), Menger (1871) ou Walras (1874), etc., fondent les leurs sur le raisonne-

ment à la marge et l’existence de plusieurs marchés. Ces derniers sont considérés comme étant les

néo-classiques et font leur apparition vers les années 1870. Les auteurs de cette école de pensée

sont les premiers à illustrer leurs théories à travers un formalisme mathématique notamment Je-

vons (1862). Les économistes classiques et néo-classiques s’intéressent plus particulièrement à la

production et à la création de richesse suivant le modèle économique capitaliste. Ils admettent que

les Hommes sont parfaitement rationnels puisqu’ils sont capables d’évaluer les avantages et les

inconvénients relatifs à une situation et chacune de leur décision est prise afin de maximiser leur

utilité (homo œconomicus). Jusqu’à nos jours, il existe d’autres courants de pensée tels le keyné-

sianisme et le monétarisme, etc. Cependant, ces réflexions économiques ne seront pas exposées

dans ces travaux.

On distingue deux branches majeures en sciences économiques, à savoir : la macroéconomie et

la microéconomie. La première analyse les principaux agrégats économiques tels l’investissement,

l’épargne, la consommation ou le revenu national. La seconde, quant à elle, étudie le comporte-

ment des agents économiques et leurs interactions. Sont considérés comme étant agent économique

tout individu composant à la fois les ménages et les entreprises. Ces deux branches principales se

déclinent elles-mêmes en plusieurs sous-catégories telles l’économie publique, l’économie moné-

taire, l’économie de l’éducation, l’économie de la production, l’économie de la consommation,

etc. Dans ces travaux nous nous intéressons à l’analyse micro-économique à travers l’économie de

la production.

La production est l’activité économique d’une unité institutionnelle qui combine des facteurs

de production 1 (travail, capital) afin de les transformer en produits 2 (biens, services) s’échangeant

sur un ou plusieurs marchés. L’économie de la production, selon la vision classique et néoclassique,

étudie la manière d’augmenter la richesse grâce à une hausse de l’efficience et de la productivité.

Ces dernières peuvent être appréhendées de diverses manières grâce à une baisse des coûts, une

hausse des revenus, etc. Dans son ouvrage, Adam Smith (1776) illustre ces concepts par le biais

1. Dans ces travaux, nous utiliserons indifféremment les termes "inputs" et "intrants" pour désigner les facteurs de
production.

2. Les termes "outputs" et "extrants" qualifieront la production dans ces travaux.
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de l’usine d’épingle où l’application de la division du travail permet un gain de temps dans la

production . Par conséquent, il existe une augmentation de l’efficacité et de la productivité des

ouvriers grâce à la spécialisation et la réduction des temps morts 3.

Efficacité et Efficience

L’efficacité désigne la réalisation des résultats attendus. En effet, selon McFadden et Fuss

(1978), "la théorie de la production a comme point de départ, un ensemble de possibilités de

processus de production physique, illustré par des fonctions de production ou de transformation.

L’entité de production cherche, ainsi, à atteindre ses objectifs malgré sa technologie limitée et son

environnement économique."

Fondamentalement, les entités de production cherchent l’efficience. Celle-ci qualifie l’action

d’atteindre les objectifs fixés avec le minimum de moyens possible. On peut dire que cette défi-

nition rejoint celle de Koopmans (1951) concernant l’efficacité technique. Celui-ci décrit qu’un

producteur est "techniquement efficace si toute augmentation d’un output exige la réduction d’au

moins un autre output ou l’augmentation d’au moins un input, et si toute diminution d’input conduit

à la hausse d’au moins un autre input ou la réduction d’au moins un output. Dans ces travaux, nous

utilisons indifféremment les termes "efficacité", "efficience" et "performance" pour désigner cette

notion. En effet, nous pouvons constater que la définition de l’efficacité technique fournie par

Koopmans (1951) coïncide avec celle de l’efficience.

Il existe des outils et des approches, permettant de mesurer l’efficacité des entités de produc-

tion. Traditionnellement, cette grandeur est évaluée grâce à une fonction de production (ou de

transformation) selon une méthode économétrique. Il est à noter qu’une fonction de production

ne peut tenir compte que des technologies de production mono-output. Une approche alternative

à celle-ci a été introduite par Shephard (1953, 1970). En s’inspirant des travaux de Debreu (1951)

et de Farrell (1957), ce dernier présente la fonction de distance radiale qui mesure la distance

entre l’unité de production et la frontière efficiente. Cette grandeur peut considérer les processus

de production multi-dimensionnels avec de multiples intrants et de multiples extrants. Par ailleurs,

3. Temps nécessaire correspondant au passage d’une étape de réalisation à une autre dans la réalisation de la
production. Il est considéré comme étant une période d’inactivité dans le processus de production.
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cet outil n’exige aucune information sur les prix qui peuvent être difficiles à appréhender et, il

caractérise parfaitement la technologie de production. Il est alors possible de retrouver l’ensemble

productif à partir de la mesure de distance.

La méthode économétrique a certaines limites pratiques et opérationnelles. En effet, celle-ci

requiert le choix a priori d’une forme fonctionnelle qui, doit décrire au mieux les mécanismes

de production de l’entreprise. Par ailleurs, l’utilisation de l’approche économétrique impose éga-

lement l’adoption a priori des lois de probabilité inhérentes à l’étude réalisée. Une alternative à

l’approche économétrique existe. En effet, suite aux travaux de Shephard (1970) et Afriat (1972),

Charnes, Cooper et Rhodes (1978) proposent une méthode d’évaluation non-paramétrique qui re-

pose sur la programmation linéaire. Cette nouvelle approche par l’enveloppement des données

(Data Envelopment Analysis - DEA), construit la frontière optimale, linéaire par morceaux, grâce

aux entités de productions considérées comme des références (ou benchmark). Celle-ci a l’avantage

de ne requérir aucune forme fonctionnelle a priori. Le modèle additif présenté par Charnes et al.

(1978) considère des ensembles de production opérant sous l’hypothèse de rendements d’échelle

constants. Suivant l’approche DEA, Banker, Charnes, Cooper et Schinnar (1981) proposent un

modèle log-linéaire par morceaux de la frontière efficiente. Cette version multiplicative s’inscrit

comme une extension des travaux initiaux de Charnes et al. (1978). En s’inspirant de ces derniers,

Banker, Charnes et Cooper (1984) présentent, quant à eux, un modèle additif linéaire par mor-

ceaux sous l’hypothèse de rendements d’échelle variables. Dans un souci d’améliorer les propriétés

des technologies de production représentées par ces modèles, Banker et Maindiratta (1986) intro-

duisent un ensemble de production multiplicatif de type Cobb-Douglas. Celui-ci est log-linéaire

par morceaux. Enfin, Färe, Grosskopf et Njinkeu (1988) proposent une technologie de production

non-linéaire, qu’ils nomment l’ensemble de production CES 4-CET 5. Les auteurs démontrent que

ce modèle est la généralisation des technologies de production présentées par Charnes et al. (1978),

Banker et al. (1984) et, Banker et Maindiratta (1986). Deprins, Simar et Tulkens (1984) ainsi que

Tulkens (1993) définissent un autre type de technologie de production nommée "ensemble de pro-

duction FDH" (Free Disposal Hull). Celui-ci se présente sous la forme d’un ensemble de produc-

4. Constant Elasticity of Substitution : la partie relative aux inputs est décrite grâce à une fonction CES (Solow
(1956)).

5. Constant Elasticity of Transformation : la partie concernant les extrants est représentée par une fonction CET
(Powell et Gruen (1968)).
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tion non-paramétrique et linéaire par morceaux tel que seule l’hypothèse de disponibilité forte est

retenue 6.

Les travaux de Shephard (1970) permettent de reconstituer les technologies de production grâce

à l’estimation des mesures de distance. Nous verrons, par la suite, que selon la nature des fonctions

et de la technologie, il n’est pas évident de caractériser l’ensemble de production lorsque certaines

approches non-paramétriques sont adoptées.

Ensemble de Production et Mesures d’Efficacité

Un ensemble de production représente toutes les combinaisons possibles d’inputs et d’outputs

qui sont faisables. En ce sens, la frontière de production efficiente correspond la quantité d’outputs

maximale qui est atteignable pour chaque niveau d’inputs. Ainsi, la technologie de production tra-

duit le processus qui permet de transformer les facteurs de production en extrants. Dans ces travaux

nous utilisons indifféremment les termes "technologie de production" et "ensemble de production"

afin de désigner toutes les combinaisons d’intrants et d’extrants qui sont techniquement réalisables.

Comme nous l’avons mentionné précédemment, les mesures de distance caractérisent parfai-

tement la technologie de production, selon les travaux de Shephard (1970). Les fonctions de She-

phard sont l’inverse des mesures de Debreu(1951)-Farrell(1957). Elles sont de nature multiplica-

tive et sont radiales. Elles permettent d’évaluer, soit la contraction maximale des intrants pour un

niveau donné d’extrants (orientation en inputs), soit l’expansion maximale de la production pour

une quantité donnée de facteurs (orientation en outputs). Luenberger (1992a), dans le contexte de

la théorie du consommateur, introduit la fonction de bénéfice. Il la transpose dans la théorie du pro-

ducteur sous le nom de "shortage function" (Luenberger (1992b)). Outre les orientations en inputs

et outputs, cette nouvelle mesure rend possible la réduction et l’augmentation simultanées des in-

trants et des extrants (orientation dans le graphe). De nature additive, cette fonction est non-radiale

puisqu’elle n’offre pas de mesure proportionnelle. suite aux travaux de Chambers, Chung et Färe

(1996), elle est plus connue sous le nom de "fonction de distance directionnelle". En s’inspirant des

travaux de Farrell (1957), Briec (1997) propose une nouvelle mesure dans le graphe qu’il nomme

6. La disponibilité forte signifie que pour une unité de production (xt, yt) où xt et yt sont les vecteurs d’inputs et
d’outputs, yt peut toujours être produit par x̃t tel que x̃t ≥ xt ou xt peut toujours produire ỹt avec ỹt ≤ yt.
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"fonction de distance proportionnelle de Farrell". En effet, de nature multiplicative, cette fonction

radiale permet la contraction et l’expansion simultanées des inputs et des outputs, contrairement

aux mesures de Debreu(1951)-Farrell(1957) et de Shephard (1970).

Notons que les fonctions de distance sont des mesures d’efficacité technique. Cependant,

lorsque nous souhaitons faire une étude, nous devons répondre aux questions suivantes : "Quelle

technologie de production doit-on choisir ?", "Quelle mesure de distance semble la plus appro-

priée?". Tout d’abord, la technologie de production doit être choisie suivant plusieurs critères : le

domaine d’activité, les données analysées, les hypothèses et objectifs des chercheurs. Ensuite, la

fonction de distance doit tenir compte du fait si les entreprises peuvent influencer uniquement leurs

inputs ou leurs outputs ou, les deux à la fois. La littérature démontre que les fonctions de distance

multiplicatives peuvent être estimées dans le cadre des technologies linéaires et non-linéaires. En

effet, suivant une approche non-paramétrique, Charnes et al. (1978), Banker et al. (1984), Banker

et Maindiratta (1986), Boussemart, Briec, Peypoch et Tavéra (2009), et, Briec et Liang (2011) ap-

pliquent les mesures de distance radiale dans le cadre des ensembles de production linéaires ou

non-linéaires. Cherchye, Kuosmanen et Post (2011) évaluent, quant à eux, la fonction de distance

directionnelle dans le contexte d’une technologie de type FDH. Ces études ont été réalisées dans

le cadre d’une approche non-paramétrique de type DEA.

Dans ces travaux, le premier chapitre expose plus en détail les mesures de performances évo-

quées précédemment. Les deux chapitres suivants proposent des mesures non-radiales qui

concordent aux technologies de production non-linéaires. En effet, dans un premier temps, nous

présentons une fonction de distance exponentielle qui devient une mesure log-additive grâce à une

transformation logarithmique. Nous verrons que l’évaluation de cette mesure conduit à estimer

la fonction de distance directionnelle lorsque les données ont subi une mutation logarithmique.

Par ailleurs, nous montrerons qu’elle s’insère parfaitement dans un ensemble de production de

type Cobb-Douglas (Banker et Maindiratta (1986)). Dans un second temps, nous introduisons une

mesure de distance non-linéaire CES-CET. De nature additive, celle-ci allie la structure de la tech-

nologie de production CES-CET et celle de la fonction de distance directionnelle. Elle permet

l’estimation de l’efficacité technique non-radiale dans le contexte d’un ensemble de production

non-linéaire de type CES-CET. La mesure CES-CET rend possible la contraction et l’expansion

simultanées des intrants et des extrants dans ce genre de modèle.
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Notions de Dualité

La dualité représente les relations causales entre les données économiques observables et le

processus de production physique. En ce sens, Fuss et McFadden (1978) écrivent que "Une ap-

proche alternative [à la technologie de production physique] peut cependant être menée direc-

tement grâce aux données économiques observées (approvisionnement, demande, prix, coûts et

profits)." Le point de départ de la théorie de la dualité en économie de la production est les travaux

de Hotelling (1932). En effet, ce dernier observe qu’il existe une relation entre la variation du profit

et le changement de l’offre et de la demande. Ces résultats ont été repris par Hicks (1946), Roy

(1942) et Samuelson (1947). Shephard (1953), quant à lui, prouve et donne une formalisation plus

concrète de la relation duale ayant lieu entre le coût et la production. McFadden (1978) étend les

résultats obtenus par Shephard (1953) tel qu’il démontre l’existence d’une relation duale entre la

fonction de production et les fonctions de profit et de revenu.

D’un point de vue dual, réduire l’utilisation des inputs pour une quantité donnée d’outputs,

signifie baisser les coûts pour un niveau donné de revenu. On se situe ainsi, dans une analyse axée

sur les intrants. De ce fait, les mesures d’efficacité technique orientées en inputs sont duales aux

fonctions de coût. Suivant la même raisonnement logique, augmenter la production pour une quan-

tité fixe de facteurs, consiste à accroître le revenu pour un niveau donné de coûts. Il est évident que

ce type d’étude correspond à une orientation en outputs de sorte que les fonctions de distance axées

sur les extrants sont duales aux fonctions de revenu. Enfin, hausser et diminuer simultanément les

inputs et les outputs indique que l’on cherche à maximiser son profit. En ce sens, on peut noter que

l’on se place dans une orientation dans le graphe. Ainsi, on peut en déduire que les mesures de dis-

tance orientées dans le graphe sont duales aux fonctions de profit. Il est alors possible d’exprimer

les mesures de distance à partir des fonctions de coût, de revenu et de profit.

L’existence de la relation duale entre les mesures de distance et les fonctions de coût, de revenu

ou de profit, est conditionnée par la convexité de la technologie de production. Lorsque cette hy-

pothèse est vérifiée alors, l’ensemble de production peut être caractérisée d’un point de vue dual.

Effectivement, la frontière efficiente est constituée de l’intersection des hypersurfaces ou hyper-

plans que représentent les fonctions de coût, de revenu ou de profit. Généralement, dans la littéra-

ture, nous observons que ces dernières ont une structure linéaire (hyperplan). En effet, les auteurs
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avancent que ces fonctions doivent être homogènes de degré 1 7. Cependant, McFadden (1978)

note que ces dernières peuvent être non-linéaires (hypersurface) lorsque des facteurs internes et/ou

externes influencent les coûts, les revenus et le profit des unités de production.

Le Lemme de Shephard stipule que les différentiels des fonctions de coût, de revenu et de pro-

fit permettent d’obtenir les fonctions de demande et d’offre conditionnelles. Par ailleurs, selon le

Lemme dual de Shephard et le théorème de l’enveloppe, les différentiels des mesures de distance

duales donnent la possibilité de déduire les fonctions de prix ajustés (ou implicites). Ceux-ci repré-

sentent les prix correspondant à l’optimum de Pareto 8 sur un marché concurrentiel. Ces résultats

ont été démontrés par les travaux de Shephard (1953, 1970). Des fonctions de coût, de revenu ou de

profit non-linéaires peuvent induire des fonctions de prix implicites non-linéaires. Dans le cadre de

la théorie du consommateur, Chavas et Briec (2012) remarquent que la structure non-linéaire des

prix peut indiquer des tarifications non-linéaires (pénalités ou bonus écologiques par exemple). Par

ailleurs, elle peut également révéler que la relation entre la production et les coûts (ou le revenu,

ou les profits) n’est pas constante.

Les relations de dualité entre les mesures de distance et les fonctions de coût, de revenu et

de profit sont présentées plus en détail dans le premier chapitre de ces travaux. De plus, nous

explorons l’existence d’un tel lien dans le cadre des nouvelles mesures de performances que nous

proposons dans les deuxième et troisième chapitres de ces travaux.

Influence des Rendements d’Echelle

Les rendements d’échelle représentent les relations existant entre l’évolution de la production et

la variation des facteurs. Ceux-ci indiquent le changement dans les quantités produites lorsque les

inputs varient dans une même proportion. Il existe trois grandes classes de rendements d’échelle :

(i) croissant : lorsque tous les intrants sont modifiés dans une même proportion alors, les ex-

trants évoluent plus que proportionnellement,

(ii) constant : une variation dans une même proportion de tous les inputs conduit à une modi-

7. Si nous prenons par exemple, le cas de la fonction de coût. Cette dernière est homogène de degré 1 si une
augmentation des inputs dans une proportion λ engendre une hausse des coûts dans une proportion λ, également.

8. L’optimum de Pareto signifie qu’il n’est plus possible d’augmenter un output (ou de diminuer un input) sans
réduire au moins un autre extrant (ou accroître au moins un intrant).

8



Introduction Générale

fication dans les mêmes proportions des outputs,

(iii) décroissant : un changement dans une même proportion de tous les facteurs a pour consé-

quence une évolution moins que proportionnelle de la production.

Les rendements d’échelle s’intègrent dans le processus de production et sont étroitement liés à

l’efficacité des entreprises. En effet, de ceux-ci dépendent le rendement des inputs. Dans la plupart

des cas, lorsqu’il est nécessaire, les rendements d’échelle sont des hypothèses présentées sous

formes de contraintes dans l’estimation des performances des firmes.

L’ensemble de production présentée par Charnes et al. (1978) suppose que les entités de pro-

duction produisent sous l’hypothèse de rendements d’échelle constants. Banker et al. (1984), Ban-

ker et Maindiratta (1986) ainsi que Färe et al. (1988) proposent, quant à eux, des technologies

de production opérant sous l’hypothèse de rendements d’échelle variables. Cette dernière signi-

fie que l’ensemble de production tient compte des rendements d’échelle croissants, constants et

décroissants simultanément. Ainsi, ces modèles imposent a priori les rendements d’échelle qui

s’appliquent au processus de production.

Boussemart et al. (2009) démontrent que puisque les rendements d’échelle influencent forte-

ment l’efficacité des entités de production, il peut être possible d’évaluer le meilleur rendement

d’échelle qui permet d’optimiser la performance. Dans leurs travaux, ce rendement d’échelle opti-

mal correspond au "rendement d’échelle α" tel que les rendements d’échelle strictement croissants

ou strictement décroissants sont pris en compte. Par ailleurs, Boussemart, Briec, Leleu et Ravelo-

jaona (2018) considèrent qu’il peut exister un rendement d’échelle optimal relatif à l’ensemble des

entités de production. En effet, celui-ci permet au plus grand nombre ou à l’ensemble productif

d’être le plus efficace possible. Dans ce cas, le rendement d’échelle de la technologie de produc-

tion n’est plus une contrainte mais devient une variable à estimer. Boussemart et al. (2009) et

Boussemart et al. (2018) établissent leur théorie et leur méthodologie dans le cadre de l’ensemble

de production CES-CET introduite initialement par Färe et al. (1988). De ce fait, cette méthode

accorde la possibilité d’analyser (affirmer ou réfuter) certaines hypothèses avancées dans certains

secteurs d’activité.

Nous exposerons ces différentes notions de rendements d’échelle dans le premier chapitre de

ces travaux. Dans le chapitre 5, nous examinerons l’application du modèle introduit par Boussemart

et al. (2009), à la mesure non-linéaire additive que nous proposée dans le chapitre 3.
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Introduction Générale

Concept de Productivité

La productivité est le ratio entre les outputs produits et les inputs utilisés. Dans le cadre d’une

production mono-input mono-output, il est évident que cette mesure est facile à estimer. Cepen-

dant, cette situation ne correspond pas à la réalité. En effet, de manière générale, soit une entité de

production utilise plusieurs facteurs pour produire un output, soit elle consomme plusieurs intrants

afin de créer plusieurs extrants. Il est alors nécessaire d’agréger, selon un modèle économique, les

inputs et les outputs de sorte que la productivité soit toujours le ratio entre deux scalaires. Dans

ce cas, nous parlons de productivité totale des facteurs. Il est à noter qu’il existe des mesures de

productivité partielle. Ces dernières représentent la productivité d’un facteur spécifique par rapport

aux outputs. Cependant, elles ne reflètent pas la performance réelle des entités de production. En

ce sens, il est primordial d’évaluer la productivité totale des facteurs pour apprécier l’efficacité to-

tale d’une institution. Ces mesures sont des outils de comparaison des performances dans le temps

et dans l’espace. De ce fait, il est logique de calculer les changements de productivité. Elles sont

traduites par des indices (ratio) ou des indicateurs (différences) entre les variations des intrants et

des extrants.

Dans la littérature, les indices et les indicateurs de productivités sont généralement estimés afin

de comparer les performances d’une entité de production dans le temps. Ainsi, elles permettent

d’apprécier les mutations positives ou négatives de la productivité des firmes. Selon les travaux de

Coelli, Rao, O’Donnell et Battese (2005), il existe quatre manières de mesurer le changement de

productivité dans le temps :

(i) la variation de la productivité est mesurée par la variation des outputs diminuée de la varia-

tion des inputs. Cette méthode a été nommée l’approche de Hicks (1961)-Moorsteen (1961)

par Diewert (1992a, 1992b),

(ii) le changement de productivité est estimée à partir de la variation de la rentabilité après un

ajustement temporel des prix des facteurs et des produits. Cette méthode est l’approche par

la rentabilité,

(iii) Caves, Christensen et Diewert (1982a, 1982b) préconisent d’évaluer la productivité grâce

à la comparaison entre les extrants observés et la quantité d’outputs maximal qui peut être

produit pour un niveau d’inputs constant. Cette méthode est l’approche de Caves, Christen-
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sen et Diewert,

(iv) la variation de la productivité est constituée de l’agrégation de toutes les sources identi-

fiables de la variation de la productivité (par exemple : le changement technique, d’effica-

cité, d’échelle, etc). Cette méthode est l’approche basée sur les composantes (Balk (2001)).

Dans ces travaux, nous nous concentrons uniquement sur les approches (i) et (iii). Ces deux mé-

thodes font intervenir des mesures orientées en inputs et en outputs. Caves et al. (1982a, 1982b)

évaluent leurs indices de productivité grâce aux fonctions de distance radiale axées sur les inputs

et les outputs. Les mesures obtenues par le biais cette approche sont communément nommés les

indices de productivité de Malmquist. Diewert (1992a, 1992b) évalue sa mesure de productivité de

Hicks-Moorsteen sur la base des indices de quantité de Malmquist. Sachant que ces mesures de

productivité reflètent les variations de la performance, elles reposent donc sur les résultats d’effi-

cacité. De ce fait, puisque les mesures d’efficience peuvent être obtenues à partir des fonctions

de distance, les indices de productivité peuvent également être déduites grâce à celles-ci. Les

indices de Malmquist et de Hicsk-Moorsteen sont constitués par le ratio entre des fonctions de

distance de Shephard. En ce sens, la nature (additive ou multiplicative) des mesures de distance in-

fluencent la structure des mesures de productivité. L’apparition des fonctions de distance additives,

notamment la fonction de distance directionnelle, a engendré l’avènement de nouveaux indicateurs

de productivité. De ce fait, Chambers, Färe et Grosskopf (1996b) proposent une mesure de pro-

ductivité additive de Luenberger. Briec et Kerstens (2004) introduisent, par la suite, l’indicateur

de Luenberger-Hicks-Moorsteen afin de corriger les infaisabilités pouvant survenir dans celle de

Chambers et al. (1996b). Les deux indicateurs de productivité additives découlent des mesures de

distance directionnelle.

Nous verrons plus précisément ces indices et indicateurs dans le premier chapitre. Dans le cadre

de ces travaux, nous nous intéresserons à l’application des indicateurs de productivité présentés

par Chambers et al. (1996b) et, Briec et Kerstens (2004) à la mesure de performance log-additive

présentée dans le chapitre 2.

Le premier chapitre de ces travaux établit la revue de littérature relative aux nouvelles notions

que nous introduirons dans les chapitres suivants. Le deuxième chapitre, quant à lui, sera dédié

à la présentation d’une nouvelle mesure de performance exponentielle, que ce soit d’un point de
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vue primal ou d’une perspective duale. Le chapitre 3 présentera également une mesure d’efficacité

dans la lignée du modèle de Färe et al. (1988) et des travaux de Luenberger (1992b). Le chapitre

4 montrera que la mesure de distance exponentielle proposée dans le chapitre 2, peut amener à

des indicateurs de productivité exponentiels. Ces derniers conduisent l’obtention des formes dy-

namiques des fonctions de distance log-additives. Enfin, le cinquième chapitre sera consacré à

l’application de la théorie des rendements d’échelle α aux mesures présentées dans le chapitre 3.

Par ailleurs, nous proposerons une version individuelle (ou spécifique) de cette théorie des rende-

ments d’échelle introduite par Boussemart et al. (2009).
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Chapitre 1

De la Caractérisation de la Technologie aux

Mesures d’Efficacité et de Productivité

Dans un système capitaliste, l’objectif des entités de production est la recherche de l’efficacité

et de l’efficience. Nous avons vu que ces deux expressions n’ont pas la même définition. Cepen-

dant, dans la théorie de la production, il est courant d’utiliser ces termes de manière indifférente.

En effet, dans ce contexte, la recherche de l’efficacité consiste à produire le maximum avec le mi-

nimum de moyens de production possible(Koopmans (1951)). Cette interprétation correspond à la

définition de l’efficience. Ainsi, nous utiliserons ces termes indifféremment dans ces travaux.

La caractérisation de la technologie, c’est-à-dire du processus de production, peut se faire selon

une vision dans le graphe (dimension inputs et outputs), dans la correspondance en inputs ou dans

la correspondance en outputs. Nous avons pu constater que selon les travaux de Shephard (1970),

nous avons la possibilité de retrouver les caractéristiques de ces ensembles de production grâce aux

mesures d’efficacité technique. Ces dernières se présentent sous la forme de fonctions de distance

à la frontière efficiente. Ces mesures peuvent être appréhendées d’un point de vue primal ou dual

à travers une formulation faisant intervenir les fonctions de coût, de revenu et de profit (Hotelling

(1932), Shephard (1953)). Sachant que la recherche de l’efficience est au cœur de la préoccupation

des firmes, il est logique que celles-ci analysent l’évolution de leur performance dans le temps.

Ainsi, les indices et les indicateurs de productivité permettent d’apprécier ces variations de la per-

formance. Dans ce cas, ceux-ci font intervenir les mesures d’efficacité (Caves et al. (1982a,1982b),

Diewert (1992a,1992b)).
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De la Caractérisation de la Technologie aux Mesures d’Efficacité et de Productivité

Ce chapitre a pour vocation d’être une revue de littérature. Dans la première section, nous

définissons la technologie de production selon une vision dans le graphe, orientée en inputs et

orientée en outputs. Nous la formalisons également dans le cadre de la méthode d’enveloppement

des données (Charnes et al. (1978)). La deuxième section présente les mesures d’efficacité radiales

et non-radiales qui permettent de caractériser les ensembles de production introduits dans la sec-

tion précédente. Enfin, la troisième et dernière section est le recueil des indices et indicateurs de

productivité tels que ceux-ci évaluent les variations de la performance dans le temps.

1 La Technologie de Production

La technologie de production peut être représentée de diverses manières à savoir par la corres-

pondance en inputs, la correspondance en outputs et la représentation dans le graphe. Ces notions

ainsi que la modélisation de cette technologie seront approfondies dans cette section.

1.1 Généralités

La technologie de production est le processus, qui permet la transformation d’un vecteur d’in-

puts (ou intrants) xt = (xt1, · · · , x
t
m) ∈ R

m
+ en vecteur d’outputs (ou extrants) yt = (yt1, · · · , y

t
n) ∈

R
n
+ à la période (t). Ainsi, l’ensemble de production peut être appréhendée de trois manières diffé-

rentes à savoir, par la correspondance en inputs, par la correspondance en outputs ou dans le graphe

de la technologie. Selon les travaux de Shephard (1953, 1970), ces représentations du processus

productif vérifient certaines propriétés.

1.1.1 La Correspondance en Inputs

La correspondance en inputs peut être définie comme étant les différentes combinaisons d’in-

trants qui permettent de produire un niveau donné d’outputs donné grâce au processus de produc-

tion. Celle-ci peut être définie de manière formelle.

Pour tout xt ∈ R
m
+ et yt ∈ R

n
+, la correspondance en inputs Lt(yt) caractérise la technologie
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De la Caractérisation de la Technologie aux Mesures d’Efficacité et de Productivité

T t(xt, yt) si et seulement si :

Lt : Rn
+ −→ 2R

m
+

Lt(yt) =
{

xt ∈ R
m
+ : yt peut être produit par xt

}

(1.1)

=
{

xt ∈ R
m
+ : (xt, yt) ∈ T t

}

.

Selon les travaux de Shephard (1953, 1970), la correspondance en inputs peut être associée aux

axiomes suivants :

L1 : Pour tout yt > 0 alors, 0 /∈ Lt(yt) et Lt(0) = R
m
+ .

L2 : Pour tout yt ∈ R
n
+ alors

⋂

yt∈Rn
+

Lt(yt) = ∅.

L3 : Pour tout xt ∈ Lt(yt) et x̂t ≥ xt alors, x̂t ∈ Lt(yt).

L4 : Pour tout ŷt, yt ∈ R
n
+ si Pour tout ŷt ≥ yt alors, Lt(ŷt) ⊆ Lt(yt).

L5 : Pour tout yt ∈ R
n
+ alors Lt(yt) est fermée.

L6 : Pour tout yt ∈ R
n
+ alors Lt(yt) est convexe.

L7 : Pour tout xt ∈ Lt(yt) et Pour tout λ ≥ 1 alors, λxt ∈ Lt(yt).

L8 : Pour tout θ ≥ 1 alors, Lt(θyt) ⊆ Lt(yt).

L’axiome L1 signifie que l’utilisation d’une quantité nulle d’inputs ne peut conduire à la pro-

duction d’un niveau non-nul d’outputs. De ce fait, il n’y a pas de repas gratuit (no free lunch). La

propriété L2 stipule qu’il est impossible de produire une quantité infinie d’outputs à partir d’une

quantité finie d’inputs. La troisième hypothèse représente l’hypothèse de libre disposition forte des

inputs c’est-à-dire qu’une quantité donnée d’outputs peut toujours être produite par quantité plus

importante d’inputs. L4 indique qu’ une quantité plus importante d’outputs ne peut être associée

à un ensemble d’inputs plus grand. L5 est le garant de l’existence d’une frontière technologique

tandis que L6 est l’hypothèse de convexité de la correspondance en inputs. Les axiomes L7 et L8

sont respectivement les versions faibles des axiomes L3 et L4 c’est-à-dire que les variations entre

les inputs utilisés et la correspondance en inputs sont proportionnelles.

Puisque la correspondance en inputs est associée à la notion de frontière de production, il est

possible de définir les sous-ensembles suivants :
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De la Caractérisation de la Technologie aux Mesures d’Efficacité et de Productivité

— Pour tout yt ≥ 0, IsoqLt(yt) = {xt ∈ Lt(yt) : λx /∈ Lt(yt), ∀λ ∈ [0, 1]} est l’isoquant de

la correspondance en inputs.

— Pour tout yt ≥ 0, ∂WLt(yt) = {xt ∈ Lt(yt) : x̂t ≤ xt, x̂t < xt ⇒ x̂t /∈ Lt(yt)} est le sous-

ensemble faiblement efficient de Lt(yt).

— Pour tout yt ≥ 0, ∂Lt(yt) = {xt ∈ Lt(yt) : x̂t ≤ xt, x̂t 6= xt ⇒ x̂t /∈ Lt(yt)} est le sous-

ensemble efficient de Lt(yt).

Il est à noter que pour yt = 0 alors, IsoqLt(yt) = {0}, ∂WLt(yt) = {0} et ∂Lt(yt) = {0}.

xt
1

xt
2

0

A

B

C

D

E IsoqLt(yt)

Lt(yt)

FIGURE 1 – Correspondance en inputs et ses sous-ensembles

La figure 1 représente la correspondance en inputs Lt(yt) ainsi que les sous-ensembles la com-

posant dans un espace à deux dimensions tel que les outputs (yt) sont produits à partir de deux

facteurs de production xt1 et xt2. Ainsi, la frontière constituée par les segments [AB], [BC], [CD] et

[DE] est l’isoquant d’inputs pour un niveau donné d’extrants. Tous les points situés sur cette fron-

tière sont des combinaisons d’intrants qui permettent de produire une même quantité d’outputs.

Le segment [BC] représente le sous-ensemble faiblement efficient puisque la quantité de facteur

xt2 peut être réduite tout en produisant le même niveau d’outputs et en utilisant la même quantité

d’inputs xt1. Le segment [AB] correspond au sous-ensemble efficient de Lt(yt) puisque la quantité

de facteurs de production utilisée est la plus faible.
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1.1.2 La Correspondance en Outputs

La correspondance en outputs peut être définie comme étant l’ensemble des combinaisons

d’outputs pouvant être produits par une même quantité d’inputs. Formellement, on peut la défi-

nir de comme ci-dessous.

Pour tout xt ∈ R
m
+ et yt ∈ R

n
+, la correspondance en inputs P t(xt) caractérise la technologie

T t(xt, yt) si et seulement si :

P t : Rm
+ −→ 2R

n
+

P t(xt) =
{

yt ∈ R
n
+ : xt peut produire yt

}

(1.2)

=
{

yt ∈ R
n
+ : (xt, yt) ∈ T t

}

.

De manière analogue à la correspondance en inputs, la correspondance en outputs P t(xt) peut

être associée aux axiomes suivants :

P1 : Pour tout xt ∈ R
m
+ alors, P t(0) = {0} et 0 ∈ P t(xt).

P2 : Pour tout xt ∈ R
m
+ alors P t(xt) est bornée.

P3 : Pour tout yt ∈ P t(xt) et 0 ≤ ŷt ≤ yt alors, ŷt ∈ P t(xt).

P4 : Pour tout x̂t, xt ∈ R
m
+ si Pour tout x̂t ≥ xt alors, P t(x̂t) ⊆ P t(xt).

P5 : Pour tout xt ∈ R
m
+ alors P t(xt) est fermée.

P6 : Pour tout xt ∈ R
m
+ alors P t(xt) est convexe.

P7 : Pour tout yt ∈ P t(xt) alors, λyt ∈ P t(xt), Pour tout λ ∈ [0, 1].

P8 : Pour tout θ ≥ 1 alors, P t(θxt) ⊆ P t(xt).

L’axiome P1 signifie qu’il est toujours possible de produire une quantité nulle d’outputs et qu’il

n’y a pas de repas gratuit. L’hypothèse P2 fait référence à l’impossibilité de produire une quantité

infinie d’outputs grâce à une quantité finie d’inputs. La propriété P3 stipule la libre disposition

forte des outputs c’est-à-dire qu’il est possible de produire une quantité plus faible d’outputs avec

la même quantité d’inputs. P4 indique qu’un niveau d’outputs moins important peut toujours être

associé à un ensemble plus grand d’inputs. L’axiome P5 garantit l’existence d’une frontière tech-

nologique tandis que P6 impose la convexité de l’ensemble P t(xt). Les axiomes P7 et P8 sont

quant à eux, les versions affaiblies des axiomes P3 et P4.
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Puisque la correspondance en outputs P t(xt) est un ensemble compact(P2 et P5), on peut lui

associer les sous-ensembles suivant :

— Pour tout P t(xt) 6= 0, IsoqP t(xt) = {yt ∈ P t(xt) : λyt /∈ P t(xt), ∀λ > 1} est l’isoquant

de la correspondance en outputs.

— Pour tout P t(xt) 6= 0, ∂WP t(xt) = {yt ∈ P t(xt) : ŷt ≥ yt, ŷt > yt ⇒ ŷt /∈ P t(xt)} est le

sous-ensemble faiblement efficient de P t(xt).

— Pour tout P t(xt) 6= 0, ∂P t(xt) = {yt ∈ P t(xt) : ŷt ≥ yt, ŷt 6= yt ⇒ ŷt /∈ P t(xt)} est le

sous-ensemble efficient de P t(xt).

On peut également noter que pour xt = 0, les sous-ensembles définis ci-dessus deviennent

IsoqP t(0) = {0}, ∂WP t(0) = {0} et ∂P t(0) = {0}.

yt1

yt2

0

A

B

C D

E

IsoqP t(xt)

P t(xt)

FIGURE 2 – Correspondance en outputs et ses sous-ensembles

La figure 2 est la représentation graphique d’une correspondance en outputs P t(xt). Nous nous

plaçons dans un espace à deux dimensions tel que les facteurs de production permettent de pro-

duire deux outputs yt1 et yt2. L’isoquant de P t(xt) pour un niveau donné d’inputs est décrit par

les segments reliant les points A,B,C,D et E. Le sous-ensemble faiblement efficient est quant

à lui représenté par le segment [CD] puisqu’il est toujours possible de produire plus d’outputs yt1

pour un même niveau d’outputs yt2. Les combinaisons optimaux d’outputs produits pour un même

niveau d’inputs correspondent au segment [DE]. Par conséquent, celui-ci est le sous-ensemble
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efficient de P t(xt).

1.1.3 Le Graphe de la Technologie

Le graphe de la technologie T t(xt, yt) peut être définie comme étant l’ensemble de tous les vec-

teurs d’inputs et d’outputs réalisables. De manière formelle, sa définition est présentée ci-dessous.

Pour tout xt ∈ R
m
+ et tout yt ∈ R

n
+, le graphe de la technologie T t(xt, yt) est l’ensemble :

T t(xt, yt) =
{

xt ∈ R
m
+ : yt peut être produit par xt

}

≡
{

yt ∈ R
n
+ : xt peut produire yt

}

(1.3)

=
{

(xt, yt) ∈ R
m+n
+ : xt ∈ Lt(yt)⇔ yt ∈ P t(xt)

}

.

Les propriétés des correspondances en inputs et en outputs peuvent être condensées pour ca-

ractériser les axiomes auxquels le graphe de la technologie T t(xt, yt) peut être associé (Shephard

(1953, 1970)).

T1 : Pour tout (xt, yt) ∈ R
m+n
+ si (0, yt) ∈ T t(xt, yt) alors, yt = 0.

T2 : Pour tout (xt, yt) ∈ R
m+n
+ , T t(xt, yt) est bornée.

T3 : Pour tout (xt, yt) ∈ T t(xt, yt) et Pour tout (x̂t, ŷt) ∈ R
m+n
+ alors, (x̂t, ŷt) ∈ T t(xt, yt) si

(xt,−yt) ≤ (x̂t,−ŷt).

T4 : Pour tout (xt, yt) ∈ R
m+n
+ , T t(xt, yt) est fermée.

T5 : Pour tout (xt, yt) ∈ R
m+n
+ , T t(xt, yt) est convexe.

T6 : Pour tout λ ≥ 1, (λxt, yt) ∈ T t(xt, yt) si (xt, yt) ∈ T t(xt, yt).

T7 : Pour tout θ ∈ [0, 1], (xt, θyt) ∈ T t(xt, yt) si (xt, yt) ∈ T t(xt, yt).

L’hypothèse T1 stipule qu’il n’est pas possible de produire des outputs avec une quantité nulle

d’inputs. T2 signifie qu’on ne peut produire une infinité d’outputs avec une quantité finie d’inputs.

L’axiome T3 fait référence à la libre disposition forte des inputs et des outputs. T4 garantit l’exis-

tence d’une frontière de production fermée et T5 impose la convexité de l’ensemble. T6 et T7 sont

respectivement les propriétés relatives à la libre disposition faible des inputs et des outputs.

Il est également possible d’associer le graphe de la technologie aux sous-ensembles ci-dessous.

19



De la Caractérisation de la Technologie aux Mesures d’Efficacité et de Productivité

— Pour tout (xt, yt) ∈ R
m+n
+ ,

IsoqT t(xt, yt) =
{

(xt, yt) ∈ T t(xt, yt) : (λxt, λ−1yt) /∈ T t(xt, yt), ∀λ ∈]0, 1[
}

est l’isoquant du graphe de la technologie.

— Pour tout (xt, yt) ∈ R
m+n
+ ,

∂WT t(xt, yt) = {(xt, yt) ∈ T t(xt, yt) : (xt,−yt) ≥ (x̂t,−ŷt),

(xt,−yt) > (x̂t,−ŷt)⇒ (x̂t, ŷt) /∈ T t(xt, yt) }

est le sous-ensemble faiblement efficient de T t(xt, yt).

— Pour tout (xt, yt) ∈ R
m+n
+ ,

∂T t(xt, yt) = {(xt, yt) ∈ T t(xt, yt) : (xt,−yt) ≥ (x̂t,−ŷt),

(xt,−yt) 6= (x̂t,−ŷt)⇒ (x̂t, ŷt) /∈ T t(xt, yt) }

est le sous-ensemble efficient de T t(xt, yt).

xt

yt

0

A

B

C

D
E

IsoqT t(xt, yt)

T t(xt, yt)

FIGURE 3 – Graphe de la technologie et sous-ensembles

20



De la Caractérisation de la Technologie aux Mesures d’Efficacité et de Productivité

La figure 3 est la représentation du graphe de la technologie T t(xt, yt) dans un espace à deux

dimensions où un facteur de production permet de produire un output. La frontière de production

est décrite par les segments reliant les points A,B,C,D et E. Le sous-ensemble faiblement ef-

ficient correspond au segment [AB] puisqu’il est toujours possible de produire plus d’outputs en

utilisant la même quantité d’inputs. Le sous-ensemble fortement efficient est constitué des seg-

ments reliant les points B,C et D car il n’est plus possible d’augmenter la production pour un

niveau donné d’inputs ou de baisser l’utilisation des facteurs pour une quantité fixe d’extrants.

1.2 Modélisations

Dans la sous-partie précédente, les notions générales des correspondances de la technologie de

production ont été présentées. Ces concepts peuvent être modélisés à travers différentes méthodes

d’estimation à savoir les approches paramétriques et les modèles non-paramétriques. Dans un cadre

paramétrique, la méthode privilégiée par les auteurs est l’approche par la frontière stochastique

(SFA) initiée par Aigner, Lovell et Schmidt (1977) et, Meeusen et Van den Broeck (1977). Elle

rentre dans la lignée des estimations économétriques et consiste à considérer l’inefficacité tech-

nique comme étant une variable aléatoire. Dans cette thèse, on ne présente que les modélisations

non-paramétriques et notamment, l’approche par l’enveloppement des données (DEA) introduite

par Charnes et al. (1978).

1.2.1 Les Fondements de la méthode DEA

La méthode DEA proposée par Charnes et al. (1978) trouve son inspiration dans les travaux de

Farrell (1957) et de Afriat (1972). Farrell (1957) s’est appuyé sur les travaux de Debreu (1951) et de

Koopmans (1951) afin de mesurer l’efficacité des unités de production par rapport à une frontière

de production linéaire par morceaux. Celle-ci est constituée par l’ensemble des meilleures pra-

tiques possibles (benchmark) qui représentent des références. La méthode DEA est une méthode

qualifiée de non-paramétrique qui ne nécessite aucune spécification de la forme fonctionnelle de

la technologie. Elle permet mesurer l’efficience technique des unités de décision (DMU) homo-

gènes 1 et, de déterminer les benchmarks auxquels les DMUs inefficientes devraient se référer. Par

1. Qui utilisent les mêmes inputs et produisent les mêmes outputs
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ailleurs, elle peut considérer des technologies de production à multiple inputs et à multiple outputs,

contrairement aux méthodes d’estimation économétriques standards.

L’estimation des scores d’efficience s’effectue par l’optimisation du programme présenté ci-

dessous.

Soit un ensemble J d’unités de production qui utilisent m inputs pour produire n outputs. Le

score de chaque DMU j est déterminé relativement aux autres DMUs tel que j ∈ J = {1, · · · , J}.

Ainsi, il est nécessaire de résoudre le programme d’optimisation primal ci-dessous pour chaque

unité de décision. Soit la DMU 1 dont on souhaite connaître le score, le programme qui lui est

associé se présente comme suit :

λ1 = max
u,v

∑n
r=1 v

t
ry

t
r,1

∑m
i=1 u

t
ix

t
i,1

s.c

∑n
r=1 v

t
ry

t
r,j

∑m
i=1 u

t
ix

t
i,j

≤ 1 j = 1, · · · , J

u ≥ 0, v ≥ 0.

Il est évident que le programme ci-dessus est non-linéaire et ne peut être évalué de manière

non paramétrique. Pour ce faire, une normalisation est alors effectuée afin d’obtenir le programme

linéaire suivant :

λ1 = max
u,v

n
∑

r=1

vtry
t
r,1

s.c
m
∑

i=1

utix
t
i,1 = 1

n
∑

r=1

vtry
t
r,j ≤

m
∑

i=1

utix
t
i,j j = 1, · · · , J

u ≥ 0, v ≥ 0.

Ce programme d’optimisation est particulièrement lourde notamment lorsqu’il existe un nombre

assez conséquent de DMUs à évaluer puisque chaque optimisation comporte (J + m + n + 1)

contraintes. Cependant, il est possible de retrouver les scores d’efficience à partir de la version
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duale qui ne nécessite que m + n contraintes. Le programme dual de la DMU 1, est présenté

ci-dessous.

λ∗ = minλ,θ λ
t
1

s.c λ1x
t
i,1 ≥

∑

j∈J

θtjx
t
i,j i = 1, · · · , m

ytr,1 ≤
∑

j∈J

θtjy
t
r,j r = 1, · · · , n

λ ≥ 0, θ ≥ 0.

Chaque variable θ est une pondération associée à une unité de décision. Elle donne une indi-

cation quant à la proportion à laquelle l’entité de production évaluée devrait s’inspirer de l’unité

de décision associée à θ afin d’être efficiente. Elle sert également à satisfaire la contrainte de

convexité de l’ensemble de production. Ainsi, on peut dire que cette variable permet d’obtenir des

informations quant aux gains potentiels en terme d’efficience technique et quant à l’existence d’un

référent.

1.2.2 Les Modèles CCR, BCC et leurs Extensions

Dans leurs travaux, Charnes et al. (1978) imposent aux pondérations θt une valeur positive

ou nulle. Cette contrainte permet de cantonner leur analyse dans un cadre à rendements d’échelle

constants (CRS 2). De ce fait, l’ensemble de production est constitué du plus petit cône polyédrique

convexe contenant toutes les observations. Cette contrainte de rendements d’échelle constants peut

être formalisée de la manière suivant :

ΘCRS = {θt ∈ R
Jθtj ≥ 0, j ∈ J }.

La figure 4 présente la frontière de production DEA sous l’hypothèse de rendements d’échelle

constants dans un espace à deux dimensions tel qu’un input permet de produire un output. La

frontière à deux dimensions est entièrement linéaire. Les points A,B et C situés le long de cette

droite sont techniquement efficients tandis que les observationsD etE sont des points inefficientes.

2. Constant Retunrs-to-Scale
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IsoqT t(xt, yt)
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FIGURE 4 – Modèle à rendements d’échelle constants

Dans la pratique, toutes les unités de décision n’opèrent pas sous le même rendement d’échelle

dans leur processus de production. Banker et al.(1984) étendent les travaux de Charnes et al. (1978)

dans un contexte de rendements d’échelle variables (VRS 3). La distinction entre les deux modèles

proposés se trouve au niveau de la contrainte sur les pondérations. Le premier modèle à rendements

d’échelle constants est plus connu sous l’acronyme CCR tandis que le second modèle à rendements

d’échelle variables a pour acronyme BCC, du nom de leurs auteurs. Ainsi, la frontière de produc-

tion de ce dernier est linéaire par morceaux et est localement à rendements d’échelle croissants,

constants et décroissants. Formellement, cette contrainte est définie comme suit :

ΘV RS = {θt ∈ R
J : θtj ≥ 0,

∑

j∈J

θtj = 1, j ∈ J }.

La figure 5 décrit une frontière de production à rendements d’échelle variables dans un proces-

sus de production où un input permet de produire un output. Les points B,C et D, situés sur la

frontière de production, sont des unités de production techniquement efficientes tandis que le point

E situé en-dessous de la frontière est inefficient. Le segment qui relie les points A et B est la par-

tie de la frontière efficiente qui correspond localement à des rendements d’échelle croissants. Le

pointB représente la section à rendement d’échelle constant de la frontière tandis que les segments

reliant les points B,C et D sont les parties relatives aux rendements d’échelle décroissants.

Nous pouvons spécifier deux autres types de rendements d’échelle qui existent dans la littéra-

3. Variable Returns-to-Scale
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IsoqT t(xt, yt)
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FIGURE 5 – Modèle à rendements d’échelle variables

ture.

Dans la même démarche que Charnes et al. (1978) et Banker et al. (1984), Grosskopf (1986)

identifie les rendements d’échelle non-décroissants (NDRS 4). Ils se traduisent par une contrainte

sur les pondérations θt qui est définie de la manière suivante :

ΘNDRS = {θt ∈ R
J : θtj ≥ 0,

∑

j∈J

θtj ≥ 1, j ∈ J }.

IsoqT t(xt, yt)

xt

yt

0

A

B

T (xt, yt)

FIGURE 6 – Modèle à rendements d’échelle non décroissants

La figure 6 représente une frontière de production DEA dans le cadre des rendements d’échelle

non décroissants de telle sorte que tous les points situés sur cette frontière opèrent sous l’hypothèse

de rendements d’échelle soit constants soit croissants.

4. Non Decreasing Returns-to-Scale
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Seiford (1990) présente quant à lui, les rendements d’échelle non-croissant (NIRS 5). Ainsi,

l’ensemble de production inclut le point d’origine (0, 0) et la spécification de ce type de rendements

d’échelle est faite par la contrainte suivante :

ΘNIRS = {θt ∈ R
J : θtj ≥ 0,

∑

j∈J

θtj ≤ 1, j ∈ J }.

IsoqT (xt, y)

xt

yt

0

A

B

T (xt, y)

FIGURE 7 – Modèle à rendements d’échelle non croissants

La figure 7 décrit une frontière DEA pour laquelle tous les points appartenant à la frontière ont

des rendements d’échelle soit constants soit décroissants. Dans ce cas, les rendements d’échelle

sont au plus constants.

Grâce aux travaux de Charnes et al. (1978) et à la contribution des autres auteurs, on peut

définir de manière formelle la technologie de production DEA comme suit :

TDEA(x
t, yt) =

{

(xt, yt) ∈ R
m+n
+ : xt ≥

∑

j∈J

θtjx
t
j , yt ≤

∑

j∈J

θtjy
t
j, θt ∈ Θ

}

(1.4)

où Θ ∈ {ΘCRS,ΘV RS ,ΘNDRS,ΘNIRS}.

5. Non Increasing Returns-to-Scale
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1.2.3 Les Modèles Non Convexes

Les modèles présentés dans les deux sous-sections précédentes opèrent dans le cadre d’une

hypothèse de convexité de l’ensemble de production. Il est néanmoins possible que les technologies

de production soient non-convexes. Cette dernière situation est la conséquence de la particularité

des processus de production individuels.

Banker et Maindiratta (1986) remarquent que la technologie linéaire par morceaux présentée

Banker et al.(1984) dans le cadre des rendements d’échelle variables, requiert des productivités

marginales non-croissantes. Afin de pallier à cette limite, ils introduisent une technologie multipli-

cative (TCD) non-convexe de type Cobb-Douglas qui permet de tenir compte de ces productivités

marginales croissantes. Dans ce cas, la fonction de production est localement concave et l’ensemble

de production est non-convexe. Cette technologie de production est définie comme suit :

T t
CD(x

t, yt) =

{

(xt, yt) ∈ R
m+n
+ : xt ≥

∏

j∈J

(

xtj
)θtj , yt ≤

∏

j∈J

(

ytj
)θtj , θt ∈ Θ

}

. (1.5)

La technologie multiplicative satisfait les propriétés suivantes :

TCD1 : Pour tout (xt, yt) ∈ T t
CD et θt ≥ 0 avec

∑

j∈J

θtj = 1 alors,

(

∏

j∈J

(xtj)
θtj ,
∏

j∈J

(ytj)
θtj

)

∈

T t
CD.

TCD2 : Pour tout (xt, yt) ∈ T t
CD, si (xt,−yt) ≤ (x̂t,−ŷt) alors, (x̂t, ŷt) ∈ T t

CD.

TCD3 : Pour tout T̂CD satisfaisant TCD1-TCD2, alors T t
CD =

⋂

j∈J

T̂ t
CD,j avec (xtj , y

t
j) ∈ T

t
CD.

La première propriété fait référence à l’hypothèse de convexité géométrique tandis que la

deuxième stipule que la technologie multiplicative satisfait la libre disposition des inputs et des

outputs. Le dernier axiome stipule que la technologie globale est l’intersection de toutes les techno-

logies satisfaisant les deux postulats précédents. Celui-ci correspond au principe de l’extrapolation

minimale.

En appliquant une transformation logarithmique, les auteurs retrouvent la technologie linéaire

par morceaux de Banker et al. (1984) de telle sorte que x̃t = ln xt et ỹt = ln yt. Ainsi, la technolo-

gie multiplicative devient :
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T t
ln(x̃

t, ỹt) =

{

(x̃t, ỹt) ∈ R
m+n
++ : x̃t ≥

∑

j∈J

θtj x̃
t
j , ỹt ≤

∑

j∈J

θtj ỹ
t
j, θt ∈ Θ

}

. (1.6)

xt

yt

0

IsoqTCD(x
t, yt)

TCD(x
t, yt)

FIGURE 8 – Technologie Multiplicative

La figure 8 présente une frontière de production multiplicative au sens de Banker et Maindiratta

(1986). La linéarisation de l’ensemble de production par une transformation logarithmique exclut

l’origine c’est-à-dire le point (0, 0) du domaine de définition de l’ensemble.

Solow (1956) et Arrow et al. (1961) présentent la fonction de production CES 6. Celle-ci in-

tègre l’existence d’une élasticité de substitution constante entre le facteur travail et le facteur ca-

pital. Cette fonction peut être considérée comme une généralisation des fonctions de production

Cobb-Douglas et Leontieff. En s’inspirant de Solow (1956) et de Arrow et al. (1961), Powell et

Gruen (1968) proposent quant à eux, la fonction de production CET 7 afin de prendre en compte

la substituabilité entre deux types de productions. Suite à ces travaux, Färe et al. (1988) présentent

une nouvelle technologie de production CES-CET de telle sorte que les correspondances en in-

puts et en outputs soient caractérisées respectivement par les fonctions CES et CET. Les auteurs

présentent cette technologie CES-CET comme étant une technologie de référence qui donne une

formulation généralisée des technologie de production présentées par Banker et al. (1984) et par

Banker et Maindiratta (1986).

6. Constant Elasiticity of Substitution.
7. Constant Elasticity of Transformation
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La technologie CES-CET est définie de la manière suivante :

T t
α,β =







(xt, yt) : xt ≥

(

∑

j∈J

θtj(x
t
j)

αt

)1/αt

, yt ≤

(

∑

j∈J

θtj(y
t
j)

βt

)1/βt

, θ ≥ 0,
∑

j∈J

θtj = 1







.

(1.7)

A partir de la technologie CES-CET, il est possible de retrouver les ensembles de production

sus mentionnés lorsque les conditions suivantes sont remplies :

— T t
α,β = T t

DEA si α = β = 1 ;

— T t
α,β = T t

CD si α, β → 0.

xt

yt

0

IsoqTα,β(x
t, yt)

Tα,β(x
t, yt)

FIGURE 9 – Technologie CES-CET

La figure 9 décrit une technologie CES-CET qui présente trois différents rendements d’échelle

à savoir croissants, constants et décroissants. Il est évident que cet ensemble de production est

non-convexe localement notamment lorsque le rendement d’échelle est croissant. Cependant, les

auteurs démontrent que les correspondances en inputs Lt
α,β(y

t) et en outputs P t
α,β(x

t) sont res-

pectivement convexes lorsque α ≤ 1 et β ≥ 1. Par ailleurs, lorsque les deux correspondances

sont simultanément convexes, il peut en être déduit que l’ensemble de production T t
α,β(x

t, yt) est

également convexe.

Boussemart et al. (2009) proposent un modèle à "rendements d’échelle α" basé sur la techno-

logie CES-CET présentée par Färe et al. (1988). Notons que dans un souci de clarté, nous nous re-

ferrons à l’expression "rendements d’échelle γ afin de désigner la notion de "rendements d’échelle

α". Dans leurs travaux, les auteurs affirment que cet ensemble de production satisfait les axiomes
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FIGURE 10 – Rendements d’échelle
croissants
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FIGURE 11 – Rendements d’échelle
croissants

T1-T4 du graphe de la technologie. En utilisant la technologie de production CES-CET, Bousse-

mart et al. (2009) démontrent que les paramètres α et β de la technologie CES-CET donnent des

indications sur les rendements d’échelle globaux γ de l’ensemble référence tel que γ = α
β

. Ce mo-

dèle permet de trouver de manière endogène le rendement d’échelle global γ pour lequel le plus

grand nombre de DMU est le moins inefficient possible grâce à l’extrapolation minimale (Bous-

semart et al. (2018)). De ce fait, la technologie de production CES-CET satisfait des rendements

d’échelle :

— croissants si α > β =⇒ γ > 1 ;

— constants si α = β =⇒ γ = 1 ;

— décroissants si α < β =⇒ γ < 1.

Les figures 10 et 11 décrivent respectivement l’enveloppement des données sous l’hypothèse

de rendements d’échelle croissants et décroissants. Le premier graphique ne satisfait pas l’hypo-

thèse de convexité de l’ensemble de production tandis que le second représente une frontière de

production classique vérifiant l’axiome de convexité.
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2 Les Mesures d’Efficacité et la Caractérisation de la Techno-

logie

Dans la section précédente, les concepts généraux des ensembles et des sous-ensembles de

production mais également, la modélisation non paramétrique ont été présentés. Cette section est

quant à elle, dévouée à l’exposition des mesures d’efficacité dans le cadre ces processus productifs

à multiple inputs et à multiple outputs.

Dans la théorie de la production, il est difficile de connaître mais également d’imposer une

fonction de production (ou de transformation) qui décrirait au mieux le processus de production des

unités productives. Par ailleurs, les fonctions de production ne permettent pas la prise en compte

des technologies à multiple outputs. Afin de pallier à cette difficulté, les auteurs ont proposé une

mesure alternative de l’efficacité dans un cadre multi-outputs à travers les fonctions de distance.

Celles-ci estiment l’écart entre l’unité de production et la frontière efficiente. Elles peuvent être

exprimées tant d’un point de vue primal que dual. Suite aux travaux de Shephard (1953, 1970),

nous savons également qu’elles caractérisent complètement les technologies de production.

2.1 Les Fonctions de Distance

Structurellement, une fonction de distance peut prendre une forme soit multiplicative soit ad-

ditive. Par ailleurs, elles sont être soit radiales soit non-radiales. Les sous-sections ci-dessous dé-

taillent les mesures de distance les plus couramment utilisées dans la littérature.

2.1.1 Les Mesures de Debreu-Farrell

Farrell (1957) propose des mesures d’efficacité en s’inspirant des travaux de Debreu (1951).

Celles-ci se présentent comme étant l’inverse des fonctions de distance de Shephard (1953). Lorsque

la mesure est orientée en inputs, elle donne la proportion à laquelle les inputs utilisés peuvent être

réduits à un niveau minimal pour une quantité donnée d’outputs. Dans une orientation en outputs,

elle permet l’expansion maximale des extrants pour un niveau donné d’intrants. Dans cette sous-

section, les fonctions de distance de Shephard sont définies brièvement tandis que les mesures de

Debreu-Farrell sont exposées plus en détail.
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La fonction de distance de Shephard orientée en input est définie comme suit :

Dt
I : R

m
+ × R

n
+ → R+ ∪ {∞}

Dt
I(x

t, yt) =











sup
λ>0

{

λt :

(

xt

λt
, yt
)

∈ T t

}

si

(

xt

λt
, yt
)

∩ T t 6= ∅

∞ sinon
(1.8)

= sup
λ>0

{

λt :
xt

λt
∈ Lt(yt)

}

.

Lorsque l’unité de production est efficiente, Dt
I(x, y) = 1.

Comme la mesure d’efficacité de Debreu-Farrell est l’inverse de celle de Shephard, on peut la

définir de la manière suivante :

Et
I : R

m
+ × R

n
+ → R+ ∪ {∞}

Et
I(x

t, yt) =







inf
λ≥0
{λt : (λtxt, yt) ∈ T t} si (λtxt, yt) ∩ T t 6= ∅

∞ sinon
(1.9)

= inf
λ≥0

{

λt : λtxt ∈ Lt(yt)
}

.

Si la correspondance en inputs satisfait les axiomes L1-L8, alors la mesure de Farrell vérifie

les propriétés suivantes :

EI1 : Pour tout xt ∈ R
m
+ alors, Et

I(x
t, 0) = 0.

EI2 : Pour tout (xt, yt) ∈ T t alors, Et
I(x

t, yt) ∈ [0,+∞[.

EI3 : Pour tout λt > 0, Et
I(λ

txt, yt) = (λt)−1Et
I(x

t, yt).

EI4 : Pour tout θt ≥ 1, Et
I(x

t, θtyt) ≥ Et
I(x

t, yt).

EI5 : Pour tout yt ∈ R
n
+ et s’il y a libre disposition faible des inputs alors,

Lt(yt) = {xt : 0 ≤ Et
I(x

t, yt) ≤ 1}.

EI6 : Pour tout yt ∈ R
n
+, IsoqLt(yt) = {xt : Et

I(x
t, yt) = 1}.

EI7 : Pour tout yt ∈ R
n
+ si ut ≥ xt alors, Et

I(x
t, yt) ≥ Et

I(u
t, yt).

Le premier axiome stipule que lorsque la production est nulle, la mesure d’efficacité de Farrell

est nulle également. La seconde propriété donne une définition précise du domaine de définition

de la mesure tandis que EI3 se réfère à l’homogénéité de degré (-1) en inputs de la fonction. La
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quatrième hypothèse signifie que la mesure est non-décroissante en outputs. EI5 indique que sous

l’hypothèse de libre disposition faible des inputs, elle est permet la caractérisation complète de la

technologie de production. La frontière de production techniquement efficiente est caractérisée par

les unités de production dont la mesure de Farrell est égale à 1 (EI6). Enfin, lorsqu’il y a forte

disposition des inputs, la mesure est faiblement monotone.

De manière analogue, il est possible de définir les mesures de Shephard et de Debreu-Farrell

selon une orientation en outputs.

La fonction de distance de Shephard orientée en output est définie de la manière suivante :

Dt
O : R

m
+ × R

n
+ → R+ ∪ {∞}

Dt
O(x

t, yt) =











inf
λ>0

{

λt :

(

xt,
yt

λt

)

∈ T t

}

si

(

xt,
yt

λt

)

∩ T t 6= ∅

∞ sinon
(1.10)

= inf
λ>0

{

λt :
yt

λt
∈ P t(xt)

}

.

Ainsi, lorsque l’unité de décision est techniquement efficiente, alors Dt
O(x

t, yt) = 1.

De ce fait, la mesure de Debreu-Farrell en output a pour définition :

Et
O : R

m
+ × R

n
+ → R+ ∪ {∞}

Et
O(x

t, yt) =











sup
λ≥0
{λt : (xt, λtyt) ∈ T t} si (xt, λtyt) ∩ T t 6= ∅

∞ sinon
(1.11)

= sup
λ≥0

{

λt : λtyt ∈ P t(xt)
}

.

Lorsque la correspondance en outputs satisfait les propriétés P1-P8, alors la mesure de Debreu-

Farrell vérifie les axiomes suivants :

EO1 : Pour tout xt ∈ R
m
+ , Et

O(x
t, 0) =∞.

EO2 : Pour tout (xt, yt) ∈ T t si y 6= 0 alors, Et
O(x

t, yt) ∈ [0,+∞[.

EO3 : Pour tout λt > 0 si (xt, yt) ∈ T t et, si yt 6= 0, Et
O(x

t, λtyt) = (λt)−1Et
O(x

t, yt).

EO4 : Pour tout θt ≥ 1, Et
O(θ

txt, yt) ≥ Et
O(x

t, yt).
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FIGURE 12 – Mesure de Debreu-Farrell
en input

yt1

yt2

0

•

•

IsoqP(xt)

yt

λtyt

P t(xt)

FIGURE 13 – Mesure de Debreu-Farrell
en output

EO5 : Pour tout xt ∈ R
m
+ et s’il y a libre disposition faible des outputs alors,

P t(xt) = {yt : Et
O(x

t, yt) ≥ 1} pour P t(xt) 6= {0}.

EO6 : Pour tout xt ∈ R
m
+ , IsoqP t(xt) = {yt : Et

O(x
t, yt) = 1}.

EO7 : Pour tout xt ∈ R
m
+ si vt ≥ yt alors, Et

O(x
t, yt) ≥ Et

O(x
t, vt).

Le premier axiome stipule que lorsque le vecteur des inputs est nul alors la mesure de Debreu-

Farrell en output est indéfini. La deuxième propriété donne le domaine de définition de la mesure.

Les troisième et quatrième hypothèses concernent respectivement l’homogénéité de degré (-1) de

la mesure et sa nature non-décroissante en inputs. (EO5) signifie que lorsqu’il y a libre disposition

faible des outputs alors, la technologie est parfaitement caractérisée par la mesure. Le sixième

axiome stipule que lorsqu’une unité de production est techniquement efficiente alors, sa mesure de

Debreu-Farrell est égale à 1. Enfin, la dernière propriété est relative à la faible monotonicité de la

mesure lorsque les outputs sont fortement disponibles.

Les figures 12 et 13 décrivent respectivement la contraction maximale des inputs pour un niveau

donné d’output et l’expansion maximale de la production pour une quantité donnée de facteurs. Les

mesures de Debreu-Farrell et de Shephard sont dites radiales car les unités techniquement ineffi-

cientes sont projetées sur les frontières efficientes par le biais d’une droite passant par l’origine.

De ce faitn les grandeurs obtenues sont des mesures proportionnelles. La distance radiale entre

l’observation initiale et la projection constitue la mesure de l’efficience technique.

La figure 14 présente les mesures de Debreu-Farrell orientées en input et en output dans un
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•
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(λtxt, yt)

(xt, λtyt)

T t(xt, yt)

FIGURE 14 – Mesures de Debreu-Farrell dans le graphe de la technologie

espace à deux dimensions où un facteur produit un extrant. Rappelons que ces mesures permettent

uniquement soit la contraction des inputs soit l’expansion des outputs.

2.1.2 La Fonction de Distance Directionnelle

La fonction de distance directionnelle a été introduite pour la première fois par Luenberger

(1992a) dans la théorie du consommateur sous le nom de "Benefit Function" (fonction de béné-

fice). L’auteur a, par la suite, transposé cette fonction en économie de la production sous le nom de

"Shortage Function" (Luenberger (1992b, 1995)). De par les travaux de Chambers et al. (1996) qui

ont repris ce concept, cette fonction est plus connue comme étant la fonction de distance direction-

nelle (FDD). Contrairement aux mesures de Debreu-Farrell qui ne permettent d’agir que dans une

orientation soit en input soit en output, la FDD rend également possible une analyse dans le graphe

de la technologie. Lorsque l’étude est faite dans le graphe, le score d’efficacité obtenu permet la

contraction maximale des inputs et l’expansion maximale des outputs simultanément selon une

direction gt préalablement choisie.

Ainsi, pour toute direction gt = (ht, kt) tel que ht ∈ R
m
+ et kt ∈ R

n
+, la fonction de distance
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directionnelle est définie comme suit :

Dt : R
m+n
+ × R

m+n
+ → R+ ∪ {∞}

Dt(xt, yt; gt) =











sup
δ≥0
{δt : (xt − δtht, yt + δtkt) ∈ T t} si (xt − δtht, yt + δtkt) ∩ T t 6= ∅

∞ sinon

(1.12)

Cette définition de la FDD concerne une analyse globale dans le graphe telle que le vecteur de

direction est gt = (ht, kt). Comme les autres mesures présentées précédemment, la FDD satisfait

le propriétés suivantes :

D1 : Si (xt, yt) ∈ T t alors, Dt(xt, yt; g) ≥ 0.

D2 : Pour tout αt ∈ R, Dt(xt − αtht, yt + αtkt; gt) = Dt(xt, yt; gt)− αt.

D3 : Pour tout λt > 0, Dt(λtxt, λtyt; gt) = λtDt(xt, yt; gt).

D4 : Pour tout λt > 0, Dt(xt, yt;λtgt) = (λt)−1Dt(xt, yt; gt).

D5 : Pour tout xt ∈ R
m
+ et Pour tout yt ∈ R

n
+, si (ut,−vt) ≥ (xt,−vt) alors, Dt(ut, vt; gt) ≥

Dt(xt, yt; gt).

Le premier axiome stipule que la fonction de distance directionnelle permet de caractériser par-

faitement la technologie de production. Le deuxième hypothèse indique que la mesure est transla-

tion homothétique. Les propriétés (D3) et (D4) signifient respectivement que sous l’hypothèse de

rendements d’échelle constants, la fonction est homogène de degré 1 et qu’elle est homogène de

degré (-1) par rapport à la direction gt. Le dernier axiome stipule que s’il y a libre disposition des

inputs et des outputs alors, la fonction est non-décroissante en xt et non-croissante en yt.

La figure 15 décrit le processus de projection de l’unité de production (xt, yt) dans la direction

g = (h, k). Cette dernière est choisie préalablement de telle sorte que le couple (xt, yt) est translaté

par le vecteur direction sur la frontière efficiente de la technologie de production.

Lorsque la direction fixée est gt = (ht, 0), la FDD devient orientée en input et est définie de la
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FIGURE 15 – Fonction de Distance Directionnelle orientée dans le graphe

manière suivante :

Dt
I : R

m+n
+ × R

m
+ → R+ ∪ {∞}

Dt
I(x

t, yt; ht, 0) =











sup
δ≥0
{δt : (xt − δtht, yt) ∈ T t} si (xt − δtht, yt) ∩ T t 6= ∅

∞ sinon
(1.13)

De manière analogue à la fonction définie dans le graphe, celle-ci satisfait également certaines

propriétés telles que :

DI1 : Si xt ∈ Lt(yt) alors, Dt
I(x

t, yt; ht, 0) ≥ 0.

DI2 : Pour tout αt ∈ R, Dt
I(x

t − αtht, yt; ht, 0) = Dt
I(x

t, yt; ht, 0)− αt.

DI3 : Pour tout λt > 0, Dt
I(λ

txt, λtyt; ht, 0) = λtDt
I(x

t, yt; ht, 0).

DI4 : Pour tout λt > 0, Dt
I(x

t, yt;λtht, 0) = (λt)−1Dt
I(x

t, yt; ht, 0).

DI5 : Pour tout xt ∈ Lt(yt) et Pour tout ut ∈ Lt(yt), si ut ≥ xt alors, Dt
I(u

t, yt; ht, 0) ≥

Dt
I(x

t, yt; ht, 0).

(DI1) et (DI2) indiquent respectivement que la fonction orientée en input permet de caractériser

complètement la technologie de production et qu’elle est translation homothétique. Les axiomes

(DI3) et (DI4) signifient respectivement que la fonction est homogène de degré 1 sous l’hypothèse

de rendements d’échelle constants et homogène de degré (-1) par rapport à la direction gt. Enfin, la

dernière propriété stipule que la fonction est non-décroissante en xt lorsqu’il y a libre disposition

des inputs.
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En fixant la direction gt = (0, kt), on obtient une FDD orientée en output dont la définition est

la suivante :

Dt
O : R

m+n
+ × R

n
+ → R+ ∪ {∞}

Dt
O(x

t, yt; 0, kt) =











sup
δ≥0
{δt : (xt, yt + δtkt) ∈ T t} si (xt, yt + δtkt) ∩ T t 6= ∅

∞ sinon
(1.14)

Cette mesure orientée en output vérifie les propriétés comme ci-dessous :

DO1 : Si yt ∈ P t(xt) alors, Dt
O(x

t, yt; 0, kt) ≥ 0.

DO2 : Pour tout αt ∈ R, Dt
O(x

t, yt + αtkt; 0, kt) = Dt
O(x

t, yt; 0, kt)− αt.

DO3 : Pour tout λt > 0, Dt
O(λ

txt, λtyt; 0, kt) = λtDt
O(x

t, yt; 0, kt).

DO4 : Pour tout λt > 0, Dt
O(x

t, yt; 0, λtkt) = (λt)−1Dt
O(x

t, yt; 0, kt).

DO5 : Pour tout yt ∈ P t(xt) et Pour tout vt ∈ P t(xt), si yt ≥ vt alors, Dt
O(x

t, vt; 0, kt) ≥

Dt
O(x

t, yt; 0, kt).

Les deux premiers axiomes (DO1) et (DO2) signifient que la fonction orientée en output ca-

ractérise la technologie de production et qu’elle est translation homothétique. (DO3) et (DO4) font

respectivement référence à l’homogénéité de degré 1 de la mesure lorsque les rendements d’échelle

sont constants et à son homogénéité de degré (-1) par rapport à la direction. Quant à la dernière pro-

priété, elle stipule que lorsque les outputs sont librement disponibles, la fonction est non-croissante

en yt .

Les figures 16 et 17 décrivent respectivement les fonctions de distance directionnelle orientées

en input et en output. Notons que contrairement aux mesures de Debreu-Farrell, les mesures direc-

tionnelles sont non-radiales puisque la réduction des facteurs ou l’expansion des produits se font

dans une direction préalablement définie. Ainsi, les unités de production sont translatées par un

vecteur de direction sur la frontière efficiente.

Chambers et al. (1996a) démontrent que les FDD orientées en input et en output peuvent être

reliées aux mesures de Debreu-Farrell sous certaines conditions. Lorsque le vecteur de direction
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FIGURE 16 – Fonction de Distance Direc-
tionnelle orientée en input
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FIGURE 17 – Fonction de Distance Direc-
tionnelle orientée en output

choisi est gt = (xt, 0) alors, nous avons la relation suivante :

Dt
I(x

t, yt; xt, 0) = 1−Et
I(x

t, yt) = 1−
1

Dt
I(x

t, yt)
.

L’équivalence entre la mesure de Debreu-Farrell en extrants et la FDD orientée en output peut être

établie lorsque gt = (0, yt). De ce fait nous avons la relation qui suit :

Dt
O(x

t, yt; 0, yt) = Et
O(x

t, yt)− 1 =
1

Dt
O(x

t, yt)
− 1.

2.1.3 La Fonction de Distance Proportionnelle

Indépendamment des travaux de Luenberger (1992a, 1992b, 1995), Briec (1997) propose la

fonction de distance proportionnelle (FDP) qui permet la réduction et l’expansion proportionnelles

et simultanées des inputs et des outputs. Dans ses travaux, Briec (1997) présente cette fonction

comme étant une généralisation des mesures de Debreu-Farrell et la nomme "mesure proportion-

nelle de Farrell". De manière générale, pour toutes matrices diagonales A =diag(αt) ∈ R
m
+ et

B =diag(βt) ∈ R
n
+ avec (αt, βt) ∈ [0, 1]m+n, la fonction de distance proportionnelle pondérée est
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définie comme suit :

D∝,t
α,β : R

m+n
+ × [0, 1]m+n → R ∪ {∞}

D∝,t
α,β(x

t, yt) =























sup
δ∈R

{

δt :
(

(I − δtA) xt, (I + δtB)yt
)

∈ T t
}

si
(

(I − δtA)xt, (I + δtB)yt
)

∩ T t 6= ∅

∞ sinon

(1.15)

Soit l’opération algébrique définie sur Rs suivante :

u⊙ v = (u1v1, · · · , usvs).

Cette définition permet de donner l’expression détaillée de la mesure proportionnelle ci-dessous :

D∝,t
α,β(x

t, yt) = sup
δ∈R

{

δt :
(

xt − δtαt ⊙ xt, yt + δtβt ⊙ yt
)

∈ T t
}

.

De par cette caractérisation, il est évident que lorsque l’unité de production est techniquement

efficiente, la mesure est nulle. Certains auteurs considèrent cette fonction de distance proportion-

nelle comme étant un cas spécial de la FDD lorsque le vecteur de direction choisi est gt = (xt, yt).

Néanmoins, afin que les deux fonctions de distances coïncident, il est nécessaire que la FDP ne

soit pas pondérée ou que les matrices de pondération soient des matrices identité c’est-à-dire

(αt, βt) = (11m, 11n). De ce fait, cette fonction de distance non pondérée a pour définition :

D∝,t(xt, yt) = sup
δ∈R

{

δt :
(

(1− δt)xt, (1 + δt)yt
)

∈ T t
}

.

Cependant, Russell et Schworm (2011) remarquent que la FDD et la FDP vérifient des proprié-

tés différentes. Ainsi, cette dernière satisfait les axiomes suivants :

D∝1 : Si (xt, yt) ∈ T t alors, (D∝,t
α,β(x

t, yt) ≥ 0.

D∝2 : Pour tout δt ∈ R, D∝,t
α,β(x

t − δtαt ⊙ xt, yt + δtβt ⊙ yt) = D∝,t
α,β(x

t, yt)− δt.

D∝3 : Pour tout λt > 0, D∝,t
α,β(λ

txt, λtyt) = D∝,t
α,β)

t(xt, yt).
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D∝4 : Pour tout (xt, yt) ∈ R
m+n
+ , si (ut,−vt) ≥ (xt,−yt) alors, D∝,t

α,β(u
t, vt) ≥ D∝,t

α,β(x
t, yt).

D∝5 : Pour tout λt ≥ 1 on a D∝,t
α,β)

t(λtxt, yt) ≥ D∝,t
α,β(x

t, yt) et, Pour tout θ ∈ [0, 1] on a

D∝,t
α,β(x

t, θtyt) ≥ D∝,t
α,β(x

t, yt).

D∝6 : Pour tout (ωx, ωy) ∈ R
m+n
++ si x̂t = xt ⊙ ωx et ŷt = yt ⊙ ωy avec (x̂t, ŷt) ∈ T alors

D∝,t
α,β)

t(x̂t, ŷt) = D∝,t
α,β)

t(xt, yt).

(D∝1) signifie que D∝,t
α,β(x

t, yt) permet de caractériser la technologie de production. (D∝2) et

(D∝3) stipulent respectivement qu’elle est translation homothétique et qu’elle est homogène de

degré 0 sous l’hypothèse de rendements d’échelle constants. Lorsqu’il y a libre disposition des

inputs et des outputs, la fonction est non-décroissante en xt et non-croissante en yt (D∝4). L’avant

dernière propriété indique que la libre disposition faible des inputs et des outputs engendre une

variation proportionnelle de la mesure. Notons que cette fonction de distance satisfait l’hypothèse

de commensurabilité (Russell (1987)) c’est-à-dire qu’elle est indépendante des unités de mesure.

Elle est présentée par l’axiome (D∝6). De manière comparative, il est évident que la FDD et la

FDP ne satisfont pas exactement les mêmes propriétés. En effet, sous l’hypothèse de rendements

d’échelle constants, la FDD est homogène de degré 1 tandis que la FDP l’est de degré 0. Par

ailleurs, cette dernière vérifie l’axiome de commensurabilité tandis que la FDD ne le satisfait pas.

xt

yt

0

IsoqT t(xt, yt)

T t(xt, yt)

•

•

•

•

(xt
2, y

t
2)

(xt
1, y

t
1)

(

(1 − δt)xt
1, (1 + δt)yt1

)

FIGURE 18 – Fonction de Distance Proportionnelle orientée dans le graphe

Dans un espace à deux dimensions, la figure 18 décrit la FDP dans le graphe telle que (αt, βt) =

(1, 1). Il est évident que les deux unités de production (xt1, y
t
1) et (xt2, y

t
2) sont projetées dans deux

directions différentes puisque leur vecteur de direction équivaut aux observations.

Cette mesure d’efficacité proportionnelle peut également être définie en input ou en output.
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Ainsi, lorsque βt = 0, la fonction est axée sur les intrants et est caractérisée de la manière suivante :

ID∝,t
α,0 : R

m+n
+ × [0, 1]m → R ∪ {∞}

ID∝
α,0(x

t, yt) =











sup
δ∈R
{δt : ((I − δtA)xt, yt) ∈ T t} si ((I − δtA)xt, yt) ∩ T t 6= ∅

∞ sinon
(1.16)

La fonction orientée en input satisfait les propriétés présentées ci-dessous :

ID∝1 : Si (xt, yt) ∈ T t alors, ID∝,t
α,0(x

t, yt) ≥ 0.

ID∝2 : Pour tout δt ∈ R, ID∝,t
α,0(x

t − δtαt ⊙ xt, yt) = ID∝,t
α,0(x

t, yt)− δt.

ID∝3 : Pour tout λt > 0, ID∝,t
α,0(λ

txt, λtyt) = ID∝,t
α,0(x

t, yt).

ID∝4 : Pour tout (xt, yt) ∈ R
m+n
+ , si ut ≥ xt alors, ID∝,t

α,0(u
t, yt) ≥ ID∝,t

α,0(x
t, yt).

ID∝5 : Pour tout λt ≥ 1 on a ID∝,t
α,0(λ

txt, yt) ≥ ID∝,t
α,0(x

t, yt) et, Pour tout θ ∈ [0, 1] on a

ID∝,t
α,0(x

t, θtyt) ≥ ID∝,t
α,0(x

t, yt).

ID∝6 : Pour tout (ωx, ωy) ∈ R
m+n
++ si x̂t = xt ⊙ ωx et ŷt = yt ⊙ ωy avec (x̂t, ŷt) ∈ T alors

ID∝,t
α,0(x̂

t, ŷt) = ID∝,t
α,0(x

t, yt).

Il est évident que ces hypothèses sont les mêmes que celles concernant la fonction définie

dans le graphe de la technologie. Ainsi, les axiomes (ID∝1), (ID∝2) et (ID∝3) font respectivement

référence à la caractérisation de la technologie par la mesure de l’efficacité, à sa translation homo-

théticité et à son homogénéité de degré 0 sous l’hypothèse de rendements d’échelle constants. Les

deux propriétés suivante sont relatives à la disponibilité forte des facteurs et à la disponibilité faible

des intrants et des extrants. Enfin, le dernier axiome concerne la commensurabilité de la mesure

orientée en input.

Lorsque αt = 0, nous obtenons une FDP orientée en output comme suit :

OD∝,t
0,β : R

m+n
+ × [0, 1]n → R ∪ {∞}

OD∝,t
0,β (x

t, yt) =











sup
δ∈R
{δt : (xt, (I + δtB)yt) ∈ T t} si (xt, (I + δtB)yt) ∩ T t 6= ∅

∞ sinon

(1.17)

Il est admis que cette mesure axée sur les extrants vérifie les propriétés suivantes :
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OD∝1 : Si (xt, yt) ∈ T t alors, OD∝,t
0,β (x

t, yt) ≥ 0.

OD∝2 : Pour tout δt ∈ R, OD∝,t
0,β (x

t, yt + δtβt ⊙ yt) = OD∝,t
0,β (x

t, yt)− δt.

OD∝3 : Pour tout λt > 0, OD∝,t
0,β (λ

txt, λtyt) = OD∝,t
0,β (x

t, yt).

OD∝4 : Pour tout (xt, yt) ∈ R
m+n
+ , si vt ≤ yt alors, OD∝,t

0,β (x
t, vt) ≥ OD∝,t

0,β (x
t, yt).

OD∝5 : Pour tout λt ≥ 1 on a OD∝,t
0,β (λ

txt, yt) ≥ OD∝,t
0,β (x

t, yt) et, Pour tout θ ∈ [0, 1] on a

OD∝,t
0,β (x

t, θtyt) ≥ OD∝,t
0,β (x

t, yt).

OD∝6 : Pour tout (ωx, ωy) ∈ R
m+n
++ si x̂t = xt ⊙ ωx et ŷt = yt ⊙ ωy avec (x̂t, ŷt) ∈ T alors

OD∝,t
0,β (x̂

t, ŷt) = OD∝,t
0,β (x

t, yt).

Nous retrouvons des axiomes similaires à une orientation en input. De ce fait, les trois pre-

mières hypothèses sont respectivement relatives à la caractérisation de la technologie par la me-

sure, à sa translation homothéticité et à son homogénéité de degré 0 sous l’hypothèse de rendements

d’échelle constants. Les deux propriétés suivantes concernent quant à elles, la monotonicité faible

de la fonction lorsque les outputs sont librement disponibles mais également lorsque les inputs

et les outputs sont faiblement disponibles. Le sixième et dernier axiome signifie que la mesure

orientée en output est indépendante des unités de mesure.

xt
1

xt
2

0

Lt(yt)

IsoqLt(yt)

•

•

xt

(1 − δt)xt

•

•

x̃t

(1 − δt)x̃t

FIGURE 19 – Fonction de Distance Pro-
portionnelle orientée en input

yt1

yt2

0

•

•

P t(xt)

IsoqP t(xt)

yt

(1 + δt)yt

•

•

ỹt

(1 + δt)ỹt

FIGURE 20 – Fonction de Distance Pro-
portionnelle orientée en output

Les figures 19 et 20 représentent respectivement la contraction maximale des inputs et l’expan-

sion maximale des outputs. Les facteurs et les produits sont translatés par un vecteur correspondant

aux observations. Grâce à la figure 19, nous pouvons observer que la droite relative au vecteur di-

recteur (xt1, x
t
2) passe par l’origine pour toute combinaison de facteurs caractérisée par le vecteur
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xt. Il en est de même pour la correspondance en outputs (figure 20). De ce fait, on peut affirmer

que la FDP est une mesure radiale qui peut être considérée comme une généralisation des mesure

de Debreu-Farrell.

Suite à cette dernière affirmation, on peut établir une relation d’équivalence entre les mesures

de Debreu-Farrell et la FDP lorsque certaines conditions sont remplies. Ainsi, pour (αt, βt) =

(11m, 0), la FDP et la mesure de Debreu-Farrell orientées en input sont reliées de telle sorte que :

ID∝,t
11m,0(x

t, yt) = 1− Et
I(x

t, yt).

Par ailleurs, lorsque (αt, βt) = (0, 11n), la FDP orientée en output peut être obtenue grâce à la

mesure de Debreu-Farrell en output. Cette relation est caractérisée par :

OD∝,t
0,11n(x

t, yt) = Et
O(x

t, yt)− 1.

Remarquons que les relations entre les FDP et les mesures de Debreu-Farrell sont similaires

à celles entre les FDD et les mesures de Debreu-Farrell (sous-section 2.1.2). En effet, puisque les

FDD et la FDP sont équivalentes lorsque gt = (xt, yt) alors, il est cohérent de retrouver les mêmes

relations d’équivalence avec les mesures de Debreu-Farrell.

2.2 La Théorie de la Dualité

Hotelling (1932) fait le lien entre le changement du profit et la variation de l’offre et de la

demande. Plus connue sous le nom de Lemme de Hotelling, cette relation est le point de départ de

la théorie de la dualité. Shephard (1953, 1970) formalise la dualité qui existe entre les fonctions de

production et les fonctions de coût. McFadden (1978) quant à lui, étend l’analyse aux fonctions de

revenu et de profit. Nous savons que la fonction de production décrit la technologie de production,

et que cette dernière peut être caractérisée par les mesures de distance. De ce fait, une relation duale

existe également entre les fonctions de distance et les fonctions de coût, de revenu et de profit.
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2.2.1 La Fonction de Coût

La fonction de coût peut être définie grâce à la correspondance des facteurs. Soit le vecteur

prix des intrants wt = (wt
1, · · · , w

t
m) ∈ R

m
+ associé au vecteur des inputs xt ∈ R

m
+ . Ainsi, le coût

minimum de production peut être défini comme suit :

Ct : R
m
+ × R

n
+ → R+ ∪ {+∞}

Ct(wt, yt) =







infx {w
t · xt : (xt, yt) ∈ T t} si Lt(yt) 6= ∅

+∞ sinon

= inf
x

{

wt · xt : xt ∈ Lt(yt)
}

.

Sous les hypothèses T1-T7 du graphe de la technologie, la fonction de coût, vérifie les proprié-

tés suivantes :

C1 : Pour tout wt ∈ R
m
+ on a, Ct(wt, 0) = 0.

C2 : Pour tout (wt, yt) ∈ R
m+n
++ alors, Ct(wt, yt) > 0.

C3 : Pour tout wt, ŵt ∈ R
m
+ si ŵt ≥ wt alors, Ct(ŵt, yt) ≥ Ct(wt, yt).

C4 : Pour tout ŷt, yt ∈ R
n
+ si ŷt ≥ yt alors, Ct(wt, ŷt) ≥ Ct(wt, yt).

C5 : Pour tout λ > 0 on a, Ct(λwt, yt) = λCt(wt, yt).

C6 : Ct(wt, yt) est concave et continue en wt.

C7 : Sous l’hypothèse de rendements d’échelle constants, Pour tout λ > 0 alors,

Ct(wt, λyt) = λC(wt, yt).

C8 : Si T t(xt, yt) est convexe alors, Ct(wt, yt) est également convexe en yt.

L’axiome C1 stipule que les coûts fixes ne sont pas pris en considération tandis que C2 indique

que toute production effective engendre des coûts non nuls. Les propriétés C3 et C4 concernent

respectivement la monotonicité de la fonction de coût en wt et en yt. L’hypothèse C5 signifie

que la fonction est semi-homogène de degré 1 en prix. Cette propriété implique C6. L’axiome C7

concerne la semi-homogénéité de degré 1 en outputs de la mesure lorsque les rendements d’échelle

sont constants.

Comme mentionnée précédemment, il existe une relation duale entre la fonction de coût et la

technologie de production. Celle-ci peut être exprimée grâce à la correspondance en inputs lorsque
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Lt(yt) satisfait les hypothèses L1-L7. Ce sous-ensemble peut être défini par la structure des prix

tel que :

Lt(yt) =
{

xt ∈ R
m
+ : wt · xt ≥ Ct(wt, yt), wt ∈ R

m
+

}

=
⋂

w≥0

{

xt ∈ R
m
+ : wt · xt ≥ Ct(wt, yt)

}

.

La dernière définition est liée au théorème de séparation des convexes tel que le sous-ensemble

convexe Lt(yt) est constitué par l’intersection de tous les demi-plans qui le contiennent.

Sous certaines hypothèses, une relation duale existe entre la fonction de coût et les fonctions

de distance orientées en input. En effet, ces dernières caractérisent la correspondance en intrants

or, celle-ci peut également être exprimée par la fonction de coût. Ainsi, la dualité entre la fonction

de distance de Shephard en input et la fonction de coût peut être établie comme suit.

Pour tout (xt, yt) ∈ R
m
+ × R

n
+ et tout wt ∈ R

m
+ , si Lt(yt) satisfait L1-L7 alors,

Ct(wt, yt) = inf
x

{

wt · xt : Dt
I(x

t, yt) = 1
}

Dt
I(x

t, yt) = inf
w≥0

{

wt · xt : Ct(wt, yt) = 1
}

.

Par ailleurs, le Lemme de Shephard indique qu’il est possible d’obtenir la fonction de demande

conditionnelle des facteurs grâce à la fonction de coût. Ce lemme a son dual qui permet de dériver la

fonction de prix ajustés des facteurs grâce à la technologie de production(Lemme dual de Shephard

). Ainsi, aux points où la fonction de coût est différentiable par rapport aux prix des facteurs, si elle

admet un minimum x∗,t(wt, yt) alors, le Lemme de Shephard permet de déduire que :

∇w C
t(wt, yt) = x∗,t(wt, yt).

Si la FDS en input est différentiable par rapport aux facteurs alors, le Lemme dual de Shephard

stipule que :

∇x D
t
I(x

t, yt) = w∗,t(xt, yt)

où w∗,t(xt, yt) = argminw {w
t · xt : Ct(wt, yt) = 1}.
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De manière analogue, nous pouvons établir une relation duale entre la FDD axée sur les intrants

et la fonction de coût. Si Lt(yt) vérifie les axiomes L1-L7 alors, quel que soit wt ∈ R
m
+ avec

(xt, yt) ∈ R
m+n
+ :

Ct(wt, yt) = infx {w
t · xt −Dt(xt, yt; ht, 0) wt.ht : D(xt, yt; ht, 0) ≥ 0}

Dt(xt, yt; ht, 0) = infw≥0 {w
t · xt − Ct(wt, yt) : wt · ht = 1} .

Grâce au Lemme de Shephard et au Lemme dual de Shephard, aux points où la FDD orientée

en input et la fonction de coût sont différentiables, nous avons :

∇wC
t(wt, yt) = x∗,t(wt, yt; ht, 0),

∇xD
t(xt, yt; ht, 0) = w∗,t(xt, yt; ht, 0),

où, x∗,t(wt, yt; ht, 0) et w∗,t(xt, yt; ht, 0) sont respectivement la fonction de demande condi-

tionnelle et la fonction de prix ajustés.

Cette dualité entre la fonction de coût et les fonctions de distance s’applique également à la

FDP. En effet, rappelons que lorsque gt = (xt, 0), la FDD coïncide avec la FDP.

xt
1

xt
2

0

gt = (ht
1, h

t
2)

IsoqLt(yt)

Ct(ŵt, ŷt)

Ct(wt, yt)

•

•

•

•

x̂t

x̂t − δ · ht

xtλtxt

FIGURE 21 – Mesures d’efficacité, fonction de coût et dualité.

La Figure 21 illustre la dualité entre les fonctions de distance et la fonction de coût. Soient

les observations inefficientes (xt, yt) et (x̂t, ŷt). Leur projection sur l’isoquant de Lt(yt) permet de
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minimiser les coûts. En effet, en ce point, le vecteur prix permet de déterminer le vecteur optimal

d’inputs qui minimise les coûts.

2.2.2 La Fonction de Revenu

La fonction de revenu peut être définie sur la base soit, de la technologie de production soit, de

la correspondance en outputs. Pour tout vecteur prix des outputs pt = (pt1, · · · , p
t
n) ∈ R

n
+ associé

au vecteur d’outputs yt ∈ R
n
+, le revenu maximal de la production est défini par :

Rt : Rm
+ × R

n
+ → R ∪ {−∞}

Rt(pt, xt) =











sup
y
{pt · yt : (xt, yt) ∈ T t} si P t(xt) 6= ∅

−∞ sinon

= supy {p
t · yt : yt ∈ P t(xt)} .

Lorsque la technologie de production satisfait les hypothèses T1-T7, on admet que la fonction

de revenu satisfait les propriété ci-dessous :

R1 : Pour tout pt ∈ R
n
+ on a Rt(pt, 0) = 0.

R2 : Pour tout (pt, xt) ∈ R
m+n
++ alors, R(pt, xt) > 0.

R3 : Pour tout pt, p̂t ∈ R
n
+ si p̂t ≥ pt alors, R(p̂t, xt) ≥ R(pt, xt).

R4 : Pour tout xtx̂t ∈ R
m
+ si x̂t ≥ xt alors, R(pt, x̂t) ≥ R(pt, xt).

R5 : Pour tout λ > 0 on a, R(λpt, xt) = λR(pt, xt).

R6 : R(pt, xt) est convexe et continue en pt.

R7 : Sous l’hypothèse de rendements d’échelle constants, Pour tout λ > 0 on a, R(pt, λxt) =

λR(pt, xt).

R8 : Si T t(xt, yt) est convexe alors, R(pt, xt) est concave en yt.

L’axiome R1 stipule qu’il n’y a pas de repas gratuit. La propriété R2 signifie qu’une utilisation

des inputs induit un revenu non nul. Les axiomes R3 et R4 font respectivement référence à la

monotonicité de la fonction de revenu par rapport aux prix et aux inputs. La propriété R5 implique

que la fonction est positivement semi-homogène de degré 1 par rapport aux prix et celle-ci induit

directement l’axiome R6. L’hypothèse R7 concerne l’homogénéité de degré 1 de la fonction de

revenu lorsque les rendements d’échelle sont constants.
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Lorsque la correspondance en outputs satisfait P1-P7, la relation duale qui existe entre la fonc-

tion de revenu et la technologie de production permet d’exprimer ce sous-ensemble de la manière

suivante :

P t(xt) =
{

yt ∈ R
n
+ : pt · yt ≤ Rt(pt, xt), pt ∈ R

n
+

}

=
⋂

p≥0

{

yt ∈ R
n
+ : pt · yt ≤ Rt(pt, xt)

}

.

Ainsi, selon le théorème de la séparation des convexes, le sous-ensemble P t(xt) est formé par

l’intersection de tous les demi-plans le contenant.

Les fonctions de distance axées sur les extrants permettent de caractériser la correspondance

en outputs et donc, la technologie de production. Puisqu’une relation duale existe entre le sous-

ensemble P t(xt) et la fonction de revenu, cette dernière est donc duale aux mesures de distance

orientées en outputs. Ainsi, la FDS en output et la fonction de revenu peuvent être redéfinie de la

manière suivante.

Pour tout (xt, yt) ∈ R
m
+ × R

n
+ et pt ∈ R

n
+, si P t(xt) satisfait P1-P7 alors :

Rt(pt, xt) = sup
y
{pt · yt : Dt

O(x
t, yt) = 1}

Dt
O(x

t, yt) = sup
p≥0
{pt · yt : Rt(pt, xt) = 1} .

Le Lemme de Shephard et le Lemme dual de Shephard permettent respectivement de déduire la

fonction d’offre conditionnelle et la fonction de prix ajustés des produits. Par conséquent, lorsque

la fonction de revenu est différentiable par rapport aux prix des outputs nous avons :

∇pR
t(pt, xt) = y∗,t(pt, xt),

où y∗,t(pt, xt) est la fonction d’offre conditionnelle.

De plus, si la FDS en output est également différentiable relativement aux outputs alors,

∇yD
t
O(x

t, yt) = p∗,t(xt, yt)

tel que p∗,t(xt, yt) = argminp {p
t · yt : Rt(pt, xt) = 1} est la fonction de prix ajustés.
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Comme dans la sous-section précédente, il est possible de traduire la relation duale qui existe

entre la FDD orientée en output et la fonction de revenu comme suit.

Si P t(xt) satisfait les propriétés P1-P7 alors, pour tout pt ∈ R
n
+ et tout (xt, yt) ∈ R

m+n
+ :

Rt(pt, xt) = sup
y
{pt · yt +Dt(xt, yt; 0, kt)pt · kt : Dt(xt, yt; 0, kt) ≥ 0}

Dt(xt, yt; 0, kt) = inf
w≥0
{Rt(pt, xt)− pt · yt : pt · kt = 1} .

De plus, lorsque la fonction de revenu et la FDD orientée en output sont respectivement dif-

férentiables par rapport aux prix des produits et aux extrants, le Lemme de Shephard et le Lemme

dual de Shephard permettent d’établir que :

∇pR
t(pt, xt) = y∗,t(pt, xy; 0, kt)

∇yD
t(xt, yt; 0, k) = p∗,t(xt, yt; 0, kt).

Lorsque le vecteur de direction gt = (0, yt), on retrouve la FDP non-pondérée. Dans ce cas, la

théorie de la dualité peut également être appliquée à cette mesure.

yt1

yt2

0
IsoqP t(xt)

P t(xt)

gt = (k1, k2)

•

•

•
•

ŷt + δt · kt

ŷt

yt/λt

yt

Rt(p̂t, ŷt)
Rt(pt, yt)

FIGURE 22 – Mesures de performance, fonction de revenu et dualité.

La figure 22 décrit le principe de la dualité entre les fonctions de coût et les fonctions de

distance. Les unités de production (xt, yt) et (x̂t, ŷt) étant inefficientes, la projection de ces unités
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sur la frontière efficiente permet de déterminer le vecteur prix des produits qui permet de maximiser

le revenu.

2.2.3 La Fonction de Profit

La fonction de profit représente le bénéfice des entités de production et repose sur la technologie

de production. Soient (wt, pt) ∈ R
m+n
+ les vecteurs prix associés respectivement aux inputs xt ∈

R
m
+ et aux outputs y ∈ R

n
+. Le profit maximal est défini par la fonction suivante :

Πt : Rm
+ × R

n
+ → R ∪ {+∞}

Πt(wt, pt) =











sup
(x,y)

{pt · yt − wt · xt : (xt, yt) ∈ T t} si T t(xt, yt) 6= ∅

+∞ sinon

Lorsque les axiomes T1-T7 sont satisfaits par la technologie alors, la fonction de profit vérifie

les propriétés suivantes :

Π1 : Pour tout (wt, pt) ∈ R
m+n
+ , on a Πt(0, 0) = 0.

Π2 : Pour tout (wt, pt) ∈ R
m+n
+ alors, Πt(wt, pt) ≥ 0.

Π3 : Pour tout (ŵt, p̂t) ∈ R
m+n
+ et Pour tout (wt, pt) ∈ R

m+n
+ , si ŵt ≥ wt et p̂t ≥ pt alors,

Πt(ŵt, p̂t) ≥ Πt(wt, pt).

Π4 : Pour tout λ > 0, on a Πt(λwt, λpt) = λΠt(wt, pt).

Π5 : Πt(wt, pt) est convexe et continue en wt et en pt.

Π6 : Sous l’hypothèse de rendements d’échelle constants, soitΠt(wt, pt) = 0 soit,Πt(wt, pt) =

+∞.

L’axiome (Π1) stipule qu’il n’y a pas de repas gratuit. (Π2) signifie qu’une utilisation effective

des facteurs et une production effective induisent un profit non-nul tandis que le point (0, 0) est

toujours réalisable. Les propriétés (Π3) et (Π4) font respectivement référence à la monotonicité de

la fonction de profit et à sa semi-homogénéité de degré 1 par rapport aux prix. L’hypothèse (Π5)

découle directement de la (Π4). (Π6) est une conséquence de la structure de la technologie lorsque

les rendements d’échelle sont constants.

La fonction de profit permet de représenter le graphe de la technologie, lorsque celui-ci respecte
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les axiomes T1-T7. Par conséquent, nous pouvons établir que :

T t(xt, yt) =
{

(xt, yt) ∈ R
m+n
+ : pt · yt − wt · xt ≤ Πt(wt, pt), (wt, pt) ∈ R

m+n
+

}

=
⋂

(w,p)≥0

{

(xt, yt) ∈ R
m+n
+ : pt · yt − wt · xt ≤ Πt(wt, pt)

}

.

Cette dernière définition est déduite directement du théorème de séparation des convexes. En

effet, le graphe de la technologie est constitué par l’intersection de tous les demi-plans qui le

contiennent.

Une relation duale existe entre les fonctions de mesure définies dans le graphe et la fonction

de profit. Ce résultat est dû aux travaux de Luenberger(1992a,1992b,1995) ainsi que de Chambers,

Chung et Färe (1998). Sachant que les FDS et les mesures de Debreu-Farrell ne sont orientées

que soit en input soit en output, celles-ci ne sont donc pas liées de manière duale aux fonctions de

profit. Dans ces conditions, nous pouvons définir la dualité entre la FDD orientée dans le graphe et

la fonction de profit comme ci-dessous.

Pour tout (xt, yt) ∈ R
m
+ × R

n
+ et tout (wt, pt) ∈ R

m
+ × R

n
+, si T t(xt, yt) satisfait T1-T7 alors,

Πt(wt, pt) = sup
(x,y)

{pt · yt − wt · xt +Dt(xt, yt; ht, kt)(wt · ht + pt · kt)}

Dt(xt, yt; ht, kt) = inf
(w,p)≥0

{Πt(wt, pt)− (pt · yt − wt · xt) : wt · ht + pt · kt = 1} .

Lorsque la fonction de profit est différentiable par rapport aux prix des inputs et des outputs, le

Lemme de Shephard permet de déduire les fonctions de demande et d’offre conditionnelles comme

suit :

∇wΠ
t(wt, pt) = x∗,t(wt, yt; ht, kt),

∇pΠ
t(wt, pt) = y∗,t(xt, pt; ht, kt).

Le Lemme dual de Shephard donne quant à lui, la possibilité de trouver les fonctions de prix

ajustés (ou prix implicites) qui représentent les prix d’équilibre lorsque le marché est librement

concurrentiel. De ce fait, ils permettent la maximisation du profit. Par conséquent, lorsque la FDD

est différentiable par rapport aux facteurs et aux produits, les fonctions de prix implicites sont
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représentées par :

∇xD
t(xt, yt; ht, kt) = w∗,t(xt, yt; ht, kt),

∇yD
t(xt, yt; ht, kt) = −p∗,t(xt, pt; ht, kt).

L’ensemble des prix implicites, qui vérifie la représentation duale de la fonction de distance

orientée dans le graphe, est défini par la correspondance des prix ajustés suivante :

P t : Rm+n
+ × R

m+n
+ → 2R

m+n
+

P t(xt, yt; ht, kt) = arg min
(w,p)≥0

{Πt(wt, pt)− (pt · yt − wt · xt) : pt · kt + wt · ht = 1} .

Notons que lorsque gt = (xt, yt), la FDD est équivalente à la FDP à laquelle la théorie de la

dualité dans le graphe de la technologie peut être appliquée.

xt

yt

0

T t(xt, yt)
gt = (ht, kt)

IsoqT(xt, yt)

•

••

• ((I − δA)x̂t, (I + δB)ŷt))

(x̂t, ŷt)
(xt, yt) + δt · gt

(xt, yt)

Πt(ŵt, p̂t)
Πt(wt, pt)

FIGURE 23 – Mesures d’efficience, fonction de profit et dualité.

La figure 23 présente le processus de dualité entre les mesures de distance orientées dans le

graphe et la fonction de profit. Les unités de production étant inefficientes, leur projection sur la

droite de profit donne le score d’efficience technique. Par ailleurs, il en résulte les prix ajustés

permettant la maximisation du profit si le marché est parfaitement concurrentiel. Au point d’inter-

section des hyperplans qui correspond à une observation, les vecteurs prix vérifiant l’optimisation
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de la mesure de distance, peuvent ne pas être uniques.

3 Des Mesures d’Efficacité aux Mesures de la Productivité

Les mesures d’efficacité introduites dans la section précédente ne permettent l’analyse de la

performance des unités de production que pour une période donnée soit (t). Dans cette section,

nous présentons les mesures de productivité. Celles-ci permettent de comparer l’efficacité des en-

tités productives dans le temps et/ou dans l’espace. Dans ces travaux, nous nous intéressons uni-

quement à la dimension temporelle. Dans ce cas, elles évaluent les changements de l’efficacité des

relativement à deux périodes consécutives afin de mieux appréhender les gains (ou pertes) de per-

formance. Les mesures exposées dans cette section sont fondées sur les fonctions de distance. Dans

le cadre de ces travaux, nous nous situons dans une étude à multiple outputs et à multiple inputs.

De ce fait, les grandeurs présentées sont des mesures de productivité totale des facteurs. Avant

de définir les différentes mesures de productivité, il est nécessaire de définir certaines notions.

Soient deux périodes consécutives (t) et (t + 1) et, les vecteurs (xt, yt) ∈ R
m+n
+ et (xt+1, yt+1) ∈

R
m+n
+ qui dénotent respectivement les inputs et les outputs des périodes (t) et (t + 1). On définit

par Dt+1(xt, yt; ht, kt) = sup
(x,y)

{

δt+1(t) : (xt − δt+1(t) · ht, yt + δt+1(t) · kt) ∈ T t+1(xt+1, yt+1)
}

, la

fonction de distance directionnelle orientée dans le graphe, de l’observation (xt, yt) évaluée rela-

tivement à la technologie de production T t+1(xt+1, yt+1). Pour simplifier les notations, on admettra

que T t+1(xt+1, yt+1)

= T t+1 et T t(xt, yt) = T t.

3.1 Les Indices et les Indicateurs de Productivité Usuels

Dans cette sous-section, nous présentons deux types de mesures de la productivité. La première

grandeur fait intervenir des fonctions de distance radiales et, ont une structure multiplicative. Nous

nous y référons comme étant les "indices" de productivité. La seconde mesure est basée sur les

fonctions de distance non-radiales. Elle est structurellement additive et, nous leur attribuons le

terme "indicateur" de productivité.
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3.1.1 Les Indices de Productivité de Malmquist

Suite aux travaux de Malmquist (1953), les indices de productivité de Malmquist ont été pré-

sentés par Caves et al. (1982a, 1982b). Ils reposent sur les fonctions de distance de Shephard. En

ce sens, les auteurs introduisent des mesures de productivité orientées en input et en output.

Les indices de productivité de Malmquist axés sur les intrants des périodes (t) et (t + 1) sont

respectivement définis par :

M t
I(x

t, yt; xt+1, yt+1) =
Dt

I(x
t+1, yt+1)

Dt
I(x

t, yt)

M t+1
I (xt, yt; xt+1, yt+1) =

Dt+1
I (xt+1, yt+1)

Dt+1
I (xt, yt)

.

Le premier est le ratio entre la mesure de Shephard en input des observations de la période

(t + 1) relativement à la technologie de la période (t) et, la mesure de Shephard en intrant des

observations de la période (t) relativement à la technologie de la même période.

Les deux indices présentés ci-dessus ne sont périodiques. Cependant, Färe, Grosskopf, Lind-

gren et Roos(1989) introduisent la notion d’indice de productivité global de Malmquist. Ainsi, la

mesure de productivité globale de Malmquist orientée en input est représentée par :

MI(x
t, yt; xt+1, yt+1) =

(

M t
I(x

t, yt; xt+1, yt+1)×M t+1
I (xt, yt; xt+1, yt+1)

)1/2

=

(

Dt
I(x

t+1, yt+1)

Dt
I(x

t, yt)
×
Dt+1

I (xt+1, yt+1)

Dt+1
I (xt, yt)

)1/2

.

Cette grandeur se présente comme étant la moyenne géométrique des deux indices de productivité

périodiques de Malmquist. Lorsque la valeur de cette mesure est inférieure à 1 (respectivement

supérieure à 1) alors, il existe un gain de productivité (respectivement une perte de productivité).

Par ailleurs, lorsqu’elle est égale à 1, la productivité de l’entreprise reste stable.

De manière analogue, les indices de productivité de Malmquist orientés en output des périodes
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(t) et (t + 1) sont respectivement définis par :

M t
O(x

t, yt; xt+1, yt+1) =
Dt

O(x
t+1, yt+1)

Dt
O(x

t, yt)

M t+1
O (xt, yt; xt+1, yt+1) =

Dt+1
O (xt+1, yt+1)

Dt+1
O (xt, yt)

.

Ces deux indices sont basés sur les mesures de Shephard axées sur les extrants des observations

des période (t) et (t+ 1) relativement aux technologies T t et T t+1.

L’indice de productivité global de Malmquist orienté en output est la suivante :

MO(x
t, yt; xt+1, yt+1) =

(

M t
O(x

t, yt; xt+1, yt+1)×M t+1
O (xt, yt; xt+1, yt+1)

)1/2

=

(

Dt
O(x

t+1, yt+1)

Dt
O(x

t, yt)
×
Dt+1

O (xt+1, yt+1)

Dt+1
O (xt, yt)

)1/2

.

L’interprétation de la mesure de productivité globale de Malmquist en output est l’inverse de celle

suivant une orientation en input. Ainsi, lorsque sa valeur est inférieure à 1 (respectivement su-

périeure à 1), l’unité de production fait face à une perte de productivité (respectivement un gain

de productivité) d’une période sur l’autre. Une valeur égale à 1, signifie que la performance de

l’entreprise reste inchangée.

Les indices de productivité de Malmquist indiquent s’il y a eu gain ou perte de productivité

d’une période sur une autre. Cependant, ils ne permettent pas de connaître les sources de ces varia-

tions. De ce fait, Nishimizu et Page (1982) proposent une décomposition des indices de producti-

vité globaux afin de différencier les gains ou les pertes de performance imputables au changement

d’efficacité technique et au progrès technique. Suite à ces travaux, Färe et al. (1989) proposent une

décomposition des mesures de productivité globales de Malmquist en termes de variation de la

performance et de mutation technologique.

L’indice de productivité global de Malmquist axé sur les facteurs peut être reformulé de la

manière suivante :

MI(x
t, yt; xt+1, yt+1) =

Dt+1
I (xt+1, yt+1)

Dt
I(x

t, yt)
×

(

Dt
I(x

t+1, yt+1)

Dt+1
I (xt+1, yt+1)

×
Dt

I(x
t, yt)

Dt+1
I (xt, yt)

)1/2

.
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tels que

EFFCHI =
Dt+1

I (xt+1, yt+1)

Dt
I(x

t, yt)

TECHI =

(

Dt
I(x

t+1, yt+1)

Dt+1
I (xt+1, yt+1)

×
Dt

I(x
t, yt)

Dt+1
I (xt, yt)

)1/2

.

EFFCHI désigne le changement de l’efficacité technique entre la période (t) et la période

(t + 1). Lorsque ce ratio est inférieur à 1, il y a un gain de performance qui est dû à une hausse

de l’efficacité technique. En ce sens, l’unité de production réussit à produire plus d’outputs en uti-

lisant moins d’inputs (meilleure allocation des ressources) tout en gardant le même processus de

production. TECHI quant à lui, fait référence à la variation de la performance qui peut être impu-

tée au progrès technologique. Lorsque cette grandeur est inférieure à 1, on peut en déduire qu’une

partie du gain de productivité de l’entreprise a été induite par une transformation technologique du

processus productif.

De manière similaire, l’indice de productivité global de Malmquist orienté en output peut éga-

lement être décomposé. En suivant le même raisonnement logique que dans le cas d’une orientation

en intrant, on obtient les composantes EFFCHO et TECHO de l’indice de productivité global

en output. Notons que les valeurs de ces composantes sont interprétées de manière inverse à celles

obtenues selon une orientation en input.

La figure 24 présente les différentes mesures de Shephard orientées en output. Il est à noter que

yt+1(t) et yt(t+1) sont les projections respectives de yt et de yt+1 sur les frontières des technologie

T t+1 et T t. Ainsi, l’indice de productivité de Malmquist orienté en output de la période (t) est :

M t
O =

0yt+1

0yt(t+1)
×

0yt∗
0yt

tandis que l’indice global de Malmquist est :

MO(x
t, yt; xt+1, yt+1) =

(

0yt+1

0yt(t+1)
×

0yt∗
0yt
×

0yt+1

0yt+1
∗

×
0yt+1(t)

0yt

)1/2

.

Lorsqu’une observation de la période (t + 1) est projetée sur la frontière de la technologie de

production, la mesure de l’efficience technique peut être négative.
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IsoqT t

IsoqT t+1
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•
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∗

•

yt+1(t)

yt(t+1)

FIGURE 24 – Indice de productivité de Malmquist orienté en output.

3.1.2 Les Indicateurs de Productivité de Luenberger

Chambers et al. (1996b) présentent les indicateurs de productivité de Luenberger et, les nomment

ainsi en l’honneur de Luenberger (1992a, 1992b). Ces mesures de la productivité sont fondées sur

les fonctions de distance directionnelles. De ce fait, elle peuvent être définies suivant trois orienta-

tions possibles.

Soient gt = (ht, 0) et gt+1 = (ht+1, 0). Les indicateurs de productivité de Luenberger orientés

en input des périodes (t) et (t + 1) sont respectivement :

Lt
I(x

t, xt+1, yt, yt+1; ht, ht+1) = Dt(xt, yt; ht, 0)−Dt(xt+1, yt+1; ht+1, 0)

Lt+1
I (xt, xt+1, yt, yt+1; ht, ht+1) = Dt+1(xt, yt; ht, 0)−Dt+1(xt+1, yt+1; ht+1, 0).

Le premier est constitué de la différence entre les mesures directionnelles des observations

(xt, yt) et (xt+1, yt+1) par rapport à la technologie T t. En revanche, le second est composé de la

différence entre les mesures directionnelles des couples (xt, yt) et (xt+1, yt+1) relativement à la

technologie T t+1.

Nous pouvons également définir un indicateur de productivité global de Luenberger par rapport

aux deux périodes. La mesure de globale orientée en input est caractérisée de la manière suivante :
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LI(x
t, xt+1, yt, yt+1; ht, ht+1, 0, 0) =

1

2

[

Lt
I(x

t, xt+1, yt, yt+1; ht, ht+1)

+ Lt+1
I (xt, xt+1, yt, yt+1; ht, ht+1)

]

.

Nous pouvons constater que la grandeur définie ci-dessus est la moyenne arithmétique des

indicateurs des périodes (t) et (t+ 1).

Soient gt = (0, kt) et gt+1 = (0, kt+1). De manière analogue à l’orientation en intrant, les

indicateurs de Luenberger orientés en output sont :

Lt
O(x

t, xt+1, yt, yt+1; kt, kt+1) = Dt(xt, yt; 0, kt)−Dt(xt+1, yt+1; 0, kt+1)

Lt+1
O (xt, xt+1, yt, yt+1; kt, kt+1) = Dt+1(xt, yt; 0, kt)−Dt+1(xt+1, yt+1; 0, kt+1).

La première mesure concerne la période (t) tandis que la seconde est relative à la période

(t + 1). L’indicateur de productivité global de Luenberger orienté en output est mesuré par la

moyenne arithmétique des deux indicateurs périodiques. Il se présente comme suit :

LO(x
t, xt+1, yt, yt+1; 0, 0, kt, kt+1) =

1

2

[

Lt
O(x

t, xt+1, yt, yt+1; kt, kt+1)

+ Lt+1
O (xt, xt+1, yt, yt+1; , kt, kt+1)

]

.

Contrairement à l’indice de productivité de Malmquist, l’indicateur de productivité de Luen-

berger peut être défini selon une orientation dans le graphe. En posant gt = (ht, kt) et gt+1 =

(ht+1, kt+1), les indicateurs des périodes (t) et (t+ 1) sont respectivement :

Lt(xt, xt+1, yt, yt+1; gt, gt+1) = Dt(xt, yt; ht, kt)−Dt(xt+1, yt+1; ht+1, kt+1)

Lt+1(xt, xt+1, yt, yt+1; gt, gt+1) = Dt+1(xt, yt; ht, kt)−Dt+1(xt+1, yt+1; ht+1, kt+1).
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Le mesure de la productivité globale de Luenberger relative aux deux périodes est donc :

L(xt, xt+1, yt, yt+1; gt, gt+1) =
1

2

[

Lt(xt, xt+1, yt, yt+1; gt, gt+1)

+Lt+1(xt, xt+1, yt, yt+1; gt, gt+1)
]

.

Il est également possible d’identifier les sources du gain (ou de la perte) de performance révélé

par les indicateurs de productivité. Ainsi, nous décomposons les mesures de productivité de Luen-

berger en deux composantes. La première reflète un gain d’efficacité technique d’une période par

rapport à une autre et la seconde met en évidence un changement technologique dans le processus

de production. Dans le cas de l’indicateur de productivité global de Luenberger orienté dans le

graphe, ces deux composantes sont respectivement :

EFFCH = Dt(xt, yt; ht, kt)−Dt+1(xt+1, yt+1; ht+1, kt+1),

TECH =
1

2

[

Dt+1(xt+1, yt+1; ht+1, kt+1)−Dt(xt+1, yt+1; ht+1, kt+1)

+Dt+1(xt, yt; ht, kt)−Dt(xt, yt; ht, kt)
]

,

où EFFCH est la variation de l’efficacité technique tandis que TECH est le changement tech-

nologique. A partir de ces deux composantes, on peut reformuler la mesure de productivité globale

de Luenberger orientée dans le graph, de la manière suivante :

L(xt, xt+1, yt, yt+1; gt, gt+1) =
[

Dt(xt, yt; ht, kt)−Dt+1(xt+1, yt+1; ht+1, kt+1)
]

+
1

2

[

Dt+1(xt+1, yt+1; ht+1, kt+1)−Dt(xt+1, yt+1; ht+1, kt+1)

+Dt+1(xt, yt; ht, kt)−Dt(xt, yt; ht, kt)
]

.

La Figure 25 présente deux technologies de production relatives à deux périodes consécutives,

(t) et (t+ 1). Soit le point A qui correspond à l’observation (xt, yt) de la période (t) tandis que B

est le couple (xt+1, yt+1) de la période (t + 1). Selon une orientation dans le graphe, les mesures
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IsoqT t+1
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•
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A′′
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• B

•B
′

•
B′′

FIGURE 25 – Indicateurs de productivité de Luenberger orientés dans le graphe.

d’efficacité en terme de distance algébrique de ces observations sont les suivantes :

Dt(xt, yt; gt) =
1

‖gt‖
‖A′ − A‖

Dt+1(xt+1, yt+1; gt+1) =
1

‖gt+1‖
‖B′′ −B‖

Dt+1(xt, yt; gt) =
1

‖gt‖
‖A′′ − A‖

Dt(xt+1, yt+1; gt+1) =
1

‖gt+1‖
‖B − B′‖.

De ce fait, l’expression de l’indicateur de productivité global de Luenberger selon la distance

algébrique est :

L(xt, xt+1, yt, yt+1; gt, gt+1) =
1

2

[

1

‖gt‖
(‖A′ − A‖+ ‖A′′ −A‖)

−
1

‖gt+1‖
(‖B −B′‖+ ‖B′′ − B‖)

]

.
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3.1.3 La Relation entre les Indices de Productivité de Malmquist et les Indicateurs de Pro-

ductivité de Luenberger

Boussemart, Briec, Kerstens et Poutineau (2003) démontrent qu’il existe une relation d’ap-

proximation linéaire entre les indicateurs de productivité de Luenberger et les indices de producti-

vité de Malmquist. Ainsi, pour gt = (xt, yt) et gt+1 = (xt+1, yt+1) lorsque la FDD coïncide avec la

FDP alors, sous l’hypothèse de rendements d’échelle constants et, suite aux relations d’équivalence

entre les mesures de Debreu-Farrell et la FDP, les auteurs établissent que :

ln (MI(x
t, yt, xt+1, yt+1)) ∼= −2.L(xt, xt+1, yt, yt+1, ; gt, gt+1)

ln (MO(x
t, yt, xt+1, yt+1)) ∼= 2.L(xt, xt+1, yt, yt+1, ; gt, gt+1)

ln (MI(x
t, yt, xt+1, yt+1)) ∼= −LI(x

t, xt+1, yt, yt+1, ; gt, gt+1)

ln (MO(x
t, yt, xt+1, yt+1)) ∼= LO(x

t, xt+1, yt, yt+1, ; gt, gt+1)

L(xt, xt+1, yt, yt+1, ; gt, gt+1) ∼=
1

2
[LO(x

t, xt+1, yt, yt+1, ; gt, gt+1)

−LI(x
t, xt+1, yt, yt+1, ; gt, gt+1)] .

On peut constater que les mesures de productivité de Luenberger peuvent être approximées

par les logarithmes des indices de productivité de Malmquist. Rappelons que ces relations ne sont

valables que si les technologies de production étudiées opèrent sous l’hypothèse de rendements

d’échelle constants.

Balk, Färe, Grosskopf et Margaritis(2008) prouvent quant à eux, que les mesures de producti-

vité de Malmquist et de Luenberger sont équivalentes lorsque certaines conditions sont respectées.

Les résultats qu’ils présentent ne sont valables que si les unités de productions sont techniquement

efficients à chaque période avec gt = (xt, yt) et gt+1 = (xt+1, yt+1). Supposons que (xt, yt) et

(xt+1, yt+1) appartiennent respectivement aux frontières efficientes des technologies T t et T t+1.

En posant la même hypothèse que Caves et al. (1982a) telle que Dt
I(x

t, yt) = Dt+1
I (xt+1, yt+1) =

Dt
O(x

t, yt) = Dt+1
O (xt+1, yt+1) = 1 ainsi que Dt(xt, yt; ht, 0) =

Dt+1(xt+1, yt+1; ht+1, 0) = Dt(xt, yt; 0, kt) = Dt+1(xt+1, yt+1; 0, kt+1) = 0, alors pour chaque
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période, les relations suivantes existent :

M t
I(x

t, xt+1, yt, yt+1) = [1 + Lt
I(x

t, xt+1, yt, yt+1; ht, ht+1)]
−1

M t+1
I (xt, xt+1, yt, yt+1) = 1− Lt+1

I (xt, xt+1, yt, yt+1; ht, ht+1)

M t
O(x

t, xt+1, yt, yt+1) = [1− Lt
O(x

t, xt+1, yt, yt+1; kt, kt+1)]
−1

M t+1
O (xt, xt+1, yt, yt+1) = 1 + Lt+1

O (xt, xt+1, yt, yt+1; kt, kt+1) .

Grâce à ces équivalences, il est alors possible d’exprimer les indices de productivité globaux

de Malmquist en fonction des indicateurs de productivité de Luenberger de telle sorte que :

MI(x
t, xt+1, yt, yt+1) =

(

1− Lt+1
I (xt, xt+1, yt, yt+1; ht, ht+1)

1 + Lt
I(x

t, xt+1, yt, yt+1; ht, ht+1)

)1/2

MO(x
t, xt+1, yt, yt+1) =

(

1 + Lt+1
O (xt, xt+1, yt, yt+1; kt, kt+1)

1− Lt
O(x

t, xt+1, yt, yt+1; kt, kt+1)

)1/2

.

De la même manière, on peut obtenir l’expression des indicateurs de productivité de Luenber-

ger en fonction des indices de productivité de Malmquist comme suit :

Lt
I(x

t, xt+1, yt, yt+1; ht, ht+1) = (M t
I(x

t, xt+1, yt, yt+1))
−1
− 1

Lt+1
I (xt, xt+1, yt, yt+1; ht, ht+1) = 1−M t+1

I (xt, xt+1, yt, yt+1)

Lt
O(x

t, xt+1, yt, yt+1; kt, kt+1) = 1− (M t
O(x

t, xt+1, yt, yt+1)
−1

Lt+1
O (xt, xt+1, yt, yt+1; kt, kt+1) =M t+1

O (xt, xt+1, yt, yt+1)− 1 .

Par conséquent, les indicateurs de productivité globaux de Luenberger sont :

LI(x
t, xt+1, yt, yt+1; ht, ht+1) =

1

2

[

(M t
I(x

t, xt+1, yt, yt+1))
−1
−M t+1

I (xt, xt+1, yt, yt+1)
]

Lt
O(x

t, xt+1, yt, yt+1; kt, kt+1) =
1

2

[

M t+1
O (xt, xt+1, yt, yt+1)− (M t

O(x
t, xt+1, yt, yt+1)

−1
]

.

Nous pouvons noter que les travaux de Balk et al. (2008) ne présentent que les relations d’équi-

valence selon une orientation en inputs ou en outputs.
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3.2 Les Extensions des Mesures de Productivité de Malmquist et de Luen-

berger

La littérature fait apparaître que les mesures de productivité de Malmquist et de Luenberger

peuvent amener à des infaisabilités (Briec et Kerstens (2009a, 2009b)). Ainsi, Diewert (1992a,

1992b) présente une mesure de productivité fondée sur les indices de quantité de Malmquist. Dans

le même esprit, Briec et Kerstens (2004) introduisent une mesure de productivité basée sur les

indicateurs de quantité de Luenberger. Notons que l’expression "mesure de quantité" signifie que

seule la composante étudiée varie dans le temps. Par exemple, si nous prenons une mesure de

quantité en input de la période (t), seuls les intrants varient à la période (t+ 1). Dans ce cas, nous

étudions les observations (xt, yt) et (xt+1, yt).

3.2.1 Les Indices de Productivité de Hicks-Moorsteen

Afin de pallier aux infaisabilités qui peuvent apparaître dans l’estimation des indices de produc-

tivité de Malmquist, Diewert (1992a, 1992b) propose un indice de productivité basé sur le ration

entre les indices de quantité de Malmquist orientés en input et en output. Il attribue cette approche

à Hicks (1961) et Moorsteen (1961).

Bjurek (1996) reprend les travaux de Diewert (1992a, 1992b) et définit l’indice de productivité

de Hicks-Moorsteen de la période (t) de la manière suivante :

HM t(xt, xt+1, yt, yt+1) =
MOt(xt, yt, yt+1)

MI t(xt, xt+1, yt)
.

Cette mesure est donc constituée dur ratio entre les indices de quantité de Malmquist orientés

en output et en input qui sont respectivement :

MOt(xt, yt, yt+1) =
Dt

O(x
t, yt+1)

Dt
O(x

t, yt)

MI t(xt, xt+1, yt) =
Dt

I(x
t+1, yt)

Dt
I(x

t, yt)
.

Notons que les mesures de distance de Shephard font intervenir les observations fictives suivantes

(xt, yt+1) et (xt+1, yt).

De la même manière, la mesure de productivité de Hicks-Moorsteen de la période (t + 1) est
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caractérisée par :

HM t+1(xt, xt+1, yt, yt+1) =
MOt+1(xt+1, yt, yt+1)

MI t+1(xt, xt+1, yt+1)
,

avec les indices de quantité de Malmquist définis comme suit :

MOt+1(xt+1, yt, yt+1) =
Dt+1

O (xt+1, yt+1)

Dt+1
O (xt+1, yt)

MI t+1(xt, xt+1, yt+1) =
Dt+1

I (xt+1, yt+1)

Dt+1
I (xt, yt+1)

.

Nous pouvons également présenter un indice de productivité global de type Hicks-Moorsteen

qui englobe les deux périodes (t) et (t+ 1). Celle-ci est mesurée par la moyenne géométrique des

deux mesures de productivité périodiques présentées ci-dessus. L’indice de productivité global de

Hicks-Moorsteen est défini par :

HM(xt, xt+1, yt, yt+1) =
[

HM t(xt, xt+1, yt, yt+1)×HM t+1(xt, xt+1, yt, yt+1)
]1/2

.

Lorsque cette mesure prend une valeur inférieure (supérieure) à 1 alors, il existe un gain (une

perte) de productivité de l’unité de productive d’une période à l’autre.

Färe, Grosskopf et Margaritis(2008) précisent que l’indice de productivité de Hicks-Moorsteen

orienté en output (en input) coïncide avec la mesure de productivité de Malmquist en output (en

input) si et seulement si, la technologie de production vérifie à la fois, une homothéticité inverse 8

et des rendements d’échelle constants. Dans ce cas, pour un vecteur de facteurs-produits (x, y)

choisi arbitrairement, ils proposent la décomposition de l’indice de Hicks-Moorsteen suivante :

HM(xt, xt+1, yt, yt+1) =

(

Dt+1
O (x, yt+1)

Dt
O(x, y

t)
×
Dt+1

I (xt+1, y)

Dt
I(x

t, y)

)

×

[(

Dt
O(x, y

t+1)

Dt+1
O (x, yt+1)

Dt
O(x, y

t)

Dt+1
O (x, yt)

)

×

(

Dt+1
I (xt+1, y)

Dt
I(x

t+1, y)

Dt+1
I (xt, y)

Dt
I(x

t, y)

)]1/2

,

8. Une technologie est inversement homothétique si, dans le cas de la fonction de distance de Shephard orientée
en output, DO(x, y) = DO(x, y)/F [DI(x, y)]. Notons que F est une fonction croissante et le vecteur (x, y) est un
vecteur fixé arbitrairement.
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où la variation de l’efficacité technique et le changement technologique sont respectivement :

EFFCH =

(

Dt+1
O (x, yt+1)

Dt
O(x, y

t)
×
Dt+1

I (xt+1, y)

Dt
I(x

t, y)

)

TECH =

[(

Dt
O(x, y

t+1)

Dt+1
O (x, yt+1)

Dt
O(x, y

t)

Dt+1
O (x, yt)

)

×

(

Dt+1
I (xt+1, y)

Dt
I(x

t+1, y)

Dt+1
I (xt, y)

Dt
I(x

t, y)

)]1/2

.

Remarquons que le gain de productivité dû à une variation de l’efficacité technique peut être

induit soit par les facteurs soit par les produits. Ainsi, la part du changement de la performance

imputée aux outputs est représentée par le premier ratio intervenant dans la composanteEFFCH .

Celle attribuée aux inputs est caractérisée par le second ratio. Cette même interprétation peut être

effectuée pour la composante TECH .

x

y

0

IsoqT t

IsoqT t+1

•

•

•

•

•

•
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A′′

A∗A∗∗

B

B′′

B′

B∗

B∗∗

FIGURE 26 – Indice de productivité de Hicks-Moorsteen.

La figure 26 décrit le processus d’estimation de l’indice de productivité de Hicks-Moorsteen.

Soient les observations A = (xt, yt) et B = (xt+1, yt+1) des périodes (t) et (t + 1). L’indice de

quantité de Malmquist orienté en input est représentée par :

MI =

[

0B

0B∗
×

0A∗

0A
×

0B

0B∗∗
×

0A∗∗

0A

]1/2

,
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tandis que celui orienté en output est :

MO =

[

0B

0B′
×

0A′

0A
×

0B

0B′′
×

0A′′

0A

]1/2

.

L’indice de productivité de Hicks-Moorsteen devient donc :

HM =

[

0B∗

0B′
×

0A′

0A∗
×

0B∗∗

0B′′
×

0A′′

0A∗∗

]1/2

.

3.2.2 Les Indicateurs de Productivité de Luenberger-Hicks-Moorsteen

Les indicateurs de productivité de Luenberger-Hicks-Moorsteen (LHM) ont été introduits par

Briec et Kerstens (2004) afin de résoudre les problèmes d’infaisabilités qui surviennent dans les

mesures de productivité de Luenberger. Il sont caractérisés par la différence entre les indicateurs

de quantité de Luenberger orientés en input et en output. De ce fait, l’indicateur de productivité de

LHM de la période (t) est défini par :

LHM t(xt, xt+1, yt, yt+1; gt, gt+1) = LOt(xt, yt, yt+1; kt, kt+1)− LI t(xt, xt+1, yt; ht, ht+1).

Remarquons que des observations fictives (xt, yt+1) et (xt+1, yt) interviennent dans la mesure.

Précisons que :

LOt(xt, yt, yt+1; kt, kt+1) = Dt(xt, yt; 0, kt)−Dt(xt, yt+1; 0, kt+1)

LI t(xt, xt+1, yt; ht, ht+1) = Dt(xt+1, yt; ht+1, 0)−Dt(xt, yt; ht, 0).

De la même manière, on peut définir l’indicateur de productivité de LHM de la période (t+1)

par :

LHM t+1(xt, xt+1, yt, yt+1; gt, gt+1) = Lt+1
O (xt+1, yt, yt+1; kt, kt+1)−Lt+1

I (xt, xt+1, yt+1; ht, ht+1),

avec

LOt+1(xt+1, yt, yt+1; kt, kt+1) = Dt+1(xt+1, yt; 0, kt)−Dt+1(xt+1, yt+1; 0, kt+1)

LI t+1(xt, xt+1, yt+1; ht, ht+1) = Dt+1(xt+1, yt+1; ht+1, 0)−Dt+1(xt, yt+1; ht, 0).
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Afin d’éviter le choix d’une période de base arbitraire, nous pouvons présenter un indicateur

de productivité global de LHM qui intègre simultanément les périodes (t) et (t+ 1). Cette mesure

globale est caractérisée par la moyenne arithmétique des indicateurs LHM périodiques et est définie

comme suit :

LHM(xt, xt+1, yt, yt+1; gt, gt+1) =
1

2

[

LHM t(xt, xt+1, yt, yt+1; gt, gt+1)

+ LHM t+1(xt, xt+1, yt, yt+1; gt, gt+1)
]

.

Lorsque la valeur de l’indicateur de productivité global de LHM est supérieure (inférieure) à

zero alors, il y a un gain (une perte) de productivité.

x

y

0

IsoqT t

IsoqT t+1

•

•

••

•

••

•

A

A′

A∗

B

B′

B∗

C

D

FIGURE 27 – Indice de productivité de Luenberger-Hicks-Moorsteen.

La figure 27 décrit les projections des observations sur la frontière efficiente de la technologie

de production des périodes (t) et (t + 1). Soient les observations réelles A = (xt, yt) et B =

(xt+1, yt+1) ainsi que les observations fictives C = (xt+1, yt) et D = (xt, yt+1). Posons gt, gt+1 ∈

68



De la Caractérisation de la Technologie aux Mesures d’Efficacité et de Productivité

{(1, 0), (0, 1)}. Les indicateurs de quantité de Luenberger sont définis par :

LOt(xt, yt, yt+1; gt, gt+1) =
1

‖(0, 1)‖
(‖A′ −A‖ − ‖A′ − C‖)

LI t(xt, xt+1, yt; gt, gt+1) =
1

‖(1, 0)‖
(‖D − A∗‖ − ‖A−A∗‖)

LOt+1(xt+1, yt, yt+1; gt, gt+1) =
1

‖(0, 1)‖
(‖B′ −D‖ − ‖B′ − B‖)

LI t+1(xt, xt+1, yt+1; gt, gt+1) =
1

‖(1, 0)‖
(‖B − B∗‖ − ‖C − B∗‖) .

A partir de ces mesures de quantité de Luenberger, les indicateurs de productivité de LHM des

périodes (t) et (t + 1) se présentent de la manière suivante :

LHM t(xt, xt+1, yt, yt+1; gt, gt+1) =
1

‖(0, 1)‖
(‖A′ −A‖ − ‖A′ − C‖)

−
1

‖(1, 0)‖
(‖D − A∗‖ − ‖A−A∗‖)

LHM t+1(xt, xt+1, yt, yt+1; gt, gt+1) =
1

‖(0, 1)‖
(‖B′ −D‖ − ‖B′ − B‖)

−
1

‖(1, 0)‖
(‖B − B∗‖ − ‖C − B∗‖) .

3.2.3 La Relation entre l’Indice de Hicks-Moorsteen et l’Indicateur de Luenberger-Hicks-

Moorsteen

Färe, Grosskopf et Roos(1996) démontrent que lorsque la technologie est inversement homo-

thétique et qu’elle satisfait des rendements d’échelle constants alors, l’indice de productivité de

Malmquist est équivalent à l’indice de Hicks-Moorsteen. En effet, sous l’hypothèse de rendements

d’échelle constants, la fonction de distance de Shephard en input est la réciproque de celle en out-

put. De ce fait, si les conditions citées ci-dessus sont remplies alors, l’égalité suivante est valable :

M t
O(x

t, xt+1, yt, yt+1) = HM t(xt, xt+1, yt, yt+1)

Dt
O(x

t+1, yt+1)

Dt
O(x

t, yt)
=
Dt

O(x
t, yt+1)

Dt
O(x

t, yt)
×
Dt

O(x
t+1, yt)

Dt
O(x

t, yt)
.

Briec et Kerstens (2004) établissent dans un premier temps, une relation d’équivalence entre

les mesures de productivité de HM et de LHM. En effet, lorsque les vecteurs de direction sont
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gt = (xt, yt) et gt+1 = (xt+1, yt+1) alors, la FDD coïncide avec la FDP. Ainsi,

LHM(xt, xt+1, yt, yt+1; gt, gt+1) ∼= ln
(

HM(xt, xt+1, yt, yt+1)
)

.

Dans un second temps, les mêmes auteurs prouvent l’existence d’une relation d’équivalence

entre l’indicateur de productivité global de LHM et les mesures de productivité global de Luen-

berger orientés en input et en output. Cette identité n’est possible que si la technologie vérifie la

translation homothéticité réciproque et la graphe translation homothéticité, dans la direction gt,t+1.

Dans ce cas, nous obtenons :

LHM(xt, xt+1, yt, yt+1; gt, gt+1) = LI(x
t, xt+1, yt, yt+1;ht, ht+1) = LO(x

t, xt+1, yt, yt+1; kt, kt+1).

Sous les conditions mentionnées précédemment, nous pouvons relier les mesures de producti-

vité de HM et les indicateurs de productivité de Luenberger. Une relation existe également entre

les mesures de productivité de LHM et les indices de productivité de Malmquist. Lorsque gt =

(xt, yt) et gt+1 = (xt+1, yt+1), nous avons vu que l’indice de productivité de Malmquist en out-

put est M t
O(x

t, xt+1, yt, yt+1) = [1− Lt
O(x

t, xt+1, yt, yt+1; kt, kt+1)]
−1 tandis que celle en input

est, M t
I(x

t, xt+1, yt, yt+1) =
[

1 + Lt
I(x

t, xt+1, yt, yt+1; ht, ht+1)
]−1

. Par conséquent, l’indice de

productivité de HM de la période (t) peut être réécrit comme suit :

HM t(xt, xt+1, yt, yt+1) =
1 + Lt

I(x
t, xt+1, yt, yt+1; ht, ht+1)

1− Lt
O(x

t, xt+1, yt, yt+1; kt, kt+1)
.

La mesure de productivité de HM de la période (t+ 1) est quant à lui, caractérisé par :

HM t+1(xt, xt+1, yt, yt+1) =
1 + Lt+1

I (xt, xt+1, yt, yt+1; ht, ht+1)

1− Lt+1
O (xt, xt+1, yt, yt+1; kt, kt+1)

.

Ainsi, l’indice de productivité global de HM relatif aux deux périodes est :

HM(xt, xt+1, yt, yt+1) =

[

1 + Lt
I(x

t, xt+1, yt, yt+1; ht, ht+1)

1− Lt
O(x

t, xt+1, yt, yt+1; kt, kt+1)

×
1 + Lt+1

I (xt, xt+1, yt, yt+1; ht, ht+1)

1 − Lt+1
O (xt, xt+1, yt, yt+1; kt, kt+1)

]1/2

.
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Dans cette même démarche, puisque

Lt
O(x

t, xt+1, yt, yt+1; kt, kt+1) = 1−
(

M t
O(x

t, xt+1, yt, yt+1)
)−1

et Lt
I(x

t, xt+1, yt, yt+1; ht, ht+1) =
(

M t
I(x

t, xt+1, yt, yt+1)
)−1
− 1

alors, on peut établir que l’indicateur de productivité de LHM pour la période (t) est :

LHM t(xt, xt+1, yt, yt+1; gt, gt+1) = −
(

M t
O(x

t, xt+1, yt, yt+1)
)−1
−
(

M t
I(x

t, xt+1, yt, yt+1)
)−1

,

tandis que celui de la période (t+ 1) est :

LHM t+1(xt, xt+1, yt, yt+1; gt, gt+1) =M t+1
O (xt, xt+1, yt, yt+1) +M t+1

I (xt, xt+1, yt, yt+1).

L’indicateur de productivité global de LHM est donc :

LHM(xt, xt+1, yt, yt+1; gt, gt+1) =
1

2

[

M t+1
O (xt, xt+1, yt, yt+1)−

(

M t
O(x

t, xt+1, yt, yt+1)
)−1

+M t+1
I (xt, xt+1, yt, yt+1)−

(

M t
I(x

t, xt+1, yt, yt+1)
)−1
]

.

Conclusion

Nous avons pu voir dans ce chapitre, un recueil non-exhaustif des mesures de performance et

de productivité totale des facteurs proposées dans la littérature. Nous les avons spécifiées dans le

cadre d’une approche non-paramétrique par enveloppement de données. Cependant, nous pouvons

constater que la théorie n’est pas immuable et qu’elle peut être étendue ou améliorée. En effet,

nous admettons que dans certaines circonstances, les outils de mesure de la performance existant

dans la littérature peuvent être inappropriés ou incomplètes. Dans ce cas, nous proposons, dans le

chapitre suivant, un nouvel outil de mesure de l’efficacité.
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Chapitre 2

Une Approche Exponentielle de la Mesure

de l’Efficience

Les ensembles de productions représentent le processus de transformation des facteurs en pro-

duits. Ces technologies prennent en compte plusieurs aspects de la production tels le rendement

d’échelle, les productivités marginales, etc. Charnes et al. (1978) et Banker et al. (1984) proposent

des ensembles productifs non-paramétriques et, linéaires par morceaux. Les premiers auteurs im-

posent une hypothèse de rendements d’échelle constants tandis que les seconds considèrent des

rendements d’échelle variables. Cependant, Banker et Maindiratta (1986) remarquent que ces tech-

nologies ne prennent pas en compte les productivités marginales croissantes survenant dans cer-

taines branches de l’économie ou, lorsqu’il existe des spécialisations. De ce fait, ils introduisent

un nouvel ensemble de production log-linaire par morceaux inspiré de la fonction de production

Cobb-Douglas. Celui-ci est structurellement multiplicatif et nous le désignons comme étant la

technologie de production Cobb-Douglas.

La technologie multiplicative de Banker et Maindiratta (1986) peut être caractérisée par des

mesures d’efficience. Généralement, les fonctions de distance ayant une structure multiplicative

sont adaptées à ce type d’ensemble productif. Dans ces travaux, nous proposons une mesure de

distance multiplicative non-linéaire qui permet la réduction des inputs et l’augmentation des out-

puts simultanément. Celle-ci se présente sous la forme d’une fonction exponentielle. De ce fait,

nous la nommons "fonction de distance exponentielle" (FDE). Cette dernière peut convenir à l’éva-

luation de la performance que ce soit dans un cadre microéconomique ou macroéconomique. En
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effet, dans certains secteurs économiques (exemple : nouvelles technologies), la croissance de l’ac-

tivité peut être soit positivement soit négativement exponentielle. De plus, d’un point de vue ma-

croéconomique, certains pays sont confrontés à une croissance (ou une récession) exponentielle.

Cette mesure s’inscrit dans la lignée de la fonction de distance directionnelle (Luenberger (1992a,

1992b), Chambers et al. (1996)). En effet, celle-ci est log-linéaire et, dans le cas d’une transfor-

mation logarithmique, nous retrouvons la FDD. Par ailleurs, nous montrerons que la FDE présente

les mêmes avantages que la FDD et qu’elle vérifie certaines propriétés additionnelles. Dans ce

chapitre, nous présentons tout d’abord, le cadre d’analyse puis définissons la FDE que ce soit dans

une orientation dans le graphe, en input ou en output. Nous explorons également la théorie de la

dualité grâce à l’introduction de pseudo-fonctions de coût, de revenu et de profit. Enfin, nous for-

malisons les notions présentées dans les deux premières sections dans un cadre non-paramétrique

selon l’approche par enveloppement de données.

1 Environnement et Outils

Nous présentons dans cette section, les outils et les notions utilisés dans ce chapitre. La techno-

logie de production est le processus qui permet de transformer les inputs xt = (xt1, · · ·x
t
m) ∈ R

m
+

en outputs yt = (yt1, · · · y
t
n) ∈ R

n
+ à la période (t). Elle peut être définie de manière formelle par :

T t(xt, yt) = {yt ∈ R
n
+ : xt peut produire yt}.

Dans tout le chapitre, on supposera que cette technologie satisfait les propriétés T1-T4 (1.1.3).

Rappelons que les mesures de distances permettent de caractériser les ensembles de production.

Par ailleurs, notons que les mesures de Debreu-Farrell (Debreu (1951) et Farrell (1957)) mais

également les fonctions de distance directionnelle et proportionnelle (Luenberger (1992a, 1992b),
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Chambers et al. (1996) et Briec (1997)) sont respectivement définies par :

Et
I(x

t, yt) = inf{λt > 0 : λtxt ∈ Lt(yt)},

Et
O(x

t, yt) = sup{λt > 0 : λtyt ∈ P t(xt)},

Dt(xt, yt; gt) = sup{δt ≥ 0 : (xt − δtht, yt + δtkt) ∈ T t},

D∝,t
α,β(x

t, yt) = sup{δt : ((I − δtA)xt, (I + δtB)yt) ∈ T t}.

Remarquons que le vecteur de direction est gt = (ht, kt) dans le cas de la FDD (αt, βt) ∈ [0, 1]m+n.

Pour chacune de ces mesures d’efficacité, il est possible de définir le sous-ensemble efficient du

graphe de la technologie. Cependant, on ne définira que celui de la FDP, qui sera une notion

évoquée par la suite. Celui-ci est défini par :

∂∝α,βT
t = {(xt, yt) ∈ T t : δt > 0, (xt − δtαt ⊙ xt, y + δtβt ⊙ yt) /∈ T t}.

Suite aux travaux de Hotelling (1932), Shephard (1970) et McFadden (1978), nous pouvons

établir qu’une relation duale peut exister entre les mesures d’efficacité et les fonctions de coût, de

revenu et de profit. Rappelons que ces dernières sont respectivement :

Ct(wt, yt) = inf{wt · xt : xt ∈ Lt(yt)},

Rt(pt, xt) = sup{pt · yt : yt ∈ P t(xt)},

Πt(wt, pt) = sup{pt · yt − wt · xt : (xt, yt) ∈ T t}.

wt = (wt
1, · · · , w

t
m) sont les prix associés aux inputs tandis que pt = (pt1, · · · , p

t
n) sont ceux

identifiés pour les outputs.

2 La Fonction de Distance Exponentielle

Cette section du chapitre est consacrée à la définition de la fonction de distance exponentielle

(FDE) d’un point de vue primal. Par ailleurs, nous présentons ses propriétés. Enfin, nous démon-
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trons que cette mesure peut être approximée grâce à une transformation logarithmique.

2.1 Définitions et Propriétés

2.1.1 Orientation dans le graphe

La FDD est un outil largement utilisé dans la littérature afin de mesurer l’efficacité tech-

nique des entités de production. Elles est évaluée suivant une approche paramétrique ou non-

paramétrique. Dans certaines circonstances, elle s’avère inadaptée. En effet, lorsque l’approche

non-paramétrique est privilégiée, celle-ci ne concorde pas aux ensembles productifs non-linéaires.

De ce fait, Briec et Ravelojaona (2015) introduisent une fonction de distance exponentielle. Cette

mesure est à la fois multiplicative et non-linéaire.

Définition 2.1 Pour tout (xt, yt) ∈ R
m+n
+ et tout (αt, βt) ∈ [0, 1]m+n, soit l’application Dt

exp :

R
m
+ × R

n
+ → [0, 1]m+n ∪ {∞} telle que :

Dt
exp(x

t, yt;αt, βt) =







supδ{δ
t : Φδ

α,β(x
t, yt) ∈ T t} si Φδ

α,β(x
t, yt) ∩ T t 6= ∅

∞ sinon
(2.1)

est la fonction de distance exponentielle.

Notons que Φδ
α,β est une application linéaire définie de la manière suivante :

Φδ
α,β : Rm+n

+ → R
m+n
+ × [0, 1]m+n

Φδ
α,β(x

t, yt) =
(

e−δtAxt, eδ
tByt

)

,

où A et B sont respectivement les matrices diagonales A = diag(αt) et B = diag(βt).

La définition de la FDE démontre que cette mesure permet la réduction des inputs et l’augmen-

tation des outputs de manière simultanée.

Proposition 2.2 Lorsque la technologie satisfait les axiomes T1-T4, on démontre que la mesure

exponentielle satisfait les propriétés suivantes :

De1 : (xt, yt) ∈ T t si et seulement si, Dt
exp(x

t, yt;αt, βt) ≥ 0.

De2 : Si Dt
exp(x

t, yt;αt, βt) = 0 alors, (xt, yt) ∈ ∂∝α,βT
t.
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De3 : Pour tout (xt, yt), (ut, vt) ∈ T t si (−ut, vt) ≥ (−xt, yt) alors on a, Dt
exp(u

t, vt;αt, βt) ≤

Dt
exp(x

t, yt;αt, βt).

De4 : Pour tout θ ≥ 0, Dt
exp(Φ

θ
α,β(x

t, yt);αt, βt) = Dt
exp(x

t, yt;αt, βt)− θt.

De5 : Pour tout λt > 0 on a, Dt
exp(λ

txt, λtyt;αt, βt) = Dt
exp(x

t, yt;αt, βt).

De6 : La fonction de distance exponentielle satisfait la condition de commensurabilité.

Preuves :

(De1) et (De2) découlent directement de la définition de la fonction de distance �.

(De3) Soit le cône de la libre disposition des inputs et des outputs défini de la manière suivante :

K = R
m
+ × (−Rn

+). Si (−ut, vt) ≥ (−xt, yt) alors
{

δt :
(

eδ
tAxt, eδ

tByt
)

∈ ((ut, vt)−K)
}

⊂
{

δt :
(

eδ
tAxt, eδ

tByt
)

∈ ((xt, yt)−K)
}

et
{

δt :
(

eδ
tAut, eδ

tBvt
)

∈
(

(ut, vt) + K
)}

⊂
{

δt :
(

eδ
tAxt, eδ

tByt
)

∈
(

(ut, vt) +K
)}

. Ceci implique que
{

δt :
(

eδ
tAut, eδ

tBvt
)

∈
(

(ut, vt) +K
)}

⊂
{

δt :
(

eδ
tAxt, eδ

tByt
)

∈
(

(xt, yt) +K
)}

. Ainsi, Dt
exp(u

t, vt;αt, βt) ≤ Dt
exp(x

t, yt;αt, βt) �.

(De4) Soient Φθ
α,β(x

t, yt) = (e−θAxt, eθByt) et Dt
exp(x

t, yt;αt, βt) = sup{δ : Φδ
α,β(x

t, yt) ∈ T t}.

Alors, Dt
exp

(

Φθ
α,β(x

t, yt);αt, βt
)

= sup
{

δt : Φδ
α,β ◦ Φ

θ
α,β(x

t, yt) ∈ T t
}

et Φδ
α,β ◦ Φ

θ
α,β(x

t, yt) =
(

e−δtAe−θtAxt, eδ
tBeθ

tByt
)

. En factorisant par A et B nous obtenons, Dt
exp

(

Φθ
α,β(x

t, yt);αt, βt
)

= sup
{

δt :
(

e−(δt+θt)Axt, e(δ
t+θt)Byt

)

∈ T t
}

. Si ∆t = δt + θt alors, Dt
exp

(

Φθ
α,β(x

t, yt);αt, βt
)

= sup
{

∆t :
(

e−∆tAxt, e∆
tByt

)

∈ T
}

− θt ≡ Dt
exp(x

t, yt;αt, βt)− θt �.

(De5) Soit λ > 0, sous l’hypothèse d’un rendement d’échelle constant on a (λtxt, λtyt) ∈ T .

Ainsi, Dt
exp(λ

txt, λtyt;αt, βt) = sup
{

δt :
(

e−δtAλtxt, eδ
tBλtxt

)

∈ T t
}

. En factorisant par λt, on

a Dt
exp(λ

txt, λtyt;αt, βt) = sup
{

δt : λt
(

e−δtAxt, eδ
tBxt

)

∈ T t
}

≡ Dt
exp(x

t, yt;αt, βt)�.

(De6) Soit l’unité de production (x̃t, ỹt) ∈ T̃ t avec x̃t = wx ⊗ x
t et ỹt = wy ⊗ y

t où (wx, wy) ∈

R
m+n
++ . Ainsi, Dt

exp(x̃
t, ỹt;αt, βt) = sup

{

δt :
(

e−δtAx̃t, eδ
tB ỹt

)

∈ T̃ t
}

. En divisant par wx et wy

nous avons Dt
exp(x̃

t, ỹt;αt, βt) = sup
{

δt :
(

e−δtA(wx ⊗ x
t)⊘ wx, e

δtB(wy ⊗ y
t)⊘ wy

)

∈ T t
}

≡

Dt
exp(x

t, yt;αt, βt) �.

La première propriété stipule que la fonction de distance exponentielle caractérise complète-

ment la technologie de production. La deuxième hypothèse signifie que lorsque sa valeur équivaut à

0, l’observation appartient à la frontière efficiente du graph de la technologie. Le troisième axiome

concerne la monotonicité de la fonction relativement aux inputs et aux outputs. (De4) désigne la
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translation homothéticité. Enfin, (De5) et (De6) indiquent respectivement que la FDE est homo-

gène de degré 0 sous l’hypothèse de rendements d’échelle constants et qu’elle est invariante par

rapport aux unités de mesure. Cette dernière propriété est importante car elle signifie que tout chan-

gement dans l’unité de mesure des inputs ou des outputs, n’a aucune incidence quant à l’évaluation

de la performance, des unités de production.

2.1.2 Orientation en Input

En s’inspirant des travaux de Briec et Ravelojaona (2015), cette sous-section est consacrée à la

présentation de la FDE orientée en input. En effet, dans certaines circonstances, il est possible que

l’unité de production ne souhaite (ou ne peut) que réduire les inputs tout en produisant un même

niveau d’outputs.

Définition 2.3 Si Lt(yt) vérifie L1-L5 alors, pour tout (xt, yt) ∈ R
m+n
+ , (αt, βt) ∈ [0, 1]m×0 avec

A = diag(αt), soit l’application Dt
exp : Rm+n

+ × [0, 1]m → R ∪ {−∞} telle que :

Dt
exp(x

t, yt;αt, 0) =











sup
δ

{

δt :
(

e−δtAxt, yt
)

∈ T t
}

si
(

e−δtAxt, yt
)

∩ T t 6= ∅

−∞ sinon

(2.2)

est la fonction de distance exponentielle orientée en input.

Cette définition peut être reformulée en faisant intervenir la correspondance en inputs Lt(yt).

Dans ce cas, nous avons :

Dt
exp(x

t, yt;αt, 0) = sup
δ

{

δt : e−δtAxt ∈ Lt(yt)
}

si e−δtAxt ∩ Lt(yt) 6= ∅.

Proposition 2.4 Lorsque la correspondance en facteurs satisfait L1-L5 alors, la fonction de dis-

tance exponentielle en input vérifie les hypothèses suivantes :

IDe1 : xt ∈ Lt(yt) si et seulement si, Dt
exp(x

t, yt;αt, 0) ≥ 0.

IDe2 : Si Dt
exp(x

t, yt;αt, 0) = 0 alors, xt ∈ ∂∝α,βL.

IDe3 : Pour tout xt ∈ Lt(yt) et ut ∈ Lt(yt) avec ut ≥ xt alors,Dt
exp(u

t, yt;αt, 0) ≥ Dt
exp(x

t, yt;αt, 0).
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IDe4 : Dt
exp(Φ

θ
α,0(x

t, yt);αt, 0) = Dt
exp(x

t, yt;αt, 0)− θt.

IDe5 : Pour tout λt > 0 on a, Dt
exp(λ

txt, λtyt;αt, 0) = Dt
exp(x

t, yt;αt, 0).

IDe6 : La fonction de distance exponentielle orientée en input satisfait la condition de commensu-

rabilité.

Les preuves de ces propriétés sont similaires à celles relatives à une orientation dans le graphe.

De ce fait, elles sont omises.

Les hypothèses (IDe1) et (IDe2) font respectivement référence à la caractérisation complète

de la technologie par la fonction et à l’appartenance de l’unité de production à la frontière efficiente

lorsque la mesure est nulle. La troisième propriété indique la disponibilité forte des inputs tandis

que la quatrième désigne la translation homothéticité de la fonction par rapport aux facteurs. Sous

l’hypothèse de rendements d’échelle constants, la FDE en input est homogène de degré 0 (IDe5).

Elle est également invariante relativement aux unités de mesure (IDe6).

2.1.3 Orientation en Output

Nous pouvons est également définir la FDE suivant une orientation en output. Dans ce cas, elle

mesure l’augmentation potentielle pouvant être appliquée à la production pour une quantité donnée

de facteurs.

Définition 2.5 Si P t(xt) satisfait P1-P5 alors, pour tout (xt, yt) ∈ R
m+n
+ et tout (αt, βt) ∈ 0 ×

[0, 1]n avec B = diag(βt), soit l’application Dt
exp : Rm+n

+ × [0, 1]n → R ∪ {+∞} telle que :

Dt
exp(x

t, yt; 0, βt) =











sup
δ

{

δt :
(

xt, eδ
tByt

)

∈ T t
}

si
(

xt, eδ
tByt

)

∩ T t 6= ∅

+∞ sinon

(2.3)

est la fonction de distance exponentielle orientée en output.

En faisant intervenir la correspondance en extrants, la définition ci-dessus peut être réécrite de

la manière suivante :

Dt
exp(x

t, yt; 0, βt) = sup
δ

{

δt : eδ
tByt ∈ P t(xt)

}

si eδ
tByt ∩ P t(xt) 6= ∅.

79



Une Approche Exponentielle de la Mesure de l’Efficience

Proposition 2.6 Lorsque la correspondance P t(xt) satisfait P1-P5 alors, la fonction de distance

exponentielle en output vérifie les propriétés suivantes :

ODe1 : yt ∈ P t(xt) si et seulement si, Dt
exp(x

t, yt; 0, βt) ≥ 0.

ODe2 : Si Dt
exp(x

t, yt; 0, βt) = 0 alors, yt ∈ ∂∝α,βP .

ODe3 : Pour tout yt ∈ P t(xt) et vt ∈ P t(xt) avec vt ≥ yt alors,Dt
exp(x

t, yt; 0, βt) ≥ Dt
exp(x

t, vt; 0, βt).

ODe4 : Dt
exp(Φ

θ
0,β(x

t, yt); 0, βt) = Dt
exp(x

t, yt; 0, βt)− θt.

ODe5 : Pour tout λt > 0 on a, Dt
exp(λ

txt, λtyt; 0, βt) = Dt
exp(x

t, yt; 0, βt).

ODe6 : La fonction de distance exponentielle en output satisfait la condition de commensurabilité.

Les preuves de ces axiomes sont similaires à celles proposées selon une orientation dans le

graphe. Par conséquent, elles sont donc omises.

(ODe1) et (ODe2) sont respectivement relatives à la caractérisation complète de la technologie

par la mesure et à l’appartenance de l’unité de production à la frontière efficiente lorsque la mesure

est nulle. La troisième propriété désigne la disponibilité forte des outputs tandis que la quatrième

indique la translation homothéticité de la fonction relativement aux produits. Sous l’hypothèse

de rendements d’échelle constants, la FDE en output est homogène de degré 0 (ODe5). Elle est

également invariante par rapport aux unités de mesure (ODe6).

2.2 Contexte Logarithmique et Extensions

La fonction de distance présentée précédemment a une forme exponentielle. De ce fait, il est

possible de lui appliquer une transformation logarithmique. Nous constatons que la mesure devient

log-linéaire. Nous nommons cette mesure "fonction de distance népérienne". Cette section est

consacrée à ce cas de figure.

2.2.1 Définition et Propriétés

La transformation logarithmique implique l’existence de contraintes supplémentaires. De ce

fait, il est nécessaire de définir préalablement l’environnement technologique de la production.
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Définition 2.7 Pour tout (xt, yt) ∈ R
m+n
++ et toute technologie positive T t

++ = T t ∩ R
m+n
++ ,

T t
ln =

{(

ln(xt), ln(yt)
)

: (xt, yt) ∈ T t
++

}

, (2.4)

est la technologie de production népérienne.

Notons que la technologie T t
++ est ln-convexe puisque quels que soient z1, z2 ∈ T t

++ et pour

tout α1, α2 ≥ 0 tel que α1 + α2 = 1 on a, zα1
1 ⊙ z

α2
2 ∈ T

t
++.

Définition 2.8 Pour tout (xt, yt) ∈ R
m+n
++ et tout (αt, βt) ∈ [0, 1]m+n, lorsque la technologie de

production népérienne satisfait les propriétés T1-T4 alors, l’applicationDt
ln : R

m+n
++ ×[0, 1]

m+n →

R ∪ {∞} définie par :

Dt
ln(ln(x

t), ln(yt);αt, βt) =







supδ

{

δt : ln
(

Φδ
α,β(x

t, yt)
)

∈ T t
ln

}

si ln
(

Φδ
α,β(x

t, yt)
)

∩ T t
ln 6= ∅

∞ sinon

(2.5)

est la fonction de distance népérienne.

Nous pouvons détailler la définition ci-dessus de la manière suivante :

Dt
ln(ln(x

t), ln(yt);αt, βt) = sup
δ

{

δt :
(

ln(xt)− δtαt, ln(yt) + δtβt
)

∈ T t
ln

}

.

Rappelons que la fonction de distance directionnelle est définie comme suit :

D(xt, yt; ht, kt) = sup
δ

{

δt :
(

xt − δtht, yt + δtkt
)

∈ T t
}

.

On peut constater que la FDD et la fonction de distance népérienne (FDN) sont structurellement

similaires. Cependant, des différences résident. La FDN est estimée relativement à des observées

transformées de manière logarithmique. Par ailleurs, les pondérations et les vecteurs de direction

ont des domaines de définition différents.

Notons que pour tout (xt, yt) ∈ T t
++ la Définition 2.8 nous permet d’établir l’équivalence

suivante :

Dt
ln(ln(x

t), ln(yt);αt, βt) ≡ Dt
exp(x

t, yt;αt, βt). (2.6)
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Proposition 2.9 Lorsque T t
ln satisfait les axiomes T1-T4, la fonction de distance népérienne vérifie

les propriétés suivantes :

Dln1 : (xt, yt) ∈ T t
++ si et seulement si, Dt

ln(ln(x
t), ln(yt);αt, βt) ≥ 0.

Dln2 : Si Dt
ln(ln(x

t), ln(yt);αt, βt) = 0 alors, (xt, yt) ∈ ∂T++.

Dln3 : Pour tout (xt, yt), (ut, vt) ∈ T t
++ si (−xt, yt) ≤ (−ut, vt) alors,

Dt
ln(ln(u

t), ln(vt);αt, βt) ≤ Dt
ln(ln(x

t), ln(yt);αt, βt).

Dln4 : Dt
ln

(

ln
(

Φθ
α,β(x

t, yt)
)

;αt, βt
)

= Dt
ln(ln(x

t), ln(yt);αt, βt)− θt.

Dln5 : Pour tout λt > 0 on a, Dt
ln(ln(λ

txt), ln(λtyt);αt, βt) = Dt
ln(ln(x

t), ln(yt);αt, βt).

Dln6 : La fonction de distance népérienne est indépendante des unités de mesure.

Preuves :

(Dln1) et (Dln2) sont les conséquences directes de la définition 2.8 �.

(Dln3) Soit le cône de libre disposition des inputs et des outputs K+ = R
m
+ × (−Rn

+) de telle

sorte que lorsque (−ut, vt) ≥ (−xt, yt) alors
{

δt : ln
(

e−δtAxt, eδ
tByt

)

∈ (ln(ut, vt) +K+)
}

⊂
{

δt : ln
(

e−δtAxt, eδ
tByt

)

∈ (ln(xt, yt) +K+)
}

et
{

δt : ln
(

e−δtAut, eδ
tBvt

)

∈ (ln(ut, vt) +K+)
}

⊂
{

δt : ln
(

e−δtAxt, eδ
tByt

)

∈ (ln(ut, vt) +K+)
}

. Par conséquent on a,
{

δt : ln
(

e−δtAut, eδ
tBvt

)

∈
(

ln(ut, vt)+K+

)}

⊂
{

δt : ln
(

e−δtAxt, eδ
tByt

)

∈
(

ln(xt, yt)+K+

)}

.D’où la propriété (Dln3),

Dt
ln(ln(u

t), ln(vt);αt, βt) ≤ Dt
ln(ln(x

t), ln(yt);αt, βt) �.

(Dln4) Soit Φθ
α,β(x

t, yt) =
(

e−θtαt

xt, eθ
tβt

yt
)

alors, Dt
ln

(

ln
(

Φθ
α,β(x

t, yt)
)

;αt, βt
)

= sup
{

δt :

ln
(

Φθ
α,βΦ

δ
α,β (x

t, yt)
)

∈ T t
ln

}

. Sachant que Φθ
α,βΦ

δ
α,β (x

t, yt) =
(

ln(xt) − (θt + δt)αt, ln(yt) +

(θt+ δt)βt
)

et, en posant ∆t = θt+ δt on a, Dt
ln

(

ln
(

Φθ
α,β(x

t, yt)
)

;αt, βt
)

= sup
{

∆t :
(

ln(xt)−

∆tαt, ln(yt) + ∆tβt
)

∈ T t
ln

}

− θt ≡ Dt
ln

(

ln(xt), ln(yt);αt, βt
)

− θt �.

(Dln5) Soit λt > 0 tel que Dt
ln (ln(λ

txt), ln(λtyt);αt, βt) = sup
{

δt :
(

ln(xt) + ln(λt) − δtαt,

ln(yt) + ln(λt) + δtβt
)

∈ T t
ln

}

. En factorisant par ln(λt) on a, Dt
ln (ln(λ

txt), ln(λtyt);αt, βt)

= sup
{

δt :
(

ln(xt)− δtαt, ln(yt) + δtβt
)

+ ln(λt) ∈ T t
ln

}

≡ Dt
ln (ln(x

t), ln(yt);αt, βt) �.

(Dln6) SoitDt
exp(x

t, yt;αt, βt) qui est invariante par rapport aux unités de mesure (Proposition 2.2).

Puisque Dt
exp(x

t, yt;αt, βt) ≡ Dt
ln (ln(x

t), ln(yt);αt, βt) alors, cette dernière vérifie également

cette propriété �.
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La première et la deuxième propriété indiquent respectivement que la fonction de distance né-

périenne caractérise complètement la technologie et que lorsque l’unité de production est techni-

quement efficiente, la FDN prend une valeur nulle. (Dln3) concerne quant à elle la libre disposition

des inputs et des outputs. (Dln4) stipule que la FDN est translation homothétique. Sous l’hypothèse

de rendements d’échelle constants, la mesure est homogène de degré 0 (Dln5). Enfin, la dernière

propriété désigne la propriété de commensurabilité. Cet axiome est une conséquence directe de

l’équivalence entre la FDE et la FDN.

Notons que malgré la similitude entre la FDN et la FDD, des différences subsistent. En effet, la

première satisfait (Dln6) contrairement à la seconde. Par ailleurs, lorsque les rendements d’échelle

sont constants alors, la FDD est homogène de degré (−1) tandis que la FDN est homogène de

degré 0 .

2.2.2 Fonction de Distance Népérienne en Input et en Output

Cette sous-section nous permet de présenter la fonction de distance népérienne dans le contexte

des orientations en input et en output.

Définition 2.10 Pour tout (xt, yt) ∈ R
m+n
++ et tout (αt, βt) ∈ [0, 1]m × 0, l’application Dt

ln :

R
m+n
++ × [0, 1]m → R ∪ {−∞} définie par :

Dt
ln

(

ln(xt), ln(yt);αt, 0
)

=







supδ {δ
t : (ln(xt)− δtαt, ln(yt)) ∈ T t

ln} si (xt, yt) ∈ T t
++

−∞ sinon

(2.7)

est la fonction de distance népérienne orientée en input.

Soit la correspondance logarithmique des facteurs Lt
ln(y

t) =
{

ln(xt) : xt ∈ Lt
++(y

t)
}

où

Lt
++(y

t) = Lt(yt) ∩ R
m
++. Cette dernière permet de réécrire la définition ci-dessus de la manière

suivante :

Dt
ln

(

ln(xt), ln(yt);αt, 0)
)

= sup
δ

{

δt : ln(xt)− δtαt ∈ Lt
ln(y

t)
}

si xt ∈ Lt
++(y

t).
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Proposition 2.11 Lorsque Lt
ln(y

t) satisfait L1-L5, la mesure de distance népérienne orientée en

input vérifie les propriétés suivantes :

IDln1 : xt ∈ Lt
++(y

t) si et seulement si, Dt
ln(ln(x

t), ln(yt);αt, 0) ≥ 0.

IDln2 : Si Dt
ln(ln(x

t), ln(yt);αt, 0) = 0 alors, xt ∈ ∂Lt
++(y

t).

IDln3 : Pour tout xt, ut ∈ Lt
++(y

t) si ut ≥ xt alors,Dt
ln(ln(u

t), ln(yt);αt, 0) ≥ Dt
ln(ln(x

t), ln(yt);αt, 0).

IDln4 : Dt
ln

(

ln
(

Φθ
α,0(x

t, yt)
)

;αt, 0
)

= Dt
ln(ln(x

t), ln(yt);αt, 0)− θt.

IDln5 : Pour tout λt > 0 on a, Dt
ln(ln(λ

txt), ln(λtyt);αt, 0) = Dt
ln(ln(x

t), ln(yt);αt, 0).

IDln6 : La fonction de distance népérienne en input est indépendante des unités de mesure.

Les preuves de ces hypothèses sont similaires à celles présentées dans le cadre d’une orienta-

tion dans le graphe. Ainsi, elles ne sont pas présentées.

Les deux premières propriétés concernent respectivement la caractérisation complète de la

technologie par la fonction de distance et l’efficience technique de l’unité de production lorsque

la mesure prend une valeur nulle. L’axiome (IDln3) fait référence à la monotonicité de la fonc-

tion par rapport aux facteurs tandis que (IDln4) stipule qu’elle est translation homothétique en

inputs. Lorsque les unités de décision opèrent sous l’hypothèse de rendements d’échelle constants,

la mesure de distance est homogène de degré 0 (IDln5). Par ailleurs, celle-ci vérifie la condition

de commensurabilité (IDln6).

Définition 2.12 Pour tout (xt, yt) ∈ R
m+n
++ et tout (αt, βt) ∈ 0 × [0, 1]n, l’application Dt

ln :

R
m+n
++ × [0, 1]n → R ∪ {+∞} qui définie par :

Dt
ln

(

ln(xt), ln(yt); 0, βt
)

=











sup
δ
{δt : (ln(xt), ln(yt) + δtβt) ∈ T t

ln} si (xt, yt) ∈ T t
++

+∞ sinon

(2.8)

est la fonction de distance népérienne orientée en output.
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Notons que la correspondance logarithmique (ou népérienne) en outputs est caractérisée par

P t
ln(x

t) =
{

ln(yt) : yt ∈ P t
++(x

t)
}

où P t
++(x

t) = P t(xt) ∩ R
n
++. Ainsi, la mesure de distance

népérienne en extrant peut être reformulée comme suit :

Dt
ln

(

ln(xt), ln(yt); 0, βt
)

= sup
δ

{

δt : ln(yt) + δtβt ∈ P t
ln(x

t)
}

si yt ∈ P t
++(x

t).

Proposition 2.13 Si la correspondance P t
ln(x

t) vérifie P1-P5 alors, la mesure népérienne axée sur

les produits présentée ci-dessus satisfait les propriétés suivantes :

ODln1 : yt ∈ P t
++(x

t) si et seulement si, Dt
ln(ln(x

t), ln(yt); 0, βt) ≥ 0.

ODln2 : Si Dt
ln(ln(x

t), ln(yt); 0, βt) = 0 alors, yt ∈ ∂P t
++(x

t).

ODln3 : Pour tout yt, vt ∈ P t
++(x

t) si vt ≥ yt alors,Dt
ln(ln(x

t), ln(vt); 0, βt) ≤ Dt
ln(ln(x

t), ln(yt); 0, βt).

ODln4 : Dt
ln

(

ln
(

Φθ
0,β(x

t, yt)
)

; 0, βt
)

= Dt
ln(ln(x

t), ln(yt); 0, βt)− θt.

ODln5 : Pour tout λt > 0 on a, Dt
ln(ln(λ

txt), ln(λtyt); 0, βt) = Dt
ln(ln(x

t), ln(yt); 0, βt).

ODln6 : La fonction de distance népérienne en output est invariante par rapport aux unités de

mesure.

Nous omettons de présenter les preuves de ces hypothèses puisqu’elles sont similaires à celles

présentées dans le cadre de la mesure népérienne orientée dans le graphe de la technologie.

Les axiomes (ODln1) et (ODln2) désignent respectivement la caractérisation de la technologie

de production de la mesure népérienne et l’appartenance de l’unité de production au sous-ensemble

efficient lorsque la valeur de la mesure est nulle. La monotonicité de la fonction de distance par

rapport aux outputs est définie par la troisième propriété tandis que la translation homothéticité l’est

par la quatrième. Les deux dernières hypothèses concernent quant à elles, l’homogénéité de degré 0

de la fonction sous l’hypothèse de rendements d’échelle constants (ODln5) et, la commensurabilité

(ODln6).

2.2.3 Équivalence entre les Mesures d’Efficience

Sous certaines conditions, des mesures de distance sont équivalentes entre elles. C’est le cas

entre les mesures de Debreu-Farrell, les fonctions de distance de Shephard, la fonction de distance
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directionnelle et la fonction de distance proportionnelle. Suivant le même logique, nous présentons

les relations d’équivalence existant entre la fonction de distance exponentielle (et népérienne) et

certaines mesures d’efficacité présentes dans la littérature.

Les mesures de Debreu-Farrell. Nous pouvons démontrer que lorsque certaines conditions sont

vérifiées alors, les mesures de Debreu-Farrell et la FDE sont équivalentes.

Proposition 2.14 Pour tout (xt, yt) ∈ T t
++, on peut établir que :

(i) Si αt = 11m et βt = 0 alors, Dt
exp(x

t, yt; 11m, 0) ≡ − ln
(

Et
I(x

t, yt)
)

,

(ii) Si αt = 0 et βt = 11n alors, Dt
exp(x

t, yt; 0, 11n) ≡ ln
(

Et
O(x

t, yt)
)

.

On peut en déduire que l’équivalence entre la FDE et les mesures de Debreu-Farrell n’est

possible que lorsque la première est orientée soit en input ou en output.

Preuves :

Rappelons que Dt
exp(x

t, yt;αt, βt) ≡ Dt
ln (ln(x

t), ln(yt);αt, βt).

(i) Lorsque αt = 11m et βt = 0 alors, pour tout (xt, yt) ∈ T t
++ on a Dt

exp(x
t, yt; 11m, 0) =

sup
{

δt : (e−δt11mxt, yt) ∈ T t
++

}

Ainsi,en posant eδ
t

et en utilisant l’équivalence entre la FDE et

la FDN on obtient Dt
exp(x

t, yt; 11m, 0) = ln
(

sup
{

λt : ((λ−1)
t
xt, yt) ∈ T t

++

})

. Supposons que

λ−1 = µ alors, Dt
exp(x

t, yt; 11m, 0) = ln
(

sup
{

µ : (µxt, yt) ∈ T t
++

} )

. Sachant que ln
(

sup
{

λt :
(

(λ−1)txt, yt
)

∈ T t
++

})

= − ln
(

inf
{

µ : (µxt, yt) ∈ T t
++

} )

nous avons,Dt
exp(x

t, yt; 11m, 0) =

− ln
(

Et
I(x

t, yt)
)

�.

(ii) Pour tout (xt, yt) ∈ T t
++ tel que αt = 0 et βt = 11n on a Dt

exp(x
t, yt; 0, 11n) = sup

{

δt :

(xt, eδ
t11nyt) ∈ T t

++

}

. Puisque la FDE est équivalente à la FDN, en posant eδ
t

= λt, nous obte-

nons Dt
exp(x

t, yt; 0, 11n) = ln
(

sup
{

λt : ((λ)t xt, yt) ∈ T t
++

})

. Par conséquent, Dt
exp(x

t, yt; 0, 11n)

= ln
(

Et
O(x

t, yt)
)

�

La mesure hyperbolique. La mesure hyperbolique de l’efficacité technique a été introduite par

Färe, Grosskopf et Lovell (1985). Celle-ci est une extension des mesures de Debreu-Farrell selon

une orientation dans le graphe de la technologie. Elle permet une modification proportionnelle et
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simultanée de toutes les variables (facteurs et produits). Pour tout (xt, yt) ∈ T t
++, l’application

H t : Rm
+ × R

n
+ → R+ ∪ {+∞} est définie par la fonction (mesure hyperbolique) suivante :

H t(xt, yt) = inf
λ

{

λt > 0 :
(

λtxt, (λ−1)tyt
)

∈ T t
}

.

Proposition 2.15 Pour tout (xt, yt) ∈ T t
++ avec αt = 11m et βt = 11n, on peut affirmer que :

Dt
exp(x

t, yt; 11m, 11n) ≡ ln
(

H t(xt, yt)
)

.

Preuve :

Si αt = 11m et βt = 11n alors, Dt
exp(x

t, yt; 11m, 11n) = sup
{

δt :
(

e−δt11mxt, eδ
t11nyt

)

∈ T t
++

}

. Se-

lon l’équivalence entre la FDE et la FDN et, en posant λt = e−δt , on a Dt
exp(x

t, yt; 11m, 11n) ≡

ln
(

sup
{

λt : (λtxt, (λ−1)tyt) ∈ T t
++

} )

. Puisque on a ln
(

sup
{

λt : (λtxt, (λ−1)tyt) ∈ T t
++

} )

=

− ln
(

inf
{

λt : (λtxt, (λ−1)tyt) ∈ T t
++

} )

. De ce fait, Dt
exp(x

t, yt; 11m, 11n) = − ln
(

H(xt, yt)
)

�.

La mesure proportionnelle La FDE peut être approximée par la FDP et, réciproquement.

Proposition 2.16 Soient (xt, yt) ∈ T t et (αt, βt) ∈ [0, 1]m+n tels que pour tout δt suffisamment

petit ou, pour tout point suffisamment proche de la frontière efficiente, on a :

Dt
exp(x

t, yt;αt, βt) ≈ D∝,t(xt, yt;αt, βt).

Preuve :

Soit Φδ
α,β(x

t, yt) = (e−δtAxt, eδ
tByt). Pour A = diag(αt) et B = diag(βt), le développement

de Taylor au voisinage de (0) permet d’établir que e−δtAxt = xt − δtαtxt +
(δtαt)

2

2!
(xt) + · · · +

(δtαt)
k

k!
(xt) + o

(

(δtαt)
k+1

xt
)

et, eδ
tByt = yt + δtβtyt +

(δtβt)
2

2!
(yt) + · · · +

(δtβt)
k

k!
(yt) +

o
(

(δtβt)
k+1

yt
)

. Lorsque l’unité de production est suffisamment proche de la frontière efficiente

et donc, δt suffisamment proche de zéro, les fonctions de Taylor ci-dessus deviennent e−δtAxt =

xt − δtαtxt = (I − δtαt)xt et eδ
tByt = yt + δtβtyt = (I + δtαt) yt où I est la matrice identité.

Ainsi, on peut dire que Φδ
α,β(x

t, yt) = ((I − δtαt)xt, (I + δtαt) yt). PuisqueDt
exp(x

t, yt;αt, βt) =

sup
{

δt : Φδ
αt,βt(xt, yt) ∈ T t

}

alors, pour tout δt suffisamment petit et tout point proche de la fron-
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tière efficiente, Dt
exp(x

t, yt;αt, βt) ≈ sup
{

δt :
(

(I−δtαt)xt, (I+δtαt)yt
)

∈ T t
}

. Par conséquent,

Dt
exp(x

t, yt;αt, βt) ≈ D∝(xt, yt;αt, βt) � .

La mesure directionnelle multiplicative Mehdiloozad, Sahoo et Roshdi (2014) reprennent la

fonction de distance directionnelle multiplicative (FDDM) introduite par Peyrache et Coelli (2009).

Soient respectivement (xt, yt) ∈ T t
++ et gt = (ht, kt) ∈ R

m+n
+ , les vecteurs inputs-outputs et le

vecteur de direction préalablement choisi. A l’application M t : Rm+n
++ × R

m+n
+ → R ∪ {∞} est

associée la fonction de distance directionnelle multiplicative suivante :

M t(xt, yt; ht, kt) = sup
λ

{

λt :
(

(

λt
)−ht

xt,
(

λt
)kt

yt
)

∈ T t
++

}

.

Grâce cette définition, nous pouvons établir une relation d’équivalence entre la FDE et la FDDM.

Proposition 2.17 Soit (xt, yt) ∈ T t
++, pour tout gt = (ht, kt) et tout (αt, βt) ∈ [0, 1]m+n, on peut

statuer que :

Dt
exp(x

t, yt;αt, βt) = ln
(

M t(xt, yt; ht, kt)
)

.

Preuve :

Soit ln (M(xt, yt; ht, kt)) = supδ {λ
t : (ln(xt)− ln(λt) · ht, ln(yt) + ln(λt) · kt) ∈ T t

ln}. On sait

que Dt
exp(x

t, yt;αt, βt) ≡ Dt
ln (ln(x

t), ln(yt);αt, βt) avec Dt
ln (ln(x

t), ln(yt);αt, βt) = sup
{

δt :

(ln(xt) − δtαt, ln(yt) + δtβt) ∈ T t
ln

}

. En posant δt = ln(λt) et (αt, βt) = (ht, kt) on a,

Dt
exp(x

t, yt;αt, βt) ≡ sup {λt : (ln(xt)− ln(λt)ht, ln(yt) + ln(λt)kt) ∈ T t
ln}. Donc, on peut af-

firmer que Dt
exp(x

t, yt;αt, βt) ≡ ln (M t(xt, yt; ht, kt)) �.

3 La Théorie de la Dualité

Les travaux de Hotelling (1932), Shephard (1953, 1970) et McFadden (1978) ont permis de

mettre en lumière les relation duales entre les mesures de distance et les fonctions de coût, de

revenu et de profit. Nous explorons ces relations dans le cadre de la fonction de distance ex-

ponentielle. Pour ce faire, nous présentons les pseudo fonctions de coût, de revenu et de profit

Cobb-Douglas.
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3.1 Pseudo Fonctions de Coût et de Revenu Cobb-Douglas

Cette sous-section présente les pseudo fonctions de coût et de revenu tant selon une structure

multiplicative que log-additive. Nous montrons également que celles-ci sont duales aux mesures

de distance exponentielle (népérienne) en input et en output. Les travaux de Shephard (1953, 1970)

nous permettent de déduire les fonctions de prix ajustés relatives à la théorie de la dualité.

3.1.1 Pseudo Fonction de Coût : Définitions et Propriétés

Dans certains secteurs d’activité, les unités de production ne peuvent modifier (ou influencer)

que leurs facteurs de production. En effet, leur production est une variable exogène à l’entreprise

(ex : production de service, etc.). Dans ce cas, lorsque les prix sur les marchés sont disponibles, il

est plus intéressant pour la firme d’évaluer son efficacité technique relativement à ses coûts et à ses

facteurs productifs.

Définition 2.18 Pour tout (xt, yt) ∈ R
m+n
+ et tout prix des inputs wt = (wt

1, · · · , w
t
m) ∈ R

m
+ ,

l’application Ct
CD : Rm

+ × R
n
+ → R ∪ {+∞} définie par :

Ct
CD(w

t, yt) =







infx
{

(xt)w
t

: xt ∈ Lt(yt)
}

si Lt(yt) 6= ∅

+∞ sinon
(2.9)

est la pseudo fonction de coût Cobb-Douglas.

McFadden(1978) présente une fonction de coût Cobb-Douglas basée sur les prix et des pondé-

rations normalisées. Cependant, dans ces travaux, nous introduisons une formulation basée sur la

quantité des facteurs et leur prix.

Proposition 2.19 Lorsque Lt(yt) satisfait L1-L5 alors, la pseudo fonction de coût Cobb-Douglas

vérifie les propriétés suivantes :

CCD1 : Pour tout wt ∈ R
m
+ on a, Ct

CD(w
t, 0) = 0.

CCD2 : Pour tout (wt, yt) ∈ R
m+n
+ avec wt > 0 et yt > 0 alors, Ct

CD(w
t, yt) > 0.

CCD3 : Pour tout wt, w̃t ∈ R
m
+ avec wt ≥ w̃t on a, Ct

CD(w
t, yt) ≥ Ct

CD(w̃
t, yt).

CCD4 : Pour tout yt, ỹt ∈ R
n
+ avec yt ≥ ỹt alors, Ct

CD(w
t, yt) ≥ Ct

CD(w
t, ỹt).
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CCD5 : Sous l’hypothèse de rendements d’échelle constants, pour λt > 0 on a, Ct
CD(w

t, λtyt) =

(λt)
wt

· Ct
CD(w

t, yt).

Preuves :

(CCD1) à (CCD4) sont des axiomes qui découlent directement de la définition de la fonction de

coût �.

(CCD5) Sous l’hypothèse de rendements d’échelle constants, pour tout λt > 0 on a, (λtxt, λtyt) ∈

T t. Ainsi, Ct
CD(w

t, λtyt) = infx
{

(λtxt)w
t

: xt ∈ Lt(yt)
}

. En développant l’expression (λtxt)w
t

on a, Ct
CD(w

t, λtyt) = (λt)w
t

.
(

infx
{

(xt)w
t

: xt ∈ Lt(yt)
})

. De ce fait, Ct
CD(w

t, λtyt) = (λt)w
t

·

Ct
CD(w

t, yt) �.

La première propriété stipule que tous les intrants sont variables c’est-à-dire que des coûts

fixes ne sont pas considérés. Le deuxième axiome signifie que des productions et des prix de

facteurs non-nuls engendrent des coûts effectifs. Les hypothèses (CCD3) et (CCD4) sont relatifs à

la monotonicité de la fonction de coût par rapport au prix des facteurs et aux outputs. La fonction

est semi-homogène de degré (wt) relativement à la production sous l’hypothèse de rendements

d’échelle constants (CCD5).

Lemme 2.20 Lt
++(y

t) est ln-convexe si et seulement si, Lt
ln(y

t) est convexe.

Il existe une relation duale entre la fonction de coût présentée précédemment et la FDE orientée

en input. Afin de pouvoir établir celle-ci, il est nécessaire que xt ∈ Lt
++(y

t).

Proposition 2.21 Lorsque Lt
++(y

t) satisfait L1-L6 alors, pour tout (xt, yt) ∈ T t
++, wt ∈ R

m
+ et

A = diag(αt) ∈ [0, 1]m, la pseudo fonction de coût Cobb-Douglas duale est :

Ct
CD(w

t, yt) = inf
x

{

(

e−δtAxt
)wt

: Dt
exp(x

t, yt;αt, 0) ≥ 0

}

, (2.10)

et la fonction de distance exponentielle duale orientée en input est :

Dt
exp(x

t, yt;αt, 0) = inf
w

{

(xt)
wt

Ct
CD(w

t, yt)
: wt · αt 6= 0

}

. (2.11)

90



Une Approche Exponentielle de la Mesure de l’Efficience

Pour tout couple (xtj , y
t
j) ∈ T

t
++ tel que j = (1, · · · , J) ∈ J et tout input i = (1, · · · , m) ∈

[m], cette formulation duale de la FDE orientée en input peut être détaillée de la manière suivante :

Dt
exp(x

t, yt;αt, 0) = inf
w







∏

i∈[m] (x
t
i)

wt
i

∏

i∈[m]

(

xtj,i
)wt

i

: wt.αt 6= 0







. (2.12)

Une normalisation peut être imposée de telle sorte que wt · αt = 1.

Nous pouvons effectuer une transformation logarithmique de la pseudo fonction de coût Cobb-

Douglas. De ce fait, la pseudo fonction de coût népérienne est duale à la mesure de distance népé-

rienne.

Définition 2.22 Pour tout (xt, yt) ∈ R
m+n
++ et tout wt ∈ R

m
+ , l’application Ct

ln : Rm
+ × R

n
++ →

R ∪ {+∞} définie par

Ct
ln

(

wt, ln(yt)
)

=







infx
{

wt · ln(xt) : xt ∈ Lt
++(y)

}

si Lt
++(y) 6= ∅

+∞ sinon
(2.13)

est la fonction de coût népérienne.

La fonction présentée ci-dessus peut être associée à certaines hypothèses.

Proposition 2.23 Lorsque Lt
++(y

t) satisfait L1-L5 alors, la fonction de coût népérienne vérifie les

propriétés suivantes :

Cln1 : Pour tout wt ∈ R
m
+ on a, Ct

ln(w
t, 0) = 0.

Cln2 : Pour tout wt ∈ R
m
+ , yt ∈ R

n
++ avec wt > 0 et ln(yt) > 0 alors, Ct

ln(w
t, ln(yt)) > 0.

Cln3 : Pour tout wt, w̃t ∈ R
m
+ avec wt ≥ w̃t on a, Ct

ln(w
t, ln(yt)) ≥ Ct

ln(w̃
t, ln(yt)).

Cln4 : Pour tout yt, ỹt ∈ R
n
++ avec ln(yt) ≥ ln(ỹt) alors, Ct

ln(w
t, ln(yt)) ≥ Ct

ln(w
t, ln(ỹt)).

Cln5 : Pour tout λt > 0 on a, Ct
ln(λ

twt, ln(yt)) = λtCt
ln(w

t, ln(yt)).

Cln6 : Sous l’hypothèse de rendements d’échelle constants, Pour tout λt > 0 on a,Ct
ln(w

t, ln(λtyt)) =

Ct
ln(w

t, ln(yt)) + wt ln (λt).
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Les preuves ainsi que les interprétations des axiomes cités ci-dessus sont omises dans le contexte

logarithmique. En effet, elles sont similaires à celles présentées dans le cadre de la pseudo fonction

de coût Cobb-Douglas, dans un contexte logarithmique.

La relation duale entre la fonction de coût népérienne et la FDN en input est présentée ci-

dessous.

Définition 2.24 Lorsque Lt
++(y

t) satisfait L1-L6 alors pour tout (xt, yt) ∈ T t
++ et tout wt ∈ R

m
+ ,

la fonction de coût népérienne duale est :

Ct
ln

(

wt, ln(yt)
)

= inf
x

{

wt · ln(xt)− δtαtwt : Dt
ln

(

ln(xt), ln(yt);αt, 0
)

≥ 0
}

, (2.14)

et la fonction de distance népérienne duale orientée en input est :

Dt
ln

(

ln(xt), ln(yt);αt, 0
)

= inf
w

{

wt · ln(xt)− Cln

(

wt, ln(yt)
)

: wt · αt 6= 0
}

. (2.15)

De manière détaillée, pour tout (xtj , y
t
j) ∈ T

t
++ tel que j ∈ J et tout i ∈ [m], la FDN duale en

intrant peut être exprimée comme suit :

Dt
ln

(

ln(xt), ln(yt);αt, 0
)

= inf
w







∑

i∈[m]

wt
i · ln(x

t
i)−

∑

i∈[m]

wt
i · ln(x

t
j,i) : w

t · αt 6= 0







. (2.16)

Notons que les expressions duales de la fonction de coût népérienne et de la FDN en input sont

structurellement similaires à celles relatives à la FDD.

3.1.2 Pseudo Fonction de Revenu : Définitions et Propriétés

Dans certains secteurs d’activité, les unités productives ont uniquement la possibilité d’agir

sur leurs productions (rigidité structurelle des firmes). Ainsi, lorsque les prix sur les marchés sont

disponibles, il peut être plus intéressant pour les firmes de chercher à maximiser leur revenu compte

tenu des facteurs utilisés. De ce fait, l’estimation de leur efficacité s’effectue par rapport à leurs

revenus et leurs productions.
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Définition 2.25 Pour tout (xt, yt) ∈ R
m+n
+ et tout prix des outputs pt = (pt1, · · · , p

t
n) ∈ R

n
+,

l’application Rt
CD : Rm

+ × R
n
+ → R ∪ {−∞} définie par :

Rt
CD(p

t, xt) =







supy

{

(yt)
pt
: yt ∈ P t(xt)

}

si P t(xt) 6= ∅

−∞ sinon
(2.17)

est la pseudo fonction de revenu Cobb-Douglas.

Proposition 2.26 LorsqueP t(xt) satisfait P1-P5 alors, la pseudo fonction de revenu Cobb-Douglas

vérifie les propriétés suivantes :

RCD1 : Pour tout pt ∈ R
n
+ on a, Rt

CD(p
t, 0) = 0.

RCD2 : Pour tout (pt, xt) ∈ R
m+n
+ avec pt > 0 et xt > 0 alors, Rt

CD(p
t, xt) > 0.

RCD3 : Pour tout pt, p̃t ∈ R
n
+ avec pt ≥ p̃t on a, Rt

CD(p
t, xt) ≥ Rt

CD(p̃
t, xt).

RCD4 : Pour tout xt, x̃t ∈ R
m
+ avec xt ≥ x̃t alors, Rt

CD(p
t, xt) ≥ Rt

CD(p
t, x̃t).

RCD5 : Pour tout λt > 0, sous l’hypothèse de rendements d’échelle constants on a,Rt
CD(p

t, λtxt) =

(λt)p
t

· Rt
CD(p

t, xt) .

Preuves :

(RCD1) à (RCD4) sont les conséquences directes de la Définition 2.25.

(RCD5) Sous l’hypothèse de rendements d’échelle constants, pour tout λt > 0 on a (λtxt, λtyt) ∈

T t tel que Rt
CD(p

t, λtxt) = supy

{

(λtyt)p
t

: yt ∈ P t(xt)
}

. En développant (λtyt)p
t

puis, en facto-

risant par (λt)p
t

on obtient, Rt
CD(p

t, λtxt) = (λt)p
t

·
(

supy

{

(yt)p
t

: yt ∈ P t(xt)
})

Donc,

Rt
CD(p

t, λtxt) = (λt)p
t

· Rt
CD(p

t, xt) �.

La propriété (RCD1) signifie que tous les facteurs sont variables. Donc, lorsque les ressources

sont inutilisées, il n’existe ni production effective ni revenu. La deuxième hypothèse stipule qu’une

utilisation effective des facteurs et des prix non-nuls engendrent des revenus effectifs. Les deux

axiomes suivants sont relatifs à la monotonicité de la fonction par rapport au prix des outputs

(RCD3) et aux inputs (RCD4). Sous l’hypothèse de rendements d’échelle constants, la fonction est

semi-homogène de degré (pt) relativement aux inputs.
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Une relation duale existe entre la FDE orientée en output et la pseudo fonction de revenu Cobb-

Douglas si et seulement si, yt ∈ P t
++(x

t) et que P t
++ est ln-convexe.

Lemme 2.27 P t
++(x

t) est ln-convexe si et seulement si, P t
ln(x

t) est convexe.

Proposition 2.28 Si P t
++(x

t) satisfait P1-P6 alors, pour tout (xt, yt) ∈ T t
++ et tout pt ∈ R

n
+ avec

B = diag(βt), la pseudo fonction de revenu Cobb-Douglas duale est :

Rt
CD(p

t, xt) = sup
y

{

(

eδ
tByt

)pt

: Dt
exp(x

t, yt; 0, βt) ≥ 0

}

, (2.18)

et la fonction de distance exponentielle duale orientée en output est :

Dt
exp(x

t, yt; 0, βt) = inf
p

{

Rt
CD(p

t, xt)

(yt)pt
: pt · βt 6= 0

}

. (2.19)

Pour tout couple (xtj, y
t
j) ∈ T

t
++ avec j ∈ J et tout output r = (1, · · · , n) ∈ [n], la FDE duale

orientée en output peut être détaillée comme suit :

Dt
exp(x

t, yt; 0, βt) = inf
p

{
∏

r∈[n](y
t
j,r)

ptr

∏

r∈[n](y
t
r)

ptr
: pt · βt 6= 0

}

. (2.20)

Une normalisation est possible telle que pt · βt = 1.

Dans un contexte logarithmique, la FDN orientée en output est duale à la fonction de revenu

népérienne. Cette dernière est caractérisée ci-dessous.

Définition 2.29 Pour tout (xt, yt) ∈ R
m+n
++ et tout pt ∈ R

n
+, l’application Rt

ln : Rm
++ × R

n
++ →

R ∪ {−∞} définie par :

Rt
ln

(

pt, ln(xt)
)

=







supy

{

pt · ln(yt) : yt ∈ P t
++(x

t)
}

si P t
++(x

t) 6= ∅

−∞ sinon
(2.21)

est la fonction de revenu népérienne.

Proposition 2.30 Lorsque P t
++(x

t) satisfait P1-P5, la fonction de revenu népérienne vérifie :

Rln1 : Pour tout pt ∈ R
n
+ on a, Rt

ln(p
t, 0) = 0.
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Rln2 : Pour tout (pt, xt) ∈ R
m
++ × R

n
+ avec pt > 0 et xt > 0 alors, Rt

ln (p
t, ln(xt)) > 0.

Rln3 : Pour tout pt, p̃t ∈ R
n
+ avec pt ≥ p̃t on a, Rt

ln (p
t, ln(xt)) ≥ Rt

ln (p̃
t, ln(xt)).

Rln4 : Pour tout xt, x̃t ∈ R
m
++ avec xt ≥ x̃t alors, Rt

ln (p
t, ln(xt)) ≥ Rt

ln (p
t, ln(x̃t)).

Rln5 : Pour tout λt > 0 on a, Rt
ln (λ

tpt, ln(xt)) = λt (Rt
ln (p

t, ln(xt))).

Rln6 : Pour tout λt > 0, sous l’hypothèse de rendements d’échelle constants on a,Rt
ln (p

t, ln(λtxt)) =

Rt
ln(p

t, xt) + pt ln(λt).

Les preuves et les interprétations des hypothèses présentées ci-dessus sont similaire à celles

fournies dans le cadre de la pseudo fonction de revenu Cobb-Douglas. Ainsi, elles sont omises.

La relation duale existant entre la fonction de revenu népérienne et la FDN orientée en output

est présentée dans la proposition ci-dessous.

Proposition 2.31 Lorsque la correspondance en outputs P t
++(x

t) vérifie P1-P6 alors, pour tout

(xt, yt) ∈ T t
++ et tout pt ∈ R

n
+ avec βt ∈ [0, 1]n, la fonction de revenu népérienne duale est :

Rt
ln

(

pt, ln(xt)
)

= sup
y

{

pt · ln(yt) + δtβtpt : Dt
ln

(

ln(xt), ln(yt); 0, βt
)

≥ 0
}

, (2.22)

et la fonction de distance népérienne duale orientée en output est :

Dt
ln

(

ln(xt), ln(yt); 0, βt
)

= inf
p

{

Rt
ln

(

pt, ln(xt)
)

− pt · ln(yt) : pt · βt 6= 0
}

. (2.23)

Ainsi, pour tout (xtj , y
t
j) ∈ T

t
++ tel que j ∈ J et, tout r ∈ [n], la fonction de distance népérienne

duale en extrant peut être réécrite de la manière suivante :

Dt
ln

(

ln(xt), ln(yt); 0, βt
)

= inf
p







∑

r∈[n]

ptr · ln(y
t
j,r)−

∑

r∈[n]

pt · ln(ytr) : p
t · βt 6= 0







. (2.24)

Nous retrouvons des formulations duales structurellement similaires à celles relatives à la me-

sure de distance directionnelle.
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3.1.3 Fonctions de Prix Ajustés

Les fonctions de prix ajustés représentent les prix d’équilibre si le marché est parfaitement

concurrentiel. Les mesures de distance définies d’un point de vue dual permettent de les retrouver.

De manière analogue, les fonctions de coût et de revenu peuvent fournir les fonctions de demande

de facteur et d’offre conditionnelles. Ces résultats proviennent des travaux de Shephard (1953,

1970) et McFadden (1978).

Proposition 2.32

(i) Aux points où la pseudo fonction de coût Cobb-Douglas est différentiable par rapport au prix

des facteurs wt ∈ R
m
+ et, si elle admet un minimum x̃t(wt, yt) ∈ R

m
++ alors, selon le Lemme de

Shephard :

∇wC
t
CD(w

t, yt) = x̃t(wt, yt;αt, 0) (2.25)

est la fonction de demande conditionnelle de facteurs.

(ii) Aux points où la fonction de distance exponentielle orientée en input est différentiable relati-

vement aux facteurs xt ∈ R
m
++ alors, selon le Lemme dual de Shephard :

∇ln(x)D
t
exp(x

t, yt;αt, 0) = w̃t(xt, yt;αt, 0) (2.26)

est la fonction de prix ajustés des inputs.

Preuves :

(i) Soit Ct
CD(w

t, yt) = exp [Ct
ln (w

t, ln(yt))] avec xt∗(w
t, yt;αt, 0), la fonction de demande de fac-

teurs à l’optimum. Puisque Ct
CD(w

t, yt) = exp [Ct
ln (w

t, ln(yt))] alors, ∇wC
t
CD(w

t, yt) =

∇w exp
[

Ct
ln (w

t, ln(yt))
]

. En effectuant une transformation logarithmique à la pseudo fonction

de coût, on obtient ∇w ln
(

Ct
CD(w

t, yt)
)

= ∇wC
t
ln

(

wt, (yt)
)

. De ce fait, ∇w ln (Ct
CD(w

t, yt)) =

ln (x̃t(wt, yt)) et ∇wC
t
CD(w

t, yt) = x̃t(wt, yt;αt, 0) �.

(ii) On sait que Dt
exp(x

t, yt;αt, 0) ≡ Dt
ln(ln(x

t), ln(yt);αt, 0) tel que w̃t(xt, yt;αt, 0) est la fonc-

tion de prix ajustés. D’où, ∇ln(x)D
t
exp(x

t, yt;αt, 0) ≡ ∇ln(x)D
t
ln(ln(x

t), ln(yt);αt, 0). De ce fait,

∇ln(x)D
t
exp(x

t, yt;αt, 0) = w̃t(xt, yt;αt, 0) �.

Proposition 2.33

(iii) Aux points où la pseudo fonction de revenu Cobb-Douglas est différentiable par rapport au
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prix des outputs pt ∈ R
n
+ et, si elle admet un maximum ỹt(pt, xt) ∈ R

n
++ alors, selon le Lemme de

Shephard :

∇pR
t
CD(p

t, xt) = ỹt(pt, xt; 0, βt) (2.27)

est la fonction d’offre conditionnelle d’outputs.

(iv) Aux points où la fonction de distance exponentielle orientée en output est différentiable relati-

vement aux outputs yt ∈ R
n
++ alors, selon le Lemme dual de Shephard :

∇ln(y)D
t
exp(x

t, yt; 0, βt) = −p̃t(xt, yt; 0, βt) (2.28)

est la fonction de prix ajustés des extrants.

Preuves :

(iii) Soit Rt
CD(p

t, xt) = exp [Rln (p
t, ln(xt))] avec ỹt(xt, pt; 0, βt), la fonction d’offre d’outputs à

l’optimum. Ainsi, ln [Rt
CD(p

t, xt)] = Rln (p
t, ln(xt)) tel que ∇p ln [R

t
CD(p

t, xt)] =

∇pRln (p
t, ln(xt)) Sachant que ∇pRln (p

t, ln(xt)) = ln (ỹt(xt, pt; 0, βt)) alors, ∇pR
t
CD(p

t, xt) =

ỹt(xt, pt; 0, βt) �.

(iv) Pour Dt
exp(x

t, yt; 0, βt) ≡ Dt
ln (ln(x

t), ln(yt); 0, βt) tel que p̃t(xt, yt; 0, βt) est la fonction de

prix ajustés des outputs alors, on a ∇ln(y)D
t
exp(x

t, yt; 0, βt) = ∇ln(y)D
t
ln

(

ln(xt), ln(yt); 0, βt
)

.

Ainsi,∇ln(y)D
t
exp(x

t, yt; 0, βt) = −p̃t(xt, yt; 0, βt) �.

De manière plus formelle, les correspondances des prix ajustés à des inputs et des outputs qui

permettent l’optimisation des fonctions de coût et de revenu sont respectivement :

w̃t : Rm+n
++ × [0, 1]m → 2R

m
+

w̃t(xt, yt;αt, 0) = argminx

{

(xt)w
t

Ct
CD(w

t, yt)
: wt.αt = 1

}

,

p̃t : Rm+n
++ × [0, 1]n → 2R

n
+

p̃t(xt, yt; 0, βt) = argminy

{

Rt
CD(p

t, xt)

(yt)pt
: pt.βt = 1

}

.
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3.2 Fonctions de Profit Cobb-Douglas et Log-linéaire

Dans certains secteurs d’activité, les entreprises ont la possibilité d’influencer à la fois la quan-

tité de facteurs utilisée et le niveau de la production. Dans ce cas, elles peuvent chercher à maximi-

ser leur profit grâce à une meilleure combinaison des facteurs et/ou une production plus optimale.

La fonction de profit permet de déterminer les quantités d’inputs et d’outputs qui maximisent le

bénéfice des unités productives.

3.2.1 Pseudo Fonction de Profit Cobb-Douglas : définition, propriétés et dualité

Définition 2.34 Pour tout (xt, yt) ∈ R
m+n
+ et tout (wt, pt) ∈ R

m+n
+ , l’application Πt

CD : Rm
+ ×

R
n
+ → R ∪ {∞} définie par :

Πt
CD(w

t, pt) =















supx,y

{

(yt)p
t

(xt)wt : (xt, yt) ∈ T t(xt, yt)

}

si T t(xt, yt) 6= ∅

∞ sinon

(2.29)

est la pseudo fonction de profit Cobb-Douglas.

Cette fonction est associée à quelques hypothèses.

Proposition 2.35 Lorsque T t(xt, yt) satisfait T1-T4 alors, la pseudo fonction de profit Cobb-

Douglas admet les propriétés suivantes :

ΠCD1 : Pour tout (wt, pt) ∈ R
m+n
+ si (0, 0) ∈ T t(xt, yt) on a, Πt

CD(0, 0) = 0.

ΠCD2 : Pour (wt, pt) ∈ R
m+n
+ on a, Πt

CD(w
t, pt) ≥ 0.

ΠCD3 : Pour tout (w̃t, p̃t) ∈ R
m+n
+ et tout (wt, yt) ∈ R

m+n
+ , si w̃t ≤ wt et p̃t ≥ pt alors,

Πt
CD(w̃

t, p̃t) ≥ Πt
CD(w

t, pt).

ΠCD4 : Pour tout λt > 0 on a, Πt
CD(λ

twt, λtpt) = (Πt
CD(w

t, pt))
λt

.

ΠCD5 : Sous l’hypothèse de rendements d’échelle constants, Πt
CD(w

t, pt) = 1 ou Πt
CD(w

t, pt)

=∞.

Le premier axiome stipule qu’il n’y pas de repas gratuit tandis que le deuxième signifie que des

inputs et des outputs positifs induisent un profit non-nul. (ΠCD3) fait référence à la monotonicité

de la fonction de profit par rapport aux prix. L’hypothèse (ΠCD4) désigne l’homogénéité de degré
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λt relativement axu prix. Lorsque la technologie satisfait des rendements d’échelle constants alors,

la fonction de profit est réduite à 1 ou à∞.

Preuves :

(ΠCD1) à (ΠCD3) découlent directement de la définition de la fonction �.

(ΠCD4) Soient λt > 0 et (wt, pt) ∈ R
m+n
+ tels que Πt

CD(λ
twt, λtpt) = supx,y

{

(yt)λ
tpt

(xt)λtwt :

(xt, yt) ∈ T t(xt, yt)

}

. En factorisant par λt on a, Πt
CD(λ

twt, λtpt) =

(

supx,y

{

(yt)p
t

(xt)wt : (xt, yt) ∈

T t(xt, yt)

})λt

. Ainsi, Πt
CD(λ

twt, λtpt) = (Πt
CD(w

t, pt))
λt

�.

(ΠCD5) Supposons que Πt
ln(w

t, pt) ≡ ln (Πt
CD(w

t, pt)) tel que lorsque T t
ln(x

t, yt) satisfait des ren-

dements d’échelle constants alors, Πt
ln(w

t, pt) = 0 ou Πt
ln(w

t, pt) =∞. D’où, Πt
CD(w

t, pt) = 1 ou

Πt
CD(w

t, pt) =∞.

Lemme 2.36 T t
++(x

t, yt) est ln-convexe si et seulement si, T t
ln(x

t, yt) est convexe.

La convexité de T t
++(x

t, yt) permet l’existence d’une relation duale entre la pseudo fonction

de profit Cobb-Douglas et la fonction de distance exponentielle orientée dans le graphe.

Proposition 2.37 Si T t
++(x

t, yt) satisfait T1-T5 alors, pour tout (xt, yt) ∈ T t
++ et tout (wt, pt) ∈

R
m+n
+ avec A = diag(αt) et B = diag(βt), la pseudo fonction de profit Cobb-Douglas duale est :

Πt
CD(w

t, pt) = sup
x,y







(

eδ
tByt

)pt

(e−δtAxt)
wt : Dt

exp

(

xt, yt;αt, βt
)

≥ 0







, (2.30)

et la fonction de distance exponentielle duale orientée dans le graphe est :

Dt
exp

(

xt, yt;αt, βt
)

= sup
x,y

{

Πt
CD(w

t, pt)
(xt)w

t

(yt)pt
: wtαt + ptβt 6= 0

}

. (2.31)

De par cette proposition, pour tout (xtj , y
t
j) ∈ T

t
++ avec j ∈ J , tout input i = (1, · · · , m) ∈ [m]

et tout output r = (1, · · · , n) ∈ [n], la FDE duale peut être caractérisée de la manière suivante :

Dt
exp

(

xt, yt;αt, βt
)

= sup
x,y

{

Πt
CD(w

t, pt)

∏

i∈[m](x
t
j,i)

wt
i

∏

r∈[n](y
t
j,r)

ptr
: wtαt + ptβt 6= 0

}

. (2.32)
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Les pondérations peuvent être normalisées de telle sorte que wtαt + ptβt = 1.

3.2.2 Fonction de Profit népérienne

La fonction de profit népérienne est la réciproque de la pseudo fonction de profit Cobb-Douglas

dont la définition est présentée ci-dessous.

Définition 2.38 Pour tout (xt, yt) ∈ T t
++ et tout (wt, pt) ∈ R

m+n
+ , l’application Πt

ln : R
m
+ ×R

n
+ →

R ∪ {∞} définie par :

Πt
ln(w

t, pt) =











sup
ln(x),ln(y)

{

pt · ln(yt)− wt · ln(xt) : (xt, yt) ∈ T t
++

}

si T t
++ 6= ∅

∞ sinon

(2.33)

est la fonction de profit népérienne.

Proposition 2.39 Lorsque T t
++(x

t, yt) vérifie T1-T4 alors, la fonction de profit népérienne satisfait

les propriétés suivantes :

Πln1 : Pour tout (wt, pt) ∈ R
m+n
+ , si (0, 0) ∈ T t

++(x
t, yt) alors, Πt

ln(0, 0) = 0.

Πln2 : Pour (wt, pt) ∈ R
m+n
+ on a, Πt

ln(w
t, pt) ≥ 0.

Πln3 : Pour tout (w̃t, p̃t) ∈ R
m+n
+ et tout (wt, pt) ∈ R

m+n
+ , si w̃t ≤ wt et p̃t ≥ pt alors

Πt
ln(w̃

t, p̃t) ≥ Πt
ln(w

t, pt).

Πln4 : Pour tout λt > 0 on a, Πt
ln(λ

twt, λtpt) = λtΠt
ln(w

t, pt).

Πln5 : Sous l’hypothèse des rendements d’échelle constants, Πt
ln(w

t, pt) = 0 ou Πt
ln(w

t, pt)

=∞.

La première propriété stipule qu’il n’existe pas de repas gratuit. Le deuxième axiome signifie

qu’une utilisation des facteurs et une production effective génèrent un profit positif ou nul. (Πln3)

est relative à la monotonicité de la fonction de profit par rapport aux prix des inputs et des outputs.

(Πln4) fait référence à l’homogénéité de degré (1) de la fonction relativement aux prix. La der-

nière hypothèse est relative à la structure de la technologie lorsque les rendements d’échelle sont

constants.

Preuves :

(Πln1) à (Πln3) sont des propriétés inhérentes à la définition de la fonction de profit log-linéaire �.
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(Πln4) Soit λt > 0 tel que Πt
ln(λ

twt, λtpt) = sup
ln(x),ln(y)

{

λtpt ·ln(yt)−λtwt ·ln(xt) : (xt, yt) ∈ T t
++

}

.

La factorisation par λt permet d’obtenir Πt
ln(λ

twt, λtpt) = λt ·

(

sup
ln(x),ln(y)

{

pt · ln(yt)−wt · ln(xt) :

(xt, yt) ∈ T t
++

}

)

. Donc, Πt
ln(λ

twt, λtpt) = λt · Πt
ln(w

t, pt) �.

(Πln5) Cette propriété découle de la structure de la technologie lorsque les rendements d’échelle

sont constants. Dans ce cas, l’ensemble de production est réduit à un cône convexe tel que la fonc-

tion de profit se confond avec la frontière efficiente (c’est-à-dire Πt
ln(w

t, pt) = 0) ou bien elle tend

vers l’infini (Πt
ln(w

t, pt) =∞).

On sait que T t
ln(x

t, yt) est convexe. De ce fait, il existe une relation duale entre la FDN orientée

dans le graphe et la fonction de profit log-linéaire.

Proposition 2.40 Quel que soit T t
++(x

t, yt) vérifiant T1-T5, pour tout (xt, yt) ∈ T t
++(x

t, yt) et

tout (wt, pt) ∈ R
m+n
+ avec A = diag(αt) et B = diag(βt), la fonction de profit népérienne duale

est :

Πt
ln(w

t, pt) = sup
ln(x),ln(y)

{

pt · ln(yt) +wt · ln(xt) +Dt
ln

(

ln(xt), ln(yt);αt, βt
) (

wt · αt + pt · βt
)

:

Dt
ln

(

ln(xt), ln(yt);αt, βt
)

≥ 0
}

, (2.34)

et, la fonction de distance népérienne duale orientée dans le graphe est :

Dt
ln

(

ln(xt), ln(yt);αt, βt
)

= sup
w,p

{

Πt
ln(w

t, pt)− pt · ln(yt) + wt · ln(xt) : wt · αt + pt · βt 6= 0
}

.

(2.35)

La normalisation des pondérations peut également être effectuée telle que wt.αt + pt.βt = 1.

Pour tout (xtj , y
t
j) ∈ T

t
++ avec j ∈ J entités de production, tout input i = (1, · · · , m) ∈ [m] et

tout output r = (1, · · · , n) ∈ [n] outputs, la FDN duale dans le graphe peut être détaillée comme
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suit :

Dt
ln

(

ln(xt), ln(yt);αt, βt
)

= sup
w,p

{

Πt
ln(w

t, pt)−
∑

r∈[n]

ptr · ln(y
t
j,r) +

∑

i∈[m]

wt
i · ln(x

t
j,i) :

wt · αt + pt · βt 6= 0

}

. (2.36)

3.2.3 Fonctions de Prix Implicites

Nous avons abordé la notion de fonctions de prix ajustés dans le cadre des orientations en

input et en output. Dans cette sous-section, nous proposons une étude des fonctions de demande et

d’offre conditionnelles ainsi que des fonctions de prix ajustés selon une orientation dans le graphe

de la technologie.

Proposition 2.41

(i) Aux points où la pseudo fonction de profit Cobb-Douglas est différentiable par rapport aux

prix des facteurs (wt, pt) ∈ R
m+n
+ et, si elle admet un minimum x̃t(wt, yt) ∈ R

m
++ et un maximum

ỹt(pt, xt) ∈ R
n
++ alors, selon le Lemme de Shephard :

∇wΠ
t
CD(w

t, pt) = x̃t(wt, yt;αt, βt)

∇pΠ
t
CD(w

t, pt) = ỹt(xt, pt;αt, βt)
(2.37)

sont respectivement les fonctions de demande de facteur et d’offre de produit conditionnelles.

(ii) Aux points où la fonction de distance exponentielle orientée dans le graphe est différentiable

relativement au couple (xt, yt) ∈ R
m+n
++ alors, d’après le Lemme dual de Shephard :

∇ln(x)D
t
exp(x

t, yt;αt, βt) = w̃t(xt, yt;αt, βt)

∇ln(y)D
t
exp(x

t, yt;αt, βt) = −p̃t(xt, yt;αt, βt)
(2.38)

sont respectivement les fonctions de prix ajustés des inputs et des outputs.

Preuves :

(i) On sait que Πt
ln(w

t, pt) ≡ ln (Πt
CD(w

t, pt)) et Πt
CD(w

t, pt) ≡ exp (Πt
ln(w

t, pt)) alors, par le

théorème de l’enveloppe on a ∇wΠ
t
ln(w

t, pt) = ln (x̃t(wt, yt)) et ∇yΠ
t
ln(w

t, pt) = ln (ỹt(wt, yt)).
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Ainsi,∇wΠ
t
CD(w

t, pt) = x̃t(wt, yt) et ∇yΠ
t
CD(w

t, pt) = ỹt(wt, yt) �.

(ii) On sait que Dt
exp(x

t, yt;αt, βt) ≡ Dt
ln (ln(x

t), ln(yt);αt, βt) ainsi,∇ln(x)D
t
exp(x

t, yt;αt, βt) =

∇ln(x)D
t
ln (ln(x

t), ln(yt);αt, βt) et ∇ln(y)D
t
exp(x

t, yt;αt, βt) = ∇ln(y)D
t
ln (ln(x

t), ln(yt);αt, βt).

Par le théorème de l’enveloppe on a ∇ln(x)D
t
ln (ln(x

t), ln(yt);αt, βt) = w̃t(xt, yt;αt, βt) et

∇ln(y)D
t
ln (ln(x

t), ln(yt);αt, βt) = −p̃t(xt, yt;αt, βt). Par conséquent,∇ln(x)D
t
exp(x

t, yt;αt, βt) =

w̃t(xt, yt;αt, βt) et ∇ln(y)D
t
exp(x

t, yt;αt, βt) = −p̃t(xt, yt;αt, βt) �.

La correspondance des prix ajustés peut ainsi être définie de la manière suivante :

(w̃t, p̃t) : Rm+n
++ × [0, 1]m+n → 2R

m+n
+

(w̃t, p̃t) (xt, yt;αt, βt) = argmaxx,y

{

ΠCD(w
t, pt)

(xt)
wt

(yt)p
t : wt · αt + pt · βt = 1

}

.
(2.39)

4 Les Notions Additionnelles

Dans cette section, nous abordons les concepts additionnels à la mesure exponentielle de l’ef-

ficience. En effet, dans un premier temps, nous proposons une analyse des rendements d’échelle

relatives à cette mesure. Dans un second temps, nous formalisons le fonction de distance exponen-

tielle dans un cadre non-paramétrique.

4.1 Rendements d’Echelle

La notion de rendements d’échelle est étroitement liée au processus productif. Sachant que

les mesures d’efficacité caractérisent les ensembles de production, il est intéressant d’analyser

les liens existant entre ce concept et la focntion de distance exponentielle. Tout d’abord, nous

abordons le cas des technologies à rendements d’échelle constants. Ensuite, nous explorons le cas

des rendements d’échelle locaux et leurs implications.

4.1.1 Rendements d’Echelle Constants

Notons que Tln
(

ln(xt), ln(yt)
)

= ln
(

T++(x
t, yt)

)

. Ainsi, Tln
(

ln(xt), ln(yt)
)

= ln
(

T ∩ R
m+n
++

)

.

Proposition 2.42 Pour tout (xt, yt) ∈ R
m+n
++ , l’ensemble de production T t(xt, yt) satisfait l’hy-

pothèse de rendements d’échelle log-constants si T t
ln

(

ln(xt), ln(yt)
)

vérifie l’hypothèse de rende-
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ments d’échelle constants.

Preuve :

Supposons que T t
ln satisfait des rendements d’échelle constants. Ainsi, Pour tout λt > 0 si

(

ln(xt), ln(yt)
)

∈ T t
ln alors,

(

λt ln(xt), λt ln(yt)
)

∈ T t
ln, ∀λt > 0. Puisque T t

++(x
t, yt) = exp

(

T t
ln

(

ln(xt), ln(yt)
))

alors, pour tout (xt, yt) ∈ T t
++ et tout λt > 0 on a,

(

(xt)λ
t

, (yt)λ
t)

∈ T t
++. D’où,

(

(xt)λ
t

, (yt)λ
t)

∈

T t
�.

Supposons que le processus productif d’une firme est caractérisée par une fonction de produc-

tion Cobb-Douglas dont les rendements d’échelle sont constants, dans un cadre mono-output et

multi-inputs. Ainsi, pour tout input i = (1, · · · , m) ∈ [m], l’expression de la technologie relative

à cette situation est :

T t =







(xt, yt) ∈ R
m+1 : yt ≤ A

∏

i∈[m]

(xti)
γt
i , γt > 0,

∑

i∈[m]

γti = 1







. (2.40)

Dans ce cas, il est possible d’obtenir l’expression des fonctions de distance exponentielle tels

que pour tout γt > 0 avec
∑

i∈[m] γ
t
i = 1 et αt = 11m, la FDE orientée en input est :

Dt
exp(x

t, yt; 11m, 0) = sup
δ







δt : yt ≤ A
∏

i∈[m]

(

e−δtxti

)γt
i







. (2.41)

Sachant que Dt
exp(x

t, yt; 11m, 0) ≡ Dt
ln (ln(x

t), ln(yt); 11m, 0) alors, on peut poser que :

Dt
exp(x

t, yt; 11m, 0) ≡ Dt
ln

(

ln(xt), ln(yt); 11m, 0
)

≡ sup
δ







δt : ln(yt) ≤ ln(A) +
∑

i∈[m]

γti ln(x
t
i)− δ

t







Dt
exp(x

t, yt; 11m, 0) ≡ sup
δ







δt : δt ≤ ln(A) +
∑

i∈[m]

γti ln(x
t
i)− ln(yt)







. (2.42)

De même, nous pouvons exprimer la FDE orientée en output pour βt = 11n avec γt > 0 et
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∑

i∈[m] γ
t
i = 1, de la manière suivante :

Dt
exp(x

t, yt; 0, 11m) = sup
δ







δt : eδ
t

yt ≤ A
∏

i∈[m]

(

xti
)γt

i







. (2.43)

En faisant intervenir l’équivalence entre la FDE et la FDN, nous obtenons :

Dt
exp(x

t, yt; 0, 11n) ≡ Dt
ln

(

ln(xt), ln(yt); 0, 11n
)

≡ sup
δ







δt : δt + ln(yt) ≤ ln(A) +
∑

i∈[m]

γti ln(x
t
i)







Dt
exp(x

t, yt; 0, 11n) ≡ sup
δ







δt : δt ≤ ln(A) +
∑

i∈[m]

γti ln(x
t
i)− ln(yt)







. (2.44)

Nous pouvons constater que,

Dt
exp(x

t, yt; 11m, 0) = Dt
exp(x

t, yt; 0, 11n).

Ce résultat n’est pas surprenant puisque la technologie vérifie des rendements d’échelle constants.

4.1.2 Rendements d’Echelle Locaux et Spécifiques

Dans cette sous-section, nous nous intéressons aux différents types de rendements d’échelle

s’intégrant aux processus de production. Les fonctions de production de type Cobb-Douglas mono-

output et multi-inputs, peuvent être étendues aux cas où plusieurs facteurs et productions inter-

viennent. Dans ce cas, ces fonctions Cobb-Douglas peuvent être définies de la manière suivante :

Gt
CD(x

t, yt) =
∏

i∈[m]

(xti)
−γt

i

∏

r∈[n]

(ytr)
ηtj . (2.45)

Notons que lorsque n = 1 et η = 1 alors, nous retrouvons la fonction Cobb-Douglas classique.

La définition ci-dessus permet de proposer une technologie Cobb-Douglas par morceaux.
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Lemme 2.43 Soit le sous-ensemble At ⊂ R
m+n
++ tel que

Cot(At) =

{

∏

j∈J

zθj :
∑

j∈J

θj = 1, θ ≥ 0

}

, (2.46)

est l’enveloppe convexe multiplicative de At.

Ainsi, la technologie de production classique peut être représentée par l’ensemble

T t =
[

Cot(At) +
(

R
m
+ × (−Rn

+)
)]

∩ R
m+n
+ , (2.47)

et la technologie strictement positive par

T t
++ =

[

Cot(At) +
(

R
m
+ × (−Rn

+)
)]

∩ R
m+n
++ . (2.48)

Nous utilisons les notions introduites ci-dessus afin de présenter une technologie de production

dans un contexte spécifique. En effet, dans le cas d’une technologie Cobb-Douglas, elle peut être

définie par l’ensemble présentée dans la proposition ci-dessous.

Proposition 2.44 Pour tout εj ∈ R avec j ∈ J , il existe j fonctions Cobb-Douglas Gj,t
CD(x

t
j , y

t
j),

telle que

TGt

∩ R
m+n
++ =

⋂

j∈J

{

(xt, yt) ∈ R
m+n
++ : Gj,t

CD(x
t
j , y

t
j) ≤ εtj

}

, (2.49)

est la technologie Cobb-Douglas par morceaux.

Preuve :

Soit la technologie logarithmique, ln
(

TGt

∩ R
m+n
++

)

= Cot (ln(At)) +
(

R
m
+ × (−Rn

+)
)

telle que

ln(At) =
{(

ln(xtj), ln(y
t
j)
)

: j ∈ J
}

. Il existe j fonctions linéaires telle que l’application
(

ln(xt), ln(yt)
)

→ ηtj ln(y
t
j) − γtj ln(x

t
j) avec (γt, ηt) ∈ R

m+n
+ permet de réécrire la technolo-

gie logarithmique de la manière suivante :

ln
(

TGt

∩ R
m+n
++

)

=
⋂

j∈J

{(

ln(xt), ln(yt)
)

: ηtj ln(y
t
j)− γ

t
j ln(x

t
j) ≤ ln(εtj)

}

.

La transformation exponentielle fournit le résultat de la Proposition 2.44 �.
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Proposition 2.45 Pour tout (xt, yt) ∈ TGt

∩ R
m+n
++ , la technologie TGt

∩ R
m+n
++ satisfait une

hypothèse de :

(i) rendements d’échelle quasi-croissants si et seulement si,
∑

j∈J

ηtj <
∑

j∈J

γtj ,

(ii) rendements d’échelle quasi-décroissants si et seulement si,
∑

j∈J

ηtj >
∑

j∈J

γtj ,

(iii) rendements d’échelle quasi-constants si et seulement si,
∑

j∈J

ηtj =
∑

j∈J

γtj .

Preuves :

Pour n = 1 et ηt > 0, soit la fonction de production Cobb-Douglas classique suivante :

Gt
CD(x

t, yt) =
∏

i∈[m]

(xti)
−γt

i (yt)η
t

=⇒ (yt)η
t

=
∏

i∈[m]

(xti)
γt
i .

Dans ce cas, si
∑

i∈[m] γ
t
i/η

t > 1 alors, la technologie satisfait un rendement d’échelle quasi-

croissant (i) tandis que, si
∑

i∈[m] γ
t
i/η

t < 1 alors, le processus productif vérifie un rendement

d’échelle quasi-décroissant (ii). Enfin, lorsque
∑

i∈[m] γ
t
i/η

t = 1 alors, la technologie satisfait un

rendement d’échelle quasi-constant. La généralisation de cette notion à un processus de production

multi-output donne le résultat de la Proposition 2.45 �.

Nous pouvons considérer que les facteurs utilisés contribuent différemment à l’élaboration de

chaque produit dans un processus de production. Ainsi, il est possible d’obtenir une indication du

rendement d’échelle spécifique associé à chaque output r. On peut donc dire que le rendement

d’échelle spécifique associé à l’output r est :

(iv) croissant si ηtr <
∑

i∈[m] γ
t
i ,

(v) décroissant si ηtr >
∑

i∈[m] γ
t
i ,

(vi) constant si ηtr =
∑

i∈[m] γ
t
i .

4.1.3 Facettes Cobb-Douglas et Approximation de la Technologie

On sait que pour tout j ∈ J , il existe un ensemble G⊔CD =
{

G1,t
CD, · · · , G

j,t
CD

}

tel que TGt

∩

R
m+n
++ =

⋂

j∈J

{

(xt, yt) ∈ R
m+n
++ : Gj,t

CD(x
t
j, y

t
j) ≤ εj

}

. La fonction Cobb-Douglas généralisée

Gj,t
CD(x

t
j , y

t
j) caractérise la facette F j,t

CD non-linéaire d’une forme géométrique. Or, on sait que

TGt

∩Rm+n
++ est la transformation exponentielle de la technologie logarithmique, linéaire par mor-
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ceaux ln
(

TGt

∩ R
m+n
++

)

. Ainsi, on peut également affirmer que cette facette F j,t
CD est elle-même la

transformation exponentielle d’une facette logarithmique linéaire F j,t
ln relative à ln

(

TGt

∩ R
m+n
++

)

.

Dans ce cas, (xtj , y
t
j) ∈ R

m+n
++ montre localement un rendement d’échelle quasi-croissant, quasi-

décroissant ou quasi-constant si :

(i) il existe une facette F j,t
CD telle que (xtj , y

t
j) appartient à l’intérieur relatif de celle-ci,

(ii) Gj,t
CD(x

t
j , y

t
j) satisfait une hypothèse de rendements d’échelle quasi-croissants,

quasi-décroissants ou quasi-constants.

Supposons que (w̃t, p̃t) ∈ R
m+n
+ soit la solution permettant l’optimisation de la fonction de

distance exponentielle duale. Nous admettons qu’elle est unique pour l’observation (xtj , y
t
j). Si

de plus, Dt
exp(x

t
j , y

t
j;α

t, βt) = 0 alors, il existe une facette F j,t
exp dont l’intérieur relatif contient

(xtj, y
t
j).

Proposition 2.46 Pour tout (xt, yt) ∈ R
m+n
++ , si (w̃t, p̃t) est une solution unique de la fonction de

distance exponentielle duale telle que Dt
exp(x

t, yt;αt, βt) = 0 alors, la fonction Cobb-Douglas

généralisée Gt
CD(x

t, yt) peut être approximée par l’application G̃t
CD : Rm

++ ×R
n
++ → R+ définie

par :

G̃t
CD(x

t, yt) =
∏

i∈[m]

(xti)
−w̃t

i

∏

r∈[n]

(ytr)
p̃tr (2.50)

et, appelée fonction Cobb-Douglas généralisée implicite.

Dans ce cas, la nature des rendements d’échelle locaux peut s’apprécier par le ratio

∑

i∈[m] w̃
t
i

∑

r∈[n] p̃
t
r

.

Preuve :

Pour Dt
exp(x

t, yt;αt, βt) = 0 avec une unique solution (w̃t, p̃t) ∈ R
m+n
+ , on sait que la courbe de

profit définie par Πt
CD(w̃

t, p̃t) = sup
x,y

{
∏

r∈[n](y
t
r)

p̃tr

∏

i∈[m](x
t
i)

w̃t
i

: (xt, yt) ∈ T t
++

}

passe par (xt, yt). Sachant

que Gt
CD(x

t, yt) =
∏

i∈[m](x
t
i)

−γt
i

∏

r∈[n](y
t
r)

ηtr alors, celle-ci peut être approximée par la fonction

de profit �.

Grâce à cette fonction Cobb-Douglas implicite, il est également possible de donner une ap-

proximation de la technologie Cobb-Douglas par morceaux. Pour toute observation j ∈ J avec
(

w̃t(xtj , y
t
j), p̃

t(xtj , y
t
j)
)

pour solution de Dt
exp(x

t
j, y

t
j;α

t, βt) on a, l’ensemble de production Cobb-
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Douglas caractérisé par :

T̃Gt

∩ R
m+n
++ =

⋂

j∈J

{

(xtj , y
t
j) ∈ R

m+n
++ : G̃t

CD(x
t
j , y

t
j) ≤ εtj

}

. (2.51)

Remarquons qu’un échantillon de données ne peut fournir toutes les facettes Cobb-Douglas de

l’ensemble de production TGt

∩ R
m+n
++ . Afin d’obtenir le plus grand nombre de facettes, il semble

nécessaire d’utiliser une méthode d’estimation inférentielle qui génère plus de données.

xt

yt

0

•A

•B

•
C

•
D

IsoqT tΠ1

Π2

Π3Π4

FIGURE 1 – Ensemble de production approximé

Sans perte de généralité et dans un contexte de technologie linéaire par morceaux, la figure 1

présente le processus d’approximation de la technologie de production. Soient les droites de profit

qui, lorsqu’elles sont tangentes aux observations, maximisent le profit pour un couple (w̃t, p̃t).

L’intersection de ces droites permet d’approximer la structure de l’ensemble de production.

4.2 Cadre Non-Paramétrique

Cette sous-section est dévouée à la formalisation des notions présentées auparavant, dans le

cadre d’une approche non-paramétrique par enveloppement de données (DEA). Banker et Main-

diratta (1986) introduisent une nouvelle technologie multiplicative de type Cobb-Douglas selon

le modèle DEA. En effet, la technologie de production DEA standard ne permet pas de prendre

en compte les productivités marginales croissantes. Le nouvel ensemble de production qu’ils pré-

sentent, permet de surmonter cet obstacle dans un contexte non-paramétrique par le biais d’une

transformation logarithmique. Cependant, nous exposons d’abord quelques notions d’efficience
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liées aux mesures définies dans les sections précédentes.

4.2.1 Efficience Technique, de Coût et de Revenu

Les mesures de distance mais également les fonctions de coût, de revenu et de profit permettent

d’apprécier plusieurs notions d’efficience. En effet, on peut mesurer l’efficacité technique, de coût,

de revenu, de profit, et allocative des entreprises grâce à celles-ci.

La première notion d’efficacité que nous allons voir, est celle du coût. Elle représente l’aptitude

de l’entreprise à produire une quantité donnée d’outputs en réduisant au maximum ses coûts de

production. Ce concept nécessite des informations sur les prix du marché lorsque ceux-ci sont

exogènes à la firme. En effet, l’optimisation est effectuée relativement aux facteurs. L’efficience de

coût exponentielle peut être exprimée comme suit :

CEt
exp =

(

(xt)w
t

Ct
CD

)1/αtwt

. (2.52)

La version logarithmique de celle-ci est définie de la manière suivante :

CEt
ln =

wtxt − Ct
ln

αtwt
. (2.53)

Nous pouvons retrouver ce résultat en appliquant l’équivalence entre les coûts exponentiels et

les coûts logarithmiques telle que Ct
CD(w

t, yt) = exp (Ct
ln (w

t, ln(yt))).

L’efficience de revenu est quant à elle, la capacité de l’entreprise à maximiser son revenu

compte tenu du niveau de facteurs utilisé et des prix exogènes de la production. Dans ce cas,

l’optimisation est relative à la quantité produite. De ce fait, l’efficacité de revenu est :

REt
exp =

(

Rt
CD

(yt)pt

)1/βtpt

, (2.54)

tandis que l’efficience de revenu logarithmique est :

REt
ln =

Rt
ln − p

tyt

βtpt
. (2.55)
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Les figures 2 et 3 décrivent respectivement les notions d’efficacité de coût et de revenu. Dans la

première illustration, la distance d(xt, xt∗) représente CEt selon le vecteur de direction gt = (1, 1).

Dans la seconde figure, la distance d(yt, yt∗) correspond à l’efficience de revenu REt.

L’efficience de profit désigne l’habileté de la firme à maximiser son profit relativement aux

prix des facteurs et des produits sur le marché. Ces derniers sont considéré comme exogènes. Dans

ce cas, l’optimisation se fait par rapport au niveau des intrants et des extrants. Soit l’efficience de

profit exponentiel définie par :

PEt
exp =

(

Πt
CD

(xt)w
t

(yt)pt

)1/(αtwt+βtpt)

. (2.56)

Et, l’efficience de profit népérien est :

PEt
ln =

Πt
ln − (ptyt − wtxt)

αtwt + βtpt
. (2.57)

La figure ci-dessus décrit l’efficacité de profit telle que celle-ci est constituée par la distance

d
(

(xt, yt), (xt∗, y
t
∗)
)

suivant le vecteur de direction gt = (1, 1).

Les notions d’efficience présentées ci-dessus peuvent être considérées comme étant les effi-

ciences globales (OE) ou efficacité économique. L’efficience globale orientée en input est l’effi-

cacité de coût, celle orientée en output correspond à l’efficience de revenu et celle orientée dans

le graphe renvoie à l’efficacité de profit. Les efficiences globales exponentielles et népériennes

111



Une Approche Exponentielle de la Mesure de l’Efficience

xt

yt

0

IsoqT t(xt, yt)

•

•

(x̂t, ŷt)
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peuvent être décomposées de la manière suivante :

OEt
exp = TEt

exp × AE
t
exp , OEt

ln = TEt
ln + AEt

ln , (2.58)

où TEt et AEt sont respectivement l’efficacité technique et allocative.

L’efficacité technique représente la capacité de l’entité de production à produire le maximum

d’outputs pour un niveau donné d’inputs (orientation en output) ou bien son aptitude à utiliser

le minimum de facteurs pour une quantité définie de produits (orientation en input). Selon une

orientation dans le graphe, cette efficience désigne l’habileté de la firme à produire le plus d’out-

puts en utilisant le moins d’inputs. Les fonctions de distance permettent de déterminer celles-ci.

Ainsi, selon les travaux de Mehdiloozad et al. (2014), on peut exprimer la mesure exponentielle de

l’efficacité technique (TEt
exp) comme suit :

TEt
exp = exp

(

Dt
ln

(

ln(xt), ln(yt);αt, βt
)

)

≡ exp
(

Dt
exp(x

t, yt;αt, βt)
)

. (2.59)

Ainsi, on peut dire qu’une firme est techniquement efficiente lorsque son ensemble de pro-

duction appartient à la frontière efficiente. Suivant Luenberger (1992a, 1992b) et Chambers et al.
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(1996), on peut statuer que :

TEt
exp



















= 1 si (xt, yt) ∈ ∂∝α,βT
t

> 1 si (xt, yt) ∈ T/∂∝α,βT
t

< 1 si (xt, yt) /∈ ∂∝α,βT
t .

(2.60)

Par conséquent, on a :

Dt
exp(x

t, yt;αt, βt)



















= 0 alors (xt, yt) ∈ ∂∝α,βT
t

> 0 alors (xt, yt) ∈ T/∂∝α,βT
t

< 0 alors (xt, yt) /∈ ∂∝α,βT
t .

(2.61)

De manière analogue, dans un contexte logarithmique, l’efficacité technique est caractérisée

par :

TEt
ln = Dt

ln

(

ln(xt), ln(yt);αt, βt
)

≡
(

Dt
exp(x

t, yt;αt, βt
)

, (2.62)

de telle sorte que lorsque :

TEt
ln



















= 0 alors
(

ln(xt), ln(yt)
)

∈ ∂α,βT
t
ln

> 0 alors
(

ln(xt), ln(yt)
)

∈ Tln/∂α,βT
t
ln

< 0 alors
(

ln(xt), ln(yt)
)

/∈ ∂α,βT
t
ln

(2.63)

Dans les figures 2, 3 et 4, les efficacités techniques sont représentées respectivement par les

distances d(xt, x̂t), d(yt, ŷt) et d
(

(xt, yt)(x̂t, ŷt)
)

.

L’efficience allocative intervient lorsque l’entreprise alloue ses ressources dans des proportions

optimales qui lui permettent de minimiser ses coûts compte tenu des prix des facteurs sur le marché.

Ainsi, il est possible de déterminer celle-ci grâce à la décomposition de l’efficacité économique

telle que :

AEt
exp =

OEt
exp

TEt
exp

(2.64)

AEt
ln = OEt

ln − TE
t
ln . (2.65)
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Dans les trois illustrations précédentes, les efficacités allocatives correspondent à la distance

entre les frontières efficientes et les droites de coût, de revenu ou de profit. Ainsi, elles sont repré-

sentées par les distances d(x̂t, xt∗), d(ŷ
t, yt∗) et d

(

(x̂t, ŷt), (xt∗, y
t
∗)
)

.

4.2.2 Approche Primale

Pour toute unité de production j ∈ J , soit la technologie multiplicative T t
CD présentée par

Banker et Maindiratta (1986) suivante :

T t
CD =

{

(xt, yt) ∈ R
m+n
+ : xt ≥

∏

j∈J

(xtj)
θtj , yt ≤

∏

j∈J

(ytj)
θtj ,
∑

j∈J

θtj = 1, θt > 0

}

. (2.66)

Notons que cet ensemble de production opère sous l’hypothèse de rendements d’échelle variables.

Dans un contexte à rendements d’échelle constants, la normalisation
∑

j∈J θ
t
k = 1 est relaxée. Par

ailleurs, lorsque cette technologie est strictement positive alors T t
++ = T t

CD ∩ R
m+n
++ c’est-à-dire

que (xt, yt) ∈ R
m+n
++ .

La transformation logarithmique de l’ensemble de production strictement positive engendre la

technologie de production népérienne ou logarithmique suivante :

T t
ln =

{

(

ln(xt), ln(yt)
)

: ln(xt) ≥
∑

j∈J

θtj ln(x
t
j), ln(y

t) ≤
∑

j∈J

θtj ln(y
t
j),
∑

j∈J

θtj = 1, θt > 0

}

.

(2.67)

Cette dernière est structurellement identique à une technologie DEA standard (Banker et al.

(1984)). Ainsi, nous pouvons affirmer que la technologie népérienne est un ensemble de production

log-linéaire par morceaux.

La figure 5 décrit la technologie multiplicative de type Cobb-Douglas présentée par Banker et

Maindiratta (1986). La figure 6 quant à elle, présente la technologie népérienne obtenue grâce à la

transformation logarithmique de l’ensemble multiplicative. Notons que lorsque (xt, yt) ∈]0, 1]m+n

alors,
(

ln(xt), ln(yt)
)

∈ R
m+n
− .

Grâce aux définitions de T t
CD et de T t

ln, nous présentons le programme d’optimisation qui

permet d’évaluer la fonction de distance exponentielle. Pour toute observation j ∈ J tel que

(xtj, y
t
j) ∈ T

t
++ avec i ∈ [m] inputs et r ∈ [n] outputs, soient les programmes suivants :
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Dt
exp(x

t, yt;αt, 0) = max δt

s.c e−δtαt

xt ≥
∏

j∈J

(xtj)
θtj

yt ≤
∏

j∈J

(ytj)
θtj (2.68)

δt, θt ≥ 0,
∑

j∈J

θtj = 1.

Dt
exp(x

t, yt; 0, βt) = max δt

s.c xt ≥
∏

j∈J

(xtj)
θtj

eδ
tβt

yt ≤
∏

j∈J

(ytj)
θtj (2.69)

δt, θt ≥ 0,
∑

j∈J

θtj = 1.

Dt
exp(x

t, yt;αt, βt) = max δt

s.c e−δtαt

xt ≥
∏

j∈J

(xtj)
θtj

eδ
tβt

yt ≤
∏

j∈J

(ytj)
θtj (2.70)

δt, θt ≥ 0,
∑

j∈J

θtj = 1.

Les programmes (2.68), (2.69) et (2.70) sont respectivement ceux des fonctions de distance

exponentielles orientées en input, en output et dans le graphe. Notons que ces programmes d’op-

timisation sont relatifs à des rendements d’échelle variables et, sont non-linéaires. Sachant que
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Dt
ln (ln(x

t), ln(yt);αt, βt) ≡ Dt
exp(x

t, yt;αt, βt) alors, nous obtenons :

Dt
ln

(

ln(xt), ln(yt);αt, 0
)

= max δt

s.c ln(xt)− δtαt ≥
∑

j∈J

θtj ln(x
t
j)

ln(yt) ≤
∑

j∈J

θtj ln(y
t
j) (2.71)

δt, θt ≥ 0,
∑

j∈J

θtj = 1.

Dt
ln

(

ln(xt), ln(yt); 0, βt
)

= max δt

s.c ln(xt) ≥
∑

j∈J

θtj ln(x
t
j)

ln(yt) + δtβt ≤
∑

j∈J

θtj ln(y
t
j) (2.72)

δt, θt ≥ 0,
∑

j∈J

θtj = 1.

Dt
ln

(

ln(xt), ln(yt);αt, βt
)

= max δt

s.c ln(xt)− δtαt ≥
∑

j∈J

θtj ln(x
t
j)

ln(yt) + δtβt ≤
∑

j∈J

θtj ln(y
t
j) (2.73)

δt, θt ≥ 0,
∑

j∈J

θtj = 1.

Nous pouvons voir que ces programmes sont linéaires. Il est donc possible d’estimer grâce à la

méthode de programmation linéaire, la valeur de la fonction de distance exponentielle puisqu’elle

est équivalent à la fonction de distance népérienne.

Lorsqu’une analyse sous l’hypothèse de rendements d’échelle constants est souhaitée, il est

nécessaire de relaxer la normalisation sur les pondérations
∑

j∈J θ
t
j = 1.
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4.2.3 Approche Duale

Cette sous-section présente une manière d’estimer la mesure de distance exponentielle selon

un point de vue dual..

Rappelons que pour tout input i ∈ [m] et tout output r ∈ [n], la fonction de distance exponen-

tielle duale, orientée en input, est définie par :

Dt
exp(x

t, yt;αt, 0) = inf
w







∏

i∈[m] (x
t
i)

wt
i

∏

i∈[m]

(

xtj,i
)wt

i

: wt · αt 6= 0







.

La figure 2 démontre que l’efficacité technique est supérieure ou égale à la droite de coût. Ainsi,

nous pouvons réécrire la fonction ci-dessus de la manière suivante :

Dt
exp(x

t, yt;αt, 0) = inf
w











δt :





∏

i∈[m] (x
t
i)

wt
i

∏

i∈[m]

(

xtj,i
)wt

i





1/αtwt

≥ eδ
t

, wt · αt = 1











. (2.74)

Notons qu’une normalisation est effectuée au niveau des pondérations telle que wt · αt = 1.

Pour tout (xtj , y
t
j) ∈ T

t
++ avec j ∈ J , le programme associé à cette mesure est le suivant :

Dt
exp(x

t, yt;αt, 0) = min δt

s.c

∏

i∈[m] (x
t
i)

wt
i

∏

i∈[m]

(

xtj,i
)wt

i

≥ eδ
t

(2.75)

δt, wt ≥ 0, wt · αt = 1.

Puisque la FDE est équivalente à la FDN, nous pouvons obtenir la première en estimant la

seconde. Ainsi, après une transformation logarithmique, nous avons le programme linéaire suivant :

Dt
ln

(

ln(xt), ln(yt);αt, 0
)

= min δt

s.c
∑

i∈[m]

wt
i ln(x

t
i)−

∑

i∈[m]

wt
i ln(x

t
j,i) ≥ δt (2.76)

δt, wt ≥ 0, wt · αt = 1.
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La fonction de distance exponentielle duale orientée en output, est quant à elle, définie par :

Dt
exp(x

t, yt; 0, βt) = sup
w

{
∏

r∈[n](y
t
j,r)

ptr

∏

r∈[n](y
t
r)

ptr
: pt · βt 6= 0

}

.

La figure 3 nous montre que la mesure de l’efficacité technique est inférieure ou égale à la

droite de revenu. Ainsi, nous pouvons reformuler la fonction ci-dessus comme suit :

Dt
exp(x

t, yt; 0, βt) = sup
w







δt :

(
∏

r∈[n](y
t
j,r)

ptr

∏

r∈[n](y
t
r)

ptr

)1/βtpt

≥ eδ
t

, pt · βt = 1







. (2.77)

Nous appliquons également une normalisation sur les pondérations telle que pt · βt = 1. Le

programme rattaché à cette définition est la suivante :

Dt
exp(x

t, yt; 0, βt) = max δt

s.c

∏

r∈[n](y
t
j,r)

ptr

∏

r∈[n](y
t
r)

ptr
≥ eδ

t

(2.78)

δt, pt ≥ 0, pt · βt = 1.

La transformation logarithmique ainsi que l’équivalence entre la FDE et la FDN permettent un

estimation de la mesure d’efficience grâce à la méthode de programmation linéaire. Dans ce ca,

nous avons le programme linéaire suivant :

Dt
ln

(

ln(xt), ln(yt); 0, βt
)

= max δt

s.c
∑

r∈[n]

ptr ln(y
t
j,r)−

∑

r∈[n]

ptr ln(y
t
r) ≥ δt (2.79)

δt, pt ≥ 0, pt · βt = 1.

Dans le graphe de la technologie, rappelons que la fonction de distance exponentielle duale est

la suivante :

Dt
exp

(

xt, yt;αt, βt
)

= sup
x,y

{

Πt
CD(w

t, pt)
(xt)w

t

(yt)pt
: wtαt + ptβt 6= 0

}

.
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La figure 4 indique que l’efficacité technique est inférieure ou égale à la droite de profit. Dans

ce cas, nous pouvons réécrire la définition comme suit :

Dt
exp

(

xt, yt;αt, βt
)

= sup
x,y







δt :

(

Πt
CD(w

t, pt)
(xt)w

t

(yt)pt

)1/(αtwt+βtpt)

≥ eδ
t

, wtαt + ptβt = 1







.

(2.80)

Le programme d’optimisation à résoudre est alors :

Dt
exp

(

xt, yt;αt, βt
)

= max δt

s.c Πt
CD(w

t, pt)
(xt)w

t

(yt)pt
≥ eδ

t

(2.81)

δt, wt, pt ≥ 0, wtαt + ptβt = 1.

Nous pouvons obtenir la mesure ci-dessous grâce à l’équivalence entre la FDE et la FDN.

Dans ce ca, l’efficacité technique est estimée selon la méthode de la programmation linéaire et, le

programme d’optimisation à résoudre est la suivante :

Dt
ln

(

ln(xt), ln(yt);αt, βt
)

= max δt

s.c Πt
ln(w

t, pt)−
(

pt ln(yt)− wt ln(xt)
)

≥ δt (2.82)

δt, wt, pt ≥ 0, wtαt + ptβt = 1.

Conclusion

Dans ce chapitre nous avons présenté une nouvelle mesure de l’efficacité technique qui a une

forme exponentielle et, est log-additive. Nous avons vu que dans ce cas, elle est structurellement

similaire à la mesure directionnelle de Luenberger (1992b). Nous avons constaté que cette fonction

de distance est duale à des pseudo fonctions de coût, de revenu et de profit non-linéaires. Il n’est

pas étonnant d’obtenir ce type de fonctions non-linéaires lorsque des facteurs internes et externes

influencent le processus de production ou bien, lorsque la relation entre les inputs et les outputs

n’est pas linéaire. Ces pseudo fonctions de coût, de revenu et de profit sont structurellement si-

milaires à la fonction de production Cobb-Douglas. En ce sens, leurs exposants sont reliés à la
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notion de rendements d’échelle. Dans la dernière section de ce chapitre, nous donnons une for-

malisation non-paramétrique aux nouvelles mesures selon une approche par enveloppement des

données lorsque l’ensemble de production considéré est de type Cobb-Douglas (Banker et Main-

diratta (1986)).

Ces nouvelles fonctions sont des outils de mesure alternatifs à la performance lorsque l’analyse

est effectuée dans le graphe de la technologie et, lorsque les ensembles de production considèrent

des productivités marginales croissantes. En effet, lorsque la méthode DEA est retenue, les tech-

nologies de production usuelles sont linéaires et ne permettent que des productivités marginales

non-croissantes. Or, la réalité ne se conforme pas à cette vision simplifiée. Ainsi, dans certains sec-

teurs d’activité tels les nouvelles technologies, où les productivités marginales peuvent être stric-

tement croissantes, l’analyse de la performance peut être réalisée grâce à cette nouvelle mesure de

l’efficacité.

Le chapitre suivant traite également d’une nouvelle mesure de distance qui combine la structure

de la fonction de distance directionnelle et celle de la technologie de référence présentée par Färe

et al. (1988).
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Chapitre 3

Une Mesure Additive Non-linéaire de

l’Efficience

Introduction

La littérature économique démontre que les ensembles de production convexes sont majori-

tairement privilégiés. Cependant, Banker et Maindiratta (1986) remarquent que cette propriété

néglige de prendre en compte les productivités marginales croissantes. Par ailleurs, plusieurs au-

teurs dont Färe et al. (1988) notifient que la convexité des ensembles n’est attractive que grâce à la

théorie de la dualité qu’elle permet. Afin de pallier à ces lacunes, Banker et Maindiratta (1986) pro-

posent la technologie de production log-linéaire qui est inspirée de la fonction de production Cobb-

Douglas. Färe et al. (1988) présentent quant à eux, une technologie de production non-linéaire et

non-convexe, nommée ensemble de production CES (Constant Elasticity of Substitution)- CET

(Constant Elasticity of Transformation). Celle-ci trouve sa particularité dans la caractérisation des

frontières efficientes en inputs et en outputs respectivement par une fonction CES et une fonction

CET. Färe et al. (1988) démontrent que cet ensemble de production est une généralisation des tech-

nologies introduites par Charnes et al. (1978), Banker et al. (1984) et Banker et Maindiratta (1986).

De ce fait, elle considère des unités de production ayant une productivité marginale croissante.

Les fonctions de distance permettent d’estimer l’efficacité technique des unités de production

grâce à une parfaite caractérisation de la technologie. Les mesures d’efficacité linéaires et radiales

de Shephard (1953) et de Debreu(1951)-Farrell (1957) peuvent être implémentées dans tout type
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d’ensemble de production (convexe ou non-convexe, linéaire ou non-linéaire). Cependant, celles

-ci ne permettent pas une évaluation de la contraction et de l’expansion simultanée des intrants

et des extrants. Par ailleurs, les outils autorisant ce type d’analyse tels que la mesure hyperbo-

lique (Färe et al. (1985)) ou la mesure directionnelle (Luenberger (1992a, 1992b)), ne peuvent être

implémentés dans une technologie non-linéaire. En effet, celles-ci sont soit non-linéaires soit de

structure additive. De ce fait, dans ce chapitre, nous proposons une nouvelle mesure à la fois ad-

ditive et non-linéaire. Elle hérite de la structure de la technologie de production CES-CET et celle

de la fonction de distance directionnelle. Nous montrons que celle-ci est une fonction pouvant être

estimée dans le graphe, en input ou en output. Nous présentons ses propriétés et développons une

analyse duale de la mesure. La dualité nous amène à déduire des fonctions de prix implicites non-

linéaires associées à l’optimum de Pareto. Cette structure des prix peut être reliée aux tarifications

non-linéaire lorsque l’ensemble de production n’est pas convexe. A la fin de ce chapitre, nous don-

nons la formalisation non-paramétrique de cette nouvelle fonction de distance grâce à la méthode

DEA. Puis, nous illustrons, par un exemple empirique, les notions introduites dans les premières

sections.

1 Environnement et Outils

Pour tous vecteurs d’intrants xt = (xt1, · · · , x
t
m) ∈ [m] et d’extrants yt = (yt1, · · · y

t
n) ∈ [n] re-

latifs à la période (t), soit la technologie de production T t(xt, yt) =
{

(xt, yt)

∈ R
m+n
+ : xt peut produire yt

}

. Nous supposerons que cette dernière satisfait les hypothèses

T1-T4.

Rappelons que pour tout (xt, yt) ∈ R
m+n
+ les mesures de Debreu-Farrell et la fonction de

distance directionnelle sont respectivement définies par :

Et
I(x

t, yt) = inf
{

λt > 0 : λtxt ∈ Lt(yt)
}

,

Et
O(x

t, yt) = sup
{

λt > 0 : λtyt ∈ P t(xt)
}

,

Dt(xt, yt; ht, kt) = sup
{

δt ≥ 0 : (xt − δtht, yt + δtkt) ∈ T t
}

, ∀gt = (ht, kt) ∈ R
m+n
+ .

Dans le premier chapitre, nous avons exposé la théorie de la dualité existant entre les mesures
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de distance et les fonctions de coût, de revenu et de profit. Notons que pour tout (wt, pt) ∈ R
m+n
+ ,

les fonctions de coût, de revenu et de profit sont respectivement caractérisées par :

Ct(wt, yt) = inf
{

wt.xt : xt ∈ Lt(yt)
}

Rt(pt, xt) = sup
{

pt.yt : yt ∈ P t(xt)
}

Πt(wt, pt) = sup
{

pt.yt − wt.xt : (xt, yt) ∈ T t
}

.

Ci-après, nous présentons les opérateurs algébriques qui seront utilisés dans ce chapitre. No-

tons, tout d’abord, que tout isomorphisme est un morphisme fs admettant une réciproque f−1
s et,

est une application bijective permettant de préserver la structure entre deux structures algébriques

tel que : (R,+, ·)→ (R,
s
+,

s
·).

Selon les travaux de Andriamasy et al. (2017) et inspiré par Ben-Tal (1977), pour tout s > 0 et

tout scalaire λt ∈ R, soit l’application isomorphe ϕs : R→ R définie par :

ϕs(λ
t) =







(λt)s si λt ≥ 0

− |λt|s si λt < 0 .

Cette fonction satisfait les propriétés suivantes :

(i) elle est définie sur R,

(ii) elle est continue sur R,

(iii) elle est bijective.

De même, pour tout vecteur zt = (zt1, · · · , z
t
d) ∈ R

d
+ et tout s > 0, soit l’application isomorphe

Φs : R
d
+ → R

d
+ définie par :

Φs(z
t) =

(

ϕs(z
t
1), · · · , ϕs(z

t
d)
)

=
(

(zt1)
s, · · · , (ztd)

s
)

= (zt)s .

Elle admet une réciproque Φ−1
s : Rd

+ → R
d
+ représentée comme suit :

Φ−1
s (zt) =

(

ϕ−1
s (zt1), · · · , ϕ

−1
s (ztd)

)

=
(

(zt1)
1/s, · · · , (ztd)

1/s
)

= (zt)1/s .

De ce fait, pour tout s > 0, tout scalaire λt ∈ R et tout couple de vecteurs (ut, vt) ∈ R
d
+ avec
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[d] = {1, · · · , d}, soient les opérateurs algébriques suivants : :

u
s
+ v = Φ−1

s (Φs(u) + Φs(v)) = (us + vs)1/s ;

u
s
⊙ v = Φ−1

s (Φs(u)⊙ Φs(v)) = (us ⊙ vs)1/s = u⊙ v ;

u
s
· v = Φ−1

s (Φs(u) · Φs(v)) =





∑

[d]

usvs





1/s

;

λ
s
· u = Φ−1

s (ϕs(λ) Φs(u)) = (λs us)1/s = λ u ;

v
s
− λ

s
· u = Φ−1

s (Φs(v)− ϕs(λ) Φs(u)) = (vs − λs us)1/s = (vs − (λ u)s)1/s .

Remarquons que pour tous vecteurs (u, v) ∈ R
d
+ alors, (us ⊙ vs)1/s = (us1v

s
1, · · · , u

s
dv

s
d)

1/s =

(u1v1, · · · , udvd). Dans tout ce chapitre, sauf indication contraire, nous admettrons que s > 0.

2 La Fonction de Distance Directionnelle CES-CET

Cette section permet d’introduire la notion de fonctions de distance directionnelle CES (Constant

Elasticity of Substitution)-CET (Constant Elasticity of Transformation). Cette mesure de l’effica-

cité est présentée selon une orientation dans le graphe, en input et en output. Les propriétés usuelles

et additionnelles de celles-ci sont également proposées.

2.1 Définitions et Propriétés

Dans la première sous-section, nous présentons la mesure dans le graphe de la technologie. Les

deux sous-sections suivantes permettent de proposer la fonction selon des orientations en input et

en output.

2.1.1 Orientation dans le Graphe

Ravelojaona (2019) introduit la fonction de distance directionnelle CES-CET (FDD CES-CET)

dans le cadre de la technologie de production CES-CET. Cette mesure est construite grâce à la

combinaison structurelle de la FDD et de la technologie de production CES-CET. De ce fait, elle

est à la fois additive et non-linaire.
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Définition 3.1 Quels que soientt (xt, yt) ∈ R
m+n
+ , pour tout (α, β) ∈ R

2
++ et, tout vecteur direc-

tionnel gt = (ht, kt) ∈ R
m+n
+ , l’application Dt

α,β : Rm+n
+ × R

m+n
+ → R ∪ {∞} définie par :

Dt
α,β(x

t, yt; gt) =



























supδ

{

δt ≥ 0 :
(

xt
α
− δtht, yt

β
+ δtkt

)

∈ T t

}

si

(

xt
α
− δtht, yt

β
+ δtkt

)

∩ T t 6= ∅

∞ sinon .

(3.1)

est la fonction distance directionnelle CES-CET orientée dans le graphe.

Il est évident que cette mesure dans le graphe permet la réduction et l’augmentation simultanées

des facteurs et de la production.

Proposition 3.2 Lorsque l’ensemble de production satisfait les hypothèses T1-T4, la FDD CES-

CET vérifie les propriétés suivantes :

Dα,β1 : (xt, yt) ∈ T t si et seulement si, Dt
α,β(x

t, yt; ht, kt) ≥ 0.

Dα,β2 : Si Dt
α,β(x

t, yt; ht, kt) = 0 alors, (xt, yt) ∈ ∂α,βT
t.

Dα,β3 : Pour tout (xt, yt), (ut, vt) ∈ T t, si (−ut, vt) ≥ (−xt, yt) alors, Dt
α,β(u

t, vt; ht, kt) ≤

Dt
α,β(x

t, yt; ht, kt).

Dα,β4 : Pour tout λt > 0 on a, Dt
α,β(λ

txt, λtyt; ht, kt) = λt ·Dt
α,β(x

t, yt; ht, kt).

Dα,β5 : Pour tout λt > 0 on a, Dt
α,β(x

t, yt;λtht, λtkt) = (λt)−1 ·Dt
α,β(x

t, yt; ht, kt).

Preuves :

(Dα,β1) et (Dα,β2) découlent directement de la définition de la fonction de distance directionnelle

CES-CET orientée dans le graphe �.

(Dα,β3) Considérons deux unités de productions (xt, yt), (ut, vt) ∈ T t telles que (xt,−yt) ≤

(ut,−vt) avec Dt
α,β(x

t, yt; ht, kt) = δt et Dt
α,β(u

t, vt; ht, kt) = (δ′)t. Ainsi,

(

xt
α
− δtht, yt

β
+

δtkt
)

= ((x′)t, (y′)t) ∈ T t et

(

ut
α
− (δ′)tht, vt

β
+ (δ′)tkt

)

= ((u′)t, (v′)t) ∈ T t. Alors,
(

(x′)t,−(y′)t
)

≤
(

(u′)t,−(v′)t
)

est valable �.

(Dα,β4) Pour tout λt > 0 et sous l’hypothèse de rendements d’échelle constants on a, (λtxt, λtyt)

∈ T t alors, Dt
α,β(λ

txt, λtyt; ht, kt) = supδ

{

δt :

(

λtxt
α
− δtht, λtyt

β
+ δtkt

)

∈ T t

}

Dans ce cas,
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en factorisant par λt et, en posant (δ′)t = δt/λt on a, Dt
α,β(λ

txt, λtyt; ht, kt) = supδ′

{

(δ′)t :

λt
(

xt
α
− (δ′)tht, yt

β
+ (δ′)tkt

)

∈ T t

}

. Donc, Dt
α,β(λ

txt, λtyt; ht, kt) = λt ·Dt
α,β(x

t, yt; ht, kt) �.

(Dα,β5) Soit λt > 0 tel queDt
α,β(x

t, yt;λtht, λtkt) = supδ

{

δt :

(

xt
α
− δt (λtht) , yt

β
+ δt (λtkt)

)

∈ T t

}

. En posant (δ′)t = δtλt on obtient, Dt
α,β(λ

txt, λtyt; ht, kt) =
1

λt
·

{

(δ′)t :

(

xt
α
−

(δ′)tht, yt
β
+ (δ′)tkt

)

∈ T t

}

. D’où, Dt
α,β(λ

txt, λtyt; ht, kt) = (λt)−1 ·Dt
α,β(x

t, yt; ht, kt) �.

La propriété (Dα,β1) stipule que la FDD CES-CET caractérise de manière complète l’ensemble

de production. Lorsque la valeur de la mesure est nulle, l’unité de production appartient à l’isoquant

du graphe de la technologie (Dα,β2). La troisième hypothèse est relative à la monotonicité de la

fonction par rapport aux inputs et aux outputs. Le quatrième axiome indique l’homogénéité de

degré (1) de la mesure lorsque la technologie satisfait des rendements d’échelle constants. (Dα,β5)

indique que la fonction est homogène de degré (-1) par rapport à la direction gt.

2.1.2 Orientation en Input

Cette sous-section est dévouée à la caractérisation de la fonction de distance directionnelle

CES-CET axée sur les intrants. Nous proposons sa définition et les propriétés qui y sont associées.

En effet, la plupart des firmes n’ont pas la possibilité d’influencer à la fois leurs facteurs et leurs

productions. Dans ce cas, la recherche de l’efficacité ne peut être effectuée qu’en agissant sur les

inputs.

Définition 3.3 Pour tout (xt, yt) ∈ R
m+n
+ et tout α ∈ R++ avec un vecteur directionnel gt =

(ht, 0) ∈ R
m
+ , l’application Dt

α,β : Rm+n
+ × R

m
+ → R{−∞} définie par :

Dt
α,β(x

t, yt; gt) =







supδ

{

δt ≥ 0 :
(

xt
α
− δtht, yt

)

∈ T t
}

si xt
α
− δtht ∩ Lt(yt) 6= ∅

−∞ sinon

(3.2)

est la fonction de distance directionnelle CES-CET orientée en input.
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Cette orientation de la mesure permet de maintenir un niveau de production et de diminuer la

quantité de facteurs utilisée, simultanément.

Proposition 3.4 Lorsque Lt(yt) satisfait les hypothèses L1-L5 alors, la FDD CES-CET orientée

en input vérifie les propriétés suivantes :

IDα,β1 : (xt, yt) ∈ T t si et seulement si, Dt
α,β(x

t, yt; ht, 0) ≥ 0.

IDα,β2 : Si Dt
α,β(x

t, yt; ht, 0) = 0 alors, (xt, yt) ∈ ∂α,βT
t.

IDα,β3 : Pour tout (xt, yt), (ut, yt) ∈ T t si, (xt,−yt) ≤ (ut,−yt) alors, Dt
α,β(x

t, yt; ht, 0)

≤ Dt
α,β(u

t, yt; ht, 0).

IDα,β4 : Pour tout λt > 0 on a, Dt
α,β(λ

txt, λtyt; ht, 0) = λt ·Dt
α,β(x

t, yt; ht, 0).

IDα,β5 : Pour tout λt > 0 on a, Dt
α,β(x

t, yt;λtht, 0) = (λt)−1 ·Dt
α,β(x

t, yt; ht, 0).

IDα,β6 : Quel que soit γt ∈ R+, Dt
α,β(x

t
α
− γtht, yt; ht, 0) = Dt

α,β(x
t, yt; ht, 0)

α
− γt.

Preuves :

(IDα,β1) et (IDα,β2) découlent directement de la définition de la mesure de l’efficacité �.

(IDα,β3) Si (xt,−yt) ≤ (ut,−yt) alors pour tout cône de libre disposition des inputs et des out-

puts K = R
m
+ × (−Rn

+) on a
{

δt : (xt
α
− δtht, y) ∈

(

(xt, yt) +K
)

}

⊂
{

δt : (xt
α
− δtht, y) ∈

(

(ut, yt)+K
)

}

et
{

δt : (xt
α
− δtht, y) ∈

(

(ut, yt)+K
)

}

⊂
{

δt : (ut
α
− δtht, y) ∈

(

(ut, yt)+K
)}

.

Ainsi,
{

δt : (xt
α
− δtht, y) ∈

(

(xt, yt) +K
)

}

⊂
{

δt : (ut
α
− δtht, y) ∈

(

(ut, yt) +K
)

}

tel que,

Dt
α,β(x

t, yt; ht, 0) ≤ Dt
α,β(u

t, yt; ht, 0) �.

(IDα,β4) Soit λt > 0 tel que Dt
α,β(λ

txt, λtyt; ht, 0) = supδ

{

δt :
(

λtxt
α
− δtht, λtyt

)

∈ T t
}

. En

factorisant par λt et, en posant (δ′)t = δt/λt on a, Dt
α,β(λ

txt, λtyt; ht, 0) = λt · supδ′

{

(δ′)t :
(

xt
α
− (δ′)tht, yt

)

∈ T t
}

. Ainsi, Dt
α,β(λ

txt, λtyt; ht, 0) = λt ·Dt
α,β(x

t, yt; ht, 0) �.

(IDα,β5) Pour tout λt > 0 soit,Dt
α,β(x

t, yt;λtht, 0) = supδ

{

δt :
(

xt
α
− δtλtht, yt

)

∈ T t
}

. En

posant (δ′)t = δtλt on a, Dt
α,β(x

t, yt;λtht, 0) = (λt)−1 · supδ′

{

(δ′)t :
(

xt
α
− (δ′)tht, yt

)

∈ T t
}

.

De ce fait, Dt
α,β(x

t, yt;λtht, 0) = (λt)−1 ·Dt
α,β(x

t, yt; ht, 0) � .

(IDα,β6) Soit γt ∈ R+ tel que Dt
α,β(x

t
α
− γtht, yt; ht, 0) = supδ

{

δt :
(

xt
α
− γtht

α
− δtht, yt

)

∈

T t
}

. En factorisant par ht on a, Dt
α,β(x

t
α
− γtht, yt; ht, 0) = supδ

{

δt :
(

xt
α
−
(

γt
α
+ δt

)

ht, yt
)

∈ T t
}

. Si (δ′)t = γt
α
+ δt alors, Dt

α,β(x
t

α
− γtht, yt; ht, 0) = supδ′

{

(δ′)t :
(

xt
α
− (δ′)tht, yt

)

∈ T t
} α
− γt. D’où, Dt

α,β(x
t

α
− γtht, yt; ht, 0) = Dt

α,β(x
t, yt; ht, 0)

α
− γt � .
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Les deux premières hypothèses signifient que la mesure caractérise complètement la technolo-

gie de production et, que l’observation est efficiente lorsque sa valeur est nulle. L’axiome (IDα,β3)

est relative à la monotonicité de la fonction par rapport aux inputs. (IDα,β4) fait référence à

l’homogénéité de degré (1) de la fonction sous l’hypothèse de rendements d’échelle constants.

(IDα,β5) indique que la mesure est homogène de degré (-1) par rapport à la direction gt. Enfin, la

cinquième propriété stipule que la fonction vérifie l’hypothèse de translation homothéticité.

2.1.3 Orientation en Output

Dans cette sous-section, nous introduisons la fonction de distance CES-CET dans le contexte

d’une orientation en output. Nous proposons d’abord de la définir puis, de présenter ses propriétés.

Définition 3.5 Pour tout (xt, yt) ∈ R
m+n
+ et tout β ∈ R++ tel que pour un vecteur de direction

gt = (0, kt) ∈ R
n
+, l’application Dt

α,β : Rm+n
+ × R

n
+ → R{+∞} définie par :

Dt
α,β(x

t, yt; gt) =











supδ

{

δt ≥ 0 :

(

xt, yt
β
+ δtkt

)

∈ T t

}

si yt
β
+ δtkt ∈ P t(xt)

+∞ sinon

(3.3)

est la fonction de distance directionnelle CES-CET orientée en output.

La définition ci-dessus signifie que la mesure directionnelle CES-CET évalue l’augmentation

potentielle de la production compte tenu d’un niveau de facteurs.

Proposition 3.6 Lorsque P t(xt) satisfait les hypothèses P1-P5 alors, la FDD CES-CET orientée

en output vérifie les propriétés suivantes :

ODα,β1 : (xt, yt) ∈ T t si et seulement si, Dt
α,β(x

t, yt; 0, kt) ≥ 0.

ODα,β2 : Si Dt
α,β(x

t, yt; 0, kt) = 0 alors, (xt, yt) ∈ ∂α,βT
t.

ODα,β3 : Pour tout (xt, yt), (xt, vt) ∈ T t si, (xt,−yt) ≤ (xt,−vt) alors, Dt
α,β(x

t, yt; 0, kt) ≤

Dt
α,β(x

t, vt; 0, kt).

ODα,β4 : Pour tout λt > 0 on a, Dt
α,β(λ

txt, λtyt; 0, kt) = λt ·Dt
α,β(x

t, yt; 0, kt).

ODα,β5 : Pour tout λt > 0 on a, Dt
α,β(x

t, yt; 0, λtkt) = (λt)−1 ·Dt
α,β(x

t, yt; 0, kt).

ODα,β6 : Quel que soit γt ∈ R+, Dt
α,β(x

t, yt
β
+ γtkt; 0, kt) = Dt

α,β(x
t, yt; 0, kt)

β
− γt.
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Les preuves de ces propriétés sont similaires à celles présentées dans le cadre de la fonction

orientée en input. Ainsi, elles sont omises.

Les deux premières propriétés signifient que la fonction donne une parfaite caractérisation de la

technologie et que par ailleurs, sa valeur est nulle lorsque la production est optimale. L’hypothèse

(ODα,β3) indique la monotonicité de la fonction par rapport aux outputs. L’axiome (ODα,β4) sti-

pule que la mesure est homogène de degré (1) sous l’hypothèse de rendements d’échelle constants.

La fonction est homogène de degré (-1) par rapport à la direction gt selon la propriété (ODα,β5).

La dernière hypothèse indique que la mesure est translation homothétique.

2.2 Des Propriétés Additionnelles

Cette sous-section présente des propriétés additionnelles pouvant être associées aux fonctions

de distance directionnelle CES-CET. En effet, puisque les mesures directionnelles CES-CET re-

flètent la technologie de production, elles permettent de déduire des axiomes particuliers relatifs à

la technologie de production et à ses correspondances.

2.2.1 Graphe Translation Homothéticité

Notons que lorsque α = β = s ∈ R++ alors, la FDD CES-CET orientée dans le graphe peut

être réécrite de la manière suivante :

Dt
s(x

t, yt; gt) = sup
δ

{

δt ≥ 0 :
(

xt
s
− δtht, yt

s
+ δtkt

)

∈ T t
}

. (3.4)

Proposition 3.7 Pour tout (xt, yt) ∈ R
m+n
+ et tout vecteur de direction gt = (ht, kt) ∈ R

m+n
+ , si

quels que soient (α, β) ∈ R
2
++ on a α = β = s alors, la mesure directionnelle CES-CET orientée

dans le graphe vérifie la propriété de translation homothéticité, comme suit :

Dα,β6 : Pour tout γt ∈ R+ on a, Dt
s(x

t
s
− γtht, yt

s
+ γtkt; ht, kt) = Dt

s(x
t, yt; ht, kt)

s
− γt.

Preuve :

Soit γt ≥ 0 tel que Dt
s(x

t
s
− γtht, yt

s
+ γtkt; gt) = supδ

{

δt :
(

xt
s
− γtht

s
− δtht, yt

s
+

γtkt
s
+ δtkt

)

∈ T t
}

. En factorisant par ht et kt on a, Dt
s(x

t
s
− γtht, yt

s
+ γtkt; gt) = supδ

{

δt :
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(

xt
s
−
(

γt
s
+ δt

)

ht, yt
s
+
(

γt
s
+ δt

)

kt
)

∈ T t
}

. En posant (δ′)t = γt
s
+ δt, on obtient Dt

s(x
t

s
−

γtht, yt
s
+ γtkt; gt) = supδ′

{

(δ′)t :
(

xt
s
− (δ′)tht, yt

s
+ (δ′)tkt

)

∈ T t
} s
− γt. Par conséquent,

Dt
s(x

t
s
− γtht, yt

s
+ γtkt; gt) = Dt

s(x
t, yt; ht, kt)

s
− γt � .

Shephard (1953) introduit la notion de translation homothéticité de la technologie grâce à une

fonction de distance ayant une structure multiplicative. Par la suite, Chambers et Färe (1998),

Chambers (2002) et, Briec et Kerstens (2004) développent ce concept à la fonction de distance

directionnelle qui est structurellement additive. Cette propriété est intéressante car elle permet

d’établir des relations d’équivalence entre les mesures de productivité.

Définition 3.8 Pour toute technologie T t satisfaisant T1-T4 et tout (xt, yt) ∈ T t avec δt ∈ R+,

l’ensemble de production vérifie une graphe translation homothéticité CES-CET dans la direction

gt = (ht, kt) si et seulement si :

(

xt
α
− δtht, yt

β
+ δtkt

)

≥ 0 et donc,

(

xt
α
− δtht, yt

β
+ δtkt

)

∈ T t . (3.5)

Nous pouvons retrouver cette définition grâce à la proposition ci-dessous.

Proposition 3.9 Pour tout ensemble de production T t vérifiant T1-T5 et, tout (α, β) ∈ R
2
++ tels

que α = β = s, la technologie T t satisfait une graphe translation homothéticité CES-CET si et

seulement si :

(i) Dt
s(x

t, yt; ht, 0) = Dt
s(x

t, yt; 0, kt) = 2
1
sDt

s(x
t, yt; ht, kt) , (3.6)

(ii) Dt
s(x

t, yt
β
+ γtkt; ht, 0) = Dt

s(x
t, yt; ht, 0)

β
− γt , (3.7)

(iii) Dt
s(x

t
α
− γtht, yt; 0, kt) = Dt

s(x
t, yt; 0, kt)

α
+ γt . (3.8)

Preuves :

(i) Soient deux observations (xt, yt) et (x̃t, ỹt) tels que (x̃t, ỹt) = (xt, yt)
s
− Dt

s(x
t, yt; ht, 0) ·

(ht, 0). En développant l’expression, nous avons (x̃t, ỹt) =
(

xt
s
− Dt

s(x
t, yt; ht, 0) · ht, yt

)

. Consi-

dérons une observation (x̂t, ŷt) définie par (x̂t, ŷt) = (x̃t, ỹt)
s
+ Dt

s(x
t, yt; ht, 0) · (ht, kt). En

détaillant celle-ci, nous obtenons (x̂t, ŷt) =
(

xt
s
− Dt

s(x
t, yt; ht, 0) · ht

s
+ Dt

s(x
t, yt; ht, 0) ·
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ht, y
s
+ Dt

s(x
t, yt; ht, 0) · kt

)

. Ainsi, (x̂t, ŷt) =
(

xt, yt
s
+ Dt

s(x
t, yt; ht, 0) · kt

)

. On peut affir-

mer que (x̃t, ỹt) est la projection orientée en input de (xt, yt), sur la frontière efficiente. Étant

donné que (x̂t, ŷt) dépend de (x̃t, ỹt) alors, (x̂t, ŷt) appartient également à la frontière. De ce fait,

on peut en déduire que (x̂t, ŷt) =

(

xt, yt
β
+ Dt

s(x
t, yt; ht, 0) · kt

)

. Par conséquent, (x̂t, ŷt) =
(

xt, yt
β
+ Dt

s(x
t, yt; 0, kt) · kt

)

. Nous pouvons en déduire queDt
s(x

t, yt; ht, 0) = Dt
s(x

t, yt; 0, kt).

Soit une autre observation (xt, yt) caractérisée par (xt, yt) =
1

21/s

[

(x̃t, ỹt)
s
+ (x̂t, ŷt)

]

. En dé-

taillant l’expression, nous obtenons (xt, yt) =
1

21/s

(

xt
s
+ xt

s
− Dt

s(x
t, yt; ht, 0) · ht, yt

s
+

yt
s
+ Dt

s(x
t, yt; 0, kt) · kt

)

. Par ailleurs, on a (xt, yt) =
(

xt
s
−

1

21/s
Dt

s(x
t, yt; ht, 0) · ht, yt

s
+

1

21/s
Dt

s(x
t, yt; 0, kt) · kt

)

. Puisque Dt
s(x

t, yt; ht, 0) = Dt
s(x

t, yt; 0, kt) alors, si Dt
s(x

t, yt; ht, kt) =

1

21/s
Dt

s(x
t, yt; ht, 0) ou Dt

s(x
t, yt; ht, kt) =

1

21/s
Dt

s(x
t, yt; 0, kt), nous avons (xt, yt) =

(

xt
s
−

Dt
s(x

t, yt; ht, kt) · ht, yt
s
+ Dt

s(x
t, yt; ht, kt) · kt

)

�.

(ii) De l’équation (3.6), on a établi que Dt
s

(

xt, yt
s
+ γtkt; ht, 0

)

= Dt
s

(

xt, yt
s
+ γtkt; 0, kt

)

. On

sait que Dt
s

(

xt, yt
s
+ γtkt; 0, kt

)

= sup
{

δt :
(

xt, yt
s
+ γtkt

s
+ δtkt

)

∈ T t
}

. En factorisant par

kt et, en posant (δ′)t = γt
s
+ δt, on obtient Dt

s

(

xt, yt
s
+ γtkt; 0, kt

)

= sup
{

(δ′)t :
(

xt, yt
s
+

(δ′)tkt
)

∈ T t
} s
− γt. Ainsi, on déduit que Dt

s

(

xt, yt
s
+ γtkt; 0, kt

)

= Dt
s (x

t, yt; 0, kt)
s
− γt ≡

Dt
s (x

t, yt; ht, 0)
s
− γt �.

(iii) En appliquant le même raisonnement logique que précédemment, la preuve de celle-ci peut se

faire de manière simple �.

Suivant les travaux de Färe et Primont (1995), de Chambers et Färe (1998) et, de Chambers

(2002), nous pouvons définir la translation homothéticité des correspondances en intrants et en

extrants. Pour ce faire, nous nous intéressons aux fonctions de distance directionnelle CES-CET

orientées en input et en output.

Proposition 3.10 Soit une technologie de production satisfaisant T1-T4. Quels que soient (xt, yt)

∈ R
m+n
+ avec (α, β) ∈ R

2
++, pour toutes fonctions non-décroissantes H t(yt, ·) et Gt(xt, ·), cohé-

rentes avec les propriétés des fonctions de distances directionnelles CES-CET,

(iv) l’ensemble de production vérifie une translation homothéticité CES-CET orientée en in-
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put si et seulement si :







Lt(yt) = H t(yt, ht) · ht
α
+ Lt(yt) pour yt ∈ R

n
+ (3.9)

Dt
α,β(x

t, yt; ht, 0) = Dt
α,β(x

t, yt; ht, 0)
α
− H t(yt, ht) , (3.10)

(v) la technologie de production satisfait une translation homothéticité CES-CET orientée en

output si et seulement si :







P t(xt) = Gt(xt, kt) · kt
β
+ P t(xt) pour xt ∈ R

m
+ (3.11)

Dt
α,β(x

t, yt; 0, kt) = Dt
α,β(x

t, yt; 0, kt)
β
+ Gt(xt, kt) , (3.12)

où xt et yt sont respectivement des vecteurs de facteurs et de productions fixes.

Preuves :

(iv) (3.9) Soit la correspondance en inputs Lt(yt) =
{

xt ∈ R
m
+ : Dt

α,β(x
t, yt; ht, 0) ≥ 0

}

. Grâce à

l’équation (3.10), on sait queDt
α,β(x

t, yt; ht, 0) = Dt
α,β(x

t, yt; ht, 0)
α
− H t(yt, ht). Ainsi, Lt(yt) =

{

xt : Dt
α,β(x

t, yt; ht, 0)
α
− H t(yt, ht) ≥ 0

}

et, par à la propriété (I5) on a,Lt(yt) =
{

xt : Dt
α,β(x

t
α
−

H t(yt, ht) · ht, yt; ht, 0) ≥ 0
}

. De plus on peut écrire que Lt(yt) =
{

xt
α
− H t(yt, ht) · ht :

Dt
α,β(x

t
α
− H t(yt, ht) · ht, yt; ht, 0) ≥ 0

} α
+ H t(yt, ht) · ht. En posant x̃t = xt

α
− H t(yt, ht) · ht

on obtient,Lt(yt) =
{

x̃t : Dt
α,β(x̃

t, yt; ht, 0) ≥ 0
} α
+ H t(yt, ht) · ht. De ce fait, Lt(yt) = Lt(yt)

α
+

H t(yt, ht) · ht �.

(3.10) Soit la fonction de distance CES-CET orientée en input définie par Dt
α,β(x

t, yt; ht, 0) =

sup
{

δt :
(

xt
α
− δtht

)

∈ Lt(yt)
}

. Puisque Lt(yt) = Lt(yt)
α
+ H t(yt, ht) · ht alors nous avons,

Dt
α,β(x

t, yt; ht, 0) = sup
{

δt :
(

xt
α
− δtht, yt

)

∈ Lt(yt)
α
+ H t(yt, ht) · ht

}

. En soustrayant l’ex-

pressionH t(yt, ht)·ht deLt(yt) on a,Dt
α,β(x

t, yt; ht, 0) = sup
{

δt :
(

xt
α
− δtht, yt

) α
− H t(yt, ht)·

ht ∈ Lt(yt)
}

. La factorisation par ht permet d’obtenir Dt
α,β(x

t, yt; ht, 0) = sup
{

δt : xt
α
−

(

δt
α
+ H t(yt, ht)

)

· ht ∈ L(yt)
}

. En posant (δ′)t = δt
α
+ H t(yt, ht), nous pouvons écrire que

Dt
α,β(x

t, yt; ht, 0) = sup
{

(δ′)t :
(

xt
α
− (δ′)tht, yt

)

∈ Lt(yt)
} α
− H t(yt, ht). Par conséquent,

Dt
α,β(x

t, yt; ht, 0) = Dt
α,β(x

t, yt; ht, 0)
α
− H t(yt, ht) �.

(v) Les preuves des équations (3.11) et (3.12) sont similaires à celles proposées pour les équations

(3.9) et (3.10). De ce fait, elles sont omises.
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2.2.2 Translation Homothéticité Réciproque

La définition de la translation homothéticité réciproque a été présentée par Fukuyama (2002).

Cette notion établit les implications structurelles des fonctions de coût et de revenu spécifiques.

Dans le même esprit, nous présentons la notion de translation homothéticité réciproque CES-CET.

Définition 3.11 Soient des vecteurs arbitraires (xt, yt) ∈ R
m+n
+ , pour toute fonction inversible et

non-croissante F t avec α = β = s ∈ R+, la technologie de production vérifie une translation

homothéticité réciproque CES-CET si et seulement si :

(vi) Dt
s(x

t, yt; 0, kt) = Dt
s(x

t, yt; 0, kt)
s
− F t

(

Dt
s(x

t, yt; ht, 0)
)

(3.13)

(vii) Dt
s(x

t, yt; ht, 0) = Dt
s(x

t, yt; ht, 0)
s
− (F t)−1

(

Dt
s(x

t, yt; 0, kt)
)

. (3.14)

Selon les travaux de Briec et Kerstens (2004), nous pouvons fournir la proposition qui suit.

Proposition 3.12 Pour Dt
s(x

t, yt; ht, 0) = 0 et Dt
s(x

t, yt; 0, kt) = 0, une technologie vérifiant T1-

T4, satisfait la propriété de translation homothéticité CES-CET orientée en input et output si et

seulement si, l’ensemble de production vérifie également une translation homothéticité réciproque

CES-CET.

Preuves :

(vi) Nous pouvons affirmer que la proposition Dt
s(x

t
s
− Dt

s(x
t, yt; ht, 0) · ht, yt; ht, 0) = 0, est

toujours vraie. De ce fait, pour tout s ∈ R++, la technologie vérifie la translation homothéticité

réciproque CES-CET telle que Dt
s(x

t
s
− Dt

s(x
t, yt; ht, 0) · ht, yt; 0, kt) = 0. La Définition 3.10

ainsi que l’équation (3.10) permettent d’établir que Dt
s

(

xt
s
− Dt

s(x
t, yt; ht, 0) · ht, yt; 0, kt

)

=

Dt
s

(

xt
s
−
[

Dt
s(x

t, yt; ht, 0)
s
− H t(yt, ht)

]

· ht, yt; ht, 0
)

. Par ailleurs, grâce à l’équation (3.12) on

sait que Dt
s

(

xt
s
−
[

Dt
s(x

t, yt; ht, 0)
s
− H t(yt, ht)

]

· ht, yt; ht, 0
)

= Dt
s(x

t, yt; 0, kt)
s
+

Gt
(

xt
s
−
[

Dt
s(x

t, yt; ht, 0)
s
− H t(yt, ht)

]

· ht, kt
)

= 0. Ainsi, Dt
s(x

t, yt; 0, kt) = −Gt
(

xt
s
−

[

Dt
s(x

t, yt; ht, 0)
s
− H(yt, ht)

]

· ht, kt
)

et, −Gt
(

xt
s
−
[

Dt
s(x

t, yt; ht, 0)
s
− H t(yt, ht)

]

· ht, kt
)

=

F t (H t(yt, ht)). Il apparaît évident que la fonction F t est non-croissante. Dans ce cas, on peut la

réécrire telle que F t (H t(yt, ht)) = F t (Dt
s(x

t, yt; ht, 0)) = F t (Dt
s(x

t, yt; 0, kt)). Enfin, la Propo-

sition 3.12 induit Dt
s(x

t, yt; 0, kt) = Dt
s(x

t, yt; 0, kt)
s
− F t (Dt

s(x
t, yt; ht, 0))�.
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(vii) Précédemment, nous avons pu voir que la fonction F t dépend de la fonction H t(yt, ht) telle

que H t(yt, ht) = (F t)−1 (H t(yt, ht)). Par ailleurs, puisque Dt
s(x

t, yt; ht, 0) = Dt
s(x

t, yt; 0, kt)

alors, la Définition 3.10 et l’équation (3.10) permettent d’affirmer que Dt
s(x

t, yt; ht, 0)

= Dt
s(x

t, yt; ht, 0)
s
− (F t)−1 (Dt

s(x
t, yt; 0, kt)) �.

2.2.3 Équivalence aux Mesures Radiales

Chambers et al. (1996a) ainsi que Briec (1997) démontrent que les fonctions de distance di-

rectionnelle peuvent être reliées aux fonctions de distance radiale (Shephard (1953, 1970), Debreu

(1951) et, Farrell (1957)). Dans ce cas, les vecteurs de direction doivent être choisis de manière

spécifique.

Rappelons que les mesures de Debreu-Farrell et de Shephard sont respectivement définies par :

Et
I(x

t, yt) = inf
θ

{

θt : (θtxt, yt) ∈ T t
}

=

[

Dt
I(x

t, yt) = sup
θ

{

θt :

(

xt

θt
, yt
)

∈ T t

}]−1

Et
O(x

t, yt) = sup
θ

{

θt : (xt, θtyt) ∈ T t
}

=

[

Dt
O(x

t, yt) = inf
θ

{

θt :

(

xt,
yt

θt

)

∈ T t

}]−1

.

Proposition 3.13 Pour tout (xt, yt) ∈ R
m+n
+ et tout (α, β) ∈ R

2
++, nous pouvons établir que :

Dt
α,β(x

t, yt; xt, 0) = 1
α
− Et

I(x
t, yt) = 1

α
−

1

Dt
I(x

t, yt)
∀gt = (xt, 0) (3.15)

Dt
α,β(x

t, yt; 0, yt) = Et
O(x

t, yt)
β
− 1 =

1

Dt
O(x

t, yt)

β
− 1 ∀gt = (0, yt) . (3.16)

Preuves :

Equation (3.15) Pour une direction gt = (ht, 0) avec ht = xt, soit la FDD CES-CET orientée

en input définie par Dt
s(x

t, yt; xt, 0) = supδ

{

δt :
(

xt
α
− δtxt, yt

)

∈ T t
}

. En factorisant par xt

et, en posant (δ′)t = 1
α
− δt on a, Dt

s(x
t, yt; xt, 0) = 1

α
− infδ′ {(δ

′)t : ((δ′)txt, yt) ∈ T t}. Par

conséquent, Dt
s(x

t, yt; xt, 0) = 1
α
− [Et

I(x
t, yt)] = 1

α
−

1

Dt
I(x

t, yt)
�.

Equation (3.16) Pour toute direction gt = (0, kt) avec kt = yt, la FDD CES-CET orientée en

output est caractérisée par Dt
s(x

t, yt; 0, yt) = supδ

{

δt :

(

xt, yt
β
+ δtyt

)

∈ T t

}

. En factorisant

par yt et, en posant (δ′)t = 1
β
+ δt on obtient, Dt

s(x
t, yt; 0, yt) = supδ′ {(δ

′)t : (xt, (δ′)tyt) ∈ T t}
β
− 1. De ce fait, Dt

s(x
t, yt; 0, yt) = [Et

O(x
t, yt)]

β
− 1 =

1

Dt
O(x

t, yt)

β
− 1 �.

134



Une Mesure Additive Non-linéaire de l’Efficience

3 Une Dualité Non-linéaire

Dans cette section, nous présentons la relation duale existant entre la FDD CES-CET et des

pseudo fonctions de profit, de coût et de revenu. Pour ce faire, nous définissons dans un premier

temps, les pseudo-fonctions de profit, de coût et de revenu CES-CET non-linéaires. Puis dans un

second temps, nous établissons la dualité entre la FDD CES-CET et ces dernières. Enfin, nous

introduisons les fonctions de prix implicites et quelques notions d’efficience.

3.1 Pseudo-Fonctions de Profit, de Coût et de Revenu CES-CET

Cette première sous-section introduit les pseudo fonctions de profit, de coût et de revenu

CES-CET non-linéaires. Nous caractérisons tout d’abord, la fonction de profit non-linéaire. Puis,

nous constatons que cette dernière est une généralisation des fonctions de coût et de revenu non-

linéaires.

3.1.1 Pseudo-Fonction de Profit CES-CET

Une fonction de profit prend en compte simultanément les facteurs productifs et les produc-

tions. Les paramètres α et β, intervenant dans les fonctions CES et CET, peuvent prendre des

valeurs différentes. Ainsi, établir une unique fonction de profit telle que la valeur de α soit diffé-

rente de celle β semble improbable. Nous nous proposons ainsi, de définir une pseudo fonction de

profit telle que α = β = s ∈ R++.

Définition 3.14 Pour tout (xt, yt) ∈ R
m+n
+ et tout (wt, pt) ∈ R

m+n
+ avec α = β = s ∈ R++,

l’application Πt
s : R

m
+ × R

n
+ → R ∪ {∞} définie par :

Πt
s(w

t, pt) =











sup
x,y

{

ϕ−1
s

(

ϕs

(

pt
s
· yt
)

− ϕs

(

wt s
· xt
))

: (xt, yt) ∈ T t
}

si T t 6= ∅

∞ sinon

(3.17)

est la pseudo-fonction de profit CES-CET.

La fonction de profit permet une optimisation des bénéfices soit par la diminution des coûts

soit par l’augmentation des revenus soit les deux simultanément.
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Proposition 3.15 Lorsque l’ensemble de production satisfait les hypothèses T1-T4 alors, la pseudo

fonction de profit CES-CET vérifie les propriétés suivantes :

Πs1 : Pour tout (wt, pt) ∈ R
m+n
+ tel que pour (0, 0) ∈ T t on a, Πt

s(w
t, pt) = 0.

Πs2 : Pour tout (wt, pt) ∈ R
m+n
+ , on a Πt

s(0, 0) = 0.

Πs3 : Si (wt, pt) ∈ R
m+n
++ et (xt, yt) ∈ R

m+n
++ alors, Πt

s(w
t, pt) > 0.

Πs4 : Pour tout (wt, pt), (w̃t, p̃t) ∈ R
m+n
+ tel que (wt,−pt) ≤ (w̃t,−p̃t) on a, Πt

s(w
t, pt) ≥

Πt
s(w̃

t, p̃t).

Πs5 : Pour tout λt > 0 on a, Πt
s(λ

t s
· wt, λt

s
· pt) = λt · Πt

s(w
t, pt).

Πs6 : Sous l’hypothèse de rendements d’échelle constants, Πt
s(w

t, pt) = 0 ou Πt
s(w

t, pt) =

+∞.

Preuves :

(Πs1) à (Πs4) découlent directement de la définition de la pseudo fonction de profit CES-CET �.

(Πs5) Soit λt > 0 tel que Πt
s(λ

t s
· wt, λt

s
· pt) = supx,y

{

ϕ−1
s

(

Φs

(

λt
s
· pt
)

Φs(y
t) − Φs

(

λt
s
·

wt
)

Φs(x
t)
)

: (xt, yt) ∈ T t
}

. La factorisation de l’expression par λt donne, Πt
s(λ

t s
· wt, λt

s
·

pt) = supx,y

{

ϕ−1
s

(

ϕs(λ
t)
(

Φs(p
t)Φs(y

t) − Φs(w
t)Φs(x

t)
))

: (xt, yt) ∈ T t
}

. Par conséquent,

Πt
s(λ

t s
· wt, λt

s
· pt) = λt · supx,y

{

ϕ−1
s

(

ϕs

(

pt
s
· yt
)

− ϕs

(

wt s
· xt
))

(xt, yt) ∈ T t
}

�.

(Πs6) Lorsque le processus de production opère sous l’hypothèse de rendements d’échelle constants,

la structure de la frontière de production devient linéaire. Ainsi, la droite de profit se confond avec

celle-ci lorsque le bénéfice est optimal tel que Πt
s(w

t, pt) = 0. Par ailleurs, lorsque la droite de

profit n’est pas tangente à la frontière de production on a Πt
s(w

t, pt) = +∞.

Les deux premières hypothèses stipulent respectivement qu’il n’y a pas de repas gratuit et, que

des prix nuls engendrent de profits nuls. L’axiome (Πs3) signifie que des prix non-nuls ainsi que

une utilisation des facteurs et une production effective engendrent des profits positifs. La quatrième

propriété est relative à la monotonicité de la fonction de profit par rapport aux prix des inputs et des

outputs. (Πs5) fait référence à la semi-homogénéité de degré 1 de la fonction par rapport aux prix.

Enfin, le dernier axiome indique que lorsque le processus de production opère sous l’hypothèse de

rendements d’échelle constants, les profits sont soit nuls soit indéfinis.
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3.1.2 Pseudo-Fonction de Coût CES-CET

La fonction de coût permet la minimisation des coûts par rapport aux prix du marché. De ce

fait, l’optimisation est relative aux quantités de facteurs utilisées. La fonction de profit est une

généralisation de la fonction de coût. Cette dernière résulte de la maximisation de la première pour

une quantité fixe d’extrants. En effet, lorsque l’on cherche à optimiser le profit alors que le niveau

de production est fixé alors, on minimise les coûts relativement à la quantité de facteurs utilisée

étant donné que la firme est assujettie aux prix du marché.

Définition 3.16 Pour tout vecteur de prix de facteurs wt = (wt
1, · · · , w

t
m) ∈ R

m
+ et, tout (xt, yt) ∈

R
m+n
+ avec α ∈ R++, l’application Ct

α,β : Rm
+ × R

n
+ → R+ ∪ {+∞} définie par :

Ct
α,β(w

t, yt) =







inf
x

{

wt α
· xt : (xt, yt) ∈ T t

}

si Lt(yt) 6= ∅

+∞ sinon
(3.18)

est la pseudo-fonction de coût CES-CET.

Cette fonction peut être associée à certaines propriétés.

Proposition 3.17 Pour toute correspondance en inputs satisfaisant L1-L5, la pseudo fonction de

coûts CES-CET vérifie les propriétés suivantes :

Cα,β1 : Pour tout wt ∈ R
m
+ on a, Ct

α,β(w
t, 0) = 0.

Cα,β2 : Si (wt, yt) ∈ R
m+n
++ alors, Ct

α,β(w
t, yt) > 0.

Cα,β3 : Pour tout (wt, yt), (w̃t, yt) ∈ R
m+n
+ avec wt ≥ w̃t on a, Ct

α,β(w
t, yt) ≥ Ct

α,β(w̃
t, yt).

Cα,β4 : Pour tout (wt, yt), (wt, ỹt) ∈ R
m+n
+ tels que yt ≥ ỹt on a, Ct

α,β(w
t, yt) ≥ Ct

α,β(w
t, ỹt).

Cα,β5 : Quel que soit λt > 0 alors, Ct
α,β(λ

t α
· wt, yt) = λt · Ct

α,β(w
t, yt).

Cα,β6 : Sous l’hypothèse de rendements d’échelle constants, pour tout λt > 0 on a,

Ct
α,β(w

t, λt
α
· yt) = λt · Ct

α,β(w
t, yt).

Preuves :

(Cα,β) à (Cα,β4) découlent immédiatement de la définition de la pseudo-fonction de coût CES-CET

�.

(Cα,β5) Pour tout λt > 0, on a Ct
α,β(λ

t α
· wt, yt) = infx

{(

λt
α
· wt

)

α
· xt : (xt, yt) ∈ T t

}

. En
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factorisant par λt on obtient, Ct
α,β(λ

t α
· wt, yt) = λt

α
· infx

{

wt α
· xt : (xt, yt) ∈ T t

}

. De ce fait,

Ct
α,β(λ

t α
· wt, yt) = λt

α
· Ct

α,β(w
t, yt) ≡ λt · Ct

α,β(w
t, yt) � .

(Cα,β6) Supposons que le processus de production satisfait des rendements d’échelle constants.

Dans ce cas, Pour tout λt > 0 et pour tout (xt, yt) ∈ T t on a (λtxt, λtyt) ∈ T t. Ainsi, Ct
α,β(w

t, λt
α
·

yt) = infx

{

wt α
·
(

λt
α
· xt
)

: (xt, yt) ∈ T t
}

. La factorisation par λt donne l’expression suivante

Ct
α,β(w

t, λt
α
· yt) = λt

α
· infx

{

wt α
· xt : (xt, yt) ∈ T t

}

. Ainsi,Ct
α,β(w

t, λt
α
· yt) = λt

α
· Ct

α,β(w
t, yt)

≡ λt · Ct
α,β(w

t, yt) �.

La première propriété est relative à l’absence de charges fixes tandis que la deuxième fait

référence à l’absence de repas gratuits. Les axiomes (Cα,β3) et (Cα,β4) signifient que la fonction

de coût est monotone respectivement par rapport au prix des inputs et par rapport aux outputs.

Selon (Cα,β5), la fonction est semi-homogène de degré (1) par rapport au prix des intrants. Sous

l’hypothèse de rendements d’échelle constants, elle est semi-homogène de degré 1.

Proposition 3.18 Pour tout (wt, pt) ∈ R
m+n
+ et tout (xt, yt) ∈ R

m+n
+ tel que s = α ∈ R++ et

yt = yt, la pseudo-fonction de profit CES-CET devient :

maxΠt
α,β(w

t, pt) ≡ minCt
α,β(w

t, yt), (3.19)

où yt est un vecteur d’outputs fixe.

Preuve : Pour yt = yt, on a Πt
α,β(w

t, pt) = max
x,y

{

ϕ−1
β

(

ϕα

(

pt
α
· yt
)

− ϕα

(

wt α
· xt
))

: (xt, yt) ∈

T t
}

. Puisque yt ne varie pas alors, Πt
α,β(w

t, pt) ≡ min
x

{

wt α
· xt : (x, y) ∈ T t

}

� .

Notons que lorsque α = 1−σ tel que σ 6= 1, où σ représente l’élasticité de substitution positive

alors, nous retrouvons la fonction de coût CES (Constant Elasticity of Substitution) définie par

McFadden (1978). Par ailleurs, lorsque α→ 0 alors, la pseudo fonction de coût CES-CET devient

une fonction de coût moyen géométrique tel que pour tout facteur i ∈ [m] et en appliquant la règle
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de l’Hôpital, nous avons :

lim
α→0

Ct
α,β(w

t, yt) =





∏

i∈[m]

wt
i x

t
i





1
m

.

3.1.3 Pseudo-Fonction de Revenu CES-CET

La fonction de revenu permet une maximisation des recettes par rapport à la quantité produite

lorsque les prix sont fixés par le marché. Cette fonction est un cas particulier de la fonction de profit.

En effet, optimiser cette dernière pour une quantité fixe d’intrants amène à maximiser uniquement

le revenu.

Définition 3.19 Pour tout vecteur de prix des outputs pt = (pt1, · · · , p
t
n) ∈ R

n
+ et, tout (xt, yt) ∈

R
m+n
+ avec β ∈ R++, l’application Rt

α,β : Rm
+ × R

n
+ → R+ ∪ {−∞} définie par :

Rt
α,β(p

t, xt) =











sup
y

{

pt
β
· yt : (xt, yt) ∈ T t

}

si P t(xt) 6= ∅

−∞ sinon

(3.20)

est la pseudo fonction de revenu CES-CET.

Cette définition nous permet d’établir les propriétés relatives à la pseudo fonction de revenu

CES-CET.

Proposition 3.20 Pour toute correspondance en outputs P t(xt) satisfaisant P1-P5, la pseudo

fonction de revenu CES-CET vérifie les propriétés suivantes :

Rα,β1 : Pour tout pt ∈ R
n
+ on a, Rt

α,β(p
t, 0) = 0.

Rα,β2 : Si (pt, xt) ∈ R
m+n
++ alors, Rt

α,β(p
t, xt) > 0.

Rα,β3 : Quel que soit (pt, xt), (p̃t, xt) ∈ R
m+n
+ tel que pt ≥ p̃t on a,Rt

α,β(p
t, xt) ≥ Rt

α,β(p̃
t, xt).

Rα,β4 : Pour tout (pt, xt), (pt, x̃t) ∈ R
m+n
+ avec xt ≥ x̃t on a, Rt

α,β(p
t, xt) ≥ Rt

α,β(p
t, x̃t).

Rα,β5 : Pour tout λt > 0 on a Rt
α,β(λ

t β
· pt, xt) = λt ·Rt

α,β(p
t, xt).

Rα,β6 : Pour tout λt > 0 on a Rt
α,β(p

t, λt
β
· xt) = λt · Rt

α,β(p
t, xt), sous l’hypothèse de

rendements d’échelle constants.
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Preuves :

(Rα,β1) à (Rα,β4) sont les conséquences directes de la définition de la pseudo fonction de revenu

CES-CET.

(Rα,β5) Pour tout λt > 0 on a Rt
α,β(λ

t β
· pt, xt) = supy

{(

λt
β
· pt
)

β
· yt : (xt, yt) ∈ T t

}

. En

factorisant par λt, nous avons Rt
α,β(λ

t β
· pt, xt) = λt

β
· supy

{

pt
β
· yt : (xt, yt) ∈ T t

}

. Ainsi,

Rt
α,β(λ

t β
· pt, xt) = λt

β
· Rt

α,β(p
t, xt) ≡ λt · Rt

α,β(p
t, xt) �.

(Rα,β6) Lorsque la technologie de production officie sous l’hypothèse de rendements d’échelle

constants alors, pour tout λt > 0 et tout (xt, yt) ∈ T t on a, (λtxt, λtyt) ∈ T t. De ce fait,

Rt
α,β(p

t, λt
β
· xt) = supy

{

pt
β
·
(

λt
β
· yt
)

: (xt, yt) ∈ T t
}

. Une factorisation par λt permet d’ob-

tenir Rt
α,β(p

t, λt
β
· xt) = λt

β
· supy

{

pt
β
· yt : (xt, yt) ∈ T t

}

. Par conséquent, Rt
α,β(p

t, λt
β
· xt) =

λt
β
· Rt

α,β(p
t, xt) ≡ λt ·Rt

α,β(p
t, xt) �.

L’axiome (Rα,β1) signifie qu’il n’y a pas de repas gratuit tandis que (Rα,β2) stipule que toute

utilisation effective d’inputs engendre des revenus. Les propriétés (Rα,β3) et (Rα,β4) sont relatives

à la monotonicité de la fonction respectivement par rapport au prix des outputs et par rapport aux

facteurs. La fonction est semi-homogène de degré (1) par relativement aux prix (Rα,β5). Sous l’hy-

pothèse de rendements d’échelle constants, elle est semi-homogène de degré (1) relativement aux

facteurs.

Proposition 3.21 Pour tout (wt, pt) ∈ R
m+n
+ et tout (xt, yt) ∈ R

m+n
+ tel que s = β ∈ R++ avec

xt = xt, la pseudo-fonction de profit CES-CET devient :

maxΠt
α,β(w

t, pt) ≡ maxRt
α,β(p

t, xt), (3.21)

où xt est un vecteur d’inputs fixe.

Preuve : Soit xt = xt alors, la fonction de profit CES-CET peut s’écrire de la manière suivante :

Πt
(α,β)(w

t, pt) = max
x,y

{

ϕ−1
β

(

ϕβ

(

pt
β
· yt
)

− ϕβ

(

wt β
· xt
))

: (xt, yt) ∈ T t
}

. Sachant que xt ne

varie pas alors, on a Πt
(α,β)(w

t, pt) ≡ max
y

{

pt
β
· yt : (xt, yt) ∈ T t

}

�.
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Remarquons que lorsque β → 0 alors, pour tout extrant r ∈ [n] et en appliquant la règle de

l’Hôpital, la pseudo-fonction de revenu CES-CET a pour limite une fonction de revenu moyen

géométrique tel que :

lim
β→0

Rt
α,β(p

t, xt) =





∏

r∈[n]

ptr y
t
r





1
n

.

3.2 Dualité

Shephard (1953, 1970) introduit la relation de dualité qui existe entre la mesure de distance

orientée en input et la fonction de coût. Ce concept consiste à caractériser la correspondance en

inputs à partir de la fonction coût. Sachant que les fonctions de distance donnent une caractérisation

complète de l’ensemble de production alors, celles-ci peuvent être exprimées grâce à la fonction de

coût et réciproquement. McFadden (1978) étend cette analyse à la fonction de profit et, de revenu

qui peuvent représenter le graphe de la technologie. De ce fait, nous présentons les formulations

duales de la fonction de distance CES-CET mais également des fonctions de coût, de revenu et

de profit. Par ailleurs, nous montrons que des fonctions de prix implicites peuvent être déduites

des fonctions de distance duales. Enfin, ces expressions duales nous amènent à diverses notions

d’efficience que nous proposons effectivement.

3.2.1 Formulations Duales

Chambers, Chung et Färe (1998) présentent la dualité entre la fonction de distance direction-

nelle orientée dans le graphe et la fonction de profit. Ils s’inspirent de l’analyse faite par McFad-

den (1978) qui établit cette relation entre la fonction de production et la fonction de profit. Notons

qu’une relation duale existe entre les fonctions de distance et les fonctions de profit, de coût et de

revenu si et seulement si, l’ensemble de production ou les correspondances en inputs et en outputs

sont convexes.

La FDD CES-CET orientée dans le graphe et la pseudo fonction de profit CES-CET sont duales

si et seulement si, la technologie de production T t est convexe et donc, satisfait T1− T5.

Proposition 3.22 Pour tout (xt, yt) ∈ R
m+n
+ et, tout (wt, pt) ∈ R

m+n
+ tel que pour α = β = s ∈
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R++, si T t est convexe alors, la pseudo fonction de profit CES-CET duale est :

Πt
s(w

t, pt) = sup
(x,y)

{

ϕ−1
s

(

ϕs

(

pt
s
· yt
)

− ϕs

(

wt s
· xt
)

+ϕs

(

Dt
s(x

t, yt; ht, kt) ·
(

pt
s
· kt

s
+ wt s

· ht
)))

: Dt
s(x

t, yt; ht, kt) ≥ 0

}

(3.22)

et, la fonction de distance directionnelle CES-CET duale orientée dans le graphe est :

Dt
s(x

t, yt; ht, kt) = inf
(w,p)≥0







ϕ−1
s

(

ϕs (Π
t
s(w

t, pt))−
(

ϕs

(

pt
s
· yt
)

− ϕs

(

wt s
· xt
)))

pt
s
· kt

s
+ wt

s
· ht

:

pt
s
· kt

s
+ wt s

· ht 6= 0







. (3.23)

Pour tout (xtj , y
t
j) ∈ T

t avec j ∈ J et tout i ∈ [m] et r ∈ [n], la FDD CES-CET duale orientée

dans le graphe peut être détaillée de la manière suivante :

Dt
s(x

t, yt; ht, kt) = inf



























(

∑

r∈[n]

(

ptry
t
j,r

)s
−
∑

i∈[m]

(

wt
ix

t
j,i

)s
−

(

∑

r∈[n]

(ptry
t
r)

s
+
∑

i∈[m]

(wt
ix

t
i)

s

))1/s

pt
s
· kt

s
+ wt

s
· ht

:

pt
s
· kt

s
+ wt s

· ht 6= 0



























. (3.24)

Usuellement, une normalisation peut être effectuée par rapport aux pondérations telle que pt
s
·

kt
s
+ wt s

· ht = 1.

Dans la lignée de Shephard (1953, 1970), nous pouvons proposer une relation duale entre la

fonction de coût et la FDD CES-CET orientée en input si Lt(yt) est convexe. Dans ce cas, la

correspondance satisfait L1 − L6.

Proposition 3.23 Pour tout (xt, yt) ∈ R
m+n
+ et tout wt ∈ R

m
+ tel que α ≤ 1 avec α ∈ R++, la
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pseudo fonction de coût CES-CET duale est :

Ct
α,β(w

t, yt) = inf
x

{

ϕ−1
α

(

ϕα

(

wt α
· xt
)

− ϕα

(

Dt
α,β(x

t, yt; ht, 0) ·
(

wt α
· ht
)))

:

Dt
α,β(x

t, yt; ht, 0) ≥ 0
}

(3.25)

et, la fonction de distance directionnelle CES-CET duale orientée en input est :

Dt
α,β(x

t, yt; ht, 0) = inf
w







ϕ−1
α

(

ϕα

(

wt α
· xt
)

− ϕα

(

Ct
α,β(w

t, yt)
)

)

wt
α
· ht

: wt α
· ht 6= 0







. (3.26)

Pour toute unité de production (xtj , y
t
j) ∈ T

t avec j ∈ J et, tout i ∈ [m], la FDD CES-CET

duale en input peut être écrite de la manière suivante :

Dt
α,β(x

t, yt; ht, 0) = inf
w











(

∑

i∈[m](w
t
i)

α·(xti)
α −

∑

i∈[m](w
t
i)

α·(xtj,i)
α
)1/α

(

∑

i∈[m](w
t
i)

α·(hti)
α
)1/α

:





∑

i∈[m]

(wt
i)

α·(hti)
α





1/α

6= 0











. (3.27)

Une normalisation des pondérations peut être réalisée telle que wt α
· ht = 1.

La fonction de revenu est quant à elle, duale à la FDD CES-CET orientée en output si P t(xt)

est convexe. Dans ce cas, la correspondance satisfait P1− P6.

Proposition 3.24 Quel que soit (xt, yt) ∈ R
m+n
+ et tout pt ∈ R

n
+ avec β ≥ 1 tel que β ∈ R++, la

pseudo fonction de revenu CES-CET duale est :

Rt
α,β(p

t, xt) = sup
y

{

ϕ−1
β

(

ϕβ

(

pt
β
· yt
)

+ ϕβ

(

Dt
α,β(x

t, yt; 0, kt) ·
(

pt
β
· kt
)))

:

Dt
α,β(x

t, yt; 0, kt) ≥ 0

}

(3.28)
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et, la fonction de distance directionnelle CES-CET duale orientée en output est :

Dt
α,β(x

t, yt; 0, kt) = inf
p











ϕ−1
β

(

ϕβ

(

Rt
α,β(p

t, xt)
)

− ϕβ

(

pt
β
· yt
))

pt
β
· kt

: pt
β
· kt 6= 0











. (3.29)

De manière détaillée, pour toute unité de production (xtj , y
t
j) ∈ T t tel que j ∈ J et, tout

r ∈ [n], la FDD CES-CET duale en output peut être caractérisée par :

Dt
α,β(x

t, yt; 0, kt) = inf
p











(

∑

r∈[n](p
t
r)

β·(ytj,r)
β −

∑

r∈[n](p
t
r)

β·(ytr)
β
)1/β

(

∑

r∈[n](p
t
r)

β·(ktr)
β
)1/β

:





∑

r∈[n]

(ptr)
β·(ktr)

β





1/β

6= 0











. (3.30)

Les pondérations peuvent être normalisées tel que pt
β
· kt = 1.

3.2.2 Fonctions de Prix Implicites Non-linéaires

La théorie de la dualité permet également de déterminer les fonctions de prix ajustés. Ces prix

implicites (ou ajustés) correspondent aux prix d’équilibre des facteurs et des produits si le marché

est parfaitement concurrentiel (prix relatifs à l’optimum de Pareto). Ces fonctions sont obtenues

grâce au Lemme dual de Shephard et au théorème de l’enveloppe. La formulation duale des FDD

CES-CET permet de déduire les équations des prix implicites. Les fonctions de coût, de revenu

et de profit donnent quant à elles, la possibilité de déterminer les fonctions de demande et d’offre

conditionnelles grâce au Lemme de Shephard.

Définition 3.25 Pour tout (xt, yt) ∈ T t tel que α = β = s ∈ R++, l’application (w̃t, p̃t) :

R
m+n
+ × R

m+n
+ → 2R

m+n
+ définie par :

(w̃t, p̃t)(xt, yt; ht, kt) = argmax
x,y

{

ϕ−1
s

(

ϕs

(

Πt
s(w

t, pt)
)

−
(

ϕs

(

pt
s
· yt
)

− ϕs

(

wt s
· xt
)))

:

pt
s
· kt

s
+ wt s

· ht = 1

}

(3.31)
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est la correspondance des prix ajustés.

Remarquons que la FDD CES-CET orientée soit en input soit en output, peut également fournir

des fonctions de prix implicites.

Définition 3.26 Pour tout (xt, yt) ∈ R
m+n
+ et tout (wt, pt) ∈ R

m+n
+ avec α, β ∈ R

2
++,

(a) lorsque gt = (ht, 0) alors, l’application (w̃t)α : Rm+n
+ × R

m
+ → 2R

m
+ définie par :

(w̃t)α(xt, yt; ht, 0) = argmin
w

{

ϕ−1
α

(

ϕα

(

wt α
· xt
)

− ϕα

(

Ct
α,β(w

t, yt)
))

: wt α
· ht = 1

}

(3.32)

est la correspondance des prix ajustée en inputs.

(b) lorsque gt = (0, kt) alors, l’application (p̃t)β : Rm+n
+ × R

n
+ → 2R

n
+ définie par :

(p̃t)β(xt, yt; 0, kt) = argmin
p

{

ϕ−1
β

(

ϕβ

(

Rt
α,β(p

t, xt)
)

− ϕβ

(

pt
β
· yt
))

: pt
β
· kt = 1

}

(3.33)

est la correspondance des prix implicites en outputs.

Nous pouvons obtenir les fonctions d’offre et de demande conditionnelles grâce au Lemme

de Shephard. Par ailleurs, les fonctions de prix ajustés sont fournies par le biais du théorème de

l’enveloppe et du Lemme dual de Shephard.

Proposition 3.27

(i) Aux points où la pseudo fonction de profit CES-CET est différentiable par rapport aux prix

(wt, pt) ∈ R
m+n
+ et, si elle admet un minimum x̃t(wt, yt; ht, kt) ∈ R

m
+ et un maximum

ỹt(xt, pt; ht, kt) ∈ R
n
+ alors, selon le Lemme de Shephard :

∇ws

[

Πt
s(w

t, pt)
]s

=
[

x̃t(wt, yt; ht, kt)
]s
, (3.34)

∇ps
[

Πt
s(w

t, pt)
]s

=
[

ỹt(xt, pt; ht, kt)
]s
, (3.35)

sont respectivement les fonctions de demande de facteur et d’offre de produit conditionnelles.

(ii) Aux points où la fonction de distance directionnelle CES-CET orientée dans le graphe est

différentiable par rapport aux inputs et aux outputs tel que α = β = s ∈ R++ alors, selon le
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Lemme dual de Shephard :

∇xs

[

Dt
s(x

t, yt; ht, kt)
]s

=
[

w̃t(xt, yt; ht, kt)
]s
, (3.36)

∇ys
[

Dt
s(x

t, yt; ht, kt)
]s

= −
[

p̃t(xt, yt; ht, kt)
]s
, (3.37)

sont respectivement les fonctions de prix implicites des facteurs et des produits.

Notons que nous pouvons fournir ces fonctions dans le cadre d’une analyse orientée soit en

input soit en output.

Corollaire 3.28

(iii) Aux points où les pseudo-fonctions de coût et de revenu CES-CET sont différentiables par

rapport aux prix et, si elles admettent respectivement un minimum x̃t(wt, yt; ht, 0) ∈ R
m
+ et un

maximum ỹt(xt, pt; 0, kt) ∈ R
n
+ alors, selon le Lemme de Shephard :

∇wα

[

Ct
α,β(w

t, yt)
]α

=
[

x̃t(wt, yt; ht, 0)
]α
, (3.38)

∇pβ
[

Rt
α,β(p

t, xt)
]β

=
[

ỹt(xt, pt; 0, kt)
]β
, (3.39)

sont respectivement les fonctions de demande de facteurs et d’offre de produits conditionnelles.

(iv) Aux points où les fonctions de distance directionnelle CES-CET orientées en input et en output

sont différentiables respectivement par rapport aux intrants et par rapport aux extrants alors, selon

le Lemme dual de Shephard :

∇xα

[

Dt
α,β(x

t, yt; ht, 0)
]α

=
[

w̃t(xt, yt; ht, 0)
]α
, (3.40)

∇yβ
[

Dt
α,β(x

t, yt; 0, kt)
]β

= −
[

p̃t(xt, yt; 0, kt)
]β
, (3.41)

sont les fonctions de prix implicites respectifs des facteurs et des produits.

Nous pouvons noter que les fonctions de prix ajustés présentées dans cette sous-section sont

non-linéaires. Nous avons pu obtenir ces résultats en appliquant le théorème de séparation des

hyperplans puisque nous supposons la convexité des ensembles de production. Cependant, en pré-

sence de prix non-linéaires, nous pouvons en déduire que la relation existant entre les coûts (reve-
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nus ou bénéfices) et la quantité produite n’est pas constante. En ce sens, on peut supposer que la

firme fait face à une tarification non-linéaire que ce soit en interne ou en externe.

3.2.3 Notions d’Efficience

Les mesures de distance permettent d’évaluer l’écart entre les observations et les frontières effi-

cientes. De ce fait, la valeur de celles-ci est une appréciation de l’efficience technique. Par ailleurs,

il est également possible d’obtenir les efficiences économique et allocative grâce aux fonctions de

distance.

Chambers et al. (1998) présentent la notion d’efficience de Nerlove qui est équivalente à l’ef-

ficience de profit. Celle-ci est représentée par la différence entre le profit maximal réalisable et le

profit observé. Elle est non-négative telle que l’équation :

PEt
s =

ϕ−1
s

(

ϕs

(

Πt
s(w

t, pt)
)

−
(

ϕs

(

pt
s
· yt
)

− ϕs

(

wt s
· xt
)))

ϕ−1
s

(

ϕs

(

wt
s
· ht
)

+ ϕs

(

pt
s
· kt
)) (3.42)

représente l’efficacité de profit CES-CET.

Soit l’efficience de coût qui est caractérisée par la différence entre les coûts réellement suppor-

tés et les coûts minimaux réalisables. Dans ce cas, sa valeur est non-négative et, la fonction :

CEt
α,β =

ϕ−1
α

(

ϕα

(

wt α
· xt
)

− ϕα

(

Ct
α,β(w

t, yt)
))

wt
α
· ht

(3.43)

définit l’efficacité de coût CES-CET.

L’efficience de revenu correspond à l’écart entre le revenu maximal réalisable à l’optimum et

le revenu observé. Cette mesure est également non-négative de sorte que la formulation :

REt
α,β =

ϕ−1
β

(

ϕβ

(

Rt(pt, xt)
)

− ϕβ

(

pt
β
· yt
))

pt
β
· kt

(3.44)

représente la mesure de l’efficacité de revenu CES-CET.

Les trois notions d’efficience définies ci-dessus, sont relatives à l’efficience économique (OE).
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Lorsque celle-ci est atteinte, l’entreprise est à la fois efficace techniquement (dans son processus de

production) et allocativement (dans la répartition de ses ressources). En effet, l’efficacité de coût,

de revenu et de profit sont respectivement l’efficience économique dans une orientation en input,

en output et dans le graphe.

L’efficacité technique est mesurée par les fonctions de distance elles-mêmes. Ainsi, on peut

établir que :

TEt
α,β = Dt

α,β

(

xt, yt; gt
)

(3.45)

est l’efficacité technique CES-CET selon la direction gt.

On remarquera que gt ∈ {(ht, kt); (ht, 0); (0, kt)} désignent respectivement les orientations

dans le graphe, en input et en output.

Comme mentionné précédemment, l’efficacité économique est composée à la fois de l’effica-

cité technique et de l’efficience allocative. Ainsi, nous pouvons dire que dans le cadre d’une mesure

de distance additive, on a l’efficience allocative suivante :

AEt
α,β = OEt

α,β

α,β
− TEt

α,β. (3.46)

Lorsque l’étude est orientée dans le graphe, α = β = s ∈ R++. Notons également que dans

une analyse en input ou en output, cette expression de l’efficacité allocative devient respectivement

AEt
α,β = OEt

α,β

α
− TEt

α,β ou, AEt
α,β = OEt

α,β

β
− TEt

α,β.

Enfin, remarquons que plus la valeur prise par les mesures d’efficience présentées précédem-

ment est proche de zéro, plus l’unité productive est efficiente.

4 Formalisation et Application

Ce chapitre a pour objectif de présenter une nouvelle mesure de l’efficience ayant une structure

à la fois additive et CES-CET. En effet, Färe et al. (1988) introduisent une nouvelle structure de la

technologie basée sur les fonctions CES et CET. Dans ce cas, l’estimation des mesures additives

,telle la fonction de distance directionnelle, semble laborieuse par la méthode de programmation

linéaire. Ainsi, la fonction de distance directionnelle CES-CET est une alternative ce problème.

148



Une Mesure Additive Non-linéaire de l’Efficience

De ce fait, cette section est dévouée à la formalisation non-paramétrique de la mesure ainsi qu’à la

mise en place d’un exemple démonstratif.

4.1 Cadre Non-Paramétrique

Nous introduisons dans un premier temps, la technologie de production CES-CET ainsi que ses

correspondances en inputs et en outputs. Dans un second temps, nous présentons les programmes

linéaires relatives à l’estimation de la fonction de distance CES-CET grâce à la méthode d’enve-

loppement des données.

4.1.1 Technologie CES-CET et Hypothèse de Convexité

Färe et al. (1988) introduisent une nouvelle technologie de référence sous l’hypothèse de ren-

dements d’échelle variables. La particularité de celle-ci réside dans sa structure telle que la partie

relative aux inputs est formulée suivant une fonction CES tandis que celle concernant les outputs

est représentée par une fonction CET. Les auteurs présentent ce nouvel ensemble de production

comme étant une généralisation des technologies proposées par Charnes et al. (1978), par de Ban-

ker et al. (1984) et, par Banker et Maindiratta (1986). Rappelons que pour toute unité de production

j ∈ J , la technologie de production CES-CET est définie de la manière suivante :

T t
α,β =

{

(xt, yt) : xt ≥ Φ−1
α

(

∑

j∈J

θtj · Φα(x
t
j)

)

, yt ≤ Φ−1
β

(

∑

j∈J

θtj · Φβ(y
t
j)

)

,

θt ≥ 0,
∑

j∈J

θtj = 1

}

.

Remarquons que lorsque α = β = 1, nous retrouvons la technologie DEA standard Banker et

al. (1984). Par ailleurs, l’ensemble CES-CET tend vers la technologie multiplicative de type Cobb-

Douglas introduite par Banker et Maindiratta (1986) lorsque α → 0 et β → 0. Enfin, Andriamasy

et al. (2017) démontrent que si α→∞ et β →∞ alors, l’ensemble de production défini ci-dessus

tend vers la technologie de production B-convexe proposée par Briec et Horvath (2004, 2009).

Les correspondances en intrants et en extrants de cette technologie de production sont respective-

ment :
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Lt
α,β(y

t) =

{

(xt, yt) ∈ R
m+n
+ : xt ≥ Φ−1

α

(

∑

j∈J

θtjΦα(x
t
j)

)

, yt ≤ Φ−1
β

(

∑

j∈J

θtjΦβ(y
t
j)

)

,

θt ≥ 0,
∑

j∈J

θtj = 1

}

,

P t
α,β(x

t) =

{

(xt, yt) ∈ R
m+n
+ : xt ≥ Φ−1

α

(

∑

j∈J

θtjΦα(x
t
j)

)

, yt ≤ Φ−1
β

(

∑

j∈J

θtjΦβ(y
t
j)

)

,

θt ≥ 0,
∑

j∈J

θtj = 1

}

,

où xt et yt sont respectivement des vecteurs fixes d’intrants et d’extrants.

x1

x2

0

IsoqLα,β(y)

xB

xC

xD

xE

xF

α = 1

α < 1

α → −∞

(−h1,−h2)

FIGURE 1 – Correspondance en inputs
CES-CET pour α ≤ 1.

y1

y2

0

yB

yC

yD

yE

yF

β = 1

β > 1

β → +∞

IsoqPα,β(x)(k1, k2)

FIGURE 2 – Correspondance en outputs
CES-CET pour β ≥ 1.

La Figure 1 décrit les différentes structures possibles de la correspondance en inputs lorsque la

valeur du paramètre α est inférieure ou égale à 1. Nous pouvons constater que lorsque α = 1, nous

retrouvons la technologie DEA linéaire par morceaux de Banker et al. (1984) (frontière en poin-

tillés bleus). Lorsque α < 1 alors, la frontière efficiente correspond à une courbe (lignes courbées

noires) tandis que plus α tend vers −∞ plus la frontière devient B-convexe (pointillés rouges).

Notons que si α ≥ 1 alors, la figure correspondant au sous-ensemble des inputs, devient similaire
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à celle de la correspondance en outputs lorsque β ≥ 1 (Figure 2).

La Figure 2 présente quant à elle, les différentes structures de la frontière efficiente en outputs

lorsque β ≥ 1. Si β = 1 alors, la correspondance des extrants devient linéaire par morceaux et

s’identifie à celle Banker et al. (1984) (pointillés bleus). Cependant, si β > 1 alors, la frontière

devient une courbe (lignes pleines noires) et plus le paramètre tend vers +∞ plus la frontière de la

correspondance tend vers une frontière B-convexe (pointillés rouges). Remarquons également que

lorsque β ≤ 1, nous avons une correspondance en outputs qui est similaire au sous-ensemble des

intrants lorsque α ≤ 1 (Figure 1).

Notons que l’ensemble de production CES-CET satisfait les axiomes T1-T4 (Boussemart et al.

(2009), Ravelojaona (2019)).

Proposition 3.29 Pour tout (xt, yt) ∈ R
m+n
+ et tout (α, β) ∈ R

2
++, la technologie de production

CES-CET T t
α,β satisfait une hypothèse de convexité dans certains cas :

(i) si α = β = 1 alors, la technologie devient un ensemble de production linéaire par mor-

ceaux (Banker et al.(1984)) et, est convexe,

(ii) pour α = β = s tel que (α, β) > 1, la technologie est Φα,β-convexe (Ben-Tal (1977) et

Andriamasy et al. (2017)) 1.

Preuves :

(i) Pour α = β = 1 alors, la technologie de production CES-CET devient T t
α,β =

{

(xt, yt) : xt ≥
∑

j∈J θ
t
jx

t
j , y

t ≤
∑

j∈J θ
t
jy

t
j, θ

t ≥ 0,
∑

j∈J θ
t
j = 1

}

.

(ii) Supposons que {(xt, yt), (ut, vt)} ∈ T t
α,β et, qu’il existe θt ∈ R

s
+ et λt ∈ R

s
+ avec

∑

j∈J θ
t
j =

∑

j∈J λ
t
j = 1 tels que

{

xt ≥ Φ−1
s

(

∑

j∈J θ
t
jΦs(x

t
j)
)

, yt ≤ Φ−1
s

(

∑

j∈J θ
t
jΦs(y

t
j)
)}

et
{

ut ≥

Φ−1
s

(

∑

j∈J λ
t
jΦs(x

t
j)
)

, vt ≤ Φ−1
s

(

∑

j∈J λ
t
jΦs(y

t
j)
)}

. Ainsi, on a
{

Φs(x
t) ≥

∑

j∈J θ
t
jΦs(x

t
j),

Φs(y
t) ≤

∑

j∈J θ
t
jΦs(y

t
j)
}

et,
{

Φs(u
t) ≥

∑

j∈J λ
t
jΦs(x

t
j),Φs(v

t) ≤
∑

j∈J λ
t
jΦs(y

t
j)
}

. De ce

fait, quel que soit µt ∈ [0, 1] on a,
{

µtΦs(x
t) + (1 − µt)Φs(u

t) ≥ µt
∑

j∈J θ
t
jΦs(x

t
j) + (1 −

µt)
∑

j∈J λ
t
jΦs(x

t
j), µ

tΦs(y
t) + (1− µt)Φs(v

t) ≤ µt
∑

j∈J θ
t
jΦs(y

t
j) + (1− µt)

∑

j∈J λ
t
jΦs(y

t
j)
}

et
{

µtΦs(x
t)+ (1−µt)Φs(u

t) ≥
∑

j∈J

(

µtθtj + (1− µt)λtj
)

Φs(x
t
j), µ

tΦs(y
t)+ (1−µt)Φs(v

t) ≤

1. Ben-Tal (1977) présente cette convexité particulière dans un cadre généralisé tandis que Andriamasy et al.(2017)
analysent les implications de celle-ci dans le cadre des technologies de production DEA
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∑

j∈J

(

µtθtj + (1− µt)λtj
)

Φs(y
t
j)
}

. Remarquons que nous avons,
∑

j∈J

(

µtθtj + (1− µt)λtj
)

=

µt
∑

j∈J θ
t
j + (1− µt)

∑

j∈J λ
t
j = µt + (1− µt) = 1. D’où, les deux expressions précédentes de-

viennent µtΦs(x
t,−yt) + (1 − µt)Φs(u

t,−vt) ≥
∑

j∈J

(

µtθtj + (1 − µt)λtj
)

Φs(x
t
j , y

t
j) et,

Φ−1
s

(

µtΦs(x
t,−yt) + (1 − µt)Φs(u

t,−vt)
)

≥ Φ−1
s

(

∑

j∈J

(

µtθtj + (1 − µt)λtj
)

Φs(x
t
j, y

t
j)
)

. Par

conséquent, µt(xt,−yt)
s
+ (1 − µt)(ut, vt) ∈ T t

α,β et l’on peut dire que la technologie est Φα,β-

convexe ou Φs-convexe �.

Nous pouvons également définir l’enveloppe Φs-convexe relative à cette technologie tel pour

tout j ∈ J et tout ensemble d’observations At = {(xt1, y
t
1), · · · , (x

t
j , y

t
j)} = {zt1, · · · , z

t
j} ⊂

R
m+n
+ , celle-ci est définie par :

Coϕs,t(At) =

{

ϕ−1
s

(

∑

j∈J

ϕs(θ
t
j)Φs(z

t
j)

)

: ϕ−1
s

(

∑

j∈J

ϕs(θ
t
j)

)

= 1, θ ≥ 0

}

.

Andriamasy et al. (2017) remarquent que cette enveloppe convexe ne correspond pas exacte-

ment à la structure de l’ensemble de production CES-CET. En ce sens, ils introduisent l’enveloppe

convexe mixte présentée de la manière suivante :

Coϕs,t
M (At) =

{

ϕ−1
s

(

∑

j∈J

θtjΦs(z
t
j)

)

:
∑

j∈J

θtj = 1, θ ≥ 0

}

.

4.1.2 Estimation Primale

Dans cette sous-section, nous proposons l’estimation non-paramétrique de la FDD CES-CET.

En effet, nous appliquons la méthode DEA qui consiste à évaluer grâce à un programme linéaire,

les scores d’efficacité des observations.

Rappelons que pour tout gt = (ht, kt), la fonction de distance directionnelle CES-CET orientée

dans le graphe est définie de la manière suivante :

Dt
α,β(x

t, yt; gt) = sup
δ

{

δt ≥ 0 :

(

xt
α
− δtht, yt

β
+ δtkt

)

∈ T t

}

.

En intégrant cette mesure à la technologie CES-CET de Färe et al. (1988), pour toute observa-
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tion j ∈ J tel que T t = T t
α,β , nous avons :

Dt
α,β(x

t, yt; gt) = sup
δ







δt ≥ 0 : xt
α
− δtht ≥

(

∑

j∈J

θtj (x
t
j)

α

)1/α

,

yt
β
+ δtkt ≤

(

∑

j∈J

θtj (y
t
j)

β

)1/β

, θt ≥ 0,
∑

j∈J

θtj = 1







. (3.47)

Pour tout input i ∈ [m] et tout output r ∈ [n] avec j ∈ J observations, le programme linéaire

relatif à cette mesure est donc :

Dt
α,β (xt, yt; gt) = max δt = max δt

s.c. xti
α
− δthti ≥

(

∑

j∈J

θtj (x
t
j,i)

α

)1/α

(xti)
α − (δthti)

α ≥
∑

j∈J

θtj (x
t
j,i)

α

ytr
β
+ δtktr ≤

(

∑

j∈J

θtj (y
t
j,r)

β

)1/β

(ytr)
β + (δtktr)

β ≤
∑

j∈J

θtj (y
t
j,r)

β

∑

j∈J

θtj = 1
∑

j∈J

θtj = 1

δt, θt ≥ 0 δt, θt ≥ 0.

(3.48)

Nous pouvons remarquer que cette optimisation est non-linéaire par rapport à la variable δt.

Par ailleurs, substituer celle-ci par une autre variable afin d’obtenir un programme linéaire est

impossible puisque les exposants relatifs aux intrants et aux extrants peuvent prendre des valeurs

différentes. Néanmoins, si les paramètres α et β prennent les mêmes valeurs alors, pour tout α =
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β = s ∈ R++ nous avons :

Dt
α,β (xt, yt; gt) = max δt = max δt

s.c. xti
s
− δthti ≥

(

∑

j∈J

θtj (x
t
j,i)

s

)1/s

(xti)
s − (δthti)

s ≥
∑

j∈J

θtj (x
t
j,i)

s

ytr
s
+ δtktr ≤

(

∑

j∈J

θtj (y
t
j,r)

s

)1/s

(ytr)
s + (δtktr)

s ≤
∑

j∈J

θtj (y
t
j,r)

s

∑

j∈J

θtj = 1
∑

j∈J

θtj = 1

δt, θt ≥ 0 δt, θt ≥ 0.

En remplaçant (δt)s par ∆t, nous obtenons :

[

Dt
α,β (xt, yt; gt)

]s
= max∆t

s.c. (xti)
s −∆t(hti)

s ≥
∑

j∈J

θtj (x
t
j,i)

s

(ytr)
s +∆t(ktr)

s ≤
∑

j∈J

θtj (y
t
j,r)

s

∑

j∈J

θtj = 1

∆t, θt ≥ 0.

(3.49)

Il est évident que le programme (3.49) est linéaire relativement à ∆t. Ainsi, l’évaluation de la

mesure par la méthode de programmation linéaire est possible lorsque α = β = s.

Si nous nous intéressons à l’analyse orientée en input tel que gt = (ht, 0) alors, pour tout

α ∈ R++ et β ∈ R++, le programme (3.48) devient :

Dt
α,β (xt, yt; gt) = max δt = max δt

s.c. xti
α
− δthti ≥

(

∑

j∈J

θtj (x
t
j,i)

α

)1/α

(xti)
α − (δthti)

α ≥
∑

j∈J

θtj (x
t
j,i)

α

ytr ≤

(

∑

j∈J

θtj (y
t
j,r)

β

)1/β

(ytr)
β ≤

∑

j∈J

θtj (y
t
j,r)

β

∑

j∈J

θtj = 1
∑

j∈J

θtj = 1

δt, θt ≥ 0 δt, θt ≥ 0.

(3.50)
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Nous pouvons constater que la substitution de (δt)α par ∆t
I , engendre un programme d’op-

timisation qui devient linéaire. Notons que α et β peuvent prendre des valeurs équivalentes ou

différentes.

La spécification non-paramétrique de la fonction orientée en output est similaire à celle de la me-

sure en input tel que gt = (0, kt). De ce fait, nous omettons de la présenter.

4.1.3 Programmation Duale

A présent, nous nous intéressons aux spécifications non-paramétriques des mesures duales. En

effet, nous pouvons également étudier l’efficacité technique d’un point de vue dual par la méthode

de programmation linéaire.

Rappelons que pour tout (wt, pt) ∈ R
m+n
+ , la fonction de distance CES-CET duale orientée

dans le graphe est la suivante :

Dt
s(x

t, yt; ht, kt) = inf
(w,p)≥0







ϕ−1
s

(

ϕs (Π
t
s(w

t, pt))−
(

ϕs

(

pt
s
· yt
)

− ϕs

(

wt s
· xt
)))

pt
s
· kt

s
+ wt

s
· ht

: pt
s
· kt

s
+ wt s

· ht 6= 0







.

La normalisation des pondérations ainsi que la méthode DEA nous permettent de réécrire la

fonction ci-dessus comme suit :

Dt
s(x

t, yt; ht, kt) = inf
(w,p)≥0

{

ϕ−1
s

(

ϕs

(

Πt
s(w

t, pt)
)

−
(

ϕs

(

pt
s
· yt
)

− ϕs

(

wt s
· xt
)))

≥ δt :

: pt
s
· kt

s
+ wt s

· ht = 1, wt ≥ 0, pt ≥ 0
}

.

Pour tout intrant i ∈ [m] et tout extrant r ∈ [n], quelle que soit l’observation j ∈ J , le

155



Une Mesure Additive Non-linéaire de l’Efficience

programme linéaire associé à la formulation ci-dessus est :

Dt
s (xt, yt; ht, kt) = min δt

s.c. ϕ−1
s

(

ϕs (Π
t
s(w

t, pt))−
(

ϕs

(

pt
s
· yt
)

− ϕs

(

wt s
· xt
)))

≥ δt

pt
s
· kt

s
+ wt s

· ht = 1

wt, pt, δt ≥ 0.

Ce programme peut être réécrite de la manière suivante :

Dt
s (xt, yt; ht, kt) = min δt

s.c.

(

∑

r∈[n]

(ptr)
s(ytj,r)

s −
∑

i∈[m]

(wt
j,i)

s(xtj,i)
s

)

−

(

∑

r∈[n]

(ptr)
s(ytr)

s −
∑

i∈[m]

(wt
i)

s(xti)
s

)

≥ (δt)s ∀j ∈ J

(

∑

r∈[n]

(ptr)
s(ytr)

s +
∑

i∈[m]

(wt
i)

s(xti)
s

)1/s

= 1

wt, pt, δt ≥ 0.

En posant ∆t = (δt)s, nous obtenons un programme linéaire tel que :

[

Dt
s (xt, yt; ht, kt)

]s
= min∆t

s.c.

(

∑

r∈[n]

(ptr)
s(ytj,r)

s −
∑

i∈[m]

(wt
i)

s(xtj,i)
s

)

−

(

∑

r∈[n]

(ptr)
s(ytr)

s −
∑

i∈[m]

(wt
i)

s(xti)
s

)

≥ ∆t ∀j ∈ J

(

∑

r∈[n]

(ptr)
s(ytr)

s +
∑

i∈[m]

(wt
i)

s(xti)
s

)1/s

= 1

wt, pt,∆t ≥ 0.

(3.51)

La valeur de δt est donc déduite de celle de ∆t.

En suivant le même raisonnement logique, nous pouvons obtenir le programme d’optimisation

associé à une mesure orientée en input. De ce fait, le programme associé à la FDD CES-CET duale
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en input lorsque gt = (ht, 0) est :

Dt
α,β (xt, yt; ht, 0) = min δt

s.c ϕ−1
α

(

ϕα

(

wt α
· xt
)

− ϕα

(

Cα,β(w
t, yt)

)

)

≤ δt ∀j ∈ J

wt β
· ht = 1

δt, wt ≥ 0.

De manière équivalente, nous pouvons exprimer ce programme comme suit :

Dt
α,β (xt, yt; ht, 0) = min δt

s.c
∑

i∈[m]

(wt
i)

α · (xti)
α
−
∑

i∈[m]

(wt
i)

α · (xtj,i)
α
≤ (δt)α ∀j ∈ J

∑

i∈[m]

(wt
i)

α · (hti)
α = 1

δt, wt ≥ 0.

En substituant (δt)α par ∆t
I , nous pouvons en déduire la valeur de l’efficacité technique orientée

en input.

Le programme linéaire associé à une estimation axée sur les extrants tel que gt = (0, kt) est

similaire à celui proposé dans le cadre d’une analyse focalisée sur les intrants. Par conséquent, la

spécification relative à la FDD CES-CET duale orientée en output est omise.

4.2 Exemple Numérique

Cette sous-section permet d’illustrer de manière empirique les apports théoriques présentés

dans les sections précédentes. Tout d’abord, nous exposons le cadre d’analyse puis les résultats

obtenus. Enfin, nous analysons ces derniers.

4.2.1 Cadre d’analyse

Dans cet exemple empirique, nous utilisons les données agricoles de 12 pays européens rela-

tives à l’année 2008. Ces dernières proviennent de la base de données de l’Eurostat et sont présen-

tées dans l’Annexe 1 de ces travaux. Nous disposons de deux intrants et de deux extrants.

Nous réalisons des analyses orientées successivement en input, en output et dans le graphe
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tels que les vecteurs de direction sont respectivement gt = (1, 0), gt = (0, 1) et gt = (1, 1).

Par ailleurs, nous savons que les paramètres α et β doivent également être choisis préalablement.

Ainsi, puisque nous effectuons uniquement une illustration empirique, nous prenons des valeurs

d’exemple de ceux-ci telles que :

α 1/2 1 3/2

β 1/2 1 3/2

Dans cette section, nous analysons uniquement l’efficacité des unités de production d’un point

de vue primal. Remarquons que la mesure CES-CET orientée dans le graphe ne peut être estimée

de manière linéaire et non-paramétrique que lorsque α = β.

4.2.2 Résultats

Le tableau 3.1 relate les résultats obtenus lorsque les mesures sont axées successivement sur

les intrants et les extrants, tel que α 6= β. Le tableau 3.2 quant à lui, concerne les scores d’efficacité

orientés successivement en input, en output et, dans le graphe. De ce fait, les paramètres ont des

valeurs similaires tel que α = β.

4.2.3 Analyse

Tableau 3.1

Nous pouvons constater que quelles que soient les valeurs des paramètres, un pays efficace dans

une orientation en input, a également un score nul selon une orientation en output. Notons que la

France, la Lettonie, la Lituanie, le Luxembourg et la Slovaquie (5 pays sur 12) sont les unités de

production efficaces lorsque (α, β) ∈ {(1/2, 1), (1/2, 3/2)}. La France, la Lettonie, la Lituanie,

le Luxembourg, la Slovaquie et le Royaume-Uni (6 pays sur 12) ont quant à eux, une mesure

de performance nulle lorsque (α, β) = (1, 3/2). Nous remarquons également que 9 pays sur 12

(République Tchèque, Danemark, France, Lettonie, Lituanie, Luxembourg, Pays-Bas, Slovaquie,

Royaume-Uni) sont efficaces lorsque les paramètres prennent les valeurs suivantes :

α 1 3/2 3/2

β 1/2 1/2 1
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α = 1/2; α = 1/2; α = 1; α = 1; α = 3/2; α = 3/2;

β = 1 β = 3/2 β = 1/2 β = 3/2 β = 1/2 β = 1
Scores en inputs

Rép. Tchèque 49,61 103,14 0 595,09 0 0
Danemark 387,27 778,80 0 933,35 0 0
Espagne 1355,49 21,74 2645,03 4499,20 3775,24 4452,39
France 0 0 0 0 0 0
Lettonie 0 0 0 0 0 0
Lituanie 0 0 0 0 0 0
Luxembourg 0 0 0 0 0 0
Pays-Bas 36,60 83,31 0 123,33 0 0
Slovaquie 0 0 0 0 0 0
Finlande 188,06 249,62 445,73 735,39 757,29 764,69
Suède 59,66 104,41 78,58 437,03 168,80 260,98
Royaume Uni 31,05 361,86 0 0 0 0

Scores en outputs
Rép. Tchèque 379,81 1055,71 0 605,59 0 0
Danemark 727,42 1543,93 0 753,76 0 0
Espagne 2099,04 2775,72 554,23 2455,67 424,61 1698,07
France 0 0 0 0 0 0
Lettonie 0 0 0 0 0 0
Lituanie 0 0 0 0 0 0
Luxembourg 0 0 0 0 0 0
Pays-Bas 223,64 732,91 0 193,74 0 0
Slovaquie 0 0 0 0 0 0
Finlande 825,68 1351,42 100,29 714,45 81,67 318,64
Suède 459,21 1012,12 4,49 510,78 2,06 96,04
Royaume Uni 205,96 1195,82 0 0 0 0

TABLE 3.1 – Scores d’efficacité CES-CET en inputs et en outputs pour α 6= β.
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α = β = 1/2 α = β = 1 α = β = 3/2
Scores en inputs

République Tchèque 0,12 135,96 553,96
Danemark 19,43 299,71 633,43
Espagne 547,93 3330,68 5043,40
France 0 0 0
Lettonie 0 0 0
Lituanie 0 0 0
Luxembourg 0 0 0
Pays-Bas 0 0 0
Slovaquie 0 0 0
Finlande 76,13 514,66 815,89
Suède 9,22 175,89 410,36
Royaume Uni 0 0 0

Scores en outputs
République Tchèque 0,06 53,73 219,66
Danemark 36,25 294,11 489,63
Espagne 606,60 1909,05 2291,61
France 0 0 0
Lettonie 0 0 0
Lituanie 0 0 0
Luxembourg 0 0 0
Pays-Bas 0 0 0
Slovaquie 0 0 0
Finlande 180,80 456,61 556,31
Suède 19,78 188,27 325,32
Royaume Uni 0 0 0

Scores dans le graphe
République Tchèque 0,02 38,51 191,91
Danemark 10,17 193,00 395,22
Espagne 221,92 1369,64 2002,11
France 0 0 0
Lettonie 0 0 0
Lituanie 0 0 0
Luxembourg 0 0 0
Pays-Bas 0 0 0
Slovaquie 0 0 0
Finlande 42,30 296,91 448,65
Suède 4,88 122,08 284,22
Royaume Uni 0 0 0

TABLE 3.2 – Scores d’efficacité CES-CET lorsque α = β.
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Nous pouvons observer que lorsque α < β, les scores d’efficacité non-nuls axés sur les intrants

sont inférieurs à ceux axés sur les extrants. Inversement, les mesures de performance non-nulles

orientées en input sont supérieures à celles orientées en output lorsque α > β.

Tableau 3.2

Nous pouvons noter que quelles que soient les valeurs des paramètres pour α = β, les pays

ayant un score d’efficacité nul selon une orientation en input, est également performant suivant

une orientation en output ou dans le graphe. Par ailleurs, le nombre des unités productives effi-

cientes reste constant soit 7 pays sur 12 (France, Lettonie, Lituanie, Luxembourg, Pays-Bas, Slo-

vaquie, Royaume-Uni). Nous pouvons remarquer que lorsque la valeur des paramètres augmente,

les scores de performance non-nuls s’accroissent également. Ainsi, les unités de production sont

plus proche de la frontière efficiente lorsque α = β = 0, 5. De plus, d’un point de vue général,

on peut faire une comparaison des scores d’efficacité non-nuls selon la valeur des paramètres. Ce

recoupement est présenté dans le tableau ci-dessous :

α = β 1/2 1 3/2

Scores orientés graphe < inputs < outputs graphe < outputs < inputs

On constate que lorsque α = β = 1, nous retrouvons le modèle DEA standard sous l’hypothèse

de rendements d’échelle variables ainsi que la fonction de distance directionnelle classique. De ce

fait, comparativement aux résultats du tableau 3.1, on peut en déduire que pour certaines valeurs

des paramètres, un plus grand nombre d’unités de production est efficient dans le cadre d’une

mesure CES-CET et d’une technologie CES-CET que suivant une approche DEA traditionnelle et

une fonction de distance directionnelle classique.

Conclusion

Ce chapitre nous a permis d’introduire une nouvelle mesure de distance additive non-linéaire.

Celle-ci coïncide avec la fonction de distance directionnelle (Luenberger (1992b), Chambers et al.

(1996)) sous certaines conditions. En effet, elle hérite de la structure de la mesure directionnelle

et celle de la technologie de production CES-CET (Färe et al. (1988)). La théorie de la dualité

amène à définir des pseudo fonctions de coût, de revenu et de profit non-linéaires. De plus, le
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théorème de l’enveloppe conduit à l’obtention de fonctions de prix implicites, également non-

linéaires. Ces dernières peuvent intervenir lorsque des tarifications non-linéaires sont effectuées

(ou subies). Sous l’hypothèse d’un ensemble de production CES-CET, nous avons implanté les

fonctions de distance directionnelle CES-CET dans le cadre de la méthode par enveloppement de

données. Enfin, l’illustration empirique nous a permis de constater que la technologie de référence

CES-CET implique un nombre plus important d’unités productives efficientes que la technologie

de production DEA standard.

Cette nouvelle fonction de distance ouvre de nouvelles perspectives en terme d’analyse de

l’efficacité. En effet, elle permet l’évaluation de la performance non-radiale dans le cadre d’une

technologie de production non-linéaire grâce à la méthode de programmation linéaire. Nous ver-

rons dans un autre chapitre de ces travaux que grâce à cette mesure de distance directionnelle

CES-CET, nous pouvons étudier les effets des rendements d’échelle sur l’efficacité des firmes.
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Chapitre 4

Des Mesures de Productivité Exponentielles

et Logarithmiques

Les mesures de productivité permettent évaluent les variations de la performance d’une période

par rapport à une autre. En effet, une firme peut gagner en productivité à travers le temps grâce

à des ajustements techniques et/ou technologiques afin d’atteindre l’efficience technique. Dans le

premier chapitre, nous avons présenté différents indices et indicateurs tel que nous utilisons le

terme "indice" pour désigner les mesures de productivité multiplicatives et, le terme "indicateur"

pour qualifier celles ayant une structure additive.

Nous avons constaté dans le deuxième chapitre que les fonctions de distance exponentielle et

népérienne sont équivalentes. Sachant que cette dernière est structurellement additive, nous pré-

sentons dans ce chapitre des indicateurs exponentiels et népériens en s’inspirant des travaux de

Chambers et al. (1996b) et, Briec et Kerstens (2004). Ainsi, nous introduisons des indicateurs de

Luenberger exponentiels (Chambers (1996b)). Cependant, ces mesures de productivité peuvent

présenter des infaisabilités. De ce fait, nous définissons des indicateurs de Luenberger-Hicks-

Moorsteen exponentiels, dans la lignée de Briec et Kerstens (2004) afin de corriger ces problèmes.

Grâce à l’équivalence entre la mesure de distance exponentielle et la fonction de distance népé-

rienne, nous montrons que les indicateurs exponentiels et népériens sont également équivalents.

Par ailleurs, nous en déduisons des formulations dynamiques des fonctions de distance croisées,

c’est-à-dire lorsque les observations d’une période sont évaluées relativement à l’ensemble de pro-

duction d’une autre période. Ces mesures dynamiques de l’efficacité mettent en évidence l’exis-
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tence d’un paramètre d’influence qui ne permet pas à l’unité de production d’atteindre l’efficience

à la période suivante.

Dans ce chapitre, la première section est consacrée à l’environnement et aux outils d’analyse

tandis que la deuxième section présente les indicateurs de Luenberger et de Luenberger-Hicks-

Moorsteen exponentiels. La Section 3. introduit des notions additionnelles relatives au dynamisme

de la fonction de distance exponentielle ainsi qu’à la décomposition des mesures de productivité.

Enfin, la quatrième section est dévouée à une illustration empirique des concepts présentés dans ce

chapitre.

1 Environnement et Outils

Pour tous vecteurs d’inputs xt = (xt1, · · · , x
t
m) ∈ R

m
+ et d’outputs yt = (yt1, · · · , y

t
n) ∈ R

n
+,

soit l’ensemble de production T t(xt, yt) =
{

(xt, yt) ∈ R
m+n
+ : xt peut produire yt

}

associé à la

période (t). Notons que la technologie de production positive est T t
++ = T t∩Rm+n

++ avec (xt, yt) ∈

R
m+n
++ et, que la technologie népérienne est représentée par T t

ln =
{(

ln(xt), ln(yt)
)

: (xt, yt) ∈

T t
++

}

. Nous supposons que T t(xt, yt) et T t
ln (ln(x

t), ln(yt)) satisfont les hypothèses T1− T4.

Rappelons que pour tout (xt, yt) ∈ R
m+n
+ la fonction de distance exponentielle (FDE) orientée

dans le graphe associée à la période (t) se présente de la manière suivante :

Dt
exp(x

t, yt;αt, βt) = sup
δ

{

δt :
(

e−δtAxt, eδ
tByt

)

∈ T t
}

,

où A = diag(αt) et B = diag(βt) avec (αt, βt) ∈ [0, 1]m+n.

Pour (xt, yt) ∈ R
m+n
++ et, grâce à une transformation logarithmique de la mesure exponentielle,

nous obtenons la fonction de distance népérienne (FDN). Nous constatons que la FDE et la FDN

sont équivalentes. Notons que pour tout (αt, βt) ∈ [0, 1]m+n et, que quel que soit (xt, yt) ∈ R
m+n
++ ,

la FDN se définit par :

Dt
ln(ln(x

t), ln(yt);αt, βt) = sup
δ

{

δt : ln
(

ln(xt)− δtαt, ln(yt) + δtβt
)

∈ T t
ln

}

.

Ainsi, Dt
exp(x

t, yt;αt, βt) ≡ Dt
ln(ln(x

t), ln(yt);αt, βt).

Rappelons également que l’indicateur de productivité de Luenberger-Hicks-Moorsteen (Briec
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et Kerstens (2004)) de la période (t) est :

LHM t(xt, xt+1, yt, yt+1; gt, gt+1) = LOt(xt, yt, yt+1; kt, kt+1)− LI t(xt, xt+1, yt; ht, ht+1),

où LOt(xt, yt, yt+1; kt, kt+1) et LI t(xt, xt+1, yt; ht, ht+1) sont respectivement les mesures de quan-

tité de Luenberger orientées en output et en input. Ces indicateurs (de productivité et de quantité)

sont évalués sur la base des fonctions de distance directionnelle (Luenberger (1992a, 1992b) et

Chambers et al. (1996a)).

2 Des Mesures de Productivité Exponentielles

Nous avons pu voir dans le Chapitre 2 que la fonctiona de distance exponentielle (FDE) et

népérienne (FDN) sont équivalentes. Par ailleurs, cette dernière est structurellement similaire à la

fonction de distance directionnelle (FDD). Sachant que ces fonctions permettent d’estimer l’effi-

cacité des unités productives, elles sont également le fondement de l’évaluation de la variation de

la productivité. En s’inspirant des travaux de Chambers et al. (1996b), Briec et Kerstens (2004)

et, Abad et Ravelojaona (2017), nous proposons de présenter les indicateurs de productivité de

Luenberger et de Luenberger-Hicks-Moorsteen dans un contexte exponentiel.

2.1 Indicateurs de Luenberger Exponentiels

Cette sous-section est dévouée à la caractérisation de la mesure de productivité de Luenberger

basée sur la FDE. Abad et Ravelojaona (2017) proposent cette estimation exponentielle de la pro-

ductivité, dans le cadre des productions polluantes. Dans ces travaux, nous proposons de la définir

de manière standard c’est-à-dire, aucune distinction n’est faite entre les productions polluantes et

non-polluantes.

2.1.1 Définitions en Input

L’indicateur de productivité de Luenberger permet de mesurer l’évolution de la performance

relativement à deux périodes successives. Une évaluation axée sur les inputs signifie que les dé-

cisions managériales visent à diminuer la quantité de facteurs utilisée pour un niveau donné de
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production.

Définition 4.1 Pour tout (xt, yt) ∈ R
m+n
++ et tout (xt+1, yt+1) ∈ R

m+n
++ avec φt = (αt, βt) ∈

[0, 1]m× 0 et φt+1 = (αt+1, βt+1) ∈ [0, 1]m× 0, l’indicateur de productivité global de Luenberger

exponentiel orienté en input est défini par :

LI,exp(x
t, xt+1, yt, yt+1;φt, φt+1) =

1

2

[

Lt
I,exp(x

t, xt+1, yt, yt+1;αt, αt+1)

+Lt+1
I,exp(x

t, xt+1, yt, yt+1;αt, αt+1)
]

, (4.1)

où Lt
I,exp(x

t, xt+1, yt, yt+1;αt, αt+1) et Lt+1
I,exp(x

t, xt+1, yt, yt+1;αt, αt+1) sont respectivement les

indicateurs de productivité de Luenberger orientés en input de la période (t) et (t+ 1).

Les mesures de productivité en intrants, relatives aux périodes (t) et (t + 1) reposent sur la

fonction de distance exponentielle orientée en input.

Proposition 4.2 Pour tout (xt, yt) ∈ R
m+n
++ , (xt+1, yt+1) ∈ R

m+n
++ avec (αt, βt) ∈ [0, 1]m × 0 et

(αt+1, βt+1) ∈ [0, 1]m × 0, on a :

Lt
I,exp(x

t, xt+1, yt, yt+1;αt, αt+1) = Dt
exp

(

xt, yt;αt, 0
)

−Dt
exp

(

xt+1, yt+1;αt+1, 0
)

, (4.2)

Lt+1
I,exp(x

t, xt+1, yt, yt+1;αt, αt+1) = Dt+1
exp

(

xt, yt;αt, 0
)

−Dt+1
exp

(

xt+1, yt+1;αt+1, 0
)

, (4.3)

qui sont les indicateurs de productivité de Luenberger exponentiels orientés en input des période

(t) et (t + 1).

Notons que les mesures de distance sont également orientées en input.

Dt
exp (x

t+1, yt+1;αt+1, 0) est la mesure de la performance de l’observation de la période (t+1)

par rapport à la technologie de production de la période (t). Elle est définie de la manière suivante :

Dt
exp

(

xt+1, yt+1;αt+1, 0
)

= sup
δ

{

δt(t+1) :
(

e−δt(t+1)αt+1

xt+1, yt+1
)

∈ T t
++

}

.

De manière analogue, Dt+1
exp (xt, yt;αt, 0) est l’estimation de l’efficacité de l’observation de la

période (t) relativement à l’ensemble de production de la période (t + 1). Dans ce cas, elle se
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présente de la manière suivante :

Dt+1
exp

(

xt, yt;αt, 0
)

= sup
δ

{

δt(t+1) :
(

e−δt(t+1)αt

xt, yt
)

∈ T t+1
++

}

.

Sachant que Dt
exp(x

t, yt;αt, βt) ≡ Dt
ln(ln(x

t), ln(yt);αt, βt), on obtient la proposition ci-

dessous.

Proposition 4.3 Pour tout (xt, yt) ∈ R
m+n
++ , (xt+1, yt+1) ∈ R

m+n
++ avec (αt, βt) ∈ [0, 1]m × 0 et

(αt+1, βt+1) ∈ [0, 1]m × 0, on a les équivalences suivantes :

Lt
I,exp(x

t, xt+1, yt, yt+1;αt, αt+1) ≡ Lt
I,ln

(

ln(xt), ln(xt+1), ln(yt), ln(yt+1);αt, αt+1
)

, (4.4)

Lt+1
I,exp(x

t, xt+1, yt, yt+1;αt, αt+1) ≡ Lt+1
I,ln

(

ln(xt), ln(xt+1), ln(yt), ln(yt+1);αt, αt+1
)

, (4.5)

où Lt
I,ln (ln(x

t), ln(xt+1), ln(yt), ln(yt+1);αt, αt+1) et Lt+1
I,ln(ln(x

t), ln(xt+1), ln(yt), ln(yt+1);

αt, αt+1) sont respectivement les mesures de productivité de Luenberger népériennes orientées

en input des périodes (t) et (t + 1).

Ainsi, les mesures de productivité népériennes sont équivalentes aux indicateurs de productivité

exponentiels. Les premières sont détaillées dans le corollaire ci-dessous.

Corollaire 4.4 Pour tout (xt, yt) ∈ R
m+n
++ , (xt+1, yt+1) ∈ R

m+n
++ avec (αt, βt) ∈ [0, 1]m × 0 et

(αt+1, βt+1) ∈ [0, 1]m × 0, on a :

Lt
I,ln

(

ln(xt), ln(xt+1), ln(yt), ln(yt+1);αt, αt+1
)

= Dt
ln

(

ln(xt), ln(yt);αt, 0
)

−Dt
ln

(

ln(xt+1), ln(yt+1);αt+1, 0
)

, (4.6)

Lt+1
I,ln

(

ln(xt), ln(xt+1), ln(yt), ln(yt+1);αt, αt+1
)

= Dt+1
ln

(

ln(xt), ln(yt);αt, 0
)

−Dt+1
ln

(

ln(xt+1), ln(yt+1);αt+1, 0
)

. (4.7)
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Les fonctions de distance népériennes croisées sont caractérisées par :

Dt
ln

(

ln(xt+1), ln(yt+1);αt+1, 0
)

= sup
δ

{

δt(t+1) :
(

ln(xt+1)− δt(t+1)αt+1, ln(yt+1)
)

∈ T t
ln

}

,

(4.8)

Dt+1
ln

(

ln(xt), ln(yt);αt, 0
)

= sup
δ

{

δt+1(t) :
(

ln(xt)− δt+1(t)αt, ln(yt)
)

∈ T t+1
ln

}

. (4.9)

Corollaire 4.5 Pour tout (xt, yt) ∈ R
m+n
++ et tout (xt+1, yt+1) ∈ R

m+n
++ avec φt = (αt, βt) ∈

[0, 1]m× 0 et φt+1 = (αt+1, βt+1) ∈ [0, 1]m× 0, l’indicateur de productivité global de Luenberger

exponentiel orienté en input peut être reformulée de la manière suivante :

LI,exp

(

xt, xt+1, yt, yt+1;φt, φt+1
)

≡ LI,ln

(

ln(xt), ln(xt+1), ln(yt), ln(yt+1);φt, φt+1
)

(4.10)

=
1

2

[

Lt
I,ln (ln(x

t), ln(xt+1), ln(yt), ln(yt+1);αt, αt+1)

+Lt+1
I,ln (ln(x

t), ln(xt+1), ln(yt), ln(yt+1);αt, αt+1)
]

.

2.1.2 Orientation en Output

En s’inspirant des travaux de Chambers et al. (1996b), on peut définir les indicateurs de produc-

tivité de Luenberger exponentiels orientés en output. Ces derniers permettent de mesurer les gains

de productivité par rapport à deux années consécutives, de telle sorte que les unités de production

cherchent à augmenter les extrants pour une quantité donnée d’intrants.

Définition 4.6 Pour tout (xt, yt) ∈ R
m+n
++ et (xt+1, yt+1) ∈ R

m+n
++ avec ψt = (αt, βt) ∈ 0× [0, 1]n

et ψt+1 = (αt, βt+1) ∈ 0 × [0, 1]n, l’indicateur de productivité global de Luenberger exponentiel

orienté en output est défini par :

LO,exp

(

xt, xt+1, yt, yt+1;ψt, ψt+1
)

=
1

2

[

Lt
O,exp

(

xt, xt+1, yt, yt+1; βt, βt+1
)

+Lt+1
O,exp

(

xt, xt+1, yt, yt+1; βt, βt+1
)]

, (4.11)

où Lt
O,exp (x

t, xt+1, yt, yt+1; βt, βt+1) et Lt+1
O,exp (x

t, xt+1, yt, yt+1; βt, βt+1) sont respectivement les

mesures de productivité de Luenberger exponentielles orientées en output des périodes (t) et (t+1).

Les mesures périodiques de la productivité sont obtenues grâce aux fonctions de distance ex-
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ponentielles axées sur les extrants.

Proposition 4.7 Pour tout (xt, yt) ∈ R
m+n
++ et tout (xt+1, yt+1) ∈ R

m+n
++ avec ψt = (αt, βt) ∈

0 × [0, 1]n et ψt+1 = (αt+1, βt+1) ∈ 0 × [0, 1]n, les indicateurs de productivité de Luenberger

exponentiels orientés en output de la période (t) et (t+ 1) sont respectivement :

Lt
O,exp(x

t, xt+1, yt, yt+1; βt, βt+1) = Dt
exp(x

t, yt; 0, βt)−Dt
exp(x

t+1, yt+1; 0, βt+1), (4.12)

Lt+1
O exp(x

t, xt+1, yt, yt+1; βt, βt+1) = Dt+1
exp (x

t, yt; 0, βt)−Dt+1
exp (x

t+1, yt+1; 0, βt+1). (4.13)

La fonction de distance croisée Dt
exp(x

t+1, yt+1; 0, βt+1) signifie que l’on évalue l’observation

de la période (t+1) relativement à l’ensemble de production de la période (t). Elle est définie par :

Dt
exp(x

t+1, yt+1; 0, βt+1) = sup
δ

{

δt(t+1) :
(

xt+1, eδ
t(t+1)βt+1

yt+1
)

∈ T t
++

}

.

De manière analogue, Dt+1
exp (x

t, yt; 0, βt) estime l’efficacité de l’observation en (t) par rapport à la

technologie en (t+ 1). De ce fait, on la présente comme suit :

Dt+1
exp (x

t, yt; 0, βt) = sup
δ

{

δt+1(t) :
(

xt, eδ
t+1(t)βt

yt
)

∈ T t+1
++

}

.

Nous savons que la FDE et la FDN sont équivalentes. Ainsi, les indicateurs de productivité de

Luenberger exponentiels sont également équivalentes aux mesures de productivité de Luenberger

népériennes.

Proposition 4.8 Pour tout (xt, yt) ∈ R
m+n
++ et tout (xt+1, yt+1) ∈ R

m+n
++ avec ψt = (αt, βt) ∈

0× [0, 1]n et ψt+1 = (αt+1, βt+1) ∈ 0× [0, 1]n, on a :

Lt
O exp

(

xt, xt+1, yt, yt+1; βt, βt+1
)

≡ Lt
O,ln

(

ln(xt), ln(xt+1), ln(yt), ln(yt+1); βt, βt+1
)

, (4.14)

Lt+1
O,exp

(

xt, xt+1, yt, yt+1; βt, βt+1
)

≡ Lt+1
O,ln

(

ln(xt), ln(xt+1), ln(yt), ln(yt+1); βt, βt+1
)

, (4.15)

où Lt
O,ln

(

ln(xt), ln(xt+1), ln(yt), ln(yt+1); βt, βt+1
)

et Lt+1
O,ln

(

ln(xt), ln(xt+1), ln(yt), ln(yt+1)

; βt, βt+1
)

sont respectivement les mesures de productivité de Luenberger népériennes orientées

en output des périodes (t) et (t+ 1).
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Ces indicateurs sont fondées sur les fonctions de distance népériennes. Nous pouvons donc,

fournir la proposition ci-après.

Corollaire 4.9 Pour tout (xt, yt) ∈ R
m+n
++ et tout (xt+1, yt+1) ∈ R

m+n
++ avec ψt = (αt, βt) ∈

0 × [0, 1]n et ψt+1 = (αt+1, βt+1) ∈ 0 × [0, 1]n, les indicateurs de productivité de Luenberger

népériens orientés en output de la période (t) et (t+ 1) sont respectivement :

Lt
O,ln

(

ln(xt), ln(xt+1), ln(yt), ln(yt+1); βt, βt+1
)

= Dt
ln

(

ln(xt), ln(yt); 0, βt
)

−Dt
ln

(

ln(xt+1), ln(yt+1); 0, βt+1
)

, (4.16)

Lt+1
O,ln

(

ln(xt), ln(xt+1), ln(yt), ln(yt+1); βt, βt+1
)

= Dt+1
ln

(

ln(xt), ln(yt); 0, βt
)

−Dt+1
ln

(

ln(xt+1), ln(yt+1); 0, βt+1
)

. (4.17)

Ainsi, l’indicateur de productivité global de Lueberger exponentiel orienté en output peut être

redéfini comme ci-dessous.

Corollaire 4.10 Pour tout (xt, yt) ∈ R
m+n
++ et tout (xt+1, yt+1) ∈ R

m+n
++ avec ψt = (αt, βt) ∈

0 × [0, 1]n et ψt+1 = (αt+1, βt+1) ∈ 0 × [0, 1]n, la mesure de productivité global de Luenberger

exponentielle orienté en output peut être présentée de la manière suivante :

LO,exp

(

xt, xt+1, yt, yt+1;ψt, ψt+1
)

≡ LO,ln

(

ln(xt), ln(xt+1), ln(yt), ln(yt+1);ψt, ψt+1
)

=
1

2

[

Lt
O,ln (ln(x

t), ln(xt+1), ln(yt), ln(yt+1); βt, βt+1)

+Lt+1
O,ln (ln(x

t), ln(xt+1), ln(yt), ln(yt+1); βt, βt+1)
]

.

(4.18)

2.1.3 Mesures dans le Graphe de la Technologie

Une mesure dans le graphe de la technologie signifie que les décisions managériales des unités

de production se concentrent à la fois sur la diminution potentielle des inputs et l’augmentation

éventuelle des outputs. Dans ce cas, les variations de la productivité sont également évaluées rela-

tivement à cette orientation.
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Définition 4.11 Pour tout (xt, yt) ∈ R
m+n
++ et tout (xt+1, yt+1) ∈ R

m+n
++ avec ξt = (αt, βt) ∈

[0, 1]m+n et ξt+1 = (αt+, βt+1) ∈ [0, 1]m+n, l’indicateur de productivité global de Luenberger

exponentiel orienté dans le graphe est défini par :

Lexp(x
t, xt+1, yt, yt+1; ξt, ξt+1) =

1

2

[

Lt
exp(x

t, xt+1, yt, yt+1; ξt, ξt+1)

+Lt+1
exp (x

t, xt+1, yt, yt+1; ξt, ξt+1)
]

. (4.19)

Les mesures relatives aux périodes (t) et (t + 1) reposent sur les fonctions de distance expo-

nentielles orientées dans le graphe. Dans ce cas, nous avons la proposition ci-dessous.

Proposition 4.12 Pour tout (xt, yt) ∈ R
m+n
++ et tout (xt+1, yt+1) ∈ R

m+n
++ avec ξt = (αt, βt) ∈

[0, 1]m+n et ξt+1 = (αt+, βt+1) ∈ [0, 1]m+n, les indicateurs de productivité de Luenberger expo-

nentiels orientés dans le graphe des périodes (t) et (t+ 1) sont respectivement :

Lt
exp(x

t, xt+1, yt, yt+1; ξt, ξt+1) = Dt
exp(x

t, yt;αt, βt)−Dt
exp(x

t+1, yt+1;αt+1, βt+1), (4.20)

Lt+1
exp (x

t, xt+1, yt, yt+1; ξt, ξt+1) = Dt+1
exp (x

t, yt;αt, βt)−Dt+1
exp (x

t+1, yt+1;αt+1, βt+1). (4.21)

La fonction Dt(xt+1, yt+1;αt+1, βt+1) consiste à évaluer l’observation de la période (t + 1)

relativement à la technologie de production de la période (t) tandis que Dt+1(xt, yt;αt, βt) est

l’inverse. Chacune de ces fonctions est détaillée comme suit :

Dt
exp(x

t+1, yt+1;αt+1, βt+1) = sup
δ

{

δt(t+1) :
(

e−δt(t+1)αt+1

xt+1, eδ
t(t+1)βt+1

yt+1
)

∈ T t
++

}

,

Dt+1
exp (x

t, yt;αt, βt) = sup
δ

{

δt+1(t) :
(

e−δt+1(t)αt

xt, eδ
t+1(t)βt

yt
)

∈ T t+1
++

}

.

Sachant que la fonction de distance exponentielle est équivalente à la mesure de distance népé-

rienne alors, les mesures de productivité exponentielles et népériennes le sont également.

Proposition 4.13 Pour tout (xt, yt) ∈ R
m+n
++ et tout (xt+1, yt+1) ∈ R

m+n
++ avec ξt = (αt, βt) ∈
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[0, 1]m+n et ξt+1 = (αt+1, βt+1) ∈ [0, 1]m+n, les équivalences suivantes sont valables :

Lt
exp(x

t, xt+1, yt, yt+1; ξt, ξt+1) ≡ Lt
ln(ln(x

t), ln(xt+1), ln(yt), ln(yt+1); ξt, ξt+1), (4.22)

Lt+1
exp (x

t, xt+1, yt, yt+1; ξt, ξt+1) ≡ Lt+1
ln (ln(xt), ln(xt+1), ln(yt), ln(yt+1); ξt, ξt+1), (4.23)

où Lt
ln(ln(x

t), ln(xt+1), ln(yt), ln(yt+1); ξt, ξt+1) et Lt+1
ln (ln(xt), ln(xt+1), ln(yt), ln(yt+1);

ξt, ξt+1) sont les indicateurs de productivité de Luenberger népériens orientés dans le graphe,

des périodes (t) et (t+ 1).

En faisant appel à la fonction de distance népérienne, nous pouvons fournir une expression plus

détaillée de chacune des mesures introduites ci-dessus.

Corollaire 4.14 Pour tout (xt, yt) ∈ R
m+n
++ et tout (xt+1, yt+1) ∈ R

m+n
++ avec ξt = (αt, βt) ∈

[0, 1]m+n et ξt+1 = (αt+1, βt+1) ∈ [0, 1]m+n, les mesures de productivité de Luenberger népé-

riennes des périodes (t) et (t + 1) sont respectivement :

Lt
ln

(

ln(xt), ln(xt+1), ln(yt), ln(yt+1); ξt, ξt+1
)

= Dt
ln

(

ln(xt), ln(yt);αt, βt
)

−Dt
ln

(

ln(xt+1), ln(yt+1);αt+1, βt+1
)

, (4.24)

Lt+1
ln

(

ln(xt), ln(xt+1), ln(yt), ln(yt+1); ξt, ξt+1
)

= Dt+1
ln

(

ln(xt), ln(yt);αt, βt
)

−Dt+1
ln

(

ln(xt+1), ln(yt+1);αt+1, βt+1
)

. (4.25)

Corollaire 4.15 Pour tout (xt, yt) ∈ R
m+n
++ et tout (xt+1, yt+1) ∈ R

m+n
++ avec ξt = (αt, βt) ∈

[0, 1]m+n et ξt+1 = (αt+1, βt+1) ∈ [0, 1]m+n, la mesure de productivité globale de Luenberger

exponentielle orientée dans le graphe est reformulée de la manière suivante :

Lexp

(

xt, xt+1, yt, yt+1; ξt, ξt+1
)

≡ Lln

(

ln(xt), ln(xt+1), ln(yt), ln(yt+1); ξt, ξt+1
)

(4.26)

=
1

2

[

Lt
ln (ln(x

t), ln(xt+1), ln(yt), ln(yt+1); ξt, ξt+1)

+Lt+1
ln (ln(xt), ln(xt+1), ln(yt), ln(yt+1); ξt, ξt+1)

]

.

Lorsque les indicateurs de productivité de Luenberger exponentiels ont une valeur positive
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alors, l’unité de production présente un gain de productivité tandis qu’une valeur négative indique

une perte de productivité. Une valeur nulle démontre qu’il n’existe aucun changement, que ce soit

au niveau des inputs ou des outputs, d’une période à une autre.

xt

yt

0

IsoqT t
ln

IsoqT t+1
ln

•

(

ln(xt+1), ln(yt+1)
)

•
(

ln(xt), ln(yt)
)

gt = (−ht, kt)

FIGURE 1 – Indice de productivité exponentiel de Luenberger et infaisabilité.

La figure 1 montre que la projection de (xt+1, yt+1) sur la technologie T t
ln se fait dans le cadre

du cône délimité par les pointillés. Nous pouvons voir que certaines valeurs de (α, β), peuvent

engendrer des infaisabilités lorsque la projection ne rencontre pas la frontière efficiente de la tech-

nologie relative à la période (t). Cette situation peut survenir dès lors que l’ensemble de production

de la période (t+1) est supérieure à celui de la période (t). De manière similaire, cette infaisabilité

peut également survenir lors de la projection de l’unité de production (xt, yt) sur T t+1
ln lorsque T t

ln

est supérieur à T t+1
ln .

2.2 Indicateur Exponentiel de Luenberger-Hicks-Moorsteen

Les indicateurs de productivité de Luenberger présentent des infaisabilités. En effet, ce cas peut

survenir lorsque les mesures de distance croisées sont évaluées. Ainsi, Briec et Kerstens (2004)

introduisent un nouvel indicateur basé sur les mesures directionnelles, qui permet d’éviter ces

éventuels infaisabilités. La mesure de productivité de Luenberger-Hicks-Moorsteen (LHM) dépend
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des indicateurs de quantité de Luenberger. Nous présentons d’abord sa formulation exponentielle

par rapport à la période (t) puis, (t+1). Enfin, nous définissons l’indicateur de productivité global

de LHM relativement aux deux périodes successives.

2.2.1 Indicateur de la Période (t)

L’indicateur de productivité de LHM de la période (t) est évalué grâce à la différence entre la

mesure de quantité de Luenberger orientée en output et celle orientée en input de la période (t).

Ainsi, en s’inspirant des travaux de Briec et Kerstens (2004), nous pouvons définir un indicateur de

productivité LHM exponentiel pour la période (t) tel que celui-ci dépend des mesures de distance

exponentielles présentées dans le Chapitre 2.

Définition 4.16 Pour tout (xt, yt) ∈ R
m+n
++ , (xt+1, yt+1) ∈ R

m+n
++ tels que ξt = (αt, βt) ∈ [0, 1]m+n

et ξt+1 = (αt+1, βt+1) ∈ [0, 1]m+n, l’indicateur de productivité de Luenberger-Hicks-Moorsteen

exponentiel de la période (t) est défini de la manière suivante :

LHM t
exp

(

xt, xt+1, yt, yt+1; ξt, ξt+1
)

= OLt
exp

(

xt, yt, yt+1; βt, βt+1
)

− ILt
exp

(

xt, xt+1, yt;αt, αt+1
)

, (4.27)

où OLt
exp (x

t, yt, yt+1; βt, βt+1) et ILt
exp (x

t, xt+1, yt;αt, αt+1) sont les mesures de quantité de

Luenberger orientées respectivement en output et en input de la période (t).

Ces mesures de quantité de Luenberger ne sont pas les mesures initialement introduites par

Chambers et al. (1996b). En effet, afin de résoudre les problèmes d’infaisabilités, Briec et Kersents

(2004) font intervenir des observations fictives composées simultanément des observations des

périodes (t) et (t + 1). Lorsque la mesure de quantité de Luenberger est axée sur les intrants

alors, les extrants sont considérés comme fixes. Inversement, lorsqu’elle est orientée en output, les

facteurs sont considérés comme stables.

Proposition 4.17 Pour tout (xt, yt) ∈ R
m+n
++ , (xt+1, yt+1) ∈ R

m+n
++ avec (α, β) ∈ 0 × [0, 1]n ou

(α, β) ∈ [0, 1]m × 0, les indicateurs de quantité de Luenberger exponentiels orientés en output et
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en input de la période (t) sont respectivement :

OLt
exp

(

xt, yt, yt+1;βt, βt+1
)

= Dt
exp

(

xt, yt; 0, βt
)

−Dt
exp

(

xt, yt+1; 0, βt+1
)

, (4.28)

ILt
exp

(

xt, xt+1, yt;αt, αt+1
)

= Dt
exp

(

xt+1, yt;αt+1, 0
)

−Dt
exp

(

xt, yt;αt, 0
)

. (4.29)

Nous pouvons observer que les mesures de quantité en output et en input font respectivement

intervenir les observations (xt, yt+1) et (xt+1, yt). Les fonctions de distance exponentielles croisées

relatives à celles-ci sont définies comme suit :

Dt
exp

(

xt, yt+1; 0, βt+1
)

= sup
δ

{

δt(t+1) :
(

xt, eδ
t(t+1)βt+1

yt+1
)

∈ T t
++

}

,

Dt
exp

(

xt+1, yt;αt+1, 0
)

= sup
δ

{

δt(t+1) :
(

eδ
t(t+1)αt+1

xt+1, yt
)

∈ T t
++

}

.

Ainsi, l’indicateur de productivité de LHM exponentiel de la période (t) signifie que la mesure

de productivité est estimée relativement à l’ensemble de production de la période (t). L’équivalence

entre la fonction de distance exponentielle et la mesure de distance népérienne permet d’établir la

proposition ci-dessous.

Proposition 4.18 Pour tout (xt, yt) ∈ R
m+n
++ , (xt+1, yt+1) ∈ R

m+n
++ avec (α, β) ∈ 0 × [0, 1]n ou

(α, β) ∈ [0, 1]m × 0, les indicateurs de quantité de Luenberger exponentiels orientés en output et

en input de la période (t) peuvent être réécrites de la manière suivante :

OLt
exp

(

xt, yt, yt+1; βt, βt+1
)

≡ OLt
ln

(

ln(xt), ln(yt), ln(yt+1); βt, βt+1
)

, (4.30)

ILt
exp

(

xt, xt+1, yt;αt, αt+1
)

≡ ILt
ln

(

ln(xt), ln(xt+1), ln(yt);αt, αt+1
)

, (4.31)

où OLt
ln (ln(x

t), ln(yt), ln(yt+1); βt, βt+1) et ILt
ln (ln(x

t), ln(xt+1), ln(yt);αt, αt+1) sont respecti-

vement les mesures de quantité de Luenberger népériennes en output et en input de la période

(t).

Corollaire 4.19 Pour tout (xt, yt) ∈ R
m+n
++ , (xt+1, yt+1) ∈ R

m+n
++ avec (α, β) ∈ 0 × [0, 1]n ou

(α, β) ∈ [0, 1]m × 0, les indicateurs de quantité de Luenberger népériens orientés en output et en
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input de la période (t) sont :

OLt
ln

(

ln(xt), ln(yt), ln(yt+1);βt, βt+1
)

= Dt
ln

(

ln(xt), ln(yt); 0, βt
)

−Dt
ln

(

ln(xt), ln(yt+1); 0, βt+1
)

,

(4.32)

ILt
ln

(

ln(xt), ln(xt+1), ln(yt);αt, αt+1
)

= Dt
ln

(

ln(xt+1), ln(yt);αt+1, 0
)

−Dt
ln

(

ln(xt), ln(yt);αt, 0
)

.

(4.33)

Ainsi, les deux mesures de distance croisées présentées ci-dessous sont :

Dt
ln

(

ln(xt), ln(yt+1); 0, βt+1
)

= sup
δ

{

δt(t+1) :
(

ln(xt), ln(yt+1) + δt(t+1)βt+1
)

∈ T t
ln

}

,

Dt
ln

(

ln(xt+1), ln(yt);αt+1, 0
)

= sup
δ

{

δt(t+1) :
(

ln(xt+1)− δt(t+1)αt+1, ln(yt)
)

∈ T t
ln

}

.

Corollaire 4.20 Pour tout (xt, yt) ∈ R
m+n
++ , (xt+1, yt+1) ∈ R

m+n
++ avec ξt = (αt, βt) ∈ [0, 1]m+n

et ξt+1 = (αt+1, βt+1) ∈ [0, 1]m+n, l’indicateur de productivité de Luenberger-Hicks-Moorsteen

exponentiel de la période (t) peut être caractérisé comme suit :

LHM t
exp

(

xt, xt+1, yt, yt+1; ξt, ξt+1
)

≡ LHM t
ln

(

ln(xt), ln(xt+1), ln(yt), ln(yt+1); ξt, ξt+1
)

= OLt
ln (ln(xt), ln(yt), ln(yt+1); βt, βt+1)

−ILt
ln (ln(x

t), ln(xt+1), ln(yt);αt, αt+1) .

(4.34)

De manière similaire à l’indicateur de productivité de Luenberger, lorsque la mesure de pro-

ductivité de Luenberger-Hicks-Moorsteen est positive (respectivement négative) alors, il existe un

gain (respectivement une perte) de productivité tandis qu’une valeur nulle indique qu’il n’y a pas

de modification de la performance entre les deux périodes successives.

2.2.2 Indicateur de la Période (t+ 1)

Dans cette sous-section, nous présentons l’indicateur de productivité de Luenberger-Hicks-

Moorsteen exponentiel de la période (t+1). Ce dernier est évalué relativement à la technologie de

production de la période (t+ 1).

Définition 4.21 Pour tout (xt, yt) ∈ R
m+n
++ , (xt+1, yt+1) ∈ R

m+n
++ avec ξt = (αt, βt) ∈ [0, 1]m+n
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et ξt+1 = (αt+1, βt+1) ∈ [0, 1]m+n, la mesure de productivité de Luenberger-Hicks-Moorsteen

exponentielle de la période (t+ 1) est définie de la manière suivante :

LHM t+1
exp

(

xt, xt+1, yt, yt+1; ξt, ξt+1
)

= OLt+1
exp

(

xt+1, yt, yt+1; βt, βt+1
)

− ILt+1
exp

(

xt, xt+1, yt+1;αt, αt+1
)

, (4.35)

où OLt+1
exp (x

t+1, yt, yt+1; βt, βt+1) et ILt+1
exp (x

t, xt+1, yt+1;αt, αt+1) sont respectivement les indi-

cateurs de quantité de Luenberger exponentiels orientés en output et en input de la période (t+1).

Nous pouvons donner une définition plus détaillée de ces mesures de quantité de Luenberger

orientées grâce à la fonction de distance exponentielle.

Proposition 4.22 Pour tout (xt, yt) ∈ R
m+n
++ , (xt+1, yt+1) ∈ R

m+n
++ avec (α, β) ∈ 0 × [0, 1]n ou

(α, β) ∈ [0, 1]m × 0, les indicateurs de quantité de Luenberger exponentiels orientés en output et

en input de la période (t + 1) sont :

OLt+1
exp

(

xt+1, yt, yt+1; βt, βt+1
)

= Dt+1
exp

(

xt+1, yt; 0, βt
)

−Dt+1
exp

(

xt+1, yt+1; 0, βt+1
)

, (4.36)

ILt+1
exp

(

xt, xt+1, yt+1;αt, αt+1
)

= Dt+1
exp

(

xt+1, yt+1;αt+1, 0
)

−Dt+1
exp

(

xt, yt+1;αt, 0
)

. (4.37)

Les mesures de distance exponentielles croisées qui font intervenir les observations fictives

(xt+1, yt) et (xt, yt+1), définies par :

Dt+1
exp

(

xt+1, yt; 0, βt
)

= sup
δ

{

δt+1(t) :
(

xt+1, eδ
t+1(t)βt

yt
)

∈ T t+1
++

}

,

Dt+1
exp

(

xt, yt+1; βt, 0
)

= sup
δ

{

δt+1(t) :
(

e−δt+1(t)αt

xt, yt+1
)

∈ T t+1
++

}

.

Proposition 4.23 Sachant que la fonction de distance exponentielle est équivalente à la mesure de

distance népérienne, pour tout (xt, yt) ∈ R
m+n
++ , (xt+1, yt+1) ∈ R

m+n
++ avec (α, β) ∈ 0× [0, 1]n ou

(α, β) ∈ [0, 1]m × 0, les indicateurs de quantité de Luenberger exponentiels orientés en output et
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en input de la période (t+ 1) peuvent être exprimés de la manière suivante :

OLt+1
exp

(

xt+1, yt, yt+1; βt, βt+1
)

≡ OLt+1
ln

(

ln(xt+1), ln(yt), ln(yt+1); βt, βt+1
)

, (4.38)

ILt+1
exp

(

xt, xt+1, yt+1;αt, αt+1
)

≡ ILt+1
ln

(

ln(xt), ln(xt+1), ln(yt+1);αt, αt+1
)

, (4.39)

oùOLt+1
ln (ln(xt+1), ln(yt), ln(yt+1); βt, βt+1) et ILt+1

ln (ln(xt), ln(xt+1), ln(yt+1);αt, αt+1) sont res-

pectivement les indicateurs de quantité de Luenberger népériens orientés en output et en input.

Corollaire 4.24 Pour tout (xt, yt) ∈ R
m+n
++ , (xt+1, yt+1) ∈ R

m+n
++ avec (α, β) ∈ 0 × [0, 1]n ou

(α, β) ∈ [0, 1]m × 0, les mesures de quantité de Luenberger népériennes orientés en output et en

input de la période (t+ 1) sont définies par :

OLt+1
ln

(

ln(xt+1), ln(yt), ln(yt+1); βt, βt+1
)

= Dt+1
ln

(

ln(xt+1), ln(yt); 0, βt
)

−Dt+1
ln

(

ln(xt+1), ln(yt+1); 0, βt+1
)

(4.40)

ILt+1
ln

(

ln(xt), ln(xt+1), ln(yt+1);αt, αt+1
)

= Dt+1
ln

(

ln(xt+1), ln(yt+1);αt+1, 0
)

−Dt+1
ln

(

ln(xt), ln(yt+1);αt, 0
)

. (4.41)

Dans ce cas, les mesures de distance népériennes croisées orientées en output et en input,

relatives aux observations (ln(xt+1), ln(yt)) et (ln(xt), ln(yt+1)) sont respectivement :

Dt+1
ln

(

ln(xt+1), ln(yt); 0, βt
)

= sup
δ

{

δt+1(t) :
(

ln(xt+1), ln(yt) + δt+1(t)βt
)

∈ T t+1
ln

}

,

Dt+1
ln

(

ln(xt), ln(yt+1);αt, 0
)

= sup
δ

{

δt+1(t) :
(

ln(xt)− δt+1(t)αt, ln(yt+1)
)

∈ T t+1
ln

}

.

Corollaire 4.25 Pour tout (xt, yt) ∈ R
m+n
++ , (xt+1, yt+1) ∈ R

m+n
++ avec ξt = (αt, βt) ∈ [0, 1]m+n

et ξt+1 = (αt+1, βt+1) ∈ [0, 1]m+n, l’indicateur de productivité de Luenberger-Hicks-Moorsteen
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exponentiel de la période (t+ 1) peut être redéfini comme suit :

LHM t+1
exp

(

xt, xt+1, yt, yt+1; ξt, ξt+1
)

≡ LHM t+1
ln

(

ln(xt), ln(xt+1), ln(yt), ln(yt+1); ξt, ξt+1
)

= OLt+1
ln (ln(xt+1), ln(yt), ln(yt+1); βt, βt+1)

−ILt+1
ln (ln(xt), ln(xt+1), ln(yt+1);αt, αt+1) .

(4.42)

2.2.3 Indicateur Global de Luenberger-Hicks-Moorsteen Exponentiel

Les indicateurs de productivité LHM exponentiels des périodes (t) et (t+ 1) permettent d’ob-

tenir une mesure globale relative à ces deux périodes successives. Celle-ci est constituée par la

moyenne arithmétique des indicateurs des périodes (t) et (t + 1).

Définition 4.26 Pour tout (xt, yt) ∈ R
m+n
++ , (xt+1, yt+1) ∈ R

m+n
++ avec ξt = (αt, βt) ∈ [0, 1]m+n

et ξt+1 = (αt+1, βt+1) ∈ [0, 1]m+n, l’indicateur de productivité de Luenberger-Hicks-Moorsteen

exponentiel global est défini par :

LHMexp

(

xt, xt+1, yt, yt+1; ξt, ξt+1
)

=
1

2

[

LHM t
exp

(

xt, xt+1, yt, yt+1; ξt, ξt+1
)

+LHM t+1
exp

(

xt, xt+1, yt, yt+1; ξt, ξt+1
)]

. (4.43)

Nous avons établi précédemment que les indicateurs de productivité LHM exponentiels et né-

périens en (t) et en (t + 1) sont équivalents. Nous pouvons constater cette similitude au niveau de

la mesure de productivité globale.

Proposition 4.27 Pour tout (xt, yt) ∈ R
m+n
++ , (xt+1, yt+1) ∈ R

m+n
++ avec ξt = (αt, βt) ∈ [0, 1]m+n

et ξt+1 = (αt+1, βt+1) ∈ [0, 1]m+n, l’équivalence suivante est valable :

LHMexp

(

xt, xt+1, yt, yt+1; ξt, ξt+1
)

≡ LHMln

(

ln(xt), ln(xt+1), ln(yt), ln(yt+1); ξt, ξt+1
)

,

(4.44)

où LHMln (ln(x
t), ln(xt+1), ln(yt), ln(yt+1); ξt, ξt+1) est la mesure de productivité de Luenberger-

Hicks-Moorsteen népérienne globale.
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L’indicateur de productivité de LHM népérien global est également obtenu grâce à la moyenne

arithmétique des indicateurs de productivité de LHM népériens des période (t) et (t+ 1).

Corollaire 4.28 Pour tout (xt, yt) ∈ R
m+n
++ , (xt+1, yt+1) ∈ R

m+n
++ avec ξt = (αt, βt) ∈ [0, 1]m+n

et ξt+1 = (αt+1, βt+1) ∈ [0, 1]m+n, l’indicateur de productivité de Luenberger-Hicks-Moorsteen

népérien global est :

LHMln

(

ln(xt), ln(xt+1), ln(yt), ln(yt+1); ξt, ξt+1
)

=

1

2

[

LHM t
ln

(

ln(xt), ln(xt+1), ln(yt), ln(yt+1); ξt, ξt+1
)

+LHM t+1
ln

(

ln(xt), ln(xt+1), ln(yt), ln(yt+1); ξt, ξt+1
)]

. (4.45)

xt

yt

0

IsoqT t
ln

IsoqT t+1
ln

•
(

ln(xt+1), ln(yt+1)
)

•
(

ln(xt), ln(yt)
)

•
(

ln(xt+1), ln(yt)
)

•
(

ln(xt), ln(yt+1)
)

gt = (−ht, kt)

FIGURE 2 – Indice de productivité exponentiel de Luenberger-Hicks-Moorsteen.

La figure 2 décrit les mesures de distance dans le cadre de l’estimation de l’indicateur de pro-

ductivité de LHM exponentiel global. Les pointillés et les lignes rouges sont relatifs aux mesures

de distance intervenant dans l’évaluation des indicateurs de quantité de Luenberger orientés en out-

put des périodes (t) ou (t+1). Les pointillés et les lignes bleus concernent quant à eux, les mesures

de quantité de Luenberger orientées en input des périodes (t) et (t + 1). Nous pouvons constater
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qu’aucune infaisabilité ne peut survenir dans l’estimation de l’indicateur de productivité de LHM

puisque la projection de chaque observation rencontre effectivement, les frontières efficientes de

T t
ln et, de T t+1

ln .

3 Notions Additionnelles

Dans cette section nous présentons des concepts additionnels relatifs aux indicateurs de pro-

ductivité présentés la section précédente. En effet, nous montrons que l’estimation des fonctions

de distance croisées par rapport à deux périodes peut conduire à l’obtention d’une formulation dy-

namique des fonctions de distance. Par ailleurs, grâce à cette spécification dynamique, nous identi-

fions un nouveau paramètre influençant la performance des unités de production. Par ailleurs, nous

décomposons les mesures de productivité introduites précédemment afin de différencier les sources

de la variation de la performance, à savoir le gain de productivité et le changement technologique.

3.1 Dynamisme à Deux Périodes

Dans un premier temps, nous présentons les fonctions de distance dynamiques que ce soit

de forme exponentielle ou népérienne. Nous constatons que cette formulation fait intervenir un

nouveau paramètre. Celui-ci est exposé plus en détail dans un second temps.

3.1.1 Fonctions de Distance Dynamiques

Soient deux périodes consécutives (t) et (t+1). La performance d’une unité de production à la

période (t + 1) dépend de son efficacité en (t) mais également des décisions managériales. Cette

interdépendance est mise en évidence grâce à l’estimation des fonctions de distance croisées qui

interviennent dans les mesures de productivité.

Proposition 4.29 Pour tout (xt, yt) ∈ R
m+n
++ , (xt+1, yt+1) ∈ R

m+n
++ avec (αt, βt) ∈ [0, 1]m+n

tel que s’il existe un couple de paramètres (ρ
t+1(t)
i , ρ

t+1(t)
o ) ∈ R

m+n alors, la fonction de distance

exponentielleDt+1
exp (xt, yt;αt, βt) orientée dans le graphe, peut être définie de manière dynamique,
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comme ci-dessous :

Dt+1
exp

(

xt, yt;αt, βt
)

=



























ln(xt)− ln(xt+1)

ρ
t+1(t)
i αt

ln(yt+1)− ln(yt)

ρ
t+1(t)
o βt

.

(4.46)

Preuve :

Nous savons que la fonction de distance exponentielle équivaut à la fonction de distance népé-

rienne. Posons, Dt+1
exp (xt, yt;αt, βt) ≡ Dt+1

ln (ln(xt), ln(yt);αt, βt) = δt+1(t). Si (xt, yt) est inef-

ficace à la période (t), l’unité de production cherchera à réduire cette inefficacité afin de l’être

pleinement à la période (t+1). Cependant, il est possible que cet objectif ne soit pas atteint malgré

les ajustements managériaux et, l’inefficacité n’est réduite que pour une proportion ρt+1(t). De ce

fait, nous pouvons établir que l’observation de la période (t + 1) dépend de celle de la période (t)

ainsi que des efforts managériaux. Ainsi, nous avons :







ln(xt+1) = ln(xt)− ρ
t+1(t)
i δt+1(t)αt

ln(yt+1) = ln(yt) + ρ
t+1(t)
o δt+1(t)βt

⇐⇒



























δt+1(t) =
ln(xt)− ln(xt+1)

ρ
t+1(t)
i αt

δt+1(t) =
ln(yt+1)− ln(yt)

ρ
t+1(t)
o βt

�.

Proposition 4.30 Pour tout (xt, yt) ∈ R
m+n
++ , (xt+1, yt+1) ∈ R

m+n
++ avec (αt+1, βt+1) ∈ [0, 1]m+n

tel que s’il existe un couple de paramètres (ρ
t(t+1)
i , ρ

t(t+1)
o ) ∈ R

m+n alors, la fonction de distance

exponentielle Dt
exp (x

t+1, yt+1;αt+1, βt+1) dynamique orientée dans le graphe, peut être définie

par :

Dt
exp

(

xt+1, yt+1;αt+1, βt+1
)

=



























ln(xt)− ln(xt+1)

ρ
t(t+1)
i αt+1

ln(yt+1)− ln(yt)

ρ
t(t+1)
o βt+1

.

(4.47)

Preuve :

Nous savons que (xt+1, yt+1) dépend à la fois des décisions managériaux afin d’atteindre l’ef-

ficacité, mais également de l’observation en (t). De ce fait, nous pouvons établir une relation

inverse telle que l’on peut retrouver (xt, yt) grâce à l’observation de la période (t + 1). Posons
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Dt
exp (x

t+1, yt+1;αt+1, βt+1) = δt(t+1) Ainsi, nous avons les relations suivantes :







ln(xt) = ln(xt+1) + δt(t+1)ρ
t(t+1)
i αt+1

ln(yt) = ln(yt+1) + δt(t+1)ρ
t(t+1)
o βt+1

⇐⇒















δt(t+1) =
ln(xt)− ln(xt+1)

ρ
t(t+1)
i αt+1

δt(t+1) =
ln(yt+1)− ln(yt)

ρ
t(t+1)
o βt+1

�.

3.1.2 Paramètre d’Influence Dynamique

Nous avons introduit dans la sous-section précédente un nouveau paramètre ρ. Celui-ci repré-

sente la proportion de réduction de l’inefficacité d’une période à l’autre.Il correspond à l’influence

de facteurs internes et externes qui entravent la recherche de l’efficience par les entreprises. En

effet, les unités productives peuvent améliorer leur performance grâce à un gain de productivité

et/ou à un ajustement technologique. Les facteurs internes concernent essentiellement le processus

de production ainsi que les décisions managériales. Les facteurs externes tels les politiques et/ou

les conjonctures économiques, quant à eux, ne peuvent être influencés par l’unité de production.

Proposition 4.31 Pour tout (xt, yt) ∈ R
m+n
++ , (xt+1, yt+1) ∈ R

m+n
++ avec (αt, βt) ∈ [0, 1]m+n, les

paramètres d’influence dynamiques orientés en input et en output de la période (t), relativement à

la technologie de production de la période (t+ 1), sont respectivement :

ρ
t+1(t)
i =

ln(xt)− ln(xt+1)

δt+1(t)αt
, (4.48)

ρt+1(t)
o =

ln(yt+1)− ln(yt)

δt+1(t)βt
. (4.49)

La définition ci-dessus présente la caractérisation des paramètres d’influence dynamiques rela-

tifs aux observations de la période (t) et, à l’ensemble de production (t+ 1).

Proposition 4.32 Pour tout (xt, yt) ∈ R
m+n
++ , (xt+1, yt+1) ∈ R

m+n
++ avec (αt+1, βt+1) ∈ [0, 1]m+n,

les paramètres d’influence dynamique orientés en input et en output de la période (t + 1), relati-
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vement à la technologie de production de la période (t), sont respectivement :

ρ
t(t+1)
i =

ln(xt)− ln(xt+1)

δt(t+1)αt+1
, (4.50)

ρt(t+1)
o =

ln(yt+1)− ln(yt)

δt(t+1)βt+1
. (4.51)

Lorsque le paramètre ρt+1(t) est inférieur à 1 alors, les facteurs à la fois internes et externes ne

permettent pas à la firme d’être pleinement efficiente. Ainsi, ils freinent les ajustements techniques

et/ou technologiques. Cependant, ces contraintes n’influencent pas de manière similaire les intrants

et les extrants. De ce fait, il existe de deux paramètres distincts relatifs aux inputs et aux outputs. Par

ailleurs, lorsque ce paramètre est supérieur à 1 alors, les influences externes et internes permettent

la réduction plus que proportionnelle de l’inefficacité de l’unité de production. Il est à noter que

lorsque la valeur de ρt(t+1) est inférieure à 1 alors, des sources externes et internes contribuent à

une hausse plus que proportionnel de l’efficacité. Cependant, si celui-ci a une valeur supérieure à 1

alors, ces facteurs d’influence freinent la recherche de la performance. Enfin, lorsque ρt+1(t) et/ou

ρt(t+1) prennent une valeur unitaire, les contraintes internes et externes n’ont aucun impact sur les

transformations techniques et/ou technologiques de l’unité de production relatives à la recherche

de l’efficacité.

La figure 3 décrit les différentes possibilités d’évolution de l’unité de production de la période

(t) à la période (t + 1). Elle illustre le paramètre d’influence dynamique ρt+1(t). Posons A =

(xt, yt) tel que à la période (t + 1), la firme produit (xt+1, yt+1). Selon les facteurs internes et

externes influençant les activités de l’unité productive, la production de la période (t+1) peut être

représentée entre autres par les points B, C, D, E ou F . Dans ce cas, nous pouvons donner les

interprétations suivantes :

— B correspond au cas où l’entreprise est techniquement efficiente à la période (t+1) tel que

ρ
t+1(t)
i = ρ

t+1(t)
o = 1.

— C représente la situation où les inputs sont réduits et les outputs sont augmentés. Cependant,

la firme n’est pas efficace techniquement tel que ρ
t+1(t)
i 6= ρ

t+1(t)
o avec

(ρ
t+1(t)
i , ρ

t+1(t)
o ) > 0.

— D décrit la circonstance où l’entité de production augmente sa production pour un même
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FIGURE 3 – Paramètre d’influence dynamique.

niveau de facteurs, correspondant à celui de la période (t). Dans ce cas, ρt+1(t)
i = 0 et

ρ
t+1(t)
o > 0.

— E est le cas où les inputs et les outputs augmentent simultanément tel que ρt+1(t)
i 6= ρ

t+1(t)
o

avec ρt+1(t)
i < 0 et ρt+1(t)

o > 0.

— Lorsque la quantité de facteurs utilisée diminue tandis que la production reste constante

alors, nous avons F de telle sorte que ρt+1(t)
i > 0 et ρt+1(t)

o = 0.

3.2 Décomposition et Dynamisme des Indicateurs Exponentiels

Dans cette sous-section, nous proposons une décomposition des indicateurs définis précédem-

ment. En effet, les mesures de la productivité concentrent à la fois la réduction (ou non) de l’inef-

ficacité et la mutation (ou non) technologique de l’unité de production. Par ailleurs, nous donnons

une formulation dynamique de ces mesures de productivité grâce aux fonctions de distance dyna-

miques, présentées dans la sous-section précédente.
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3.2.1 Décomposition des Mesures de Productivité

Dans un premier temps, nous donnons la décomposition de l’indicateur de productivité de

Luenberger exponentiels puis, dans un second temps, celle de la mesure de productivité de

Luenberger-Hicks-Moorsteen exponentiel. Nous avons mentionné précédemment que les indica-

teurs de productivité sont composés d’un gain en efficacité technique et d’une augmentation de la

performance imputable aux transformations technologiques dans le processus de production.

Proposition 4.33 Pour tout (xt, yt) ∈ R
m+n
++ , (xt+1, yt+1) ∈ R

m+n
++ avec ξt = (αt, βt) ∈ [0, 1]m+n

et ξt+1 = (αt+1, βt+1) ∈ [0, 1]m+n, l’indicateur de productivité global de Luenberger exponentiel

peut être exprimé de la manière suivante :

Lexp(x
t, xt+1, yt, yt+1; ξt, ξt+1) =

[

Dt
exp(x

t, yt;αt, βt)−Dt+1
exp (x

t+1, yt+1;αt+1, βt+1)
]

+
1

2

[

(

Dt+1
exp (x

t+1, yt+1;αt+1, βt+1)−Dt
exp(x

t+1, yt+1;αt+1, βt+1)
)

+
(

Dt+1
exp (x

t, yt;αt, βt)−Dt
exp(x

t, yt;αt, βt)
)

]

. (4.52)

Preuve :

D’abord, rappelons que l’indicateur de productivité global de Luenberger exponentiel est défini

par l’expression suivante, Lexp(x
t, xt+1, yt, yt+1; ξt, ξt+1) =

1

2

[

Lt
exp(x

t, xt+1, yt, yt+1; ξt, ξt+1) +

Lt+1
exp (x

t, xt+1, yt, yt+1; ξt, ξt+1)
]

. Si Lt
exp(x

t, xt+1, yt, yt+1; ξt, ξt+1) = Dt
exp(x

t, yt;αt, βt)

−Dt
exp(x

t+1, yt+1;αt+1, βt+1) et si de plus,Lt+1
exp (x

t, xt+1, yt, yt+1; ξt, ξt+1) = Dt+1
exp (x

t, yt;αt, βt)−

Dt+1
exp (x

t+1, yt+1;αt+1, βt+1) alors, on aLexp(x
t, xt+1, yt, yt+1; ξt, ξt+1) =

1

2

[(

Dt
exp(x

t, yt;αt, βt)−

Dt
exp(x

t+1, yt+1;αt+1, βt+1)
)

+
(

Dt+1
exp (x

t, yt;αt, βt)−Dt+1
exp (x

t+1, yt+1;αt+1, βt+1)
)]

. Sachant que
1

2
Dt

exp(x
t, yt;αt, βt) = Dt

exp(x
t, yt;αt, βt) −

1

2
Dt

exp(x
t, yt;αt, βt) et que par ailleurs on a,

1

2
Dt+1

exp (x
t+1, yt+1;αt+1, βt+1) = Dt+1

exp (x
t+1, yt+1;αt+1, βt+1)−

1

2
Dt+1

exp (x
t+1, yt+1;αt+1, βt+1) alors,

Lexp(x
t, xt+1, yt, yt+1; ξt, ξt+1) =

[

Dt
exp(x

t, yt;αt, βt) − Dt+1
exp (x

t+1, yt+1;αt+1, βt+1)
]

+
1

2
[(

Dt+1
exp (x

t+1, yt+1;αt+1, βt+1) − Dt
exp(x

t+1, yt+1;αt+1, βt+1)
)

+
(

Dt+1
exp (x

t, yt;αt, βt) −

Dt
exp(x

t, yt;αt, βt)
)]

�.

Nous avons vu dans le premier chapitre que lorsque les mesures de productivité sont structurel-

lement additives alors, elles sont composées de la somme de la part imputée aux gains d’efficacité
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et de celle attribuée aux changements technologiques.

Corollaire 4.34 Pour tout (xt, yt) ∈ R
m+n
++ , (xt+1, yt+1) ∈ R

m+n
++ avec (αt, βt) ∈ [0, 1]m+n et

(αt+1, βt+1) ∈ [0, 1]m+n, le gain d’efficacité et le changement technologique sont respectivement

définis par :

EFFCH = Dt
exp(x

t, yt;αt, βt)−Dt+1
exp (x

t+1, yt+1;αt+1, βt+1), (4.53)

TECH =
1

2

[(

Dt+1
exp (x

t+1, yt+1;αt+1, βt+1)−Dt
exp(x

t+1, yt+1;αt+1, βt+1)
)

+
(

Dt+1
exp (x

t, yt;αt, βt)−Dt
exp(x

t, yt;αt, βt)
)]

. (4.54)

Une valeur positive (négative) des composantes EFFCH et TECH indique qu’il existe res-

pectivement un gain (une perte) d’efficacité et un progrès (une régression) technologique.

Ang et Kerstens (2017) proposent une décomposition de l’indicateur de productivité de

Luenberger-Hicks-Moorsteen standard de telle sorte que celui-ci est la somme de trois compo-

santes à savoir, le changement d’efficacité, la transformation technologique et, un résidu qu’ils

considèrent comme étant la modification de l’efficacité d’échelle. Nous nous inspirons de ces tra-

vaux afin d’identifier les composantes de la mesure de productivité de LHM exponentielle.

Proposition 4.35 Pour tout (xt, yt) ∈ R
m+n
++ , (xt+1, yt+1) ∈ R

m+n
++ avec ξt = (αt, βt) ∈ [0, 1]m+n

et ξt+1 = (αt+1, βt+1) ∈ [0, 1]m+n, l’indicateur de productivité de Luenberger-Hicks-Moorsteen

exponentiel peut être redéfini par :

LHMexp

(

xt, xt+1, yt, yt+1; ξt, ξt+1
)

=
[

Dt
exp

(

xt, yt; 0, βt
)

−Dt+1
exp

(

xt+1, yt+1; 0, βt+1
)

]

+
1

2

[(

Dt+1
exp

(

xt, yt; 0, βt
)

−Dt
exp

(

xt, yt; 0, βt
)

)

−
(

Dt+1
exp

(

xt+1, yt+1; 0, βt+1
)

−Dt
exp

(

xt+1, yt+1; 0, βt+1
)

)]

+ ε, (4.55)
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ou

LHMexp

(

xt, xt+1, yt, yt+1; ξt, ξt+1
)

=
[

Dt
exp

(

xt, yt;αt, 0
)

−Dt+1
exp

(

xt+1, yt+1;αt+1, 0
)

]

+
1

2

[(

Dt+1
exp

(

xt, yt;αt, 0
)

−Dt
exp

(

xt, yt;αt, 0
)

)

−
(

Dt+1
exp

(

xt+1, yt+1;αt+1, 0
)

−Dt
exp

(

xt+1, yt+1;αt+1, 0
)

)]

+ ε. (4.56)

où ε correspond à un résidu.

Notons que la décomposition proposée par Ang et Kerstens (2017) est caractérisée soit en input

soit en output. A partir de ces définitions, nous pouvons identifier chaque composante.

Corollaire 4.36 Pour tout (xt, yt) ∈ R
m+n
++ , (xt+1, yt+1) ∈ R

m+n
++ avec (αt, βt) ∈ [0, 1]m+n et

(αt+1, βt+1) ∈ [0, 1]m+n, la variation de l’efficacité et le progrès technologique sont respective-

ment :

EFFCH =







Dt
exp (x

t, yt; 0, βt)−Dt+1
exp (xt+1, yt+1; 0, βt+1)

Dt
exp (x

t, yt;αt, 0)−Dt+1
exp (xt+1, yt+1;αt+1, 0) ,

(4.57)

TECH =



































1

2

[ (

Dt+1
exp (xt, yt; 0, βt)−Dt

exp (x
t, yt; 0, βt)

)

−
(

Dt+1
exp (xt+1, yt+1; 0, βt+1)−Dt

exp (x
t+1, yt+1; 0, βt+1)

)]

1

2

[ (

Dt+1
exp (xt, yt;αt, 0)−Dt

exp (x
t, yt;αt, 0)

)

−
(

Dt+1
exp (xt+1, yt+1;αt+1, 0)−Dt

exp (x
t+1, yt+1;αt+1, 0)

)]

.

(4.58)

Une valeur positive (négative) de la composanteEFFCH signifie qu’il y a un gain (une perte)

d’efficacité technique. De manière similaire, lorsque TECH est positive (négative) alors, il existe

un progrès (une régression) technologique.

3.2.2 Mesures de Productivité Dynamiques

Nous reformulons les indicateurs de productivité présentés précédemment à l’aide des mesures

de distance exponentielles dynamiques. De ce fait, nous obtenons des mesures de productivité

dynamiques.
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Dans la section précédente nous avons établi que Lexp (x
t, xt+1, yt, yt+1; ξt, ξt+1) ≡

Lln (ln(x
t), ln(xt+1), ln(yt), ln(yt+1); ξt, ξt+1).De ce fait, nous pouvons fournir la proposition sui-

vante.

Proposition 4.37 Pour tout (xt, yt) ∈ R
m+n
++ et (xt+1, yt+1) ∈ R

m+n
++ avec ξt = (αt, βt) ∈

[0, 1]m+n et ξt+1 = (αt+, βt+1) ∈ [0, 1]m+n, la mesure de productivité globale de Luenberger

exponentiel dynamique orientée dans le graphe est définie par :

Lexp

(

xt, xt+1, yt, yt+1; ξt, ξt+1
)

=
1

2

[(

Dt
exp

(

xt, yt;αt, βt
)

−
ln(xt)− ln(xt+1)

ρ
t(t+1)
i αt+1

)

+

(

ln(xt)− ln(xt+1)

ρ
t+1(t)
i αt

−Dt+1
exp

(

xt+1, yt+1;αt+1, βt+1
)

)]

, (4.59)

ou

Lexp

(

xt, xt+1, yt, yt+1; ξt, ξt+1
)

=
1

2

[(

Dt
exp

(

xt, yt;αt, βt
)

−
ln(yt+1)− ln(yt)

ρ
t(t+1)
o βt+1

)

+

(

ln(yt+1)− ln(yt)

ρ
t+1(t)
o βt

−Dt+1
exp

(

xt+1, yt+1;αt+1, βt+1
)

)]

. (4.60)

Notons que les indicateurs de productivité de Luenberger exponentiels dynamiques orientés

dans le graphe des périodes (t) et (t + 1) sont respectivement :

Lt
exp

(

xt, xt+1, yt, yt+1; ξt, ξt+1
)

=















Dt
exp (x

t, yt;αt, βt)−
ln(xt)− ln(xt+1)

ρ
t(t+1)
i αt+1

Dt
exp (x

t, yt;αt, βt)−
ln(yt+1)− ln(yt)

ρ
t(t+1)
o βt+1

Lt+1
exp

(

xt, xt+1, yt, yt+1; ξt, ξt+1
)

=















ln(xt)− ln(xt+1)

ρ
t+1(t)
i αt

−Dt+1
exp (xt+1, yt+1;αt+1, βt+1)

ln(yt+1)− ln(yt)

ρ
t+1(t)
o βt

−Dt+1
exp (xt+1, yt+1;αt+1, βt+1)

Les expressions dynamiques des indicateurs de productivité de Luenberger orientés en input et

en output peuvent également être pourvus.

Proposition 4.38 Pour tout (xt, yt) ∈ R
m+n
++ et (xt+1, yt+1) ∈ R

m+n
++ avec φt = (αt, βt) ∈

[0, 1]m×0, φt+1 = (αt+1, βt+1) ∈ [0, 1]m×0, ψt = (αt, βt) ∈ 0× [0, 1]n et ψt+1 = (αt+1, βt+1) ∈
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0×[0, 1]n, les indicateurs de productivité globaux de Luenberger exponentiels dynamiques orientés

en input et en output sont respectivement définis par :

ILexp(x
t, xt+1, yt, yt+1;φt, φt+1) =

1

2

[(

Dt
exp

(

xt, yt;αt, 0
)

−
ln(xt)− ln(xt+1)

ρ
t(t+1)
i αt+1

)

+

(

ln(xt)− ln(xt+1)

ρ
t+1(t)
i αt

−Dt+1
exp

(

xt+1, yt+1;αt+1, 0
)

)]

, (4.61)

OLexp

(

xt, xt+1, yt, yt+1;ψt, ψt+1
)

=
1

2

[(

Dt
exp

(

xt, yt; 0, βt
)

−
ln(yt+1)− ln(yt)

ρ
t(t+1)
o βt+1

)

+

(

ln(yt+1)− ln(yt)

ρ
t+1(t)
o βt

−Dt+1
exp

(

xt+1, yt+1; 0, βt+1
)

)]

. (4.62)

Chaque mesure de productivité globale est la moyenne arithmétique des indicateurs de produc-

tivité de deux périodes successives. De ce fait, nous pouvons indiquer que les mesures de produc-

tivité exponentiels orientées en input et en output des périodes (t) et (t + 1) sont respectivement :

ILt
exp(x

t, xt+1, yt, yt+1;αt, αt+1) = Dt
exp

(

xt, yt;αt, 0
)

−
ln(xt)− ln(xt+1)

ρ
t(t+1)
i αt+1

,

ILt+1
exp (x

t, xt+1, yt, yt+1;αt, αt+1) =
ln(xt)− ln(xt+1)

ρ
t+1(t)
i αt

−Dt+1
exp

(

xt+1, yt+1;αt+1, 0
)

,

OLt
exp

(

xt, xt+1, yt, yt+1;ψt, ψt+1
)

= Dt
exp

(

xt, yt; 0, βt
)

−
ln(yt+1)− ln(yt)

ρ
t(t+1)
o βt+1

,

OLt+1
exp

(

xt, xt+1, yt, yt+1;ψt, ψt+1
)

=
ln(yt+1)− ln(yt)

ρ
t+1(t)
o βt

−Dt+1
exp

(

xt+1, yt+1; 0, βt+1
)

.

De manière similaire, nous pouvons donner une expression dynamique aux indicateurs de pro-

ductivité de Luenberger-Hicks-Moorsteen exponentiels. Sachant que LHMexp(x
t, xt+1, yt,

yt+1; ξt, ξt+1) = LHM t
ln (ln(x

t), ln(xt+1), ln(yt), ln(yt+1); ξt, ξt+1) , nous avons la proposition ci-

dessous.

Proposition 4.39 Pour tout (xt, yt) ∈ R
m+n
++ , (xt+1, yt+1) ∈ R

m+n
++ avec ξt = (αt, βt) ∈ [0, 1]m+n

et ξt+1 = (αt+1, βt+1) ∈ [0, 1]m+n, l’indicateur de productivité de Luenberger-Hicks-Moorsteen
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exponentiel dynamique de la période (t) est défini de la manière suivante :

LHMexp

(

xt, xt+1, yt, yt+1; ξt, ξt+1
)

=
1

2

[((

Dt
exp

(

xt, yt; 0, βt
)

−
ln(yt+1)− ln(yt)

ρ
t(t+1)
o βt+1

)

−

(

ln(xt)− ln(xt+1)

ρ
t(t+1)
i αt+1

−Dt
(

xt, yt;αt, 0
)

))

(4.63)

+

((

ln(yt+1)− ln(yt)

ρ
t+1(t)
o βt

−Dt+1
exp

(

xt+1, yt+1; 0, βt+1
)

)

−

(

Dt+1
exp

(

xt+1, yt+1;αt+1, 0
)

−
ln(xt)− ln(xt+1)

ρ
t+1(t)
i αt

))]

.

Rappelons que

LHMexp

(

xt, xt+1, yt, yt+1; ξt, ξt+1
)

=
1

2

[

LHM t
exp

(

xt, xt+1, yt, yt+1; ξt, ξt+1
)

+LHM t+1
exp

(

xt, xt+1, yt, yt+1; ξt, ξt+1
)]

.

Ainsi, les mesures de productivité de Luenberger-Hicks-Moorsteen exponentiel dynamiques

des périodes (t) et (t+ 1) sont respectivement :

LHM t
exp

(

xt, xt+1, yt, yt+1; ξt, ξt+1
)

=

(

Dt
exp

(

xt, yt; 0, βt
)

−
ln(yt+1)− ln(yt)

ρ
t(t+1)
o βt+1

)

−

(

ln(xt)− ln(xt+1)

ρ
t(t+1)
i αt+1

−Dt
(

xt, yt;αt, 0
)

)

, (4.64)

LHM t+1
exp

(

xt, xt+1, yt, yt+1; ξt, ξt+1
)

=

(

ln(yt+1)− ln(yt)

ρ
t+1(t)
o βt

−Dt+1
exp

(

xt+1, yt+1; 0, βt+1
)

)

−

(

Dt+1
exp

(

xt+1, yt+1;αt+1, 0
)

−
ln(xt)− ln(xt+1)

ρ
t+1(t)
i αt

)

. (4.65)

De ce fait, les indicateurs de quantité de Luenberger exponentiels dynamiques orientés en input
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et en output des périodes (t) et (t+ 1) sont définis par :

ILt
exp(x

t, xt+1, yt, yt+1;αt, αt+1) =
ln(xt)− ln(xt+1)

ρ
t(t+1)
i αt+1

−Dt
(

xt, yt;αt, 0
)

,

ILt+1
exp (x

t, xt+1, yt, yt+1;αt, αt+1) = Dt+1
exp

(

xt+1, yt+1;αt+1, 0
)

−
ln(xt)− ln(xt+1)

ρ
t+1(t)
i αt

,

OLt
exp

(

xt, xt+1, yt, yt+1;ψt, ψt+1
)

= Dt
exp

(

xt, yt; 0, βt
)

−
ln(yt+1)− ln(yt)

ρ
t(t+1)
o βt+1

,

OLt+1
exp

(

xt, xt+1, yt, yt+1;ψt, ψt+1
)

=
ln(yt+1)− ln(yt)

ρ
t+1(t)
o βt

−Dt+1
exp

(

xt+1, yt+1; 0, βt+1
)

.

4 Application Numérique

Dans cette section, nous donnons un exemple empirique relatif aux mesures de performance et

de productivité définies dans les chapitres 2 et 4.

4.1 Mesures de Performance

Dans cette sous-section, nous présentons, à titre d’exemple, les mesures de distance exponen-

tielles orientées dans le graphe, en input et en output. Nous plaçons notre analyse selon un point

de vue primal.

4.1.1 Cadre d’Etude

Dans cette application, nous utilisons les données agricoles de 12 pays européens relatives aux

années 2008 et 2009. Celles-ci sont présentées dans l’Annexe 1. Notons que les données de la

période 2008, ont également été utilisées dans le Chapitre 3.

Tout d’abord, rappelons que pour tout (αt, βt) ∈ [0, 1]m+n la fonction de distance exponentielle

orientée dans le graphe est définie de la manière suivante :

Dt
exp(x

t, yt;αt, βt) = sup
δ

{

δt :
(

e−δtαt

xt, eδ
tβt

yt
)

∈ T t
++

}

.

Suivant l’approche DEA et la technologie Cobb-Douglas de Banker et Maindiratta (1986),
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rappelons que la spécification non-paramétrique de la mesure définie ci-dessus, est :

Dt
exp(x

t, yt;αt, βt) = sup
δ

{

δt : e−δtαt

xt ≥
∏

j∈J

(xtj)
θtj , eδ

tβt

yt ≤
∏

j∈J

(xtj)
θtj , θt ≥ 0,

∑

j∈J

θt = 1

}

.

Sachant que Dt
exp(x

t, yt;αt, βt) ≡ Dt
ln (ln(x

t), ln(yt);αt, βt), nous obtenons :

Dt
exp(x

t, yt;αt, βt) ≡ sup
δ

{

δt : ln(xt)− δtαt ≥
∑

j∈J

θtj ln(x
t
j),

ln(yt) + δtβt ≤
∑

j∈J

θtj ln(x
t
j), θ

t ≥ 0,
∑

j∈J

θt = 1

}

.

Nous effectuons une étude empirique d’un point de vue primal de la mesure d’efficacité ex-

ponentielle tels que les paramètres (αt, βt) ∈ {(1, 1), (1, 0), (0, 1)}. Par ailleurs, notons que la

normalisation des pondérations
∑

j∈J θ
t
j = 1 indique une hypothèse de rendements d’échelle va-

riables.

4.1.2 Résultats

Le tableau 4.1 présente les scores de performance exponentiels de 12 pays européens suivant

une approche primale que ce soit dans une orientation en input, en output ou dans le graphe. La

première partie du tableau concentre les résultats relatifs à l’année d’exercice 2008 tandis que la

seconde partie concerne les performances des entités de production durant la période 2009. L’étude

se fait pour les mêmes unités de production soit 12 pays européens sur les 27 Etats composant la

communauté.

4.1.3 Interprétations

Nous pouvons constater que la République Tchèque, la France, la Lituanie, le Luxembourg, les

Pays-Bas, la Slovaquie et le Royaume-Uni (7 pays) sont efficaces durant la période 2008. De ce

fait, ces unités de production reposent sur la frontière efficiente et possèdent un score d’efficacité

nul. Ces pays sont efficaces que ce soit dans une orientation en input, en output ou, dans le graphe.

Ainsi, on peut raisonnablement déduire qu’il n’existe aucun slack dans les mesures présentées.
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Orientation Inputs Outputs Graphe
Année 2008

République Tchèque 0 0 0
Danemark 0,2752 0,2637 0,1347
Espagne 0,6719 0,7214 0,3667
France 0 0 0
Lettonie 0,0834 0,3071 0,0834
Lituanie 0 0 0
Luxembourg 0 0 0
Pays-Bas 0 0 0
Slovaquie 0 0 0
Finlande 0,5991 0,7198 0,3269
Suède 0,2309 0,2774 0,1260
Royaume Uni 0 0 0

Année 2009
République Tchèque 0 0 0
Danemark 0,2049 0,1937 0,0996
Espagne 0,8057 0,9568 0,4583
France 0 0 0
Lettonie 0 0 0
Lituanie 0 0 0
Luxembourg 0 0 0
Pays-Bas 0 0 0
Slovaquie 0 0 0
Finlande 0,4846 0,6394 0,2757
Suède 0,0925 0,1221 0,0526
Royaume Uni 0,0065 0,0055 0,0030

TABLE 4.1 – Scores d’efficacité exponentiels

Remarquons que les scores de performance non-nuls sont moins élevés selon une orientation dans

le graphe que suivant une orientation en input ou en output.

Relativement à l’année 2009, nous observons que la République Tchèque, la France, la Lettonie, la

Lituanie, le Luxembourg, les Pays-Bas et la Slovaquie (7 pays) sont efficientes. Ainsi, leur mesure

de performance est nul que ce soit suivant une direction en input, en output ou dans le graphe. Cette

constance indique qu’il n’existe aucun slack en input ou en output, pour les unités de production

efficientes. Par ailleurs, notons que les scores d’efficacité non-nuls sont également plus élevés

lorsque les mesures sont axées sur les facteurs et la production que selon une orientation dans le

graphe. Enfin, remarquons que la Lettonie, qui est inefficace en 2008, devient efficiente en 2009.

Inversement, le Royaume-Uni n’est pas performant en 2009 tandis qu’elle l’était durant la période
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2008.

4.2 Mesures de Productivité

Dans cette sous-section, nous appliquons les mesures de productivité de Luenberger et de

Luenberger-Hicks-Moorsteen exponentielles dans le cadre d’un exemple empirique. Nous nous

appuyons sur les données utilisées dans la sous-section précédente ainsi qu’aux résultats obtenus

dans celle-ci.

4.2.1 Environnement d’Analyse

Rappelons que les indicateurs de productivité de Luenberger exponentiels nécessitent l’es-

timation des fonctions de distance croisées entre deux périodes consécutives. Ainsi, pour tout

(αt, βt) ∈ [0, 1]m+n et (αt+1, βt+1) ∈ [0, 1]m+n, la mesure de distance exponentielle des unités

de production de la période (t) évaluées relativement à la technologie de la période (t + 1), et

inversement, sont respectivement :

Dt+1
exp (x

t, yt;αt, βt) = sup
δ

{

δt :
(

e−δtαt

xt, eδ
tβt

yt
)

∈ T t+1
++

}

,

Dt
exp(x

t+1, yt+1;αt+1, βt+1) = sup
δ

{

δt+1 :
(

e−δt+1αt+1

xt+1, eδ
t+1βt+1

yt+1
)

∈ T t
++

}

.

Sachant que la mesure exponentielle est équivalente à la mesure népérienne, la spécification

non-paramétrique népérienne de ces mesures sont respectivement :

Dt+1
exp (x

t, yt;αt, βt) ≡ sup
δ

{

δt : ln(xt)− δtαt ≥
∑

j∈J

θt+1
j ln(xt+1

j ),

ln(yt) + δtβt ≤
∑

j∈J

θt+1
j ln(yt+1

j ), θt+1 ≥ 0,
∑

j∈J

θt+1
j = 1

}

,
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Dt
exp(x

t+1, yt+1;αt+1, βt+1) ≡ sup
δ

{

δt+1 : ln(xt+1)− δt+1αt+1 ≥
∑

j∈J

θtj ln(x
t
j),

ln(yt+1) + δt+1βt+1 ≤
∑

j∈J

θtj ln(y
t
j), θ

t ≥ 0,
∑

j∈J

θtj = 1

}

.

De manière similaire, les mesures de productivité de Luenberger-Hicks-Moorsteen exponen-

tiels nécessitent des scores d’efficacité croisés relatifs à des unités de production fictives. Ces

dernières sont composées de la combinaison des inputs et des outputs des périodes (t) et (t + 1)

tel que nous avons (xt, yt+1) et (xt+1, yt). Ainsi, les mesures de distance orientées en input de ces

observations selon la méthode DEA, par rapport à la technologie de la période (t), peuvent être

définies comme suit :

Dt
exp(x

t, yt+1;αt, 0) ≡ sup
δ

{

δt : ln(xt)− δtαt ≥
∑

j∈J

θtj ln(x
t
j),

ln(yt+1) ≤
∑

j∈J

θtj ln(y
t
j), θ

t ≥ 0,
∑

j∈J

θtj = 1

}

,

Dt
exp(x

t+1, yt;αt+1, 0) ≡ sup
δ

{

δt+1 : ln(xt+1)− δt+1αt+1 ≥
∑

j∈J

θtj ln(x
t
j),

ln(yt) ≤
∑

j∈J

θtj ln(y
t
j), θ

t ≥ 0,
∑

j∈J

θtj = 1

}

.

Pour chaque période, selon l’orientation des mesures, les paramètres (αt, βt) et (αt+1, βt+1)

prendront successivement les valeurs suivantes : (1, 1), (1, 0) et (0, 1). L’évaluation des perfor-

mances se fait sous l’hypothèse de rendements d’échelle variables.

4.2.2 Résultats

Le tableau 4.2 présente les mesures de productivité de Luenberger exponentielles orientées à la

fois en input, en output et dans le graphe. Nous avons les indicateurs par période puis les estima-

tions globales. Dans le tableau 4.3, nous offrons une décomposition des indicateurs de productivité

de Luenberger exponentiels en deux composantes à savoir, le changement d’efficacité (EFFCH) et
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Période 2008 2009 2008/2009
Orientation en inputs

République Tchèque -0,0167 -0,0339 -0,0253
Danemark 0,1240 0,1256 0,1248
Espagne -0,1568 -0,1369 -0,1469
France Infini Infini Infini
Lettonie 0,3572 0,1926 0,2749
Lituanie 0,1979 0,0552 0,1266
Luxembourg 0,0228 -0,0545 -0,0159
Pays-Bas 0,0922 0,0260 0,0591
Slovaquie -0,0021 -0,1381 -0,0701
Finlande 0,0426 0,0409 0,0417
Suède 0,0601 0,0625 0,0613
Royaume Uni -0,0644 -0,1567 -0,1105

Orientation en outputs
République Tchèque -0,0260 -0,0476 -0,0368
Danemark 0,1188 0,1187 0,1188
Espagne -0,2050 -0,2063 -0,2056
France 0,0932 -0,0035 0,0448
Lettonie Infini 0,2977 Infini
Lituanie Infini 0,1095 Infini
Luxembourg Infini Infini Infini
Pays-Bas 0,1089 0,0388 0,0739
Slovaquie -0,0555 -0,2127 -0,1341
Finlande 0,0512 0,0540 0,0526
Suède 0,0722 0,0825 0,0773
Royaume Uni -0,0644 -0,1314 -0,0979

Orientation dans le graphe
République Tchèque -0,0102 -0,0198 -0,0150
Danemark 0,0607 0,0610 0,0609
Espagne -0,0856 -0,0779 -0,0817
France 0,0609 -0,0035 0,0287
Lettonie 0,3572 0,1169 0,2371
Lituanie 0,1332 0,0392 0,0862
Luxembourg 0,0228 -0,0442 -0,0107
Pays-Bas 0,0473 0,0156 0,0315
Slovaquie -0,0021 -0,0829 -0,0425
Finlande 0,0232 0,0233 0,0233
Suède 0,0328 0,0356 0,0342
Royaume Uni -0,0331 -0,0715 -0,0523

TABLE 4.2 – Indicateurs de productivité de Luenberger exponentiels
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Décomposition EFFCH TECH Indicateur

Orientation en inputs
République Tchèque 0 -0,0253 -0,0253
Danemark 0,0703 0,0545 0,1248
Espagne -0,1337 -0,0131 -0,1469
France 0 Infini Infini
Lettonie 0,0834 0,1915 0,2749
Lituanie 0 0,1266 0,1266
Luxembourg 0 -0,0159 -0,0159
Pays-Bas 0 0,0591 0,0591
Slovaquie 0 -0,0701 -0,0701
Finlande 0,1145 -0,0727 0,0417
Suède 0,1383 -0,0770 0,0613
Royaume Uni -0,0065 -0,1040 -0,1105

Orientation en outputs
République Tchèque 0 -0,0368 -0,0368
Danemark 0,0701 0,0487 0,1188
Espagne -0,2354 0,0298 -0,2056
France 0 0,0448 0,0448
Lettonie 0,3071 Infini Infini
Lituanie 0 Infini Infini
Luxembourg 0 Infini Infini
Pays-Bas 0 0,0739 0,0739
Slovaquie 0 -0,1341 -0,1341
Finlande 0,0804 -0,0278 0,0526
Suède 0,1553 -0,0780 0,0773
Royaume Uni -0,0055 -0,0924 -0,0979

Orientation dans le graphe
République Tchèque 0 -0,0150 -0,0150
Danemark 0,0351 0,0257 0,0609
Espagne -0,0916 0,0099 -0,0817
France 0 0,0287 0,0287
Lettonie 0,0834 0,1536 0,2371
Lituanie 0 0,0862 0,0862
Luxembourg 0 -0,0107 -0,0107
Pays-Bas 0 0,0315 0,0315
Slovaquie 0 -0,0425 -0,0425
Finlande 0,0513 -0,0280 0,0233
Suède 0,0734 -0,0392 0,0342
Royaume Uni -0,0030 -0,0493 -0,0523

TABLE 4.3 – Décomposition des indicateurs de productivité de Luenberger
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2008
IL OL LHM

République Tchèque -0,0275 -0,0689 -0,0414
Danemark -0,0104 0,1088 0,1193
Espagne -0,0968 -0,3048 -0,2080
France -0,0295 0,0609 0,0904
Lettonie -0,3572 0,0596 0,4168
Lituanie -0,1014 0,1985 0,2999
Luxembourg -0,0228 -0,0058 0,0169
Pays-Bas -0,0632 0,0267 0,0899
Slovaquie -0,0301 -0,0857 -0,0556
Finlande -0,0363 0,0075 0,0438
Suède -0,0522 0,0094 0,0616
Royaume Uni -0,0708 -0,1235 -0,0526

2009
IL OL LHM

République Tchèque -0,0177 -0,0725 -0,0548
Danemark -0,0104 0,1088 0,1193
Espagne -0,0941 -0,3048 -0,2107
France -0,0058 -0,0035 0,0023
Lettonie -0,1684 -0,0157 0,1527
Lituanie 0,0129 0,1065 0,0936
Luxembourg 0,0442 -0,0668 -0,1110
Pays-Bas -0,0081 0,0126 0,0208
Slovaquie -0,0018 -0,2170 -0,2152
Finlande -0,0352 0,0075 0,0427
Suède -0,0554 0,0094 0,0648
Royaume Uni -0,0625 -0,1838 -0,1214

2008/2009
LHM

République Tchèque -0,0481
Danemark 0,1193
Espagne -0,2093
France 0,0464
Lettonie 0,2847
Lituanie 0,1968
Luxembourg -0,0470
Pays-Bas 0,0553
Slovaquie -0,1354
Finlande 0,0433
Suède 0,0632
Royaume Uni -0,0870

TABLE 4.4 – Indicateurs de productivité de Luenberger-Hicks-Moorsteen
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ρ2008(2009) ρ2009(2008)

Prix
SAU

Prod. Prod. Prix
SAU

Prod. Prod.
SAU (mille) (KT) SAU (mille) (KT)

Orientation Inputs Outputs Inputs Outputs
Rép. Tchèque 3,2557 0,4257 -2,6473 -2,8869 -1,6036 -0,2097 1,4481 1,5792
Danemark 1,3215 0,0690 1,0193 0,7512 0,6047 0,0316 0,4728 0,3484
Espagne 0,0573 0,1257 0,1303 -0,3290 0,0710 0,1558 0,1608 -0,4061
France Infini Infini -0,6533 0,0377 Infini Infini -17,3473 1,0000
Lettonie -2,3671 -0,0229 Infini Infini 3,3646 0,0325 0,2003 -0,0527
Lituanie -0,5124 0,3876 Infini Infini 1,8378 -1,3904 1,8127 0,9728
Luxembourg 4,9883 -1,0000 Infini Infini 2,0839 -0,4177 Infini Infini
Pays-Bas 1,5145 -0,6851 -0,2448 -0,1159 -5,3716 2,4298 0,6871 0,3252
Slovaquie -17,8219 19,2958 -1,5444 -3,9110 0,2681 -0,2902 0,4029 1,0204
Finlande 0,0298 0,0706 0,4988 0,0112 0,0315 0,0748 0,4810 0,0108
Suède 0,6399 0,2562 0,3024 0,0457 0,7050 0,2822 0,3033 0,0458
Royaume Uni 1,4985 0,9699 -2,8530 -1,8035 -0,6429 -0,4161 1,4597 0,9227
Orientation Graphe
Rép. Tchèque 5,3442 0,6988 -6,7743 -7,3874 -2,7460 -0,3591 3,4809 3,7959
Danemark 2,7006 0,1410 1,9960 1,4710 1,2444 0,0650 0,9197 0,6778
Espagne 0,1050 0,2303 0,2668 -0,6738 0,1248 0,2738 0,3172 -0,8011
France -0,0958 -0,4848 -1,0000 0,0576 -1,6614 -8,4095 -17,3473 1,0000
Lettonie -2,3671 -0,0229 -0,2178 0,0573 5,5417 0,0536 0,5099 -0,1342
Lituanie -0,7615 0,5761 -1,4907 -0,8000 2,5860 -1,9565 5,0625 2,7167
Luxembourg 4,9883 -1,0000 2,9351 0,2555 2,5690 -0,5150 1,5116 0,1316
Pays-Bas 2,9520 -1,3353 -0,5635 -0,2667 -8,9707 4,0578 1,7124 0,8105
Slovaquie -17,8219 19,2958 -41,2631 -104,4917 0,4466 -0,4835 1,0340 2,6183
Finlande 0,0545 0,1293 1,0981 0,0247 0,0554 0,1314 1,1156 0,0251
Suède 1,1725 0,4693 0,6657 0,1006 1,2393 0,4961 0,7036 0,1063
Royaume Uni 2,9139 1,8860 -5,5498 -3,5083 -1,4093 -0,9122 2,6841 1,6968

TABLE 4.5 – Paramètres d’influence dynamiques

la transformation technologique (TECH). Le tableau 4.4 concentre les indicateurs de productivité

de Luenberger-Hicks-Moorsteen (LHM) exponentiels pour chaque période ainsi que la mesure

globale relative aux deux périodes consécutives. Notons que IL et OL sont respectivement les

indicateurs de quantité de Luenberger exponentiels en input et en output. Ils interviennent dans

l’évaluation de la mesure de LHM. Enfin, le tableau 4.5 propose les estimations des paramètres

d’influence dynamiques des scores de performance croisés relatifs à deux périodes consécutives.

En effet, ces derniers sont nécessaires afin d’obtenir les mesures de productivité dynamiques.

4.2.3 Analyse

Tableau 4.2

Nous pouvons constater que le Danemark, la Lettonie, la Lituanie, les Pays-Bas, la Finlande et
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la Suède ont une mesure de productivité global de Luenberger en input positive. Cette dernière

signifie que les pays ont un gain de productivité tel que la quantité de facteurs utilisée a diminué

entre 2008 et 2009, pour la production d’un niveau donné d’outputs. A l’inverse, la République

Tchèque, l’Espagne, le Luxembourg, la Slovaquie et le Royaume-Uni présentent un indicateur

de productivité de Luenberger en output négatif. Ces pays subissent une perte de productivité

puisque le niveau d’inputs nécessaire à la production d’une quantité donnée d’outputs a augmenté

d’une période à l’autre. Enfin, la France a une mesure de productivité en input infinie telle que la

projection des observations ne rencontrent pas les frontières efficientes.

Selon une orientation en output, le Danemark, la France, les Pays-Bas, la Finlande et la Suède

possèdent une mesure de productivité de Luenberger positive. En effet, ces pays présentent un

gain de productivité c’est-à-dire que la quantité produite a augmenté d’une période à l’autre pour

un niveau donné de facteurs. Inversement, la République Tchèque, l’Espagne, la Slovaquie et le

Royaume-Uni ont un indicateur négatif. Ce dernier signifie qu’une perte de productivité intervient

telle que la production d’outputs a baissé pour une quantité fixe d’inputs utilisés. Enfin, la Lettonie,

la Lituanie et le Luxembourg ont une mesure de productivité indéterminée.

Suivant une orientation dans le graphe, le Danemark, la France, la Lettonie, la Lituanie, les Pays-

Bas, la Finlande et la Suède présentent un gain de productivité (mesure positive) tel que ces unités

de production ont réussi à augmenter leur production et à baisser leurs facteurs utilisés de manière

simultanée. En revanche, la République Tchèque, l’Espagne, le Luxembourg, la Slovaquie et le

Royaume-Uni subissent une perte de productivité (mesure négative). De ce fait, les outputs produits

ont diminué tandis que les inputs utilisés ont accru simultanément d’une période à l’autre. Notons

qu’aucun pays ne possède une mesure indéterminée puisque la direction choisie a permis aux

projections d’atteindre les frontière efficientes.

Tableau 4.3

Nous observons que la perte de productivité de la République Tchèque, du Luxembourg et de la

Slovaquie est provoquée par un retard de mutation technologique que ce soit suivant une orientation

en input, en output ou dans le graphe. En effet, on peut voir que ces pays ne présentent aucun

changement d’efficacité d’une période à l’autre, ce qui explique leurs scores de performance nuls,

toutes orientations confondues, durant les périodes 2008 et 2009 (tableau 4.1). Par ailleurs, on
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constate que l’Espagne subit des pertes de productivité provoquées par une baisse de l’efficacité.

Un retard dans les changements technologiques existe également selon l’orientation en input. On

observe alors, que la diminution de l’efficacité explique les scores de performances positives de

l’Espagne en 2008 et en 2009.

Concernant la Finlande et la Suède, nous pouvons noter que ces pays ont des mesures de producti-

vité positives engendrées par un gain d’efficacité, qui pallie un ralentissement de la transformation

technologique (composante négative). Cette dernière justifie leurs scores d’efficacité positifs du-

rant les périodes 2008 et 2009.

La France, la Lituanie et les Pays-Bas quant à eux, possèdent des scores de performance nuls et des

mesures de productivité positives. Ces dernières sont dues à des transformations technologiques

positives.

Le Danemark a un indicateur positif grâce à une hausse de l’efficacité et à un progrès technolo-

gique. Cependant, ses scores de performance sont positives c’est-à-dire que les changements in-

duits dans le processus de production ne sont pas suffisants pour que le pays puisse être pleinement

efficace.

Enfin, le Royaume-Uni subit une perte de productivité engendrée à la fois par une perte d’efficacité

et un ralentissement dans la transformation technologique. La combinaison de ces deux facteurs

conduit à l’inefficacité du pays en 2009 alors qu’il était performant en 2008. Réciproquement, la

Lettonie connaît la situation inverse puisqu’elle présente un gain d’efficacité et une transformation

technologique positive. Ces derniers conduisent le pays à être efficace en 2009 alors qu’elle était

inefficiente en 2008.

Il est nécessaire de remarquer que suite aux infaisabilités intervenant dans les mesures de pro-

ductivité de Luenberger (Chambers et al. (1996b)), Briec et Kerstens (2004) proposent l’indicateur

de productivité de Luenberger-Hicks-Moorsteen basé sur les indicateurs de quantité en input et en

output de Luenberger. Ainsi, nous pouvons observer qu’aucune indétermination n’apparaît dans le

tableau 4.4. En effet, ce dernier présente les indicateurs de productivité LHM exponentiels pério-

diques et global relatifs aux périodes 2008 et 2009.
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Tableau 4.4

Nous notons que la République Tchèque, l’Espagne, la Slovaquie et le Royaume-Uni ont des me-

sures de productivité de LHM exponentielles négatives que ce soit relativement à la période 2008,

2009 ou dans un contexte global. Ainsi, ces pays présentent une perte de productivité telles que la

quantité de facteurs utilisée a augmenté pour la production d’un niveau donné d’outputs, et/ que

la quantité produite a baissé pour un niveau fixé d’inputs. Inversement, le Danemark, la France, la

Lettonie, la Lituanie, les Pays-Bas, la Finlande et la Suède possèdent des indicateurs de producti-

vité positifs par rapport aux périodes 2008 et 2009 puis, dans un cadre global . En effet, ce pays ont

un gain de productivité tel que le niveau de facteurs consommé, pour produire une quantité donnée

d’outputs, s’est accru et/ou le niveau de la production a diminué pour une quantité fixe d’inputs.

Remarquons que le Luxembourg a un gain de productivité relativement à la période 2008 mais

subit une perte de productivité durant l’année 2009 et de manière globale.

Notons que durant la période 2008, les 12 pays européens ont une mesure de quantité de Luenber-

ger en input négative. Cette dernière signifie que ces pays ont vu leur quantité utilisée de facteurs

augmenter Pour la production d’un niveau donné d’outputs. Cependant, le Danemark, la France, la

Lettonie, la Lituanie et les Pays-Bas possèdent des indicateurs de quantité en output positifs c’est-

à-dire que leur quantité produite a haussé pour un même niveau de facteurs. De la même manière,

11 pays européens ont un indicateur de quantité en input négatif pour l’année 2009. En effet, la

Lituanie a une mesure positive. On constate également que le Danemark, la Lituanie, les Pays-Bas,

la Finlande et la Suède ont un indicateur de quantité en output positif durant cette période.

Tableau 4.5

Les mesures de productivité permettent de déduire les paramètres d’influence dynamiques. En

effet, ces derniers interviennent lorsque des scores de performances croisés sont estimés. Dans

notre exemple empirique, nous retrouvons ces paramètres, estimés de manière non-paramétrique,

dans le tableau 4.5. Nous présentons les paramètres ρ2008(2009) et ρ2009(2008) pour chaque input et

output que ce soit selon une orientation en intrant, en extrants ou, dans le graphe. Notons que les

inputs sont composés du prix des SAU 1 et des SAU elles-mêmes. Les outputs sont, quant à eux,

constitués de la production en valeur (millions d’euro) et en volume (milliers de tonne).

1. SAU est l’acronyme désignant les surfaces agricoles utilisées.
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Suivant une orientation en input, nous constatons que le paramètre ρ2008(2009) du prix des SAU est

inférieur à 1 pour l’Espagne, la Lettonie, la Lituanie, la Slovaquie, la Finlande et la Suède. Il est

également en dessous de 1 par rapport à la SAU pour la République Tchèque, le Danemark, l’Es-

pagne, la Lettonie, la Lituanie, le Luxembourg, les Pays-Bas, la Finlande, la Suède et le Royaume-

Uni. Suivant une orientation en output, ce paramètre est inférieur à 1 quant à la production en

valeur de la République Tchèque, de l’Espagne, de la France, des Pays-Bas, de la Slovaquie, de la

Finlande, de la Suède et du Royaume-Uni. Il est en dessous de 1 relativement à la production en

quantité de la République Tchèque, du Danemark, de l’Espagne, de la France, des Pays-Bas, de la

Slovaquie, de la Finlande, de la Suède et du Royaume-Uni. Lorsque l’étude est concentrée dans

le graphe, le paramètre est inférieur à 1 par rapport au prix des SAU pour l’Espagne, la France, la

Lettonie, la Lituanie, la Slovaquie et la Finlande. Il l’est également à l’égard des SAU pour tous

les pays exceptés la Slovaquie et le Royaume-Uni. Hormis le Danemark, le Luxembourg et la Fin-

lande, tous les autres pays ont un paramètre ayant une valeur en-dessous de 1 pour la production

en euro et, seul le Danemark a un paramètre supérieur à 1 concernant la production en tonne.

A présent, nous nous concentrons sur le paramètre ρ2009(2008). Nous observons que suivant une

orientation en intrants, la Lettonie, la Lituanie et le Luxembourg ont un paramètre prenant une va-

leur supérieure à 1 relativement au prix des SAU. Concernant les SAU, seuls les Pays-Bas ont une

grandeur au-dessus de 1. De manière similaire, selon une orientation sur les extrants, la République

Tchèque, la Lituanie et le Royaume-Uni possèdent un paramètre supérieur à 1 par rapport à la pro-

duction en valeur et, seuls la République Tchèque et la Slovaquie sont concernés pour la production

en quantité. Lorsque l’on s’intéresse à une analyse dans le graphe, on note que le Danemark, la

Lettonie, la Lituanie, le Luxembourg et la Suède ont une grandeur au-dessus de 1 selon le prix des

SAU et, seuls les Pays-Bas sont concernés relativement à la SAU. La République Tchèque, la Li-

tuanie, le Luxembourg, les Pays-Bas, la Slovaquie, la Finlande et le Royaume-Uni ont, quant à eux,

un paramètre supérieur à 1 pour la production en euro. Conformément à la production en tonne,

la République Tchèque, la Lituanie, la Slovaquie et le Royaume-Uni ont également une grandeur

au-dessus de 1. Lorsque ce paramètre prend une valeur supérieure à 1 alors, les influences internes

et/ou externes permettent une mutation positive de l’efficacité des unités de production. Remar-

quons que suivant une étude axée sur les outputs et dans le graphe, la France a un paramètre égal

à 1 relativement à la production en quantité. Cette valeur signifie que les facteurs internes et/ou
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externes n’interviennent pas dans l’ajustement de la performance du pays à travers les périodes.

Conclusion

Ce chapitre présente des mesures de productivité exponentielles grâce à la fonction de distance

exponentielle présentée dans le chapitre 2. Nous constatons que celles-ci ont une équivalence ayant

une nature additive puisque les mesures de distance exponentielles sont log-additives. Ainsi, nous

estimons les variations de productivité grâce aux indicateurs de productivité de Luenberger et de

Luenberger-Hicks-Moorsteen tels que les mesures de performances sont fournies par les fonctions

de distance exponentielles. La définition de ces mesures de productivité nous conduit à déduire

une formulation dynamique des mesures d’efficacité exponentielles. Nous observons que dans ce

cas, un nouveau paramètre intervient tel que celui-ci représente les contraintes internes et externes

influençant la performance des entités productives dans le temps.

Ce chapitre introduit quelques extensions théoriques à la mesure de distance présentée dans le

chapitre 2. Cependant, il est possible de réaliser d’autres études qui peuvent amener à de nouveaux

résultats, telles les efficacités d’échelle. En effet, nous verrons dans le chapitre suivant que les

rendements d’échelle peuvent avoir une influence non-négligeable sur la performance d’une unité

de production.
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Chapitre 5

Mesures d’Efficacité et Rendements

d’Echelle Optimaux

Färe et al. (1988) proposent une technologie CES (Constant Elasticity of Substitution) - CET

(Constant Elasticity of Transformation) dans un cadre non-paramétrique selon une approche par

enveloppement de données. Cet ensemble de production se présente comme étant la généralisation

de différentes technologies de production non-paramétriques telle celle de Banker et al. (1984) ou

celle de Banker et Maindiratta (1986). En s’appuyant sur la notion de technologies homogènes de

degré α, dans les travaux de Lau (1978) et de Färe et Mitchell (1993), Boussemart et al. (2009)

proposent de modéliser ce qu’ils nomment les "rendements d’échelle α". Dans un contexte non-

paramétrique, ce concept considère des rendements d’échelle strictement croissants et strictement

décroissants. En effet, ces derniers sont négligés par les modèles non-paramétriques usuels tels

ceux de Charnes et al. (1978), de Banker et al. (1984) ou de Banker et Maindiratta (1986). Les

auteurs introduisent cette notion à travers l’analyse de l’efficacité des firmes, relativement à la

frontière efficiente de l’ensemble de production. De ce fait, plusieurs mesures d’efficacités ont été

appliquées telles les mesures de Debreu (1951)-Farrell (1957), la mesure hyperbolique de Färe et

al. (1985) ou la fonction de distance généralisée de Chavas et Cox (1999). L’étude évalue l’impact

que peuvent avoir les rendements d’échelle sur la performance des entités de production.

Boussemart et al. (2018), grâce au concept de rendements d’échelle α et aux mesures de

Debreu-Farrell, appliquent le principe de l’extrapolation minimale sur un ensemble d’unités de

production. Cette méthode permet de déterminer, de manière non-paramétrique, le meilleur rende-
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ment d’échelle global d’un secteur d’activité ou d’un ensemble. En effet, celui-ci signifie que le

plus grand nombre de firmes est efficiente relativement au rendement d’échelle considéré. Deux

méthodes d’estimation sont proposées par les auteurs, à savoir l’approche par une grille de re-

cherche et la programmation linéaire. La première ne permet pas une évaluation endogène du

rendement d’échelle optimal α tandis que la seconde rend possible cette démarche. Par ailleurs, ils

proposent une endogénéisation complète de la détermination de ce rendement d’échelle optimal

dans le cadre d’une technologie FDH (Free Disposal Hull) à la fois individuelle mais également

globale. Notons que cette dernière est la réunion des ensembles de production individuels.

Ce chapitre est consacré à l’application de la notion de rendements d’échelle optimaux α à

travers des mesures d’efficacité multiplicatives et additives. De ce fait, nous présentons dans une

première section le cadre d’analyse adopté dans ce chapitre. La deuxième section est dévolue à

l’analyse des rendements d’échelle optimaux globaux tandis que la troisième section introduit le

concept de rendements d’échelle optimaux spécifiques. Enfin, la dernière section présente une

illustration empirique des éléments qui auront été introduits précédemment.

1 Contexte d’Analyse

Soient respectivement les vecteurs d’inputs xt = (xt1, · · · , x
t
m) ∈ R

m
+ et d’outputs yt =

(yt1, · · · , y
t
n) ∈ R

n
+ de la période (t), qui permettent de définir la technologie de production

T t(xt, yt) =
{

(xt, yt) ∈ R
m+n
+ : xt peut produire yt

}

, associée à la même période.

Boussemart et al. (2009) présentent le concept de rendement d’échelle α, associé à un ensemble

de production homogène de degré α (Färe et Mitchell (1993)). Ils considèrent des ensembles pro-

ductifs qui tiennent compte de rendements d’échelle strictement croissants ou décroissants. Notons

que T t est homogène de degré α si pour tout λ > 0 et tout (xt, yt) ∈ T t on a (λxt, λαyt) ∈ T t.

Les auteurs établissent une relation directe entre cette notion d’homogénéité et les rendements

d’échelle. De ce fait, pour tout ensemble de production T t satisfaisant T1-T4 alors, un α > 1 est

relatif à un rendement d’échelle strictement croissant tandis que 0 < α < 1 indique un rendement

d’échelle strictement décroissant. Ainsi, toute technologie de production vérifiant une homogé-

néité de degré α, satisfait également un rendement d’échelle de degré α. Pour illustrer cette notion,

Boussemart et al. (2009) reprennent l’ensemble de production CES-CET (Färe et al. (1988)) qui
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est définie de la manière suivante :

T t
α,β =

{

(xt, yt) : xt ≥ Φ−1
α

(

∑

j∈J

θtj · Φα(x
t
j)

)

, yt ≤ Φ−1
β

(

∑

j∈J

θtj · Φβ(y
t
j)

)

,

θt ≥ 0,
∑

j∈J

θtj = 1

}

.

Rappelons que cette définition de Färe et al. (1988) est relative à un ensemble productif corres-

pondant à des rendements d’échelle variables et, cette hypothèse est matérialisée par la contrainte
∑

j∈J θ
t
j = 1. Cependant, celle-ci n’est pas compatible avec le concept de rendement d’échelle α.

Ainsi, Boussemart et al. (2009) relaxent celle-ci.

Dans ces travaux, afin de différencier le rendement d’échelle α et le paramètre intervenant

dans de la technologie CES-CET, nous utiliserons dans ce chapitre le terme "rendement d’échelle

γ" tel que γ =
α

β
. Ainsi, selon les travaux de Boussemart et al. (2009), l’ensemble de production

CES-CET satisfait : un rendement d’échelle strictement croissant si γ > 1, un rendement d’échelle

strictement décroissant si 0 < γ < 1 et un rendement d’échelle constant si γ = 1. Notons que les

auteurs imposent le choix a priori des paramètres α et β.

Rappelons que les mesures de Debreu-Farrell orientées en inputs et en outputs sont respective-

ment :

Et
I

(

xt, yt
)

= inf
λ

{

λt :
(

λtxt, yt
)

∈ T t
}

,

Et
O

(

xt, yt
)

= sup
λ

{

λt :
(

xt, λtyt
)

∈ T t
}

.

Par ailleurs, la fonction de distance directionnelle CES-CET orientée dans le graphe pour un

vecteur de direction gt = (ht, kt) ∈ R
m+n
+ est définie par :

Dt
α,β

(

xt, yt; ht, kt
)

= sup
δ

{

δt :

(

xt
α
− δtht, yt

β
+ δtkt

)

∈ T t

}

.

Lorsque le vecteur de direction est gt = (ht, 0) et gt = (0, kt) alors, nous obtenons les mesures

CES-CET respectivement orientées en input et en output.
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2 Rendements d’Echelle Globaux

Dans cette section, nous nous intéressons aux concepts introduits par Boussemart et al. (2009).

Suivant les travaux de Boussemart et al. (2010) et Boussemart et al. (2018), nous les appliquons

successivement aux mesures de Debreu-Farrell et à la fonction de distance directionnelle CES-

CET. Nous montrons que grâce ces mesures d’efficacité, nous pouvons déduire le rendement

d’échelle global permettant l’efficacité du plus grand nombre.

2.1 Mesures Radiales Non-paramétriques

Cette sous-section est dévouée à l’analyse du meilleur rendement d’échelle global (γ) relatif à

l’ensemble des firmes. Nous mènons une première étude en terme d’efficacité individuelle que ce

soit dans une orientation en input ou en output. Puis, nous évaluons le rendement d’échelle global

γ qui permet au plus grand nombre d’être pleinement performant.

2.1.1 Efficacité en Input

Comme mentionné dans les chapitres précédents, la mesure de Debreu-Farrell en input permet

d’évaluer les réductions potentielles à l’utilisation des facteurs de production pour une quantité

donnée d’outputs. Dans cette sous-section, nous proposons de définir celle-ci dans le cadre d’une

technologie de production CES-CET qui est compatible avec la notion de rendements d’échelle γ.

Proposition 5.1 Pour toute unité de production j ∈ J et tout (xt, yt) ∈ R
m+n
+ avec (α, β) ∈ R

2
++,

la mesure de Debreu-Farrell en input peut être définie selon le modèle CES-CET, de la manière

suivante :

Et
I(x

t, yt) = inf
λ≥0







λt :



λtxt ≥ Φ−1
α





∑

j∈J

θtjΦα(x
t
j)



 , yt ≤ Φ−1
β





∑

j∈J

θtjΦβ(y
t
j)







 ∈ T t
α,β







.

(5.1)

Boussemart et al. (2009) proposent un programme non-paramétrique selon la méthode DEA,
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qui permet d’évaluer la mesure de distance en input. Celui-ci se présente comme suit :

Et
I(x

t, yt) =minλt

s.c. λtxt ≥ Φ−1
α

(

∑

j∈J

θtjΦα(x
t
j)

)

yt ≤ Φ−1
β

(

∑

j∈J

θtjΦβ(y
t
j)

)

λt, θt ≥ 0 .

En posant Λt = (λt)α, nous obtenons le programme linéaire ci-dessous :

[

Et
I(x

t, yt)
]α

=minΛt

s.c. ΛtΦα(x
t) ≥

∑

j∈J

θtjΦα(x
t
j)

Φβ(y
t) ≤

∑

j∈J

θtjΦβ(y
t
j)

Λt, θt ≥ 0 .

Sachant que la notion de rendements d’échelle γ n’exige pas la convexité des ensembles de

production, Boussemart et al. (2009) proposent l’estimation de cette mesure de Debreu-Farrell

orientée en input dans le cadre d’un ensemble de production FDH. Dans ce cas, pour chaque firme

j ∈ J , la technologie de production FDH individuelle est définie par :

Qt
α,β(x

t
j , y

t
j) =

{

(xt, yt) ∈ R
m+n
+ : xt ≥ (θtj)

1/αxtj , y
t ≤ (θtj)

1/βytj, θ
t ≥ 0, j ∈ J

}

. (5.2)

Relativement à Qt
α,β et pour tout j ∈ J , Boussemart et al. (2009) et, Boussemart et al. (2010)

démontrent que la mesure de performance orientée en input de la firme, ayant pour observation
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(xl, yl), est :

E
t(j)
I (xtl , y

t
l) = inf

λ

{

λt :
(

λtxtl , y
t
l

)

∈ Qα,β(x
t
j, y

t
j)
}

(5.3)

=

[

max
r∈[n]

ytl,r
ytj,r

]β/α

×

[

max
i∈[m]

xtj,i
xtl,i

]

. (5.4)

Ainsi, nous obtenons par énumération, les mesures de Debreu-Farrell relative à chaque techno-

logie de production individuelle Qt
α,β(x

t
j , y

t
j). Il est à noter que Et(l)

I (xtl , y
t
l) = 1.

2.1.2 Performance en Output

La mesure d’efficacité de Debreu-Farrell orientée en output permet d’estimer les gains poten-

tiels de production pour un niveau donné de facteurs. En s’inspirant des travaux de Boussemart et

al. (2009), nous présentons cette mesure selon le modèle non-paramétrique CES-CET de Färe et

al. (1988), adapté au concept de rendements d’échelle γ.

Proposition 5.2 Pour toute unité de production j ∈ J et tout (xt, yt) ∈ R
m+n
+ avec (α, β) ∈ R

2
++,

la mesure de distance de Debreu-Farrell en output selon le modèle CES-CET, peut être définie de

la manière suivante :

Et
O(x

t, yt) = sup
λ≥0







λt :



xt ≥ Φ−1
α





∑

j∈J

θtjΦα(x
t
j)



 , λtyt ≤ Φ−1
β





∑

j∈J

θtjΦβ(y
t
j)







 ∈ T t
α,β







.

(5.5)

Le programme d’optimisation non-paramétrique associé à cette définition est le suivant :

Et
O(x

t, yt) =maxλt

s.c. xt ≥ Φ−1
α

(

∑

j∈J

θtjΦα(x
t
j)

)

λtyt ≤ Φ−1
β

(

∑

j∈J

θtjΦβ(y
t
j)

)

λt, θt ≥ 0 .

Par un changement de variable tel que Λt = (λt)β, le programme ci-dessus devient linéaire et,
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caractérisé par :

[

Et
O(x

t, yt)
]α

=maxΛt

s.c. Φα(x
t) ≥

∑

j∈J

θtjΦα(x
t
j)

ΛtΦβ(y
t) ≤

∑

j∈J

θtjΦβ(y
t
j)

Λt, θt ≥ 0 .

Dans le cadre du modèle FDH, nous pouvons également obtenir la mesure d’efficacité des

firmes grâce à la méthode d’énumération individuelle. Pour tout j ∈ J , la mesure de Debreu-

Farrell orientée en output de l’observation (xl, yl) est :

E
t(j)
O (xtl , y

t
l) = sup

λ

{

λt :
(

xtl , λ
tytl
)

∈ Qt
α,β(x

t
j , y

t
j)
}

(5.6)

=

[

min
i∈[m]

xtl,i
xtj,i

]α/β

×

[

min
r∈[n]

ytj,r
ytl,r

]

. (5.7)

L’évaluation de la performance est faite relativement à la technologie de production indivi-

duelle de chaque entité de production j ∈ J . Remarquons que Et(l)
O (xtl , y

t
l ) = 1.

2.1.3 Extrapolation Minimale et Approche Globale

Nous avons vu précédemment que nous pouvons obtenir les mesures d’efficacité radiales de

telle sorte le score de performance est le meilleur possible compte tenu du rendement d’échelle γ.

Suivant Boussemart et al. (2009), nous présentons dans un premier temps, l’estimation de mesures

de Debreu-Farrell dans le cadre d’un modèle FDH global. Suivant les travaux de Boussemart et

al. (2018), nous introduisons, dans un second temps, une approche pour évaluer le rendement

d’échelle γ global relatif à l’ensemble des unités de production.

Pour chaque entité de production j ∈ J , soit la technologie de production individuelle

Qt
α,β(x

t
j , y

t
j). L’ensemble de production FDH global St

α,β est constitué par la réunion de chaque
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technologie individuelle telle que :

St
α,β =

⋃

j∈J

Qt
α,β(x

t
j , y

t
j) . (5.8)

Pour tout ensemble At = {(xt1, y
t
1), · · · , (x

t
J , y

t
J)}, si (0, 0) ∈ At alors, St

α,β satisfait les pro-

priétés T1 − T4 et, vérifie un rendement d’échelle γ = α/β. Par ailleurs, grâce à la définition de

St
α,β, nous pouvons établir que les mesures de Debreu-Farrell orientées en input et en output de

l’observation (xtl , y
t
l) ∈ Sα,β, dans le cadre d’un modèle FDH global, sont respectivement :

E
t(∗)
I (xtl , y

t
l) = min

j∈J

(

[

max
r∈[n]

ytl,r
ytj,r

]β/α

×

[

max
i∈[m]

xtj,i
xtl,i

])

, (5.9)

E
t(∗)
O (xtl , y

t
l) = max

j∈J

(

[

min
i∈[m]

xtl,i
xtj,i

]α/β

×

[

min
r∈[n]

ytj,r
ytl,r

])

. (5.10)

Les mesures présentées ci-dessus permettent de déterminer les meilleurs scores de performance

en input et en output, de chaque unité de production relativement à l’ensemble de production

global. Grâce à ces derniers, nous pouvons déterminer le meilleur rendement d’échelle global γ∗.

Pour ce faire, nous introduisons des indices d’ajustement en input (MI ) et en output (M0) tels que

γ∗I maximise MI et, γ∗O minimise M0. Ces deux indices sont définie de la manière suivante :

M t
I (X, Y ) = max

γ

∏

j∈J

E
t(∗)
I (xtj , y

t
j) ,

M t
O (X, Y ) = min

γ

∏

j∈J

E
t(∗)
O (xtj , y

t
j) .

Deux méthodes d’estimation sont présentées par Boussemart et al. (2018). La première consiste

à appliquer la méthode de grille de recherche de telle sorte que les valeurs des paramètres α et β

sont fixées a priori. Dans ce cas, la détermination du rendement d’échelle γ∗ n’est pas incorporé

dans l’estimation de l’indice. La seconde approche permet d’évaluer de manière endogène le ren-

dement d’échelle γ∗ grâce à la méthode de programmation linéaire. Dans cette sous-section, nous

nous intéressons à cette dernière méthode.
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Sachant que γ = α/β, l’indice d’ajustement en input défini de manière détaillée, est :

M t
I (X, Y ) = max

γ

∏

l∈J

min
j∈J

(

[

max
r∈[n]

ytl,r
ytj,r

]1/γI

×

[

max
i∈[m]

xtj,i
xtl,i

])

. (5.11)

La transformation logarithmique de (5.11) s’écrit :

ln
(

MI (X, Y )
)

= max
γ

∑

l∈J

min
j∈J

(

1

γI
· ln

[

max
r∈[n]

ytl,r
ytj,r

]

+ ln

[

max
i∈[m]

xtj,i
xtl,i

])

. (5.12)

Posons, η = 1/γI , al,j = ln

[

maxr∈[n]
ytl,r
ytj,r

]

et, bl,j = ln

[

maxi∈[m]

xtj,i
xtl,i

]

. De ce fait, l’indice

logarithmique (5.12) devient,

ln
(

MI (X, Y )
)

= max
η

∑

l∈J

min
j∈J

(η · al,j + bl,j) . (5.13)

Le programme linéaire associé à (5.13) est alors,

ln
(

MI (X, Y )
)

= max
η,λ

∑

l∈J

λl

s.c. λl ≤ η · al,j + bl,j ∀l, j ∈ J . (5.14)

Nous pouvons voir que le programme ci-dessus permet une estimation endogène du paramètre

η de telle sorte que le rendement d’échelle γ∗I peut en être déduit. Étant relativement similaire au

cas d’une orientation en input, nous omettons de présenter l’indice d’ajustement en output.

2.2 Mesures Directionnelles Non-paramétriques

Dans cette sous-section, nous présentons la notion de rendements d’échelle γ dans le cadre

de la fonction de distance directionnelle CES-CET, introduite dans le Chapitre 3. De ce fait, nous

proposons d’estimer le meilleur rendement d’échelle global relatif à un ensemble de firmes grâce

à une mesure non-radiale directionnelle.
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2.2.1 Orientation en Input et en Output

Nous avons vu dans le Chapitre 3 que la fonction de distance directionnelle CES-CET (FDD

CES-CET) peut s’inscrire dans un ensemble de production CES-CET suivant une approche non-

paramétrique. En ce sens, la performance de chaque firme est évaluée de manière linéaire. La FDD

CES-CET orientée en input estime la réduction potentielle des facteurs utilisés pour une quantité

donnée de production tandis que la mesure orientée en output évalue l’augmentation éventuelle de

la production pour un niveau défini d’inputs.

Proposition 5.3 Pour toute unité de production j ∈ J et tout (xt, yt) ∈ R
m+n
+ avec (α, β) ∈ R

2
++

tel que gt = (ht, 0) ∈ R
m
+ ou gt = (0, kt) ∈ R

n
+, les fonctions de distance directionnelles CES-CET

orientées en input et en output définies selon le modèle CES-CET, sont respectivement :

Dt
α,β(x

t, yt; ht, 0) = sup
δ

{

δt ≥ 0 : xt
α
− δtht ≥ Φ−1

α

(

∑

j∈J

θtjΦα(x
t
j)

)

,

yt ≤ Φ−1
β

(

∑

j∈J

θtjΦβ(y
t
j)

)

, θt ≥ 0

}

, (5.15)

Dt
α,β(x

t, yt; 0, kt) = sup
δ

{

δt ≥ 0 : xt ≥ Φ−1
α

(

∑

j∈J

θtjΦα(x
t
j)

)

,

yt
β
+ δtkt ≤ Φ−1

β

(

∑

j∈J

θtjΦβ(y
t
j)

)

, θt ≥ 0

}

. (5.16)

Le programme d’optimisation non-paramétrique relatif à chaque mesure présentée ci-dessus,

peut être fourni. Cependant, nous présentons uniquement celui de la mesure en input. En s’inspirant
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des travaux de Boussemart et al. (2009), nous pouvons établir que :

Dt
α,β(x

t, yt; ht, 0) =max δt

s.c. xt
α
− δtht ≥ Φ−1

α

(

∑

j∈J

θtjΦα(x
t
j)

)

yt ≤ Φ−1
β

(

∑

j∈J

θtjΦβ(y
t
j)

)

(5.17)

δt, θt ≥ 0 .

En développant chaque contrainte, nous obtenons :

Dt
α,β(x

t, yt; ht, 0) =max δt

s.c. (xt)α − (δt)α(ht)α ≥
∑

j∈J

θtj(x
t
j)

α

(yt)β ≤
∑

j∈J

θtj(y
t
j)

β

δt, θt ≥ 0 .

En posant ∆t = (δt)α, nous avons le programme linéaire suivant :

[

Dt
α,β(x

t, yt; ht, 0)
]α

=max∆t

s.c. (xt)α −∆t(ht)α ≥
∑

j∈J

θtj(x
t
j)

α

(yt)β ≤
∑

j∈J

θtj(y
t
j)

β (5.18)

δt, θt ≥ 0 .

De même que dans la sous-section précédente et en s’inspirant de Boussemart et al. (2018),

nous proposons de déterminer le meilleur rendement d’échelle γ∗ grâce aux mesures de perfor-

mance directionnelles CES-CET. De ce fait, nous proposons également des indicateurs d’ajuste-

ment en input (M t
I,CES) et en output (M t

O,CES) tels que γ∗I et γ∗O minimisent ces deux grandeurs.
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Ces dernières sont définies par :

M t
I,CES (X, Y ;α, β) = min

γ

∑

j∈J

Dt
α,β(x

t, yt; ht, 0), (5.19)

M t
O,CES (X, Y ;α, β) = min

γ

∑

j∈J

Dt
α,β(x

t, yt; 0, kt). (5.20)

Les rendements d’échelle γ∗I et γ∗O correspondent aux valeurs de α et β qui permettent au plus

grand nombre d’unités de production d’être efficace. De ce fait, plus la valeur des indicateurs est

faible, plus les observations sont proches de la frontière efficiente.

Dans la lignée de Boussemart et al. (2009) et Boussemart et al. (2018), nous pouvons égale-

ment inscrire les FDD CES-CET dans le cadre du modèle FDH. Rappelons que la technologie de

production FDH individuelle de chaque firme j ∈ J est définie par : Qt
α,β(x

t
j , y

t
j) =

{

(xt, yt) ∈

R
m+n
+ : xt ≥ (θtj)

1/αxtj , y
t ≤ (θtj)

1/βytj, θ
t ≥ 0, j ∈ J

}

. Ainsi, nous pouvons fournir les proposi-

tions ci-dessous.

Proposition 5.4 Pour tout (xt, yt) ∈ R
m+n
+ avec (α, β) ∈ R

2
++ tel que gt = (ht, 0) ∈ R

m
+ , la

mesure de performance directionnelle CES-CET axée sur les intrants selon le modèle FDH, de

l’observation (xtl , y
t
l) est :

D
t(j)
α,β (x

t
l , y

t
l ; h

t, 0) = min
i∈[m]





1

hti

(

(xtl,i)
α −

[

max
r∈[n]

(

ytl,r
ytj,r

)β
]

· (xtj,i)
α

)1/α


 . (5.21)

Preuve :

Soit la FDD CES-CET orientée en input définie dans le cadre du modèle FDH tel que

D
t(j)
α,β (x

t
l , y

t
l ; h

t, 0) = sup
δ

{

δt :
(

xtl
α
− δtht, ytl

)

∈ Qt
α,β(x

t
j , y

t
j)
}

. En développant cette définition,

pour tout i ∈ [m] et tout r ∈ [n], nous avons : Dt(j)
α,β (x

t
l , y

t
l ; h

t, 0) = sup
δ

{

δt : xtl,i
α
− δthti ≥

(θtj)
1/αxtj,i, y

t
l,r ≤ (θtj)

1/βytj,r, θ
t ≥ 0

}

. Nous pouvons obtenir l’expression de θtj grâce à la contrainte

concernant les extrants tel que Dt(j)
α,β (x

t
l , y

t
l ; h

t, 0) = sup
δ

{

δt : xtl,i
α
− δthti ≥ (θtj)

1/αxtj,i, θ
t
j ≥

(

ytl,r
ytj,r

)β

, θt ≥ 0

}

. En remplaçant θtj par son expression dans la contrainte relative aux intrants,
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nous obtenons, Dt(j)
α,β (x

t
l , y

t
l ; h

t, 0) = min
i∈[m]

[

1

hti

(

(xtl,i)
α −

[

max
r∈[n]

(

ytl,r
ytj,r

)β
]

· (xtj,i)
α

)1/α]

�.

Proposition 5.5 Pour tout (xt, yt) ∈ R
m+n
+ avec (α, β) ∈ R

2
++ tel que gt = (0, kt) ∈ R

n
+, la

mesure de distance directionnelle CES-CET orientée en output selon le modèle FDH, de toute

unité de production (xtl , y
t
l) est :

D
t(j)
α,β (x

t
l , y

t
l ; h

t, 0) = min
r∈[n]

[

1

ktr

([

min
i∈[m]

(

xtl,i
xtj,i

)α]

· (ytj,r)
β − (ytl,r)

β

)1/β
]

. (5.22)

La preuve de cette proposition étant similaire à celle de la Proposition 5.4. Ainsi, elle est omise.

Les indicateurs d’ajustement relatifs au modèle FDH deviennent alors,

M t
I,CES (X, Y ;α, β) = min

γ

∑

l∈J

min
i∈[m]





1

hti

(

(xtl,i)
α −

[

max
r∈[n]

(

ytl,r
ytj,r

)β
]

· (xtj,i)
α

)1/α


 , (5.23)

M t
O,CES (X, Y ;α, β) = min

γ

∑

l∈J

min
r∈[n]

[

1

kt

([

min
i∈[m]

(

xtl,i
xtj,i

)α]

· (ytj,r)
β − (ytl,r)

β

)1/β
]

. (5.24)

2.2.2 Relations d’Equivalence

Boussemart et al. (2009) établissent des relations d’équivalence entre la fonction de distance

hyperbolique et les mesures de Debreu-Farrell lorsque l’ensemble de production satisfait un rende-

ment d’échelle γ. Ils démontrent qu’un lien existe également entre les mesures de Debreu-Farrell

et la fonction de distance généralisée de Chavas et Cox (1999). Nous démontrons dans cette sous-

section que sous l’hypothèse d’un rendement d’échelle γ, il existe des relations d’équivalence entre

les mesures radiales usuelles et la FDD CES-CET . Par ailleurs, nous montrons que les mesures

directionnelles CES-CET orientées en input et en output sont liées lorsque la technologie de pro-

duction vérifie cette hypothèse.

Rappelons que dans le cadre de la technologie de production CES-CET, les fonctions de dis-
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tance de Shephard orientées en input et en output sont respectivement :

Dt
I(x

t, yt) = sup
λ

{

λt :

(

xt

λt
, yt
)

∈ T t

}

,

Dt
O(x

t, yt) = inf
λ

{

λt :

(

xt,
yt

λt

)

∈ T t

}

.

Notons que les mesures de Debreu-Farrell sont l’inverse des fonctions de distance de Shephard.

Proposition 5.6 Pour tout (xt, yt) ∈ R
m+n
+ avec (α, β) ∈ R

2
++ tel que gt = (xt, 0) ∈ R

m
+ ou

gt = (0, yt) ∈ R
n
+, on a les relations suivantes :

Dt
α,β(x

t, yt; xt, 0) = 1
α
− Et

I(x
t, yt) = 1

α
−

1

Dt
I(x

t, yt)
, (5.25)

Dt
α,β(x

t, yt; 0, yt) = Et
O(x

t, yt)
β
− 1 =

1

Dt
O(x

t, yt)

β
− 1. (5.26)

Preuves :

Equation (5.25) : Supposons que Dt
α,β(x

t, yt; xt, 0) = sup
δ

{

δt :
(

xt
α
− δtxt, yt

)

∈ T t
α,β

}

. Nous

pouvons factoriser
(

xt
α
− δtxt

)

afin d’obtenir
(

1
α
− δt

)

xt. En posant λt =
(

1
α
− δt

)

, nous avons

Dt
α,β(x

t, yt; xt, 0) = 1
α
− inf

λ

{

λt : (λtxt, yt) ∈ T t
α,β

}

. Dans ce cas, Dt
α,β(x

t, yt; xt, 0) = 1
α
−

Et
I(x

t, yt) ≡ 1
α
−

1

Dt
I(x

t, yt)
�.

Equation (5.26) : Admettons que Dt
α,β(x

t, yt; 0, yt) = sup
δ

{

δt :

(

xt, yt
β
+ δtyt

)

∈ T t
α,β

}

. En fac-

torisant

(

yt
β
+ δtyt

)

par yt, nous avons

(

1
β
+ δt

)

yt. De ce fait, si nous posons λt =

(

1
β
+ δt

)

,

nous avons Dt
α,β(x

t, yt; 0, yt) = sup
λ

{

λt : (xt, λtyt) ∈ T t
α,β

} β
− 1. Ainsi, nous obtenons effective-

ment Dt
α,β(x

t, yt; 0, yt) = Et
O(x

t, yt)
β
− 1 ≡

1

Dt
O(x

t, yt)

β
− 1 �.

Cette proposition démontre qu’il est possible de déduire les valeurs des fonctions de distance

directionnelles CES-CET orientées en input et en output grâce aux mesures de Debreu-Farrell ou

de Shephard. Nous pouvons également établir que lorsque l’ensemble de production satisfait un

rendement d’échelle γ, il existe une relation d’équivalence entre les mesures directionnelles CES-

CET orientées en input et en output.
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Proposition 5.7 Pour tout (xt, yt) ∈ R
m+n
+ avec (α, β) ∈ R

2
++ tel que gt = (xt, 0) ∈ R

m
+ ou

gt = (0, yt) ∈ R
n
+, on a :

Dt
α,β(x

t, yt; xt, 0) = 1
α
−

(

Dt
α,β(x

t, yt; 0, yt)
β
+ 1

)−1/γ

, (5.27)

Dt
α,β(x

t, yt; 0, yt) =
(

1
α
− Dt

α,β(x
t, yt; xt, 0)

)−γ β
− 1. (5.28)

Preuves :

Equation (5.27) : Pour tout (xt, yt) ∈ R
m+n
+ , on sait que (xt, Et

O(x
t, yt)·yt) appartient à la frontière

efficiente de l’ensemble de production. Par ailleurs, si la technologie de production est homogène

de degré γ alors, (λxt, λγEt
O(x

t, yt) · yt) appartient également à cette frontière. On peut établir

que l’unité de production (xt
α
− Dt

α,β(x
t, yt; xt, 0)⊙ xt, yt) appartient également à cette dernière.

De ce fait, on peut affirmer que (λxt, λγEt
O(x

t, yt) · yt) = (xt
α
− Dt

α,β(x
t, yt; xt, 0) ⊙ xt, yt) tel

que λ = 1
α
− Dt

α,β(x
t, yt; xt, 0) et λγEt

O(x
t, yt) = 1. En remplaçant λ par son expression dans la

dernière égalité, nous obtenons l’équation (5.27) �.

Equation (5.28) : Pour (Et
I(x

t, yt) · xt, yt) ∈ R
m+n
+ appartenant à la frontière de production effi-

ciente, si l’ensemble de production est homogène de degré γ alors, (λEt
I(x

t, yt) · xt, λγyt) repose

également sur cette frontière. Par ailleurs, on peut statuer que (xt, yt
β
+ Dt

α,β(x
t, yt; 0, yt) ⊙ yt)

appartient à cette dernière. Ainsi, on a (λEt
I(x

t, yt) · xt, λγyt) = (xt, yt
β
+ Dt

α,β(x
t, yt; 0, yt)⊙ yt)

avec λEt
I(x

t, yt) = 1 et λγ = 1
β
+ Dt

α,β(x
t, yt; 0, yt). En remplaçant λ par son expression dans la

première égalité, on obtient (5.28) �.

2.2.3 Orientation dans le Graphe

Nous avons vu précédemment la notion de rendements d’échelle γ dans le cadre des mesures di-

rectionnelles CES-CET orientées en input et en output. Dans cette sous-section, nous inscrivons la

FDD CES-CET orientée dans le graphe, dans ce concept et selon une approche non-paramétrique.

Proposition 5.8 Pour toute unité de production j ∈ J et tout (xt, yt) ∈ R
m+n
+ avec (α, β) ∈ R

2
++

tel que gt = (ht, kt), la fonction de distance directionnelle CES-CET orientée dans le graphe selon
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le modèle CES-CET est définie par :

Dt
α,β(x

t, yt; ht, kt) = sup
δ

{

δt ≥ 0 : xt
α
− δtht ≥ Φ−1

α

(

∑

j∈J

θtjΦα(x
t
j)

)

,

yt
β
+ δtkt ≤ Φ−1

β

(

∑

j∈J

θtjΦβ(y
t)

)

, θt ≥ 0

}

. (5.29)

Le programme associé à cette définition est présenté ci-dessous :

Dt
α,β(x

t, yt; ht, kt) =max δt

s.c. xt
α
− δtht ≥ Φ−1

α

(

∑

j∈J

θtjΦα(x
t
j)

)

yt
β
+ δtkt ≤ Φ−1

β

(

∑

j∈J

θtjΦβ(y
t)

)

(5.30)

δt, θt ≥ 0 .

Grâce au Chapitre 3, nous savons que ce programme d’optimisation ne peut être estimé de

manière non-paramétrique et linéaire que si et seulement si, α = β = s. Cette contrainte signifie

que la technologie de production vérifie un rendement d’échelle constant puisque γ = 1. Dans ce

cas, le programme (5.30) peut devenir linéaire grâce à un changement de variable.

En ce sens, afin de déterminer un rendement d’échelle γ pour tout (α, β) ∈ R
2
++, nous propo-

sons une mesure de distance directionnelle CES-CET mixte orientée dans le graphe. Cette dernière

est définie ci-dessous.

Définition 5.9 Pour tout (xt, yt) ∈ R
m+n
+ et tout (α, β) ∈ R

2
++ tel que gt = (ht, kt) ∈ R

m+n
+ ,

l’application MDt
α,β : Rm+n

+ × R
m+n
+ → R ∪ {∞} définie par :

MDt
α,β(x

t, yt; gt) =



















supδ

{

δt ≥ 0 :
(

Φ−1
α (Φα(x

t)− δtΦα(h
t)) ,Φ−1

β (Φβ(y
t) + δtΦβ(k

t))
)

∈ T t
α,β

}

si
(

Φ−1
α (Φα(x

t)− δtΦα(h
t)) ,Φ−1

β (Φβ(y
t) + δtΦβ(k

t))
)

∩ T t
α,β 6= ∅

∞ sinon

(5.31)

est la fonction de distance directionnelle CES-CET mixte orientée dans le graphe.

Cette mesure peut être inscrite dans le cadre d’un modèle CES-CET. Ce cas est décrite dans la
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proposition ci-dessous.

Proposition 5.10 Pour toute unité de production j ∈ J et tout (xt, yt) ∈ R
m+n
+ avec (α, β) ∈

R
2
++ tel que gt = (ht, kt) ∈ R

m+n
+ , la fonction de distance directionnelle CES-CET mixte orientée

dans le graphe, définie selon le modèle CES-CET est caractérisée par :

MDt
α,β(x

t, yt; gt) = sup
δ

{

δt ≥ 0 : Φ−1
α

(

Φα(x
t)− δtΦα(h

t)
)

≥ Φ−1
α

(

∑

j∈J

θtjΦα(x
t
j)

)

,

Φ−1
β

(

Φβ(y
t) + δtΦβ(k

t)
)

≤ Φ−1
β

(

∑

j∈J

θtjΦβ(y
t
j)

)

, θt ≥ 0

}

. (5.32)

Il est évident que cette optimisation peut être évaluée suivant la méthode de programmation

linéaire. Le programme associé à cette définition est la suivante :

MDt
α,β(x

t, yt; ht, kt) = max δt

s.c. (xt)α − δt(ht)α ≥
∑

j∈J

θtj(x
t
j)

α

(yt)β + δt(kt)β ≤
∑

j∈J

θtj(y
t
j)

β

δt, θt ≥ 0 .

(5.33)

Les mesures de performance obtenues dépendent des valeurs des paramètres α et β. Ainsi, on

peut en déduire la valeur du meilleur rendement d’échelle γ∗, à l’aide d’un indicateur d’ajustement

orienté dans le graphe. Cette mesure d’ajustement est définie de la manière suivante :

M t
CES(X, Y ;α, β) = min

γ

∑

j∈J

MDt
α,β(x

t, yt; ht, kt). (5.34)

Le meilleur rendement d’échelle γ∗ correspond aux valeurs de α et de β qui minimisent la valeur de

(M t
CES). En ce sens, la valeur de ces paramètres permettent au plus grand nombre d’être efficace.

3 Rendements d’Echelle Spécifiques

Dans la première section, nous considérons qu’une modification dans les mêmes proportions

des quantités de facteurs implique un changement homogène de la production d’outputs. Cepen-
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dant, il est possible que chaque input soit augmenté ou réduit différemment et que l’impact sur

chaque produit de tout changement du niveau des intrants, soit différent. Cette section est dévouée

à l’analyse de ce cas. Par ailleurs, nous l’appliquons aux mesures étudiées dans la section précé-

dente.

3.1 Principes et Mesures de Debreu-Farrell

Tout d’abord, nous exposons les principes relatifs aux rendements d’échelle spécifiques, en

l’intégrant dans la logique des rendements d’échelle globaux présentés précédemment. Ensuite,

nous analysons les mesures de Farrell axées sur les inputs et les outputs dans le cadre de cette

nouvelle notion de rendements d’échelle.

3.1.1 Généralités

Dans cette sous-section, nous proposons une définition plus générale de la notion de "techno-

logie homogène de degré γ" 1, évoquée dans la première section. Nous montrons également que

l’ensemble de production CES-CET vérifie cette propriété. Enfin, nous déduisons les rendements

d’échelle spécifiques inhérents à ce concept généralisé.

Définition 5.11 Pour tout (xt, yt) ∈ R
m+n
+ et tout (α, β) ∈ R

m+n
++ , la technologie de production T t

est homogène de degré γ si, quel que soit λ > 0, (xt, yt) ∈ T t implique que (λ1/αxt, λ1/βyt) ∈ T t.

Preuve : On sait qu’un technologie T t est homogène de degré γ si pour tout (xt, yt) ∈ T t et

si quel que soit µ > 0 on a, (µxt, µγyt) ∈ T t. Posons µ = λ1/α. Ainsi, puisque γ = α/β nous

avons, (µxt, µγyt) =
(

λ1/αxt, (λ1/α)α/βyt
)

. Donc, (µxt, µγyt) = (λ1/αxt, λ1/βyt). Par conséquent,

(λ1/αxt, λ1/βyt) ∈ T t
�.

Nous pouvons montrer que l’ensemble de production CES-CET satisfait cette propriété.

Proposition 5.12 Pour tout (xti, y
t
r) ∈ R

m+n
+ et tout (αi, βr)R

m+n
++ avec i ∈ [m] et r ∈ [n], si

(xt, yt) ∈ T t
α,β alors (λ1/αixti, λ

1/βrytr) ∈ T
t
α,β.

1. Nous faisons référence à la notion d’ "homogénéité de degré α" introduite par Lau (1978). Afin d’éviter tout
confusion par rapport aux notations, nous décidons de désigner le concept comme étant l’ "homogénéité de degré γ".
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Cette proposition indique que la technologie de production CES-CET est homogène de degré

γ suivant la nouvelle définition 5.11.

Preuve :

Nous savons que pour toute unité de production j ∈ J tel que les paramètres (αi, βr) ∈ R
m+n
++

soient propres à chaque input i et à chaque output r alors, l’ensemble CES-CET est définie par :

T t
α,β(x

t
i, y

t
r) =

{

(xti, y
t
r) ∈ R

m+n
+ : xti ≥

(

∑

j∈J

θtj(x
t
j,i)

αi

)1/αi

, ytr ≤

(

∑

j∈J

θtj(y
t
j,r)

βr

)1/βr

, θt ≥

0

}

. Ainsi, pour tout λ > 0 on a, T t
α,β(λ

1/αixti, λ
1/βrytr) =

{

(xti, y
t
r) ∈ R

m+n
+ : λ1/αixti ≥

λ1/αi

(

∑

j∈J

θtj(x
t
j,i)

αi

)1/αi

, λ1/βrytr ≤ λ1/βr

(

∑

j∈J

θtj(y
t
j,r)

βr

)1/βr

, θt ≥ 0

}

≡

{

(xti, y
t
r) ∈ R

m+n
+ :

λ1/αixti ≥

(

∑

j∈J

λθtj(x
t
j,i)

αi

)1/αi

, λ1/βrytr ≤

(

∑

j∈J

λθtj(y
t
j,r)

βr

)1/βr

, θt ≥ 0

}

. En posant µt
j =

λθtj , nous avons : T t
α,β(λ

1/αixti, λ
1/βrytr) =

{

(xti, y
t
r) ∈ R

m+n
+ : λ1/αixti ≥

(

∑

j∈J

µt
j(x

t
j,i)

αi

)1/αi

,

λ1/βrytr ≤

(

∑

j∈J

µt
j(y

t
j,r)

βr

)1/βr

, θt ≥ 0

}

�.

Pour tout (αi, βr) ∈ R
m+n
++ , nous pouvons également redéfinir la technologie FDH individuelle

de la manière suivante :

Qt
α,β(x

t
j , y

t
j) =

{

(xti, y
t
r) ∈ R

m+n
+ : xti ≥ (θtj)

1/αixtj,i, y
t
r ≤ (θtj)

1/βrytj,r, θ
t ≥ 0, j ∈ J

}

. (5.35)

La proposition précédente nous permet de voir que les paramètres relatifs aux inputs et aux

outputs sont spécifiques à chaque composante. Ainsi, il existe m paramètres α et n paramètres β.

Ces derniers permettent de définir les rendements d’échelle spécifiques de sorte qu’une modifica-

tion d’une composante du vecteur d’inputs impacte différemment chaque composante du vecteur

d’outputs.

Proposition 5.13 Pour tout (αi, βr) ∈ R
m+n
++ tel que γi,r = αi/βr, l’unité de production satisfait

localement :

— un rendement d’échelle croissant si γi,r > 1,
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— un rendement d’échelle constant si γi,r = 1,

— un rendement d’échelle décroissant si γi,r < 1.

γi,r > 1 signifie qu’une augmentation dans une proportion de la quantité d’input i contribue

à une augmentation plus que proportionnelle de la production d’output r. Pareillement, γi,r = 1

indique qu’une modification du niveau de facteur i utilisé, induit un changement proportionnel du

niveau de l’output r. Enfin, lorsque γi,r < 1 alors, une variation du niveau de l’input i provoque

une modification moins que proportionnelle de la production r.

3.1.2 Mesure de Debreu-Farrell en Input

Cette sous-section nous permet d’appliquer la notion de rendements d’échelle spécifiques à

la mesure de Debreu-Farrell en input. Nous présentons dans un premier temps, cette fonction de

distance dans un ensemble de production CES-CET puis, dans un second temps, dans le cadre

d’une technologie FDH.

Proposition 5.14 Pour toute unité de production j ∈ J et tout (xti, y
t
r) ∈ R

m+n
+ avec (αi, βr) ∈

R
m+n
++ , la mesure de Debreu-Farrell en input peut être définie selon le modèle CES-CET, de la

manière suivante :

Et
I(x

t
i, y

t
r) = inf

λ≥0







λt : λtxti ≥ Φ−1
αi





∑

j∈J

θtjΦαi
(xtj,i)



 , ytr ≤ Φ−1
βr





∑

j∈J

θtjΦβr
(ytj,r)



 , θt ≥ 0







.

(5.36)

Cette définition permet d’établir le programme d’optimisation suivant :

Et
I(x

t, yt) =minλt

s.c. Φαi

(

λtxti
)

≥
∑

j∈J

θtjΦαi
(xtj,i)

Φβr
(ytr) ≤

∑

j∈J

θtjΦβr
(ytj,r)

λt, θt ≥ 0 .

Ce dernier devient linéaire lorsque α1 = · · · = αm = α. Posons Λt = (λt)α. Ainsi, nous
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avons :

[

Et
I(x

t, yt)
]α

=minΛt

s.c. Λt(xti)
α ≥

∑

j∈J

θtj(x
t
j,i)

α

(ytr)
βr ≤

∑

j∈J

θtj(y
t
j,r)

βr

Λt, θt ≥ 0 .

Dans ce cas, le rendement d’échelle spécifique γi,r devient γr = α/βr. Ce cas signifie que

chaque composante du vecteur d’inputs est modifiée de manière similaire mais chaque production

r est impacté différemment.

Il est également possible d’évaluer cette mesure dans le cadre d’un modèle FDH.

Proposition 5.15 Pour toute unité de production j = (1, · · · , J) ∈ J et tout (xtj,i, y
t
j,r) ∈ R

m+n
+

avec (αi, βr) ∈ R
m+n
++ , la mesure de distance de Debreu-Farrell en input selon le modèle FDH, de

l’observation (xtl , y
t
l ) avec l ∈ J relativement à la technologie j s’écrit comme suit :

E
t(j)
I (xtl,i, y

t
l,r) = inf

λ≥0

{

λt : λtxtl,i ≥ (θtj)
1/αixtj,i, y

t
l,r ≤ (θtj)

1/βrytj,r, θ
t ≥ 0, j ∈ J

}

. (5.37)

Cette proposition permet de déduire l’expression énumérative de la mesure définie ci-dessus.

Lemme 5.16 Pour tout (αi, βr) ∈ R
m+n
++ , la mesure de Debreu-Farrell axée sur les facteurs de

l’observation (xtl , y
t
l ), relativement à l’ensemble de production global St

α,β, est la suivante :

Et
I(x

t
l,i, y

t
l,r) = min

j∈J

[

max
i∈[m]

(

xtj,i
xtl,i

)

×max
r∈[n]

(

ytl,r
ytj,r

)βr/αi
]

. (5.38)

Preuve : Soit Et(j)
I (xtl,i, y

t
l,r) = infλ≥0

{

λt : λtxtl,i ≥ (θtj)
1/αixtj,i, y

t
l,r ≤ (θtj)

1/βrytj,r, θ
t ≥ 0, j ∈

J
}

. Nous pouvons déduire l’expression de la pondération θtj par le biais de la contrainte rela-

tive aux extrants tel que, Et(j)
I (xtl,i, y

t
l,r) = inf

λ≥0

{

λt : λtxtl,i ≥ (θtj)
1/αixtj,i, θ

t
j ≥

(

ytl,r
yj,r

)βr

, θt ≥
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0, j ∈ J
}

. En remplaçant θtj par son expression, nous obtenons Et(j)
I (xtl,i, y

t
l,r) = max

i∈[m]

(

xtj,i
xtl,i

)

×max
r∈[n]

(

ytl,r
ytj,r

)βr/αi

. Sachant que St
α,β =

⋃

j∈J

Qt
α,β(x

t
j , y

t
j) alors, Et

I(x
t
l,i, y

t
l,r) = inf

λ≥0

{

λt : (λtxtl , y
t
l )

∈ St
α,β

}

≡ min
j∈J

E
t(j)
I (xtl,i, y

t
l,r). Ainsi, Et

I(x
t
l,i, y

t
l,r) = min

j∈J

[

max
i∈[m]

(

xtj,i
xtl,i

)

×max
r∈[n]

(

ytl,r
ytj,r

)βr/αi
]

�.

Dans ce cas, le résultat obtenu permet de déduire le meilleur rendement d’échelle pour chaque

observation avec γ∗i,r = αi/βr.

3.1.3 Mesure de Debreu-Farrell en Output

La mesure de Debreu-Farrell axée sur les extrants peut être estimée suivant la notion de ren-

dements d’échelle spécifiques. Pour ce faire, nous présentons cette fonction dans le cadre d’un

modèle CES-CET plus général puis, selon un ensemble de production FDH.

Proposition 5.17 Pour toute unité de production j ∈ J et tout (xti, y
t
r) ∈ R

m+n
+ avec (αi, βr) ∈

R
m+n
++ , la mesure de Debreu-Farrell en output selon le modèle CES-CET, peut être définie de la

manière suivante :

Et
O(x

t
i, y

t
r) = sup

λ≥0







λt : xti ≥ Φ−1
αi





∑

j∈J

θtjΦαi
(xtj,i)



 , λtytr ≤ Φ−1
βr





∑

j∈J

θtjΦβr
(ytj,r)



 , θt ≥ 0







.

(5.39)

Nous pouvons associer à cette définition le programme d’optimisation suivant :

Et
O(x

t, yt) =max λt

s.c. Φαi

(

xti
)

≥
∑

j∈J

θtjΦαi
(xtj,i)

Φβr
(λtytr) ≤

∑

j∈J

θtjΦβr
(ytj,r)

λt, θt ≥ 0 .

Il est évident que le programme ci-dessus ne devient linéaire que si et seulement si, β1 = · · · =
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βn = β. En posant Λt = (λt)β, nous obtenons le programme linéaire ci-dessous :

[

Et
O(x

t, yt)
]β

=maxΛt

s.c. (xti)
αi ≥

∑

j∈J

θtj(x
t
j,i)

αi

Λt(ytr)
β ≤

∑

j∈J

θtj(y
t
j,r)

β

Λt, θt ≥ 0 .

Cette situation signifie que les paramètres influençant les intrants sont spécifiques à chaque

composante du vecteur d’inputs tandis que le paramètre β est unique pour toutes les composantes

du vecteur d’outputs. Ainsi, le rendement d’échelle spécifique γi,r devient γi = αi/β.

Lorsque βr ∈ R
n
++, l’estimation non-paramétrique de la mesure en output selon un modèle

FDH, est possible. Rappelons que la technologie FDH individuelle est Qt
α,β(x

t
j , y

t
j) et, que l’en-

semble de production FDH global est St
α,β.

Proposition 5.18 Pour toute unité de production j = (1, · · · , J) ∈ J et tout (xtj,i, y
t
j,r) ∈ R

m+n
+

avec (αi, βr) ∈ R
m+n
++ , la mesure de Debreu-Farrell en output selon le modèle FDH, de l’observa-

tion (xtl , y
t
l) avec l ∈ J relativement à la technologie j, s’écrit comme suit :

E
t(j)
O (xtl,i, y

t
l,r) = sup

λ≥0

{

λt : xtl,i ≥ (θtj)
1/αixtj,i, λ

tytl,r ≤ (θtj)
1/βrytj,r, θ

t ≥ 0, j ∈ J
}

. (5.40)

L’expression énumérative de la mesure de Debreu-Farrell en output relativement à la technolo-

gie de production FDH globale est proposée ci-dessus.

Lemme 5.19 Pour tout (αi, βr) ∈ R
m+n
++ , la mesure de Debreu-Farrell axée sur les extrants de

l’observation (xtl , y
t
l ) relativement l’ensemble de production St

α,β, est la suivante :

Et
O(x

t
l,i, y

t
l,r) = max

j∈J

[

min
i∈[m]

(

xtl,i
xtj,i

)αi/βr

×min
r∈[n]

(

ytj,r
ytl,r

)]

. (5.41)

Preuve : Soit Et(j)
O (xtl,i, y

t
l,r) = supλ≥0

{

λt : xtl,i ≥ (θtj)
1/αixtj,i, λ

tytl,r ≤ (θtj)
1/βrytj,r, θ

t ≥ 0, j ∈
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J
}

. Nous pouvons déduire l’expression de la pondération θtj grâce à la contrainte relative aux

extrants tel que, Et(j)
O (xtl,i, y

t
l,r) = sup

λ≥0

{

λt : θtj ≤

(

xtl,i
xtj,i

)αi

, λtyl,r ≤ θtjy
t
j,r, θ

t ≥ 0, j ∈ J
}

.

En remplaçant θtj par son expression, nous obtenons Et(j)
O (xtl,i, y

t
l,r) = mini∈[m]

(

xtl,i
xtj,i

)αi/βr

×

minr∈[n]

(

ytj,r
ytl,r

)

. Pour St
α,β =

⋃

j∈J

Qt
α,β(x

t
j , y

t
j) on a, Et

O(x
t
l,i, y

t
l,r) = sup

λ≥0

{

λt : (xtl , λ
tytl ) ∈

St
α,β

}

≡ max
j∈J

E
t(j)
O (xtl,i, y

t
l,r). Ainsi, Et

O(x
t
l,i, y

t
l,r) = max

j∈J

[

min
i∈[m]

(

xtl,i
xtj,i

)αi/βr

×min
r∈[n]

(

ytj,r
ytl,r

)]

�.

De ce fait, dans le cadre d’un ensemble de production FDH global, on peut obtenir les rende-

ments d’échelle spécifiques γi,r = αi/βr.

3.2 Mesures CES-CET

Cette sous-section nous permet de présenter les mesures directionnelles CES-CET dans le

contexte des rendements d’échelle spécifiques. Cette notion permet d’évaluer l’influence de la

modification de chaque facteur sur chaque produit, individuellement. En effet, nous supposons

qu’il est possible d’augmenter ou de diminuer les inputs de manière non-homogène selon les cir-

constances. Par ailleurs, nous admettons que la contribution de chaque intrant à la production de

chaque extrant n’est pas homogène. De ce fait, nous présentons chaque orientation de la fonction

de distance directionnelle suivant cette hypothèse de rendements d’échelle spécifiques.

3.2.1 Orientation en Input

Nous montrons que le principe de rendements d’échelle spécifiques peut être appliqué dans le

cadre d’une mesure directionnelle CES-CET axée sur les facteurs. Pour ce faire, nous la présentons

dans un ensemble de production CES-CET tel que nous pouvons définir un programme linéaire

d’optimisation. Puis, nous la définissons selon un modèle FDH de telle sorte que l’on peut faire

une estimation par énumération de la mesure.

Proposition 5.20 Pour toute unité de production j ∈ J et tout (xti, y
t
r) ∈ R

m+n
+ avec (αi, βr) ∈

R
m+n
++ et gt = (hti, 0) ∈ R

m
+ , la fonction de distance directionnelle CES-CET orientée en input
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selon le modèle CES-CET, est définie de la manière suivante :

Dt
αi,βr

(xti, y
t
r; h

t
i, 0) = sup

δ

{

δt ≥ 0 : xti
αi

− δthti ≥ Φ−1
αi

(

∑

j∈J

θtjΦαi
(xtj,i)

)

,

ytr ≤ Φ−1
βr

(

∑

j∈J

θtjΦβr
(ytj,r)

)

, θt ≥ 0

}

. (5.42)

Nous pouvons associer à cette définition non-paramétrique de la fonction de distance CES-

CET, un programme d’optimisation. Ce dernier se présente comme suit :

Dt
αi,βr

(xt, yt; ht, 0) =max δt

s.c. (xti)
αi − (δt)αi(hti)

αi ≥
∑

j∈J

θtj(x
t
j,i)

αi

(ytr)
βr ≤

∑

j∈J

θtj(y
t
j,r)

βr

δt, θt ≥ 0 .

Il est évident que le programme ci-dessus est non-linéaire puisque le paramètre α peut être

différent pour chaque intrant. De ce fait, cette optimisation n’est linéaire que si et seulement si,

α1 = · · · = αm = α. Dans ce cas, en posant ∆t = (δt)α, nous pouvons obtenir le programme

linéaire suivant :

[

Dt
αi,βr

(xt, yt; ht, 0)
]α

=max∆t

s.c. (xti)
α −∆t(hti)

α ≥
∑

j∈J

θtj(x
t
j,i)

α

(yt)βr ≤
∑

j∈J

θtj(y
t
j,r)

βr

δt, θt ≥ 0 .

Dans ce contexte, le rendement d’échelle spécifique se présente comme suit : γr = α/βr. En

effet, cette expression signifie que les inputs sont modifiés de manière homogène tandis que l’in-

fluence de chaque facteur sur chaque extrant est différent.
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Nous pouvons également exprimer la mesure CES-CET orientée en input dans le cadre d’un

modèle FDH. Dans ce cas, il est possible de déduire l’expression énumérative de la fonction.

Proposition 5.21 Pour toute unité de production j ∈ J et tout (xtj,i, y
t
j,r) ∈ R

m+n
+ avec (αi, βr) ∈

R
m+n
++ et gt = (hti, 0) ∈ R

m
+ , la fonction de distance directionnelle CES-CET axée sur les facteurs

selon le modèle FDH, de l’observation (xtl , y
t
l) relativement à la technologie j ∈ J , est définie de

la manière suivante :

D
t(j)
αi,βr

(xtl,i, y
t
l,r; h

t
i, 0) = sup

δ

{

δt ≥ 0 : xtl,i
αi

− δthti ≥ (θtj)
1/αixtj,i, y

t
l,r ≤ (θtj)

1/βrytj,r, θ
t ≥ 0

}

.

(5.43)

La solution par énumération de cette mesure est présentée dans la proposition ci-dessous.

Lemme 5.22 Pour tout (xtj,i, y
t
j,r) ∈ R

m+n
+ et tout (αi, βr) ∈ R

m+n
++ avec gt = (hti, 0) ∈ R

m
+ , la

mesure directionnelle CES-CET axée sur les intrants pour l’observation (xtl , y
t
l), relativement à

l’ensemble de production St
α,β, est la suivante :

Dt
αi,βr

(xtl,i, y
t
l,r; h

t
i, 0) = max

j∈J



min
i∈[m]

1

hti

[

(xtl,i)
αi −

(

max
r∈[n]

(

ytl,r
ytj,r

)βr
)

(xtj,r)
αi

]1/βi



 . (5.44)

Preuve : Soit Dt(j)
αi,βr

(xti, y
t
r; h

t
i, 0) = supδ

{

δt ≥ 0 : xti
αi

− δthti ≥ (θtj)
1/αixtj,i, y

t
r ≤ (θtj)

1/βrytj,r,

θt ≥ 0
}

. La contrainte relative aux outputs permet de déduire l’expression de la pondération θtj

tel que Dt(j)
αi,βr

(xti, y
t
r; h

t
i, 0) = sup

δ

{

δt ≥ 0 : xti
αi

− δthti ≥ (θtj)
1/αixtj,i, θ

t
j ≥

(

ytr
ytj,r

)βr

, θt ≥

0
}

. En remplaçant θtj par son expression dans le contrainte relative aux inputs, nous obtenons :

D
t(j)
αi,βr

(xti, y
t
r; h

t
i, 0) = mini∈[m]

1

hti

[

(xtl,i)
αi −

(

maxr∈[n]

(

ytl,r
ytj,r

)βr
)

(xtj,r)
αi

]1/βi

. Comme St
α,β =

⋃

j∈J

Qt
α,β(x

t
j , y

t
j) alors, nous avons Dt

αi,βr
(xti, y

t
r; h

t
i, 0) = max

j∈J
D

t(j)
αi,βr

(xti, y
t
r; h

t
i, 0). Donc,

Dt(xtl,i, y
t
l,r; h

t
i, 0) = maxj∈J



mini∈[m]
1

hti

[

(xtl,i)
αi −

(

maxr∈[n]

(

ytl,r
ytj,r

)βr
)

(xtj,r)
αi

]1/βi



 �.

Dans ce cas, nous avons bien une estimation globale des rendements d’échelle spécifiques avec

γi,r = αi/βr.
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3.2.2 Orientation en Output

Nous présentons la mesure CES-CET orientée en output dans le contexte des rendements

d’échelle spécifiques. Nous la définissons successivement dans le cadre plus général du modèle

CES-CET puis suivant un ensemble de production FDH.

Proposition 5.23 Pour toute unité de production j ∈ J et tout (xti, y
t
r) ∈ R

m+n
+ avec (αi, βr) ∈

R
m+n
++ et gt = (0, ktr) ∈ R

n
+ , la fonction de distance directionnelle CES-CET axée sur les extrants

selon le modèle CES-CET, est définie de la manière suivante :

Dt
αi,βr

(xti, y
t
r; 0, k

t
r) = sup

δ

{

δt ≥ 0 : xti ≥ Φ−1
αi

(

∑

j∈J

θtjΦαi
(xtj,i)

)

,

ytr
βr

+ δtktr ≤ Φ−1
βr

(

∑

j∈J

θtjΦβr
(ytj,r)

)

, θt ≥ 0

}

. (5.45)

Le programme d’optimisation associé à cette définition est la suivante :

Dt
αi,βr

(xt, yt; 0, kt) =max δt

s.c. (xti)
αi ≥

∑

j∈J

θtj(x
t
j,i)

αi

(ytr)
βr + (δt)βr(ktr)

βr ≤
∑

j∈J

θtj(y
t
j,r)

βr

δt, θt ≥ 0 .

Cette optimisation devient linéaire si et seulement si, β1 = · · · = βn = β tel que nous obte-

nons :

[

Dt
αi,βr

(xt, yt; 0, kt)
]β

=max∆t

s.c. (xti)
αi ≥

∑

j∈J

θtj(x
t
j,i)

αi

(ytr)
β +∆t(ktr)

β ≤
∑

j∈J

θtj(y
t
j,r)

β

δt, θt ≥ 0 .
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Ainsi, les rendements d’échelle spécifiques deviennent γi = αi/β. Cette expression signifie que

chaque facteur de production est modifié différemment tandis que leur impact sur chaque extrant

est homogène.

Proposition 5.24 Pour toute unité de production j ∈ J et tout (xtj,i, y
t
j,r) ∈ R

m+n
+ avec (αi, βr) ∈

R
m+n
++ et gt = (0, ktr) ∈ R

n
+ , la fonction de distance directionnelle CES-CET orientée en output

selon le modèle FDH, de l’observation (xtl , y
t
l) relativement à la technologie j ∈ J , est définie de

la manière suivante :

D
t(j)
αi,βr

(xtl,i, y
t
l,r; 0, k

t
r) = sup

δ

{

δt ≥ 0 : xtl,i ≥ (θtj)
1/αixtj,i, y

t
l,r

βr

+ δtktr ≤ (θtj)
1/βrytj,r, θ

t ≥ 0

}

.

(5.46)

Cette définition permet d’obtenir l’expression énumérative de la mesure.

Lemme 5.25 Pour tout (xtj,i, y
t
j,r) ∈ R

m+n
+ et tout (αi, βr) ∈ R

m+n
++ avec gt = (0, ktr) ∈ R

n
+, la

mesure CES-CET axée sur les extrants de l’observation (xtl , y
t
l), relativement à chaque l’ensemble

de production FDH globale St
α,β, est la suivante :

Dtαi, βr(x
t
l,i, y

t
l,r; 0, k

t
r) = max

j∈J

(

min
r∈[n]

1

ktr

[(

min
i∈[m]

(

xtl,i
xtj,i

)αi)

(ytj,r)
βr − (ytl,r)

βr

]1/βr
)

. (5.47)

Preuve : Soit Dt(j)
αi,βr

(xtl,i, y
t
l,r; 0, k

t
r) = supδ

{

δt ≥ 0 : xtl,i ≥ (θtj)
1/αixtj,i, ytl,r

βr

+ δtktr ≤

(θtj)
1/βrytj,r, θ

t ≥ 0

}

. L’expression de la pondération θtj peut être déduite de la contrainte concer-

nant les intrants. De ce fait, nous avons : Dt(j)
αi,βr

(xtl,i, y
t
l,r; 0, k

t
r) = supδ

{

δt ≥ 0 : θtj ≤

(

xtl,i
xtj,i

)αi

,

ytl,r
βr

+ δtktr ≤ (θtj)
1/βrytj,r, θ

t ≥ 0

}

. En remplaçant θtj par son expression, nous obtenons :

D
t(j)
αi,βr

(xtl,i, y
t
l,r; 0, k

t
r) = minr∈[n]

1

ktr

[(

min
i∈[m]

(

xtl,i
xtj,i

)αi)

(ytj,r)
βr − (ytl,r)

βr

]1/βr

. Puisque

Dt
αi,βr

(xtl,i, y
t
l,r; 0, k

t
r) = max

j∈J
D

t(j)
αi,βr

(xtl,i, y
t
l,r; 0, k

t
r) alors, nous pouvons exprimer la fonction comme

suit : Dt(xtl,i, y
t
l,r; 0, k

t
r) = max

j∈J

(

min
r∈[n]

1

ktr

[(

min
i∈[m]

(

xtl,i
xtj,i

)αi
)

(ytj,r)
βr − (ytl,r)

βr

]1/βr
)

�.
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Par cette méthode d’estimation énumérative, nous avons les rendements d’échelle spécifiques

γi,r = αi/βr.

3.2.3 Orientation dans le Graphe

A présent, nous introduisons la fonction de distance directionnelle CES-CET orientée dans le

graphe dans le contexte des rendements d’échelle spécifiques. Pour ce faire, nous la définissons

successivement dans le cadre du modèle CES-CET puis selon le modèle FDH.

Proposition 5.26 Pour toute unité de production j ∈ J et tout (xti, y
t
r) ∈ R

m+n
+ avec (αi, βr) ∈

R
m+n
++ avec gt = (hti, k

t
r) ∈ R

m+n
+ , la fonction de distance directionnelle CES-CET orientée dans

le graphe selon le modèle CES-CET, est définie de la manière suivante :

Dt
αi,βr

(xti, y
t
r; h

t, ktr) = sup
δ

{

δt ≥ 0 : xti
αi

− δthti ≥ Φ−1
αi

(

∑

j∈J

θtjΦαi
(xtj,i)

)

,

ytr
βr

+ δtktr ≤ Φ−1
βr

(

∑

j∈J

θtjΦβr
(ytj,r)

)

, θt ≥ 0

}

. (5.48)

Nous pouvons associer un programme d’optimisation à la proposition ci-dessus. Il se présente

comme suit :

Dt
αi,βi

(xt, yt; 0, kt) =max δt

s.c. (xti)
αi − (δt)αi(hti)

αi ≥
∑

j∈J

θtj(x
t
j,i)

αi

(ytr)
βr + (δt)βr(ktr)

βr ≤
∑

j∈J

θtj(y
t
j,r)

βr

δt, θt ≥ 0 .

Il est évident que ce programme n’est linéaire que si et seulement si, α1 = · · · = αm = α et,

si et seulement si, β1 = · · · = βn = β avec α = β. Dans ce cas, nous obtenons un rendement

d’échelle global tel que γ = α/β. Afin d’obtenir de manière non-paramétrique les rendements

d’échelle spécifiques, nous proposons une analyse grâce à la fonction de distance directionnelle

CES-CET mixte.
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Proposition 5.27 Pour toute unité de production j ∈ J et tout (xti, y
t
r) ∈ R

m+n
+ avec (αi, βr) ∈

R
m+n
++ et gt = (hti, k

t
r) ∈ R

m+n
+ , la fonction de distance directionnelle CES-CET mixte orientée

dans le graphe selon le modèle CES-CET, est définie de la manière suivante :

Dt
αi,βr

(xti, y
t
r; h

t, ktr) = sup
δ

{

δt ≥ 0 : Φ−1
αi

(

Φαi
(xti)− δ

tΦαi
(hti)

)

≥ Φ−1
αi

(

∑

j∈J

θtjΦαi
(xtj,i)

)

,

Φ−1
βr

(

Φβr
(ytr) + δtΦβr

(ktr)
)

≤ Φ−1
βr

(

∑

j∈J

θtjΦβr
(ytj,r)

)

, θt ≥ 0

}

. (5.49)

Dans ce cas, le programme d’optimisation associé à cette mesure est linéaire et se caractérise

de la manière suivante :

Dt
αi,βr

(xt, yt; 0, kt) =max δt

s.c. (xti)
αi − δt(hti)

αi ≥
∑

j∈J

θtj(x
t
j,i)

αi

(ytr)
βr + δt(ktr)

βr ≤
∑

j∈J

θtj(y
t
j,r)

βr

δt, θt ≥ 0 .

Grâce à cette estimation linéaire non-paramétrique, nous pouvons déduire les rendements

d’échelle spécifiques, à savoir γi,r = αi/βr.

Proposition 5.28 Pour toute unité de production j ∈ J et tout (xtj,i, y
t
j,r) ∈ R

m+n
+ avec (αi, βr) ∈

R
m+n
++ et gt = (hti, k

t
r) ∈ R

m+n
+ , la fonction de distance directionnelle CES-CET mixte selon le

modèle FDH, de l’observation (xtl , y
t
l) relativement à la technologie j ∈ J , est définie par :

D
t(j)
αi,βr

(xtl,i, y
t
l,r; h

t
i, k

t
r) = sup

δ

{

δt ≥ 0 : (xtl,i)
αi − δt(hti)

αi ≥ θtj(x
t
j,i)

αi ,

(ytl,r)
βr + δt(ktr)

βr ≤ θtj(y
t
j,r)

βr , θt ≥ 0

}

. (5.50)

Cette formulation peut être estimée grâce à la méthode de programmation linéaire. Cependant,

contrairement aux mesures directionnelles CES-CET orientées en input et en output, nous ne pou-

vons pas donner une expression énumérative de la fonction mixte orientée dans le graphe. Néan-
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moins, le cadre d’analyse FDH permet de déduire de manière non-paramétrique les rendements

d’échelle spécifiques tels que γi,r = αi/βr.

4 Illustration Empirique

Dans cette section, nous donnons un exemple numérique relatif aux notions de rendements

d’échelle γ, définies dans les sections précédentes. Nous nous intéressons dans un premier temps,

aux rendements d’échelle globaux. Dans un second temps, nous nous concentrons sur les ren-

dements d’échelle spécifiques. Remarquons que notre analyse se base sur la mesure de distance

directionnelle CES-CET.

4.1 Rendements d’Echelle Globaux

Tout d’abord, nous introduisons le cadre d’analyse de notre illustration empirique. Puis, nous

présentons les résultats. Enfin, nous donnons une interprétation de ces derniers.

4.1.1 Cadre d’Etude

Dans cette section, nous utilisons les données agricoles de 12 pays européens, durant la période

2008. Ces données ont également été utilisées dans les chapitres 3 et 4.

Rappelons que la fonction de distance directionnelle CES-CET orientée dans le graphe est

définie de la manière suivante :

Dt
α,β

(

xt, yt; ht, kt
)

= sup
δ

{

δt :

(

xt
α
− δtht, yt

β
+ δtkt

)

∈ T t
α,β

}

.

Lorsque gt = (ht, 0) (respectivement gt = (0, kt)) alors, cette fonction est axée sur les intrants

(respectivement sur les extrants). Nous évaluons ces mesures dans le cadre d’une technologie de

production CES-CET tel que la contrainte sur les rendements d’échelle
∑

j∈J θ
t = 1, est relaxée.

En effet, Boussemart et al. (2009) ont démontré que cette contrainte est incompatible avec la notion

de rendements d’échelle γ que nous étudions dans ce chapitre. Ainsi, selon l’approche DEA, nous
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pouvons caractériser la fonction ci-dessus, comme suit :

Dt
α,β

(

xt, yt; ht, kt
)

= sup
δ







δt : xt
α
− δtht ≥

(

∑

j∈J

θtj(x
t
j)

α

)1/α

,

yt
β
+ δtkt ≤

(

∑

j∈J

θtj(y
t
j)

β

)1/β

, θt ≥ 0







.

Remarquons que la mesure dans le graphe ne peut être évaluée de manière non-paramétrique

que si et seulement si, α = β. De ce fait, lorsque α 6= β, nous proposons d’estimer la fonction de

distance CES-CET mixte ci-après :

MDt
α,β

(

xt, yt; ht, kt
)

= sup
δ

{

δt : (xt)α − δt(ht)α ≥
∑

j∈J

θtj(x
t
j)

α,

(yt)β + δt(kt)β ≤
∑

j∈J

θtj(y
t
j)

β, θt ≥ 0

}

.

Afin de mener à bien notre analyse, nous faisons une comparaison entre les mesures de perfor-

mance axées sur les intrants, sur les extrants et dans le graphe. Par ailleurs, afin de déterminer le

meilleur rendement d’échelle γ, nous évaluons les indicateurs d’ajustement suivants :

MI,CES(X, Y ;α, β) = min
γ

∑

j∈J

Dt
α,β(x

t, yt; ht, 0),

MO,CES(X, Y ;α, β) = min
γ

∑

j∈J

Dt
α,β(x

t, yt; 0, kt),

MCES(X, Y ;α, β) = min
γ

∑

j∈J

Dt
α,β(x

t, yt; ht, kt).

Nous utilisons la méthode de grille de recherche afin de déterminer le meilleur rendement

d’échelle γ∗.

Dans notre analyse, nous choisissons successivement les vecteurs de direction gt = (1, 0),

gt = (0, 1) et gt = (1, 1). De plus, les paramètres prennent successivement les valeurs suivantes :

α 1/2 3/4 1 3/2 7/4
β 1/2 3/4 1 3/2 7/4

238



Mesures d’Efficacité et Rendements d’Echelle Optimaux

4.1.2 Résultats

α = 0, 5; α = 0, 5; α = 0, 5; α = 0, 5; α = 0, 75; α = 0, 75; α = 0, 75; α = 0, 75;
β = 0, 75 β = 1 β = 1, 5 β = 1, 75 β = 0, 5 β = 1 β = 1, 5 β = 1, 75

Orientation en inputs
Rép. Tchèque 373,98 761,18 1246,67 1368,44 0 660,00 1222,46 1355,86
Danemark 238,52 584,60 1098,87 1244,81 125,11 485,47 1059,26 1223,08
Espagne 1438,29 2329,32 3874,71 4474,67 2786,77 3030,21 4474,21 4983,42
France 0 0 0 0 0 0 0 0
Lettonie 300,16 439,49 527,23 537,49 20,15 398,76 520,92 535,00
Lituanie 474,21 738,77 955,55 990,50 41,98 680,80 943,78 985,06
Luxembourg 18,33 27,74 30,91 31,05 0 22,28 30,56 30,97
Pays-Bas 36,50 123,03 214,13 229,57 0 60,88 194,28 220,27
Slovaquie 272,99 505,56 721,93 760,74 0 421,02 702,21 751,13
Finlande 548,81 867,65 1150,68 1200,93 268,86 809,17 1138,46 1195,07
Suède 356,86 653,58 952,51 1011,89 69,17 566,14 931,32 1001,13
Royaume Uni 0 67,60 511,93 792,54 0 0 402,46 759,28

Orientation en outputs
Rép. Tchèque 8281,58 94,95·1004 5,28 ·1009 3,39·1011 0 3928,36 1.50·1006 2,51·1007

Danemark 5343,08 71,51·1004 4,62·1009 3,07·1011 6,98 3402,17 1,29·1006 2,25·1007

Espagne 55470,19 45,42·1005 2,19·1010 1,40·1012 108,18 24752,98 6,83·1006 1,09·1008

France 0 0 0 0 0 0 0 0
Lettonie 6511,43 53,81·1004 2,21·1009 1,32·1011 0,94 2446,03 6,37·1005 9,87·1006

Lituanie 11366,02 96,37·1004 4,09·1009 2,46·1011 1,38 4098,39 1,17·1006 1,83·1007

Luxembourg 399,60 33939,66 1,30·1008 7,65·1009 0 142,82 3,73·1004 5,71·1005

Pays-Bas 791,02 15,05·1004 9,00·1008 5,66·1010 0 381,36 2,37·1005 4,06·1006

Slovaquie 7864,29 71,64·1004 3,16·1009 1,91·1011 0 2989,55 9,07·1005 1,42·1007

Finlande 20460,46 13,85·1005 5,19·1009 3,07·1011 28,19 7091,48 1,50·1006 2,29·1007

Suède 10731,55 94,31·1004 4,22·1009 2,57·1011 4,72 4459,14 1,21·1006 1,91·1007

Royaume Uni 0 82698,06 2,15·1009 1,95·1011 0 0 4,92·1005 1,40·1007

Orientation dans le graphe
Rép. Tchèque 16,30 27,09 35,31 36,99 0 108,27 206,73 223,44
Danemark 12,83 23,51 33,13 35,28 3,91 87,09 184,78 206,69
Espagne 37,08 48,20 62,25 66,89 31,10 402,83 547,03 593,12
France 0 0 0 0 0 0 0 0
Lettonie 14,37 20,39 22,95 23,18 0,88 73,35 108,54 111,18
Lituanie 19,10 27,14 30,91 31,47 1,18 111,76 170,27 175,83
Luxembourg 3,53 5,12 5,56 5,57 0 8,33 12,93 13,12
Pays-Bas 4,97 10,78 14,63 15,15 0 17,40 51,79 57,14
Slovaquie 15,81 22,45 26,87 27,58 0 87,49 136,40 143,48
Finlande 22,90 29,41 33,92 34,65 10,96 149,64 195,98 203,26
Suède 18,22 25,53 30,86 31,81 2,87 109,57 168,58 177,98
Royaume Uni 0 7,99 22,61 28,15 0 0 89,42 144,55

TABLE 5.1 – Mesures de performance directionnelles CES-CET pour α 6= β (partie 1)

Les tableaux 5.1, 5.2 et 5.3 présentent les scores de performance des 12 pays européens selon

les valeurs des paramètres lorsque α 6= β. Ainsi, les grandeurs relatifs à une orientation dans le

graphe sont évalués grâce à la mesure de distance directionnelle CES-CET mixte orientée dans le

graphe de la production. Le tableau 5.4, quant à lui, relate les mesures d’efficacité quand α = β.

De ce fait, les scores orientés dans le graphe sont estimés à travers la fonction de distance direction-

nelle CES-CET, définie dans le Chapitre 3. Les indicateurs d’ajustement relatifs aux rendements

d’échelle γ sont exposés dans les tableaux 5.5, 5.6 et 5.7. Ces résultats nous permettent de déduire

le meilleur rendement d’échelle γ selon chaque orientation.

239



Mesures d’Efficacité et Rendements d’Echelle Optimaux

α = 1; α = 1; α = 1; α = 1; α = 1, 5; α = 1, 5; α = 1, 5; α = 1, 5;
β = 0, 5 β = 0, 75 β = 1, 5 β = 1, 75 β = 0, 5 β = 0, 75 β = 1 β = 1, 75

Orientation en inputs
Rép. Tchèque 214,58 0 1150,06 1315,63 850,82 532,01 0 1127,90
Danemark 493,96 171,46 959,71 1160,19 1106,50 720,74 271,07 958,91
Espagne 4833,24 3750,50 4788,82 5245,49 6348,87 6036,43 5623,29 5486,90
France 0 0 0 0 3348,11 0 0 0
Lettonie 0 124,44 508,16 530,01 0 0 157,22 503,57
Lituanie 0 212,88 918,12 973,20 0 0 288,41 919,34
Luxembourg 0 0 29,42 30,70 0 0 0 27,00
Pays-Bas 0 0 151,98 199,41 135,65 0 0 94,41
Slovaquie 0 0 661,31 731,37 0 0 0 632,71
Finlande 485,46 469,05 1108,57 1180,60 853,02 782,57 776,31 1116,63
Suède 203,34 144,48 884,01 977,13 562,41 427,48 372,92 865,12
Royaume Uni 898,62 0 0 416,89 2604,51 1644,80 0 0

Orientation en outputs
Rép. Tchèque 3,11 0 24536,95 21,16·1004 5,32 7,77 0 1684,84
Danemark 8,05 29,55 21042,76 18,53·1004 8,78 11,92 16,07 1966,46
Espagne 74,08 253,04 121697,61 97,17·1004 41,73 91,53 205,03 9016,16
France 0 0 0 0 16,03 0 0 0
Lettonie 0 10,86 10878,30 84693,31 0 0 6,34 825,30
Lituanie 0 13,70 19816,12 15,78·1004 0 0 8,79 1341,67
Luxembourg 0 0 638,27 4904,06 0 0 0 50,41
Pays-Bas 0 0 3293,27 31859,35 1,08 0 0 170,95
Slovaquie 0 0 15107,31 12,18·1004 0 0 0 1030,19
Finlande 13,64 80,30 26647,11 19,86·1004 8,38 17,78 49,19 2247,48
Suède 4,73 28,16 20732,43 16,36·1004 5,25 9,17 21,65 1631,88
Royaume Uni 14,50 0 0 66603,97 20,67 27,21 0 0

Orientation dans le graphe
Rép. Tchèque 3,07 0 1113,88 1315,58 12,28 21,63 0 25943,27
Danemark 7,93 27,40 919,48 1152,97 26,01 41,09 63,50 25069,82
Espagne 73,02 239,89 4786,33 5245,32 269,42 874,11 2917,11 32,11·1004

France 0 0 0 0 64,18 0 0 0
Lettonie 0 10,30 487,05 526,81 0 0 15,86 8345,95
Lituanie 0 13,02 903,16 973,16 0 0 25,92 18435,51
Luxembourg 0 0 28,16 30,50 0 0 0 104,15
Pays-Bas 0 0 145,27 198,17 1,12 0 0 650,41
Slovaquie 0 0 660,96 731,35 0 0 0 12404,07
Finlande 13,43 74,45 1107,99 1180,56 24,24 74,79 341,96 31003,97
Suède 4,66 25,77 883,55 977,10 12,03 27,72 99,99 22604,74
Royaume Uni 14,27 0 0 414,29 93,94 141,66 0 0

TABLE 5.2 – Mesures de performance directionnelles CES-CET pour α 6= β (partie 2)
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α = 1, 75; α = 1, 75; α = 1, 75; α = 1, 75;
β = 0, 5 β = 0, 75 β = 1 β = 1, 5
Orientation en inputs

République Tchèque 1060,48 828,10 453,72 212,51
Danemark 1266,39 990,39 459,89 489,91
Espagne 6562,88 6388,46 6185,01 5376,10
France 4130,76 2480,35 0 0
Lettonie 0 0 0 397,02
Lituanie 0 0 0 673,65
Luxembourg 0 0 0 0
Pays-Bas 228,47 0 0 0
Slovaquie 0 0 0 0
Finlande 972,64 884,49 880,41 944,09
Suède 704,09 543,66 498,68 512,81
Royaume Uni 2914,95 2420,14 923,45 0

Orientation en outputs
République Tchèque 5,24 8,45 9,54 55,72
Danemark 8,18 12,01 10,47 161,91
Espagne 34,06 67,72 133,37 729,68
France 15,65 18,97 0 0
Lettonie 0 0 0 62,54
Lituanie 0 0 0 88,87
Luxembourg 0 0 0 0
Pays-Bas 2,03 0 0 0
Slovaquie 0 0 0 0
Finlande 7,19 13,63 25,87 221,47
Suède 5,01 8,46 13,53 132,31
Royaume Uni 18,82 29,35 21,02 0

Orientation dans le graphe
République Tchèque 18,14 41,90 51,77 1111,47
Danemark 39,52 77,46 60,82 7000,01
Espagne 480,19 1597,93 5227,96 100198,06
France 123,18 172,41 0 0
Lettonie 0 0 0 1360,38
Lituanie 0 0 0 2516,05
Luxembourg 0 0 0 0
Pays-Bas 3,44 0 0 0
Slovaquie 0 0 0 0
Finlande 31,54 96,64 296,34 12110,44
Suède 16,75 41,95 95,32 5048,37
Royaume Uni 170,00 369,92 205,99 0

TABLE 5.3 – Mesures de performance directionnelles CES-CET pour α 6= β (partie 3)
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α = 0, 5 α = 0, 75 α = 1 α = 1, 5 α = 1, 75
β = 0, 5 β = 0, 75 β = 1 β = 1, 5 β = 1, 75

Orientation en inputs
République Tchèque 29,66 180,61 396,92 780,36 921,41
Danemark 19,47 129,99 301,63 635,23 768,56
Espagne 608,93 2083,95 3437,88 5091,49 5552,54
France 0 0 0 0 0
Lettonie 68,00 204,65 316,73 440,97 472,96
Lituanie 106,44 344,32 552,44 796,58 862,46
Luxembourg 0,72 4,10 8,72 16,59 19,40
Pays-Bas 0 0 0 0 0
Slovaquie 20,28 111,60 233,13 435,76 507,19
Finlande 134,84 429,36 683,87 980,11 1059,76
Suède 40,32 193,34 377,31 657,39 749,86
Royaume Uni 0 0 0 0 0

Orientation en outputs
République Tchèque 24,95 108,78 201,68 334,63 377,06
Danemark 37,55 159,70 294,38 490,47 554,46
Espagne 641,02 1432,45 1910,58 2295,62 2363,29
France 0 0 0 0 0
Lettonie 48,78 120,11 167,77 209,86 217,89
Lituanie 66,20 171,04 245,32 317,08 333,34
Luxembourg 1,43 5,39 9,32 14,43 15,92
Pays-Bas 0 0 0 0 0
Slovaquie 36,63 109,72 168,82 232,68 248,61
Finlande 318,26 513,59 594,87 642,77 649,22
Suède 90,14 231,24 329,70 420,95 439,62
Royaume Uni 0 0 0 0 0

Orientation dans le graphe
République Tchèque 9,53 64,47 147,02 292,99 344,79
Danemark 10,33 84,70 193,66 396,09 472,76
Espagne 244,89 848,91 1392,76 2010,02 2161,03
France 0 0 0 0 0
Lettonie 18,64 71,18 122,30 183,75 199,25
Lituanie 25,29 101,36 178,83 277,63 304,81
Luxembourg 0,40 2,61 5,65 10,91 12,79
Pays-Bas 0 0 0 0 0
Slovaquie 10,80 65,02 123,07 203,73 227,33
Finlande 71,82 272,39 391,35 519,09 553,55
Suède 21,46 137,04 240,34 368,58 402,00
Royaume Uni 0 0 0 0 0

TABLE 5.4 – Scores d’efficacité CES-CET pour α = β
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❍
❍
❍
❍
❍
❍

β
α

0,5 0,75 1 1,5 1,75

0,5 1028,66 3312,05 7129,21 15809,89 17840,66
0,75 4058,65 3681,92 4872,82 10144,02 14535,58
1 7098,52 7134,74 6308,63 7489,22 9401,15
1,5 11285,11 11619,91 11160,17 9834,49 8606,09
1,75 12642,65 13040,28 12760,61 11732,48 10914,14

TABLE 5.5 – Indicateur d’ajustement en inputs

❍
❍
❍
❍
❍
❍

β
α

0,5 0,75 1 1,5 1,75

0,5 1264,96 150,40 118,12 107,25 96,17
0,75 1272,19·1002 2852,02 415,62 165,39 158,59
1 1102,10·1004 53692,29 3922,43 307,07 213,79
1,5 5396,13·1007 1585,84·1004 2643,90·1002 4958,49 1452,51
1,75 34439,18·1008 2609,85·1005 2198,86·1003 19965,33 5199,41

TABLE 5.6 – Indicateur d’ajustement γ en outputs

❍
❍

❍
❍
❍
❍

β
α

0,5 0,75 1 1,5 1,75

0,5 413,15 50,89 116,36 503,22 882,76
0,75 165,13 1647,68 390,83 1181,01 2398,21
1 247,62 1155,73 2794,99 3464,34 5938,19
1,5 319,00 1872,46 11035,84 4262,79 129344,78
1,75 336,74 2049,79 12745,84 465720,92 4678,30

TABLE 5.7 – Indicateur d’ajustement γ dans le graphe

4.1.3 Analyse

Tableaux 5.1, 5.2 et 5.3

Nous pouvons noter que lorsque α = 0, 5, seule la France est efficace quelle que soit la valeur prise

par le paramètre β. Cependant, lorsque β = 0, 75 alors, le Royaume-Uni est également performant.

Pour une valeur α = 0, 75, la République Tchèque, la France, le Luxembourg, les Pays-Bas, la

Slovaquie et le Royaume-Uni sont efficaces avec β = 0, 5. On remarque que plus la valeur de β

augmente, moins il y a d’unités de production performantes. De ce fait, lorsque β = 1 alors, seuls

la France et le Royaume-Uni ont un score nul. Enfin, pour β = 1, 5 et β = 1, 75, la France est

l’unique pays performant parmi les 12.

Avec α = 1, la France, la Lettonie, la Lituanie, le Luxembourg, les Pays-Bas et la Slovaquie

243



Mesures d’Efficacité et Rendements d’Echelle Optimaux

sont les pays efficaces pour une valeur de β égale à 0,5. Lorsque β = 0, 75, la République Tchèque,

la France, le Luxembourg, les Pays-Bas, la Slovaquie et le Royaume-Uni ont des mesures d’effi-

cacité nulles. Plus la valeur de β augmente moins il existe d’unités de production performantes.

Donc, lorsque β = 1, 5 alors, la France et le Royaume-Uni sont les seuls pays efficaces et enfin,

pour β = 1, 75, la France est l’unique pays performant.

On constate que lorsque α = 1, 5, la Lettonie, la Lituanie, le Luxembourg et la Slovaquie ont

un score nul avec β = 0, 5. Quand β = 0, 75, la France, la Lettonie, la Lituanie, le Luxembourg,

les Pays-Bas et la Slovaquie sont les pays efficaces. De manière similaire, pour une valeur de β

égale à 1, les pays performants sont la République Tchèque, la France, le Luxembourg, les Pays-

Bas, la Slovaquie et le Royaume-Uni tandis que lorsque β = 1, 75 alors, seuls la France et le

Royaume-Uni présentent une mesure nulle.

Pour α = 1, 75, la Lettonie, la Lituanie, le Luxembourg et la Slovaquie sont les pays per-

formants lorsque β = 0, 5 tandis que la Lettonie, la Lituanie, le Luxembourg, les Pays-Bas et la

Slovaquie sont efficaces pour une valeur de β égale à 0,75. Quand β = 1, la France, la Lettonie, la

Lituanie, le Luxembourg, les Pays-Bas et la Slovaquie sont les pays efficients tandis que lorsque

β = 1, 5 alors, la France, le Luxembourg, les Pays-Bas, la Slovaquie et le Royaume-Uni sont les

pays performants.

Nous notons que lorsqu’une unité de production est efficace suivant une orientation, celle-ci

l’est également selon les autres orientations. Ainsi, nous pouvons déduire qu’aucun slack n’existe

pour chaque mesure estimée. Nous pouvons constater que le plus grand nombre de pays (soit 6

pays sur 12) est efficace pour les combinaisons des paramètres suivantes :

α 0,75 1 1 1,5 1,5 1,75
β 0,5 0,5 0,75 0,75 1 1

γ 3/2 2 4/3 2 3/2 7/4

Selon les valeurs des paramètres, nous pouvons comparer, de manière générale en terme de

valeur, les scores d’efficacité relativement à l’orientation des mesures. Les résultats sont exposés

dans le tableau ci-dessous :

Ce tableau récapitulatif donne une indication quant à la nature du rendement d’échelle qui

permet l’efficacité du plus grand nombre d’unités de production. Suivant les valeurs de α et de β,
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α < β
α ≤ 1 Outputs > Inputs > Graphe
α > 1 Graphe > Outputs > Inputs

α > β
α ≤ 1 Inputs > Outputs > Graphe
α > 1 Inputs > Graphe > Outputs

on peut supposer que γ ≥ 1. Ainsi, on peut présumer que l’extrapolation minimale est réalisée sous

l’hypothèse de rendements d’échelle croissants. Nous pouvons confirmer ou non cette hypothèse

grâce aux indicateurs d’ajustement en input, en output et dans le graphe. Ceux-ci sont relatés dans

les tableaux 5.5, 5.6 et 5.7.

Tableau 5.4

Nous pouvons constater que lorsque α = β, quelles que soient les valeurs prises par ces paramètres,

seuls la France, les Pays-Bas et le Royaume-Uni ont un score de performance nul. Ainsi, ces pays

sont efficaces. Nous remarquons également que les scores non-nuls sont moins élevés suivant une

orientation dans le graphe que selon une orientation en input et en output. Par ailleurs, on observe

que plus la valeur des paramètres augmente plus les mesures non-nulles croissent.

Tableaux 5.5, 5.6 et 5.7

Nous pouvons constater que lorsque l’on évalue les indicateurs d’ajustement orientés en input, en

output et dans le graphe, nous obtenons les meilleurs rendements d’échelle γ∗ suivants : γ∗I =

1, γ∗O = 7/2 et γ∗ = 3/2. En effet, lorsque α = β = 0, 5 nous avons MI,CES = 1028, 66.

Pour α = 1, 75 et β = 0, 5 on a, MO,CES = 96, 17. Enfin, si α = 0, 75 et β = 0, 5 alors,

MCES = 50, 89. Ainsi, dans une orientation en input, le meilleur rendement d’échelle est constant

tandis que lorsque les mesures sont axées sur les outputs et dans le graphe, le rendement d’échelle

optimal est croissant. Nous pouvons voir que les résultats fournis par les indicateurs confirment

notre hypothèse à savoir, γ ≥ 1.

4.2 Rendements d’Echelle Spécifiques

Cette sous-section nous permet d’illustrer le concept de rendements d’échelle spécifiques. En

effet, l’ impact de chaque facteur sur chaque produit n’est pas homogène. De ce fait, il est pertinent

de connaître sous quelle hypothèse de rendements d’échelle spécifique, l’ensemble des unités de
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production est le plus efficace. Nous présentons tout d’abord l’environnement d’analyse. Puis, nous

montrons les résultats obtenus. Enfin, nous interprétons ces derniers.

4.2.1 Environnement d’Analyse

Dans la lignée de la sous-section précédente, nous utilisons les données agricoles relatives à la

période 2008 concernant 12 pays européens. Nous avons deux facteurs ainsi que deux produits.

Pour tout intrant i ∈ [m] et tout extrant r ∈ [n], la mesure de distance directionnelle CES-CET

dans le graphe, sous l’hypothèse de rendements d’échelle spécifiques et, suivant la méthode DEA

est définie comme suit :

Dt
αi,βr

(

xti, y
t
r; h

t
i, k

t
r

)

= sup
δ







δt : xti
αi

− δthti ≥

(

∑

j∈J

θtj(x
t
j,i)

αi

)1/αi

,

ytr
βr

+ δtktr ≤

(

∑

j∈J

θtj(y
t
j,r)

βr

)1/βr

, θt ≥ 0







.

Notons que lorsque gt = (hti, 0) et gt = (0, ktr) alors, la mesure dans le graphe ci-dessus devient

des fonctions de distance directionnelles CES-CET orientées respectivement en input et en output.

Dans le cadre de notre étude, nous analysons uniquement les mesures orientées en input et en

output tels que gt = (1, 0) et gt = (0, 1). Remarquons que la fonction axée sur les intrants ne

peut être évaluée grâce à la programmation linéaire que si et seulement si, α1 = · · · = αm = α.

De manière similaire, une mesure axée sur les extrants n’est possible grâce à la programmation

linéaire que si β1 = · · · = βn = β. Ainsi, les fonctions de distance directionnelles CES-CET

orientées en input et en output sont respectivement :

Dt
α,βr

(

xti, y
t
r; h

t
i, 0
)

= sup
δ







δt : xti
α
− δthti ≥

(

∑

j∈J

θtj(x
t
j,i)

α

)1/α

,

ytr ≤

(

∑

j∈J

θtj(y
t
j,r)

βr

)1/βr

, θt ≥ 0







,
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Dt
αi,β

(

xti, y
t
r; 0, k

t
r

)

= sup
δ







δt : xti ≥

(

∑

j∈J

θtj(x
t
j,i)

αi

)1/αi

,

ytr
β
+ δtktr ≤

(

∑

j∈J

θtj(y
t
j,r)

β

)1/β

, θt ≥ 0







.

Afin de pouvoir déterminer les meilleurs rendements d’échelle, nous évaluons également les in-

dicateurs d’ajustement en input et en output définis auparavant. Ces derniers nous permettent de

déduire les rendements d’échelle spécifiques tel que l’ensemble des unités productives ont le plus

bas score d’efficacité possible.

Comme précédemment, les valeurs prises par les paramètres α et β sont successivement :

α 1/2 3/4 1 3/2 7/4
β 1/2 3/4 1 3/2 7/4

Lorsque nous évaluons les mesures orientées en input, nous prenons les valeurs β telles que

β1 6= β2. De manière similaire, quand nous estimons les mesures axées sur les extrants, nous

choisissons les valeurs de α telles que α1 6= α2.

4.2.2 Résultats

Les scores d’efficacité orientés en input lorsque le paramètre α prend successivement les va-

leurs

{

1

2
,
3

4
, 1,

3

2
,
7

4

}

sont relatés dans les tableaux 5.8, 5.9, 5.10, 5.11 et 5.12. De manière simi-

laire, quand β prend successivement les valeurs

{

1

2
,
3

4
, 1,

3

2
,
7

4

}

, nous présentons les mesures de

performance orientées en output dans les tableaux 5.13, 5.14, 5.15, 5.16 et 5.17.

4.2.3 Interprétations

Tableaux 5.8, 5.9, 5.10, 5.11, 5.12 Nous pouvons constater que certaines unités de production

sont efficientes de manières récurrentes selon les valeurs de α. Par ailleurs, d’autres pays possèdent

des scores de performance positives similaires par rapport aux valeurs des paramètres α et βr.

Si l’on considère par exemple le tableau 5.8, nous pouvons observer que les mesures d’efficacité

positives sont sensiblement similaires lorsque :

a) β1 = 0, 5 et β2 ∈ {0, 75; 1; 1, 5; 1, 75},
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β1 0,5 0,5 0,5 0,5 0,75 0,75 0,75 0,75
β2 0,75 1 1,5 1,75 0,5 1 1,5 1,75
Rép. Tchèque 65,34 65,34 65,34 65,34 29,66 394,38 394,38 394,38
Danemark 69,88 73,81 73,81 73,81 19,47 246,57 246,57 246,57
Espagne 1382,67 1643,09 1678,98 1678,98 608,93 2329,32 2636,50 2641,59
France 0 0 0 0 0 0 0 0
Lettonie 117,25 117,25 117,25 117,25 68,00 304,70 304,70 304,70
Lituanie 173,39 173,39 173,39 173,39 106,44 541,27 541,27 541,27
Luxembourg 2,21 2,21 2,21 2,21 0,72 18,44 18,44 18,44
Pays-Bas 0 0 0 0 0 36,50 36,50 36,50
Slovaquie 95,93 95,93 95,93 95,93 20,28 374,51 374,51 374,51
Finlande 523,43 612,67 625,50 625,50 134,84 867,65 944,21 944,21
Suède 210,33 210,33 210,33 210,33 40,32 499,29 501,45 501,45
Royaume Uni 0 0 0 0 0 0 0 0
MI,CES 2640,44 2994,02 3042,75 3042,75 1028,66 5612,64 5998,55 6003,64

β1 1 1 1 1 1,5 1,5 1,5 1,5
β2 0,5 0,75 1,5 1,75 0,5 0,75 1 1,75
Rép. Tchèque 29,66 373,98 776,20 776,20 29,66 373,98 761,18 1256,58
Danemark 19,47 309,53 584,60 584,60 19,47 309,53 679,94 1098,87
Espagne 608,93 1438,29 3712,76 3712,76 608,93 1438,29 2329,32 4474,67
France 0 0 0 0 0 0 0 0
Lettonie 68,00 300,16 439,90 439,90 68,00 300,16 439,49 527,33
Lituanie 106,44 474,21 787,76 787,76 106,44 474,21 738,77 972,90
Luxembourg 0,72 19,47 27,74 27,74 0,72 19,47 28,21 30,91
Pays-Bas 0 74,40 123,03 123,03 0 74,40 161,59 214,13
Slovaquie 20,28 272,99 585,66 585,66 20,28 272,99 505,56 753,20
Finlande 134,84 548,81 1132,40 1132,40 134,84 548,81 867,65 1200,93
Suède 40,32 356,86 770,96 770,96 40,32 356,86 653,58 1004,22
Royaume Uni 0 67,60 67,60 67,60 0 166,62 511,93 511,93
MI,CES 1028,66 4236,31 9008,61 9008,61 1028,66 4335,33 7677,22 12045,67

β1 1,75 1,75 1,75 1,75
β2 0,5 0,75 1 1,5
Rép. Tchèque 29,66 373,98 761,18 1246,67
Danemark 19,47 309,53 679,94 1170,27
Espagne 608,93 1438,29 2329,32 3874,71
France 0 0 0 0
Lettonie 68,00 300,16 439,49 527,23
Lituanie 106,44 474,21 738,77 955,55
Luxembourg 0,72 19,47 28,21 30,95
Pays-Bas 0 74,40 161,59 228,12
Slovaquie 20,28 272,99 505,56 721,93
Finlande 134,84 548,81 867,65 1150,68
Suède 40,32 356,86 653,58 952,51
Royaume Uni 0 166,62 540,25 792,54
MI,CES 1028,66 4335,33 7705,54 11651,15

TABLE 5.8 – Scores en inputs CES-CET lorsque α = 0, 5
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β1 0,5 0,5 0,5 0,5 0,75 0,75 0,75 0,75
β2 0,75 1 1,5 1,75 0,5 1 1,5 1,75
Rép. Tchèque 0 0 0 0 1,91 289,04 289,04 289,04
Danemark 129,99 175,03 175,03 175,03 107,51 292,65 309,34 309,34
Espagne 2083,95 2721,88 2958,14 3010,24 2536,91 3030,21 3741,03 3805,99
France 0 0 0 0 0 0 0 0
Lettonie 29,05 29,05 29,05 29,05 50,07 280,38 280,38 280,38
Lituanie 48,19 48,19 48,19 48,19 48,11 454,46 454,46 454,46
Luxembourg 0 0 0 0 0 8,33 8,33 8,33
Pays-Bas 0 0 0 0 0 0 0 0
Slovaquie 4,92 4,92 4,92 4,92 0 291,51 291,51 291,51
Finlande 429,36 692,08 719,97 719,97 268,86 809,17 985,46 994,81
Suède 168,85 168,85 168,85 168,85 67,34 481,36 525,13 525,13
Royaume Uni 0 0 0 0 0 0 0 0
MI,CES 2894,30 3839,99 4104,15 4156,25 3080,71 5937,10 6884,67 6958,99

β1 1 1 1 1 1,5 1,5 1,5 1,5
β2 0,5 0,75 1,5 1,75 0,5 0,75 1 1,75
Rép. Tchèque 28,01 180,61 716,47 716,47 67,86 180,61 660,00 1233,43
Danemark 117,12 129,99 543,13 543,13 141,35 129,99 562,78 1059,26
Espagne 2500,49 2083,95 4358,61 4434,31 2582,18 2083,95 3030,21 4983,42
France 0 0 0 0 0 0 0 0
Lettonie 50,41 204,65 414,57 414,57 50,41 204,65 398,76 521,06
Lituanie 48,11 344,32 747,48 747,48 48,11 344,32 680,80 964,32
Luxembourg 0 4,10 22,80 22,80 0 4,10 23,10 30,56
Pays-Bas 0 0 60,88 60,88 0 0 105,80 194,28
Slovaquie 0 111,60 545,24 545,24 0 111,60 421,02 741,65
Finlande 268,86 429,36 1121,54 1129,91 268,86 429,36 809,17 1195,07
Suède 66,24 193,34 750,39 750,39 67,31 193,34 566,14 992,16
Royaume Uni 0 0 0 0 0 0 402,46 402,46
MI,CES 3079,25 3681,92 9281,10 9365,17 3226,09 3681,92 7660,24 12317,67

β1 1,75 1,75 1,75 1,75
β2 0,5 0,75 1 1,5
Rép. Tchèque 80,23 180,61 660,00 1222,46
Danemark 151,94 129,99 562,78 1139,95
Espagne 2619,78 2083,95 3030,21 4474,21
France 0 0 0 0
Lettonie 50,41 204,65 398,76 520,92
Lituanie 48,11 344,32 680,80 943,78
Luxembourg 0 4,10 23,10 30,67
Pays-Bas 0 0 105,80 217,83
Slovaquie 0 111,60 421,02 702,21
Finlande 268,86 429,36 809,17 1138,46
Suède 67,87 193,34 566,14 931,32
Royaume Uni 0 0 439,42 759,28
MI,CES 3287,21 3681,92 7697,21 12081,09

TABLE 5.9 – Scores en input CES-CET lorsque α = 0, 75

249



Mesures d’Efficacité et Rendements d’Echelle Optimaux

β1 0,5 0,5 0,5 0,5 0,75 0,75 0,75 0,75
β2 0,75 1 1,5 1,75 0,5 1 1,5 1,75
Rép. Tchèque 188,38 51,44 106,31 139,86 0 0 0 0
Danemark 230,61 236,43 319,67 353,84 240,15 301,63 376,06 376,06
Espagne 3750,50 3437,88 4014,52 4203,61 4455,15 3437,88 4407,32 4513,87
France 0 0 0 0 0 0 0 0
Lettonie 0 0 0 0 37,41 198,07 198,07 198,07
Lituanie 0 0 0 0 0 264,09 264,09 264,09
Luxembourg 0 0 0 0 0 0 0 0
Pays-Bas 0 0 0 0 0 0 0 0
Slovaquie 0 0 0 0 0 82,62 92,33 92,33
Finlande 469,05 683,87 789,78 809,25 485,46 683,87 1011,11 1021,74
Suède 144,48 177,69 222,59 243,07 190,78 377,31 484,31 484,31
Royaume Uni 333,79 0 0 0,14 0 0 0 0
MI,CES 5116,82 4587,31 5452,86 5749,77 5408,94 5345,46 6833,29 6950,48

β1 1 1 1 1 1,5 1,5 1,5 1,5
β2 0,5 0,75 1,5 1,75 0,5 0,75 1 1,75
Rép. Tchèque 33,37 27,32 542,46 542,46 247,27 121,61 396,92 1171,72
Danemark 278,39 172,57 566,07 566,07 371,04 190,27 301,63 969,48
Espagne 4351,12 3692,64 4729,45 4932,66 4486,62 3676,33 3437,88 5245,49
France 0 0 0 0 0 0 0 0
Lettonie 42,36 140,46 387,90 387,90 42,36 142,61 316,73 509,71
Lituanie 0 214,89 659,82 659,82 0 214,89 552,44 946,29
Luxembourg 0 0 14,38 14,38 0 0 8,72 29,46
Pays-Bas 0 0 0 0 0 0 0 151,98
Slovaquie 0 0 454,09 454,09 0 0 233,13 718,79
Finlande 485,46 469,05 1096,35 1128,29 485,46 469,05 683,87 1180,60
Suède 188,24 143,41 741,77 741,77 194,47 143,00 377,31 966,05
Royaume Uni 0 0 0 0 0 0 0 0
MI,CES 5378,95 4860,34 9192,29 9427,44 5827,23 4957,76 6308,63 11889,57

β1 1,75 1,75 1,75 1,75
β2 0,5 0,75 1 1,5
Rép Tchèque 305,19 145,58 396,92 1150,06
Danemark 410,21 198,51 301,63 1054,76
Espagne 4536,49 3686,74 3437,88 4788,82
France 0 0 0 0
Lettonie 42,36 142,61 316,73 508,16
Lituanie 0 214,89 552,44 918,12
Luxembourg 0 0 8,72 29,74
Pays-Bas 0 0 0 194,69
Slovaquie 0 0 233,13 661,31
Finlande 485,46 469,05 683,87 1108,57
Suède 197,24 143,38 377,31 884,01
Royaume Uni 0 0 0 416,89
MI,CES 5976,95 5000,75 6308,63 11715,12

TABLE 5.10 – Scores en input CES-CET lorsque α = 1
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β1 0,5 0,5 0,5 0,5 0,75 0,75 0,75 0,75
β2 0,75 1 1,5 1,75 0,5 1 1,5 1,75
Rép. Tchèque 799,69 610,04 390,17 545,25 532,01 532,01 235,62 301,24
Danemark 831,98 573,02 459,89 599,33 720,74 564,10 351,38 428,21
Espagne 6036,43 5623,29 5042,12 5288,04 6197,49 5623,29 5091,49 5327,74
France 980,55 0 0 0 0 0 0 0
Lettonie 0 0 0 0 0 0 0 0
Lituanie 0 0 0 0 0 0 0 0
Luxembourg 0 0 0 0 0 0 0 0
Pays-Bas 0 0 0 7,17 0 0 0 0
Slovaquie 0 0 0 0 0 0 0 0
Finlande 782,57 776,31 886,10 942,10 853,02 776,31 975,78 1014,48
Suède 427,48 372,92 381,80 454,80 554,42 372,92 394,56 443,26
Royaume Uni 2219,78 1473,62 0 169,00 1644,80 1362,63 0 0
MI,CES 12078,47 9429,20 7160,07 8005,69 10502,48 9231,26 7048,83 7514,94

β1 1 1 1 1 1,5 1,5 1,5 1,5
β2 0,5 0,75 1,5 1,75 0,5 0,75 1 1,75
Rép. Tchèque 0 0 0 0 366,53 263,29 170,31 916,72
Danemark 381,63 312,00 484,93 484,93 654,60 502,99 371,10 876,72
Espagne 5942,39 5880,31 5091,49 5425,07 6023,21 5843,81 5538,97 5486,90
France 0 0 0 0 0 0 0 0
Lettonie 0 55,01 184,27 184,27 0 114,31 229,77 486,49
Lituanie 0 0 310,57 310,57 0 0 313,12 868,66
Luxembourg 0 0 0 0 0 0 0 22,27
Pays-Bas 0 0 0 0 0 0 0 0
Slovaquie 0 0 101,55 101,55 0 0 0 625,27
Finlande 853,02 782,57 980,11 1096,99 853,02 782,57 776,31 1116,63
Suède 464,01 408,18 635,72 635,72 498,06 410,39 366,47 859,52
Royaume Uni 0 0 0 0 0 0 0 0
MI,CES 7641,05 7438,07 7788,64 8239,11 8395,43 7917,35 7766,05 11259,19

β1 1,75 1,75 1,75 1,75
β2 0,5 0,75 1 1,5
Rép Tchèque 610,13 492,85 363,39 780,36
Danemark 783,82 578,02 414,85 635,23
Espagne 6075,76 5863,85 5538,77 5091,49
France 0 0 0 0
Lettonie 0 114,31 231,57 440,97
Lituanie 0 0 313,12 796,58
Luxembourg 0 0 0 16,59
Pays-Bas 59,39 0 0 0
Slovaquie 0 0 0 435,76
Finlande 853,02 782,57 776,31 980,11
Suède 519,41 415,15 367,58 657,39
Royaume Uni 0 0 0 0
MI,CES 8901,54 8246,75 8005,59 9834,49

TABLE 5.11 – Scores en input CES-CET lorsque α = 1, 5
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β1 0,5 0,5 0,5 0,5 0,75 0,75 0,75 0,75
β2 0,75 1 1,5 1,75 0,5 1 1,5 1,75
Rép. Tchèque 1003,59 868,14 390,21 577,63 828,10 828,10 390,21 449,69
Danemark 1013,40 827,94 407,95 595,41 990,39 819,97 359,85 456,39
Espagne 6388,46 6185,01 5376,10 5514,65 6494,49 6185,01 5376,10 5531,43
France 2970,01 0 0 0 2480,35 0 0 0
Lettonie 0 0 0 0 0 0 0 0
Lituanie 0 0 0 0 0 0 0 0
Luxembourg 0 0 0 0 0 0 0 0
Pays-Bas 0 0 0 0 0 0 0 0
Slovaquie 0 0 0 0 0 0 0 0
Finlande 884,49 880,41 910,90 965,31 972,64 880,41 940,47 1013,66
Suède 543,66 498,68 438,43 481,77 697,62 498,68 442,83 480,83
Royaume Uni 2646,14 2226,21 0 0 2420,14 2185,54 0 0
MI,CES 15449,75 11486,38 7523,58 8134,77 14883,72 11397,70 7509,46 7932,00

β1 1 1 1 1 1,5 1,5 1,5 1,5
β2 0,5 0,75 1,5 1,75 0,5 0,75 1 1,75
Rép. Tchèque 453,72 453,72 390,21 194,19 0 0 0 488,15
Danemark 459,89 459,89 247,53 303,06 695,14 551,86 447,81 768,56
Espagne 6307,69 6307,69 5376,10 5552,54 6302,68 6220,55 6085,64 5552,54
France 0 0 0 0 0 0 0 0
Lettonie 0 0 0 0 0 16,40 212,59 464,28
Lituanie 0 0 0 0 0 0 165,62 778,60
Luxembourg 0 0 0 0 0 0 0 16,82
Pays-Bas 0 0 0 0 0 0 0 0
Slovaquie 0 0 0 0 0 0 0 500,52
Finlande 972,64 884,49 944,09 1059,76 972,64 884,49 880,41 1059,76
Suède 594,52 543,12 512,81 549,53 622,29 517,58 484,96 749,86
Royaume Uni 923,45 923,45 0 0 0 0 0 0
MI,CES 9711,90 9572,35 7470,73 7659,08 8592,75 8190,88 8277,03 10379,10

β1 1,75 1,75 1,75 1,75
β2 0,5 0,75 1 1,5
Rép. Tchèque 575,50 476,39 362,93 311,94
Danemark 861,46 666,66 539,46 489,91
Espagne 6351,37 6238,05 6085,42 5376,10
France 0 0 0 0
Lettonie 0 16,40 218,44 397,02
Lituanie 0 0 165,62 673,65
Luxembourg 0 0 0 0
Pays-Bas 0 0 0 0
Slovaquie 0 0 0 0
Finlande 972,64 884,49 880,41 944,09
Suède 649,66 525,04 487,56 512,81
Royaume Uni 0 0 0 0
MI,CES 9410,62 8807,03 8739,83 8705,53

TABLE 5.12 – Scores en input CES-CET lorsque α = 1, 75
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α1 0,5 0,5 0,5 0,5 0,75 0,75 0,75 0,75
α2 0,75 1 1,5 1,75 0,5 1 1,5 1,75
Rép. Tchèque 0 0 0 0 16,01 0,17 1,27 1,42
Danemark 18,16 25,94 279,57 471,85 37,76 53,57 515,70 1121,56
Espagne 680,02 862,76 913,40 882,94 636,08 1876,02 2354,75 2383,70
France 0 0 0 0 0 0 0 0
Lettonie 3,36 0 0 0 33,03 0 0 0
Lituanie 6,34 2,76 0,75 0,47 40,96 0,03 0 0
Luxembourg 0 0 0 0 1,43 0 0 0
Pays-Bas 0 0 0 0 0 0 0 0
Slovaquie 0 0 0 0 26,16 0 0 0
Finlande 170,19 150,87 292,93 369,77 278,49 179,35 419,40 547,93
Suède 13,48 13,00 40,48 56,34 67,35 18,42 64,61 92,06
Royaume Uni 0 35,78 202,78 218,07 0 140,11 2425,71 2849,84
MO,CES 891,56 1091,10 1729,91 1999,43 1137,27 2267,67 5781,43 6996,51

α1 1 1 1 1 1,5 1,5 1,5 1,5
α2 0,5 0,75 1,5 1,75 0,5 0,75 1 1,75
Rép. Tchèque 12,69 0 22,77 28,98 0,82 0 13,38 190,18
Danemark 37,80 18,24 606,20 1315,95 37,55 18,33 76,70 1448,80
Espagne 627,13 1223,27 8602,45 8645,08 605,07 1262,20 7274,57 111171,81
France 0 0 0 0 0 387,92 3480,93 4122,17
Lettonie 26,96 0,22 0 0 21,59 0,03 0 0
Lituanie 0 0 0 0 0 0 0 0
Luxembourg 1,43 0 0 0 1,22 0 0 0
Pays-Bas 0 0 0 0 0 0,10 1,20 0,71
Slovaquie 0 0 0 0 0 0 0 0
Finlande 251,82 134,64 572,92 795,32 220,96 115,16 183,79 992,00
Suède 55,86 8,58 93,70 135,97 45,69 5,63 22,84 260,41
Royaume Uni 0 0 5199,03 11503,11 0 0 235,98 28524,05
MO,CES 1013,71 1384,95 15097,07 22424,41 932,89 1789,37 11289,40 146710,13

α1 1,75 1,75 1,75 1,75
α2 0,5 0,75 1 1,5
Rép. Tchèque 0 0 14,95 168,18
Danemark 37,33 25,44 97,57 750,83
Espagne 593,71 1257,77 7337,99 87932,17
France 0 419,64 7389,58 15174,41
Lettonie 12,23 0,02 0 0
Lituanie 0 0 0 0
Luxembourg 1,06 0 0 0
Pays-Bas 0 3,93 11,06 13,41
Slovaquie 0 0 0 0
Finlande 211,46 109,23 182,57 588,85
Suède 43,37 4,91 22,73 145,59
Royaume Uni 0 0 243,72 8970,17
MO,CES 899,16 1820,95 15300,17 113743,61

TABLE 5.13 – Scores en output CES-CET pour β = 0, 5
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α1 0,5 0,5 0,5 0,5 0,75 0,75 0,75 0,75
α2 0,75 1 1,5 1,75 0,5 1 1,5 1,75
Rép. Tchèque 155,45 1,12 0 0 405,24 0 0 0
Danemark 159,55 92,74 39,70 112,70 305,63 92,38 99,66 251,12
Espagne 1439,90 1397,42 1276,35 1209,30 1453,92 1382,80 1705,67 1722,08
France 0 0 0 0 0 0 0 0
Lettonie 147,55 53,36 0,41 0 343,81 44,61 0 0
Lituanie 215,26 110,00 25,59 20,51 455,11 47,64 18,11 12,33
Luxembourg 5,39 0 0 0 54,25 0 0 0
Pays-Bas 0 0 0 0 85,53 0 0 0
Slovaquie 153,84 0 0 0 391,64 0 0 0
Finlande 517,62 370,03 245,92 291,18 742,60 354,81 275,93 340,72
Suède 274,41 144,92 46,92 63,25 480,99 119,51 56,71 80,34
Royaume Uni 0 0 0 0 0 0 230,94 485,98
MO,CES 3068,97 2169,59 1634,89 1696,94 4718,72 2041,74 2387,02 2892,57

α1 1 1 1 1 1,5 1,5 1,5 1,5
α2 0,5 0,75 1,5 1,75 0,5 0,75 1 1,75
Rép. Tchèque 403,44 87,03 0 0 185,02 71,33 0 79,87
Danemark 305,63 159,59 130,44 306,61 305,63 158,86 88,09 332,63
Espagne 1452,91 1419,11 2543,45 2654,59 1450,40 1385,60 1765,32 11287,90
France 0 0 0 0 0 0 0 0
Lettonie 341,62 94,80 0 0 322,73 76,50 10,53 0
Lituanie 202,19 154,67 1,88 0 0 0 0 0
Luxembourg 54,25 5,39 0 0 54,25 5,39 0 0
Pays-Bas 85,53 0 0 0 85,53 0 0 0
Slovaquie 256,61 92,47 0 0 3,57 0 0 0
Finlande 738,69 468,85 310,12 399,85 733,89 407,26 281,20 444,13
Suède 477,85 193,30 67,53 98,19 474,79 155,83 53,78 139,71
Royaume Uni 0 0 471,05 1463,27 0 0 0 2630,53
MO,CES 4318,72 2675,23 3524,47 4922,52 3615,82 2260,77 2198,93 14914,77

α1 1,75 1,75 1,75 1,75
α2 0,5 0,75 1 1,5
Rép. Tchèque 99,65 68,89 0 64,95
Danemark 305,63 158,34 86,07 139,18
Espagne 1449,09 1368,07 1776,86 8988,98
France 0 0 202,40 959,87
Lettonie 214,77 73,49 8,73 0
Lituanie 0 0 0 0
Luxembourg 54,25 5,39 0 0
Pays-Bas 85,53 0 0 0
Slovaquie 0 0 0 0
Finlande 732,35 387,68 261,25 314,78
Suède 474,05 146,51 46,44 84,31
Royaume Uni 0 0 0 747,42
MO,CES 3415,32 2208,37 2381,74 11299,50

TABLE 5.14 – Scores en output CES-CET pour β = 0, 75
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α1 0,5 0,5 0,5 0,5 0,75 0,75 0,75 0,75
α2 0,75 1 1,5 1,75 0,5 1 1,5 1,75
Rép. Tchèque 525,06 336,04 0 0 974,47 248,53 0 0
Danemark 445,47 294,78 69,89 12,10 845,69 294,68 74,68 19,72
Espagne 1975,96 1933,22 1809,59 1739,87 2131,23 1924,60 1786,38 1715,32
France 0 0 0 0 0 0 0 0
Lettonie 363,77 205,94 55,34 15,19 733,60 202,90 41,90 1,21
Lituanie 537,07 354,04 168,27 95,42 923,78 277,97 103,53 76,42
Luxembourg 41,31 9,32 0 0 184,23 9,32 0 0
Pays-Bas 86,30 0 0 0 387,95 0 0 0
Slovaquie 431,60 276,31 0 0 846,46 205,74 0 0
Finlande 772,77 599,86 376,77 299,00 1177,01 596,66 361,99 281,47
Suède 567,68 390,29 139,42 85,22 971,18 387,17 123,36 77,38
Royaume Uni 0 0 0 0 287,57 0 0 0
MO,CES 5746,98 4399,82 2619,28 2246,80 9463,17 4147,56 2491,83 2171,52

α1 1 1 1 1 1,5 1,5 1,5 1,5
α2 0,5 0,75 1,5 1,75 0,5 0,75 1 1,75
Rép. Tchèque 974,47 481,72 0 0 670,10 470,69 162,48 1,81
Danemark 845,69 445,47 73,19 45,56 845,69 445,47 293,40 62,35
Espagne 2131,23 1968,88 1973,72 2091,75 2131,23 1957,42 1875,95 3600,66
France 0 0 0 0 0 0 0 0
Lettonie 733,60 331,35 33,58 0 710,03 318,75 127,08 0
Lituanie 579,85 502,63 61,89 49,53 190,49 190,49 190,49 4,74
Luxembourg 184,23 41,31 0 0 184,23 41,31 9,32 0
Pays-Bas 387,95 86,30 0 0 387,95 86,30 0 0
Slovaquie 664,25 392,91 0 0 248,30 248,30 144,78 0
Finlande 1177,01 753,00 353,13 284,01 1177,01 724,82 516,50 296,96
Suède 971,18 524,87 114,75 79,07 971,18 503,28 262,24 93,20
Royaume Uni 287,57 0 0 0 287,57 0 0 196,17
MO,CES 8937,03 5528,45 2610,26 2549,92 7803,79 4986,84 3582,25 4255,89

α1 1,75 1,75 1,75 1,75
α2 0,5 0,75 1 1,5
Rép. Tchèque 480,79 468,93 155,06 0
Danemark 845,69 445,47 292,79 59,05
Espagne 2131,23 1951,40 1857,87 2996,95
France 0 0 0 0
Lettonie 538,09 316,61 119,43 9,09
Lituanie 84,43 84,43 84,43 14,54
Luxembourg 184,23 41,31 9,32 0
Pays-Bas 387,95 86,30 0 0
Slovaquie 129,50 129,50 129,50 0
Finlande 1177,01 715,64 488,32 323,42
Suède 971,18 497,72 244,30 86,09
Royaume Uni 287,57 0 0 0
MO,CES 7217,68 4737,31 3381,02 3489,15

TABLE 5.15 – Scores en output CES-CET pour β = 1
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α1 0,5 0,5 0,5 0,5 0,75 0,75 0,75 0,75
α2 0,75 1 1,5 1,75 0,5 1 1,5 1,75
Rép. Tchèque 1228,40 859,14 610,12 500,31 1741,91 849,55 509,13 431,31
Danemark 1138,37 762,20 491,92 383,69 1665,75 762,20 491,62 382,69
Espagne 2615,13 2457,24 2347,99 2285,25 2800,87 2456,68 2338,37 2270,39
France 0 0 0 0 0 0 0 0
Lettonie 798,41 495,96 258,46 186,96 1304,13 495,96 256,00 180,21
Lituanie 1086,15 745,09 488,72 391,55 1542,38 736,14 432,86 376,05
Luxembourg 193,35 74,13 14,43 0 506,58 74,13 14,43 0
Pays-Bas 487,52 221,35 0 0 965,73 221,35 0 0
Slovaquie 952,54 624,92 362,77 270,94 1468,69 615,89 361,12 266,40
Finlande 1228,38 892,14 646,44 554,91 1731,98 892,14 644,73 550,53
Suède 1101,73 761,35 499,30 402,54 1616,48 761,35 497,40 397,54
Royaume Uni 701,68 0 0 0 1291,31 0 0 0
MO,CES 11531,67 7893,52 5720,15 4976,16 16635,81 7865,40 5545,65 4855,12

α1 1 1 1 1 1,5 1,5 1,5 1,5
α2 0,5 0,75 1,5 1,75 0,5 0,75 1 1,75
Rép. Tchèque 1741,91 1228,40 422,21 303,29 1443,68 1228,40 840,07 152,10
Danemark 1665,75 1138,37 491,27 381,59 1665,75 1138,37 762,20 379,22
Espagne 2800,87 2615,13 2325,44 2251,78 2800,87 2615,13 2453,53 2210,26
France 0 0 0 0 0 0 0 0
Lettonie 1304,13 798,41 254,92 177,14 1278,50 798,41 485,06 159,93
Lituanie 1177,54 1086,15 366,32 280,09 676,04 676,04 676,04 201,10
Luxembourg 506,58 193,35 14,43 0 506,58 193,35 74,13 0
Pays-Bas 965,73 487,52 0 0 965,73 487,52 221,35 0
Slovaquie 1276,40 952,54 297,13 235,24 766,29 766,29 608,00 0
Finlande 1731,98 1228,38 643,71 547,85 1731,98 1228,38 883,74 545,29
Suède 1616,48 1101,73 496,42 394,88 1616,48 1101,73 746,80 351,32
Royaume Uni 1291,31 701,68 0 0 1291,31 701,68 0 0
MO,CES 16078,67 11531,67 5311,85 4571,85 14743,20 10935,30 7750,92 3999,21

α1 1,75 1,75 1,75 1,75
α2 0,5 0,75 1 1,5
Rép. Tchèque 1241,67 1228,40 839,25 314,59
Danemark 1665,75 1138,37 762,20 490,04
Espagne 2800,87 2615,13 2452,37 2280,42
France 0 0 0 0
Lettonie 1082,84 798,41 483,94 187,12
Lituanie 505,29 505,29 505,29 309,69
Luxembourg 506,58 193,35 74,13 14,43
Pays-Bas 965,73 487,52 221,35 0
Slovaquie 587,68 587,68 587,68 221,63
Finlande 1731,98 1228,38 880,70 608,34
Suède 1616,48 1101,73 744,70 384,92
Royaume Uni 1291,31 701,68 0 0
MO,CES 13996,17 10585,95 7551,61 4811,19

TABLE 5.16 – Scores en output CES-CET pour β = 1, 5
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α1 0,5 0,5 0,5 0,5 0,75 0,75 0,75 0,75
α2 0,75 1 1,5 1,75 0,5 1 1,5 1,75
Rép. Tchèque 1485,46 1104,76 770,60 666,71 1969,86 1104,76 700,22 612,62
Danemark 1417,83 1023,98 665,52 555,94 1914,44 1023,98 665,52 555,68
Espagne 2793,24 2639,15 2484,90 2425,96 2954,85 2639,15 2479,37 2416,24
France 0 0 0 0 0 0 0 0
Lettonie 994,83 654,51 352,53 269,41 1506,06 654,51 352,53 267,31
Lituanie 1298,45 934,11 606,67 507,27 1743,87 934,11 565,21 495,61
Luxembourg 293,37 128,50 28,80 15,92 666,88 128,50 28,80 15,92
Pays-Bas 680,08 374,35 82,01 0 1181,07 374,35 82,01 0
Slovaquie 1164,86 805,69 479,85 382,56 1674,10 805,69 479,85 381,24
Finlande 1428,56 1065,20 746,25 652,04 1914,72 1065,20 746,25 650,82
Suède 1321,13 953,79 622,98 523,30 1820,02 953,79 622,98 521,90
Royaume Uni 1155,82 570,54 0 0 1682,75 570,54 0 0
MO,CES 14033,62 10254,58 6840,10 5999,11 19028,61 10254,58 6722,73 5917,35

α1 1 1 1 1 1,5 1,5 1,5 1,5
α2 0,5 0,75 1,5 1,75 0,5 0,75 1 1,75
Rép. Tchèque 1969,86 1485,46 640,77 512,21 1690,74 1485,46 1104,76 403,62
Danemark 1914,44 1417,83 665,52 555,39 1914,44 1417,83 1023,98 554,77
Espagne 2954,85 2793,24 2471,94 2404,06 2954,85 2793,24 2639,15 2376,92
France 0 0 0 0 0 0 0 0
Lettonie 1506,06 994,83 352,53 266,36 1480,89 994,83 654,51 251,15
Lituanie 1389,36 1298,45 515,64 412,02 877,07 877,07 877,07 344,49
Luxembourg 666,88 293,37 28,80 15,92 666,88 293,37 128,50 15,92
Pays-Bas 1181,07 680,08 82,01 0 1181,07 680,08 374,35 0
Slovaquie 1487,62 1164,86 430,76 354,26 973,22 973,22 805,69 265,40
Finlande 1914,72 1428,56 746,25 650,08 1914,72 1428,56 1065,20 649,37
Suède 1820,02 1321,13 622,98 521,16 1820,02 1321,13 953,79 484,67
Royaume Uni 1682,75 1155,82 0 0 1682,75 1155,82 570,54 0
MO,CES 18487,61 14033,62 6557,19 5691,46 17156,64 13420,60 10197,54 5346,31

α1 1,75 1,75 1,75 1,75
α2 0,5 0,75 1 1,5
Rép. Tchèque 1498,22 1485,46 1104,76 570,12
Danemark 1914,44 1417,83 1023,98 665,52
Espagne 2954,85 2793,24 2639,15 2446,09
France 0 0 0 0
Lettonie 1286,42 994,83 654,51 297,95
Lituanie 693,56 693,56 693,56 474,20
Luxembourg 666,88 293,37 128,50 28,80
Pays-Bas 1181,07 680,08 374,35 82,01
Slovaquie 784,30 784,30 784,30 374,28
Finlande 1914,72 1428,56 1065,20 720,76
Suède 1820,02 1321,13 953,79 540,73
Royaume Uni 1682,75 1155,82 570,54 0
MO,CES 16397,21 13048,17 9992,64 6200,45

TABLE 5.17 – Scores en output CES-CET pour β = 1, 75
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b) β1 ∈ {0, 75; 1; 1, 5; 1, 75} et β2 = 0, 5,

c) β1 = 0, 75 et β2 ∈ {1; 1, 5; 1, 75},

d) β1 ∈ {1; 1, 5; 1, 75} et β2 = 0, 75,

e) β1 = 1 et β2 ∈ {1, 5; 1, 75},

f) β1 ∈ {1, 5; 1, 75} et β2 = 1,

g) β1 ∈ {1, 5; 1, 75} et β2 ∈ {1, 5; 1, 75},

Pour les cas (a) et (b), on dénombre 3 unités de production efficaces. Les pays efficientes sont

identiques relativement aux deux situations, à savoir la France, les Pays-Bas et le Royaume-Uni.

Pour (c) et (d), on peut constater que le premier cas recense deux unités efficientes (la France et le

Royaume-Uni) tandis que le second ne fait apparaître qu’un seul pays performant (la France). Les

situations (e), (f) et (g), quant à elles, ne dénombrent que la France comme unité de production

efficace.

Néanmoins, nous remarquons que le constat évoqué ci-dessus est valable si α < 1. En effet,

lorsque le paramètre est supérieur à 1, nous observons des écarts assez conséquents relativement

aux scores de performance mais également une différence par rapport au nombre et à l’identité

des unités de production efficaces. Notons également que plus la valeur de α augmente, plus les

mesures de performance positives s’accroissent. Ainsi, le paramètre α conduit à une déformation

de la frontière efficiente telle que plus la valeur de celle-ci est grande, plus la distance à la frontière

augmente également.

Grâce aux résultats des indicateurs d’ajustement, nous pouvons identifier les meilleurs rende-

ments d’échelle spécifiques. Les cinq premiers tableaux permettent de produire le tableau récapi-

tulatif suivant :

Le tableau 5.18 montre que l’indicateur d’ajustement axé sur les intrants est le plus faible pos-

sible pour α = 0, 5 et (β1, β2) ∈

{(

3

4
,
1

2

)

,

(

1,
1

2

)

,

(

3

2
,
1

2

)

,

(

7

4
,
1

2

)}

. Ainsi, les rendements

d’échelle spécifiques relatifs aux outputs 1 et 2, pour chaque couple (β1, β2), sont les suivants :

(γ1, γ2) ∈

{(

2

3
, 1

)

,

(

1

2
, 1

)

,

(

1

3
, 1

)

,

(

2

7
, 1

)}

. Ces résultats démontrent que l’indicateur mi-

nimal est obtenu lorsque les rendements d’échelle par rapport à l’output 1 et à l’output 2 sont

respectivement décroissants et constants.
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α 0,5
❍

❍
❍
❍
❍

β2

β1 0,5 0,75 1 1,5 1,75

0,5 - 1028,66 1028,66 1028,66 1028,66
0,75 2640,44 - 4236,31 4335,33 4335,33
1 2994,02 5612,64 - 7677,22 7705,54
1,5 3042,75 5998,55 9008,61 - 11651,15
1,75 3042,75 6003,64 9008,61 12045,67 -

α 0,75
❍

❍
❍
❍
❍

β2

β1 0,5 0,75 1 1,5 1,75

0,5 - 3080,71 3079,25 3226,09 3287,21
0,75 2894,30 - 3681,92 3681,92 3681,92
1 3839,99 5937,10 - 7660,24 7697,21
1,5 4104,15 6884,67 9281,10 - 12081,09
1,75 4156,25 6958,99 9365,17 12317,67 -

α 1
❍

❍
❍
❍
❍

β2

β1 0,5 0,75 1 1,5 1,75

0,5 - 5408,94 5378,95 5827,23 5976,95
0,75 5116,82 - 4860,34 4957,76 5000,75
1 4587,31 5345,46 - 6308,63 6308,63
1,5 5452,86 6833,29 9192,29 - 11715,12
1,75 5749,77 6950,48 9427,44 11889,57 -

α 1,5
❍

❍
❍
❍
❍

β2

β1 0,5 0,75 1 1,5 1,75

0,5 - 10502,48 7641,05 8395,43 8901,54
0,75 12078,47 - 7438,07 7917,35 8246,75
1 9429,20 9231,26 - 7766,05 8005,59
1,5 7160,07 7048,83 7788,64 - 9834,49
1,75 8005,69 7514,94 8239,11 11259,19 -

α 1,75
❍

❍
❍
❍
❍

β2

β1 0,5 0,75 1 1,5 1,75

0,5 14883,72 9711,90 8592,75 9410,62
0,75 15449,75 9572,35 8190,88 8807,03
1 11486,38 11397,70 8277,03 8739,83
1,5 7523,58 7509,46 7470,73 8705,53
1,75 8134,77 7932,00 7659,08 10379,10

TABLE 5.18 – Indicateurs d’ajustement en input

Tableaux 5.13, 5.14, 5.15, 5.16, 5.17 Nous observons que contrairement aux résultats de la

mesure axée sur les inputs, hormis certains cas, les scores orientées en output ne montrent pas de

similitude selon les différentes valeurs prises par β. En effet, nous constatons que les scores de per-

formance non-nuls et les unités de production efficaces, sont différents pour chaque combinaison

des paramètres sauf dans certains situations. Cependant, nous remarquons que plus la valeur de
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β s’accroît, plus les mesures de performance positives augmentent. Par ailleurs, cette hausse des

scores engendre une diminution du nombre de pays efficaces.

Le tableau 5.19 montre que lorsque β = 0, 5 et (α1, α2) =

(

1

2
,
3

4

)

alors, l’indicateur d’ajus-

tement est minimal. Ce résultat indique que les rendements d’échelle spécifiques optimaux sont

respectivement γ1 = 1 et γ2 =
2

3
tels que ceux relatifs à l’input 1 et à l’input 2 sont respectivement

constants et décroissants.
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β 0,5
❍
❍
❍
❍
❍

α2

α1 0,5 0,75 1 1,5 1,75

0,5 - 1137,27 1013,71 932,89 899,16
0,75 891,56 - 1384,95 1789,37 1820,95
1 1091,10 2267,67 - 11289,40 15300,17
1,5 1729,91 5781,43 15097,07 - 113743,61
1,75 1999,43 6996,51 22424,41 146710,13 -

β 0,75
❍
❍
❍
❍
❍

α2

α1 0,5 0,75 1 1,5 1,75

0,5 - 4718,72 4318,72 3615,82 3415,32
0,75 3068,97 - 2675,23 2260,77 2208,37
1 2169,59 2041,74 - 2198,93 2381,74
1,5 1634,89 2387,02 3524,47 - 11299,50
1,75 1696,94 2892,57 4922,52 14914,77 -

β 1
❍
❍
❍
❍
❍

α2

α1 0,5 0,75 1 1,5 1,75

0,5 - 9463,17 8937,03 7803,79 7217,68
0,75 5746,98 - 5528,45 4986,84 4737,31
1 4399,82 4147,56 - 3582,25 3381,02
1,5 2619,28 2491,83 2610,26 - 3489,15
1,75 2246,80 2171,52 2549,92 4255,89 -

β 1,5
❍
❍
❍
❍
❍

α2

α1 0,5 0,75 1 1,5 1,75

0,5 - 16635,81 16078,67 14743,20 13996,17
0,75 11531,67 - 11531,67 10935,30 10585,95
1 7893,52 7865,40 7750,92 7551,61
1,5 5720,15 5545,65 5311,85 - 4811,19
1,75 4976,16 4855,12 4571,85 3999,21 -

β 1,75
❍
❍
❍
❍
❍

α2

α1 0,5 0,75 1 1,5 1,75

0,5 - 19028,61 18487,61 17156,64 16397,21
0,75 14033,62 - 14033,62 13420,60 13048,17
1 10254,58 10254,58 - 10197,54 9992,64
1,5 6840,10 6722,73 6557,19 - 6200,45
1,75 5999,11 5917,35 5691,46 5346,31 -

TABLE 5.19 – Indicateur d’ajustement en output
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Conclusion

Ce dernier chapitre applique la théorie des rendements d’échelle α à la mesure non-linéaire

présentée dans le chapitre 3. En effet, la structure particulière de celle-ci permet de l’implanter

dans le modèle à rendements d’échelle α de Boussemart et al. (2009). Nous pouvons voir que

lorsque l’on considère une situation globale où tous les inputs varient dans une même proportion

et où tous les outputs fluctuent dans une autre même proportion, il existe un rendement d’échelle

global relatif à l’ensemble du processus de production (Boussemart et al. (2009), Boussemart et

al. (2018)). Cependant, lorsque chaque intrant et chaque extrant sont modifiés différemment, on ne

peut fournir un rendement d’échelle global à la totalité du processus productif. En effet, dans ce

cas, nous obtenons le rendement d’échelle relatifs à chaque facteur et à chaque produit. L’exemple

numérique nous montre que les rendements d’échelle impactent fortement la performance des

entités de production. Les propositions faites dans ce chapitre ne sont qu’une partie des extensions

possibles de la fonction de distance directionnelle CES-CET.
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Ces travaux introduisent de nouvelles mesures d’efficacité relatives à l’économie de la produc-

tion. Ces nouveaux outils sont des réponses éventuelles aux difficultés rencontrées avec les outils

traditionnels, proposés dans la littérature. Par ailleurs, nous démontrons que ces mesures s’insèrent

dans les diverses méthodes d’analyse de la performance notamment, l’appréciation de la produc-

tivité des firmes et l’étude de l’influence des rendements d’échelle sur l’efficience des entités de

production.

Nous exposons notre positionnement économique dans l’introduction générale. En effet, nous

nous plaçons dans la lignée des écoles de pensées classique et néoclassique. En ce sens, nous

supposons que l’objectif des entités de production est la recherche de l’efficience. Par ailleurs,

nous admettons que les résultats que nous proposons ne tient pas compte des interventions de

l’Etat, que ce soit à l’échelle des firmes ou sur les marchés. Afin de pouvoir mieux appréhender

les apports théoriques de ce travail, nous relatons dans le premier chapitre, les outils d’analyse

traditionnels existant dans la littérature. Nous définissons tout d’abord, les concepts de technologie

de production, de correspondance en inputs et en outputs. Ces notions sont les bases de toute

analyse en économie de la production puisque les mesures de performance sont définies dans le

cadre des hypothèses relatives aux ensembles de production. Ensuite, nous présentons les fonctions

de distance fréquemment rencontrées dans la littérature à savoir, les mesures de Debreu( 1951)-

Farrell(1957), de Shephard (1953), la fonction de distance directionnelle (Luenberger (1992b),

Chambers et al. (1996a)) et la fonction de distance proportionnelle de Farrell (Briec (1997)). Enfin,

nous exposons les diverses mesures de productivité relatives aux fonctions de distance présentées

auparavant. Nous définissons d’abord les indices de Malmquist (Caves et al. (1982a, 1982b) et les

indicateurs de Luenberger (Chambers et al. (1996b)). Puis nous présentons les extensions de ces

mesures de productivité à savoir, les indices de Hicks-Moorsteen (Diewert (1992a, 1992b)) et les
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indicateurs de Luenberger-Hicks-Moorsteen (Briec et Kerstens (2004)). Cette revue de littérature

chronologique n’est pas exhaustive mais contribue à la compréhension des apports théoriques,

exposés dans les chapitres restants.

Le deuxième chapitre de ces travaux est consacré à la proposition d’une mesure de distance

exponentielle. Celle-ci est de nature log-additive telle que, dans ce cas, nous obtenons une fonction

structurellement similaire à la fonction de distance directionnelle. En effet, nous pouvons avancer

qu’il existe des firmes qui ont des productivités marginales strictement croissantes (par exemple le

secteur de la nouvelle technologie) ou strictement décroissante (par exemple les entreprises ayant

un monopole naturel). Cette mesure de performance s’adresse à ce type d’unités productives. A

cet effet, nous présentons cette fonction selon une orientation dans le graphe (respectivement en

input et en output). Nous explorons également la théorie de la dualité qui nous amène à définir

des pseudo fonctions de coût, de revenu et de profit non-linéaires. Ces fonctions possèdent cette

structure non-linéaire lorsqu’il existe des facteurs internes et/ou externes qui influencent les coûts,

le revenu ou le profit des firmes. Ce cas peut également survenir lorsqu’il y a un lien non-constant

entre la production et les intrants. Cette relation duale nous permet de déduire des fonctions de

prix implicites grâce au théorème de l’enveloppe. Ces fonctions de prix ajustés correspondent aux

prix lorsque la firme est efficiente au sens de Pareto-Koopmans. Par ailleurs, nous relions la notion

de rendements d’échelle à la mesure de distance exponentielle tel que nous obtenons une analogie

avec les fonctions de production de type Cobb-Douglas. De ce fait, nous pouvons déterminer les

rendements d’échelle spécifiques de chaque facteur relativement à chaque produit.

Dans le troisième chapitre de ces travaux, nous définissons une mesure de performance non-

linéaire de type CES-CET. Cette fonction hérite de la structure de la mesure de distance direc-

tionnelle (Luenberger (1992b), Chambers et al. (1996a)) et celle de la technologie de production

CES-CET (Färe et al. (1988)). En effet, celle-ci coïncide avec la mesure de distance directionnelle,

dans un cas particulier. Nous la présentons dans un cadre orienté que ce soit en input, en output

ou dans le graphe. Nous constatons que cette fonction est équivalente aux mesures de distance

radiales de Shephard (1953) et de Debreu(1951)-Farrell(1957), sous certaines conditions. Nous

explorons la propriété relative à la translation homothéticité que la fonction vérifie. Nous abordons

également la théorie de la dualité telle que nous obtenons des pseudo fonctions de coût, de revenu

et de profit non-linéaires. Grâce au Lemme dual de Shephard, nous en déduisons des fonctions de
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prix ajustés non-linéaires qui peuvent survenir lorsque des tarifications non-linéaires sont appli-

quées. Ces prix correspondent aux prix lorsque l’efficience de Pareto est atteinte. La fonction de

distance directionnelle CES-CET est également définie dans un cadre non-paramétrique grâce à la

méthode DEA telle que nous supposons que la technologie de production est de type CES-CET.

Enfin, un exemple numérique est présenté dans le chapitre afin d’illustrer les notions définies au-

paravant. Nous constatons que lorsque nous estimons la mesure dans un ensemble de production

CES-CET, le nombre d’unités de production efficaces est supérieur au nombre d’entités de pro-

duction efficientes dans une technologie DEA classique. Dans ce cas, nous avons la confirmation

que la technologie non-linéaire permet d’apprécier l’efficience des unités productives ayant des

productivités marginales strictement croissantes ou décroissantes. En effet, celles-ci sont négligées

dans l’approche standard tel qu’elles peuvent être considérées comme étant inefficientes.

Nous proposons une extension de la mesure de performance exponentielle dans le chapitre

quatre de ces travaux. En effet, sachant que la productivité d’une firme est liée à sa performance,

nous proposons de mesurer les variations de la productivité grâce à la fonction de distance expo-

nentielle. Puisque celle-ci est log-additive, nous mettons en relation la mesure d’efficacité exponen-

tielle et les indicateurs de productivité de Luenberger (Chambers et al. (1996b)) et de Luenberger-

Hicks-Moorsteen (Briec et Kerstens (2004)). Nous les présentons selon une orientation dans le

graphe (respectivement en input et en output). Nous observons que dans ce cas, la structure des

mesures de productivité ne changent pas. De plus, nous proposons une décomposition de ces me-

sures de productivité en deux composantes distinctes à savoir, le changement d’efficacité entre

deux périodes et, la mutation technologique. Nous constatons que l’estimation des mesures de dis-

tance croisées par rapport à deux périodes consécutives peut amener à une définition dynamique de

celles-ci. Cette nouvelle formulation conduit à l’apparition d’un nouveau paramètre qui représente

les contraintes internes et externes influençant la performance des firmes. Effectivement, malgré

la recherche active de l’efficacité, les entités de production peuvent se heurter à des difficultés in-

ternes (par exemple les syndicats) et/ou externes (par exemple les contraintes du marché), quant à

la mise en place de leurs stratégies. Enfin, nous illustrons nos apports théoriques dans la dernière

section du chapitre.

Le dernier chapitre de ces travaux est consacré à l’extension de la mesure de distance direc-

tionnelle CES-CET à la notion de rendements d’échelle α (Boussemart et al. (2009)). En effet,
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nous admettons que lorsque cette fonction de distance est estimée dans le cadre d’une technologie

de production CES-CET, nous pouvons étendre l’analyse économique au modèle de rendements

d’échelle optimaux α. Ce dernier a été proposé par Boussemart et al. (2009) en s’inspirant de l’en-

semble de production CES-CET de Färe et al. (1988). Les travaux de Boussemart et al. (2018)

démontrent que dans un objectif d’extrapolation minimale, la notion de rendements d’échelle α

conduit à la détermination d’un rendement d’échelle optimal qui est global à l’ensemble des firmes.

Celui-ci permet au plus grand nombre des entités de production d’être efficaces ou bien, d’être les

moins inefficientes possible. Nous adoptons cette démarche dans le cadre de notre fonction de dis-

tance directionnelle CES-CET. Nous montrons également que nous pouvons identifier ces rende-

ments d’échelle optimaux de manière non-paramétrique, grâce à la méthode de grille de recherche

lorsque l’ensemble de production considéré est de type CES-CET. De plus, lorsque la technologie

de production est de type FDH (Deprins (1984), Tulkens (1993)), nous pouvons déduire ceux-ci

par une méthode énumérative. Nous étendons les travaux de Boussemart et al. (2009) à la notion de

rendements d’échelle spécifiques optimaux. En effet, nous considérons que chaque facteur contri-

bue différemment à la production de chaque produit lorsque la production est multi-output. Dans ce

cas, nous ne pouvons fournir un rendement d’échelle global quant à l’ensemble du processus pro-

ductif. Néanmoins, nous pouvons identifier les rendements d’échelle spécifiques à chaque intrant

et à chaque extrant qui permettent aux firmes d’être les moins inefficaces possibles. Dans certains

cas particuliers, nous pouvons retrouver ceux-ci grâce à la méthode de grille de recherche lorsque

l’on considère un ensemble de production CES-CET. Sous certaines conditions, une identification

par énumération peut être réalisée lorsque nous retenons une technologie de production FDH.

Nous pouvons constater que les apports théoriques de cette thèse peuvent paraître incomplets au

regard des nouvelles mesures de performances proposées. En effet, nous n’explorons que les pro-

priétés traditionnelles et non-exhaustives, de celles-ci. Nous proposons également des extensions

possibles à ces mesures d’efficacité. Ainsi, les futures recherches peuvent se porter sur l’appro-

fondissement des propriétés de ces nouvelles fonctions de distance (exponentielle et directionnelle

CES-CET). D’une part, il serait intéressant d’étudier la propriété de translation homothéticité de la

mesure exponentielle de sorte qu’il serait possible de mettre en lumière des relations d’équivalence

entre les indices et les indicateurs de productivité. D’autre part, proposer des mesures de producti-

vité basées sur les fonctions de distance directionnelles CES-CET serait une extension possible de
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ces mesures de performance.
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Annexe 1 : Présentation des Données

Les données utilisées dans ces travaux proviennent de la base de données de l’office de statis-

tique rattaché à l’Union Européenne "Eurostat". Celles-ci concernent les productions céréalières

de l’année 2008 et de l’année 2009. Deux inputs et deux outputs ont été sélectionnés, à savoir :

— input 1 : surface agricole utilisée (SAU) exprimée en milliers d’hectares (1000ha ou Kha),

— input 2 : le prix moyen des surfaces agricoles utilisées (Prix SAU) manifesté en milliers

d’euros par hectare (1000e/ha ou Ke/ha),

— output 1 : la production en quantité exprimée en milliers de tonnes (1000T ou KT),

— output 2 : la production en volume manifestée en milliers d’euros (1000e ou Ke).

Les grandeurs statistiques relatives à ces données sont exposées dans les tableaux ci-dessous.

Grandeurs Minimum Moyenne Maximum Ecart-type
Prix des SAU 1075,07 11842,48 40916 12427,17
SAU 31,1 2308,55 9662,2 2813,59
Production 189,7 13096,28 70246 18896,97
Production en valeur 10,83 631,17 3438,11 959,81

TABLE 5.20 – Description des données en 2008

Grandeurs Minimum Moyenne Maximum Ecart-type
Prix des SAU 971,39 47 051,00 11735,64 13226,28
SAU 30,40 9 381,20 2205,55 2665,16
Production 188,6 69999,9 12331,85 18489,63
Production en valeur 10,13 3 653,93 642,7925 989,02

TABLE 5.21 – Description des données en 2009
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Mathématiques

Notations

Dans cette section, nous présentons quelques notations mathématiques utilisées dans ces tra-

vaux :

• N : ensemble des entiers naturels.

• R : ensemble des nombres réels.

• R
s : espace Euclidien de dimension s.

• k ∈ [s] : k = 1, · · · , s←→ k ∈ [s].

• 11s : matrice identité ayant s éléments.

• k ∈ S : k = 1, · · · , S ⇐⇒ k ∈ S.

• ∇xf(x, y) : différentiel de la fonction f(x, y) par rapport à la variable x.

Notions

Monotonicité : Une fonction monotone est une fonction ayant un sens de variation constant. Elle

est soit croissante soit décroissante. Cet affirmation peut être stricte. Ainsi, une fonction f définie

sur Df est croissante si ∀(x1, x2) ∈ D2
f avec x1 ≥ x2 on a, f(x1) ≥ f(x2). Elle est décroissante si

∀(x1, x2) ∈ D
2
f avec x1 ≥ x2 on a, f(x1) ≤ f(x2).

Ensemble convexe : Un ensembleE est convexe si Pour tout (x1, x2) ∈ E et Pour tout λ ∈ [0, 1]

on a, (λx1, (1− λ)x2) ∈ E.
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Quasi-convexité : Une fonction f définie sur Df est quasi-convexe si ∀(x1, x2) ∈ D2
f et ∀λ ∈

[0, 1] on a, f (λx1, (1− λ)x2) ≤ max
{

f(x1), f(x2)
}

.

Isomorphisme : Soient deux espaces vectoriels E et F . Une application f de E dans F est iso-

morphe si elle est linéaire et bijective. Elle admet une réciproque f−1 telle que f et f−1 préservent

la structure algébrique.
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RÉSUMÉ

Ces travaux proposent deux nouvelles mesures de l’efficience. La première est une fonction

de distance log-additive qui peut être orientée soit en input, soit en output, soit dans le graphe.

Celle-ci est duale à des pseudo fonctions de coût, de revenu et de profit non-linéaires. Cette struc-

ture des fonctions, indique une relation non-constante entre les intrants et les extrants. Cet outil de

mesure de l’efficacité peut servir à estimer la variation de la productivité dans le temps. A cet effet,

nous proposons des indicateurs de productivité, de type Luenberger (Chambers, Färe et Grosskopf

(1996)) et Luenberger-Hicks-Moorsteen (Briec et Kerstens (2004)), exponentiels. La seconde me-

sure, est une fonction de distance non-linéaire structurellement inspiré des fonctions CES (Solow

(1956)) et CET (Powell et Gruen (1968)). La théorie de la dualité amène à présenter des fonctions

de coût, de revenu et de profit non-linéaires. De ce fait, des fonctions de prix ajustés non-linéaires

en sont déduites. Une telle structure des prix peut être rencontrée lorsque les unités productives

font face à des tarifications non-linéaires en interne et, en externe. Nous appliquons cette nouvelle

mesure de l’efficacité au modèle de rendements d’échelle α (Boussemart, Briec, Peypoch et Tavéra

(2009)). En effet, ce modèle permet d’estimer l’influence des rendements d’échelle sur l’efficacité.

This thesis aims to present two efficiency measures. First, a log-additive distance function is

introduced. It is dual to non-linear pseudo cost, revenue and profit functions. This structure means

that the relation between factors and products is not constant. Moreover, exponential Luenberger

(Chambers, Färe and Grosskopf (1996)) and Luenberger-Hicks-Moorsteen (Briec and Kerstens

(2004)) indicators are proposed. Second, a non-linear distance function is defined. It inherits the

structure of CES (Solow (1956)) and CET (Powell and Gruen (1968))functions. The duality theory

allows to present non-linear cost, revenue and profit functions. In this sense, non-linear adjusted

price functions are deduced. Non-linear prices occur when the production unit faces internal and/or

non-linear tariffs. The α-returns to scale model (Boussemart, Briec, Peypoch and Tavéra (2009)) is

applied to this new non-linear efficiency measure. Indeed, it is shown that returns-to-scale impact

efficiency of production units.


