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Introduction Générale

La science économique est une notion qui concentre plusieurs définitions selon les auteurs.
Etymologiquement, 1’expression "économie" a pour origine le mot grec oikonomia qui signifie
"administrer la maison". Ainsi, Robbins (1932) indique que 1’économie est "la science qui étudie
le comportement humain comme une relation entre des fins et des moyens rares qui ont des usages
alternatifs”. Mankiw (2004), quant a lui, considere que cette science est "I’ étude de la maniére dont
la société gere ses ressources rares.” Nous pouvons dire que cette notion est définie différemment
selon le courant de pensée dans lequel s’insere 1’auteur.

Les prémices de la pensée économique, connus et prouvés, remontent a 1’antiquité. Dans son
ouvrage, Poulalion (1995) stipule que I’absence de traces écrites rend difficile 1’affirmation de
I’existence de réflexions économiques avant I’invention de 1’écriture. Néanmoins, on peut raison-
nablement supposer que I’activité économique existait déja a I’ere de ces civilisation anciennes.
Apres I’apparition de 1’écriture, certaines civilisations ont laissé des preuves témoignant de I’exis-
tence de pensées économiques rudimentaires. On peut citer comme exemples, les civilisations
égyptienne, mésopotamienne, phénicienne ou palestinienne. Poulalion (1995) constate que ces ré-
flexions montrent "la permanence de certains désirs de I’homme : recherche du mieux-étre par
la production et par I’échange, recherche de la justice dans la répartition des ressources et dans
I’échange”. L histoire considere que les précurseurs de la réflexion économique remontent a la
Grece antique avec les écrits de Platon, a travers ses ouvrages relatifs a la politique et a la philoso-
phie. Néanmoins, il est communément admis que 1’économiste écossais Adam Smith est le pere de
la science économique moderne avec son ouvrage intitulé "Recherches sur la nature et les causes
de la richesse des nations"(1776). Certaines idées émises par Adam Smith, ont été reprises et dé-
veloppées par d’autres auteurs tels Ricardo (1817), Malthus (1798), Stuart Mill (1848), etc. Ces

auteurs s’inscrivent dans I’école de pensée classique dont le principe majeur est le libre échange
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suivant une logique d’accumulation de la richesse tel que le capital est la source du surplus. Leurs
théories reposent sur celles de la valeur et des prix tandis que de nouveaux auteurs tels Jevons
(1871), Marshall (1890), Menger (1871) ou Walras (1874), etc., fondent les leurs sur le raisonne-
ment a la marge et I’existence de plusieurs marchés. Ces derniers sont considérés comme €étant les
néo-classiques et font leur apparition vers les années 1870. Les auteurs de cette école de pensée
sont les premiers a illustrer leurs théories a travers un formalisme mathématique notamment Je-
vons (1862). Les économistes classiques et néo-classiques s’intéressent plus particulierement a la
production et a la création de richesse suivant le modele économique capitaliste. Ils admettent que
les Hommes sont parfaitement rationnels puisqu’ils sont capables d’évaluer les avantages et les
inconvénients relatifs a une situation et chacune de leur décision est prise afin de maximiser leur
utilité (homo ceconomicus). Jusqu’a nos jours, il existe d’autres courants de pensée tels le keyné-
sianisme et le monétarisme, etc. Cependant, ces réflexions économiques ne seront pas exposées
dans ces travaux.

On distingue deux branches majeures en sciences économiques, a savoir : la macroéconomie et
la microéconomie. La premiere analyse les principaux agrégats économiques tels I’investissement,
I’épargne, la consommation ou le revenu national. La seconde, quant a elle, étudie le comporte-
ment des agents économiques et leurs interactions. Sont considérés comme étant agent économique
tout individu composant a la fois les ménages et les entreprises. Ces deux branches principales se
déclinent elles-mémes en plusieurs sous-catégories telles I’économie publique, I’économie moné-
taire, I’économie de I’éducation, 1I’économie de la production, I’économie de la consommation,
etc. Dans ces travaux nous nous intéressons a 1’analyse micro-économique a travers I’économie de
la production.

La production est I’activité économique d’une unité institutionnelle qui combine des facteurs
de production ! (travail, capital) afin de les transformer en produits ? (biens, services) s’échangeant
sur un ou plusieurs marchés. L’économie de la production, selon la vision classique et néoclassique,
étudie la maniere d’augmenter la richesse grace a une hausse de I’efficience et de la productivité.
Ces dernieres peuvent étre appréhendées de diverses manieres grace a une baisse des codts, une

hausse des revenus, etc. Dans son ouvrage, Adam Smith (1776) illustre ces concepts par le biais

1. Dans ces travaux, nous utiliserons indifféremment les termes "inputs" et "intrants" pour désigner les facteurs de
production.
2. Les termes "outputs” et "extrants" qualifieront la production dans ces travaux.

2
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de I’'usine d’épingle ou I’application de la division du travail permet un gain de temps dans la
production . Par conséquent, il existe une augmentation de I’efficacité et de la productivité des

ouvriers grice a la spécialisation et la réduction des temps morts >.

Efficacité et Efficience

L’efficacité désigne la réalisation des résultats attendus. En effet, selon McFadden et Fuss
(1978), "la théorie de la production a comme point de départ, un ensemble de possibilités de
processus de production physique, illustré par des fonctions de production ou de transformation.
L’entité de production cherche, ainsi, a atteindre ses objectifs malgré sa technologie limitée et son
environnement économique."”

Fondamentalement, les entités de production cherchent I’efficience. Celle-ci qualifie 1’action
d’atteindre les objectifs fixés avec le minimum de moyens possible. On peut dire que cette défi-
nition rejoint celle de Koopmans (1951) concernant ’efficacité technique. Celui-ci décrit qu’un
producteur est "techniquement efficace si toute augmentation d’un output exige la réduction d’au
moins un autre output ou l’augmentation d’au moins un input, et si toute diminution d’input conduit
a la hausse d’au moins un autre input ou la réduction d’au moins un output. Dans ces travaux, nous
utilisons indifféremment les termes "efficacité", "efficience" et "performance" pour désigner cette
notion. En effet, nous pouvons constater que la définition de I’efficacité technique fournie par
Koopmans (1951) coincide avec celle de I’efficience.

Il existe des outils et des approches, permettant de mesurer 1’efficacité des entités de produc-
tion. Traditionnellement, cette grandeur est évaluée grace a une fonction de production (ou de
transformation) selon une méthode économétrique. Il est a noter qu’une fonction de production
ne peut tenir compte que des technologies de production mono-output. Une approche alternative
a celle-ci a été introduite par Shephard (1953, 1970). En s’inspirant des travaux de Debreu (1951)
et de Farrell (1957), ce dernier présente la fonction de distance radiale qui mesure la distance
entre 1’unité de production et la frontiere efficiente. Cette grandeur peut considérer les processus

de production multi-dimensionnels avec de multiples intrants et de multiples extrants. Par ailleurs,

3. Temps nécessaire correspondant au passage d’une étape de réalisation a une autre dans la réalisation de la
production. II est considéré comme étant une période d’inactivité dans le processus de production.
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cet outil n’exige aucune information sur les prix qui peuvent étre difficiles a appréhender et, il
caractérise parfaitement la technologie de production. Il est alors possible de retrouver 1I’ensemble

productif a partir de la mesure de distance.

La méthode économétrique a certaines limites pratiques et opérationnelles. En effet, celle-ci
requiert le choix a priori d’une forme fonctionnelle qui, doit décrire au mieux les mécanismes
de production de I’entreprise. Par ailleurs, 1’utilisation de I’approche économétrique impose éga-
lement 1’adoption a priori des lois de probabilité inhérentes a 1’étude réalisée. Une alternative a
I’approche économétrique existe. En effet, suite aux travaux de Shephard (1970) et Afriat (1972),
Charnes, Cooper et Rhodes (1978) proposent une méthode d’évaluation non-paramétrique qui re-
pose sur la programmation linéaire. Cette nouvelle approche par 1’enveloppement des données
(Data Envelopment Analysis - DEA), construit la frontiere optimale, linéaire par morceaux, grace
aux entités de productions considérées comme des références (ou benchmark). Celle-ci a I’avantage
de ne requérir aucune forme fonctionnelle a priori. Le modele additif présenté par Charnes et al.
(1978) considere des ensembles de production opérant sous 1’hypothese de rendements d’échelle
constants. Suivant I’approche DEA, Banker, Charnes, Cooper et Schinnar (1981) proposent un
modele log-linéaire par morceaux de la fronticre efficiente. Cette version multiplicative s’inscrit
comme une extension des travaux initiaux de Charnes et al. (1978). En s’inspirant de ces derniers,
Banker, Charnes et Cooper (1984) présentent, quant a eux, un modele additif linéaire par mor-
ceaux sous I’hypothese de rendements d’échelle variables. Dans un souci d’améliorer les propriétés
des technologies de production représentées par ces modeles, Banker et Maindiratta (1986) intro-
duisent un ensemble de production multiplicatif de type Cobb-Douglas. Celui-ci est log-linéaire
par morceaux. Enfin, Féare, Grosskopf et Njinkeu (1988) proposent une technologie de production
non-linéaire, qu’ils nomment 1’ensemble de production CES *-CET . Les auteurs démontrent que
ce modele est la généralisation des technologies de production présentées par Charnes et al. (1978),
Banker et al. (1984) et, Banker et Maindiratta (1986). Deprins, Simar et Tulkens (1984) ainsi que
Tulkens (1993) définissent un autre type de technologie de production nommée "ensemble de pro-

duction FDH" (Free Disposal Hull). Celui-ci se présente sous la forme d’un ensemble de produc-

4. Constant Elasticity of Substitution : la partie relative aux inputs est décrite grace a une fonction CES (Solow
(1956)).

5. Constant Elasticity of Transformation : la partie concernant les extrants est représentée par une fonction CET
(Powell et Gruen (1968)).
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tion non-paramétrique et linéaire par morceaux tel que seule I’hypothese de disponibilité forte est
retenue .

Les travaux de Shephard (1970) permettent de reconstituer les technologies de production grace
a I’estimation des mesures de distance. Nous verrons, par la suite, que selon la nature des fonctions
et de la technologie, il n’est pas évident de caractériser I’ensemble de production lorsque certaines

approches non-paramétriques sont adoptées.

Ensemble de Production et Mesures d’Efficacité

Un ensemble de production représente toutes les combinaisons possibles d’inputs et d’outputs
qui sont faisables. En ce sens, la frontiere de production efficiente correspond la quantité d’outputs
maximale qui est atteignable pour chaque niveau d’inputs. Ainsi, la technologie de production tra-
duit le processus qui permet de transformer les facteurs de production en extrants. Dans ces travaux
nous utilisons indifféremment les termes "technologie de production” et "ensemble de production”
afin de désigner toutes les combinaisons d’intrants et d’extrants qui sont techniquement réalisables.

Comme nous 1’avons mentionné précédemment, les mesures de distance caractérisent parfai-
tement la technologie de production, selon les travaux de Shephard (1970). Les fonctions de She-
phard sont I’inverse des mesures de Debreu(1951)-Farrell(1957). Elles sont de nature multiplica-
tive et sont radiales. Elles permettent d’évaluer, soit la contraction maximale des intrants pour un
niveau donné d’extrants (orientation en inputs), soit I’expansion maximale de la production pour
une quantité donnée de facteurs (orientation en outputs). Luenberger (1992a), dans le contexte de
la théorie du consommateur, introduit la fonction de bénéfice. Il la transpose dans la théorie du pro-
ducteur sous le nom de "shortage function” (Luenberger (1992b)). Outre les orientations en inputs
et outputs, cette nouvelle mesure rend possible la réduction et I’augmentation simultanées des in-
trants et des extrants (orientation dans le graphe). De nature additive, cette fonction est non-radiale
puisqu’elle n’offre pas de mesure proportionnelle. suite aux travaux de Chambers, Chung et Fire
(1996), elle est plus connue sous le nom de "fonction de distance directionnelle”. En s’ inspirant des

travaux de Farrell (1957), Briec (1997) propose une nouvelle mesure dans le graphe qu’il nomme

6. La disponibilité forte signifie que pour une unité de production (z¢,y*) o z* et y* sont les vecteurs d’inputs et
d’outputs, y* peut toujours étre produit par &t tel que &t > z ou ! peut toujours produire §* avec §¢ < y°.
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"fonction de distance proportionnelle de Farrell". En effet, de nature multiplicative, cette fonction
radiale permet la contraction et I’expansion simultanées des inputs et des outputs, contrairement

aux mesures de Debreu(1951)-Farrell(1957) et de Shephard (1970).

Notons que les fonctions de distance sont des mesures d’efficacité technique. Cependant,
lorsque nous souhaitons faire une étude, nous devons répondre aux questions suivantes : "Quelle
technologie de production doit-on choisir?", "Quelle mesure de distance semble la plus appro-
priée ?". Tout d’abord, la technologie de production doit étre choisie suivant plusieurs criteres : le
domaine d’activité, les données analysées, les hypotheses et objectifs des chercheurs. Ensuite, la
fonction de distance doit tenir compte du fait si les entreprises peuvent influencer uniquement leurs
inputs ou leurs outputs ou, les deux a la fois. La littérature démontre que les fonctions de distance
multiplicatives peuvent €tre estimées dans le cadre des technologies linéaires et non-linéaires. En
effet, suivant une approche non-paramétrique, Charnes et al. (1978), Banker et al. (1984), Banker
et Maindiratta (1986), Boussemart, Briec, Peypoch et Tavéra (2009), et, Briec et Liang (2011) ap-
pliquent les mesures de distance radiale dans le cadre des ensembles de production linéaires ou
non-linéaires. Cherchye, Kuosmanen et Post (2011) évaluent, quant a eux, la fonction de distance
directionnelle dans le contexte d’une technologie de type FDH. Ces études ont été réalisées dans

le cadre d’une approche non-paramétrique de type DEA.

Dans ces travaux, le premier chapitre expose plus en détail les mesures de performances évo-
quées précédemment. Les deux chapitres suivants proposent des mesures non-radiales qui
concordent aux technologies de production non-linéaires. En effet, dans un premier temps, nous
présentons une fonction de distance exponentielle qui devient une mesure log-additive grace a une
transformation logarithmique. Nous verrons que 1’évaluation de cette mesure conduit a estimer
la fonction de distance directionnelle lorsque les données ont subi une mutation logarithmique.
Par ailleurs, nous montrerons qu’elle s’insere parfaitement dans un ensemble de production de
type Cobb-Douglas (Banker et Maindiratta (1986)). Dans un second temps, nous introduisons une
mesure de distance non-linéaire CES-CET. De nature additive, celle-ci allie la structure de la tech-
nologie de production CES-CET et celle de la fonction de distance directionnelle. Elle permet
I’estimation de 1’efficacité technique non-radiale dans le contexte d’un ensemble de production
non-linéaire de type CES-CET. La mesure CES-CET rend possible la contraction et 1’expansion

simultanées des intrants et des extrants dans ce genre de modele.
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Notions de Dualité

La dualité représente les relations causales entre les données économiques observables et le
processus de production physique. En ce sens, Fuss et McFadden (1978) écrivent que "Une ap-
proche alternative [a la technologie de production physique] peut cependant étre menée direc-
tement grdce aux données économiques observées (approvisionnement, demande, prix, coiits et
profits)." Le point de départ de la théorie de la dualité en économie de la production est les travaux
de Hotelling (1932). En effet, ce dernier observe qu’il existe une relation entre la variation du profit
et le changement de 1’offre et de la demande. Ces résultats ont été repris par Hicks (1946), Roy
(1942) et Samuelson (1947). Shephard (1953), quant a lui, prouve et donne une formalisation plus
concrete de la relation duale ayant lieu entre le cofit et la production. McFadden (1978) étend les
résultats obtenus par Shephard (1953) tel qu’il démontre I’existence d’une relation duale entre la

fonction de production et les fonctions de profit et de revenu.

D’un point de vue dual, réduire I’utilisation des inputs pour une quantité donnée d’outputs,
signifie baisser les cofits pour un niveau donné de revenu. On se situe ainsi, dans une analyse axée
sur les intrants. De ce fait, les mesures d’efficacité technique orientées en inputs sont duales aux
fonctions de coflit. Suivant la méme raisonnement logique, augmenter la production pour une quan-
tité fixe de facteurs, consiste a accroitre le revenu pour un niveau donné de cofits. Il est évident que
ce type d’étude correspond a une orientation en outputs de sorte que les fonctions de distance axées
sur les extrants sont duales aux fonctions de revenu. Enfin, hausser et diminuer simultanément les
inputs et les outputs indique que 1I’on cherche & maximiser son profit. En ce sens, on peut noter que
I’on se place dans une orientation dans le graphe. Ainsi, on peut en déduire que les mesures de dis-
tance orientées dans le graphe sont duales aux fonctions de profit. Il est alors possible d’exprimer

les mesures de distance a partir des fonctions de colt, de revenu et de profit.

L’existence de la relation duale entre les mesures de distance et les fonctions de coft, de revenu
ou de profit, est conditionnée par la convexité de la technologie de production. Lorsque cette hy-
pothese est vérifiée alors, I’ensemble de production peut étre caractérisée d’un point de vue dual.
Effectivement, la frontiere efficiente est constituée de I’intersection des hypersurfaces ou hyper-
plans que représentent les fonctions de cofit, de revenu ou de profit. Généralement, dans la littéra-

ture, nous observons que ces dernieres ont une structure linéaire (hyperplan). En effet, les auteurs

7
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avancent que ces fonctions doivent étre homogenes de degré 17. Cependant, McFadden (1978)
note que ces dernieres peuvent étre non-linéaires (hypersurface) lorsque des facteurs internes et/ou
externes influencent les colits, les revenus et le profit des unités de production.

Le Lemme de Shephard stipule que les différentiels des fonctions de cofit, de revenu et de pro-
fit permettent d’obtenir les fonctions de demande et d’offre conditionnelles. Par ailleurs, selon le
Lemme dual de Shephard et le théoréeme de I’enveloppe, les différentiels des mesures de distance
duales donnent la possibilité de déduire les fonctions de prix ajustés (ou implicites). Ceux-ci repré-
sentent les prix correspondant a I’optimum de Pareto ® sur un marché concurrentiel. Ces résultats
ont été démontrés par les travaux de Shephard (1953, 1970). Des fonctions de cofit, de revenu ou de
profit non-linéaires peuvent induire des fonctions de prix implicites non-linéaires. Dans le cadre de
la théorie du consommateur, Chavas et Briec (2012) remarquent que la structure non-linéaire des
prix peut indiquer des tarifications non-linéaires (pénalités ou bonus écologiques par exemple). Par
ailleurs, elle peut également révéler que la relation entre la production et les cofits (ou le revenu,
ou les profits) n’est pas constante.

Les relations de dualité entre les mesures de distance et les fonctions de cofit, de revenu et
de profit sont présentées plus en détail dans le premier chapitre de ces travaux. De plus, nous
explorons I’existence d’un tel lien dans le cadre des nouvelles mesures de performances que nous

proposons dans les deuxieme et troisieme chapitres de ces travaux.

Influence des Rendements d’Echelle

Les rendements d’échelle représentent les relations existant entre 1’évolution de la production et
la variation des facteurs. Ceux-ci indiquent le changement dans les quantités produites lorsque les
inputs varient dans une méme proportion. Il existe trois grandes classes de rendements d’échelle :

(i) croissant : lorsque tous les intrants sont modifiés dans une méme proportion alors, les ex-

trants évoluent plus que proportionnellement,

(i1) constant : une variation dans une méme proportion de tous les inputs conduit a une modi-

7. Si nous prenons par exemple, le cas de la fonction de colit. Cette derniere est homogene de degré 1 si une
augmentation des inputs dans une proportion A engendre une hausse des cofits dans une proportion A, également.

8. Loptimum de Pareto signifie qu’il n’est plus possible d’augmenter un output (ou de diminuer un input) sans
réduire au moins un autre extrant (ou accroitre au moins un intrant).
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fication dans les mémes proportions des outputs,
(iii) décroissant : un changement dans une méme proportion de tous les facteurs a pour consé-

quence une évolution moins que proportionnelle de la production.

Les rendements d’échelle s’integrent dans le processus de production et sont étroitement liés a
I’efficacité des entreprises. En effet, de ceux-ci dépendent le rendement des inputs. Dans la plupart
des cas, lorsqu’il est nécessaire, les rendements d’échelle sont des hypotheses présentées sous
formes de contraintes dans I’estimation des performances des firmes.

L’ensemble de production présentée par Charnes et al. (1978) suppose que les entités de pro-
duction produisent sous 1’hypothese de rendements d’échelle constants. Banker et al. (1984), Ban-
ker et Maindiratta (1986) ainsi que Fére et al. (1988) proposent, quant a eux, des technologies
de production opérant sous I’hypotheése de rendements d’échelle variables. Cette derniere signi-
fie que I’ensemble de production tient compte des rendements d’échelle croissants, constants et
décroissants simultanément. Ainsi, ces modeles imposent a priori les rendements d’échelle qui

s’appliquent au processus de production.

Boussemart et al. (2009) démontrent que puisque les rendements d’échelle influencent forte-
ment ’efficacité des entités de production, il peut étre possible d’évaluer le meilleur rendement
d’échelle qui permet d’optimiser la performance. Dans leurs travaux, ce rendement d’échelle opti-
mal correspond au "rendement d’échelle o" tel que les rendements d’échelle strictement croissants
ou strictement décroissants sont pris en compte. Par ailleurs, Boussemart, Briec, Leleu et Ravelo-
jaona (2018) considerent qu’il peut exister un rendement d’échelle optimal relatif a I’ensemble des
entités de production. En effet, celui-ci permet au plus grand nombre ou a I’ensemble productif
d’étre le plus efficace possible. Dans ce cas, le rendement d’échelle de la technologie de produc-
tion n’est plus une contrainte mais devient une variable a estimer. Boussemart et al. (2009) et
Boussemart et al. (2018) établissent leur théorie et leur méthodologie dans le cadre de I’ensemble
de production CES-CET introduite initialement par Fire et al. (1988). De ce fait, cette méthode
accorde la possibilité d’analyser (affirmer ou réfuter) certaines hypotheses avancées dans certains

secteurs d’activité.

Nous exposerons ces différentes notions de rendements d’échelle dans le premier chapitre de
ces travaux. Dans le chapitre 5, nous examinerons 1’ application du modele introduit par Boussemart

et al. (2009), a la mesure non-linéaire additive que nous proposée dans le chapitre 3.

9
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Concept de Productivité

La productivité est le ratio entre les outputs produits et les inputs utilisés. Dans le cadre d’une
production mono-input mono-output, il est évident que cette mesure est facile a estimer. Cepen-
dant, cette situation ne correspond pas a la réalité. En effet, de maniere générale, soit une entité de
production utilise plusieurs facteurs pour produire un output, soit elle consomme plusieurs intrants
afin de créer plusieurs extrants. Il est alors nécessaire d’agréger, selon un modele économique, les
inputs et les outputs de sorte que la productivité soit toujours le ratio entre deux scalaires. Dans
ce cas, nous parlons de productivité totale des facteurs. Il est a noter qu’il existe des mesures de
productivité partielle. Ces dernieres représentent la productivité d’un facteur spécifique par rapport
aux outputs. Cependant, elles ne refletent pas la performance réelle des entités de production. En
ce sens, il est primordial d’évaluer la productivité totale des facteurs pour apprécier I’efficacité to-
tale d’une institution. Ces mesures sont des outils de comparaison des performances dans le temps
et dans I’espace. De ce fait, il est logique de calculer les changements de productivité. Elles sont
traduites par des indices (ratio) ou des indicateurs (différences) entre les variations des intrants et

des extrants.

Dans la littérature, les indices et les indicateurs de productivités sont généralement estimés afin
de comparer les performances d’une entité de production dans le temps. Ainsi, elles permettent
d’apprécier les mutations positives ou négatives de la productivité des firmes. Selon les travaux de
Coelli, Rao, O’Donnell et Battese (2005), il existe quatre manieres de mesurer le changement de

productivité dans le temps :

(i) la variation de la productivité est mesurée par la variation des outputs diminuée de la varia-
tion des inputs. Cette méthode a ét€ nommée 1’approche de Hicks (1961)-Moorsteen (1961)
par Diewert (1992a, 1992b),

(i1) le changement de productivité est estimée a partir de la variation de la rentabilité apres un
ajustement temporel des prix des facteurs et des produits. Cette méthode est 1’approche par
la rentabilité,

(ii1)) Caves, Christensen et Diewert (1982a, 1982b) préconisent d’évaluer la productivité grace
a la comparaison entre les extrants observés et la quantité d’outputs maximal qui peut étre

produit pour un niveau d’inputs constant. Cette méthode est I’approche de Caves, Christen-

10
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sen et Diewert,
(iv) la variation de la productivité est constituée de 1’agrégation de toutes les sources identi-
fiables de la variation de la productivité (par exemple : le changement technique, d’effica-

cité, d’échelle, etc). Cette méthode est 1’approche basée sur les composantes (Balk (2001)).

Dans ces travaux, nous nous concentrons uniquement sur les approches (1) et (iii). Ces deux mé-
thodes font intervenir des mesures orientées en inputs et en outputs. Caves et al. (1982a, 1982b)
évaluent leurs indices de productivité grace aux fonctions de distance radiale axées sur les inputs
et les outputs. Les mesures obtenues par le biais cette approche sont communément nommés les
indices de productivité de Malmquist. Diewert (1992a, 1992b) évalue sa mesure de productivité de
Hicks-Moorsteen sur la base des indices de quantité de Malmquist. Sachant que ces mesures de
productivité refletent les variations de la performance, elles reposent donc sur les résultats d’effi-
cacité. De ce fait, puisque les mesures d’efficience peuvent €tre obtenues a partir des fonctions
de distance, les indices de productivité peuvent également étre déduites grace a celles-ci. Les
indices de Malmquist et de Hicsk-Moorsteen sont constitués par le ratio entre des fonctions de
distance de Shephard. En ce sens, la nature (additive ou multiplicative) des mesures de distance in-
fluencent la structure des mesures de productivité. L’apparition des fonctions de distance additives,
notamment la fonction de distance directionnelle, a engendré 1’avénement de nouveaux indicateurs
de productivité. De ce fait, Chambers, Fare et Grosskopf (1996b) proposent une mesure de pro-
ductivité additive de Luenberger. Briec et Kerstens (2004) introduisent, par la suite, I’'indicateur
de Luenberger-Hicks-Moorsteen afin de corriger les infaisabilités pouvant survenir dans celle de
Chambers et al. (1996b). Les deux indicateurs de productivité additives découlent des mesures de

distance directionnelle.

Nous verrons plus précisément ces indices et indicateurs dans le premier chapitre. Dans le cadre
de ces travaux, nous nous intéresserons a I’application des indicateurs de productivité présentés
par Chambers et al. (1996b) et, Briec et Kerstens (2004) a la mesure de performance log-additive

présentée dans le chapitre 2.

Le premier chapitre de ces travaux établit la revue de littérature relative aux nouvelles notions
que nous introduirons dans les chapitres suivants. Le deuxieme chapitre, quant a lui, sera dédié

a la présentation d’une nouvelle mesure de performance exponentielle, que ce soit d’un point de

11
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vue primal ou d’une perspective duale. Le chapitre 3 présentera également une mesure d’efficacité
dans la lignée du modele de Fire et al. (1988) et des travaux de Luenberger (1992b). Le chapitre
4 montrera que la mesure de distance exponentielle proposée dans le chapitre 2, peut amener a
des indicateurs de productivité exponentiels. Ces derniers conduisent 1’obtention des formes dy-
namiques des fonctions de distance log-additives. Enfin, le cinquieéme chapitre sera consacré a
I’application de la théorie des rendements d’échelle o aux mesures présentées dans le chapitre 3.
Par ailleurs, nous proposerons une version individuelle (ou spécifique) de cette théorie des rende-

ments d’échelle introduite par Boussemart et al. (2009).
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Chapitre 1

De la Caractérisation de la Technologie aux

Mesures d’Efficacité et de Productivité

Dans un systeme capitaliste, 1’objectif des entités de production est la recherche de I’efficacité
et de ’efficience. Nous avons vu que ces deux expressions n’ont pas la méme définition. Cepen-
dant, dans la théorie de la production, il est courant d’utiliser ces termes de maniere indifférente.
En effet, dans ce contexte, la recherche de I’efficacité consiste a produire le maximum avec le mi-
nimum de moyens de production possible(Koopmans (1951)). Cette interprétation correspond a la
définition de I’efficience. Ainsi, nous utiliserons ces termes indifféremment dans ces travaux.

La caractérisation de la technologie, c’est-a-dire du processus de production, peut se faire selon
une vision dans le graphe (dimension inputs et outputs), dans la correspondance en inputs ou dans
la correspondance en outputs. Nous avons pu constater que selon les travaux de Shephard (1970),
nous avons la possibilité de retrouver les caractéristiques de ces ensembles de production grace aux
mesures d’efficacité technique. Ces dernieres se présentent sous la forme de fonctions de distance
a la frontiere efficiente. Ces mesures peuvent étre appréhendées d’un point de vue primal ou dual
a travers une formulation faisant intervenir les fonctions de colit, de revenu et de profit (Hotelling
(1932), Shephard (1953)). Sachant que la recherche de I’efficience est au cceur de la préoccupation
des firmes, il est logique que celles-ci analysent 1’évolution de leur performance dans le temps.
Ainsi, les indices et les indicateurs de productivité permettent d’apprécier ces variations de la per-
formance. Dans ce cas, ceux-ci font intervenir les mesures d’efficacité (Caves et al. (1982a,1982b),

Diewert (1992a,1992b)).
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De la Caractérisation de la Technologie aux Mesures d’Efficacité et de Productivité

Ce chapitre a pour vocation d’étre une revue de littérature. Dans la premiere section, nous
définissons la technologie de production selon une vision dans le graphe, orientée en inputs et
orientée en outputs. Nous la formalisons également dans le cadre de la méthode d’enveloppement
des données (Charnes et al. (1978)). La deuxieme section présente les mesures d’efficacité radiales
et non-radiales qui permettent de caractériser les ensembles de production introduits dans la sec-
tion précédente. Enfin, la troisieme et derniere section est le recueil des indices et indicateurs de

productivité tels que ceux-ci évaluent les variations de la performance dans le temps.

1 La Technologie de Production

La technologie de production peut étre représentée de diverses manieres a savoir par la corres-
pondance en inputs, la correspondance en outputs et la représentation dans le graphe. Ces notions

ainsi que la modélisation de cette technologie seront approfondies dans cette section.

1.1 Généralités

La technologie de production est le processus, qui permet la transformation d’un vecteur d’in-
puts (ou intrants) z* = (21, -- , 2! ) € R’ en vecteur d’outputs (ou extrants) y* = (yi,--- ,y.) €
R” alapériode (t). Ainsi, I’ensemble de production peut étre appréhendée de trois maniéres diffé-
rentes a savoir, par la correspondance en inputs, par la correspondance en outputs ou dans le graphe
de la technologie. Selon les travaux de Shephard (1953, 1970), ces représentations du processus

productif vérifient certaines propriétés.

1.1.1 La Correspondance en Inputs

La correspondance en inputs peut étre définie comme étant les différentes combinaisons d’in-
trants qui permettent de produire un niveau donné d’outputs donné grace au processus de produc-

tion. Celle-ci peut étre définie de maniere formelle.

Pour tout z* € R et y* € R, la correspondance en inputs L'(y") caractérise la technologie

14
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T*(z,y") si et seulement si :

L' R —s 2%F
L'(y") = {«" € R} : ¢ peut étre produit par «' } (-

={z' eR}: (a",y") €T}

Selon les travaux de Shephard (1953, 1970), la correspondance en inputs peut étre associée aux
axiomes suivants :

L1: Pour tout y* > 0 alors, 0 ¢ L*(y") et L'(0) = R

L2 : Pourtouty* € R alors () L'(y") = 0.

yteR?

L3 : Pourtout z* € L'(y") et 2* > 2" alors, &' € L'(y").

L4 : Pour tout ', y* € R” si Pour tout §* > y" alors, L*(y*) C L'(y").

L5 : Pour tout y* € R” alors L*(y") est fermée.

L6 : Pour tout y* € R alors L*(y") est convexe.

L7 : Pour tout 2 € L'(y") et Pour tout A > 1 alors, A\z* € L*(y").

L8 : Pour tout § > 1 alors, L!(6y") C L'(y").

L’axiome L1 signifie que I’utilisation d’une quantité nulle d’inputs ne peut conduire a la pro-
duction d’un niveau non-nul d’outputs. De ce fait, il n’y a pas de repas gratuit (no free lunch). La
propriété L2 stipule qu’il est impossible de produire une quantité infinie d’outputs a partir d’'une
quantité finie d’inputs. La troisieme hypothese représente 1’hypothese de libre disposition forte des
inputs c’est-a-dire qu’une quantité donnée d’outputs peut toujours étre produite par quantité plus
importante d’inputs. L4 indique qu’ une quantité plus importante d’outputs ne peut tre associée
a un ensemble d’inputs plus grand. LS est le garant de 1’existence d’une frontiere technologique
tandis que L6 est I’hypothese de convexité de la correspondance en inputs. Les axiomes L7 et L8
sont respectivement les versions faibles des axiomes L3 et L4 c’est-a-dire que les variations entre

les inputs utilisés et la correspondance en inputs sont proportionnelles.

Puisque la correspondance en inputs est associée a la notion de frontiere de production, il est

possible de définir les sous-ensembles suivants :
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— Pour tout y* > 0, IsogL'(y") = {z' € L*(y") : \x ¢ L*(y"),V\ € [0, 1]} est I'isoquant de

la correspondance en inputs.

— Pour tout y* > 0, OV Li(y') = {2t € Li(y!) : 2 < ', 3t < 2t = 3t ¢ L'(y")} est le sous-

ensemble faiblement efficient de L*(y").
— Pour tout y* > 0, L (y') = {z* € L'(y") : 2* <2, 3" # 2t = &' ¢ L'(y")} est le sous-

ensemble efficient de L*(y").
Il est a noter que pour y* = 0 alors, IsogL!(y') = {0}, 0" L!(y') = {0} et OL!(y*) = {0}.

E, IsoqLt(y!)

L*(y)

FIGURE 1 — Correspondance en inputs et ses sous-ensembles

La figure 1 représente la correspondance en inputs L' (y") ainsi que les sous-ensembles la com-
posant dans un espace a deux dimensions tel que les outputs (y') sont produits a partir de deux
facteurs de production ! et x%. Ainsi, la frontiere constituée par les segments [AB], [BC], [C'D] et
[DE] est I’isoquant d’inputs pour un niveau donné d’extrants. Tous les points situés sur cette fron-
tiere sont des combinaisons d’intrants qui permettent de produire une méme quantité d’outputs.
Le segment [BC| représente le sous-ensemble faiblement efficient puisque la quantité de facteur
x% peut étre réduite tout en produisant le méme niveau d’outputs et en utilisant la méme quantité
d’inputs z%. Le segment [AB] correspond au sous-ensemble efficient de L*(y") puisque la quantité

de facteurs de production utilisée est la plus faible.
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1.1.2 La Correspondance en Outputs

La correspondance en outputs peut étre définie comme étant I’ensemble des combinaisons
d’outputs pouvant étre produits par une méme quantité d’inputs. Formellement, on peut la défi-
nir de comme ci-dessous.

Pour tout z* € R et y* € R, la correspondance en inputs P’(z") caractérise la technologie

T'(x',y') si et seulement si :

PR — 2
P'(z') = {y* € R} : ' peut produire y'} (1.2)

={y' eR} : (2", ") € T'}.

De maniére analogue & la correspondance en inputs, la correspondance en outputs P'(z") peut
étre associée aux axiomes suivants :

P1: Pour tout z* € R’ alors, P*(0) = {0} et 0 € P*(z").

P2 : Pour tout z* € R’} alors P*(z") est bornée.

P3: Pour tout y* € P(z") et 0 < g* < y' alors, §* € P'(at).

P4 : Pour tout &', 2* € R} si Pour tout 2* > ' alors, P'(z") C P'(a").

P5 : Pour tout z* € R’ alors P*(z") est fermée.

P6 : Pour tout z* € R’ alors P*(z") est convexe.

P7 : Pour tout y* € P(z") alors, \y* € P'(x), Pour tout A € [0, 1].

P8 : Pour tout § > 1 alors, P'(fx") C P'(a?).

L’axiome P1 signifie qu’il est toujours possible de produire une quantité nulle d’outputs et qu’il
n’y a pas de repas gratuit. L’hypothese P2 fait référence a I’impossibilité de produire une quantité
infinie d’outputs grace a une quantité finie d’inputs. La propriété P3 stipule la libre disposition
forte des outputs c’est-a-dire qu’il est possible de produire une quantité plus faible d’outputs avec
la méme quantité d’inputs. P4 indique qu’un niveau d’outputs moins important peut toujours étre
associé a un ensemble plus grand d’inputs. L’axiome P5 garantit 1’existence d’une frontiere tech-
nologique tandis que P6 impose la convexité de I’ensemble P*(z'). Les axiomes P7 et P8 sont

quant a eux, les versions affaiblies des axiomes P3 et P4.
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Puisque la correspondance en outputs P(z") est un ensemble compact(P2 et P5), on peut lui
associer les sous-ensembles suivant :
— Pour tout P!(z') # 0, IsogP'(z*) = {y' € P'(a') : \y* ¢ P'(a"), VA > 1} est I'isoquant

de la correspondance en outputs.

— Pour tout Pt(x?) # 0, 0"V Pi(x') = {y' € Pi(a?) : ' > o', 9" > y' = §' ¢ P'(z)} estle

sous-ensemble faiblement efficient de P*(xz?).

— Pour tout Pi(a?) # 0, 0P (a") = {y' € P'(a") : ¢* > o', 9" £ y' = ¢' ¢ P'(a")} est le
sous-ensemble efficient de P'(x!).
On peut également noter que pour x* = 0, les sous-ensembles définis ci-dessus deviennent
IsoqPt(0) = {0}, 0V P(0) = {0} et OP*(0) = {0}.

yh

Isoq Pt (z?t)

0 vl

FIGURE 2 - Correspondance en outputs et ses sous-ensembles

La figure 2 est la représentation graphique d’une correspondance en outputs P*(z"). Nous nous
placons dans un espace a deux dimensions tel que les facteurs de production permettent de pro-
duire deux outputs y! et y. L’isoquant de P*(x") pour un niveau donné d’inputs est décrit par
les segments reliant les points A, B, C, D et E. Le sous-ensemble faiblement efficient est quant
a lui représenté par le segment [C' D] puisqu’il est toujours possible de produire plus d’outputs /%
pour un méme niveau d’outputs y5. Les combinaisons optimaux d’outputs produits pour un méme

niveau d’inputs correspondent au segment [DFE]. Par conséquent, celui-ci est le sous-ensemble
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efficient de P*(x?).

1.1.3 Le Graphe de la Technologie

Le graphe de la technologie T*(z', y') peut étre définie comme étant I’ensemble de tous les vec-
teurs d’inputs et d’outputs réalisables. De maniere formelle, sa définition est présentée ci-dessous.

Pour tout z* € R’ et tout y* € R’ le graphe de la technologie 7" (2", y") est I’ensemble :

T'(a',y") = {z' € R} : y' peut étre produit par z' }
= {y' € R} : 2 peut produire y'} (1.3)

= {(z"y") eRT™ : 2" € L'(y') & ¢ € P'(a")}.

Les propriétés des correspondances en inputs et en outputs peuvent étre condensées pour ca-
ractériser les axiomes auxquels le graphe de la technologie T"(x!, y') peut étre associé (Shephard
(1953, 1970)).

T1 : Pour tout (2%, y') € R si (0,y') € T*(z!, y') alors, y' = 0.

T2 : Pour tout (2, y') € RT"™", T (2", y*) est bornée.

T3 : Pour tout (2%, y") € T'(z%, y") et Pour tout (&%, §*) € RT™ alors, (2, 9') € T (2!, y") si

(x', —y") < (2, —9").

T4 : Pour tout (2!, y') € RT*", T*(2", y") est fermée.

T5 : Pour tout (2, y*) € R, T (2", y*) est convexe.

T6 : Pour tout A > 1, (Azt,y") € T*(2t, y*) si (24, y") € T (2t y).

T7 : Pourtout 6 € [0, 1], (2%, 0y") € T*(z*, y") si (z*, y*) € T*(z*, ).

L’hypothese T1 stipule qu’il n’est pas possible de produire des outputs avec une quantité nulle
d’inputs. T2 signifie qu’on ne peut produire une infinité d’outputs avec une quantité finie d’inputs.
L’axiome T3 fait référence a la libre disposition forte des inputs et des outputs. T4 garantit I’exis-
tence d’une frontiere de production fermée et TS impose la convexité de I’ensemble. T6 et T7 sont

respectivement les propriétés relatives a la libre disposition faible des inputs et des outputs.

Il est également possible d’associer le graphe de la technologie aux sous-ensembles ci-dessous.
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— Pour tout (2%, y') € R,
IsoqT" (2", y") = {(:L’t,yt) c THa' y") : (\of, A Yyh) & T (2!, y"), VA €]0, 1[}
est I’isoquant du graphe de la technologie.
— Pour tout (z%,y') € R,

aWTt(xtv yt) - {(xta yt) € Tt(xtv yt) : (xtv _yt) Z (:i‘ta _gt)’

('rtv _yt) > ('%tv _yt) = ('%tvgt> ¢ Tt('rtvyt) }

est le sous-ensemble faiblement efficient de 7% (x?, y*).

— Pour tout (2%, y") € RT*",
oT'(a',y") = {(a",y") € T'(a",9/") : (2", —y') > (&', —5"),
(xtv _yt) 7& (itv _,gt) = (ita Qt) ¢ Tt(xtv yt) }
est le sous-ensemble efficient de T (z*, y").

E IsoqT*(at, y)

Tt($t7 yt)

0 2t

FIGURE 3 — Graphe de la technologie et sous-ensembles
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La figure 3 est la représentation du graphe de la technologie 7"(z", ") dans un espace a deux
dimensions ou un facteur de production permet de produire un output. La frontiére de production
est décrite par les segments reliant les points A, B, C, D et E. Le sous-ensemble faiblement ef-
ficient correspond au segment [AB] puisqu’il est toujours possible de produire plus d’outputs en
utilisant la méme quantité d’inputs. Le sous-ensemble fortement efficient est constitué des seg-
ments reliant les points B, C et D car il n’est plus possible d’augmenter la production pour un

niveau donné d’inputs ou de baisser ’utilisation des facteurs pour une quantité fixe d’extrants.

1.2 Modélisations

Dans la sous-partie précédente, les notions générales des correspondances de la technologie de
production ont été présentées. Ces concepts peuvent étre modélisés a travers différentes méthodes
d’estimation a savoir les approches paramétriques et les modeles non-paramétriques. Dans un cadre
paramétrique, la méthode privilégiée par les auteurs est I’approche par la frontiere stochastique
(SFA) initiée par Aigner, Lovell et Schmidt (1977) et, Meeusen et Van den Broeck (1977). Elle
rentre dans la lignée des estimations économétriques et consiste a considérer 1’inefficacité tech-
nique comme €tant une variable aléatoire. Dans cette these, on ne présente que les modélisations
non-paramétriques et notamment, 1’approche par I’enveloppement des données (DEA) introduite

par Charnes et al. (1978).

1.2.1 Les Fondements de la méthode DEA

La méthode DEA proposée par Charnes et al. (1978) trouve son inspiration dans les travaux de
Farrell (1957) et de Afriat (1972). Farrell (1957) s’est appuyé sur les travaux de Debreu (1951) et de
Koopmans (1951) afin de mesurer I’efficacité des unités de production par rapport a une frontiere
de production linéaire par morceaux. Celle-ci est constituée par I’ensemble des meilleures pra-
tiques possibles (benchmark) qui représentent des références. La méthode DEA est une méthode
qualifiée de non-paramétrique qui ne nécessite aucune spécification de la forme fonctionnelle de
la technologie. Elle permet mesurer I’efficience technique des unités de décision (DMU) homo-

génes ! et, de déterminer les benchmarks auxquels les DMUs inefficientes devraient se référer. Par

1. Qui utilisent les m&mes inputs et produisent les mémes outputs
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ailleurs, elle peut considérer des technologies de production a multiple inputs et a multiple outputs,
contrairement aux méthodes d’estimation économétriques standards.
L’estimation des scores d’efficience s’effectue par 1I’optimisation du programme présenté ci-

dessous.

Soit un ensemble 7 d’unités de production qui utilisent m inputs pour produire n outputs. Le
score de chaque DMU j est déterminé relativement aux autres DMUstel que j € J = {1,---, J}.
Ainsi, il est nécessaire de résoudre le programme d’optimisation primal ci-dessous pour chaque
unité de décision. Soit la DMU 1 dont on souhaite connaitre le score, le programme qui lui est

associé se présente comme suit :

s.c =
t At —
Zi:l U, T; ;

u>0,v>0.

Il est évident que le programme ci-dessus est non-linéaire et ne peut étre évalué de maniere
non paramétrique. Pour ce faire, une normalisation est alors effectuée afin d’obtenir le programme

linéaire suivant :

u>0,v>0.

Ce programme d’optimisation est particulierement lourde notamment lorsqu’il existe un nombre
assez conséquent de DMUs a évaluer puisque chaque optimisation comporte (J + m + n + 1)

contraintes. Cependant, il est possible de retrouver les scores d’efficience a partir de la version
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duale qui ne nécessite que m + n contraintes. Le programme dual de la DMU 1, est présenté

ci-dessous.

¥ = minAﬁ )\i
s.c Mxi, > O i=1,---,m
JjET
yﬁ,l < Zeﬁyﬁ,j r=1,--,n
JET
A>0, 6>0

Chaque variable ¢ est une pondération associée a une unité de décision. Elle donne une indi-
cation quant a la proportion a laquelle I’entité de production évaluée devrait s’inspirer de I’unité
de décision associée a 6 afin d’étre efficiente. Elle sert également a satisfaire la contrainte de
convexité de I’ensemble de production. Ainsi, on peut dire que cette variable permet d’obtenir des
informations quant aux gains potentiels en terme d’efficience technique et quant a 1’existence d’un

référent.

1.2.2 Les Modéeles CCR, BCC et leurs Extensions

Dans leurs travaux, Charnes et al. (1978) imposent aux pondérations ¢’ une valeur positive
ou nulle. Cette contrainte permet de cantonner leur analyse dans un cadre a rendements d’échelle
constants (CRS ?). De ce fait, I’ensemble de production est constitué du plus petit cone polyédrique
convexe contenant toutes les observations. Cette contrainte de rendements d’échelle constants peut

étre formalisée de la maniére suivant :

Ocrs = {Gt € R‘Iﬁﬁ > 0,5 € j}

La figure 4 présente la frontiere de production DEA sous I’hypothese de rendements d’échelle
constants dans un espace a deux dimensions tel qu’un input permet de produire un output. La
frontiere a deux dimensions est entierement linéaire. Les points A, B et C' situés le long de cette

droite sont techniquement efficients tandis que les observations D et £ sont des points inefficientes.

2. Constant Retunrs-to-Scale
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IsoqT" (a', y')

°E
D

FIGURE 4 — Modele a rendements d’échelle constants

Dans la pratique, toutes les unités de décision n’operent pas sous le méme rendement d’échelle
dans leur processus de production. Banker et al.(1984) étendent les travaux de Charnes et al. (1978)
dans un contexte de rendements d’échelle variables (VRS ?). La distinction entre les deux modeles
proposés se trouve au niveau de la contrainte sur les pondérations. Le premier modele a rendements
d’échelle constants est plus connu sous I’acronyme CCR tandis que le second modele a rendements
d’échelle variables a pour acronyme BCC, du nom de leurs auteurs. Ainsi, la frontiere de produc-
tion de ce dernier est linéaire par morceaux et est localement a rendements d’échelle croissants,

constants et décroissants. Formellement, cette contrainte est définie comme suit :

Ovrs ={0' €R’: 60, >0,) 60 =1,je T}
JjeT

La figure 5 décrit une frontiere de production a rendements d’échelle variables dans un proces-
sus de production ou un input permet de produire un output. Les points B, C et D, situés sur la
frontiere de production, sont des unités de production techniquement efficientes tandis que le point
E situé en-dessous de la frontiere est inefficient. Le segment qui relie les points A et B est la par-
tie de la frontiere efficiente qui correspond localement a des rendements d’échelle croissants. Le
point B représente la section a rendement d’échelle constant de la frontiere tandis que les segments

reliant les points B, C' et D sont les parties relatives aux rendements d’échelle décroissants.

Nous pouvons spécifier deux autres types de rendements d’échelle qui existent dans la littéra-

3. Variable Returns-to-Scale
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IsoqT" (", y")

Ee

0 A xt
FIGURE 5 — Modele a rendements d’échelle variables

ture.
Dans la méme démarche que Charnes et al. (1978) et Banker et al. (1984), Grosskopf (1986)
identifie les rendements d’échelle non-décroissants (NDRS ). Ils se traduisent par une contrainte

sur les pondérations 6" qui est définie de la maniére suivante :

Onprs = {0 €R7: 01> 0, 0 >1,j€ T},
JjET

y IsoqT" (2", y")

T !, yh)

FIGURE 6 — Modele a rendements d’échelle non décroissants

La figure 6 représente une frontiere de production DEA dans le cadre des rendements d’échelle
non décroissants de telle sorte que tous les points situés sur cette frontiere operent sous 1’hypothese

de rendements d’échelle soit constants soit croissants.

4. Non Decreasing Returns-to-Scale
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Seiford (1990) présente quant a lui, les rendements d’échelle non-croissant (NIRS °). Ainsi,
I’ensemble de production inclut le point d’origine (0, 0) et la spécification de ce type de rendements

d’échelle est faite par la contrainte suivante :

Onirs = {0'€R7:0:>0,) 0. <1,j€ T}
JjET

B IsoqT (zt, )

T(zt,y

FIGURE 7 — Modele a rendements d’échelle non croissants

La figure 7 décrit une frontiere DEA pour laquelle tous les points appartenant a la frontiere ont
des rendements d’échelle soit constants soit décroissants. Dans ce cas, les rendements d’échelle

sont au plus constants.

Grace aux travaux de Charnes et al. (1978) et a la contribution des autres auteurs, on peut

définir de maniere formelle la technologie de production DEA comme suit :

Topa(e',y') = {(xﬁyt) ERPT a2y B,y <) Oyl 0 e @} (1.4)
JET JET

ol © € {O¢crs, Ovrs, ONDRS, ONIRS}-

5. Non Increasing Returns-to-Scale
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1.2.3 Les Modeles Non Convexes

Les modeles présentés dans les deux sous-sections précédentes operent dans le cadre d’une
hypothese de convexité de I’ensemble de production. Il est néanmoins possible que les technologies
de production soient non-convexes. Cette derniere situation est la conséquence de la particularité

des processus de production individuels.

Banker et Maindiratta (1986) remarquent que la technologie linéaire par morceaux présentée
Banker et al.(1984) dans le cadre des rendements d’échelle variables, requiert des productivités
marginales non-croissantes. Afin de pallier a cette limite, ils introduisent une technologie multipli-
cative (Z¢D) non-convexe de type Cobb-Douglas qui permet de tenir compte de ces productivités
marginales croissantes. Dans ce cas, la fonction de production est localement concave et I’ensemble

de production est non-convexe. Cette technologie de production est définie comme suit :

Tip(a'y) = { (' y) e R ot > T ()", o' <[ ()", ¢, (15
jeT JjeJ

La technologie multiplicative satisfait les propriétés suivantes :

Tepl: Pour tout (2%, y") € T¢p et 6" > O avec ), ¢ = Lalors, | [] (:cz.)eﬁ, 11 (y}?)% €
JET jET JeT
Tt p.

Tep2 @ Pour tout (af,y') € TE ), si (¢, —y') < (2%, —¢") alors, (2%, §') € T ).

Teop3 : Pour tout T satisfaisant Top1-Tep2, alors TLp = ﬂ T’f(;D’j avec (24, y5) € Tép.

La premiere propriété fait référence a 1’hypothese de convej:;zé géométrique tandis que la
deuxieme stipule que la technologie multiplicative satisfait la libre disposition des inputs et des
outputs. Le dernier axiome stipule que la technologie globale est I’intersection de toutes les techno-
logies satisfaisant les deux postulats précédents. Celui-ci correspond au principe de I’extrapolation

minimale.

En appliquant une transformation logarithmique, les auteurs retrouvent la technologie linéaire
par morceaux de Banker et al. (1984) de telle sorte que Z' = In z* et * = Iny’. Ainsi, la technolo-

gie multiplicative devient :
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T} (3, ) = {(fﬁm eRT 2N 0w, < 0, 6'e @} e

IsoqTep(2f, yt)

Top(e',y')

0 2t
FIGURE 8 — Technologie Multiplicative

La figure 8 présente une frontiere de production multiplicative au sens de Banker et Maindiratta
(1986). La linéarisation de I’ensemble de production par une transformation logarithmique exclut

I’origine c¢’est-a-dire le point (0, 0) du domaine de définition de I’ensemble.

Solow (1956) et Arrow et al. (1961) présentent la fonction de production CES . Celle-ci in-
tegre I’existence d’une élasticité de substitution constante entre le facteur travail et le facteur ca-
pital. Cette fonction peut étre considérée comme une généralisation des fonctions de production
Cobb-Douglas et Leontieff. En s’inspirant de Solow (1956) et de Arrow et al. (1961), Powell et
Gruen (1968) proposent quant a eux, la fonction de production CET” afin de prendre en compte
la substituabilité entre deux types de productions. Suite a ces travaux, Fire et al. (1988) présentent
une nouvelle technologie de production CES-CET de telle sorte que les correspondances en in-
puts et en outputs soient caractérisées respectivement par les fonctions CES et CET. Les auteurs
présentent cette technologie CES-CET comme étant une technologie de référence qui donne une
formulation généralisée des technologie de production présentées par Banker et al. (1984) et par

Banker et Maindiratta (1986).

6. Constant Elasiticity of Substitution.
7. Constant Elasticity of Transformation
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La technologie CES-CET est définie de la maniere suivante :

1/at 1/8t
Oét t
Top=q @y ' > (Z 6;(5) ) Y < <Z 05(45)” ) 020 0=1
JjEeT JET JET

(1.7)

A partir de la technologie CES-CET, il est possible de retrouver les ensembles de production

sus mentionnés lorsque les conditions suivantes sont remplies :
— T3 =Tppasia=pB=1;

yt

IsoqT, s(zt, y')

Ta,ﬁ(xt7 yt)

FIGURE 9 — Technologie CES-CET

La figure 9 décrit une technologie CES-CET qui présente trois différents rendements d’échelle
a savoir croissants, constants et décroissants. Il est évident que cet ensemble de production est
non-convexe localement notamment lorsque le rendement d’échelle est croissant. Cependant, les
auteurs démontrent que les correspondances en inputs L}, 5(y") et en outputs P! ;(") sont res-
pectivement convexes lorsque a@ < 1 et § > 1. Par ailleurs, lorsque les deux correspondances
sont simultanément convexes, il peut en étre déduit que I’ensemble de production T(i B(xt, y') est

également convexe.

Boussemart et al. (2009) proposent un modele a "rendements d’échelle a" basé sur la techno-
logie CES-CET présentée par Fire et al. (1988). Notons que dans un souci de clarté, nous nous re-
ferrons a I’expression "rendements d’échelle v afin de désigner la notion de "rendements d’échelle

«". Dans leurs travaux, les auteurs affirment que cet ensemble de production satisfait les axiomes

29



De la Caractérisation de la Technologie aux Mesures d’Efficacité et de Productivité

] Y
IsoqT, s(z", y")
IsoqT, 5(z", y")
[ ]
o o
L Ta,ﬁ (xt7 yt) L Ta,ﬂ (‘rt7 yt)
[ )
0 rt 0 zt
FIGURE 10 — Rendements d’échelle FIGURE 11 — Rendements d’échelle
croissants croissants

T1-T4 du graphe de la technologie. En utilisant la technologie de production CES-CET, Bousse-
mart et al. (2009) démontrent que les parametres « et 5 de la technologie CES-CET donnent des
indications sur les rendements d’échelle globaux v de I’ensemble référence tel que v = % Ce mo-
dele permet de trouver de maniere endogene le rendement d’échelle global + pour lequel le plus
grand nombre de DMU est le moins inefficient possible grace a 1’extrapolation minimale (Bous-
semart et al. (2018)). De ce fait, la technologie de production CES-CET satisfait des rendements
d’échelle :

— croissants sia > =y > 1;
— constants siaw = 3 = v = 1;

— décroissants si « < f = v < 1.

Les figures 10 et 11 décrivent respectivement I’enveloppement des données sous 1’hypothese
de rendements d’échelle croissants et décroissants. Le premier graphique ne satisfait pas I’hypo-
these de convexité de I’ensemble de production tandis que le second représente une frontiere de

production classique vérifiant I’axiome de convexité.
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2 Les Mesures d’Efficacité et la Caractérisation de la Techno-
logie

Dans la section précédente, les concepts généraux des ensembles et des sous-ensembles de
production mais également, la modélisation non paramétrique ont été présentés. Cette section est
quant a elle, dévouée a I’exposition des mesures d’efficacité dans le cadre ces processus productifs
a multiple inputs et a multiple outputs.

Dans la théorie de la production, il est difficile de connaitre mais également d’imposer une
fonction de production (ou de transformation) qui décrirait au mieux le processus de production des
unités productives. Par ailleurs, les fonctions de production ne permettent pas la prise en compte
des technologies a multiple outputs. Afin de pallier a cette difficulté, les auteurs ont proposé une
mesure alternative de 1’efficacité dans un cadre multi-outputs a travers les fonctions de distance.
Celles-ci estiment I’écart entre 1’unité de production et la frontiere efficiente. Elles peuvent étre
exprimées tant d’un point de vue primal que dual. Suite aux travaux de Shephard (1953, 1970),

nous savons également qu’elles caractérisent completement les technologies de production.

2.1 Les Fonctions de Distance

Structurellement, une fonction de distance peut prendre une forme soit multiplicative soit ad-
ditive. Par ailleurs, elles sont étre soit radiales soit non-radiales. Les sous-sections ci-dessous dé-

taillent les mesures de distance les plus couramment utilisées dans la littérature.

2.1.1 Les Mesures de Debreu-Farrell

Farrell (1957) propose des mesures d’efficacité en s’inspirant des travaux de Debreu (1951).
Celles-ci se présentent comme étant I’inverse des fonctions de distance de Shephard (1953). Lorsque
la mesure est orientée en inputs, elle donne la proportion a laquelle les inputs utilisés peuvent étre
réduits a un niveau minimal pour une quantité donnée d’outputs. Dans une orientation en outputs,
elle permet I’expansion maximale des extrants pour un niveau donné d’intrants. Dans cette sous-
section, les fonctions de distance de Shephard sont définies brievement tandis que les mesures de

Debreu-Farrell sont exposées plus en détail.
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La fonction de distance de Shephard orientée en input est définie comme suit :

Dt . RT xR} — Ry U{oo}
xt xt
sup < A : <—, t) ETt} si (—, t)ﬂTt 0
Di(x!, ') = >\>0{ At Y Al Y 7 (1.8)
o0 sinon
t ! t)ot
=sup< N :— €L .
blg{ X (y )}

Lorsque 1’unité de production est efficiente, D% (z,y) = 1.

Comme la mesure d’efficacité de Debreu-Farrell est I’inverse de celle de Shephard, on peut la

définir de la maniére suivante :

Ef ;. RT xR = Ry U{oo}
inf {\: (Nat yt) e T'} si (Naf, g )YNT £
E}(azt, yt> _ A>0 (1.9)
00 sinon

= gg {)\t M\t e Lt(yt)} .

Si la correspondance en inputs satisfait les axiomes L.1-L8, alors la mesure de Farrell vérifie
les propriétés suivantes :

E;1: Pour tout 2* € R7 alors, E(z",0) = 0.

E;2: Pour tout (z¢,y") € T" alors, Ei(z',y') € [0, +o0].

E;3: Pourtout A > 0, Et(\lxt o) = (A TLE (2, yt).

E;4: Pour tout 6" > 1, Et (2!, 0'y") > Et(at, y).

E/5: Pour tout y* € R et s’il y a libre disposition faible des inputs alors,

Li(y') = {a' : 0 < Bia'y") < 1},

E;6: Pour tout y* € R, IsogL!(y") = {«' : Ef(zt,y") = 1}.

E;7 : Pour tout y* € R} siu’ > a' alors, Ef(zf,y") > Ei(u’, y").

Le premier axiome stipule que lorsque la production est nulle, la mesure d’efficacité de Farrell
est nulle également. La seconde propriété donne une définition précise du domaine de définition

de la mesure tandis que E;3 se réfere a ’homogénéité de degré (-1) en inputs de la fonction. La
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quatrieme hypothese signifie que la mesure est non-décroissante en outputs. E;5 indique que sous
I’hypothese de libre disposition faible des inputs, elle est permet la caractérisation complete de la
technologie de production. La frontiere de production techniquement efficiente est caractérisée par
les unités de production dont la mesure de Farrell est égale a 1 (E;6). Enfin, lorsqu’il y a forte

disposition des inputs, la mesure est faiblement monotone.

De maniere analogue, il est possible de définir les mesures de Shephard et de Debreu-Farrell
selon une orientation en outputs.

La fonction de distance de Shephard orientée en output est définie de la maniere suivante :

D}, o R xR = Ry U{oo}
y' y'
inf < A\ (xt, —) € Tt} si (xt, —) NT # ()
Dh(2t,y') = A>0 { Al Al (1.10)
o0 sinon
i Y (ot
zgg{)\ ZVGP(ZE)}.

Ainsi, lorsque I’unité de décision est techniquement efficiente, alors D, (zf, ") = 1.

De ce fait, la mesure de Debreu-Farrell en output a pour définition :

E}, : R xR} = R, U{oo}
sup {A': (28 Nyt) € T} si (2, Nyt ) NTE#0)
Ep(at,yh) = A0 (1.11)
00 sinon

=sup {\" : X'y’ € P'(z")}.
A>0
Lorsque la correspondance en outputs satisfait les propriétés P1-P8, alors la mesure de Debreu-
Farrell vérifie les axiomes suivants :
Eol: Pourtout 2t € R, Ef (2,0) = oo.
Eo2 : Pour tout (2!, y') € T siy # 0 alors, E5 (2%, y") € [0, +00].
Eo3 : Pourtout \' > 0si (2, y') € T' et, siy' # 0, ES (2!, My') = (\)LEL (2, y).
Eo4 : Pourtout 0 > 1, EL(0'2t, y') > Eb(«!, y).
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x5 Y2
L) IsogqP(z?)
)\tyt
CEt
yt
Azt
IsogL(y") Pt(z")
0 zf 0 Yy
FIGURE 12 — Mesure de Debreu-Farrell FIGURE 13 — Mesure de Debreu-Farrell
en input en output

Eo5 : Pour tout 2 € R et s’il y a libre disposition faible des outputs alors,
Pi(at) = {y' : Eb(a',y") = 1} pour P'(a") # {0}.

Ep6 : Pour tout z* € R, IsogP'(a') = {y' : E5(at,y") = 1}.

Eo7 : Pour tout 2 € R siv* > y' alors, ES (2, y') > Eb(af, v').

Le premier axiome stipule que lorsque le vecteur des inputs est nul alors la mesure de Debreu-
Farrell en output est indéfini. La deuxieme propriété donne le domaine de définition de la mesure.
Les troisieéme et quatrieme hypotheses concernent respectivement 1’homogénéité de degré (-1) de
la mesure et sa nature non-décroissante en inputs. (Ep5) signifie que lorsqu’il y a libre disposition
faible des outputs alors, la technologie est parfaitement caractérisée par la mesure. Le sixieme
axiome stipule que lorsqu’une unité de production est techniquement efficiente alors, sa mesure de
Debreu-Farrell est égale a 1. Enfin, la derniere propriété est relative a la faible monotonicité de la

mesure lorsque les outputs sont fortement disponibles.

Les figures 12 et 13 décrivent respectivement la contraction maximale des inputs pour un niveau
donné d’output et I’expansion maximale de la production pour une quantité donnée de facteurs. Les
mesures de Debreu-Farrell et de Shephard sont dites radiales car les unités techniquement ineffi-
cientes sont projetées sur les frontieres efficientes par le biais d’une droite passant par 1’origine.
De ce faitn les grandeurs obtenues sont des mesures proportionnelles. La distance radiale entre

I’observation initiale et la projection constitue la mesure de 1’efficience technique.

La figure 14 présente les mesures de Debreu-Farrell orientées en input et en output dans un
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Yy
(zt, Atyt) IsoqT* (z*, ")
(Atzt,yh)
(9"
T (zt, y?)
0 2t

FIGURE 14 — Mesures de Debreu-Farrell dans le graphe de la technologie

espace a deux dimensions ol un facteur produit un extrant. Rappelons que ces mesures permettent

uniquement soit la contraction des inputs soit I’expansion des outputs.

2.1.2 La Fonction de Distance Directionnelle

La fonction de distance directionnelle a été introduite pour la premiere fois par Luenberger
(1992a) dans la théorie du consommateur sous le nom de "Benefit Function" (fonction de béné-
fice). L’auteur a, par la suite, transposé cette fonction en économie de la production sous le nom de
"Shortage Function" (Luenberger (1992b, 1995)). De par les travaux de Chambers et al. (1996) qui
ont repris ce concept, cette fonction est plus connue comme étant la fonction de distance direction-
nelle (FDD). Contrairement aux mesures de Debreu-Farrell qui ne permettent d’agir que dans une
orientation soit en input soit en output, la FDD rend également possible une analyse dans le graphe
de la technologie. Lorsque 1’étude est faite dans le graphe, le score d’efficacité obtenu permet la
contraction maximale des inputs et I’expansion maximale des outputs simultanément selon une

direction ¢' préalablement choisie.
Ainsi, pour toute direction g* = (h', k") tel que h' € R et k' € R}, la fonction de distance
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directionnelle est définie comme suit :

D' R R 5 R, U{oo}

e sup {0 : (2 — 0'ht,yt + 0'k') € T'} si (a8 — 0'hL gt + 8K NT #£ ()
D' yg) =9 00
00 sinon

(1.12)

Cette définition de la FDD concerne une analyse globale dans le graphe telle que le vecteur de
direction est g* = (h', k). Comme les autres mesures présentées précédemment, la FDD satisfait

le propriétés suivantes :

D1 : Si (zf,y") € T alors, D*(z,y*; g) > 0.

D2 : Pour tout o € R, D¥(a? — o'k, y* + o'kt; g*) = D' (at, y'; ¢%) — o,

D3 : Pour tout ' > 0, D*(\at, Ayt ¢') = A DY, ot ¢).

D4 : Pour tout A > 0, D(z!, y'; Mg') = (\) 71D (2!, y'; g').

D5 : Pour tout 2* € R’ et Pour tout y* € R}, si (u*, —v*) > (af, —v*) alors, D*(u’, v*; ¢*) >

D'(z*, y'; g").

Le premier axiome stipule que la fonction de distance directionnelle permet de caractériser par-
faitement la technologie de production. Le deuxieme hypothese indique que la mesure est transla-
tion homothétique. Les propriétés (D3) et (D4) signifient respectivement que sous I’hypothese de
rendements d’échelle constants, la fonction est homogene de degré 1 et qu’elle est homogene de
degré (-1) par rapport a la direction g°. Le dernier axiome stipule que s’il y a libre disposition des

inputs et des outputs alors, la fonction est non-décroissante en z* et non-croissante en 3.

La figure 15 décrit le processus de projection de I’unité de production (z*, 3*) dans la direction
g = (h, k). Cette derniére est choisie préalablement de telle sorte que le couple (27, y*) est translaté

par le vecteur direction sur la frontiere efficiente de la technologie de production.

Lorsque la direction fixée est g* = (h*,0), la FDD devient orientée en input et est définie de la
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IsogT" (', y')
(zt,yt) + 6t

(z*, ")

g* = (h', k") T, y")

FIGURE 15 — Fonction de Distance Directionnelle orientée dans le graphe

maniére suivante :

Dt . R™"xR” 5 R, U {co)
sup {0 : (2 — 0'ht,yt) € T'} si (xf —0'RL,y")NTE # ()
Di(a',y"; ht,0) = 620 (1.13)
00 sinon

De maniere analogue a la fonction définie dans le graphe, celle-ci satisfait également certaines

propriétés telles que :

D;1:
D;2:
D;3:
D4 :
D,;5:

Si 2t € L*(y") alors, D%(at, y*; ht,0) > 0.

Pour tout o € R, D%(a! — o'k, y'; bt 0) = Di(at, y'; hY,0) — o
Pour tout \* > 0, DY (Afat, Atyt; bt 0) = XDt (2, y*; b, 0).

Pour tout A > 0, D% (2!, y%; ARt 0) = (\) "1 DL(at, vt ht,0).

Pour tout ¢ € L!(y!) et Pour tout u* € Li(yt), si u! > zt alors, Di(ul,yt; ht,0) >
Yy I

Di(at,y"; 1, 0).

(D;1) et (D;2) indiquent respectivement que la fonction orientée en input permet de caractériser

completement la technologie de production et qu’elle est translation homothétique. Les axiomes

(D;3) et (D;4) signifient respectivement que la fonction est homogene de degré 1 sous 1I’hypothese

de rendements d’échelle constants et homogene de degré (-1) par rapport a la direction g°. Enfin, la

derniere propriété stipule que la fonction est non-décroissante en x! lorsqu’il y a libre disposition

des inputs.
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En fixant la direction g* = (0, k"), on obtient une FDD orientée en output dont la définition est

la suivante :

Dto : RT*" x R — Ry U {oo}
sup {0 : (2t y" + 6'kY) € T'} si (2, y' +0'K)NT  #£0
Dp(z', 4% 0, k") = . (1.14)
0 sinon

Cette mesure orientée en output vérifie les propriétés comme ci-dessous :

Dol : Siy' € P(z") alors, DS (2%, y*; 0, k") > 0.

D2 : Pourtout of € R, D§ (2, y* + o'k'; 0, k) = Db (2!, y'; 0, k') — o

D3 : Pour tout A > 0, D5 (At ANyt; 0, k') = N D5 (2, o' 0, k).

Do4 : Pour tout \' > 0, D5 (at, y*; 0, N'k') = (\') 71 DL (24, vt 0, k).

Do5 @ Pour tout y* € P'(z") et Pour tout v* € P'(z"), si y* > o' alors, D5 (2f, 0% 0, k") >

Db (2, 4% 0, k).

Les deux premiers axiomes (Dp1) et (Dp2) signifient que la fonction orientée en output ca-
ractérise la technologie de production et qu’elle est translation homothétique. (Do 3) et (Dp4) font
respectivement référence a 1’homogénéité de degré 1 de la mesure lorsque les rendements d’échelle
sont constants et a son homogénéité de degré (-1) par rapport a la direction. Quant a la derniere pro-
priété, elle stipule que lorsque les outputs sont librement disponibles, la fonction est non-croissante

enyt.

Les figures 16 et 17 décrivent respectivement les fonctions de distance directionnelle orientées
en input et en output. Notons que contrairement aux mesures de Debreu-Farrell, les mesures direc-
tionnelles sont non-radiales puisque la réduction des facteurs ou I’expansion des produits se font
dans une direction préalablement définie. Ainsi, les unités de production sont translatées par un

vecteur de direction sur la frontiere efficiente.

Chambers et al. (1996a) démontrent que les FDD orientées en input et en output peuvent tre

reliées aux mesures de Debreu-Farrell sous certaines conditions. Lorsque le vecteur de direction
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Isoq Pt ()

yt + (Stkt

0 Yy

g = (_ht ) _hé)

FIGURE 17 — Fonction de Distance Direc-
FIGURE 16 — Fonction de Distance Direc- tionnelle orientée en Output

tionnelle orientée en input

choisi est g* = (z*, 0) alors, nous avons la relation suivante :

1

Dt t t.tozl_Et t t:1_ ]
(Z Y2, 0) (@ y") Dt (zt, o)

L’équivalence entre la mesure de Debreu-Farrell en extrants et la FDD orientée en output peut étre

établie lorsque ¢* = (0, y"). De ce fait nous avons la relation qui suit :

1
Dola'sy:0.y) = Bo(e',y) =1 = prrgy = 1
o) )

2.1.3 La Fonction de Distance Proportionnelle

Indépendamment des travaux de Luenberger (1992a, 1992b, 1995), Briec (1997) propose la
fonction de distance proportionnelle (FDP) qui permet la réduction et I’expansion proportionnelles
et simultanées des inputs et des outputs. Dans ses travaux, Briec (1997) présente cette fonction
comme étant une généralisation des mesures de Debreu-Farrell et la nomme "mesure proportion-
nelle de Farrell". De maniere générale, pour toutes matrices diagonales A =diag(a’) € R et

B =diag(f") € R} avec (o, ') € [0, 1]™*", la fonction de distance proportionnelle pondérée est
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définie comme suit :

DYy R [0,1]™ — R U {oo}
sup {6!: (I = ¢&'A) a',(I+0'B)y') € T'}
S
D y") = si (-8 At (I+0B)y)nT £9 (119
00 sinon

Soit I’opération algébrique définie sur R® suivante :
u®v = (ugvg, -, Uss).
Cette définition permet de donner I’ expression détaillée de la mesure proportionnelle ci-dessous :

Dgi’é(a:t, y')=sup{d': (z' — '’ @',y + 0B Oy) e T}
J€R

De par cette caractérisation, il est évident que lorsque I’unité de production est techniquement
efficiente, la mesure est nulle. Certains auteurs consideérent cette fonction de distance proportion-
nelle comme étant un cas spécial de la FDD lorsque le vecteur de direction choisi est g* = (27, y").
Néanmoins, afin que les deux fonctions de distances coincident, il est nécessaire que la FDP ne
soit pas pondérée ou que les matrices de pondération soient des matrices identité c’est-a-dire

(at, B%) = (1,,, 1,,). De ce fait, cette fonction de distance non pondérée a pour définition :

D*'(a',y") =sup {6 : ((1 —&")a", (1 +d")y") e T}

dER

Cependant, Russell et Schworm (2011) remarquent que la FDD et 1a FDP vérifient des proprié-
tés différentes. Ainsi, cette derniere satisfait les axiomes suivants :

D>1: Si(z!,y') € T* alors, (D75(x", ') > 0.

D>2: Pour tout 6" € R, D275 (a! — 6l © o', y' + '8 @ y') = DY5(at,yt) — 6.

D>3: Pour tout \* > 0, Dz’é()\ta:t, Ayt) = Di’é)t(xt, yh).
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D>4 : Pour tout (z,y') € RT*", si (uf, —vt) > (¢, —y') alors, D2

a,

St o) > DXt y)

D>5: Pour tout A\* > 1 on a Dz"’é)t(ktazt,yt) > Di’é(:{;t,yt) et, Pour tout ¢ € [0,1] on a

Dt 0'yt) > DX(at, o).
D6 : Pour tout (w,,w,) € RT{" si it = 2! © w, et §* = y' ® w, avec (2%,9") € T alors
D) (' §") = D) (2", y").

(D*1) signifie que Di’é(xt, y") permet de caractériser la technologie de production. (D>2) et
(D*3) stipulent respectivement qu’elle est translation homothétique et qu’elle est homogene de
degré 0 sous I’hypotheése de rendements d’échelle constants. Lorsqu’il y a libre disposition des
inputs et des outputs, la fonction est non-décroissante en z* et non-croissante en y* (D¥4). L’avant
derniere propriété indique que la libre disposition faible des inputs et des outputs engendre une
variation proportionnelle de la mesure. Notons que cette fonction de distance satisfait 1’hypothese
de commensurabilité (Russell (1987)) c’est-a-dire qu’elle est indépendante des unités de mesure.
Elle est présentée par I’axiome (D>6). De maniere comparative, il est évident que la FDD et la
FDP ne satisfont pas exactement les mémes propriétés. En effet, sous I’hypothese de rendements

d’échelle constants, la FDD est homogene de degré 1 tandis que la FDP 1’est de degré 0. Par

ailleurs, cette derniere vérifie I’axiome de commensurabilité tandis que la FDD ne le satisfait pas.

IsoqT(xt, yt)
(1 —8%)zy, (1+ %)yt
(=, 9%)
T (=, y")

(x5, %)

FIGURE 18 — Fonction de Distance Proportionnelle orientée dans le graphe

Dans un espace a deux dimensions, la figure 18 décrit la FDP dans le graphe telle que (o, 5%) =
1,1). Il est évident que les deux unités de production (z}, y!) et (2%, y%) sont projetées dans deux
1 J1 2792

directions différentes puisque leur vecteur de direction équivaut aux observations.

Cette mesure d’efficacité proportionnelle peut également étre définie en input ou en output.
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Ainsi, lorsque /3* = 0, la fonction est axée sur les intrants et est caractérisée de la maniére suivante :

IDY o RPTx[0,1]™ — RU{oo}
sup{0*: (I —0"A)zt, y")y e T} si (I —6*A)xt,y')NT #0
IDgo(a',y") = Ok (1.16)
o0 sinon

La fonction orientée en input satisfait les propriétés présentées ci-dessous :

ID>1: Si (2,y") € T" alors, IDZ (!, y") > 0.

ID>2 : Pour tout &' € R, 1D} (! — 6'at ® 2!, y') = ID3 (2!, yt) — o'

ID>3 : Pour tout A > 0, I D (Aat, Ayt) = 1D (2, y).

ID*4 : Pour tout (¢!, y*) € R, si u! > 2t alors, ID(u',y") > ID3(x", y').

ID>5 : Pour tout A > 1 on a IDJ5(Na!,yt) > IDS(at,y') et, Pour tout 6 € [0,1] on a

1Dt 0y') > IDSH (o).
ID*6 : Pour tout (w,,w,) € R7I"si ! = 2! © w, et §' = y' © w, avec (&', 9") € T alors
IDZ4(@E", i) = IDSH(a, o).

Il est évident que ces hypotheses sont les mémes que celles concernant la fonction définie
dans le graphe de la technologie. Ainsi, les axiomes (ID*1), (ID>*2) et (ID*3) font respectivement
référence a la caractérisation de la technologie par la mesure de I’efficacité, a sa translation homo-
théticité et a son homogénéité de degré 0 sous 1I’hypothese de rendements d’échelle constants. Les
deux propriétés suivante sont relatives a la disponibilité forte des facteurs et a la disponibilité faible
des intrants et des extrants. Enfin, le dernier axiome concerne la commensurabilité de la mesure

orientée en input.

Lorsque o = 0, nous obtenons une FDP orientée en output comme suit :

ODgy R x[0,1]" — RU {oo}
sup {0°: (2", (I +0'B)y’) € T'} si (2, (I +0'B)y" ) NT" #0
ODgjs(a' y") =q 0=
9] sinon

(1.17)

Il est admis que cette mesure axée sur les extrants vérifie les propriétés suivantes :
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OD>1 : Si (z',y") € T" alors, ODg5(at,y*) > 0.

OD>2 : Pour tout 0" € R, ODy; (SL’ Y+t oyt = ODOB(:U y') — ot

OD>3 : Pour tout \' > 0, 0D, ()\t Lyt = ODoﬁ(x yh).

OD>4 : Pour tout (2, y!) € Rm+" sivf <yt alors, ODg 5 (2!, v') > ODg 5 (!, yt).

OD>5 : Pour tout A* > 1ona ODO‘t(At:ct y') > ODgfg(a: ,y") et, Pour tout # € [0,1] on a

ODgfg(xt, T ODOB(ZE yh).
OD>6 : Pour tout (w,,w,) € RTI" si 2! = 2! O w, et §* = y' © w, avec (2%, 9") € T alors
ODoﬁ(xt 7' = ODoﬁ(x yh).

Nous retrouvons des axiomes similaires a une orientation en input. De ce fait, les trois pre-
mieres hypotheses sont respectivement relatives a la caractérisation de la technologie par la me-
sure, a sa translation homothéticité et a son homogénéité de degré 0 sous I’hypothése de rendements
d’échelle constants. Les deux propriétés suivantes concernent quant a elles, la monotonicité faible
de la fonction lorsque les outputs sont librement disponibles mais également lorsque les inputs
et les outputs sont faiblement disponibles. Le sixieme et dernier axiome signifie que la mesure

orientée en output est indépendante des unités de mesure.

FIGURE 19 — Fonction de Distance Pro- FIGURE 20 — Fonction de Distance Pro-
portionnelle orientée en input portionnelle orientée en output

Les figures 19 et 20 représentent respectivement la contraction maximale des inputs et 1’expan-
sion maximale des outputs. Les facteurs et les produits sont translatés par un vecteur correspondant
aux observations. Grace a la figure 19, nous pouvons observer que la droite relative au vecteur di-

recteur (2%, x%) passe par I’origine pour toute combinaison de facteurs caractérisée par le vecteur
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2'. 1l en est de méme pour la correspondance en outputs (figure 20). De ce fait, on peut affirmer
que la FDP est une mesure radiale qui peut étre considérée comme une généralisation des mesure

de Debreu-Farrell.

Suite a cette derniere affirmation, on peut établir une relation d’équivalence entre les mesures
de Debreu-Farrell et la FDP lorsque certaines conditions sont remplies. Ainsi, pour (af, 5') =

(1,,,0), la FDP et la mesure de Debreu-Farrell orientées en input sont reliées de telle sorte que :
IDT! (2, y") = 1 — Ej(a', ).

Par ailleurs, lorsque (o, 5*) = (0, 1,,), la FDP orientée en output peut étre obtenue grace a la

mesure de Debreu-Farrell en output. Cette relation est caractérisée par :
ODgy, (a",y") = Ep(z',y) — 1.

Remarquons que les relations entre les FDP et les mesures de Debreu-Farrell sont similaires
a celles entre les FDD et les mesures de Debreu-Farrell (sous-section 2.1.2). En effet, puisque les
FDD et la FDP sont équivalentes lorsque g* = (z!, y') alors, il est cohérent de retrouver les mémes

relations d’équivalence avec les mesures de Debreu-Farrell.

2.2 La Théorie de la Dualité

Hotelling (1932) fait le lien entre le changement du profit et la variation de 1’offre et de la
demande. Plus connue sous le nom de Lemme de Hotelling, cette relation est le point de départ de
la théorie de la dualité. Shephard (1953, 1970) formalise la dualité qui existe entre les fonctions de
production et les fonctions de colit. McFadden (1978) quant a lui, étend I’analyse aux fonctions de
revenu et de profit. Nous savons que la fonction de production décrit la technologie de production,
et que cette derniere peut étre caractérisée par les mesures de distance. De ce fait, une relation duale

existe également entre les fonctions de distance et les fonctions de colit, de revenu et de profit.
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2.2.1 La Fonction de Coiit

La fonction de coflit peut étre définie grace a la correspondance des facteurs. Soit le vecteur

prix des intrants w' = (w?, - - -

,wt ) € R associé au vecteur des inputs 2* € R'". Ainsi, le coiit

minimum de production peut étre défini comme suit :

o . R"xR" - R, U {+oc0}
inf, {w' -2 (2" y") € T'} si L'(y') #0
+00 sinon

=inf {w' 2" : 2" € L'(y")} .

Sous les hypotheses T1-T7 du graphe de la technologie, la fonction de cofit, vérifie les proprié-

t€s suivantes :

Cl:
C2:
C3:
C4:
Cs5:
C6:
C7:

Ct(w', \y') = AC'(w', yb).
C8:

Pour tout w* € R’ on a, C*(w*, 0) = 0.

Pour tout (w’, y") € RTT™ alors, Cf(w', y') > 0.
Pour tout w', w* € R si " > w' alors, C*(w', y*) > C*(w', y").
Pour tout ¢, y* € R" si g > y* alors, C*(w', §*) > C*(w', y).
Pour tout A > 0 on a, C*(A\w?, y*) = A\C*(w', y*).

C*(w', y") est concave et continue en w".

Sous I’hypothése de rendements d’échelle constants, Pour tout A > 0 alors,

Si T*(x", y') est convexe alors, C*(w’, y') est également convexe en y'.

L’axiome CI1 stipule que les cofits fixes ne sont pas pris en considération tandis que C2 indique

que toute production effective engendre des cofits non nuls. Les propriétés C3 et C4 concernent

respectivement la monotonicité de la fonction de coit en w' et en y'. L’hypothése C5 signifie

que la fonction est semi-homogene de degré 1 en prix. Cette propriété implique C6. L’axiome C7

concerne la semi-homogénéité de degré 1 en outputs de la mesure lorsque les rendements d’échelle

sont constants.

Comme mentionnée précédemment, il existe une relation duale entre la fonction de colt et la

technologie de production. Celle-ci peut étre exprimée grace a la correspondance en inputs lorsque
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L'(y") satisfait les hypotheses L1-L7. Ce sous-ensemble peut étre défini par la structure des prix

tel que :

L'(y") = {a' e R} :w' - 2" > C'(w', '), w' € RT}
= ﬂ {' e R} : 0" 2" > C*(w',y")} .

w>0

La dernicre définition est liée au théoreme de séparation des convexes tel que le sous-ensemble

convexe L'(y") est constitué par I’intersection de tous les demi-plans qui le contiennent.

Sous certaines hypotheses, une relation duale existe entre la fonction de cofit et les fonctions
de distance orientées en input. En effet, ces dernieres caractérisent la correspondance en intrants
or, celle-ci peut également étre exprimée par la fonction de cofit. Ainsi, la dualité entre la fonction

de distance de Shephard en input et la fonction de colit peut €tre établie comme suit.

Pour tout (zf,y") € R x R et tout w' € R, si L*(y") satisfait L1-L7 alors,

C'(w',y") = inf {w' - 2" : D}(a',y") = 1}
Di(a',y") = inf {w'-2": C*(u',y") =1} .

w>0

Par ailleurs, le Lemme de Shephard indique qu’il est possible d’obtenir la fonction de demande
conditionnelle des facteurs grice a la fonction de cofit. Ce lemme a son dual qui permet de dériver la
fonction de prix ajustés des facteurs grace a la technologie de production(Lemme dual de Shephard
). Ainsi, aux points ou la fonction de cofit est différentiable par rapport aux prix des facteurs, si elle

admet un minimum z**(w*, y*) alors, le Lemme de Shephard permet de déduire que :
Vy, C'(w',y') = 2™ (w', ).

Si la FDS en input est différentiable par rapport aux facteurs alors, le Lemme dual de Shephard
stipule que :

V. Dia',y') = w™(a",y)
ol w*'(z!, y") = arg min,, {w' - 2 : C*(w', y") = 1}.
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De maniere analogue, nous pouvons établir une relation duale entre la FDD axée sur les intrants
et la fonction de cott. Si L*(y") vérifie les axiomes L1-L7 alors, quel que soit w' € R’ avec

(ZL‘t, yt) c RT-%—n .

Ct(w', y") = inf, {w' - 2' — D'(z, y*; b, 0) w'.A* : D(z%, y*; h',0) > 0}
D(z',y* h',0) = inf,>o{w' - 2t — CH(w, y") : w' - At = 1}.

Grace au Lemme de Shephard et au Lemme dual de Shephard, aux points ou la FDD orientée

en input et la fonction de cofit sont différentiables, nous avons :

vwct(wtu yt) = x*7t(wt7 yt7 htu 0)7
vaﬁDt(xta yta hta 0) = w*’t(xta ytv hta 0)7

ou, z*'(w', y'; ht,0) et w*'(a!, y'; h',0) sont respectivement la fonction de demande condi-
tionnelle et la fonction de prix ajustés.
Cette dualité entre la fonction de colt et les fonctions de distance s’applique également a la

FDP. En effet, rappelons que lorsque g* = (z*,0), la FDD coincide avec la FDP.
)

C«t(wt7 gt)

Ct(wt7 yt)

FIGURE 21 — Mesures d’efficacité, fonction de cofit et dualité.

La Figure 21 illustre la dualité entre les fonctions de distance et la fonction de cofit. Soient

les observations inefficientes (z¢, y') et (¢, 4*). Leur projection sur I’isoquant de L*(y") permet de
Y Yy proj q Yy )p
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minimiser les cofits. En effet, en ce point, le vecteur prix permet de déterminer le vecteur optimal

d’inputs qui minimise les colts.

2.2.2 La Fonction de Revenu

La fonction de revenu peut étre définie sur la base soit, de la technologie de production soit, de
la correspondance en outputs. Pour tout vecteur prix des outputs p* = (pi,--- ,pl) € R’} associé

au vecteur d’outputs y* € R, le revenu maximal de la production est défini par :

Rt :RTXR’}F%RU{—OO}

R{(pt, 2t sup {p' -y : (a5, y") € T*} si P'a') # 0
p ,ZC = Y
—00 sinon

=sup, {p' - y' : y' € P'(a")}.

Lorsque la technologie de production satisfait les hypotheses T1-T7, on admet que la fonction
de revenu satisfait les propriété ci-dessous :

R1 : Pour tout p* € R" ona R'(p*,0) = 0.

R2 : Pour tout (p, ') € R ™ alors, R(p', z') > 0.

R3: Pour tout p’, p* € R”} sip* > p' alors, R(p', 2*) >

R4 : Pour tout 2’2" € R si & > z' alors, R(p', ') >

R5 : Pour tout A > 0 on a, R(A\p', ") = AR(p', 2*).

R6: R(p', x') est convexe et continue en p'.

R7 : Sous I’hypotheése de rendements d’échelle constants, Pour tout A\ > 0 on a, R(p', \z*) =

AR(p!, at).

R8: Si T*(x',y") est convexe alors, R(p’, z') est concave en y'.

L’axiome R1 stipule qu’il n’y a pas de repas gratuit. La propriété R2 signifie qu’une utilisation
des inputs induit un revenu non nul. Les axiomes R3 et R4 font respectivement référence a la
monotonicité de la fonction de revenu par rapport aux prix et aux inputs. La propriété RS implique
que la fonction est positivement semi-homogene de degré 1 par rapport aux prix et celle-ci induit
directement 1’axiome R6. L’hypothese R7 concerne 1’homogénéité de degré 1 de la fonction de

revenu lorsque les rendements d’échelle sont constants.
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Lorsque la correspondance en outputs satisfait P1-P7, la relation duale qui existe entre la fonc-
tion de revenu et la technologie de production permet d’exprimer ce sous-ensemble de la maniere

suivante :

Pi(z') ={y' e R} : p' - y' < R'(p',2"),p' e R}
= ({y' eRL:p' -y <R(Y,2")}.
p=>0

Ainsi, selon le théoréme de la séparation des convexes, le sous-ensemble P*(x?) est formé par
I’intersection de tous les demi-plans le contenant.

Les fonctions de distance axées sur les extrants permettent de caractériser la correspondance
en outputs et donc, la technologie de production. Puisqu’une relation duale existe entre le sous-
ensemble P!(x') et la fonction de revenu, cette derniére est donc duale aux mesures de distance
orientées en outputs. Ainsi, la FDS en output et la fonction de revenu peuvent étre redéfinie de la
maniere suivante.

Pour tout (2, y") € R x R} et p' € R"}, si P'(z") satisfait P1-P7 alors :

R'(p' a") =sup{p'-y': DH(a',y") =1}
Y

Di(z',y") =sup{p'-y": R'(p' a") =1}.

p=>0

Le Lemme de Shephard et le Lemme dual de Shephard permettent respectivement de déduire la
fonction d’offre conditionnelle et la fonction de prix ajustés des produits. Par conséquent, lorsque

la fonction de revenu est différentiable par rapport aux prix des outputs nous avons :
VR (p' 2') =y (', 2),

ou y*!(p', ') est la fonction d’offre conditionnelle.

De plus, si la FDS en output est également différentiable relativement aux outputs alors,
VyDo(' y') = p™' (', y)

tel que p**(z*, y") = argmin, {p’ - y* : R(p’, 2*) = 1} est la fonction de prix ajustés.
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Comme dans la sous-section précédente, il est possible de traduire la relation duale qui existe

entre la FDD orientée en output et la fonction de revenu comme suit.
Si P'(z") satisfait les propriétés P1-P7 alors, pour tout p* € R’} et tout (z*,y") € R} :
R (p', ') = sup {p"-y" + D'(z',y"; 0, K)p" - k' : D'(a", "5 0, k") > 0}
Yy
Di(at,y"50,k") = inf {R'(p',2") —p"-y' - p" - K =1}
De plus, lorsque la fonction de revenu et la FDD orientée en output sont respectivement dif-

férentiables par rapport aux prix des produits et aux extrants, le Lemme de Shephard et le Lemme

dual de Shephard permettent d’établir que :

V,R'(p', 2) = y*i(p, 2v; 0, k")
U, D!ty 0,k) = p(at, ' 0, k).

Lorsque le vecteur de direction g* = (0, "), on retrouve la FDP non-pondérée. Dans ce cas, la

théorie de la dualité peut également étre appliquée a cette mesure.

Y2

0
IsoqP*(z") yi

FIGURE 22 — Mesures de performance, fonction de revenu et dualité.

La figure 22 décrit le principe de la dualité entre les fonctions de colt et les fonctions de

distance. Les unités de production (z', y") et (z*, ") étant inefficientes, la projection de ces unités
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sur la frontiere efficiente permet de déterminer le vecteur prix des produits qui permet de maximiser

le revenu.

2.2.3 La Fonction de Profit

La fonction de profit représente le bénéfice des entités de production et repose sur la technologie
de production. Soient (w', p*) € R les vecteurs prix associés respectivement aux inputs z* €

R’ et aux outputs y € R}. Le profit maximal est défini par la fonction suivante :

I {RT x R? — RU {+00}

sup {p' - y* —w' -2t (a',y") € T'} si T'(at,y') # 0
I (w, pt) = (z.y)

+o00 sinon

Lorsque les axiomes T1-T7 sont satisfaits par la technologie alors, la fonction de profit vérifie
les propriétés suivantes :

I11 : Pour tout (w’, p') € RT*™™, on a I1%(0, 0) = 0.

I12 : Pour tout (w’, p') € RT™™ alors, I (w?, p) > 0.

I13 : Pour tout (v, p') € R et Pour tout (w',p’) € RT™, si w' > w' et p* > p alors,

ITH (@, pt) > T (wt, pt).

14 : Pour tout A > 0, on a IT*(Aw?’, A\p") = AIT*(w?, p*).

I15 : TI*(w?, p') est convexe et continue en w’ et en p'.

I16 : Sous I’hypothese de rendements d’échelle constants, soit IT* (w’, p*) = 0 soit, IT*(w?, p') =

+o00.

L’axiome (I11) stipule qu’il n’y a pas de repas gratuit. (112) signifie qu’une utilisation effective
des facteurs et une production effective induisent un profit non-nul tandis que le point (0, 0) est
toujours réalisable. Les propriétés (I13) et (I114) font respectivement référence a la monotonicité de
la fonction de profit et a sa semi-homogénéité de degré 1 par rapport aux prix. L’hypothese (I15)
découle directement de la (I114). (I16) est une conséquence de la structure de la technologie lorsque

les rendements d’échelle sont constants.

La fonction de profit permet de représenter le graphe de la technologie, lorsque celui-ci respecte
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les axiomes T1-T7. Par conséquent, nous pouvons établir que :

Tt<xt,yt) — {(l’t,yt) c RTJrn . pt . yt _ wt . xt < Ht(wt,pt), (wt,pt) c RTJrn}
_ ﬂ {(xt’yt) c RT+n :pt . yt —wt ozt < Ht(wt’pt)} )
(w,p)=0
Cette derniere définition est déduite directement du théoréme de séparation des convexes. En

effet, le graphe de la technologie est constitué par 1’intersection de tous les demi-plans qui le

contiennent.

Une relation duale existe entre les fonctions de mesure définies dans le graphe et la fonction
de profit. Ce résultat est dii aux travaux de Luenberger(1992a,1992b,1995) ainsi que de Chambers,
Chung et Fére (1998). Sachant que les FDS et les mesures de Debreu-Farrell ne sont orientées
que soit en input soit en output, celles-ci ne sont donc pas liées de maniere duale aux fonctions de
profit. Dans ces conditions, nous pouvons définir la dualité entre la FDD orientée dans le graphe et

la fonction de profit comme ci-dessous.

Pour tout (z*,y") € R x R et tout (w’, p*) € R x R7, si T"(a", y") satisfait T1-T7 alors,

Ht(wtjpt) = sup {pt gt —wh ot + Dt<xt’ yt: B, kt><wt Rt pt- kt)}
(z,y)

DAty hK) = int (It p) = (o — ) s Bt K= 1),
w,p)>0

Lorsque la fonction de profit est différentiable par rapport aux prix des inputs et des outputs, le
Lemme de Shephard permet de déduire les fonctions de demande et d’offre conditionnelles comme

suit :

VwHt(wt,pt) — x*,t(wt’yt; ht, kt),

VoIl (w', pt) = y™'(a’, ps B, k).

Le Lemme dual de Shephard donne quant a lui, la possibilité de trouver les fonctions de prix
ajustés (ou prix implicites) qui représentent les prix d’équilibre lorsque le marché est librement
concurrentiel. De ce fait, ils permettent la maximisation du profit. Par conséquent, lorsque la FDD

est différentiable par rapport aux facteurs et aux produits, les fonctions de prix implicites sont
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représentées par :

VoD (x' Y b KT = w2y B K,

VD' (@', y' b k) = —p™(af, 'y B K.

L’ensemble des prix implicites, qui vérifie la représentation duale de la fonction de distance

orientée dans le graphe, est défini par la correspondance des prix ajustés suivante :

P! PR ) R 2R
Pl(at s bR = arg min (It pf) = (' —w'af) s p Kt B= 1)
w,p)>0

Notons que lorsque g' = (z!,y'), la FDD est équivalente a la FDP a laquelle la théorie de la

dualité dans le graphe de la technologie peut étre appliquée.

Y
(ot mt
I (’LU ap) Ht(wt,ﬁt)
IsoqT(a", y")
< ((I - §A)zt, (I +6B)g"))
TNl (at ot
(2t yt) + 6t gt * (29"
t_ t \\.
=) (@', y") T!(z',y")
0 2t

FIGURE 23 — Mesures d’efficience, fonction de profit et dualité.

La figure 23 présente le processus de dualité entre les mesures de distance orientées dans le
graphe et la fonction de profit. Les unités de production étant inefficientes, leur projection sur la
droite de profit donne le score d’efficience technique. Par ailleurs, il en résulte les prix ajustés
permettant la maximisation du profit si le marché est parfaitement concurrentiel. Au point d’inter-

section des hyperplans qui correspond a une observation, les vecteurs prix vérifiant I’optimisation
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de la mesure de distance, peuvent ne pas étre uniques.

3 Des Mesures d’Efficacité aux Mesures de la Productivité

Les mesures d’efficacité introduites dans la section précédente ne permettent I’analyse de la
performance des unités de production que pour une période donnée soit (¢). Dans cette section,
nous présentons les mesures de productivité. Celles-ci permettent de comparer I’efficacité des en-
tités productives dans le temps et/ou dans 1’espace. Dans ces travaux, nous nous intéressons uni-
quement a la dimension temporelle. Dans ce cas, elles évaluent les changements de 1’efficacité des
relativement a deux périodes consécutives afin de mieux appréhender les gains (ou pertes) de per-
formance. Les mesures exposées dans cette section sont fondées sur les fonctions de distance. Dans
le cadre de ces travaux, nous nous situons dans une étude a multiple outputs et a multiple inputs.
De ce fait, les grandeurs présentées sont des mesures de productivité totale des facteurs. Avant
de définir les différentes mesures de productivité, il est nécessaire de définir certaines notions.
Soient deux périodes consécutives (¢) et (¢ + 1) et, les vecteurs (a,y') € R et (2! y'T1) €
R'7*™ qui dénotent respectivement les inputs et les outputs des périodes (¢) et (¢ + 1). On définit
par DHl(xt, yt; ht, k‘t) = sup {5t+1(t) . (l‘t _ 5t+1(t) . ht, yt + 5t+1(t) . k‘t) c Tt+1(xt+1’yt+1)}’ la

x,
fonction de distance direct(iogil)nelle orientée dans le graphe, de I’observation (zf, 3") évaluée rela-
tivement a la technologie de production 7! (z*+1, 4/'™1). Pour simplifier les notations, on admettra
que Tt+1 (xt-i-l’ yt+1)

— Tt+1 et Tt(:ct, yt> — Tt.

3.1 Les Indices et les Indicateurs de Productivité Usuels

Dans cette sous-section, nous présentons deux types de mesures de la productivité. La premiere
grandeur fait intervenir des fonctions de distance radiales et, ont une structure multiplicative. Nous
nous y référons comme étant les "indices" de productivité. La seconde mesure est basée sur les
fonctions de distance non-radiales. Elle est structurellement additive et, nous leur attribuons le

terme "indicateur" de productivité.
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3.1.1 Les Indices de Productivité de Malmquist

Suite aux travaux de Malmquist (1953), les indices de productivité de Malmquist ont été pré-
sentés par Caves et al. (1982a, 1982b). Ils reposent sur les fonctions de distance de Shephard. En

ce sens, les auteurs introduisent des mesures de productivité orientées en input et en output.

Les indices de productivité de Malmquist axés sur les intrants des périodes () et (¢ + 1) sont
respectivement définis par :

_ Df({EtJrl, ytJrl)

Mt xt’ yt’ .Tt+1, yt+1
I( ) D}(l’t, yt)

1
Mt-l-l(xt yt: ot yt+1> _ D? (xt“ayt“)
P DY, )

Le premier est le ratio entre la mesure de Shephard en input des observations de la période
(t + 1) relativement a la technologie de la période (¢) et, la mesure de Shephard en intrant des

observations de la période (¢) relativement a la technologie de la méme période.

Les deux indices présentés ci-dessus ne sont périodiques. Cependant, Fire, Grosskopf, Lind-
gren et Roos(1989) introduisent la notion d’indice de productivité global de Malmquist. Ainsi, la

mesure de productivité globale de Malmgquist orientée en input est représentée par :

M1<xt7 yt7 l’t+1,yt+1) — (M}(I‘t, yt’ .Tt+1, yt+1) % M;—’—l(ﬂft, yt7 l’t+17yt+1))1/2

1/2
_ (Dg(xt—i—l’yt-i—l) y D?rl(l,t—l—l’yt—f—l)) / |
Di(at,yt) Dt (at, yt)

Cette grandeur se présente comme €tant la moyenne géométrique des deux indices de productivité
périodiques de Malmquist. Lorsque la valeur de cette mesure est inférieure a 1 (respectivement
supérieure a 1) alors, il existe un gain de productivité (respectivement une perte de productivité).

Par ailleurs, lorsqu’elle est égale a 1, la productivité de I’entreprise reste stable.

De maniere analogue, les indices de productivité de Malmquist orientés en output des périodes
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(t) et (t 4+ 1) sont respectivement définis par :

_ Dg(xt+1’yt+l)
D (2, yt)

t t b, at+1 t+1
MO(:E 7?/ ;L 7y )

_ Dgrl (1‘”1, yt+1)

Dy (!, yt)

t+1 t t. ot+1 t+1
MO (.CC 73/ 7':6 7y )

Ces deux indices sont basés sur les mesures de Shephard axées sur les extrants des observations

des période (t) et (¢ + 1) relativement aux technologies T et T,

L’indice de productivité global de Malmquist orienté en output est la suivante :

Mo(l’t,yt; xt—f—l’ yt+1) _ (Mf)(xt,yt; xt—f—l’ yt+1) % ]ngl(xt7 yt; xt—i—l’yt-i-l))l/?

1/2
_ Dto(xt-i-l’yt-i-l) y DtOJrl(xt—i—l’yt—f—l) /
Db (at, y') Dy (at,yt) '

L’interprétation de la mesure de productivité globale de Malmquist en output est I’inverse de celle
suivant une orientation en input. Ainsi, lorsque sa valeur est inférieure a 1 (respectivement su-
périeure a 1), I'unité de production fait face a une perte de productivité (respectivement un gain
de productivité) d’une période sur I’autre. Une valeur égale a 1, signifie que la performance de

I’entreprise reste inchangée.

Les indices de productivité de Malmquist indiquent s’il y a eu gain ou perte de productivité
d’une période sur une autre. Cependant, ils ne permettent pas de connaitre les sources de ces varia-
tions. De ce fait, Nishimizu et Page (1982) proposent une décomposition des indices de producti-
vité globaux afin de différencier les gains ou les pertes de performance imputables au changement
d’efficacité technique et au progres technique. Suite a ces travaux, Fire et al. (1989) proposent une
décomposition des mesures de productivité globales de Malmquist en termes de variation de la
performance et de mutation technologique.

L’indice de productivité global de Malmquist axé sur les facteurs peut étre reformulé de la

maniére suivante :

1/2
sy = P (D D) ”

D}(xt’ yt) D§+1(xt+1’ yt+1) D§+1 (xt’ yt
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tels que

D?H (:EtJrl’ yt+1)

FEFFCH; =
! Di(a, y")
Dt (gt gt Dt(zt ot 1/2
TECH, - ( tigx t+’1y t+z tJIrgaj 7ty)t ) )
DI (l‘ Y ) DI ("E Y )

EFFCH;, désigne le changement de I’efficacité technique entre la période (t) et la période
(t + 1). Lorsque ce ratio est inférieur a 1, il y a un gain de performance qui est dii a une hausse
de I’efficacité technique. En ce sens, I’unité de production réussit a produire plus d’outputs en uti-
lisant moins d’inputs (meilleure allocation des ressources) tout en gardant le méme processus de
production. 7'"EC H; quant a lui, fait référence a la variation de la performance qui peut étre impu-
tée au progres technologique. Lorsque cette grandeur est inférieure a 1, on peut en déduire qu’une
partie du gain de productivité de I’entreprise a été induite par une transformation technologique du

processus productif.

De maniere similaire, I’indice de productivité global de Malmgquist orienté en output peut éga-
lement étre décomposé. En suivant le méme raisonnement logique que dans le cas d’une orientation
en intrant, on obtient les composantes EF F'C'Hp et TECHp de I’indice de productivité global
en output. Notons que les valeurs de ces composantes sont interprétées de maniere inverse a celles

obtenues selon une orientation en input.

La figure 24 présente les différentes mesures de Shephard orientées en output. Il est a noter que
y1® et 41+ sont les projections respectives de ¥ et de 4+ sur les frontieres des technologie
Tt et T*. Ainsi, 'indice de productivité de Malmquist orienté en output de la période () est :

Oyt Oyl

t
Mo = Oyt(tJrl) X Oyt

tandis que I’indice global de Malmquist est :

Oyt+! Ot Outtl  Oyttl® 1/2
Mo(xt’yt;xt-l—l’yt-l—l) _ (Y % Yy yt X Y
Oyt+D = 0y Oyst Oy’

Lorsqu’une observation de la période (¢ + 1) est projetée sur la frontiere de la technologie de

production, la mesure de 1’efficience technique peut étre négative.
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IsoqTt+!

IsoqT™

FIGURE 24 — Indice de productivité de Malmquist orienté en output.

3.1.2 Les Indicateurs de Productivité de Luenberger

Chambers et al. (1996b) présentent les indicateurs de productivité de Luenberger et, les nomment
ainsi en ’honneur de Luenberger (1992a, 1992b). Ces mesures de la productivité sont fondées sur
les fonctions de distance directionnelles. De ce fait, elle peuvent €tre définies suivant trois orienta-

tions possibles.

Soient g' = (h',0) et g™ = (h**10). Les indicateurs de productivité de Luenberger orientés

en input des périodes (¢) et (£ + 1) sont respectivement :

Ly(at, a0yt g™ 5 ) = Di(at,y' b 0) = DY,y AL 0)
L?rl(xt,xt""l, yt’yt—i—l; ht, ht-i—l) — Dt+1(£€t,yt; ht, 0) o Dt—f—l(xt—i—l’ yt—i—l; ht+1, 0)

Le premier est constitué de la différence entre les mesures directionnelles des observations
(x',y") et (21, 4*1) par rapport a la technologie T". En revanche, le second est composé de la
différence entre les mesures directionnelles des couples (zf, ') et (2, y*™!) relativement a la
technologie 71

Nous pouvons également définir un indicateur de productivité global de Luenberger par rapport

aux deux périodes. La mesure de globale orientée en input est caractérisée de la maniere suivante :
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Ly(at, a1yt g™ ht R 0,0) = [Lﬁ(l“t, CARNTINTIARY AN )

N —

FOLEL(at 2t gt gt gt ht“)].

Nous pouvons constater que la grandeur définie ci-dessus est la moyenne arithmétique des

indicateurs des périodes (t) et (¢ + 1).

Soient g* = (0,k%) et g'** = (0,k""'). De maniére analogue a I’orientation en intrant, les

indicateurs de Luenberger orientés en output sont :

Lo(a, a5yt y™ S KL R = DUt y' 0, KY) — DU,y 0, k)

Lto—l—l(xt’ xtJrl’ yt’ ytJrl; k}t, ktJrl) — DtJrl(:L.t’ yt’ 0’ k,t) _ DtJrl(:L.tJrl’ ytJrl; O, k:tJrl).

La premiére mesure concerne la période (t) tandis que la seconde est relative a la période
(t + 1). L’indicateur de productivité global de Luenberger orienté en output est mesuré par la

moyenne arithmétique des deux indicateurs périodiques. Il se présente comme suit :

+Lt0“(:ct I IRY ST kt“)].

Contrairement a I’indice de productivité de Malmquist, 1’indicateur de productivité de Luen-
berger peut étre défini selon une orientation dans le graphe. En posant ¢¢ = (h',k?) et ¢'*! =

(Rt K1), les indicateurs des périodes (t) et (¢ + 1) sont respectivement :

Lt(l’t, :L.tJrl’ yt’ ytJrl; gt’ gtJrl) — Dt(ZEt, yt’ ht’ kt) _ Dt(xtJrl’ ytJrl; htJrl’ kt+1)

Lt+1 ('rt7 xt+17 ytu yH—l; gtu gt+1) = Dt+1(xt7 yt; h't7 kt) - Dt+1(xt+17 yt+1; ht+17 kH_l)'
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Le mesure de la productivité globale de Luenberger relative aux deux périodes est donc :

1
L', ey g gt g™ = 5 (L2 'y g ™)

+Lt+1(l‘t, ZL’tJrl,yt,ytJrl;gt,gtJrl)} ]

Il est également possible d’identifier les sources du gain (ou de la perte) de performance révélé
par les indicateurs de productivité. Ainsi, nous décomposons les mesures de productivité de Luen-
berger en deux composantes. La premiere reflete un gain d’efficacité technique d’une période par
rapport a une autre et la seconde met en évidence un changement technologique dans le processus
de production. Dans le cas de I'indicateur de productivité global de Luenberger orienté dans le

graphe, ces deux composantes sont respectivement :

EFFCH = Dt(xt, yt; ht, kt) _ Dt-i—l(xt—i—l’ yt—i—l; ht-i—l7 kt—f—l)7
TECH — Dt—f—l(xt—l—l’ yt—i—l; ht+1, kt-ﬁ—l) _ Dt(xt"H, yt—i—l; ht+1, ]{Zt+1)

N | —

+DH Y R = DYty R R |

ou EFFCH est la variation de I’efficacité technique tandis que TECH est le changement tech-
nologique. A partir de ces deux composantes, on peut reformuler la mesure de productivité globale

de Luenberger orientée dans le graph, de la manicre suivante :

L({Et,l’t+1, yt’ yt—i—l; gt’gt—i—l) — [Dt(l‘t, yt’ ht, kt) _ Dt+1(l‘t+1, yt—i—l; ht+1, kt—f—l)]

+ % [DtJrl(l,tJrl’ yt+1; ht+17 kt+1) . Dt@jtﬂ7 yt“; htJrl7 ktJrl)

+Dt+1(xt7 yt; h't7 kt) - Dt<xt7 yt; htu kt)] :

La Figure 25 présente deux technologies de production relatives a deux périodes consécutives,
(t) et (t + 1). Soit le point A qui correspond a I’observation (z*, 3*) de la période (¢) tandis que B

est le couple (z*1, y'*1) de la période (¢ + 1). Selon une orientation dans le graphe, les mesures
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Yy
IsoqTt+!
B//
o B
v IsoqT™
N N N A/
o A
(g%, ")

0 2t

FIGURE 25 — Indicateurs de productivité de Luenberger orientés dans le graphe.

d’efficacité en terme de distance algébrique de ces observations sont les suivantes :

1
D'(z",y" 9") =7 7 A" = All
Dt+1(xt+1’y gt+1) _ H t+1H HB// BH
D (a' y' g") 1A = Al
e
Dzl y™ g™l = WII - B

De ce fait, ’expression de 'indicateur de productivité global de Luenberger selon la distance

algébrique est :

) = (A" = Al + 14" — Al

l\D|>—t

L(z', 2"yt gt gt g

lg t||
1

~ T (1B = B'||+B" - B|)
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3.1.3 La Relation entre les Indices de Productivité de Malmquist et les Indicateurs de Pro-

ductivité de Luenberger

Boussemart, Briec, Kerstens et Poutineau (2003) démontrent qu’il existe une relation d’ap-
proximation linéaire entre les indicateurs de productivité de Luenberger et les indices de producti-
vité de Malmquist. Ainsi, pour ¢° = (¢, y') et g™ = (2*1, 1) lorsque la FDD coincide avec la
FDP alors, sous I’hypothese de rendements d’échelle constants et, suite aux relations d’équivalence

entre les mesures de Debreu-Farrell et 1a FDP, les auteurs établissent que :

5
=
&Fﬁ
QQF#
gﬁ-
s
éﬁ-
s
12

—2.L(z", 2yt gt gt
2.L(a", "yt gt gt gt

t t+1 t o, t+1 . .t t+1
—L[(SC,.'L‘ YUY 29,9 )

=

s
&&#

QQ&#
Hro-
£

\‘@W
£
I

(
(

In (M[(xt, yt’ IH—l, yt—f—l))
(

In (Mo(z!, yt, 21yt ) = Lo(at, 2™yt gt gty gt
1
Lzt a1yt gt s gt gt 3 [Lo(x!, z' yt yt 5 gt gt

_Ll(xtv xt+17 yta ytJrl) ) gtv gtJrl)] .

On peut constater que les mesures de productivité de Luenberger peuvent étre approximées
par les logarithmes des indices de productivité de Malmquist. Rappelons que ces relations ne sont
valables que si les technologies de production étudiées operent sous I’hypotheése de rendements

d’échelle constants.

Balk, Fare, Grosskopf et Margaritis(2008) prouvent quant a eux, que les mesures de producti-
vité de Malmquist et de Luenberger sont équivalentes lorsque certaines conditions sont respectées.
Les résultats qu’ils présentent ne sont valables que si les unités de productions sont techniquement
efficients & chaque période avec ¢ = (2%, ") et ¢'™' = (2! y*1). Supposons que (zf,y") et
(21, 4'1) appartiennent respectivement aux frontiéres efficientes des technologies 7" et T,
En posant la méme hypothese que Caves et al. (1982a) telle que D' (xf, y*) = DI (211 yt*1) =
DL (2t yt) = DE (2t ytth) = 1 ainsi que D(a',y% Rt 0) =

D (gt gyt pttl0) = Di(at, 4% 0, k) = DU (2t yt*L 0, k1) = 0, alors pour chaque
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période, les relations suivantes existent :

Miat gy Y = [ Dt gty )
M;Jrl (.’L‘t, l‘t+17 ,yt7 yt—l—l) — 1 _ Ll}Jrl (.’L‘t, .Tt+17 yt7 yt—i—l; ht’ ht—l—l)
Mf)(xt’ [L'H_l, yt’ yt-i-l) — [1 _ LtO(ZL't, l‘t+1, yt’ yt-i-l; kt’ kt+1)]_1
Mgi-l (l‘t, :L,tJrl’ yt’ yt+1) =1 + Lto-f—l(xt’ l,tJrl’ yt’ ytJrl; k?t, k,tJrl)

Grace a ces équivalences, il est alors possible d’exprimer les indices de productivité globaux

de Malmquist en fonction des indicateurs de productivité de Luenberger de telle sorte que :

1/2
My(at ot gt gty = (LoD at gty R R
) s Y 1 +L}(:Lvt’xtJrl’yt’ytJrl;ht’hprl)

1/2
Mo (at, Lyt yt+l) = 1+ L’Srl(xt’xt—l—l’yt’yt—i—l; Kt kY |
) » I 1— Lto(l’t7 xt—l—l’ yt’ yt+1; kt’ ]{It"H)

De la méme maniere, on peut obtenir I’expression des indicateurs de productivité de Luenber-

ger en fonction des indices de productivité de Malmquist comme suit :

LtI(ZL't, .I‘H—l, yt’ yt—l—l; ht’ ht+1) — (M}(.I’t, {L‘H_l, yt’ yt-l—l))_l -1
Ltl+1(IL't, xtJrl’ yt’ ytJrl; ht’ ht+1) =1 M}H_l (ZL‘t, xtJrl’ yt’ yt+1)
Lto(l’t, .I‘H—l, yt’ yt—l—l; kt’ kt—i—l) =1 (Mé(l‘t, ZL’H_l, yt’ yt-i—l)*l
Ltarl(l’t, .’L‘H—l, yt’ yt—l—l; kt’ kt—i—l) — MtOJrl(xt’ ZL’H_l, yt7 yt—i—l) -1

Par conséquent, les indicateurs de productivité globaux de Luenberger sont :

-1
Ll(xtvxt+1aytuyt+1; htuht—H) = [(M;<xt7xt+17yt7yt+l)) - M;+1<xt7xt+1ayt7yt+1)}

~1
|:M6+1(xt7 2yt gt — (MY (af, 2 gyt } .

N | =

t t t+1 t ,t+1. 1.t 1.t+1 _
LO(.'E,SU 7y7y 7k7]€ ) -

Nous pouvons noter que les travaux de Balk et al. (2008) ne présentent que les relations d’équi-

valence selon une orientation en inputs ou en outputs.
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3.2 Les Extensions des Mesures de Productivité de Malmquist et de Luen-

berger

La littérature fait apparaitre que les mesures de productivité de Malmquist et de Luenberger
peuvent amener a des infaisabilités (Briec et Kerstens (2009a, 2009b)). Ainsi, Diewert (1992a,
1992b) présente une mesure de productivité fondée sur les indices de quantité de Malmquist. Dans
le méme esprit, Briec et Kerstens (2004) introduisent une mesure de productivité basée sur les
indicateurs de quantité de Luenberger. Notons que I’expression "mesure de quantité" signifie que
seule la composante étudiée varie dans le temps. Par exemple, si nous prenons une mesure de
quantité en input de la période (t), seuls les intrants varient a la période (¢ + 1). Dans ce cas, nous

étudions les observations (z!, y*) et (z!1, y?).

3.2.1 Les Indices de Productivité de Hicks-Moorsteen

Afin de pallier aux infaisabilités qui peuvent apparaitre dans I’estimation des indices de produc-
tivité de Malmquist, Diewert (1992a, 1992b) propose un indice de productivité basé sur le ration
entre les indices de quantité de Malmquist orientés en input et en output. Il attribue cette approche
a Hicks (1961) et Moorsteen (1961).

Bjurek (1996) reprend les travaux de Diewert (1992a, 1992b) et définit I’indice de productivité

de Hicks-Moorsteen de la période (¢) de la maniére suivante :

t(pt ot o t+1

HMt@jt 2t gt yt+1) _ MO'(z', y', y*™)

? ’ ) M.[t(l’t, {L’H_l, yt)

Cette mesure est donc constituée dur ratio entre les indices de quantité de Malmquist orientés

en output et en input qui sont respectivement :
D (zt, yt+1)
MO'(a' 'y = =5

T e
_ DI (l’ Y )

M[t t 41 ot — )
('r7x 7y) Df(xt’yt)

Notons que les mesures de distance de Shephard font intervenir les observations fictives suivantes
(zt, yt+) et (2, o).

De la méme maniére, la mesure de productivité de Hicks-Moorsteen de la période (¢ + 1) est
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caractérisée par :

HMtJrl (.Tt l,tJrl t t+1) _ MOtJrl (xtJrlv yta yt+1)
’ YLy o Mt (gt, gt g+ ’

avec les indices de quantité de Malmquist définis comme suit :
1ttt
MOt—l—l(l,t—f—l yt yt+1) _ Dg Ex Y )
) ) t
D + (xtJrl’ yt)

_ D?rl (1‘”1, yt+1)

D§+1 (:Et’ yt+1) ’

M]t—f—l (:L’t, xt—f—l’ yt—f—l)

Nous pouvons également présenter un indice de productivité global de type Hicks-Moorsteen
qui englobe les deux périodes (t) et (¢ + 1). Celle-ci est mesurée par la moyenne géométrique des
deux mesures de productivité périodiques présentées ci-dessus. L’indice de productivité global de

Hicks-Moorsteen est défini par :

1/2
HM(.CC‘t7I't+1, yt’ytJrl) — [HMt(.Tt, xtJrl’yt’ytJrl) X ]¥]\4't+1(xt7 xtJrl’yt’ytJrl)] / )

Lorsque cette mesure prend une valeur inférieure (supérieure) a 1 alors, il existe un gain (une

perte) de productivité de I’unité de productive d’une période a 1’autre.

Fiare, Grosskopf et Margaritis(2008) précisent que I’indice de productivité de Hicks-Moorsteen
orienté en output (en input) coincide avec la mesure de productivité de Malmquist en output (en
input) si et seulement si, la technologie de production vérifie a la fois, une homothéticité inverse 8
et des rendements d’échelle constants. Dans ce cas, pour un vecteur de facteurs-produits (7, 7)

choisi arbitrairement, ils proposent la décomposition de 1’indice de Hicks-Moorsteen suivante :

Vv (DY@ D)
HM('I y L 7?/ 7y )_ t (= ..t t t —
Do(z. ") Di(z*,y)
— — _ _ 1/2
[( otz Doy (D?lw“,y) D?“(asﬁy)ﬂ /
DS @y ) DG wy)) "\ Die g Dy )]

8. Une technologie est inversement homothétique si, dans le cas de la fonction de distance de Shephard orientée
en output, Do(z,y) = Do(T,y)/F[Dr(x,7)]. Notons que F' est une fonction croissante et le vecteur (Z,7) est un
vecteur fixé arbitrairement.
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ou la variation de I’efficacité technique et le changement technologique sont respectivement :

prreg - (PO @y Dt (e5)
B Dt (7. oyt Dt(zt w
O(x7y ) I(l‘ ,y) o
TECH — D4(T,y"*Y) DL(T, ") y DY (211 ) DY (a2, ) /
L\ D5z, ) DY (T, ) Dia1,5) D7) .

Remarquons que le gain de productivité dii a une variation de 1’efficacité technique peut étre
induit soit par les facteurs soit par les produits. Ainsi, la part du changement de la performance
imputée aux outputs est représentée par le premier ratio intervenant dans la composante £ F'FC'H.
Celle attribuée aux inputs est caractérisée par le second ratio. Cette méme interprétation peut étre

effectuée pour la composante T EC'H.

Y
4" IsoqT*+!
B// i
| A IsoqT*
B . B 1
********** s :
% * ! :
L ,/} ,,,,, A ,:,B ,,,,,,,,,,,,,, “A
0 1 1 %

FIGURE 26 — Indice de productivité de Hicks-Moorsteen.

La figure 26 décrit le processus d’estimation de 1’indice de productivité de Hicks-Moorsteen.
Soient les observations A = (zf,y') et B = (2!, y'*1) des périodes (¢) et (¢ + 1). L’indice de

quantité de Malmgquist orienté en input est représentée par :

0B 04" 0B 04~ 1/2
0B* 04 ~ 0B*  0A ’

MI =
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tandis que celui orienté en output est :

0B’ 04 “ 0B * 04

B 04 0B _04""?
MO:[O 04" 0 o] |

L’indice de productivité de Hicks-Moorsteen devient donc :

05" 0A’ 0BT 0A" 142
0B’ ~ 0A* ~ 0B" ~ 0A*

|

3.2.2 Les Indicateurs de Productivité de Luenberger-Hicks-Moorsteen

Les indicateurs de productivité de Luenberger-Hicks-Moorsteen (LHM) ont été introduits par
Briec et Kerstens (2004) afin de résoudre les problemes d’infaisabilités qui surviennent dans les
mesures de productivité de Luenberger. Il sont caractérisés par la différence entre les indicateurs
de quantité de Luenberger orientés en input et en output. De ce fait, I’indicateur de productivité de

LHM de la période (¢) est défini par :
LHM' (2,2 gty ™ gty g h) = LOM(at, o,y kY KT — LI'(af, 2"yt b R,

Remarquons que des observations fictives (2, ') et (!, y') interviennent dans la mesure.

Précisons que :

LOt('xt7 yt7 yt+1; kta kt+1) = Dt('rt7 yt7 07 kt) - Dt('rt7 yt+1; 07 kt+1)
LI'(at a1 s h WY = DYty B, 0) = DY (et y's i 0).

De la méme maniere, on peut définir I’indicateur de productivité de LHM de la période (¢ + 1)

par:
LHMtJrl(,]]t’xtJrl’ yt’ytJrl;gt’gtJrl) — Lgrl(l’tJrl,yt, ytJrl; ]{?t, ]{IIEJrl)_Ll}Jrl<xt7 xtJrl’ytJrl; ht, htJrl)’

avec

L0t+1(l,t+1’ yt’ yt+1; k‘t, kt+1) — Dt+1 (xt+1’ yt; 0’ k,t) _ DtJrl(xtJrl’ yt+1; 0, kt+1)
L[t-i-l (xt’ :L’t+1, yt—i—l; ht, ht-i—l) — Dt+1 ($t+1, yt—i—l; ht+1, O) _ Dt'H(:L’t, yt-i-l; ht, 0)
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Afin d’éviter le choix d’une période de base arbitraire, nous pouvons présenter un indicateur
de productivité global de LHM qui intégre simultanément les périodes (t) et (¢ + 1). Cette mesure
globale est caractérisée par la moyenne arithmétique des indicateurs LHM périodiques et est définie
comme suit :

1
LHM(a', 2" y' g™ g ") = S[LHM (2, 2" o'y g g™

+ LHM™ (2!, 2™y, g™ gt g™ )]

Lorsque la valeur de I’indicateur de productivité global de LHM est supérieure (inférieure) a

zero alors, il y a un gain (une perte) de productivité.

Y
IsoqT*+!
B/
| A IsoqT*
B | 1
——————————— v B sc
******** YL,
D |
0 1 1 %

FIGURE 27 — Indice de productivité de Luenberger-Hicks-Moorsteen.

La figure 27 décrit les projections des observations sur la frontiere efficiente de la technologie
de production des périodes (t) et (¢ + 1). Soient les observations réelles A = (z*,y') et B =

(21, 4'1) ainsi que les observations fictives C' = (21, ) et D = (2!, 3'™). Posons ¢, g'™ €
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{(1,0),(0,1)}. Les indicateurs de quantité de Luenberger sont définis par :

LO'at gty i ) = e (14— Al = |4 =€)
LIt yfsg oY) = e (1D = A% A A%
LO @ttt f g’ g) = o (1= D) = |5 = B)
LIt a0,y g ) = e (1B = B = € = B,

A partir de ces mesures de quantité de Luenberger, les indicateurs de productivité de LHM des

périodes (t) et (¢t + 1) se présentent de la maniere suivante :

1
LHM (2!, 2"yt gt gt gt = 0] (J[A" = Al = [|A" =)
’ 1
- (I|1D = A*|| = [|[A = A*|)
. 1(1,0)|
LHM" (2t 2"yt yt s gt !t = 0Dl ([|1B"=Dl|| - ||B" - BJ|)
’ 1
- (I|1B = B*[| - [|C - B*|).
1(1,0)|

3.2.3 La Relation entre I’Indice de Hicks-Moorsteen et I’Indicateur de Luenberger-Hicks-

Moorsteen

Fére, Grosskopf et Roos(1996) démontrent que lorsque la technologie est inversement homo-
thétique et qu’elle satisfait des rendements d’échelle constants alors, I’indice de productivité de
Malmquist est équivalent a I’indice de Hicks-Moorsteen. En effet, sous I’hypothese de rendements
d’échelle constants, la fonction de distance de Shephard en input est la réciproque de celle en out-

put. De ce fait, si les conditions citées ci-dessus sont remplies alors, 1’égalité suivante est valable :

Dto(l‘tJrl,ytJrl) _ DtO(ZL‘t,ytJrl) DtO(ZL‘tJrl,yt)
Db (!, yt) - Dplatyt) T Dplatyt)

Briec et Kerstens (2004) établissent dans un premier temps, une relation d’équivalence entre

les mesures de productivité de HM et de LHM. En effet, lorsque les vecteurs de direction sont
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gt = (2, y') et g1 = (21, y*1) alors, la FDD coincide avec la FDP. Ainsi,
LHM (', 2™yt y"™ g g™ ) = In (HM (2", 2™y ™))

Dans un second temps, les mémes auteurs prouvent I’existence d’une relation d’équivalence
entre I’indicateur de productivité global de LHM et les mesures de productivité global de Luen-
berger orientés en input et en output. Cette identité n’est possible que si la technologie vérifie la
translation homothéticité réciproque et la graphe translation homothéticité, dans la direction g%t

Dans ce cas, nous obtenons :

LHM(z', 2" 'y i gt g™ ) = Li(at, a7yt g™ 5 R = Lo(af, a7 o g™ R R,

Sous les conditions mentionnées précédemment, nous pouvons relier les mesures de producti-
vité de HM et les indicateurs de productivité de Luenberger. Une relation existe également entre
les mesures de productivité de LHM et les indices de productivité de Malmquist. Lorsque ¢* =
(2t y) et g™t = (2! '), nous avons vu que I'indice de productivité de Malmquist en out-
put est M (xt, x* yt !t = [1 — LL(af, 2yt gt k)" tandis que celle en input
est, Mi(a!, 2™yt y™) = [1 + Li(a!, o™, oty hf, ht“)]*l. Par conséquent, I’indice de
productivité de HM de la période (t) peut étre réécrit comme suit :

L+ Ly (2!, 2™yt y ™ Bt Y
1 — Lp(at, 2t gty ket kL)

M (@', a1,y ™) =

La mesure de productivité de HM de la période (¢ + 1) est quant a lui, caractérisé par :

1 + LtI—H(l‘t, $t+1,yt, yt+1; ht, ht+1)
L — Lot (o, a1, gty ke k)

HMtJrl(l’t, xtJrl’ yt7 ytJrl) —

Ainsi, I’indice de productivité global de HM relatif aux deux périodes est :

L+ Ly (af, 2™yt y ™ Bt )
T Db (at, L o, 771 R, R
1 + Li‘i’l(xt’ xt-}—l’ yt’ yt-f—l; ht’ ht+1)
1 — Lot (o, attL, gty ket k)

HM(.CUt7 xtJrl’ yt’ ytJrl) —

1/2
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Dans cette méme démarche, puisque

Lo(at, eyl ™k EY) = 1= (Mb(at, ™yt ™)™

ot Lh(at, 2yttt Bt pY) = (M}(l,t’ xt-{—l’yt’yt—l—l))*l 1
alors, on peut établir que 1’indicateur de productivité de LHM pour la période (t) est :
LHMt(xt, xt-{—l’yt’ yt—i—l;gt’gt—‘,—l) _ (Mf)(xt, xt-{—l’yt’yt—i—l))*l _ (M}f(xt’ xt-{—l’yt’ yt—l—l))*l ’
tandis que celui de la période (¢ + 1) est :
LHM ™ (2, 20yt gt gt gtth) = MET (2, 2L, oty 0) + MU (af, 2t ot ).

L’indicateur de productivité global de LHM est donc :

1 .
LHM (' 2™ o'y gt g) = 5 [Mé“(xt,x”l,yt,yt“) — (M (' 2y )

+M}f+1($t, 2Lyttt - (M;(:Et, ot gyt yt+1))*1:| )

Conclusion

Nous avons pu voir dans ce chapitre, un recueil non-exhaustif des mesures de performance et
de productivité totale des facteurs proposées dans la littérature. Nous les avons spécifiées dans le
cadre d’une approche non-paramétrique par enveloppement de données. Cependant, nous pouvons
constater que la théorie n’est pas immuable et qu’elle peut étre étendue ou améliorée. En effet,
nous admettons que dans certaines circonstances, les outils de mesure de la performance existant
dans la littérature peuvent étre inappropriés ou incompletes. Dans ce cas, nous proposons, dans le

chapitre suivant, un nouvel outil de mesure de I’efficacité.
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Chapitre 2

Une Approche Exponentielle de la Mesure
de Efficience

Les ensembles de productions représentent le processus de transformation des facteurs en pro-
duits. Ces technologies prennent en compte plusieurs aspects de la production tels le rendement
d’échelle, les productivités marginales, etc. Charnes et al. (1978) et Banker et al. (1984) proposent
des ensembles productifs non-paramétriques et, linéaires par morceaux. Les premiers auteurs im-
posent une hypothese de rendements d’échelle constants tandis que les seconds considerent des
rendements d’échelle variables. Cependant, Banker et Maindiratta (1986) remarquent que ces tech-
nologies ne prennent pas en compte les productivités marginales croissantes survenant dans cer-
taines branches de 1’économie ou, lorsqu’il existe des spécialisations. De ce fait, ils introduisent
un nouvel ensemble de production log-linaire par morceaux inspiré de la fonction de production
Cobb-Douglas. Celui-ci est structurellement multiplicatif et nous le désignons comme étant la
technologie de production Cobb-Douglas.

La technologie multiplicative de Banker et Maindiratta (1986) peut étre caractérisée par des
mesures d’efficience. Généralement, les fonctions de distance ayant une structure multiplicative
sont adaptées a ce type d’ensemble productif. Dans ces travaux, nous proposons une mesure de
distance multiplicative non-linéaire qui permet la réduction des inputs et 1’augmentation des out-
puts simultanément. Celle-ci se présente sous la forme d’une fonction exponentielle. De ce fait,
nous la nommons "fonction de distance exponentielle" (FDE). Cette derniere peut convenir a 1’éva-

luation de la performance que ce soit dans un cadre microéconomique ou macroéconomique. En
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effet, dans certains secteurs économiques (exemple : nouvelles technologies), la croissance de 1’ac-
tivité peut étre soit positivement soit négativement exponentielle. De plus, d’un point de vue ma-
croéconomique, certains pays sont confrontés a une croissance (ou une récession) exponentielle.
Cette mesure s’inscrit dans la lignée de la fonction de distance directionnelle (Luenberger (1992a,
1992b), Chambers et al. (1996)). En effet, celle-ci est log-linéaire et, dans le cas d’une transfor-
mation logarithmique, nous retrouvons la FDD. Par ailleurs, nous montrerons que la FDE présente
les mémes avantages que la FDD et qu’elle vérifie certaines propriétés additionnelles. Dans ce
chapitre, nous présentons tout d’abord, le cadre d’analyse puis définissons la FDE que ce soit dans
une orientation dans le graphe, en input ou en output. Nous explorons également la théorie de la
dualité grace a I’'introduction de pseudo-fonctions de coflit, de revenu et de profit. Enfin, nous for-
malisons les notions présentées dans les deux premieres sections dans un cadre non-paramétrique

selon I’approche par enveloppement de données.

1 Environnement et Outils

Nous présentons dans cette section, les outils et les notions utilisés dans ce chapitre. La techno-
logie de production est le processus qui permet de transformer les inputs z* = (2}, ---2f) € R

en outputs y* = (yi,---y.) € R’ alapériode (¢). Elle peut étre définie de maniere formelle par :

T'(z',y") = {y' € R} : 2" peut produire y'}.

Dans tout le chapitre, on supposera que cette technologie satisfait les propriétés T1-T4 (1.1.3).

Rappelons que les mesures de distances permettent de caractériser les ensembles de production.
Par ailleurs, notons que les mesures de Debreu-Farrell (Debreu (1951) et Farrell (1957)) mais

également les fonctions de distance directionnelle et proportionnelle (Luenberger (1992a, 1992b),
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Chambers et al. (1996) et Briec (1997)) sont respectivement définies par :

Ej(z,y") = inf{\ > 0: Nz € L'(y")},
EbL (2!, y) = sup{\ > 0: My € P'(a")},
Di(at, ot gf) = sup{d® > 0 (2" — 6ht ' + OK) € T,

DXt y') = sup{8 : (I — 6'A)a’, (I + 6'B)y') € T'}.

Remarquons que le vecteur de direction est g* = (h', k') dans le cas de 1aFDD (o, 8%) € [0, 1]™".
Pour chacune de ces mesures d’efficacité, il est possible de définir le sous-ensemble efficient du
graphe de la technologie. Cependant, on ne définira que celui de la FDP, qui sera une notion

évoquée par la suite. Celui-ci est défini par :
BT ={(2"y") €T : 6" >0,(a" =0 02", y+0'6 Oy') ¢ T}

Suite aux travaux de Hotelling (1932), Shephard (1970) et McFadden (1978), nous pouvons
établir qu’une relation duale peut exister entre les mesures d’efficacité et les fonctions de coft, de

revenu et de profit. Rappelons que ces dernieres sont respectivement :

C’t(wt,yt) = inf{wt axtxt e Lt(yt)},
R'(p',2") = sup{p' -y’ : ¢y € P'(a")},

I (w', p') = sup{p’ - y" —w' - 2" : (', 9") € T'}.

w' = (wh, -+ wk)) sont les prix associés aux inputs tandis que p* = (p},- -, p!) sont ceux

identifiés pour les outputs.

2 La Fonction de Distance Exponentielle

Cette section du chapitre est consacrée a la définition de la fonction de distance exponentielle

(FDE) d’un point de vue primal. Par ailleurs, nous présentons ses propriétés. Enfin, nous démon-
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trons que cette mesure peut étre approximée grace a une transformation logarithmique.

2.1 Définitions et Propriétés
2.1.1 Orientation dans le graphe

La FDD est un outil largement utilisé dans la littérature afin de mesurer ’efficacité tech-
nique des entités de production. Elles est évaluée suivant une approche paramétrique ou non-
paramétrique. Dans certaines circonstances, elle s’avere inadaptée. En effet, lorsque 1’approche
non-paramétrique est privilégiée, celle-ci ne concorde pas aux ensembles productifs non-linéaires.
De ce fait, Briec et Ravelojaona (2015) introduisent une fonction de distance exponentielle. Cette

mesure est a la fois multiplicative et non-linéaire.
Définition 2.1 Pour tout (', y") € R et tour (of, 3') € [0,1)™*", soit 'application D}, :
R x R% — [0, 1]™*" U {oo} telle que :

Dt (ot tiat gy = | s Pal@h ) €T st @ty N T A0

exp

2.1

00 sinon
est la fonction de distance exponentielle.

Notons que ®° . est une application linéaire définie de la maniére suivante :
a,B

) 4 (R — R [0, 1]

ol A et B sont respectivement les matrices diagonales A = diag(a') et B = diag(").
La définition de 1a FDE démontre que cette mesure permet la réduction des inputs et I’augmen-

tation des outputs de maniere simultanée.

Proposition 2.2 Lorsque la technologie satisfait les axiomes T1-T4, on démontre que la mesure

exponentielle satisfait les propriétés suivantes :

D.I: (2%,y") € T si et seulement si, D},

exp

(:Et,yt;at,ﬁt) Z 0
D.2: Si Di (2" 9" at, B') = 0 alors, (x*,y") € 05 5T"

exp
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D3 : Pour tout (2',y"), (u',v") € T si (—u',v") > (=a*,y") alors on a, D{_,(u',v"; 0, f) <
Dgxp<xt7 yt7 at7 Bt)

D4 : Pourtout § > 0, D! (D 5(z',y"); of, ') = DL (2", y'; o, BY) —

exp

D5 : Pour tout \' > 0 on a, DL, ,(\'a', \'y"; of, B') = Dl (', y'; o', B°).

exp

D.6 : La fonction de distance exponentielle satisfait la condition de commensurabilité.

Preuves :

(D.1) et (D.2) découlent directement de la définition de la fonction de distance L.

(D.3) Soit le cone de la libre disposition des inputs et des outputs défini de la maniere suivante :
K = R} x (-R?). Si (—ut,vt) > (—at,yt) alors {6 : (742!, e Pyt) € ((uf,v!) — K)} C
(6 ("t "Byt € (2, y!) — K)) et {88 (4, e But) e ((u,o!) + K)) < {8t -
(7 4at, e Byt) € ((ut —|—K)} Ceci implique que {5* : (7 4ut, e* Bot) € ((uf,v!) + K)} C
{6t: (72t e Pyt) € ((at,y') + K) }. Ainsi, D ) < DL (2t yhat, B4 O
(D.4) Soient ®° ,(z',y") = (e~?4a',e?Pyl) et DL (', y"; 0, ) = sup{0 : @ 4(a,y") € T'}.
Alors, DY (99 (!, o'

exp

exp(', 05 0, B
)ial, B) = sup {6 : @, 50 @ J(at,y') € T} et B 450 BF (:1: yh) =

(=0 Ae=0"Agt ' Bel' Byt q)e ot yt); o, B)

= sup {§' : (e~ O+t OHONBYL) € TS AP = 6 + ¢ alors, Déxp (@aﬁ ot y); ol BY)

=sup {A': (722!, 2 Byl) € T} — 0 = DY (!, y'5 0f, BY) — 0.

(D.5) Soit A > 0, sous I’hypothése d’un rendement d’échelle constant on a (\'a! \y') € T.

Ainsi, D! (Mat, Atyt; o, ) = sup {&' : (e ANtat, e BAat) € T}. En factorisant par A’, on

a Dt ()\t t )\tyt ot ﬁt = sup {515 . )\t( —5tA t étB t) c Tt} Dexp(fft,yt;at,ﬁt)m

exp

En factorisant par A et 13 nous obtenons, D}, (

(D.6) Soit I'unité de production (7, ') € T* avec i = w, ® 2' et § = w, @ y* ov (w,,w,) €
R7T™. Ainsi, DL (2, 9% o, f') = sup {5t : (e“stA:Z’t, e‘sthjt) € ft}. En divisant par w, et w,

nous avons D!, (#', §'; of, B') = sup {0' : (e 74w, ® 2*) O w,, e Plw, @ y') O w,) € T'} =
Dip(@t 0t pY) .

exp

La premiere propriété stipule que la fonction de distance exponentielle caractérise complete-
ment la technologie de production. La deuxieme hypothese signifie que lorsque sa valeur équivaut a
0, I’observation appartient a la frontiere efficiente du graph de la technologie. Le troisieme axiome

concerne la monotonicité de la fonction relativement aux inputs et aux outputs. (D.4) désigne la
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translation homothéticité. Enfin, (D.5) et (D.6) indiquent respectivement que la FDE est homo-
gene de degré 0 sous I’hypothese de rendements d’échelle constants et qu’elle est invariante par
rapport aux unités de mesure. Cette derniere propriété est importante car elle signifie que tout chan-
gement dans 1’unité de mesure des inputs ou des outputs, n’a aucune incidence quant a 1I’évaluation

de la performance, des unités de production.

2.1.2 Orientation en Input

En s’inspirant des travaux de Briec et Ravelojaona (2015), cette sous-section est consacrée a la
présentation de la FDE orientée en input. En effet, dans certaines circonstances, il est possible que
I’unité de production ne souhaite (ou ne peut) que réduire les inputs tout en produisant un méme

niveau d’outputs.

Définition 2.3 Si L'(y') vérifie LI-L5 alors, pour tout (x',y') € RT*", (af, 5) € [0,1]™ x 0 avec
A = diag(at), soit Uapplication D! : R x [0,1]™ — R U {—o0} telle que :

exp

Dt ($t yt' Ozt 0) _ Sl;p {5t : (efétAxt’yt) c Tt} si (eféiAxt’yt) N Tt # @

exp

2.2)

—00 sinon

est la fonction de distance exponentielle orientée en input.

Cette définition peut étre reformulée en faisant intervenir la correspondance en inputs Lf(y").
Dans ce cas, nous avons :
5t . _ 5t
Dl (x' y%at,0) = Sup {5t ce Ayt € Lt(yt)} si e At N Li(y') # 0.

Proposition 2.4 Lorsque la correspondance en facteurs satisfait L1-L5 alors, la fonction de dis-

tance exponentielle en input vérifie les hypothéses suivantes :

ID.1: x' € L'(y") si et seulement si, D},

exp

(z', 9y al,0) > 0.

ID2: Si Dl (2" y%a',0) = 0alors, 2* € 0% 4L

exp

ID.3: Pourtoutx' € L'(y') etu’ € L'(y") avecu’ > x* alors, D,

(u',y'; at,0) > D!

exp

(', 9" at,0).
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IDA : DL (9)(a,y");af,0) = DL (2, %5 af, 0) — 6.

exp a exp
ID.5 : Pourtout \' > 0ona, D{ (X', Ny a',0) = Df (2, y" o, 0).

ID.6 : La fonction de distance exponentielle orientée en input satisfait la condition de commensu-

rabilité.

Les preuves de ces propriétés sont similaires a celles relatives a une orientation dans le graphe.

De ce fait, elles sont omises.

Les hypotheses (/D.1) et (I D.2) font respectivement référence a la caractérisation complete
de la technologie par la fonction et a I’appartenance de I’unité de production a la frontiere efficiente
lorsque la mesure est nulle. La troisieme propriété indique la disponibilité forte des inputs tandis
que la quatrieme désigne la translation homothéticité de la fonction par rapport aux facteurs. Sous
I’hypothese de rendements d’échelle constants, la FDE en input est homogene de degré 0 (1 D.5).

Elle est également invariante relativement aux unités de mesure (/ D.6).

2.1.3 Orientation en Output

Nous pouvons est également définir la FDE suivant une orientation en output. Dans ce cas, elle
mesure I’augmentation potentielle pouvant étre appliquée a la production pour une quantité donnée

de facteurs.

Définition 2.5 Si P'(z') satisfait P1-P5 alors, pour tout (z',y") € R et tout (af, ') € 0 x

[0, 1] avec B = diag(B3"), soit I'application Dt_ : RT*" x [0,1]" — R U {+o0} telle que :

exp

Dt (IL’t yt. 0 Bt) _ Sl;p {5t : (l,t’ eétByt) S Tt} Si (;L‘t’e‘stByt) N Tt 7& @

exp

(2.3)
+00 sinon

est la fonction de distance exponentielle orientée en output.

En faisant intervenir la correspondance en extrants, la définition ci-dessus peut €tre réécrite de

la maniére suivante :

D! _ (2% 4% 0,3") = sup {5t Byt € Pt(:ct)} si e Pyt 0 Plat) # 0.
5

exp
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Proposition 2.6 Lorsque la correspondance P'(x') satisfait P1-P5 alors, la fonction de distance

exponentielle en output vérifie les propriétés suivantes :

OD.I : y' € P'(a") si et seulement si, D

exp

(z',y%0,5") > 0.

ODeZ - Si Dt (ZCt,’yt; 0’ Bt) = 0 alors, yt S QC;ﬁP

exp

OD.3 : Pourtouty' € P'(x")etv' € P'(z") avecv' > y'alors, D! (x',y"; 0, 5") > D (2, v"; 0, 5%).

exp exp

OD4 : DL (P} 5(z',y");0,8") = DL («',y" 0, 5) — 6.

exp exp

OD.,5 : Pour tout \t > 0 ona, Dt

exp

(At Nyt 0, 8%) = DL (2, 4% 0, ).

exp

OD.6 : La fonction de distance exponentielle en output satisfait la condition de commensurabilité.

Les preuves de ces axiomes sont similaires a celles proposées selon une orientation dans le

graphe. Par conséquent, elles sont donc omises.

(OD.1)et (OD.2) sont respectivement relatives a la caractérisation complete de la technologie
par la mesure et a I’appartenance de 1’unité de production a la frontiere efficiente lorsque la mesure
est nulle. La troisieme propriété désigne la disponibilité forte des outputs tandis que la quatricme
indique la translation homothéticité de la fonction relativement aux produits. Sous 1’hypothese
de rendements d’échelle constants, la FDE en output est homogene de degré 0 (OD.5). Elle est

également invariante par rapport aux unités de mesure (O D.6).

2.2 Contexte Logarithmique et Extensions

La fonction de distance présentée précédemment a une forme exponentielle. De ce fait, il est
possible de lui appliquer une transformation logarithmique. Nous constatons que la mesure devient
log-linéaire. Nous nommons cette mesure "fonction de distance népérienne". Cette section est

consacrée a ce cas de figure.

2.2.1 Définition et Propriétés

La transformation logarithmique implique 1’existence de contraintes supplémentaires. De ce

fait, il est nécessaire de définir préalablement 1’environnement technologique de la production.
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Définition 2.7 Pour tout (z',y") € RT" et toute technologie positive ', = T* NRT1",

Tt = {(In(z"), In(y")) : (2", y") € T4}, (2.4)

est la technologie de production népérienne.

Notons que la technologie 7" | est In-convexe puisque quels que soient 21,2z, € T, et pour

tout oy, cp > O tel que oy + o = lona, 20" ©® 252 € T .

Définition 2.8 Pour rout (z',y") € RTT™ et tout (o', B*) € [0, 1]™*", lorsque la technologie de

m-+n

production népérienne satisfait les propriétés T1-T4 alors, ’application D}, : RI'7" x [0, 1]™*" —
R U {00} définie par :

sups {5t :1n (@gﬁ(xt,yt)) € Tﬁl} si In <<I>gﬁ( t )) NI #0

00 sinon

D, (In(z"),In(y"); o', B) = {
(2.5)
est la fonction de distance népérienne.

Nous pouvons détailler la définition ci-dessus de la maniere suivante :
D} (In(z2"), In(y"); o, BY) = sgp {6 : (In(z") — 8'a’, In(y") + 0'6") € T}, } -
Rappelons que la fonction de distance directionnelle est définie comme suit :
D(a, yt; bt kY = sgp {5t : (xt — &'ht yt + 5tl€t) € Tt} )

On peut constater que la FDD et la fonction de distance népérienne (FDN) sont structurellement
similaires. Cependant, des différences résident. La FDN est estimée relativement a des observées
transformées de maniere logarithmique. Par ailleurs, les pondérations et les vecteurs de direction
ont des domaines de définition différents.

Notons que pour tout (z*,y") € T%, la Définition 2.8 nous permet d’établir I’équivalence

suivante :
Di,(In(z"),In(y"); o', B') = Dig, (2, ' 0, 5Y). (2.6)
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Proposition 2.9 Lorsque T} satisfait les axiomes T1-T4, la fonction de distance népérienne vérifie

les propriétés suivantes :
Dy, I : (2',y") € Tt siet seulement si, D} (In(z"),In(y"); o, 8) > 0
D2 : Si Df (In(z'),In(y"); af, B) = 0 alors, (z',y") € 0T,

D3 : Pour tout (z*,y"), (u',v") € Tt , si (—2',y") < (—uf,v") alors,
Dy, (In(u'), In(v'); o, 5%) < Dy, (In(2"), In(y"); o, 5).
D4 : Df, (In (@), 5(z", ")) 0", 8') = Df,(In(a"), In(y"); o, B) — 0"
D5 : Pour tout \' > 0 on a, D}, (In(A'z"), In(A\'y); of, %) = DL (In(z'), In(y"); of, 8Y).

D\,6 : La fonction de distance népérienne est indépendante des unités de mesure.

Preuves :

(D, 1) et (Dy,2) sont les conséquences directes de la définition 2.8 L.

(D1,3) Soit le cone de libre disposition des inputs et des outputs K, = R x (=R%) de telle
sorte que lorsque (—uf,v') > (—a',y') alors {6 : In (742!, e By!) € (In(u,v!) + K1)} C
{6" :In (e7 42!, e Pyt) € (In(at, y') + K4 )} et {6° : In (e74ul, e Bot) € (In(uf,v!) + K1)}
C {6" : In (742!, e By!) € (In(uf, v') + K )}. Par conséquent on a, {6' : In (e=%"4ut, e Bot)
€ (In(uf, ")+ K1)} € {0' : In (e 42t " Byt) € (In(z!,y*)+ K, )}. D ot la propriété (Dy,3),
D, (In(u), In(v'); at, 8) < Diy(In(af), ln(y); ot 6 O

(Dy4) Soit ®f 4(zt,yt) = (e7"at, eyt alors, DY, (In (P2 4(2',y"));at, B) = sup {d* :
In (9% ;@0 4 (2',y")) € T}, }. Sachant que ®¢ ,®° , (2!, y") = (In(z') — (0" + 6")o, In(y") +
(0" +0")5") et, en posant A’ = ¢ + 6" on a, Dfy (In (®F 4(a',y")) ; 0, B') = sup { A" : (In(z') —
Aol In(y') + A'BY) € T} — 6" = Df (In(z'),In(y"); o, 8%) — 6" O

(D1,5) Soit X' > 0 tel que Df, (In(A'z?),In(A'y"); of, 1) = sup {6' : (In(z') + In(A) — &',
In(y") + In(A) + 6'4") € Ti.}. En factorisant par In(\') on a, Df (In(A'z'),In(A'y"); o, 5%)
=sup {0' : (In(z") — 6'a’,In(y") + 0'8") + In(X') € T}, } = Df, (In(2'), In(y"); o, B7) O

(D),6) Soit Déxp (!, yt; at, BY) qui est invariante par rapport aux unités de mesure (Proposition 2.2).
Puisque D{ (', 3" o, 5") = Dy, (In(2"),In(y"); o', 5") alors, cette derniere vérifie également

cette propriété L.
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La premiere et la deuxieéme propriété indiquent respectivement que la fonction de distance né-
périenne caractérise completement la technologie et que lorsque 1’unité de production est techni-
quement efficiente, la FDN prend une valeur nulle. (Dy,3) concerne quant a elle la libre disposition
des inputs et des outputs. (Dy,4) stipule que la FDN est translation homothétique. Sous 1’hypothese
de rendements d’échelle constants, la mesure est homogene de degré 0 (D),5). Enfin, la derniere
propriété désigne la propriété de commensurabilité. Cet axiome est une conséquence directe de
I’équivalence entre la FDE et la FDN.

Notons que malgré la similitude entre la FDN et la FDD, des différences subsistent. En effet, la
premiere satisfait (Dy,6) contrairement a la seconde. Par ailleurs, lorsque les rendements d’échelle
sont constants alors, la FDD est homogene de degré (—1) tandis que la FDN est homogene de

degré 0.
2.2.2 Fonction de Distance Népérienne en Input et en Output
Cette sous-section nous permet de présenter la fonction de distance népérienne dans le contexte

des orientations en input et en output.

Définition 2.10 Pour tout (z*,y") € RI" et tour (of, ') € [0,1]™ x 0, I’application D}, :
R7TT™ x [0,1]™ = R U {—oc0} définie par :

ot (In(a?) — otat, In(yt)) € Tt (2t yt) € T
Dfn (hl('rt)v hl(yt)a Oéty 0) = SUP‘;{ ( H(l‘ ) o Il(y )) ln} St (l‘ Y ) +-+
—00 sinon

2.7)

est la fonction de distance népérienne orientée en input.

Soit la correspondance logarithmique des facteurs Lf (y') = {In(z) : z* € L, (y")} ot
Ly (y") = L*(y") NR7,. Cette derniere permet de réécrire la définition ci-dessus de la maniere

suivante :

Dy, (In(z"),In(y"); of,0)) = sup {6 : In(z") — &'’ € L{,(y")} si 2’ € LL (v").
5
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Proposition 2.11 Lorsque L! (y') satisfait L1-L5, la mesure de distance népérienne orientée en

input vérifie les propriétés suivantes :
IDy I : o' € L' (y") si et seulement si, D} (In(z"),In(y"); a*,0) > 0.
IDy2 : Si Df (In(z"),In(y"); o, 0) = 0 alors, z* € L, , (y").
IDw3 : Pourtoutz',u' € L', (y') siu' > x' alors, D} (In(u'),In(y"); o', 0) > Df (In(z*), In(y"); o, 0).
IDw4 : D}, (In (99 (2", y")) ;0f,0) = Df (In(z), In(y"); o', 0) — 6.
IDy,5 : Pourtout \' > 0 on a, D (In(A'z'), In(A\'y'); of,0) = Df (In(z"), In(y"); o', 0).

IDy,6 : La fonction de distance népérienne en input est indépendante des unités de mesure.

Les preuves de ces hypotheses sont similaires a celles présentées dans le cadre d’une orienta-

tion dans le graphe. Ainsi, elles ne sont pas présentées.

Les deux premicres propriétés concernent respectivement la caractérisation complete de la
technologie par la fonction de distance et I’efficience technique de 1’unité de production lorsque
la mesure prend une valeur nulle. L’axiome (/ D),,3) fait référence a la monotonicité de la fonc-
tion par rapport aux facteurs tandis que (I Dy,4) stipule qu’elle est translation homothétique en
inputs. Lorsque les unités de décision operent sous 1’hypothese de rendements d’échelle constants,
la mesure de distance est homogene de degré 0 (/D),,5). Par ailleurs, celle-ci vérifie la condition

de commensurabilité (1 D;,6).

Définition 2.12 Pour tout (z*,y") € R7{" et tout (o, 8') € 0 x [0,1]", I'application D}, :

R7TT™ x [0, 1] — R U {+o0} qui définie par :

sup {0" : (In(2'),In(y") + 0'8") € T} si (o', y') € T,
Dy, (In(z"), In(y"); 0, 8") = 2
+00 sinon

(2.8)

est la fonction de distance népérienne orientée en output.
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Notons que la correspondance logarithmique (ou népérienne) en outputs est caractérisée par
PL(z") = {In(y") : y* € PL (2"} ot P!, (') = P'(z") NR%,. Ainsi, la mesure de distance

népérienne en extrant peut étre reformulée comme suit :
DY, (In(a'), In(y);0, 8%) = sup {6" : In(y’) + 6'3" € PL(x)} si o' € P! (a).
s

Proposition 2.13 Si la correspondance Pt (x') vérifie P1-P5 alors, la mesure népérienne axée sur

les produits présentée ci-dessus satisfait les propriétés suivantes :
ODy1 : y' € P! (a") si et seulement si, D} (In(z"),In(y"); 0, %) > 0.
OD\.2 : Si D} (In(z"),In(y"); 0, 5*) = 0 alors, y* € OP! , (a).
ODy,3 : Pourtouty',v* € P (a*)sivt > y' alors, D} (In(z"),In(v"); 0, %) < Df (In(z"),In(y"); 0, 5°).
ODu4 : Df, (In (9§ 5(2",9")) 50, 8°) = Df,(In(2"), In(y"); 0, 8*) — 0"

ODy,5 : Pour tout \' > 0 on a, D} (In(A'z!), In(\'y"); 0, 8%) = Di (In(2?),In(y"); 0, 8Y).

n

OD\.6 : La fonction de distance népérienne en output est invariante par rapport aux unités de

mesure.

Nous omettons de présenter les preuves de ces hypotheses puisqu’elles sont similaires a celles
présentées dans le cadre de la mesure népérienne orientée dans le graphe de la technologie.

Les axiomes (O Dy, 1) et (ODy,2) désignent respectivement la caractérisation de la technologie
de production de la mesure népérienne et 1’appartenance de I’unité de production au sous-ensemble
efficient lorsque la valeur de la mesure est nulle. La monotonicité de la fonction de distance par
rapport aux outputs est définie par la troisieme propriété tandis que la translation homothéticité I’est
par la quatrieme. Les deux dernieres hypotheses concernent quant a elles, I’homogénéité de degré 0
de la fonction sous I’hypothese de rendements d’échelle constants (O D),,5) et, la commensurabilité

(ODln6)

2.2.3 Equivalence entre les Mesures d’Efficience

Sous certaines conditions, des mesures de distance sont équivalentes entre elles. C’est le cas

entre les mesures de Debreu-Farrell, les fonctions de distance de Shephard, la fonction de distance
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directionnelle et la fonction de distance proportionnelle. Suivant le méme logique, nous présentons
les relations d’équivalence existant entre la fonction de distance exponentielle (et népérienne) et

certaines mesures d’efficacité présentes dans la littérature.

Les mesures de Debreu-Farrell. Nous pouvons démontrer que lorsque certaines conditions sont

vérifiées alors, les mesures de Debreu-Farrell et la FDE sont équivalentes.

Proposition 2.14 Pour tout (z*,y") € T ., on peut établir que :
(i) Sial =1, et ' = 0alors, Dt (2", y'; 1,,,0) = —In (Ei (2!, ")),

(ii) Sia' =0et ' = 1, alors, D} (x",4%0,1,) =In (EH (2, yh).

On peut en déduire que 1’équivalence entre la FDE et les mesures de Debreu-Farrell n’est
possible que lorsque la premiere est orientée soit en input ou en output.
Preuves :
Rappelons que D (2*, t; o, 8%) = Df, (In(a), n(y?); o, ).
(i) Lorsque o' = 1, et 3* = 0 alors, pour tout (2*,y") € T}, ona D (2% y"1,,,0) =
sup {0' : (e Lzt y') € T, } Ainsien posant ¢ et en utilisant I’équivalence entre la FDE et
la FDN on obtient D _ (2", 4" 1,,,0) = In (sup {)\t S(AYH 2ty € TLF}). Supposons que
At = palors, DY (2!, 4" 1, 0) = In (sup {p: (pa',y") € T4, } ). Sachant que In (sup {\" :
(ANt y') € TH,}) = —In(inf {p: (ua',y") € TL, } ) nous avons,DL_ (', y"; 1,,,,0) =
—In (Ei(z',y")) 0O
(ii) Pour tout (z*,y') € T}, tel que o = Oet ' = 1, ona D{_ (z" y%0,1,) = sup {5t :
(zt, e Mnyt) € T +}. Puisque la FDE est équivalente a la FDN, en posant ¢’ = \’, nous obte-
nons D! (z', 4% 0,1,) = In (sup {\* : (\)"2*,y*) € T }). Par conséquent, D}, (z*,y";0,1,,)

=In (E5(2',y")) O

La mesure hyperbolique. La mesure hyperbolique de I’efficacité technique a été introduite par
Fére, Grosskopf et Lovell (1985). Celle-ci est une extension des mesures de Debreu-Farrell selon

une orientation dans le graphe de la technologie. Elle permet une modification proportionnelle et
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simultanée de toutes les variables (facteurs et produits). Pour tout (z*,y") € T, I’application

H':R7? x R% — Ry U{+o0} est définie par la fonction (mesure hyperbolique) suivante :
Ht t 1 — f t . t. .t —1\t, t Tt )
(", y") 1r){{)\ >0: (N2, WDy e T'}
Proposition 2.15 Pour tout (z*,y") € T, avec o = 1,, et ' = 1,,, on peut affirmer que :

D! (2% 9y 1, 1,) =1n (Ht(ajt, yt)) )

exp

Preuve :

Siaf = 1, et f' = 1, alors, D! (z,y"; 1, 1,) = sup {d" : (e70mat e Inyt) € T, }. Se-
-0 cona Dl (¢ y's 1, 1L,,) =

In (sup { A : (A2, (A"1)'y") € TL } ). Puisque on a In (sup { X' : (\a!, (A1)iy!) e TL, }) =

—In (inf {A": (X2!, A7Y)'y") € T, } ). De ce fait, DL, (2!, y"; 1y, 1,,) = —In (H (2, y")) 0.

exp

lon 1’équivalence entre la FDE et la FDN et, en posant \! = e

La mesure proportionnelle La FDE peut étre approximée par la FDP et, réciproquement.

Proposition 2.16 Soient (z*,y") € T" et (o, B') € [0,1]™*™ tels que pour tout §' suffisamment

petit ou, pour tout point suffisamment proche de la frontiere efficiente, on a :
t t ot .t t\ ~ R A S 7 t
Dexp(x7y70576)~Doc (l’,y,()é,ﬁ).

Preuve :

Soit ®) 4(z',y") = (79 Azt e Byt). Pour A = diag(a') et B = diag(f!), le développement

. dtat)®
de Taylor au voisinage de (0) permet d’établir que e~° 42! = 2! — dtalat + %(xt) +F
stat)” , 5tat (5tatY
( k') (2 +o((5tat)’““xt) et, e® Byl = ¢ + 5By + GOl 6) ——y) + -+ ( ]f,) (y") +

0 ((5t Bt)kH yt). Lorsque I’unité de production est sufﬁsamment proche de la frontiere efficiente
et donc, 0' suffisamment proche de zéro, les fonctions de Taylor ci-dessus deviennent e %4zt =
zt — dtatat = (I — tat) xt et 2 Byt =yt + 6'Bty" = (I + 6'at) y' ot I est la matrice identité.
Ainsi, on peut dire que ) ;(2,y") = ((I — 6'a’) 2*, (I + 6'a’) y'). Puisque DL, (2!, y'; o, B*) =

sup {5t at Bt (', yt) eT t} alors, pour tout ¢ suffisamment petit et tout point proche de la fron-
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tiere efficiente, D (2", y'; o', B') &~ sup {6 : ((I—d'a’)at, (I+0'al)y") € T"}. Par conséquent,

Di (@t yhaf, BY) = DX(a!, ' 0, 8Y) O
La mesure directionnelle multiplicative Mehdiloozad, Sahoo et Roshdi (2014) reprennent la
fonction de distance directionnelle multiplicative (FDDM) introduite par Peyrache et Coelli (2009).
Soient respectivement (z,y") € Tt et g' = (h', k') € R™", les vecteurs inputs-outputs et le
vecteur de direction préalablement choisi. A Papplication M* : R7™ x R7™" — R U {oco} est

associée la fonction de distance directionnelle multiplicative suivante :
bttt Lt t. AR ANA t
M(x,y,h,k):sgl\p A ()\) x,()\) y)eT, .
Grace cette définition, nous pouvons établir une relation d’équivalence entre la FDE et la FDDM.

Proposition 2.17 Soit (2',y") € T, pour tout g* = (h', k') et tout (o, 5*) € [0, 1]™*™, on peut
statuer que :

De(at,y5al, 8Y) = In (M (2, y's 1, K')) .

exp

Preuve :

Soit In (M (zt, y%; ht, kY)) = sups {\': (In(z?) — In(AY) - AY, In(y?) + In(AF) - k) € T} }. On sait
que Di (2", y5 o, 8Y) = Df, (In(a'), In(y"); o, B') avee Df, (In(z"),In(y"); o', B') = sup {3" :
(In(z") — o'a’,In(y") + 6'6") € T }. En posant 6" = In(\') et (o, ") = (h' k") on a,
Dl (2t yhaf, fY) = sup {\": (In(a2") — In(X)A!, In(y") + In(A")E") € T}, }. Donc, on peut af-

firmer que D! _ (2%, 3% af, BY) = In (M (2t yt; RE EY)) O

exp

3 La Théorie de la Dualité

Les travaux de Hotelling (1932), Shephard (1953, 1970) et McFadden (1978) ont permis de
mettre en lumicre les relation duales entre les mesures de distance et les fonctions de cofit, de
revenu et de profit. Nous explorons ces relations dans le cadre de la fonction de distance ex-

ponentielle. Pour ce faire, nous présentons les pseudo fonctions de coft, de revenu et de profit

Cobb-Douglas.
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3.1 Pseudo Fonctions de Coiit et de Revenu Cobb-Douglas

Cette sous-section présente les pseudo fonctions de cofit et de revenu tant selon une structure
multiplicative que log-additive. Nous montrons également que celles-ci sont duales aux mesures
de distance exponentielle (népérienne) en input et en output. Les travaux de Shephard (1953, 1970)

nous permettent de déduire les fonctions de prix ajustés relatives a la théorie de la dualité.

3.1.1 Pseudo Fonction de Coiit : Définitions et Propriétés

Dans certains secteurs d’activité, les unités de production ne peuvent modifier (ou influencer)
que leurs facteurs de production. En effet, leur production est une variable exogene a I’entreprise
(ex : production de service, etc.). Dans ce cas, lorsque les prix sur les marchés sont disponibles, il
est plus intéressant pour la firme d’évaluer son efficacité technique relativement a ses cofits et a ses

facteurs productifs.

Définition 2.18 Pour rout (x',y") € R et tout prix des inputs w' = (wi, - w!) € R7,

I'application C¢p, - RT x R — R U {+oc0} définie par :

t

inf, {(xt)“’ cat e Lt(yt)} si L'(y") #0

+00 sinon

Cép(w',yh) = (2.9)

est la pseudo fonction de coiit Cobb-Douglas.

McFadden(1978) présente une fonction de colit Cobb-Douglas basée sur les prix et des pondé-
rations normalisées. Cependant, dans ces travaux, nous introduisons une formulation basée sur la

quantité des facteurs et leur prix.
Proposition 2.19 Lorsque L'(y") satisfait LI-L5 alors, la pseudo fonction de coiit Cobb-Douglas
vérifie les propriétés suivantes :

Cepl : Pour tout w' € R on a, Cf.p(w',0) = 0.

Ccp2 = Pour tout (w',y) € R avec w' > 0 et y* > 0 alors, CLp(w', y') > 0.

Ccp3 : Pour tout w', w' € R avec w' > w' on a, Cfp(w', y') > Ctp(ah, yh).

Ccp4 : Pour tout y', §* € R} avec y* > §* alors, Clp(w', y") > Cép(wh, 7).
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Ceop5 @ Sous I’hypothése de rendements d’échelle constants, pour \' > 0 on a, CLp(w', \'y') =

(A" - Clp(w', ).

Preuves :
(Cepl) a (Cop4) sont des axiomes qui découlent directement de la définition de la fonction de

cotit .

(Ccp5) Sous I’hypothese de rendements d’échelle constants, pour tout \* > 0 on a, (\'z!, \'y') €
T'. Ainsi, CLp(w', \y') = inf, {(X\'a')*" : 2 € L'(y")}. En développant I'expression (A‘zt)®"
ona, CLp(w!, \y') = (). (inf, {(z")*" : 2 € L'(y")}). De ce fait, CLp(wt, Atyt) = (A" -
Cep(w'yy') 0.

La premiere propriété stipule que tous les intrants sont variables c’est-a-dire que des cofits
fixes ne sont pas considérés. Le deuxieme axiome signifie que des productions et des prix de
facteurs non-nuls engendrent des cofits effectifs. Les hypotheses (Cop3) et (Cop4) sont relatifs a
la monotonicité de la fonction de colit par rapport au prix des facteurs et aux outputs. La fonction
est semi-homogene de degré (w') relativement a la production sous 1’hypothése de rendements

d’échelle constants (C'cp)).
Lemme 2.20 L', (y") est In-convexe si et seulement si, L}, (y') est convexe.

Il existe une relation duale entre la fonction de colt présentée précédemment et la FDE orientée

en input. Afin de pouvoir établir celle-ci, il est nécessaire que z* € L', | (y").

Proposition 2.21 Lorsque L', (y') satisfait LI-L6 alors, pour tout (z',y") € T}, w' € R et

A = diag(at) € [0,1]™, la pseudo fonction de coiit Cobb-Douglas duale est :

t

Ctp(w', yh) = inf { (e—ét%ﬁ) : D (', gt ol 0) > 0} , (2.10)
et la fonction de distance exponentielle duale orientée en input est :

£\’
D! (:Et,yt;at,O):inf{L:wt-at#O}. (2.11)

o v | Cop(wh,y)
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Pour tout couple (z},y5) € T}, tel que j = (1,---,J) € J ettoutinputi = (1,---,m) €

[m], cette formulation duale de la FDE orientée en input peut étre détaillée de la maniére suivante :

£\ Wi
. T;
D! (2", y';at,0) = inf M cwhal #£03 . (2.12)

exp t \ Wi
Hze[m] ('rj,i)
Une normalisation peut étre imposée de telle sorte que w! - o = 1.

Nous pouvons effectuer une transformation logarithmique de la pseudo fonction de coiit Cobb-
Douglas. De ce fait, la pseudo fonction de cofit népérienne est duale a la mesure de distance népé-

rienne.

Définition 2.22 Pour tout (z',y") € R{" et tout w' € R, Uapplication Cf, : R x R, —
R U {400} définie par

inf, {w' - In(z?) : 2t € Lt Lt
Ct (wh, In(y')) — inf, {w’-In(z') : 2’ € L, (y)} si y) # 0 0.13)

—+00 sinon

est la fonction de coiit népérienne.
La fonction présentée ci-dessus peut étre associée a certaines hypotheses.

Proposition 2.23 Lorsque L', , (y") satisfait LI-L5 alors, la fonction de coiit népérienne vérifie les

propriétés suivantes :

Cwl : Pour tout w* € R on a, Cf (w',0) = 0.

Cw2 : Pour toutw' € R, y* € R" | avec w' > 0 et In(y*) > 0 alors, C}, (w',In(y")) > 0.
Cin3 : Pour tout w*, 0" € R avec w* > @' on a, Cf, (w',In(y")) > Cf, (@0, In(y")).

Cw4 : Pourtout y*,g" € R, avec In(y") > In(y") alors, C},(w',In(y")) > C} (w', In(g")).
CwS : Pour tout \* > 0 on a, C} (Nw', In(y")) = NCf (w', In(y?)).

C6 : Sous ’hypothése de rendements d’échelle constants, Pour tout \' > 0 on a, Cf, (w', In(\'y")) =
Cra(w', In(y")) + w'In (A).
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Les preuves ainsi que les interprétations des axiomes cités ci-dessus sont omises dans le contexte
logarithmique. En effet, elles sont similaires a celles présentées dans le cadre de la pseudo fonction

de colit Cobb-Douglas, dans un contexte logarithmique.

La relation duale entre la fonction de colt népérienne et la FDN en input est présentée ci-

dessous.

Définition 2.24 Lorsque L', (y') satisfait L1-L6 alors pour tout (z',y") € T' | et tout w' € R,

la fonction de coiit népérienne duale est :

Cl, (v, In(y")) = iI;f {w'-In(a") — §'a'w’ : D}, (In(z"),In(y"); *,0) >0}, (2.14)
et la fonction de distance népérienne duale orientée en input est :

Dy, (In(z),In(y"); o, 0) = iIul}f {w'-In(z") — Cpy (', In(y")) : w' - a" #£0} . (2.15)

De maniére détaillée, pour tout (z%,y5) € T, tel que j € J et tout i € [m], la FDN duale en

intrant peut étre exprimée comme Suit :

Dy, (In(z"),In(y"); o, 0) Z w} - In(x Z wi-In(zh,) cw'-at £0p . (2.16)
1€[m] 1€[m]
Notons que les expressions duales de la fonction de colt népérienne et de la FDN en input sont

structurellement similaires a celles relatives a la FDD.

3.1.2 Pseudo Fonction de Revenu : Définitions et Propriétés

Dans certains secteurs d’activité, les unités productives ont uniquement la possibilité d’agir
sur leurs productions (rigidité structurelle des firmes). Ainsi, lorsque les prix sur les marchés sont
disponibles, il peut étre plus intéressant pour les firmes de chercher a maximiser leur revenu compte
tenu des facteurs utilisés. De ce fait, I’estimation de leur efficacité s’effectue par rapport a leurs

revenus et leurs productions.
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Définition 2.25 Pour tout (z',y") € R"™*™ et tout prix des outputs p'* = (pi,---,p,) € R%,

I'application R, : R x Rt — RU {—o0} définie par :

sup,, {(yt)pt cyt € Pt(a:t)} si Pl(x') #0

—00 sinon

RL, (', 2") = 2.17)

est la pseudo fonction de revenu Cobb-Douglas.

Proposition 2.26 Lorsque P*(z') satisfait P1-P5 alors, la pseudo fonction de revenu Cobb-Douglas

vérifie les propriétés suivantes :
Repl : Pour tout p* € R™ ona, Rt (p',0) = 0.
Reop2 : Pour tout (pt, x') € R avec p' > 0 et 2 > 0 alors, RL,(p!, 2') > 0.
Rep3 @ Pourtout p', p* € R avec p* > p' on a, Re.p(p', ') > Rep (P, 2).
Rep4 : Pour tout z*, 2" € R avec «* > %" alors, Ry, (p', 2*) > Rep(ph, T°).

RepS5 : Pourtout \' > 0, sous I’hypothése de rendements d’échelle constants on a, R, (p', N'at) =

(X"~ Rep (v, at)

Preuves :

(Rcpl) a(Rcp4) sont les conséquences directes de la Définition 2.25.

(Rcp5) Sous I’hypothése de rendements d’échelle constants, pour tout A > 0 on a (A'z!, \'yt) €
T* tel que Rep(p', N'a') = sup, {(\'y"?" : y € P'(2")}. En développant (A\'y')?" puis, en facto-
risant par (A)”" on obtient, RL,(p%, Azt) = (A)P - (sup, {(y')" :y' € P(2")}) Donc,
Rep(p', Nat) = (AP - Rep(p',at) O

La propriété (Rcpl) signifie que tous les facteurs sont variables. Donc, lorsque les ressources
sont inutilisées, il n’existe ni production effective ni revenu. La deuxieéme hypothese stipule qu’une
utilisation effective des facteurs et des prix non-nuls engendrent des revenus effectifs. Les deux
axiomes suivants sont relatifs a la monotonicité de la fonction par rapport au prix des outputs
(Rcp3) et aux inputs (R p4). Sous 1I’hypothese de rendements d’échelle constants, la fonction est

semi-homogene de degré (p') relativement aux inputs.
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Une relation duale existe entre la FDE orientée en output et la pseudo fonction de revenu Cobb-

Douglas si et seulement si, y* € P! (z") et que P!, est In-convexe.
Lemme 2.27 P! (2') est In-convexe si et seulement si, P}, (z") est convexe.

Proposition 2.28 Si P! (2') satisfait P1-P6 alors, pour tout (x*,y") € T" | et tout p* € R avec

B = diag("), la pseudo fonction de revenu Cobb-Douglas duale est :

Rop(p', ') = sup { (') Dlsyla',y'50.8) = 0} : (2.18)

Y

et la fonction de distance exponentielle duale orientée en output est :

: R p(p', 2t)

t t . t\ CcD t t
Dexp(xayvoyﬁ)—lgf{w 5 %O} (219)
Pour tout couple (z},y%) € T, avec j € J ettoutoutput 7 = (1,--- ,n) € [n], la FDE duale

orientée en output peut étre détaillée comme suit :

Dg(2',4%0, 8%) = inf Mrepn (05,0 p - BAD (2.20)
exp ) » Y » Hre[n](yﬁ)pfn

Une normalisation est possible telle que p* - ¢ = 1.

Dans un contexte logarithmique, la FDN orientée en output est duale a la fonction de revenu

népérienne. Cette derniere est caractérisée ci-dessous.

Définition 2.29 Pour tout (z',y') € R'I" et tout p' € R, Uapplication Rf, : R x R?, —
R U {—o0} définie par :

. t ¢
R (pt,ln(xt)) _ sup, {p In(y') : y } si Pt (z')#0 (221)

—00 sinon
est la fonction de revenu népérienne.

Proposition 2.30 Lorsque P, (x') satisfait P1-PS5, la fonction de revenu népérienne vérifie :

Rin1 : Pour tout p* € R"} on a, R}, (p*,0) = 0.
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Ri2 : Pour tout (p*,z') € RT, x R avec p* > 0 et 2* > 0 alors, R}, (p*,In(z")) > 0.

Riw3 : Pour tout p*,p* € Ry avec p* > p' ona, R}, (p",In(z")) > R}, (", In(z")).

R4 : Pour tout z*, " € R, avec x* > 7" alors, R}, (p',In(z")) > R}, (p', In(z")).

Ry\,S5 : Pourtout \' > 0 on a, R, (\'p',In(z")) = X' (Rf, (p', In(z?))).

R1,6 : Pour tout \' > 0, sous [’hypothése de rendements d’échelle constants on a, R (p", In(\'z"))

an(pt7 'rt) _'_ pt ln()\t)

Les preuves et les interprétations des hypotheses présentées ci-dessus sont similaire a celles

fournies dans le cadre de la pseudo fonction de revenu Cobb-Douglas. Ainsi, elles sont omises.

La relation duale existant entre la fonction de revenu népérienne et la FDN orientée en output

est présentée dans la proposition ci-dessous.

Proposition 2.31 Lorsque la correspondance en outputs P (z') vérifie P1-P6 alors, pour tout

(z',y") € T, et tout p* € R'} avec 5* € [0,1]", la fonction de revenu népérienne duale est :

Ry, (p,In(z")) = sup {p" - In(y") + §'8'p" : D}, (In(2"),In(y");0,8") > 0}, (2.22)
Yy

et la fonction de distance népérienne duale orientée en output est :
D}, (In(2"),In(y"); 0, ) = inf { B}, (p",In(z")) — p' - In(y") : p* - B* # 0} . (2.23)
p

Ainsi, pour tout (2%, y%) € T, tel que j € J et, toutr € [n], lafonction de distance népérienne

duale en extrant peut étre réécrite de la maniere suivante :
Di, (In(z"), In(y");0,8") =inf ¢ > " plh-In(y},) = > _p'-In(yl) :p"- B #0,.  (224)
p
r€n) r€(n]

Nous retrouvons des formulations duales structurellement similaires a celles relatives a la me-

sure de distance directionnelle.
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3.1.3 Fonctions de Prix Ajustés

Les fonctions de prix ajustés représentent les prix d’équilibre si le marché est parfaitement
concurrentiel. Les mesures de distance définies d’un point de vue dual permettent de les retrouver.
De maniere analogue, les fonctions de cofit et de revenu peuvent fournir les fonctions de demande
de facteur et d’offre conditionnelles. Ces résultats proviennent des travaux de Shephard (1953,

1970) et McFadden (1978).

Proposition 2.32
(i) Aux points ou la pseudo fonction de coiit Cobb-Douglas est différentiable par rapport au prix
des facteurs w' € R et, si elle admet un minimum &*(w',y") € R", alors, selon le Lemme de
Shephard :

VuCop(w' y') = 7' (w', y'; o', 0) (2.25)

est la fonction de demande conditionnelle de facteurs.
(ii) Aux points ou la fonction de distance exponentielle orientée en input est différentiable relati-
vement aux facteurs x* € R™", alors, selon le Lemme dual de Shephard :

Vln(gc)Dt (2", y'; at, 0) = @' (2, y'; o, 0) (2.26)

exp

est la fonction de prix ajustés des inputs.

Preuves :

(i) Soit Ctp(wh, y') = exp [CL, (wh, In(y"))] avec 2t (w', y*; af, 0), la fonction de demande de fac-
teurs & 1'optimum. Puisque C&p,(w',y') = exp[CL (w' In(y"))] alors, V,C&p(wt,yt) =
V. €Xp [C’fn (wt, In(y")) ] En effectuant une transformation logarithmique a la pseudo fonction
de codit, on obtient V., In (Ctp(w',y")) = V,Cf (w', (y)). De ce fait, V,, In (CEp(w',y')) =
In (Z*(w', y")) et V,C&p(wh, yt) = 28 (w', y'; of,0) O

(ii) On sait que Df (', 9% ', 0) = Df (In(2*),In(y"); o, 0) tel que w'(z*,y'; o', 0) est la fonc-

tion de prix ajustés. D’oll, Vi) Dl (2F, ' of,0) = Vine) Dl (In(2?), In(y'); f, 0). De ce fait,

exp

Vin@) Dip (2, 5 04, 0) = @' (2!, v o, 0) O,

exp

Proposition 2.33

(iii) Aux points ou la pseudo fonction de revenu Cobb-Douglas est différentiable par rapport au
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prix des outputs p* € R, et, si elle admet un maximum y'(p*, z') € R | alors, selon le Lemme de
Shephard :
VpRep(@', o) = §'(p', 250, 8) (2.27)

est la fonction d’offre conditionnelle d’outputs.
(iv) Aux points out la fonction de distance exponentielle orientée en output est différentiable relati-

vement aux outputs y' € R}, alors, selon le Lemme dual de Shephard :

Vinty) D (2,450, 8Y) = —=p' (", 4" 0, ) (2.28)

est la fonction de prix ajustés des extrants.

Preuves :

(iii) Soit RL ) (p', ') = exp [Ri, (p', In(z?))] avec ¢ (z*, p*; 0, B%), la fonction d’offre d’outputs a
loptimum. Ainsi, In[RL,(p',2')] = R (phn(zh)) tel que V,In[RL,(p2Y)] =
VR (p',In(2")) Sachant que V, Ry, (p', In(z")) = In (¢*(«", p"; 0, 8Y)) alors, V,RL,(ph, at) =
Jatp0,6) O

(iv) Pour D{_ (z*,4"0,5") = Dy, (In(z"),In(y"); 0, 3°) tel que p'(z',y"; 0, 5") est la fonction de
prix ajustés des outputs alors, on a Vi, DL (2!, 4% 0,8") = Vi Di (In(a!), In(y"); 0, 57).
Ainsi, Vine) D, (2,950, 8) = —p'(2*, y% 0, 8°) [

De maniere plus formelle, les correspondances des prix ajustés a des inputs et des outputs qui

permettent I’optimisation des fonctions de colit et de revenu sont respectivement :

W LR x [0, 1] — 2%F

l,t)wt
w'(zt, vt al,0) = argmin, _ @) cwhalt =14,
( ) CtCD<wt7yt)

P LR % [0,1]" — 284
~ . Rt pt,l’t
p'(a',y%0,8) = argmin, {% ptBt = 1} :
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3.2 Fonctions de Profit Cobb-Douglas et Log-linéaire

Dans certains secteurs d’activité, les entreprises ont la possibilité d’influencer a la fois la quan-
tité de facteurs utilisée et le niveau de la production. Dans ce cas, elles peuvent chercher a maximi-
ser leur profit grace a une meilleure combinaison des facteurs et/ou une production plus optimale.
La fonction de profit permet de déterminer les quantités d’inputs et d’outputs qui maximisent le

bénéfice des unités productives.

3.2.1 Pseudo Fonction de Profit Cobb-Douglas : définition, propriétés et dualité

Définition 2.34 Pour tout (z*,y") € R} et tout (w',p') € R}, Papplication I, : R X

R? — R U {oo} définie par :

s (y)*'
L (w', pt) = O @

00 sinon

(2t yt) e Tt(xtayt)} si. THa',y') # 0 (2.29)

est la pseudo fonction de profit Cobb-Douglas.
Cette fonction est associée a quelques hypotheses.

Proposition 2.35 Lorsque T'(z',y") satisfait T1-T4 alors, la pseudo fonction de profit Cobb-
Douglas admet les propriétés suivantes :

Hepl : Pour tout (w', p') € RT ™ si (0,0) € T'(2t, y*) on a, 1L, ,(0,0) = 0.

Hep2 : Pour (Wl pt) € RT™ on a, 1L, (wh, pt) > 0.

Hep3 : Pour tout (W', p') € R et tour (w',y') € R, si w' < wt et p* > p' alors,

e p (@', p') = ep(w', p).
Hep4 : Pour tout \' > 0 on a, 11 ,(Nw!, Nipt) = (HtCD(wt,pt)))‘t.
epS o Sous I'hypothése de rendements d’échelle constants, 11, (w', p*) = 1 ou IIL , (w, pt)

= Q.

Le premier axiome stipule qu’il n’y pas de repas gratuit tandis que le deuxieme signifie que des
inputs et des outputs positifs induisent un profit non-nul. (II-p3) fait référence a la monotonicité

de la fonction de profit par rapport aux prix. L’hypothese (II-p4) désigne I’homogénéité de degré
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A! relativement axu prix. Lorsque la technologie satisfait des rendements d’échelle constants alors,

la fonction de profit est réduite a 1 ou a oo.

Preuves :

(Ilcpl) a (I1op3) découlent directement de la définition de la fonction 1.

t )\tpt
(Ilcp4) Soient A > 0 et (w',p') € RP™ tels que IIf,(ANw', A'p') = sup,,, { ((gt)))\twt
t 10Zt
(2t y") € Tt(a:t,yt)}.En factorisant par A’ on a, IT%, , (\'w?, X'pt) = <supm7y { égt))wt (2hyt) €
)\t
Ttat,yt) b | . Ainsi, I (Mt AXipt) = (IThp (vt pt) O

(I1cp5) Supposons que ITE (w', p*) = In (TIL , (w?, p*)) tel que lorsque T} (=*, y*) satisfait des ren-
dements d’échelle constants alors, IIf (w!, p') = 0 ou I (w?, p') = oo. D’ot, I1L , (wt, p') = 1 ou

IMep(w', p') = o0.
Lemme 2.36 T (z',y") est In-convexe si et seulement si, T}, (z*, y') est convexe.

La convexité de T, (z,y") permet I’existence d’une relation duale entre la pseudo fonction

de profit Cobb-Douglas et la fonction de distance exponentielle orientée dans le graphe.

Proposition 2.37 Si 1" (', y") satisfait T1-T5 alors, pour tout (x*,y") € Tt et tout (w', p') €

R avec A = diag(a') et B = diag(3'), la pseudo fonction de profit Cobb-Douglas duale est :

5B, t\P'
M 1) = sup LV

7 Do (295505, 8) 20, (2.30)
T,y (e—éfot)w ( )

exp

et la fonction de distance exponentielle duale orientée dans le graphe est :

()"
DY, (2,450, 8Y) = $up {H&(wt,pt) ok w'a’ +p'B*# 05 (2.31)
De par cette proposition, pour tout (2%, y%) € T, avec j € J, toutinputi = (1,---,m) € [m]
et tout output r = (1,--- ,n) € [n], la FDE duale peut étre caractérisée de la maniere suivante :

Hie[m] (xil)wf
Hre[n] (y;',r)pfn
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Les pondérations peuvent &tre normalisées de telle sorte que wial + p!st = 1.

3.2.2 Fonction de Profit népérienne

La fonction de profit népérienne est la réciproque de la pseudo fonction de profit Cobb-Douglas

dont la définition est présentée ci-dessous.

Définition 2.38 Pour tout (z*,y") € T! , et tout (w', p') € RY™™", U'application 11}, : R X R —

R U {0} définie par :

o sup  {p'-In(y") —w'-In(a?) : (2',y") € TL,} si TL, #0
I, (w', p") = In(z),In(y) (2.33)

In

00 sinon
est la fonction de profit népérienne.

Proposition 2.39 Lorsque T (z', y') vérifie T1-T4 alors, la fonction de profit népérienne satisfait
les propriétés suivantes :

1 : Pour tout (w', p') € R, 5i (0,0) € T, (2%, y") alors, 11 (0,0) = 0.

0,2 Pour (w',p') € R on a, I} (w', p*) > 0.

,3 : Pour tout (W', p') € RTH™ et tout (w',p') € RT", si w' < wt et p* > p' alors

I (i, ) > T (', ).
0,4 : Pour tout \' > 0 on a, TI!,_ (N'w!, Nipt) = NI (w?, p).
1,5 : Sous I’hypothése des rendements d’échelle constants, 11} (w', p') = 0 ou 1T} (w', p)

= OQ.

La premiere propriété stipule qu’il n’existe pas de repas gratuit. Le deuxieéme axiome signifie
qu’une utilisation des facteurs et une production effective génerent un profit positif ou nul. (I}, 3)
est relative a la monotonicité de la fonction de profit par rapport aux prix des inputs et des outputs.
(IT},4) fait référence a I’homogénéité de degré (1) de la fonction relativement aux prix. La der-
niere hypothese est relative a la structure de la technologie lorsque les rendements d’échelle sont
constants.

Preuves :

(11,1) a (I1,,,3) sont des propriétés inhérentes a la définition de la fonction de profit log-linéaire [1.
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(I1;,4) Soit A' > 0 tel que I}, (\'w’, A'p") = sup  {Ap'-In(y’)—Aw'In(z?) : («!,y") € T, }.
In(z),In(y)

La factorisation par A\’ permet d’obtenir IT} (A'w?!, A'p') = A*- sup {p'-In(y") —w'-In(z") :
In(z),In(y)

(1) € TiJ) Done, T, (N, Ap') = X T, (w',pf) O

(11,5) Cette propriété découle de la structure de la technologie lorsque les rendements d’échelle
sont constants. Dans ce cas, I’ensemble de production est réduit a un cone convexe tel que la fonc-
tion de profit se confond avec la frontiere efficiente (c’est-a-dire I, (w?, p*) = 0) ou bien elle tend

vers infini (I} (w?, p") = 00).

On sait que 7 (', y") est convexe. De ce fait, il existe une relation duale entre la FDN orientée

dans le graphe et la fonction de profit log-linéaire.

Proposition 2.40 Quel que soit T (z*,y") vérifiant TI-T5, pour tout (z*,y") € Tt (2", y") et
tout (w',p') € RT™™ avec A = diag(a') et B = diag(B3), la fonction de profit népérienne duale

est:

I, (w', p') = S {pt In(y") +w' - In(z") + Df, (In(z"), In(y"); o', B') (w' - ' +p' - B') :
n(z),ln(y

D}, (In(a"), In(y"): o, 8') = 0}, (2:34)
et, la fonction de distance népérienne duale orientée dans le graphe est :

D}, (In(z"),In(y"); o, B') = sup {an(wt,pt) —p'-In(y") +w' - In(z") :w'-of +p" - BT £ 0}-
w7p
(2.35)

La normalisation des pondérations peut également étre effectuée telle que w'.a® + p'.5" = 1.
Pour tout (%, y¢) € Tt , avec j € J entités de production, tout inputi = (1,--- ,m) € [m] et

tout output r = (1,--- ,n) € [n] outputs, la FDN duale dans le graphe peut étre détaillée comme
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suit :

Dfn (lIl(ZL‘t), ln(yt)a ata Bt) = Sup {an(wtapt) - Z pf‘ ’ 1n(y§,r) + Z U}f ’ ln(x;z) :
1€[m)|

wp re(n]

wh-al +pt g # 0}. (2.36)

3.2.3 Fonctions de Prix Implicites

Nous avons abordé la notion de fonctions de prix ajustés dans le cadre des orientations en
input et en output. Dans cette sous-section, nous proposons une étude des fonctions de demande et
d’offre conditionnelles ainsi que des fonctions de prix ajustés selon une orientation dans le graphe

de la technologie.

Proposition 2.41
(i) Aux points ou la pseudo fonction de profit Cobb-Douglas est différentiable par rapport aux
prix des facteurs (w', p') € RT™™ et, si elle admet un minimum z'(w', y*) € R, et un maximum

y'(p', z*) € R, alors, selon le Lemme de Shephard :

Vollpp(wh, pt) = 2 (w', y' of, 57)
VIILp(wh, pt) = g'(at, p'; o, BY)

(2.37)

sont respectivement les fonctions de demande de facteur et d’offre de produit conditionnelles.
(ii) Aux points ou la fonction de distance exponentielle orientée dans le graphe est différentiable

relativement au couple (x',y') € R™ alors, d’aprés le Lemme dual de Shephard :

t t o, t. A0 t ot (et ot At t
vln(:v)Dexp(xayaaaﬁ) —w(x,y,oz,ﬁ)
Vin) Desp (2, 950, 81 = —p' (2, ¢'5 o, )

(2.38)

sont respectivement les fonctions de prix ajustés des inputs et des outputs.

Preuves :
(i) On sait que IT} (w', p') = In (IIL,(w', p')) et Tk, (w!, pt) = exp (1T}, (w', p*)) alors, par le
théoreme de ’enveloppe on a V, ITf (w', p*) = In (' (w', y")) et VI (w', p") = In (g*(w', y")).
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Ainsi, V115, (w', pt) = 2 (w', yt) et V, IIL, (0!, p') = g (w', ") .

(ii) On sait que D (2, y"; o', ') = Dy, (In(z"),In(y"); o', ) ainsi, Vin@) DL, (2, y5 o, B) =
Vin) Dfy (In(2), In(y); o, BY) et Vin) Dip (2", %50, B) = Vi) Df, (In(2'), In(y'); o, 5°).
Par le théoréme de I’enveloppe on a Vi) D}, (In(z),In(y"); o, B) = @(z', 3" at, BY) et
Vi) Df, (In(2"), In(y"); of, B) = —p' (', y'; ', B*). Par conséquent, Vi, DE, (2, y'5 o, B) =
w'(z',y"al, BY) et Ving) Doy (2, 9% 0, BY) = =p' (2!, 9!, 8) L

La correspondance des prix ajustés peut ainsi étre définie de la maniere suivante :

(', ') LRI [0, 1] — 2%
R AN S A R A=A t t(xt>w cont At t.at (2.39)
(0) (ot ) = argmasay § Ho(ut o) 5 st a5 =1

Y

4 Les Notions Additionnelles

Dans cette section, nous abordons les concepts additionnels a la mesure exponentielle de 1’ef-
ficience. En effet, dans un premier temps, nous proposons une analyse des rendements d’échelle
relatives a cette mesure. Dans un second temps, nous formalisons le fonction de distance exponen-

tielle dans un cadre non-paramétrique.

4.1 Rendements d’Echelle

La notion de rendements d’échelle est étroitement liée au processus productif. Sachant que
les mesures d’efficacité caractérisent les ensembles de production, il est intéressant d’analyser
les liens existant entre ce concept et la focntion de distance exponentielle. Tout d’abord, nous
abordons le cas des technologies a rendements d’échelle constants. Ensuite, nous explorons le cas

des rendements d’échelle locaux et leurs implications.

4.1.1 Rendements d’Echelle Constants

Notons que Ti, ( In(z"), In(y")) = In (T4 (2, y")). Ainsi, Tin(In(z?), In(y")) = In (T NREE).

Proposition 2.42 Pour tout (z',y") € R[", I'ensemble de production T*(z',y") satisfait I’hy-

pothése de rendements d’échelle log-constants si T}, (In(z"), In(y')) vérifie I'hypothese de rende-
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ments d’échelle constants.

Preuve :
Supposons que T}, satisfait des rendements d’échelle constants. Ainsi, Pour tout A > 0'si (In(z"), In(y"))
€ T}, alors, (A'In(z?), N'In(y")) € Tf, VA" > 0. Puisque T (2, y") = exp (Tt (In(2"), In(y")))

alors, pour tout (z*,y') € T, ettout \' > Oona, ((z!)V, (y")"') € TL,.D’ol, ((z)V, (y))"') €
Tt L.

Supposons que le processus productif d’une firme est caractérisée par une fonction de produc-
tion Cobb-Douglas dont les rendements d’échelle sont constants, dans un cadre mono-output et
multi-inputs. Ainsi, pour tout input i = (1,---,m) € [m], expression de la technologie relative

a cette situation est :

T' =S (') eR™ oyt <A ] (=), 4 >0, 2%_1 . (2.40)

1€[m]

Dans ce cas, il est possible d’obtenir I’expression des fonctions de distance exponentielle tels

que pour tout v* > 0 avec » .17 = Lleta’ = 1,,, la FDE orientée en input est :
t t ot t &t ot ”
D (@', y'5 1, 0) = sup Syt <A H ( - ) . (2.41)
i€[m]

Sachant que D (2", " 1,,,0) = D}, (In(2"), In(y"); 1L,,,, 0) alors, on peut poser que :

D (@', 45 1, 0) = Dy, (In(2"), In(y'); L, 0)

=sup 0" : In(y") <In(A) + fn(at
1 (v") Zv

Dy (@ y'5 1, 0) = sup 6" : 6" <In(A) + Z yin(zt) — In(y?) ¢ . (2.42)

De méme, nous pouvons exprimer la FDE orientée en output pour 5 = 1, avec ¥ > 0 et
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> icpm Vi = 1, de la maniere suivante :

D! _(z" %0, 1,,) = sup ooyt < A H . (2.43)

exp
i€[m]

En faisant intervenir 1’équivalence entre la FDE et la FDN, nous obtenons :

Dl (2", y%0,1,) = Dy, (In(z"), In(y"); 0, 1,,)

exp

D! (2", 9% 0,1,) =sup{ &' : 6 <In(A) + Z Yiin(xt) —In(y') p . (2.44)

exp
0

Nous pouvons constater que,

Dl (', y% 1,,,0) = DL (2,450, 1,).

exp exp

Ce résultat n’est pas surprenant puisque la technologie vérifie des rendements d’échelle constants.

4.1.2 Rendements d’Echelle Locaux et Spécifiques

Dans cette sous-section, nous nous intéressons aux différents types de rendements d’échelle
s’intégrant aux processus de production. Les fonctions de production de type Cobb-Douglas mono-
output et multi-inputs, peuvent étre étendues aux cas ou plusieurs facteurs et productions inter-

viennent. Dans ce cas, ces fonctions Cobb-Douglas peuvent étre définies de la maniere suivante :

Gepey) = [T [T . (2.45)

i€[m] ren]

Notons que lorsque n = 1 et n = 1 alors, nous retrouvons la fonction Cobb-Douglas classique.

La définition ci-dessus permet de proposer une technologie Cobb-Douglas par morceaux.
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Lemme 2.43 Soit le sous-ensemble A® C R''[™ tel que

Co'(AY) = {H N0, =1,0> 0} , (2.46)

JjeJ JjeJ
est I’enveloppe convexe multiplicative de A'.

Ainsi, la technologie de production classique peut étre représentée par 1’ensemble
T' = [Co'(A") + (R} x (-R})) | nRPH™ | (2.47)
et la technologie strictement positive par
T, = [Co'(A") + (R} x (-R7))] nR7F™ . (2.48)

Nous utilisons les notions introduites ci-dessus afin de présenter une technologie de production
dans un contexte spécifique. En effet, dans le cas d’une technologie Cobb-Douglas, elle peut étre

définie par I’ensemble présentée dans la proposition ci-dessous.

Proposition 2.44 Pour tout ¢; € R avec j € J, il existe j fonctions Cobb-Douglas thD(a:;, yj),
telle que

T AR = () {(@'y") e RTT: GLp(at,yf) < '}, (2.49)
JjeJ

est la technologie Cobb-Douglas par morceaux.

Preuve :

Soit la technologie logarithmique, In (7¢" NR7{™) = Co' (In(A?)) + (RT x (—R?)) telle que
In(A") = {(In(z}),In(y})) : j € J}. 1l existe j fonctions linéaires telle que I’application
(In(z"),In(y")) — ntIn(yt) — 44 In(a}) avec (v',n") € R permet de réécrire la technolo-

gie logarithmique de la maniere suivante :

i (7 MR = () { (e, () £ () = 2 ) < In()
Jjeg

La transformation exponentielle fournit le résultat de la Proposition 2.44 [1.
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Proposition 2.45 Pour tout (z',y") € T N R™™", la technologie T®" N RT™ satisfait une
hypothese de :
. y 2 . . . . t t
(i) rendements d’échelle quasi-croissants si et seulement si, Z n; < Z Vi
Jjeg JjeJ
(ii) rendements d’échelle quasi-décroissants si et seulement si, » 77§ > > 7},
JjeJ JjeJ
) . . . t_ t
(iii) rendements d’échelle quasi-constants si et seulement si, n; = > V5
jeJ jeJ
Preuves :

Pour n = 1 et n* > 0, soit la fonction de production Cobb-Douglas classique suivante :

Gop(e'y) = [T @) )" = )" = [] @)

i€[m] i€[m]
Dans ce cas, si Eie[m} vE/nt > 1 alors, la technologie satisfait un rendement d’échelle quasi-
croissant (i) tandis que, si > ;1 7;/n" < 1 alors, le processus productif vérifie un rendement
d’échelle quasi-décroissant (ii). Enfin, lorsque Zie[m] ~i/nt = 1 alors, la technologie satisfait un
rendement d’échelle quasi-constant. La généralisation de cette notion a un processus de production

multi-output donne le résultat de la Proposition 2.45 L.

Nous pouvons considérer que les facteurs utilisés contribuent différemment a 1’élaboration de
chaque produit dans un processus de production. Ainsi, il est possible d’obtenir une indication du
rendement d’échelle spécifique associé a chaque output . On peut donc dire que le rendement
d’échelle spécifique associé a I’output r est :

(iv) croissant si ny < >0 s

(v) décroissant siny > (.17

(vi) constantsin, =3, ;.7

4.1.3 Facettes Cobb-Douglas et Approximation de la Technologie

On sait que pour tout j € 7, il existe un ensemble G, = {Ggh, -+, GEp ) tel que T N
R = Njes {(z',y") e R} GthD(xz,yj) < ¢;}. La fonction Cobb-Douglas généralisée
G]CtD(a:;,yj) caractérise la facette Fég non-linéaire d’une forme géométrique. Or, on sait que

7N R’ T™ est la transformation exponentielle de la technologie logarithmique, linéaire par mor-
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ceaux In (T NR’*I™). Ainsi, on peut également affirmer que cette facette 2, est elle-méme la
transformation exponentielle d’une facette logarithmique linéaire " relative a In (TGt NRT).
Dans ce cas, (xz, y}f) € R montre localement un rendement d’échelle quasi-croissant, quasi-
décroissant ou quasi-constant si :

(1) il existe une facette F(JJE telle que (xé, yj) appartient a I’intérieur relatif de celle-ci,

(ii) Gc D(:cj, y;) satisfait une hypothése de rendements d’échelle quasi-croissants,

quasi-décroissants ou quasi-constants.

Supposons que (@', p') € R7"*" soit la solution permettant I’optimisation de la fonction de

distance exponentielle duale. Nous admettons qu’elle est unique pour I’observation (333, y}f) Si

de plus, D Lol BY) = 0 alors, il existe une facette F;f, dont I'intérieur relatif contient

exp( i Y
(5, y5)-
Proposition 2.46 Pour tout (x',y') € RT{", si (', p) est une solution unique de la fonction de
distance exponentielle duale telle que Dexp(x Jyb ol BY) = 0 alors, la fonction Cobb-Douglas
généralisée G, (", y") peut étre approximée par I'application étc pRT. X RY, — R, définie
par:

Gepla'y') = [T @™ TT i (2.50)

1€[m] r€(n]

et, appelée fonction Cobb-Douglas généralisée implicite.

Dans ce cas, la nature des rendements d’échelle locaux peut s’apprécier par le ratio ﬁ
r€n| Dy

Preuve :

Pour D!_ (2%, 9" af, ') = 0 avec une unique solution (@', p') € R’’*", on sait que la courbe de

exp
HTE[ ](yr)pr
Hie[m} (fff)wl

que Gep (7', y") = [Licpmy (zt) = Hre[n](yﬁ)’ﬁ alors, celle-ci peut étre approximée par la fonction

de profit L.

profit définie par II% ,(wf, p*) = sup
T,y

(2t yh) € Tfr+} passe par (z', y'). Sachant

Grace a cette fonction Cobb-Douglas implicite, il est également possible de donner une ap-
proximation de la technologie Cobb-Douglas par morceaux. Pour toute observation j € J avec

(w' (2, yl), p'(«t, yt)) pour solution de D (z*,y!; of, 5') on a, I'ensemble de production Cobb-
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Douglas caractérisé par :
TRy = () {(@h ) eRE™: Clplaly) <ef} 2.51)
JjeJ

Remarquons qu’un échantillon de données ne peut fournir toutes les facettes Cobb-Douglas de
I’ensemble de production 7" N R'"'I™. Afin d’obtenir le plus grand nombre de facettes, il semble

nécessaire d’utiliser une méthode d’estimation inférentielle qui génere plus de données.

FIGURE 1 — Ensemble de production approximé

Sans perte de généralité et dans un contexte de technologie linéaire par morceaux, la figure 1
présente le processus d’approximation de la technologie de production. Soient les droites de profit
qui, lorsqu’elles sont tangentes aux observations, maximisent le profit pour un couple (@', p).

L’intersection de ces droites permet d’approximer la structure de I’ensemble de production.

4.2 Cadre Non-Paramétrique

Cette sous-section est dévouée a la formalisation des notions présentées auparavant, dans le
cadre d’une approche non-paramétrique par enveloppement de données (DEA). Banker et Main-
diratta (1986) introduisent une nouvelle technologie multiplicative de type Cobb-Douglas selon
le modele DEA. En effet, la technologie de production DEA standard ne permet pas de prendre
en compte les productivités marginales croissantes. Le nouvel ensemble de production qu’ils pré-
sentent, permet de surmonter cet obstacle dans un contexte non-paramétrique par le biais d’une

transformation logarithmique. Cependant, nous exposons d’abord quelques notions d’efficience
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liées aux mesures définies dans les sections précédentes.

4.2.1 Efficience Technique, de Coiit et de Revenu

Les mesures de distance mais également les fonctions de cofit, de revenu et de profit permettent
d’apprécier plusieurs notions d’efficience. En effet, on peut mesurer I’ efficacité technique, de cofit,
de revenu, de profit, et allocative des entreprises grace a celles-ci.

La premiere notion d’efficacité que nous allons voir, est celle du coft. Elle représente 1’ aptitude
de I’entreprise a produire une quantité donnée d’outputs en réduisant au maximum ses cofits de
production. Ce concept nécessite des informations sur les prix du marché lorsque ceux-ci sont
exogenes a la firme. En effet, I’ optimisation est effectuée relativement aux facteurs. L’efficience de

colit exponentielle peut étre exprimée comme suit :

@y
t
CEly = (o (2.52)
cD
La version logarithmique de celle-ci est définie de la maniere suivante :
tot _ Ot
6] 5/ (2.53)
alw

Nous pouvons retrouver ce résultat en appliquant 1I’équivalence entre les cofits exponentiels et

les coiits logarithmiques telle que Cf , (w', y') = exp (Cf, (w', In(y"))).

Lefficience de revenu est quant a elle, la capacité de ’entreprise 2 maximiser son revenu
compte tenu du niveau de facteurs utilisé et des prix exogenes de la production. Dans ce cas,

I’optimisation est relative a la quantité produite. De ce fait, I’efficacité de revenu est :

¢ Rbp \ 7"
RE ., = ((yt)pt) : (2.54)

tandis que I’efficience de revenu logarithmique est :

Rt _ptyt
t In
REy, = G (2.55)

110



Une Approche Exponentielle de la Mesure de 1’Efficience

FIGURE 2 — Efficacité de cofit FIGURE 3 — Efficacité de Revenu

Les figures 2 et 3 décrivent respectivement les notions d’efficacité de cofit et de revenu. Dans la
premiére illustration, la distance d(x*, z%) représente C'E* selon le vecteur de direction g* = (1, 1).

Dans la seconde figure, la distance d(y', y%) correspond a I’efficience de revenu RE".

L’efficience de profit désigne I’habileté de la firme a maximiser son profit relativement aux
prix des facteurs et des produits sur le marché. Ces derniers sont considéré comme exogenes. Dans
ce cas, I’optimisation se fait par rapport au niveau des intrants et des extrants. Soit I’efficience de

profit exponentiel définie par :

. 1/(atwt+5tpt)

t . (@)
PEey = {lep W (2.56)
Et, I’efficience de profit népérien est :
It — (ptyt — wiat

atw? + /Btpt

La figure ci-dessus décrit I’efficacité de profit telle que celle-ci est constituée par la distance

d((z',y"), (z',y!)) suivant le vecteur de direction g* = (1, 1).

Les notions d’efficience présentées ci-dessus peuvent étre considérées comme étant les effi-
ciences globales (OE) ou efficacité économique. L’efficience globale orientée en input est 1’effi-
cacité de cot, celle orientée en output correspond a I’efficience de revenu et celle orientée dans

le graphe renvoie a I’efficacité de profit. Les efficiences globales exponentielles et népériennes
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Ht
IsoqT"* (a*,y")

FIGURE 4 — Efficacité de Profit

peuvent étre décomposées de la maniere suivante :

OE! =TE'! x AE. | OFE}, =TE} + AE{, | (2.58)

exp exp exp n

ou TE! et AE" sont respectivement 1’efficacité technique et allocative.

Lefficacité technique représente la capacité de 1’entité de production a produire le maximum
d’outputs pour un niveau donné d’inputs (orientation en output) ou bien son aptitude a utiliser
le minimum de facteurs pour une quantité définie de produits (orientation en input). Selon une
orientation dans le graphe, cette efficience désigne 1’habileté de la firme a produire le plus d’out-
puts en utilisant le moins d’inputs. Les fonctions de distance permettent de déterminer celles-ci.
Ainsi, selon les travaux de Mehdiloozad et al. (2014), on peut exprimer la mesure exponentielle de

Iefficacité technique (T'E’,_ ) comme suit :

Xp

TE, = exp (Dfn (In(z"), In(y"); o, B°) ) = exp (D, («", 450, 8)). (2.59)

Ainsi, on peut dire qu’une firme est techniquement efficiente lorsque son ensemble de pro-

duction appartient a la frontiere efficiente. Suivant Luenberger (1992a, 1992b) et Chambers et al.
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(1996), on peut statuer que :

frnd Sl (xt’yt) e agC,ﬁTt
TE.,4 >1 si (af,y') € T/O,T (2.60)
<1 si (a'y') ¢ 0 T"

Par conséquent, on a :

=0 alors (z',y") € Ox5T"
Dt (2", 9" at, 8Y) >0 alors (2',y") € T/95,T" 2.61)
<0 alors (2,y") ¢ 05 5T"

De maniere analogue, dans un contexte logarithmique, 1’efficacité technique est caractérisée
par :

TE!, = Df, (In(z"),In(y"); o', B') = (D, (', 9" ", 8) (2.62)

exp

de telle sorte que lorsque :

=0 alors (ln(:vt), ln(yt)> € 0, 5T,
TE,{ >0 alors (In(z!),In(y')) € Thn/OusTh, (2.63)
< 0 alors <ln(:vt), ln(yt)> ¢ Oa T}

Dans les figures 2, 3 et 4, les efficacités techniques sont représentées respectivement par les

distances d(z', 2%), d(y*,9") et d((2*, y') (2", §")).

L’efficience allocative intervient lorsque 1’entreprise alloue ses ressources dans des proportions
optimales qui lui permettent de minimiser ses colits compte tenu des prix des facteurs sur le marché.

Ainsi, il est possible de déterminer celle-ci grace a la décomposition de I’efficacité économique

telle que :
. OFE,,
AE., = TEL, (2.64)
AEl = OE! —TE} . (2.65)
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Dans les trois illustrations précédentes, les efficacités allocatives correspondent a la distance
entre les frontieres efficientes et les droites de cofit, de revenu ou de profit. Ainsi, elles sont repré-

sentées par les distances d(z?, zt), d(4', y.) et d((z', 9", (=, y)).

4.2.2 Approche Primale

Pour toute unité de production j € 7, soit la technologie multiplicative T/, présentée par

Banker et Maindiratta (1986) suivante :

ot ot
Tép = {(sc%y% eRM b > [y < [[w)% ) 0 =1,0"> 0} . (266)
JeT JET JjeJ

Notons que cet ensemble de production opere sous I’hypothese de rendements d’échelle variables.
Dans un contexte a rendements d’échelle constants, la normalisation ) _; 0% = 1 est relaxée. Par
ailleurs, lorsque cette technologie est strictement positive alors 7%, = T, N RTT™ c’est-a-dire
que (o, ) € R7T".

La transformation logarithmique de 1I’ensemble de production strictement positive engendre la

technologie de production népérienne ou logarithmique suivante :

T = {(ln(xt),ln(yt)) In(z) > ZQ; In(z}), In(y") < Z@; In(y;), Z@; =1,0"> 0} .

JjeTJ JjeJ JjeTJ
(2.67)

Cette derniere est structurellement identique a une technologie DEA standard (Banker et al.
(1984)). Ainsi, nous pouvons affirmer que la technologie népérienne est un ensemble de production

log-linéaire par morceaux.

La figure 5 décrit la technologie multiplicative de type Cobb-Douglas présentée par Banker et
Maindiratta (1986). La figure 6 quant a elle, présente la technologie népérienne obtenue grace a la
transformation logarithmique de 1’ensemble multiplicative. Notons que lorsque (z*, y*) €]0, 1]™*"
alors, (In(z'),In(y")) € R™*™

Grace aux définitions de T}, et de T}

1> Dous présentons le programme d’optimisation qui

permet d’évaluer la fonction de distance exponentielle. Pour toute observation ;7 € J tel que

(z},y5) € T aveci € [m] inputs et 7 € [n] outputs, soient les programmes suivants :
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IsoqT?, |

t
Ty

FIGURE 5 - Technologie Cobb-Douglas.

to(t ot ot ) — t
Dep (7', y" a7, 0) = max §

8.C e gt > H(:cé)%
JjeJ
T (K B X )
JjeET
50 >0, Y 0i=1
€T

IsoqT},

Tt

In

FIGURE 6 — Technologie népérienne log-
linéaire par morceaux.

Dl (2", 40, 8") = max 6’

exp

8.C x> H(azﬁ-)ef

jeT
Py <TTWh" (2.69)
JjeET
t __
o' >0, Y 0=1

JjET

D (', y"5af, B') = max o'

8.C e eyt > H (a:?)%

exp

Py < T

jeT

(2.70)
JjeT

00" >0, Y 0=1

jeT

Les programmes (2.68), (2.69) et (2.70) sont respectivement ceux des fonctions de distance

exponentielles orientées en input, en output et dans le graphe. Notons que ces programmes d’op-

timisation sont relatifs a des rendements d’échelle variables et, sont non-linéaires. Sachant que
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Df, (In(z"),In(y"); o, ) = DL, (2, y"; o, B") alors, nous obtenons :

D}, (In(z"),In(y"); *,0) = max §*
8. In(z') — §'a’ > Z@; In(z})
JjET

In(y") <> 6 In(y}) 2.71)
JjeT

80 >0, Y 6 =1
jeJ

Dy, (In(z"),In(y"); 0, ) = max §'
s.C In(z") > Z@; In(z?)
JjeT

In(y") + 6’8" <> 6 In(y}) (2.72)
JjeJ

00" >0, Y Oi=1
JjeT

D}, (in(a'), In(y"); o', 8*) = max &
8.C In(z") — §'a’ > Z@; In(z})
jeJ

In(y") + 6’8" <> 64 In(y}) (2.73)
JjeJ

00" >0, Y fi=1
jeT

Nous pouvons voir que ces programmes sont linéaires. Il est donc possible d’estimer grace a la
méthode de programmation linéaire, la valeur de la fonction de distance exponentielle puisqu’elle

est équivalent a la fonction de distance népérienne.

Lorsqu’une analyse sous 1’hypothese de rendements d’échelle constants est souhaitée, il est

nécessaire de relaxer la normalisation sur les pondérations ;6% = 1.
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4.2.3 Approche Duale

Cette sous-section présente une maniere d’estimer la mesure de distance exponentielle selon

un point de vue dual..

Rappelons que pour tout input ¢ € [m] et tout output r € [n], la fonction de distance exponen-

tielle duale, orientée en input, est définie par :

t

— cwh-at £ 0

D! (2% y";a’,0) = inf
v Hie[m] (x;z) '

exp

La figure 2 démontre que I’efficacité technique est supérieure ou égale a la droite de coft. Ainsi,

nous pouvons réécrire la fonction ci-dessus de la maniere suivante :

‘ 1/atw?

, Wi .
Aligguy (=7 > whoal=1%. (2.74)

t -

D! (2% 90", 0) =inf < 6" : -
“ icpm (25:)™

exp

Notons qu’une normalisation est effectuée au niveau des pondérations telle que w' - o = 1.

Pour tout (%, y%) € T, avec j € J, le programme associé a cette mesure est le suivant :

D!_ (2% 4" a’,0) = min &'

exp
t

t\W;
‘o Hz’e[m} (zf) N o

Hie [m] (l‘;l) .

SLw' >0, w-aot=1.

(2.75)

Puisque la FDE est équivalente a la FDN, nous pouvons obtenir la premicre en estimant la

seconde. Ainsi, apres une transformation logarithmique, nous avons le programme linéaire suivant :

Dy, (In(z"),In(y"); o*,0) = min ¢*
s.C Z wiIn(z}) — Z w; In(z},;) > 6 (2.76)

1€[m] 1€[m]

wt >0, w-aot=1.

117



Une Approche Exponentielle de la Mesure de 1’Efficience

La fonction de distance exponentielle duale orientée en output, est quant a elle, définie par :

Hre[n] (yj’,r)pfn . p
Hre[n} (yf“)pfn

w

t t ,t. t\ __ t t
Dexp('r7y707ﬁ>_sup{ B #0}
La figure 3 nous montre que la mesure de 1’efficacité technique est inférieure ou égale a la
droite de revenu. Ainsi, nous pouvons reformuler la fonction ci-dessus comme suit :
1/B%p*
IT, e (¥}, )" t
D! (2% 4" 0,8") =sup{ &' : morelnlgr >ed ptopt=1%. 2.77)
P w Hre[n} (yﬁ)pﬁ

Nous appliquons également une normalisation sur les pondérations telle que p’ - 3* = 1. Le

programme rattaché a cette définition est la suivante :

Dl (2", 40, 8") = max ¢’

exp
t \pt
‘. e (W50)™ > o (2.78)

Hre[n} (yf;)p?

5t7pt207 pt'/Bt:

La transformation logarithmique ainsi que I’équivalence entre la FDE et la FDN permettent un
estimation de la mesure d’efficience grace a la méthode de programmation linéaire. Dans ce ca,

nous avons le programme linéaire suivant :

Dy, (In(2"),In(y"); 0, 8) = max ¢’
5. > piin(y},) = > plin(y)) > & (2.79)

r€(n] re(n]

5tapt207 pt'ﬁtzl'

Dans le graphe de la technologie, rappelons que la fonction de distance exponentielle duale est

la suivante :

()
(y')r'

Dl (z',y"5 o', B") = sup {HED(wt,pt)

m7y

cwlad +p'pt + O} .
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La figure 4 indique que I’efficacité technique est inférieure ou égale a la droite de profit. Dans

ce cas, nous pouvons réécrire la définition comme suit :

oty VP
T t
Dy (2", ' 0", B') = sup { 6" : <H’6D(wt,pt) (yt)pt> > wha +p'Br =1

.y
(2.80)
Le programme d’optimisation a résoudre est alors :
szp (xt, y':al, ﬁt) = max 6’
t\wt
x
8. I, (wh, pt) ((yt))pt > ¢ (2.81)

5t’wt’pt20’ wtat +pt6t:1

Nous pouvons obtenir la mesure ci-dessous grace a 1’équivalence entre la FDE et la FDN.
Dans ce ca, I’efficacité technique est estimée selon la méthode de la programmation linéaire et, le

programme d’optimisation a résoudre est la suivante :

Dy, (In(z"),In(y"); o, ') = max ¢’
s.C I, (w', p") — (p'In(y") — w' In(z")) > &' (2.82)

5t’wt’pt20’ wtat +pt5t:1

Conclusion

Dans ce chapitre nous avons présenté une nouvelle mesure de 1’efficacité technique qui a une
forme exponentielle et, est log-additive. Nous avons vu que dans ce cas, elle est structurellement
similaire a la mesure directionnelle de Luenberger (1992b). Nous avons constaté que cette fonction
de distance est duale a des pseudo fonctions de cofit, de revenu et de profit non-linéaires. Il n’est
pas étonnant d’obtenir ce type de fonctions non-linéaires lorsque des facteurs internes et externes
influencent le processus de production ou bien, lorsque la relation entre les inputs et les outputs
n’est pas linéaire. Ces pseudo fonctions de cofit, de revenu et de profit sont structurellement si-

milaires a la fonction de production Cobb-Douglas. En ce sens, leurs exposants sont reliés a la
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notion de rendements d’échelle. Dans la derni¢re section de ce chapitre, nous donnons une for-
malisation non-paramétrique aux nouvelles mesures selon une approche par enveloppement des
données lorsque I’ensemble de production considéré est de type Cobb-Douglas (Banker et Main-
diratta (1986)).

Ces nouvelles fonctions sont des outils de mesure alternatifs a la performance lorsque I’analyse
est effectuée dans le graphe de la technologie et, lorsque les ensembles de production considerent
des productivités marginales croissantes. En effet, lorsque la méthode DEA est retenue, les tech-
nologies de production usuelles sont linéaires et ne permettent que des productivités marginales
non-croissantes. Or, la réalité ne se conforme pas a cette vision simplifiée. Ainsi, dans certains sec-
teurs d’activité tels les nouvelles technologies, ou les productivités marginales peuvent étre stric-
tement croissantes, 1’analyse de la performance peut étre réalisée grace a cette nouvelle mesure de
I’efficacité.

Le chapitre suivant traite également d’une nouvelle mesure de distance qui combine la structure
de la fonction de distance directionnelle et celle de la technologie de référence présentée par Fire

et al. (1988).
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Chapitre 3

Une Mesure Additive Non-linéaire de

I’Efficience

Introduction

La littérature économique démontre que les ensembles de production convexes sont majori-
tairement privilégiés. Cependant, Banker et Maindiratta (1986) remarquent que cette propriété
néglige de prendre en compte les productivités marginales croissantes. Par ailleurs, plusieurs au-
teurs dont Fire et al. (1988) notifient que la convexité des ensembles n’est attractive que grace a la
théorie de la dualité qu’elle permet. Afin de pallier a ces lacunes, Banker et Maindiratta (1986) pro-
posent la technologie de production log-linéaire qui est inspirée de la fonction de production Cobb-
Douglas. Fire et al. (1988) présentent quant a eux, une technologie de production non-linéaire et
non-convexe, nommée ensemble de production CES (Constant Elasticity of Substitution)- CET
(Constant Elasticity of Transformation). Celle-ci trouve sa particularité dans la caractérisation des
frontieres efficientes en inputs et en outputs respectivement par une fonction CES et une fonction
CET. Fare et al. (1988) démontrent que cet ensemble de production est une généralisation des tech-
nologies introduites par Charnes et al. (1978), Banker et al. (1984) et Banker et Maindiratta (1986).
De ce fait, elle considere des unités de production ayant une productivité marginale croissante.

Les fonctions de distance permettent d’estimer 1’efficacité technique des unités de production
grace a une parfaite caractérisation de la technologie. Les mesures d’efficacité linéaires et radiales

de Shephard (1953) et de Debreu(1951)-Farrell (1957) peuvent étre implémentées dans tout type
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d’ensemble de production (convexe ou non-convexe, linéaire ou non-linéaire). Cependant, celles
-ci ne permettent pas une évaluation de la contraction et de I’expansion simultanée des intrants
et des extrants. Par ailleurs, les outils autorisant ce type d’analyse tels que la mesure hyperbo-
lique (Fére et al. (1985)) ou la mesure directionnelle (Luenberger (1992a, 1992b)), ne peuvent étre
implémentés dans une technologie non-linéaire. En effet, celles-ci sont soit non-linéaires soit de
structure additive. De ce fait, dans ce chapitre, nous proposons une nouvelle mesure a la fois ad-
ditive et non-linéaire. Elle hérite de la structure de la technologie de production CES-CET et celle
de la fonction de distance directionnelle. Nous montrons que celle-ci est une fonction pouvant étre
estimée dans le graphe, en input ou en output. Nous présentons ses propriétés et développons une
analyse duale de la mesure. La dualité nous amene a déduire des fonctions de prix implicites non-
linéaires associées a I’optimum de Pareto. Cette structure des prix peut étre reli€e aux tarifications
non-linéaire lorsque 1’ensemble de production n’est pas convexe. A la fin de ce chapitre, nous don-
nons la formalisation non-paramétrique de cette nouvelle fonction de distance grace a la méthode
DEA. Puis, nous illustrons, par un exemple empirique, les notions introduites dans les premieres

sections.

1 Environnement et OQutils

t

Pour tous vecteurs d’intrants z* = (2}, - | 2!

m

) € [m] et d’extrants y* = (y!,---y') € [n] re-
latifs a la période (¢), soit la technologie de production T*(z',y") = {(z',¢")
€ R7*™ . z' peut produire yt}. Nous supposerons que cette derniere satisfait les hypotheses

T1-T4.
Rappelons que pour tout (z',y") € R les mesures de Debreu-Farrell et la fonction de

distance directionnelle sont respectivement définies par :

Ej(z',y") =inf {\' > 0: XNa" € L'(y")},
Eb(2',y') =sup {\' > 0: Ny’ € P'(a")},

D'(x', y' bt k) = sup {5t >0: (2 — 5 y" + 6K € Tt} , Vg' = (h', k') e R

Dans le premier chapitre, nous avons exposé la théorie de la dualité existant entre les mesures
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de distance et les fonctions de colit, de revenu et de profit. Notons que pour tout (w?, p') € R7*™",

les fonctions de cofit, de revenu et de profit sont respectivement caractérisées par :

C'(w',y") = inf {w'a’ : 2" € L' (y)}
R'(p',a") =sup {p'y" : y' € P'(a")}
I (w', p') = sup {p'.y’ —w'.a": (a',y") € T'}.

Ci-apres, nous présentons les opérateurs algébriques qui seront utilisés dans ce chapitre. No-
tons, tout d’abord, que tout isomorphisme est un morphisme f, admettant une réciproque f; ! et,
est une application bijective permettant de préserver la structure entre deux structures algébriques
tel que : (R, +,-) — (R, +,7).

Selon les travaux de Andriamasy et al. (2017) et inspiré par Ben-Tal (1977), pour tout s > 0 et

tout scalaire \' € R, soit I’application isomorphe ¢, : R — R définie par :

(A si AL>0

QOSO‘t) = .
— M osi A<

Cette fonction satisfait les propriétés suivantes :

(1) elle est définie sur R,
(i1) elle est continue sur R,
(iii) elle est bijective.

De méme, pour tout vecteur 2! = (2¢,--- | 2t) € R? ettout s > 0, soit I’application isomorphe
p 1» ) “d —+ pp Ip

®, : RY — R? définie par :
@u() = () s pl)) = (D)o (aB)7) = (&)
Elle admet une réciproque @' : R? — R¢ représentée comme suit :
;1) = (9w ) = (DY () = ()

De ce fait, pour tout s > 0, tout scalaire \* € R et tout couple de vecteurs (u’, v') € R‘fr avec
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[d] ={1,---,d}, soient les opérateurs algébriques suivants : :

S

U+ v= @;1 ((I)s(u) + (I)S(U)) — (us + Us)l/s ;

S

uOv=>e0(®,(u)®d,(v)) ) =u®u ;

A u= 0 (o) By(w) = (0 u) = N
vixfuzqﬂ(cbsw)—sosw @s<u>>=<v8—ms>1/sz@s_w)sws

S

1 1
Remarquons que pour tous vecteurs (u,v) € R% alors, (u® @ v*)"* = (u§vs, - uvs)'/* =

(ugvy, -+ -, uqvg). Dans tout ce chapitre, sauf indication contraire, nous admettrons que s > 0.

2 La Fonction de Distance Directionnelle CES-CET

Cette section permet d’introduire la notion de fonctions de distance directionnelle CES (Constant
Elasticity of Substitution)-CET (Constant Elasticity of Transformation). Cette mesure de I’effica-
cité est présentée selon une orientation dans le graphe, en input et en output. Les propriétés usuelles

et additionnelles de celles-ci sont également proposées.

2.1 Définitions et Propriétés

Dans la premiere sous-section, nous présentons la mesure dans le graphe de la technologie. Les
deux sous-sections suivantes permettent de proposer la fonction selon des orientations en input et

en output.

2.1.1 Orientation dans le Graphe

Ravelojaona (2019) introduit la fonction de distance directionnelle CES-CET (FDD CES-CET)
dans le cadre de la technologie de production CES-CET. Cette mesure est construite grace a la
combinaison structurelle de la FDD et de la technologie de production CES-CET. De ce fait, elle

est a la fois additive et non-linaire.
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Définition 3.1 Quels que soientt (z',y") € R, pour tout (a, ) € R% et, tout vecteur direc-

tionnel g* = (h', k') € R™*™, Papplication DY, 5 : RT™ x RT™™ — R U {oo} définie par :

(

supg {5t >0: (:Et ¢ Ont, oyt i 5tkt) € Tt}
D}, g(a' 't 9Y) = si <:ct i 5%) Tt 40
| sinon
3.1

est la fonction distance directionnelle CES-CET orientée dans le graphe.

Il est évident que cette mesure dans le graphe permet la réduction et I’augmentation simultanées

des facteurs et de la production.

Proposition 3.2 Lorsque [’ensemble de production satisfait les hypotheses T1-T4, la FDD CES-
CET vérifie les propriétés suivantes :

Dol o (2',y") € T" si et seulement si, D}, 5(x",y'; h*, k') > 0.

Deop2 : Si DY 5(zt,y' b k) = 0 alors, (2',y") € On,sT".

Dqp3 : Pour tout (2*,y"), (u',v") € T% si (—u',v") > (=a',y") alors, D}, 5(u’,v'; h* k") <

Déﬁ(xta y' bt K.
Do g4 o Pour tout \' > 0 ona, D}, s(\'x*, N'y's h', k') = A*- D (2, %5 h' ) K).
Dqg5 : Pour tout \' > 0 ona, D! 5(x',y"s N'h', NEY) = (N) = - DY, s(at, yts bY D).

Preuves :
(Dqogl) et (D, 32) découlent directement de la définition de la fonction de distance directionnelle

CES-CET orientée dans le graphe L.

t t
y Y

(u', —v') avec D} 5(z*,y'; h', k') = o' et D, g(u’, v h' k") = (). Ainsi, <xt ° d'ht,yt

(D, 53) Considérons deux unités de productions (z',y"), (u',v') € T* telles que (z <
B
+
fe! B
OkY) = (@) (W)) € T' et [ul — (8)AY ot + (5’)’7&) = ((u), (")) € T Alors,
(@), —=(¥)") < (W), —(v")") est valable [I.
(D, 54) Pour tout \' > 0 et sous 1’hypothese de rendements d’échelle constants on a, (A'z!, \'y?)
a B
€ T" alors, D!, 5(N'z*, Nyt b k) = sup, {5t : ()\txt — Otht, Myt + 5tl€t) € Tt} Dans ce cas,
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en factorisant par \* et, en posant (0')" = ¢'/A" on a, D, z(N'a', AN'y*; h', k') = supy {(5’)t ;
a B

Al (xt SRyt T (5')%) e Tt}. Donc, Dy, ;(\'at, Xiyts ht, kt) = A - DYy (at, ' bt kt) O

(Da,p5) Soit ' > Otel que D}, 4(x*, "5 A'h*, N'E') = sup;s  0° : | 2 Sy (A'RY) ! + ot (A'KY) )

1 a
€ T',. En posant (§')" = 0'A’ on obtient, D}, s(\'z’, AN'y*; ' k') = — - {( : ( —

pY

B
(&Rt + (5/)%) € Tt}. Dol DY, (A, Myt bt k) = (M) ™1 DY y(at, s b, k) O,

La propriété (D, gl) stipule que la FDD CES-CET caractérise de manicre complete I’ensemble
de production. Lorsque la valeur de la mesure est nulle, I'unité de production appartient a I’isoquant
du graphe de la technologie (D, 32). La troisieme hypothese est relative a la monotonicité de la
fonction par rapport aux inputs et aux outputs. Le quatriecme axiome indique 1’homogénéité de
degré (1) de la mesure lorsque la technologie satisfait des rendements d’échelle constants. (D, g5)

indique que la fonction est homogene de degré (-1) par rapport a la direction g°.

2.1.2 Orientation en Input

Cette sous-section est dévouée a la caractérisation de la fonction de distance directionnelle
CES-CET axée sur les intrants. Nous proposons sa définition et les propriétés qui y sont associées.
En effet, la plupart des firmes n’ont pas la possibilité d’influencer a la fois leurs facteurs et leurs
productions. Dans ce cas, la recherche de I’efficacité ne peut étre effectuée qu’en agissant sur les

inputs.

Définition 3.3 Pour tout (z',y") € R['*" et tout o« € R, avec un vecteur directionnel g' =

(h',0) € R}, application D}, 5 : R x R} — R{—oc} définie par :

sups 10 > 0: (:Et ¢ otht, t) € Tt} si ot S Stht A Liyt) #£ 0
D;, 5(x',y"5 g") = v { ! w7
—00 sinon

(3.2)

est la fonction de distance directionnelle CES-CET orientée en input.
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Cette orientation de la mesure permet de maintenir un niveau de production et de diminuer la

quantité de facteurs utilisée, simultanément.

Proposition 3.4 Lorsque L'(y') satisfait les hypothéses L1-L5 alors, la FDD CES-CET orientée
en input vérifie les propriétés suivantes :

IDopl : (2',y") € T" si et seulement si, D, 5(z*,y"; h*,0) > 0.

1D, 32 : Si D}, 5(x',y"5 h',0) = 0 alors, (x*,y") € 04 5T".

ID, 33 : Pour tout (x',y"), (u',y") € T" si, (a*, —y") < (u', —y*) alors, D}, z(x*,y"5 h',0)

< Dy g(u',y% 1", 0).

ID, 34 : Pourtout \' > 0 ona, D}, s(N'a’, N'y*; h',0) = X' - DY, 5(a*, y%; ', 0).

ID, 5 : Pourtout \* > 0 on a, D}, g(z*,y* A'h*,0) = (A')~1 - Df 5(2', y*5 b, 0).

1D, 36 : Quel que soity' € Ry, DY, 5(z" 2 7't Yt Bt 0) = DY, g(2, y'5 Y 0) 2 7.

Preuves :

(ID,p1)et (1D, g2) découlent directement de la définition de la mesure de I’efficacité L.
(ID,33) Si (zf, —y') < (u', —y") alors pour tout cone de libre disposition des inputs et des out-
puts K = R7 x (—R}) ona {5t : (2 2 §ht,y) € ((',yh) +K)} C {5t :(at ° dhty) €
((uf,y")+ )} et {6 : (2! 2 5thty) € ((ut,yt)JrK)} c {&": (u' 25t y) € ((u',y")+K)}.
Ainsi, {5t ot = 6tht,y) € ((«*,y") + K)} C {5t C(ut Z Stht,y) € ((uf,y") + K)} tel que,
D g(x', ' bt 0) < DY, s(ut, y; 2, 0) 0.

(IDq,p4) Soit A" > 0 tel que D}, 5(A'a*, \'y"; h',0) = sup; {5t : ()\t:pt ¢ otht, )\tyt) € Tt}. En
factorisant par A’ et, en posant (¢')" = 6°/\ on a, D}, s(\'a", A'y'; h*,0) = A" - sup, {((5’)t :
(:ct <@y, yt) e Tt}. Ainsi, DY (At Ay's ht,0) = At - DY y(at, 4% ht,0) O,

(ID4,p5) Pour tout A' > 0 soit, D}, 5(z", 5" A'h!,0) = sups {5t : (xt ¢ 5t)\tht,yt) € Tt}. En
posant (6')" = 0'A" on a, D}, z(z',y*; A'h*,0) = (A')~! - supy {(5’)t : (xt 2 (5’)tht,yt> € Tt}.
De ce fait, D}, 5(z*, " A'h*,0) = (A") - wa(azt, y'; ht,0) 0.

(1D, 56) Soit 7' € Ry tel que D}, 5(z" — fy PRt yt bt 0) = supg {5t : (It 2 yht — 5tht ) €
Tt}. En factorisant par h' on a, wa(:c — At Yyt R 0) = supg {5t : <:c - (’y + 5t) ht, t)
€ Tt}. Si (6') = ¢ + 4t alors, D (2! z YRty Rt 0) = supg {(5’)t : ( (6")ht, t)
S Tt} 2 ~t. D’ou, Dgﬁ(xt 2 vtht yt ht0) = Dgﬁ(xt,yt; ht,0) 2 ok O.
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Les deux premieres hypotheses signifient que la mesure caractérise complétement la technolo-
gie de production et, que 1’observation est efficiente lorsque sa valeur est nulle. L’axiome (/D g3)
est relative a la monotonicité de la fonction par rapport aux inputs. (I D, g4) fait référence a
I’homogénéité de degré (1) de la fonction sous I’hypothese de rendements d’échelle constants.
(ID, s5) indique que la mesure est homogene de degré (-1) par rapport a la direction ¢*. Enfin, la

cinquieme propriété stipule que la fonction vérifie I’hypothese de translation homothéticité.

2.1.3 Orientation en Output

Dans cette sous-section, nous introduisons la fonction de distance CES-CET dans le contexte

d’une orientation en output. Nous proposons d’abord de la définir puis, de présenter ses propriétés.

Définition 3.5 Pour tout (z',y") € RT™™ et tout § € R, tel que pour un vecteur de direction

g' = (0,k") € RY, lapplication D}, 4 : R7™™ x R" — R{+4oc} définie par :

B B
sups {5t >0: (:L’t,yt - 5%'5) € Tt} si yt+ o'kt € P'(at)

D! 4",y g") = (3.3)

400 sinon
est la fonction de distance directionnelle CES-CET orientée en output.

La définition ci-dessus signifie que la mesure directionnelle CES-CET évalue I’augmentation

potentielle de la production compte tenu d’un niveau de facteurs.

Proposition 3.6 Lorsque P'(z') satisfait les hypothéses P1-P5 alors, la FDD CES-CET orientée
en output vérifie les propriétés suivantes :

ODqupl : (x',y") € T" si et seulement si, D}, 5(x*,y";0, k") > 0.

ODqp2 : Si D} 5(z',y"0,k") = 0 alors, (2',y") € OapT".

ODqp3 : Pour tout (x*,y"), (x*,v") € T*si, (2*, —y') < (2, —v') alors, D}, 4(x",y";0,k") <

Dy, 5(x",v% 0, k).

OD,p4 : Pourtout \' > 0 ona, D}, s(\'a*, N'y'; 0, k%) = A" - DY, 5(z", 9% 0, k).

ODqp5 : Pour tout X' > 0 ona, D! 5(x',y"; 0, k") = (X))~ - DY, 5(a*, 4% 0, k).

OD, 6 : Quel que soit 7" € Ry, D, o(2',y" —f— Yk 0, k") = DY g2t 4" 0, k) ? ~.
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Les preuves de ces propriétés sont similaires a celles présentées dans le cadre de la fonction

orientée en input. Ainsi, elles sont omises.

Les deux premieres propriétés signifient que la fonction donne une parfaite caractérisation de la
technologie et que par ailleurs, sa valeur est nulle lorsque la production est optimale. L hypothese
(OD, s3) indique la monotonicité de la fonction par rapport aux outputs. L’axiome (O D, g4) sti-
pule que la mesure est homogene de degré (1) sous I’hypothese de rendements d’échelle constants.
La fonction est homogene de degré (-1) par rapport a la direction ¢* selon la propriété (O D,, g5).

La derniere hypothese indique que la mesure est translation homothétique.

2.2 Des Propriétés Additionnelles

Cette sous-section présente des propriétés additionnelles pouvant étre associées aux fonctions
de distance directionnelle CES-CET. En effet, puisque les mesures directionnelles CES-CET re-
fletent la technologie de production, elles permettent de déduire des axiomes particuliers relatifs a

la technologie de production et a ses correspondances.

2.2.1 Graphe Translation Homothéticité

Notons que lorsque o« = § = s € R, alors, la FDD CES-CET orientée dans le graphe peut

étre réécrite de la maniere suivante :
D!(2' y'; g') = sup {6t >0: (xt 2 Sttt I 5tkt> € Tt} : (3.4)
b

Proposition 3.7 Pour tout (z*,y") € R et tout vecteur de direction g' = (h', k') € R, si
quels que soient («, 5) € R%ﬁL onaa = 8 = salors, la mesure directionnelle CES-CET orientée
dans le graphe vérifie la propriété de translation homothéticité, comme suit :

D, 36 : Pour tout " € R, ona, D'(x z YRt yt + Y'Y REEY) = Di(at, yt bt EY) - 7.

Preuve :

Soit ¥ > 0 tel que D%(z* z YERE, 4t 1 Yk gt = supg {(V : (:Et z iRt z Stht, yt I
Ykt I 5tkt> € Tt}. En factorisant par A et k' on a, D’ (2 z YRt 4t 1 vk gt) = supy {5t :
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(xt z (f 1 5t> ht, yt I (vt i 5t> kt> € Tt}. En posant ()" = ~ 1 5, on obtient Di(z* z
Fy g = supy {(8) ¢ (a8 S @)y @))€ ') S 4% Par conséquent,
Di(at = ~ht,yt + o'kt ) = Di(at, s kD) =t O

Shephard (1953) introduit la notion de translation homothéticité de la technologie grace a une
fonction de distance ayant une structure multiplicative. Par la suite, Chambers et Fire (1998),
Chambers (2002) et, Briec et Kerstens (2004) développent ce concept a la fonction de distance
directionnelle qui est structurellement additive. Cette propriété est intéressante car elle permet

d’établir des relations d’équivalence entre les mesures de productivité.

Définition 3.8 Pour toute technologie T" satisfaisant T1-T4 et tout (z',y') € T' avec 6' € R,
I’ensemble de production vérifie une graphe translation homothéticité CES-CET dans la direction

g' = (h', k") si et seulement si :
£ e ot B ot £ gt ot B ot ¢
= 0hy" + 0k | >0 etdonc, x—=0hy + 0k | eT" . 3.5
Nous pouvons retrouver cette définition grace a la proposition ci-dessous.

Proposition 3.9 Pour tout ensemble de production T" vérifiant T1-T5 et, tout (o, 5) € R, tels
que o = 3 = s, la technologie T" satisfait une graphe translation homothéticité CES-CET si et

seulement si :

(i) Di(a',y"h' 0) = Di(z", "0, k") = 2§D§,(:Et,yt; Rt kY (3.6)
8 8

(ii) Di(z',y" +~'k% h',0) = De(a', y's bt 0) — o, (3.7

(iii) D'(z' = A'ht,yt0, k) = Dt yt 0, k) 40 . (3.8)

Preuves :

(i) Soient deux observations (2%, y") et (Z*,7") tels que (z*,9") = (2, y") - Dt(at, y*; bt 0) -
(h*,0). En développant I’expression, nous avons (', §') = (azt - Di(z", y'; bt 0) - At yt). Consi-
dérons une observation (Z*,§') définie par (z*,9") = (', 7") + Di(x, yt; Rt 0) - (B, k). En
détaillant celle-ci, nous obtenons (Z*,3") = (xt z Di(x!, y'; Rt 0) - bt I Di(xt, y*; k', 0) -
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ht,y I Di(zt, y* ht,0) - kt>. Ainsi, (#',9") = (xt,yt T Di(zt, y* ht0) - kt). On peut affir-
mer que (7!, 7) est la projection orientée en input de (2, %), sur la frontiere efficiente. Etant
donné que (', 9"') dépend de (', ¢") alors, (Z*, ") appartient également a la frontiere. De ce fait,

B
on peut en déduire que (&,7") = (azt, y' + Di(xt yt bt 0) - kt). Par conséquent, (3!, 7") =

B
(xt, y' + Di(z', 450, k") - kt) . Nous pouvons en déduire que D% (', y*; h*,0) = Di(zt, 4% 0, k).
1

Soit une autre observation (Z*,7") caractérisée par (7*,7") = WE [(:c 7" + (@, g}t)] En dé-

taillant 1’expression, nous obtenons (7%,7") = (a: Toat 2 Di(z, yt; Rt 0) - BE, +

21/3

s s 1 s

y' + Di(z', 450, k) - k;t). Par ailleurs, on a (Z*,7') = ( t 21/8Dt(:c y' RE0) - Ryt 4+
1

21—/Dt(3: y' 0, k') - kt). Puisque D!(z*, y'; ht,0) = Di(at, y*; 0, k?) alors, si D%(at, y'; bt k') =

1 1 s
21/8D2(xt,yt;ht,0) ou Di(x! y'; Y EY) = 21—/Dt(x y% 0, k"), nous avons (7%,7") = (xt —

Di(x, yt; bt KY) - BE oyt 1 Dt(xt, y'; bt K - kt> 0.

(ii) De I’équation (3.6), on a établi que D (:Ut Yt + ~E RO ) (azt y' I ~'E; 0 kt) On
sait que D! (xt, y! I Yk 0, k:t) = sup {5t : (x y! 1 Pkt 1 st ) } En factorisant par
k' et, en posant (') = ~* 1 5, on obtient D! (:ct,yt + ~'Kt 0, k;t) { (0") - (:Ut, Yt +
(5’)tkt> € Tt} - ~*. Ainsi, on déduit que D’ (azt,yt + kY0, kt) = D! (%, 9% 0, k") - Y=
Dt (2%, 9y At 0) z ~t C.

(iii) En appliquant le méme raisonnement logique que précédemment, la preuve de celle-ci peut se

faire de maniere simple L.

Suivant les travaux de Fire et Primont (1995), de Chambers et Fire (1998) et, de Chambers
(2002), nous pouvons définir la translation homothéticité des correspondances en intrants et en
extrants. Pour ce faire, nous nous intéressons aux fonctions de distance directionnelle CES-CET

orientées en input et en output.

Proposition 3.10 Soit une technologie de production satisfaisant T1-T4. Quels que soient (z*, y")
€ RT"™ avec (o, B) € R%_, pour toutes fonctions non-décroissantes H'(y',-) et G'(x',-), cohé-

rentes avec les propriétés des fonctions de distances directionnelles CES-CET,

(1v) ’ensemble de production vérifie une translation homothéticité CES-CET orientée en in-
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put si et seulement si :

L'(y") = H'(y', h') - W' ¥ L'(F")  poury' € R? (3.9)

Dy, g(x',y' h',0) = Dy, 5(2', 7' 1", 0) SH@GLE) (3.10)

(v) la technologie de production satisfait une translation homothéticité CES-CET orientée en

output si et seulement si :

B
P'(z") = G'(2" k") - k' + PY(T") pour z* € RT (3.11)

B
D s(z',y" 0,k = D!, (T, "0, k) + G (2" K') (3.12)

ou T et ' sont respectivement des vecteurs de facteurs et de productions fixes.

Preuves :

(iv) (3.9) Soit la correspondance en inputs L'(y") = {a' € R : D}, 4(z",y"; h,0) > 0}. Grace a
I’équation (3.10), on sait que D, 5(z*,y*; h*,0) = D}, 5(2*,7"; h*,0) ¢ H'(y*, ht). Ainsi, L' (y') =
{xt 2 D, (2,75 b, 0) ° H'(y', ht) > O} et, par a la propriété (I5) ona, L' (y") = {xt 2 Dy, gt 2
H'(y', h') - ht,g'; kRt 0) > O}. De plus on peut écrire que L(y") = {xt ° H'(y', ht) - bt :
D s(xt = H(y', ht) - bt g5 ht,0) > 0} T H'(yt, ht) - h'. En posant it = 2t — Ht(y!, ht) - ht
on obtient, L (y") = {& : D!, 4(#, 7" ht,0) > 0} + H'(y', h') - h'. De ce fait, L'(y") = L'(y") +
Hi(y', bt - bt O

(3.10) Soit la fonction de distance CES-CET orientée en input définie par D], (", y"; h*,0) =
sup {5t : (xt 2 5tht> € Lt(yt)}. Puisque L'(y") = L'(¥) ¥ H'(y', h') - h' alors nous avons,
Dt (2 9% 0t 0) = sup {5t : (a:t Z 5tht,yt> e L'(y") ¥ H'(y', ht) - ht}. En soustrayant 1’ex-
pression H*(y*, h')-h' de L*(7") ona, D}, 4(z*,y*; h*,0) = sup {5t : (:ct = stht, yt) ° H(y*, ht)-
ht € Lt@t)}. La factorisation par h‘ permet d’obtenir D}, ;5(z*,y"; h',0) = sup {5t cat S
(5t T H'(y", ht)> -ht e L(yt)}. En posant (§')" = ¢ ¥ H'(y', h'), nous pouvons écrire que
D}, 5(x',y" ', 0) = sup{(é’)t: (:ct Z (5’)tht,yt> € Lt(yt)} 2 H'(y*, h'). Par conséquent,
DY (@t y's b, 0) = Di (at, 5 h1,0) = HiGy' bt) O,

(v) Les preuves des équations (3.11) et (3.12) sont similaires a celles proposées pour les équations

(3.9) et (3.10). De ce fait, elles sont omises.
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2.2.2 Translation Homothéticité Réciproque

La définition de la translation homothéticité réciproque a été présentée par Fukuyama (2002).
Cette notion établit les implications structurelles des fonctions de colit et de revenu spécifiques.

Dans le méme esprit, nous présentons la notion de translation homothéticité réciproque CES-CET.

Définition 3.11 Soient des vecteurs arbitraires (T',y') € RT™, pour toute fonction inversible et
non-croissante F'* avec o = 3 = s € Ry, la technologie de production vérifie une translation

homothéticité réciproque CES-CET si et seulement si :

(vi) D'(z!,y%0,k") = D' (', 4" 0, k') = F' (DL(=", 7" h',0)) (3.13)

(vii) D'(x',y"; h',0) = Di(z", 7" h',0) z (FH! (Di(xt,yt;o, k:t)) . (3.14)
Selon les travaux de Briec et Kerstens (2004), nous pouvons fournir la proposition qui suit.

Proposition 3.12 Pour D%(x',y'; ht,0) = 0 et Di(z%,y"; 0, k') = 0, une technologie vérifiant T1-
T4, satisfait la propriété de translation homothéticité CES-CET orientée en input et output si et

seulement si, [’ensemble de production vérifie également une translation homothéticité réciproque

CES-CET.

Preuves :

(vi) Nous pouvons affirmer que la proposition D’ (z! - Di(zt, y* k' 0) - Ayt At 0) = 0, est
toujours vraie. De ce fait, pour tout s € R, ,, la technologie vérifie la translation homothéticité
réciproque CES-CET telle que D (x* z Dt(xt, y'; ht,0) - Bty 0, k") = 0. La Définition 3.10
ainsi que 1’équation (3.10) permettent d’établir que D! (:ct z Di(z 4y ht,0) - At yt; 0, kt) =
Dt (xt 2 [Dz(xt,yt; ht,0) z H'(y, ht)] - ht, yt Rt 0). Par ailleurs, griace a I’équation (3.12) on
sait que D! (xt z [Dz(xt,yt;ht,O) z Ht(yt,ht)} -ht,yt;ht,O) = DYT", y% 0,k +
G* (xt - [Dé(:pt,yt; ht,0) - H'(y', ht)] - ht, kt> = 0. Ainsi, D!(7",y%; 0,k") = —G* (xt -
[Dg(xt,yt; K0y > H(y ht)} -ht,k;t) et, —G! (xt : [Dg(xt,yt; ht,0) > Ht(yt,ht)] ~ht,k:t> _
F'(H'(y', h')). 1l apparait évident que la fonction F* est non-croissante. Dans ce cas, on peut la
réécrire telle que F* (H'(y*, h')) = F* (DL(2",7"; h',0)) = F* (D%(z",7"; 0, k")). Enfin, la Propo-
sition 3.12 induit D% (2%, y%; 0, k') = DL(Z", y*; 0, k") Sy (Di(2t, 7' Rt 0)) 0.
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(vii) Précédemment, nous avons pu voir que la fonction F* dépend de la fonction H'(y*, h') telle
que Hi(y', ht) = (FY)~1 (H'(y, ht)). Par ailleurs, puisque D(z!,7';ht,0) = Di(zt, 70, k?)
alors, la Définition 3.10 et I’équation (3.10) permettent d’affirmer que D'(z',y'; k', 0)
= Dl 75 1,0) = (F) 7 (D! 750,k O

2.2.3 Equivalence aux Mesures Radiales

Chambers et al. (1996a) ainsi que Briec (1997) démontrent que les fonctions de distance di-
rectionnelle peuvent étre reliées aux fonctions de distance radiale (Shephard (1953, 1970), Debreu
(1951) et, Farrell (1957)). Dans ce cas, les vecteurs de direction doivent &tre choisis de maniere
spécifique.

Rappelons que les mesures de Debreu-Farrell et de Shephard sont respectivement définies par :
!t !
Bi(atss) =gt {8 @' f) € 7'} = | Ditat ') =sup {0 (G0t ) e 7'}
0
t —1
Eo(a',y') =sup {0 : (2", 0"y") e T'} = {Dto(xt,yt) = iIelf {Ht : (xt, %) € Tt}]
0

Proposition 3.13 Pour tout (z',y") € R et tout (o, B) € R% ., nous pouvons établir que :

a «a 1
t t b, .t _ t(,.t _ t __ t
Doz’ y2',0)  =1— Ej(2"y) _I_W Vg' = (a,0) (3.15)
B 1 B
t t ,t. t _ t t t _ t __ t
Daﬁ(l' Y 707?/) - EO(:E 7?/) —1 - Dto(xt,yt) -1 \V/g - (an) : (316)

Preuves :

Equation (3.15) Pour une direction g* = (h*,0) avec h' = 2, soit la FDD CES-CET orientée
en input définie par D!(z,y"; 2", 0) = sup; {5t ; (:ct 2 otat, yt> € Tt}. En factorisant par '
et, en posant (0')" = 1 2 5 on a, Di(zt, yt 2" 0) = 1 = infy {(0"): ((8")tat, y") € T'}. Par
conséquent, Df(x! y'; 2*,0) =1 ° [Ei(at,yh)] =1 ° m 0.

Equation (3.16) Pour toute direction g* = (0, k') avec k' = 3, la FDD CES-CET orientée en
output est caractérisée par D! (z' 4 0,y") = sup; {5t : (:Ut, y' i 5tyt) € Tt}. En factorisant

B
par y' et, en posant (0')" = 1 + 6 on obtient, D! (z*, y*; 0, y") = supy {(8")" : (2, (0")'y") € T}
1=

8 B 1 B
— 1. De ce fait, D%(z%, 4" 0,y") = [E5 (2, y")] — -1 L

D (2, yt)
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3 Une Dualité Non-linéaire

Dans cette section, nous présentons la relation duale existant entre la FDD CES-CET et des
pseudo fonctions de profit, de coft et de revenu. Pour ce faire, nous définissons dans un premier
temps, les pseudo-fonctions de profit, de colit et de revenu CES-CET non-linéaires. Puis dans un
second temps, nous établissons la dualité entre la FDD CES-CET et ces dernieres. Enfin, nous

introduisons les fonctions de prix implicites et quelques notions d’efficience.

3.1 Pseudo-Fonctions de Profit, de Coiit et de Revenu CES-CET

Cette premiere sous-section introduit les pseudo fonctions de profit, de colit et de revenu
CES-CET non-linéaires. Nous caractérisons tout d’abord, la fonction de profit non-linéaire. Puis,
nous constatons que cette dernicre est une généralisation des fonctions de cofit et de revenu non-

linéaires.

3.1.1 Pseudo-Fonction de Profit CES-CET

Une fonction de profit prend en compte simultanément les facteurs productifs et les produc-
tions. Les parametres « et (3, intervenant dans les fonctions CES et CET, peuvent prendre des
valeurs différentes. Ainsi, établir une unique fonction de profit telle que la valeur de « soit diffé-
rente de celle S semble improbable. Nous nous proposons ainsi, de définir une pseudo fonction de

profittelleque « = f =s € R .

Définition 3.14 Pour tout (z*,y") € RT*" et tout (w',p') € RT™ avec « = B = s € Ry,

Uapplication ITY : R x R — R U {oo} définie par :

T (' 1) sup o (0 (0 1) = (w0 Tat) ) s (atyy) €T i T 0
s w ,p = z,y
sinon

(3.17)
est la pseudo-fonction de profit CES-CET.

La fonction de profit permet une optimisation des bénéfices soit par la diminution des cofits

soit par I’augmentation des revenus soit les deux simultanément.
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Proposition 3.15 Lorsque I’ensemble de production satisfait les hypotheses T1-T4 alors, la pseudo

fonction de profit CES-CET vérifie les propriétés suivantes :

;1 : Pour tout (w',p') € R tel que pour (0,0) € T* on a, I, (w', p*) = 0.

1,2 : Pour tout (w',p') € RT*", on a 11(0,0) = 0.

I3 : Si (w',p') € RYT" et (2F,y') € RTE™ alors, T (w!, pt) > 0.

14 : Pour tout (w',p'), (@', p') € RT*" tel que (w', —p') < (w', —p') on a, I (w', pt) >
[T (@", p°).

I1,5 : Pour tout X > 0 on a, TIL(A! Z w!, Xt % pt) = A - TIE(w?, p).

1,6 : Sous I’hypothese de rendements d’échelle constants, 1L (w', p') = 0 ou IT}(w", p*) =

—+00.

Preuves :

(1151) a (11,4) découlent directement de la définition de la pseudo fonction de profit CES-CET L.
(I1,5) Soit A' > 0 tel que ITL(\* * w!, Xt ° pt) = sup,, {gps_l(@s ()\t : pt> D (y") — P, ()\t :
wt> CIDS(xt)) s (2t yt) € Tt}. La factorisation de 1’expression par A' donne, ITt(AY ° w!, A *
p') = sup,,, {ap;l ((ps()\t)<<bs(pt)<bs(yt) — q)s(wt)q)s(xt))) (2 yh) € Tt}. Par conséquent,
LA = w!, M2 pf) = A -sup,,, {90;1 (sos (pt : yt) — s (wt : xt)) (2% y') € Tt} 0.

(11,6) Lorsque le processus de production opere sous I’hypothese de rendements d’échelle constants,
la structure de la frontiere de production devient lin€aire. Ainsi, la droite de profit se confond avec
celle-ci lorsque le bénéfice est optimal tel que IT:(w®, p*) = 0. Par ailleurs, lorsque la droite de

profit n’est pas tangente a la frontiere de production on a IT,(w?, p*) = 4o0.

Les deux premieres hypotheses stipulent respectivement qu’il n’y a pas de repas gratuit et, que
des prix nuls engendrent de profits nuls. L’axiome (II,3) signifie que des prix non-nuls ainsi que
une utilisation des facteurs et une production effective engendrent des profits positifs. La quatrieme
propriété est relative a la monotonicité de la fonction de profit par rapport aux prix des inputs et des
outputs. (II,5) fait référence a la semi-homogénéité de degré 1 de la fonction par rapport aux prix.
Enfin, le dernier axiome indique que lorsque le processus de production opere sous 1I’hypothese de

rendements d’échelle constants, les profits sont soit nuls soit indéfinis.
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3.1.2 Pseudo-Fonction de Coit CES-CET

La fonction de cofit permet la minimisation des cofits par rapport aux prix du marché. De ce
fait, I’optimisation est relative aux quantités de facteurs utilisées. La fonction de profit est une
généralisation de la fonction de cofit. Cette derniere résulte de la maximisation de la premiere pour
une quantité fixe d’extrants. En effet, lorsque I’on cherche a optimiser le profit alors que le niveau
de production est fixé alors, on minimise les cofits relativement a la quantité de facteurs utilisée

étant donné que la firme est assujettie aux prix du marché.

Définition 3.16 Pour tout vecteur de prix de facteurs w* = (wi,--- ,wl,) € R} et, tout (z*,y") €

R avec a € Ry, Uapplication C}, 5 : RT x Rt — R, U {+oc} définie par :

Ct 6(w y ) Hmlf {wt ¢ 2t (l‘t,yt) c Tt} si Lt(yt) 7& 0

+00 sinon

(3.18)

est la pseudo-fonction de coiit CES-CET.
Cette fonction peut €tre associée a certaines propriétés.

Proposition 3.17 Pour toute correspondance en inputs satisfaisant L1-L5, la pseudo fonction de
coiits CES-CET vérifie les propriétés suivantes :
Copl o Pour tout w* € R on a, C!, g(w',0) = 0.
Cap2 : Si (w',y') € R alors, C! 4(w',y") > 0.
Ca,33 : Pour tout (w',y'), (W', y") € RT™ avec w' > w' on a, C!, z(w',y") > C 5(0', y").
Ca,p4 : Pour tout (w',y"), (w',§") € R tels que y* > ' ona, C, s(w',y") > CL, 5(w', 7).
Ca,p5 : Quel que soit \' > 0 alors, Cf, 5(\' Twh iyt = A sl yb).
Co 56 : Sous I'hypothése de rendements d’échelle constants, pour tout X' > 0 on a,

O gl X% yf) = N CL (', ).

Preuves :
(Ca.p) a(Cy 34) découlent immédiatement de la définition de la pseudo-fonction de coiit CES-CET
.

(C,p5) Pour tout \* > 0, on a Cf 5(A\" - Cw'yh) = inf, {()\t B wt) Cat:(aty) € Tt}- En
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factorisant par \* on obtient, CY, 5(\' Swlyh) = M Y inf, {wt Tt (2t yh) € Tt}. De ce fait,
Clp(N = w'y!) = A2 CL s(wh,yt) = A Cls(ulyyh) O

(C,,36) Supposons que le processus de production satisfait des rendements d’échelle constants.
Dans ce cas, Pour tout A’ > 0 et pour tout (z*, ") € T" ona (\'z*, A'y") € T*. Ainsi, C{ 5(w*, X' B
y") = inf, {wt B (Xf . xt> (2t yh) € Tt}. La factorisation par A\* donne I’expression suivante
CY p(w', A\ Tyt = N Vinf, {wt Tt (at ) e Tt}. Ainsi, Cf, 5(w', \* Syty =7 Cts(w', yh)
=\ s(wt YY) .

La premicre propriété est relative a 1’absence de charges fixes tandis que la deuxieme fait
référence a I’absence de repas gratuits. Les axiomes (C, g3) et (C, g4) signifient que la fonction
de colit est monotone respectivement par rapport au prix des inputs et par rapport aux outputs.
Selon (C,, 35), la fonction est semi-homogene de degré (1) par rapport au prix des intrants. Sous

I’hypothese de rendements d’échelle constants, elle est semi-homogene de degré 1.

Proposition 3.18 Pour tout (w',p') € RT™™ et tout (z',y') € RT"" tel que s = a € Ry, et

y' = 7', la pseudo-fonction de profit CES-CET devient :
max H;B(wt,pt) = min C(';ﬁ(wt, Y, (3.19)

o 7' est un vecteur d’outputs fixe.

Preuve : Pour y* =7, onalIl}, ;(w',p') = max {@El (gpa (pt ¢ yt> — Vg (wt B l’t>> (27 €

Tt}. Puisque 7' ne varie pas alors, IT, ;5(w’, p') = min {wt Tt (x,y) € Tt} .

Notons que lorsque & = 1 —o tel que o # 1, ol o représente 1’élasticité de substitution positive
alors, nous retrouvons la fonction de coit CES (Constant Elasticity of Substitution) définie par
McFadden (1978). Par ailleurs, lorsque o« — 0 alors, la pseudo fonction de cotit CES-CET devient

une fonction de colit moyen géométrique tel que pour tout facteur ¢ € [m] et en appliquant la regle
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de I’Hopital, nous avons :

3=

3.1.3 Pseudo-Fonction de Revenu CES-CET

La fonction de revenu permet une maximisation des recettes par rapport a la quantité produite
lorsque les prix sont fixés par le marché. Cette fonction est un cas particulier de la fonction de profit.
En effet, optimiser cette derniere pour une quantité fixe d’intrants amene a maximiser uniquement

le revenu.

Définition 3.19 Pour tout vecteur de prix des outputs p* = (p',--- ,pl) € R et, tout (z',y") €

R avec 8 € Ry, Uapplication R}, 5 : RT x R} — Ry U {—o0} définie par :

sup {pt ! Yt (2t yt) € Tt} si Pi(z') #0
v

R;B(pt,xt) _ (3.20)

—00 sinon

est la pseudo fonction de revenu CES-CET.

Cette définition nous permet d’établir les propriétés relatives a la pseudo fonction de revenu

CES-CET.

Proposition 3.20 Pour toute correspondance en outputs P'(z') satisfaisant P1-P5, la pseudo
fonction de revenu CES-CET vérifie les propriétés suivantes :
Rol : Pourtout p* € R ona, R, 5(p*,0) = 0.
Rop2: Si(p', ') € R alors, R 5(p', 2') > 0.
Rop3 : Quel que soit (p', z'), (', x') € R tel que p' > p' ona, R, 4(p',2") > R 5(p', o).
Rop4 : Pour tout (p', "), (p',7') € RT™™ avec 2 > &' ona, R! 4(p',x") > R! 4(p', 2").
Ry 35 : Pourtout \' > 0 ona R, 5(\' ?pt, at) = A R (0, 2t).
R, 36 : Pour tout \' > 0 on a R 4(p', \' ! at) = N R 5(p', "), sous I'hypothése de

rendements d’échelle constants.
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Preuves :

(R 1) a (R, 34) sont les conséquences directes de la définition de la pseudo fonction de revenu
CES-CET.

(Ra,35) Pour tout \* > 0 on a R 5(\' ¢ ploat) = supy{<)\t épt> éyt (2t yt) € Tt}. En
factorisant par A, nous avons R} z(\* ¢ phoat) = N ! sup,, {pt ! yt (2t yt) € Tt}. Ainsi,
R0 ety = AR 000t = N R0 O

(R, 36) Lorsque la technologie de production officie sous I’hypothése de rendements d’échelle
constants alors, pour tout A\* > 0 et tout (zf,3") € T" on a, (\'z*, \'y') € T". De ce fait,
R, 50", N : z') = sup, {pt ! ()\t ! yt> (2t yth) € Tt}. Une factorisation par A\’ permet d’ob-
tenir R}, 5(p’, \' ! ah) = N ! sup,, {pt ! yt(ahyt) e Tt}. Par conséquent, R}, 5(p’, \' 7 2t =
a R 5(p' a') = AN - R 5(p', 2%) 0.

L’axiome (1%, 51) signifie qu’il n’y a pas de repas gratuit tandis que (12, 32) stipule que toute
utilisation effective d’inputs engendre des revenus. Les propriétés (12, 33) et (12, 34) sont relatives
a la monotonicité de la fonction respectivement par rapport au prix des outputs et par rapport aux
facteurs. La fonction est semi-homogene de degré (1) par relativement aux prix (£2, g5). Sous I’hy-
pothese de rendements d’échelle constants, elle est semi-homogene de degré (1) relativement aux

facteurs.

Proposition 3.21 Pour tout (w',p') € R et tout (2!, y") € RT™™ tel que s = € R, avec

xt =7, la pseudo-fonction de profit CES-CET devient :
maXHflﬁ(wt,pt) = maXRfl,ﬁ(pt,xt), (3.21)

o T est un vecteur d’inputs fixe.

Preuve : Soit x* = T' alors, la fonction de profit CES-CET peut s’écrire de la maniére suivante :
H’Eaﬁ)(wt,pt) = max {@51 (4,05 (pt ! yt) — g (wt ¢ Et)) (T yt) € Tt}. Sachant que 7' ne

varie pas alors, on a IT{,, 5 (w', p') = max {pt ! yt (2t yth) € Tt} 0.
’ y
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Remarquons que lorsque 3 — 0 alors, pour tout extrant € [n] et en appliquant la régle de
I’Hopital, la pseudo-fonction de revenu CES-CET a pour limite une fonction de revenu moyen

géométrique tel que :

3=

lim R, ,(p',2") = | ]] »l vt

=0 re(n]

3.2 Dualité

Shephard (1953, 1970) introduit la relation de dualité qui existe entre la mesure de distance
orientée en input et la fonction de cofit. Ce concept consiste a caractériser la correspondance en
inputs a partir de la fonction colit. Sachant que les fonctions de distance donnent une caractérisation
complete de I’ensemble de production alors, celles-ci peuvent étre exprimées grace a la fonction de
cotit et réciproquement. McFadden (1978) étend cette analyse a la fonction de profit et, de revenu
qui peuvent représenter le graphe de la technologie. De ce fait, nous présentons les formulations
duales de la fonction de distance CES-CET mais également des fonctions de cofit, de revenu et
de profit. Par ailleurs, nous montrons que des fonctions de prix implicites peuvent étre déduites
des fonctions de distance duales. Enfin, ces expressions duales nous amenent a diverses notions

d’efficience que nous proposons effectivement.

3.2.1 Formulations Duales

Chambers, Chung et Fére (1998) présentent la dualité entre la fonction de distance direction-
nelle orientée dans le graphe et la fonction de profit. Ils s’inspirent de I’analyse faite par McFad-
den (1978) qui établit cette relation entre la fonction de production et la fonction de profit. Notons
qu’une relation duale existe entre les fonctions de distance et les fonctions de profit, de colit et de
revenu si et seulement si, I’ensemble de production ou les correspondances en inputs et en outputs
sont convexes.

La FDD CES-CET orientée dans le graphe et la pseudo fonction de profit CES-CET sont duales

si et seulement si, la technologie de production 7" est convexe et donc, satisfait 7’1 — T'5.

Proposition 3.22 Pour tout (x',y') € R e, tout (w', p') € R tel que pour o = f = s €

141



Une Mesure Additive Non-linéaire de 1’Efficience

R, ., si T* est convexe alors, la pseudo fonction de profit CES-CET duale est :

IT' (w', p) = sup {ws ! (sos (pt : yt) — s (wt : a:t>

(z,y)

+ps (Di(xt,yt; Rt k') - (pt DK i wh? ht)>> :Di (2t yh YY) > 0} (3.22)

et, la fonction de distance directionnelle CES-CET duale orientée dans le graphe est :

oy g |7 (o) e (v 2)
r,yish, = 1 - :
° y (w7p)20 pt ‘? kjt + wt 5 ht

PR T W TR A0S (323)

Pour tout (%, %) € T avec j € J ettouti € [m] et r € [n], la FDD CES-CET duale orientée

dans le graphe peut étre détaillée de la manicre suivante :

( 1/s
<Z (plyh,)" — 2 (whah,)” — <E (Phyl)” + > (wfxf)s»

r€[n] i€[m] r€[n] i€[m]

D2,y bt k') = inf —
Ptk ottt

PR LW TR A0S (3.24)

J

. . A , , . t S
Usuellement, une normalisation peut étre effectuée par rapport aux pondérations telle que p* -

k4wt S ht=1.

Dans la lignée de Shephard (1953, 1970), nous pouvons proposer une relation duale entre la
fonction de coiit et la FDD CES-CET orientée en input si L'(y") est convexe. Dans ce cas, la

correspondance satisfait L1 — L6.

Proposition 3.23 Pour tout (z',y") € RY™ et tout w' € R tel que a« < 1 avec a € R4, la
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pseudo fonction de coiit CES-CET duale est :

C};ﬁ(wt, yh) = irwlf {w;l (gpa (wt ¢ xt> — Pa (Dgﬁ(:pt,yt; R, 0) - (wt B ht))> :

D! (ot y's B, 0) > 0} (3.25)

et, la fonction de distance directionnelle CES-CET duale orientée en input est :

0ot (cpa (wt B xt) — ¢a (CL 5w, yt)))

«
wt - ht

D! 4(z',y'; h',0) = inf cwt TREA0Y . (3.26)

Pour toute unité de production (%, y5) € T" avec j € J et, touti € [m], la FDD CES-CET

duale en input peut étre écrite de la maniere suivante :

(S () )" = S (w(at)
(Eie[m} (wf)a<hf)a> 1/a

D}, s(z",y'; h',0) = inf
1/a

> wh(r) | A0, (327

1€[m]

Une normalisation des pondérations peut étre réalisée telle que w' Cht=1.

La fonction de revenu est quant a elle, duale & la FDD CES-CET orientée en output si P*(z")

est convexe. Dans ce cas, la correspondance satisfait P1 — P6.

Proposition 3.24 Quel que soit (', y") € R} et tout p' € R’ avec 8 > 1 tel que B € R4, la

pseudo fonction de revenu CES-CET duale est :

_ B B
R. 5(p', x") = sup {9051 (905 (pt : yt) + ©p (DZ,B(xt,yt;O,kt) : (pt : kt))) :
Yy

Dt (', 40, k) > o} (3.28)
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et, la fonction de distance directionnelle CES-CET duale orientée en output est :

o (‘Pﬁ (Rep(p'a")) — @5 (pt : yt))

. Dl £0Y . (329
pt_k;t

D, 5(2', 4% 0, k") = inf
’ P

De maniére détaillée, pour toute unité de production (z},y5) € T* tel que j € J et, tout

r € [n], la FDD CES-CET duale en output peut étre caractérisée par :

/B

(e (PP = e ) (41)°)
(Zre[n] (pf")ﬁ'(k:;ﬁ)ﬁ) 1/8

D, 5(2', 4% 0, k") = inf
’ P

1/B

SN #£0p. (330)

r€n|
P A . B
Les pondérations peuvent &tre normalisées tel que p' - k! = 1.

3.2.2 Fonctions de Prix Implicites Non-linéaires

La théorie de la dualité permet également de déterminer les fonctions de prix ajustés. Ces prix
implicites (ou ajustés) correspondent aux prix d’équilibre des facteurs et des produits si le marché
est parfaitement concurrentiel (prix relatifs a I’optimum de Pareto). Ces fonctions sont obtenues
grace au Lemme dual de Shephard et au théoreme de 1’enveloppe. La formulation duale des FDD
CES-CET permet de déduire les équations des prix implicites. Les fonctions de colt, de revenu
et de profit donnent quant a elles, la possibilité de déterminer les fonctions de demande et d’offre

conditionnelles grace au Lemme de Shephard.

Définition 3.25 Pour tout (x',y") € T" tel que o = 8 = s € Ry, Uapplication (0*,p") :

m—+n . .
R x R — 28477 définie par :

(@', p") (2, y's b KY) = argmaX{%‘l (sos (Hi(wt,pt)) - (% (pt : yt) — s (wt : xt))) :

z,Y

pE Lt TR = 1} (3.31)
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est la correspondance des prix ajustés.

Remarquons que la FDD CES-CET orientée soit en input soit en output, peut également fournir

des fonctions de prix implicites.

Définition 3.26 Pour rout (2!, y') € RT™™ et tout (w', p') € RT™ avec o, f € R?,,

(a) lorsque g* = (Rh',0) alors, I’application (w0 ) (RTT x R™ — 28 définie par :

(@) (2", y's ', 0) = arg min {%1 (% (wt B :ct) ~ {Pa (Cé,g(wt, yt))) FURNOES }
(3.32)
est la correspondance des prix ajustée en inputs.

(b) lorsque g' = (0, k") alors, 'application (p')? : RT" x R — 2%% définie par :

(0) (2,950, ) = argmin { " (0 (RLs0'.2)) = 05 (1" Ty)) i TR =1
(3.33)

est la correspondance des prix implicites en outputs.

Nous pouvons obtenir les fonctions d’offre et de demande conditionnelles grace au Lemme
de Shephard. Par ailleurs, les fonctions de prix ajustés sont fournies par le biais du théoréme de

I’enveloppe et du Lemme dual de Shephard.

Proposition 3.27
(i) Aux points ou la pseudo fonction de profit CES-CET est différentiable par rapport aux prix
(w',p') € RP™ et, si elle admet un minimum z'(w' y';h' k') € RT et un maximum

y'(x', p'y bt k) € RY alors, selon le Lemme de Shephard :

Vs [Hi(wt,pt)}s = [ wh ' Rt K }S, (3.34)
Ve [IL(w',p")]* = [5' (2", p's b BD)] (3.35)

sont respectivement les fonctions de demande de facteur et d’offre de produit conditionnelles.
(ii) Aux points ou la fonction de distance directionnelle CES-CET orientée dans le graphe est

différentiable par rapport aux inputs et aux outputs tel que « = = s € R alors, selon le
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Lemme dual de Shephard :

-

Vs [Di(a',y's b K] = [@' (2!, y's bt kD], (3.36)
Ve [Di(z' gt b ED] = = [P,y 1 D] (3.37)

sont respectivement les fonctions de prix implicites des facteurs et des produits.

Notons que nous pouvons fournir ces fonctions dans le cadre d’une analyse orientée soit en

input soit en output.

Corollaire 3.28
(iii) Aux points ou les pseudo-fonctions de coiit et de revenu CES-CET sont différentiables par
rapport aux prix et, si elles admettent respectivement un minimum Z*(w', y*; h*,0) € R et un

maximum ' (', p'; 0, k') € R": alors, selon le Lemme de Shephard :

Ve [C} yH]® = [#(w', ¥ 1, 0)]", (3.38)

Y, [Raﬁ(p x)}ﬁ (7 («*, p'; 0, k4], (3.39)

sont respectivement les fonctions de demande de facteurs et d’offre de produits conditionnelles.
(iv) Aux points ot les fonctions de distance directionnelle CES-CET orientées en input et en output
sont différentiables respectivement par rapport aux intrants et par rapport aux extrants alors, selon

le Lemme dual de Shephard :

Vao (D s(at,y's 1!, 0)]" = [w'(a!, y's F,0)]7, (3.40)
Vs [DL (', 4550,k4])" = — [,y 0,k%)) ", (3.41)

sont les fonctions de prix implicites respectifs des facteurs et des produits.

Nous pouvons noter que les fonctions de prix ajustés présentées dans cette sous-section sont
non-linéaires. Nous avons pu obtenir ces résultats en appliquant le théoreme de séparation des
hyperplans puisque nous supposons la convexité des ensembles de production. Cependant, en pré-

sence de prix non-linéaires, nous pouvons en déduire que la relation existant entre les colits (reve-
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nus ou bénéfices) et la quantité produite n’est pas constante. En ce sens, on peut supposer que la

firme fait face a une tarification non-linéaire que ce soit en interne ou en externe.

3.2.3 Notions d’Efficience

Les mesures de distance permettent d’évaluer I’écart entre les observations et les frontieres effi-
cientes. De ce fait, la valeur de celles-ci est une appréciation de I’efficience technique. Par ailleurs,
il est également possible d’obtenir les efficiences économique et allocative grace aux fonctions de
distance.

Chambers et al. (1998) présentent la notion d’efficience de Nerlove qui est équivalente a 1’ef-
ficience de profit. Celle-ci est représentée par la différence entre le profit maximal réalisable et le

profit observé. Elle est non-négative telle que 1’équation :

PRt — o (% <H§(wt’pt)) B (% (pt : yt> — s (“’t : xt)» (3.42)

07! (sos (wt : ht) + ¢, (pt : kt))

représente ’efficacité de profit CES-CET.

Soit Iefficience de colit qui est caractérisée par la différence entre les colits réellement suppor-
tés et les colits minimaux réalisables. Dans ce cas, sa valeur est non-négative et, la fonction :
_ e
e (soa (wt : :vt) — Ya (Cé,g(wt, yt)))
CE, 5= (3.43)

(0%
wt bt

définit I’efficacité de colit CES-CET.
L’efficience de revenu correspond a 1’écart entre le revenu maximal réalisable a I’optimum et
le revenu observé. Cette mesure est également non-négative de sorte que la formulation :
1 B
©3 (w (Rt(pt,xt)> — 8 (pt : yt))

RE, 5 = 3 (3.44)
pt . k:t

représente la mesure de I’efficacité de revenu CES-CET.

Les trois notions d’efficience définies ci-dessus, sont relatives a 1’efficience économique (OE).
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Lorsque celle-ci est atteinte, I’entreprise est a la fois efficace techniquement (dans son processus de
production) et allocativement (dans la répartition de ses ressources). En effet, 1’efficacité de cofit,
de revenu et de profit sont respectivement 1’efficience économique dans une orientation en input,

en output et dans le graphe.

Lefficacité technique est mesurée par les fonctions de distance elles-mémes. Ainsi, on peut
établir que :

TE. ;=D 4 (', 9" ¢") (3.45)

est I’efficacité technique CES-CET selon la direction g*.

On remarquera que g* € {(h*, k"); (h*,0); (0, k")} désignent respectivement les orientations
dans le graphe, en input et en output.

Comme mentionné précédemment, I’efficacité économique est composée a la fois de 1’effica-
cité technique et de I’efficience allocative. Ainsi, nous pouvons dire que dans le cadre d’une mesure

de distance additive, on a I’efficience allocative suivante :
AR, =0, TRt 3.46
a76 - a7/8 aMB' ( . )

Lorsque 1’étude est orientée dans le graphe, « = § = s € R, . Notons également que dans
une analyse en input ou en output, cette expression de I’efficacité allocative devient respectivement
t t 2 t t ¢ P t
AECM,ﬁ —_— OEO{,B - TECV7B Oll, AECM,ﬁ —_— OECM,ﬁ - TECV,ﬁ'
Enfin, remarquons que plus la valeur prise par les mesures d’efficience présentées précédem-

ment est proche de zéro, plus I'unité productive est efficiente.

4 Formalisation et Application

Ce chapitre a pour objectif de présenter une nouvelle mesure de 1’efficience ayant une structure
a la fois additive et CES-CET. En effet, Fire et al. (1988) introduisent une nouvelle structure de la
technologie basée sur les fonctions CES et CET. Dans ce cas, I’estimation des mesures additives
,telle la fonction de distance directionnelle, semble laborieuse par la méthode de programmation

linéaire. Ainsi, la fonction de distance directionnelle CES-CET est une alternative ce probleéme.
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De ce fait, cette section est dévouée a la formalisation non-paramétrique de la mesure ainsi qu’a la

mise en place d’un exemple démonstratif.

4.1 Cadre Non-Paramétrique

Nous introduisons dans un premier temps, la technologie de production CES-CET ainsi que ses
correspondances en inputs et en outputs. Dans un second temps, nous présentons les programmes
linéaires relatives a I’estimation de la fonction de distance CES-CET grace a la méthode d’enve-

loppement des données.

4.1.1 Technologie CES-CET et Hypothese de Convexité

Fire et al. (1988) introduisent une nouvelle technologie de référence sous I’hypothese de ren-
dements d’échelle variables. La particularité de celle-ci réside dans sa structure telle que la partie
relative aux inputs est formulée suivant une fonction CES tandis que celle concernant les outputs
est représentée par une fonction CET. Les auteurs présentent ce nouvel ensemble de production
comme étant une généralisation des technologies proposées par Charnes et al. (1978), par de Ban-
ker et al. (1984) et, par Banker et Maindiratta (1986). Rappelons que pour toute unité de production

Jj € J,latechnologie de production CES-CET est définie de la maniere suivante :

T = {W’yt) s (Z 0 %(mﬁ-)) < 85 (Z 0 <I>6(y§)> ,
&g jed
0" 20,295:1}.

JET
Remarquons que lorsque o« = 3 = 1, nous retrouvons la technologie DEA standard Banker et
al. (1984). Par ailleurs, I’ensemble CES-CET tend vers la technologie multiplicative de type Cobb-
Douglas introduite par Banker et Maindiratta (1986) lorsque o« — 0 et 5 — 0. Enfin, Andriamasy
et al. (2017) démontrent que si & — oo et § — oo alors, I’ensemble de production défini ci-dessus
tend vers la technologie de production B-convexe proposée par Briec et Horvath (2004, 2009).
Les correspondances en intrants et en extrants de cette technologie de production sont respective-

ment :
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L @) =< (7)) eRP™ i al > 0 (D 0i@a(at) | 7 < 05" (D 0i0s(y)) |
JjeJ JjeJ

Ply@) =3 @ ) R T >0 [ Y 0ida(at) |yt < 5" | ) 0iDs(y)) |,

JjeT JjeT
0'>0,) 0= } ,
jeT
ou 7' et 7' sont respectivement des vecteurs fixes d’intrants et d’extrants.
T2 Y2
B — 400

Isoq Py, g(x)

Y1

(—h1,—hz) 0
FIGURE 1 — Correspondance en inputs FIGURE 2 — Correspondance en outputs
CES-CET pour o < 1. CES-CET pour g > 1.

La Figure 1 décrit les différentes structures possibles de la correspondance en inputs lorsque la
valeur du parametre « est inférieure ou égale a 1. Nous pouvons constater que lorsque o = 1, nous
retrouvons la technologie DEA linéaire par morceaux de Banker et al. (1984) (frontiere en poin-
tillés bleus). Lorsque v < 1 alors, la frontiere efficiente correspond a une courbe (lignes courbées
noires) tandis que plus « tend vers —oo plus la frontiere devient B-convexe (pointillés rouges).

Notons que si o > 1 alors, la figure correspondant au sous-ensemble des inputs, devient similaire
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a celle de la correspondance en outputs lorsque 5 > 1 (Figure 2).

La Figure 2 présente quant a elle, les différentes structures de la frontiere efficiente en outputs
lorsque 5 > 1. Si f = 1 alors, la correspondance des extrants devient linéaire par morceaux et
s’identifie a celle Banker et al. (1984) (pointillés bleus). Cependant, si S > 1 alors, la frontiere
devient une courbe (lignes pleines noires) et plus le parametre tend vers +-oo plus la frontiere de la
correspondance tend vers une frontiere B-convexe (pointillés rouges). Remarquons également que
lorsque 3 < 1, nous avons une correspondance en outputs qui est similaire au sous-ensemble des

intrants lorsque o < 1 (Figure 1).

Notons que I’ensemble de production CES-CET satisfait les axiomes T1-T4 (Boussemart et al.

(2009), Ravelojaona (2019)).

Proposition 3.29 Pour rout (z*,y") € RT™ et tout (o, 8) € R2,, la technologie de production
CES-CET T(i s satisfait une hypothése de convexité dans certains cas :
(i) si « = [ = 1 alors, la technologie devient un ensemble de production linéaire par mor-
ceaux (Banker et al.(1984)) et, est convexe,
(ii) pour o = [ = s tel que (v, B) > 1, la technologie est @, g-convexe (Ben-Tal (1977) et
Andriamasy et al. (2017))".

Preuves :
(i) Pour a = 3 = 1 alors, la technologie de production CES-CET devient T, ; = {(:zct, yh) 2t
dej eﬁl’ﬁvyt < E]EJ ]yj,ﬁt 20, Z]EJ ‘95 - 1}

(ii) Supposons que {(z*,y"), (u*,v")} € T, B et, qu’il existe #* € R% et \* € R avec dej b=

>jesN; = 1 tels que {xt > ¢! (ZJEJH;@ (x )) Lyt <ot (Z]ejﬁjtﬁ (y ))} et {u >
<I>g1<2]€j>\§<1>( )) t< qu(zjejxgcp( ))}.Ainsi, on a {(bs(xt) > ., 00, (a),
Duly') < Ljes 00001 b et {@u(u) = X5y N (a), By(0") < 35, N (yf) }. De ce
fait, quel que soit u* € [0,1] on {u (') + (1 — p)Py(u') > pt Y2 0, 000(2h) + (1 -
1) 2 jeq A Pa(@)), wiRs(y') + (1= p)Pu(vf) < pf 3 5e 7 05Ps () + (1 — ') 2o je7 A Puly )}
et {1 (2) + (1= 0. (01) = 3,5 (108 + (1= p)XL) (i), 1, ) + (1 = ). (01) <

1. Ben-Tal (1977) présente cette convexité particuliere dans un cadre généralisé tandis que Andriamasy et al.(2017)
analysent les implications de celle-ci dans le cadre des technologies de production DEA
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Dieq (105 4+ (1 — ")) @S(yﬁ)} . Remarquons que nous avons, y_ ., (40} + (1 — p")N}) =
p g 0+ (L= p') 7 Ao = p' + (1 — p) = 1. D’ob, les deux expressions précédentes de-
viennent ‘@, (1, ) + (1 — p)@,(u ") > Fer (W0 + (1 — pN)B,(aty 4t et
O (0wt ) + (1= p) @t ~0")) = @1 (e (10 + (1= p)N) @, (a4 ). Par
conséquent, uf(zt, —yt) + (1 — p*)(u',v") € T}, 5 et I'on peut dire que la technologie est @, -

convexe ou ®,-convexe L.

Nous pouvons également définir I’enveloppe ®,-convexe relative a cette technologie tel pour

tout j € J et tout ensemble d’observations A" = {(z{,y{), -, (z},y5)} = {21, -, 2} C

R, celle-ci est définie par :

Co¥'(A") = { (Z ©s(6)P ) cprt <Z cps(ﬁj-)) =1,0> 0}.
JET JjeT

Andriamasy et al. (2017) remarquent que cette enveloppe convexe ne correspond pas exacte-
ment a la structure de I’ensemble de production CES-CET. En ce sens, ils introduisent 1’enveloppe

convexe mixte présentée de la maniere suivante :
Cofe'(AY) = { (Zet ) > oo=1, 9>0}
JjET JjeJ

4.1.2 Estimation Primale

Dans cette sous-section, nous proposons 1’estimation non-paramétrique de la FDD CES-CET.
En effet, nous appliquons la méthode DEA qui consiste a évaluer grace a un programme linéaire,

les scores d’efficacité des observations.

Rappelons que pour tout g* = (h', k'), 1a fonction de distance directionnelle CES-CET orientée

dans le graphe est définie de la maniere suivante :
a B
Dy, 5(a',y% ¢") = sup {(V >0: (a:t — o'ht Yyt + 5t/<:t) e Tt} .
5

En intégrant cette mesure a la technologie CES-CET de Fire et al. (1988), pour toute observa-
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tion j € J tel que T* = T, 5, nous avons :
1/a
Dt to bty §t>0: 20 2 stht > ot (1)
a,ﬂ(xvyag)_sgp Z VUl = Z ](xj) )
JjeJ

1/8
B
Yt + 0k < (Z 0 (y;?)ﬁ) 01>0,) =15 (347

JjET JET

Pour tout input i € [m] et tout output r € [n] avec j € J observations, le programme linéaire

relatif a cette mesure est donc :

D s (2% y5g") = maxd’ = max/’

JjeJ JjeJ

B
yl + 0kt <

1/a
s.c. ot = tht > (z 0! <x§,l-)a> (25)* = (0'hi)* = 3 05 (a5,)°

18
>0 (y§r)5> ()7 + (8K})7 < 32 05 (y5,)"

JjeET jeT
.2;79§ = 2;7935 =1
JE jE
5,0t > 0 5,08 > 0.

(3.48)

Nous pouvons remarquer que cette optimisation est non-linéaire par rapport a la variable §°.
Par ailleurs, substituer celle-ci par une autre variable afin d’obtenir un programme linéaire est
impossible puisque les exposants relatifs aux intrants et aux extrants peuvent prendre des valeurs

différentes. Néanmoins, si les parametres o et § prennent les mémes valeurs alors, pour tout o =
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B = s € R, nous avons :

D s (2%y5¢") = maxd’ = maxd’
1/s
s.c. xt — §'ht > <Z 9} (a:ﬁl)s (ab)s — (6'ht)* > E 9; (a:ﬁl)s
= JjeTJ
1/s
w+ﬁas<z%@mﬁ W+ G < 00,
JjeJ JjeTJ
e e
jeT JjeET
64, 0" >0 ot 0t > 0.

En remplagant (0*)° par A, nous obtenons :

[Dis (2%9'59)]" = maxAf

s.c. (27)° = A'(h))* = X 05 (25,)°
JjeJ 7

(yp)* + AY(R7)* < 30 05 (y5,)° (3.49)

5 6 -

JjeJ
At gt > 0.

Il est évident que le programme (3.49) est linéaire relativement a A’. Ainsi, I’évaluation de la
mesure par la méthode de programmation linéaire est possible lorsque av = = s.
Si nous nous intéressons a 1’analyse orientée en input tel que g* = (h,0) alors, pour tout

acRetfeR,,,leprogramme (3.48) devient :

D! s (o' y5¢") = maxd’ = max "

1/a
s.C. xt — §'ht > <Z 0 (a:éz)a) (zh)> = (0'h))* > ) 05 (25,)°

JjeET
1/8
Yl < (E 0; (y}ir)B) (y9)? < X 0% (y5,)"
JjeTJ jeT
I > 0=

JjeET JjeET
6,60 >0 5t 6t > 0.

(3.50)
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Nous pouvons constater que la substitution de (§")* par A%, engendre un programme d’op-
timisation qui devient linéaire. Notons que « et S peuvent prendre des valeurs équivalentes ou
différentes.

La spécification non-paramétrique de la fonction orientée en output est similaire a celle de la me-

sure en input tel que g* = (0, k'). De ce fait, nous omettons de la présenter.

4.1.3 Programmation Duale

A présent, nous nous intéressons aux spécifications non-paramétriques des mesures duales. En
effet, nous pouvons également étudier 1’efficacité technique d’un point de vue dual par la méthode

de programmation linéaire.

Rappelons que pour tout (w', p') € R}, la fonction de distance CES-CET duale orientée

dans le graphe est la suivante :

Di(at,y's bt k) = inf o (% (I8, (. 29) (% (pt ? yt) v (wt ? xt)))

(w,p)>0 pt Tkt i wt SRt

b TR Tt TRt £ 0

La normalisation des pondérations ainsi que la méthode DEA nous permettent de réécrire la

fonction ci-dessus comme suit :

Di(z* y' b k") = inf {gp;l (gps (I (w', ")) — (gps (pt ? yt> — (wt : xt)>> > 6t

(w,p)>0

:pt?ktiwtight:l,wtZO,ptZO}.

Pour tout intrant ¢ € [m] et tout extrant r € [n], quelle que soit I’observation j € 7, le
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programme linéaire associé a la formulation ci-dessus est :

D, (a%y%5h' k') = mind'
s.c. 03! (% (I (w', %)) — (sos (pt : yt) s (wt : xt>>) =
PR T wt TRt =1

w', pt, 6" > 0.
Ce programme peut étre réécrite de la maniere suivante :

Dt (2f,y% bt EY) = mind

5.c. ( > () () = X2 (wﬁ,i)s(x§,i)s>

re [n} i€ [m}

r€(n] 1€[m]

- <Z (Pr)* ()" = X2 (wf)s($§)3> > (") VieJ

1/s
< 2 () (yn)* + EZ{I}(MF(@)S) =1

rée(n]

w', pt, 6" > 0.
En posant A* = (4%)*%, nous obtenons un programme linéaire tel que :

(Dt (2t y5 R ED]” = minAf

5.C. ( > () () = X (wf)s(ﬂfﬁﬁ)

re [n] € [m}

- (z (L) () - Az}<w§>s<x5>s) > A Vjed (3.51)

1/s
( > () () + X (w§)3($§)s> =1

re(n] 1€[m]

w', p', A' > 0.

La valeur de ¢ est donc déduite de celle de Af.

En suivant le méme raisonnement logique, nous pouvons obtenir le programme d’optimisation

associé a une mesure orientée en input. De ce fait, le programme associé a la FDD CES-CET duale
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en input lorsque ¢* = (h*,0) est :

Dl s (2'y5h',0) = mind*
5. oo (soa (wt - a:t) - %(Ca,g(wt,yt))> <d VjeJ

De maniere équivalente, nous pouvons exprimer ce programme comme Suit :

D s (2%9'h',0) = mind’

5. > () (@) = 2 (W) (25,)" < () VieJ
i€[m] i€[m]
> (wi)* - (h))* =1
1€[m]
ot wt > 0.

En substituant (6")* par A%, nous pouvons en déduire la valeur de I’efficacité technique orientée
en input.

Le programme linéaire associé a une estimation axée sur les extrants tel que ¢' = (0, k') est
similaire a celui proposé dans le cadre d’une analyse focalisée sur les intrants. Par conséquent, la

spécification relative a la FDD CES-CET duale orientée en output est omise.

4.2 Exemple Numérique

Cette sous-section permet d’illustrer de maniere empirique les apports théoriques présentés
dans les sections précédentes. Tout d’abord, nous exposons le cadre d’analyse puis les résultats

obtenus. Enfin, nous analysons ces derniers.

4.2.1 Cadre d’analyse

Dans cet exemple empirique, nous utilisons les données agricoles de 12 pays européens rela-
tives a I’année 2008. Ces dernieres proviennent de la base de données de 1’Eurostat et sont présen-
tées dans I’ Annexe 1 de ces travaux. Nous disposons de deux intrants et de deux extrants.

Nous réalisons des analyses orientées successivement en input, en output et dans le graphe
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tels que les vecteurs de direction sont respectivement g* = (1,0), g* = (0,1) et g* = (1,1).
Par ailleurs, nous savons que les parametres « et 5 doivent également étre choisis préalablement.
Ainsi, puisque nous effectuons uniquement une illustration empirique, nous prenons des valeurs

d’exemple de ceux-ci telles que :

al 12 1 32
Bll12 1 32

Dans cette section, nous analysons uniquement 1’efficacité des unités de production d’un point
de vue primal. Remarquons que la mesure CES-CET orientée dans le graphe ne peut étre estimée

de maniere linéaire et non-paramétrique que lorsque o = 3.

4.2.2 Résultats

Le tableau 3.1 relate les résultats obtenus lorsque les mesures sont axées successivement sur
les intrants et les extrants, tel que o # . Le tableau 3.2 quant a lui, concerne les scores d’efficacité
orientés successivement en input, en output et, dans le graphe. De ce fait, les parametres ont des

valeurs similaires tel que o = .

4.2.3 Analyse

Tableau 3.1

Nous pouvons constater que quelles que soient les valeurs des parametres, un pays efficace dans
une orientation en input, a également un score nul selon une orientation en output. Notons que la
France, la Lettonie, la Lituanie, le Luxembourg et la Slovaquie (5 pays sur 12) sont les unités de
production efficaces lorsque (o, 5) € {(1/2,1),(1/2,3/2)}. La France, la Lettonie, la Lituanie,
le Luxembourg, la Slovaquie et le Royaume-Uni (6 pays sur 12) ont quant a eux, une mesure
de performance nulle lorsque (o, ) = (1,3/2). Nous remarquons également que 9 pays sur 12
(République Tcheque, Danemark, France, Lettonie, Lituanie, Luxembourg, Pays-Bas, Slovaquie,

Royaume-Uni) sont efficaces lorsque les parametres prennent les valeurs suivantes :

1 3/2 32
12 172 1
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a=1/2; a=1/2; a=1; a=1, «a=3/2; a=3/2;
s=1 f=3/2 f=1/2 p=3/2 [=1/2 6=1
Scores en inputs
Rép. Tcheque 49,61 103,14 0 595,09 0 0
Danemark 387,27 778,80 0 933,35 0 0
Espagne 1355,49 21,74 2645,03 4499,20 377524  4452,39
France 0 0 0 0 0 0
Lettonie 0 0 0 0 0 0
Lituanie 0 0 0 0 0 0
Luxembourg 0 0 0 0 0 0
Pays-Bas 36,60 83,31 0 123,33 0 0
Slovaquie 0 0 0 0 0 0
Finlande 188,06 249,62 445,773 735,39 757,29 764,69
Suede 59,66 104,41 78,58 437,03 168,80 260,98
Royaume Uni 31,05 361,86 0 0 0 0
Scores en outputs
Rép. Tcheque || 379,81 1055,71 0 605,59 0 0
Danemark 727,42 1543,93 0 753,76 0 0
Espagne 2099,04  2775,72 554,23  2455,67 424,61 1698,07
France 0 0 0 0 0 0
Lettonie 0 0 0 0 0 0
Lituanie 0 0 0 0 0 0
Luxembourg 0 0 0 0 0 0
Pays-Bas 223,64 732,91 0 193,74 0 0
Slovaquie 0 0 0 0 0 0
Finlande 825,68 135142 100,29 714,45 81,67 318,64
Suede 459,21 1012,12 4,49 510,78 2,06 96,04
Royaume Uni | 205,96 1195,82 0 0 0 0

TABLE 3.1 — Scores d’efficacité CES-CET en inputs et en outputs pour o # /3.
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a=p=1/2 a=p=1 a==3/2

Scores en inputs

République Tcheque 0,12 135,96 553,96
Danemark 19,43 299,71 633,43
Espagne 547,93 3330,68 5043.,40
France 0 0 0
Lettonie 0 0 0
Lituanie 0 0 0
Luxembourg 0 0 0
Pays-Bas 0 0 0
Slovaquie 0 0 0
Finlande 76,13 514,66 815,89
Suede 9,22 175,89 410,36
Royaume Uni 0 0 0
Scores en outputs
République Tcheque 0,06 53,73 219,66
Danemark 36,25 294,11 489,63
Espagne 606,60 1909,05 2291,61
France 0 0 0
Lettonie 0 0 0
Lituanie 0 0 0
Luxembourg 0 0 0
Pays-Bas 0 0 0
Slovaquie 0 0 0
Finlande 180,80 456,61 556,31
Suede 19,78 188,27 325,32
Royaume Uni 0 0 0
Scores dans le graphe

République Tcheque 0,02 38,51 191,91
Danemark 10,17 193,00 395,22
Espagne 221,92 1369,64 2002,11
France 0 0 0
Lettonie 0 0 0
Lituanie 0 0 0
Luxembourg 0 0 0
Pays-Bas 0 0 0
Slovaquie 0 0 0
Finlande 42.30 296,91 448,65
Suede 4,88 122,08 284,22
Royaume Uni 0 0 0

TABLE 3.2 — Scores d’efficacité CES-CET lorsque o = (.
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Nous pouvons observer que lorsque o < f3, les scores d’efficacité non-nuls axés sur les intrants
sont inférieurs a ceux axés sur les extrants. Inversement, les mesures de performance non-nulles

orientées en input sont supérieures a celles orientées en output lorsque o > f3.

Tableau 3.2

Nous pouvons noter que quelles que soient les valeurs des parametres pour a« = [, les pays
ayant un score d’efficacité nul selon une orientation en input, est également performant suivant
une orientation en output ou dans le graphe. Par ailleurs, le nombre des unités productives effi-
cientes reste constant soit 7 pays sur 12 (France, Lettonie, Lituanie, Luxembourg, Pays-Bas, Slo-
vaquie, Royaume-Uni). Nous pouvons remarquer que lorsque la valeur des parametres augmente,
les scores de performance non-nuls s’accroissent également. Ainsi, les unités de production sont
plus proche de la frontiere efficiente lorsque « = § = 0,5. De plus, d’un point de vue général,
on peut faire une comparaison des scores d’efficacité non-nuls selon la valeur des parametres. Ce

recoupement est présenté dans le tableau ci-dessous :

a=4 12 1 3/2

Scores orientés || graphe < inputs < outputs | graphe < outputs < inputs

On constate que lorsque o = 3 = 1, nous retrouvons le modele DEA standard sous 1I’hypothese
de rendements d’échelle variables ainsi que la fonction de distance directionnelle classique. De ce
fait, comparativement aux résultats du tableau 3.1, on peut en déduire que pour certaines valeurs
des parametres, un plus grand nombre d’unités de production est efficient dans le cadre d’une
mesure CES-CET et d’une technologie CES-CET que suivant une approche DEA traditionnelle et

une fonction de distance directionnelle classique.

Conclusion

Ce chapitre nous a permis d’introduire une nouvelle mesure de distance additive non-linéaire.
Celle-ci coincide avec la fonction de distance directionnelle (Luenberger (1992b), Chambers et al.
(1996)) sous certaines conditions. En effet, elle hérite de la structure de la mesure directionnelle
et celle de la technologie de production CES-CET (Fire et al. (1988)). La théorie de la dualité

amene a définir des pseudo fonctions de cofit, de revenu et de profit non-linéaires. De plus, le
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théoreme de I’enveloppe conduit a 1’obtention de fonctions de prix implicites, également non-
linéaires. Ces dernieres peuvent intervenir lorsque des tarifications non-linéaires sont effectuées
(ou subies). Sous I’hypothese d’un ensemble de production CES-CET, nous avons implanté les
fonctions de distance directionnelle CES-CET dans le cadre de la méthode par enveloppement de
données. Enfin, I’illustration empirique nous a permis de constater que la technologie de référence
CES-CET implique un nombre plus important d’unités productives efficientes que la technologie
de production DEA standard.

Cette nouvelle fonction de distance ouvre de nouvelles perspectives en terme d’analyse de
I’efficacité. En effet, elle permet 1’évaluation de la performance non-radiale dans le cadre d’une
technologie de production non-linéaire grace a la méthode de programmation linéaire. Nous ver-
rons dans un autre chapitre de ces travaux que grace a cette mesure de distance directionnelle

CES-CET, nous pouvons étudier les effets des rendements d’échelle sur 1’efficacité des firmes.
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Chapitre 4

Des Mesures de Productivité Exponentielles

et Logarithmiques

Les mesures de productivité permettent évaluent les variations de la performance d’une période
par rapport a une autre. En effet, une firme peut gagner en productivité a travers le temps grace
a des ajustements techniques et/ou technologiques afin d’atteindre 1’efficience technique. Dans le
premier chapitre, nous avons présenté différents indices et indicateurs tel que nous utilisons le
terme "indice" pour désigner les mesures de productivité multiplicatives et, le terme "indicateur"
pour qualifier celles ayant une structure additive.

Nous avons constaté dans le deuxieme chapitre que les fonctions de distance exponentielle et
népérienne sont équivalentes. Sachant que cette derniere est structurellement additive, nous pré-
sentons dans ce chapitre des indicateurs exponentiels et népériens en s’inspirant des travaux de
Chambers et al. (1996b) et, Briec et Kerstens (2004). Ainsi, nous introduisons des indicateurs de
Luenberger exponentiels (Chambers (1996b)). Cependant, ces mesures de productivité peuvent
présenter des infaisabilités. De ce fait, nous définissons des indicateurs de Luenberger-Hicks-
Moorsteen exponentiels, dans la lignée de Briec et Kerstens (2004) afin de corriger ces problemes.
Grace a I’équivalence entre la mesure de distance exponentielle et la fonction de distance népé-
rienne, nous montrons que les indicateurs exponentiels et népériens sont également équivalents.
Par ailleurs, nous en déduisons des formulations dynamiques des fonctions de distance croisées,
c’est-a-dire lorsque les observations d’une période sont évaluées relativement a I’ensemble de pro-

duction d’une autre période. Ces mesures dynamiques de I’efficacité mettent en évidence 1’exis-
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tence d’un parametre d’influence qui ne permet pas a I’unité de production d’atteindre I’efficience
a la période suivante.

Dans ce chapitre, la premiere section est consacrée a I’environnement et aux outils d’analyse
tandis que la deuxieme section présente les indicateurs de Luenberger et de Luenberger-Hicks-
Moorsteen exponentiels. La Section 3. introduit des notions additionnelles relatives au dynamisme
de la fonction de distance exponentielle ainsi qu’a la décomposition des mesures de productivité.
Enfin, la quatrieéme section est dévouée a une illustration empirique des concepts présentés dans ce

chapitre.

1 Environnement et OQutils

Pour tous vecteurs d’inputs z* = (2%,--- ,2!,) € R7 et d’outputs y* = (yi,---,vy,) € R,
soit I’ensemble de production T"(z',y") = {(z',y") € RT*" : z' peut produire y'} associé a la
période (). Notons que la technologie de production positiveest 7%, = T"N R avec (2!, y') €
R’T™ et, que la technologie népérienne est représentée par 71, = {(In(z"),In(y")) : («',y") €
T, }. Nous supposons que 7" (", y") et T}, (In(z"), In(y")) satisfont les hypotheses 71 — T'4.

Rappelons que pour tout (z*, y*) € R7"" la fonction de distance exponentielle (FDE) orientée

dans le graphe associée a la période (¢) se présente de la maniére suivante :
Déxp(xt7 yt§ o, ﬁt) = Sl;p {5t : (e_étAxt, e‘StByt> S Tt} ,

ol A = diag(at) et B = diag(?) avec (at, 5t) € [0, 1]™".
Pour (¢, y") € R7'I™ et, grice a une transformation logarithmique de la mesure exponentielle,

nous obtenons la fonction de distance népérienne (FDN). Nous constatons que la FDE et la FDN

m+n

sont équivalentes. Notons que pour tout (of, %) € [0, 1]™*" et, que quel que soit (zf, y") € R} ",

la FDN se définit par :
D, (In(a), In(y"): o, 8%) = sup {6 : In (In(a") — 8", In(y’) + 8'6") € T} .
5

Ainsi, Dgxp(:ct, yhal, BY) = Di (In(xh), In(y'); of, 8Y).

Rappelons également que I’indicateur de productivité de Luenberger-Hicks-Moorsteen (Briec
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et Kerstens (2004)) de la période (t) est :
LHM'(z', 2™y y"™ i g' ™) = LO'(af, oy K KT — LI (2 2™y 1Y 1Y),

ot LOY(zt, yt, yt ™ Kt kUL et LIT(xt, 2t ot Y, hT1) sont respectivement les mesures de quan-
tit¢ de Luenberger orientées en output et en input. Ces indicateurs (de productivité et de quantité)
sont évalués sur la base des fonctions de distance directionnelle (Luenberger (1992a, 1992b) et

Chambers et al. (1996a)).

2 Des Mesures de Productivité Exponentielles

Nous avons pu voir dans le Chapitre 2 que la fonctiona de distance exponentielle (FDE) et
népérienne (FDN) sont équivalentes. Par ailleurs, cette derniere est structurellement similaire a la
fonction de distance directionnelle (FDD). Sachant que ces fonctions permettent d’estimer 1’effi-
cacité des unités productives, elles sont également le fondement de 1’évaluation de la variation de
la productivité. En s’inspirant des travaux de Chambers et al. (1996b), Briec et Kerstens (2004)
et, Abad et Ravelojaona (2017), nous proposons de présenter les indicateurs de productivité de

Luenberger et de Luenberger-Hicks-Moorsteen dans un contexte exponentiel.

2.1 Indicateurs de Luenberger Exponentiels

Cette sous-section est dévouée a la caractérisation de la mesure de productivité de Luenberger
basée sur la FDE. Abad et Ravelojaona (2017) proposent cette estimation exponentielle de la pro-
ductivité, dans le cadre des productions polluantes. Dans ces travaux, nous proposons de la définir
de maniere standard c’est-a-dire, aucune distinction n’est faite entre les productions polluantes et

non-polluantes.

2.1.1 Définitions en Input

L’indicateur de productivité de Luenberger permet de mesurer I’évolution de la performance
relativement a deux périodes successives. Une évaluation axée sur les inputs signifie que les dé-

cisions managériales visent a diminuer la quantité de facteurs utilisée pour un niveau donné de
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production.

Définition 4.1 Pour tout (z',y") € RTI™ et tout (', y*!) € RTL™ avec ¢ = (af, ') €
[0,1]™ x 0 et ' = (a1, B1) € [0, 1]™ x 0, lindicateur de productivité global de Luenberger

exponentiel orienté en input est défini par :

1
1 1 1 1 1 1
Liep(a', @yt g 01, 07 = 5 (L] (a1 gty af o)

+Lt+1 ( t t+1,yt,yt+1;0ét,0ét+1)] ’ (41)

I,exp

t

Lot ot et LV (2t ot gty Tl of, o) sont respectivement les

I,exp

t+1 t o, t+
ou LI exp( Y,y

indicateurs de productivité de Luenberger orientés en input de la période (t) et (t + 1).

Les mesures de productivité en intrants, relatives aux périodes (t) et (¢t + 1) reposent sur la

fonction de distance exponentielle orientée en input.

Proposition 4.2 Pour tout (') € R, (z'+1 yt1) € R avec (of, 81) € [0,1]™ x 0 et
(a1 B € [0,1]™ x 0, ona :

L[ eXp( t+1’yt’ ytJrl; Oét, atJrl) Dt ( yt7 a 0) Dt ( t+1’y t+1 O) (42)

exp exp

Lt+1 ( t SL’tJrl,yt,ytJrl;Oét,OétJrl) Dt+1 ( yt’ a 0) Dt+1 ( t+17y t+1 0) (43)

I,exp exp exp

qui sont les indicateurs de productivité de Luenberger exponentiels orientés en input des période

(t) et (t+ 1).

Notons que les mesures de distance sont également orientées en input.

Dt (x4l o1 0) est la mesure de la performance de 1’observation de la période ( + 1)

exp

par rapport a la technologie de production de la période (). Elle est définie de la maniére suivante :

Dl (2 g ettt 0) = sup {5t(t+1) : ( gt grt t+1’yt+1> c TJtr+}'

exp
0

De maniere analogue, D' (2!, 4 o, 0) est I’estimation de Defficacité de 1’observation de la

exp

période (t) relativement a 1’ensemble de production de la période (¢ + 1). Dans ce cas, elle se

166



Des Mesures de Productivité Exponentielles et Logarithmiques

présente de la maniere suivante :

Dt+1 (:L’t, yt; at7 0) — sup {5t(t+1) : (eﬂgt(tﬂ)atxt’ yt) c T_ﬁ_l} )

exp
6

Sachant que D!_ (z*,y%; ot 8Y) = D} (In(z"),In(y"); o, 5), on obtient la proposition ci-

exp

dessous.

Proposition 4.3 Pour tout (z',y') € RT{", (21, y™) € RTL"™ avec (of, 8) € [0,1]™ x 0 et

(@'t B € 10, 1)™ x 0, on a les équivalences suivantes :

L?exp(xt, oyt oyt ol ot = L?ln (ln(:pt), In(z1), In(y"), In(y'*); o, ozt“) , 4.4
L?;(p(xt, oyt oyt ol ot = Lﬁrll (ln(xt), In(2"*), In(y"), In(y"™); o, ozt“) ., 4.5

oi Ly, (n(a'), In(z*1), In(y) In(y): o', a™*1) et Ll (In(a), In(x"), In(y"), In(y);
ot a't) sont respectivement les mesures de productivité de Luenberger népériennes orientées

en input des périodes (t) et (t + 1).

Ainsi, les mesures de productivité népériennes sont équivalentes aux indicateurs de productivité

exponentiels. Les premieres sont détaillées dans le corollaire ci-dessous.

Corollaire 4.4 Pour tout (z',y") € RTL", (271 ¢! € RTI™ avec (o, B) € [0,1]™ x 0 et

(a1 € [0,1)™ x 0, 0on a :

Ly, (In(2"), In(z™), In(y"), n(y"); ', o"*1) = Df; (In(2"), In(y'); o', 0)

— D}, (In(z"*"), In(y"*1); a'*1,0), (4.6)

Lﬁ}l (ln(xt), In(2"h), In(y"), In(y't); o, oth) = DIt (ln(xt), In(y"); o, O)

— DI (In(z"™), In(y"™); o/ 1,0) . (4.7)
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Les fonctions de distance népériennes croisées sont caractérisées par :

Dt (ln(xtJrl)’ In(y*+1); a1, 0) = sup {5t(t+1) - (In(z"*1) — FHEHD o+ hl(ytJrl)) c Tﬁl} 7
5
(4.8)

Di (In(2"), In(y"); o, 0) = sup {6"'® : (In(2") — 6" Pa’, In(y")) € T5™} . (4.9)
5

Corollaire 4.5 Pour tout (z*,y") € R7[" et tour (a8, y'*) € RTI™ avec ¢ = (of, BY) €
[0,1]™ x 0 et ' = (a1, B1) € [0, 1]™ x 0, lindicateur de productivité global de Luenberger

exponentiel orienté en input peut étre reformulée de la maniere suivante :

Liep (8,2 y' vt 65, ¢ = Ly, (In(a"), In(2™), In(y"), In(y"*1); 0%, 071 (4.10)

1
=5 [ (), @), In(y), In(y )t at)

+L§J5r11 (In(zt), In(z*+1), In(y?), In(y*+1); o, attl) }

2.1.2 Orientation en Output

En s’inspirant des travaux de Chambers et al. (1996b), on peut définir les indicateurs de produc-
tivité de Luenberger exponentiels orientés en output. Ces derniers permettent de mesurer les gains
de productivité par rapport a deux années consécutives, de telle sorte que les unités de production

cherchent a augmenter les extrants pour une quantité donnée d’intrants.

Définition 4.6 Pour tout (x',y') € R ™ et (a1 y**1) € RT™ avec o' = (af, BY) € 0 x [0, 1]"
et YTt = (af, BHTY) € 0 x [0,1]", Uindicateur de productivité global de Luenberger exponentiel

orienté en output est défini par :

1
Lo.exp (xt7xt+17 yt7yt+1; "3 thrl) =3 [LtO,eXp (xt’xtJrl’ Y, yt+1; ﬁt’ﬁtﬂ)

+LG L (2t 2y Yt BN B ] @)

SN Tt t t+1 t o, t+1. ot t+1 t+1 t t+1 t . t+1. ot t+1 H
oit Lp o, (28, 2"yt y™™ s 85, 87 et Loy, (0, 2870yt ™ B, B7FY) sont respectivement les

mesures de productivité de Luenberger exponentielles orientées en output des périodes (t) et (t+1).

Les mesures périodiques de la productivité sont obtenues grace aux fonctions de distance ex-
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ponentielles axées sur les extrants.

Proposition 4.7 Pour tout (z*,y") € R7I" et tout (2, y'1) € R avec ¢t = (o, BY) €
0 x [0,1]" et YT = (!t BH) € 0 x [0,1]%, les indicateurs de productivité de Luenberger

exponentiels orientés en output de la période (t) et (t + 1) sont respectivement :

LY (@t 2yt gt B 1) = DE (2910, 8Y) — D (2 ¢ 0, 871, (4.12)
Ly s @t eyt gy gt ) = DI (o, y% 0, 8Y) — DL (2, 40, 871, (4.13)

La fonction de distance croisée D!, (=", y"""; 0, 5'*) signifie que 1’on évalue I’observation
de la période (¢ + 1) relativement a 1’ensemble de production de la période (). Elle est définie par :

Dt (xt—f—l’ yt—i—l; 0’ ﬁt-i-l) — Sl;p {5t(t+1) . (:Et'H, e(st(t+1)5t+1yt+1) c Tj——i—} )

exp

De maniére analogue, D} (!, y"; 0, 5*) estime I'efficacité de 1’observation en () par rapport a la

technologie en (¢ + 1). De ce fait, on la présente comme suit :

D£I§ (t, 410, Bt) = S%p {5t+1(t) : (xa 65t+1(t)ﬁtyt) c Tﬁ:} _
Nous savons que la FDE et la FDN sont équivalentes. Ainsi, les indicateurs de productivité de

Luenberger exponentiels sont également équivalentes aux mesures de productivité de Luenberger

népériennes.

Proposition 4.8 Pour tout (z*,y") € R7I" et tout (1, y"1) € R avec ¢t = (o, BY) €
0 x [0,1)" et ! = (o', B11) € 0 x [0,1]", ona :

Lo ey (2", 2™y y™ 1 B B) = Loy, (In(2'), In(2"), In(y'), In(y"™); 8%, 877) - (4.14)

O exp

Lifa (a2t g™ 60 57 = L (In(2), In(2™), In(y"), In(y™); 57, 1), (4.15)

ol L'faln(ln(xt), In(z*1), In(y?), In(y*1); B¢, Bt“) et Lgffn(ln(xt), In(z*1), In(y?), In(yt1)
: B, Bt“) sont respectivement les mesures de productivité de Luenberger népériennes orientées

en output des périodes (t) et (t + 1).
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Ces indicateurs sont fondées sur les fonctions de distance népériennes. Nous pouvons donc,

fournir la proposition ci-apres.

Corollaire 4.9 Pour tout (z',y") € R}I" et tout (z',y"*1) € RPI" avec ' = (af, ) €

0 x [0,1]" et ¥ = (!t 1Y) € 0 x [0,1]", les indicateurs de productivité de Luenberger

népériens orientés en output de la période (t) et (t + 1) sont respectivement :

Lo (In(2"),In(="), In(y"), In(y"*); 8%, 81) = Dy, (In(2"), In(y"); 0, 5)

— D}, (In(z"), In(y"");0,81) , (4.16)

Ltoflln (ln(xt), ln(le), In(y"), ln(yt“); B, BHl) = Df;:l (ln(xt), In(y"); 0, Bt)

— DI (In(z"), In(y"™); 0, 81) . 4.17)

Ainsi, I'indicateur de productivité global de Lueberger exponentiel orienté en output peut tre

redéfini comme ci-dessous.

Corollaire 4.10 Pour tout (z*,y") € R et tout (27! y"™) € RTE™ avec v' = (of, ) €
0 x [0,1]" et Pt = (o, 1Y) € 0 x [0,1]", la mesure de productivité global de Luenberger

exponentielle orienté en output peut étre présentée de la maniére suivante :

LO,eXp (:Eta xt+17 yta yt+1; wta le) = LO,ln (ln(xt), ln(xt+1)7 ln(yt)a ln(yt+1); wt7 T/’Hl)

N % [%Jn (In(2"), In(z*1), In(y"), In(y"*1); 87, 81

LY (n(at), In(a*1), In(y!), In(y+1); 51, 841 |.

(4.18)
2.1.3 Mesures dans le Graphe de la Technologie

Une mesure dans le graphe de la technologie signifie que les décisions managériales des unités
de production se concentrent a la fois sur la diminution potentielle des inputs et I’augmentation
éventuelle des outputs. Dans ce cas, les variations de la productivité sont également évaluées rela-

tivement a cette orientation.
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Définition 4.11 Pour tout (2!, y') € R et tout (2!, y'*!) € RTI™ avec & = (o, ) €
[0, 1] et £ = (afT, BP) € [0, 1]™™, lindicateur de productivité global de Luenberger

exponentiel orienté dans le graphe est défini par :

1
Lexp<xt7 'rtJrlu yt7 ytJrl; ftu §t+1> = 5 [Lixp ('Ttu xt+17 ytu ytJrl; §t7 €t+1)

FLE (ot 2yt L ] 4.19)
Les mesures relatives aux périodes (¢) et (¢ + 1) reposent sur les fonctions de distance expo-

nentielles orientées dans le graphe. Dans ce cas, nous avons la proposition ci-dessous.

Proposition 4.12 Pour tout (x',y') € RI" et tout (x'+1,y*1) € RTL™ avec ¢ = (af, BY) €
[0, 1] et £ = (afT, BHF1) € [0, 1™, les indicateurs de productivité de Luenberger expo-
nentiels orientés dans le graphe des périodes (t) et (t + 1) sont respectivement :

L (!, 2yt g €67 = Dig (2, ¢ of, BY) — D (a7, y' T a1 857, (4.20)

exp exp exp

Lt+1(.’1§'t, SL’tJrl,yt, ytJrl; gt’étJrl) — Dt+1($t, yt7 &t7 Bt) o DtJrl(xtJrl’ ytJrl; OétJrl’ﬁtJrl). (421)

exp exp exp

La fonction D(z*1 ¢ttt ot 541 consiste a évaluer I’observation de la période (¢ + 1)
relativement 2 la technologie de production de la période (¢) tandis que D! (zt y'; af, 5?) est

I’inverse. Chacune de ces fonctions est détaillée comme suit :

exp

t t+1  t+1. t+1 pt4+1\ _ t(t+1) . —5t+ i+l 41 s+ g+l gy t
D2yt ot B )—sgp{(“ )-(e ate yt) eTi, b,

DHl(sL’t,yt; Ozt, Bt) — sup {5t+1(t) . (efgt-u(t)atxt’ €5t+1<t)5tyt> c TJt:rl} )

exp
é

Sachant que la fonction de distance exponentielle est équivalente a la mesure de distance népé-

rienne alors, les mesures de productivité exponentielles et népériennes le sont également.

Proposition 4.13 Pour tout (z',y') € R7I" et tour (x'1,y**) € RTI™ avec & = (af, ') €
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[0, 1] er £ = (!, BHFY) € [0, 1]™"™, les équivalences suivantes sont valables :

Ll (@t 2™yt g™ ef ¢ = L (In(ah), In(2"), In(y"), In(y); €, ¢, (4.22)

exp

Lo (e, 2™yt g e €7 = L (In(a'), In(2™7), In(y), In(y"™); €1, €),  (4.23)

exp

oi Li,(In(x'), In(a™1) In(y") In(y*); €6 et L (In(a'), In(a™*"), In(y), In(y");
£, €M) sont les indicateurs de productivité de Luenberger népériens orientés dans le graphe,

des périodes (t) et (t + 1).

En faisant appel a la fonction de distance népérienne, nous pouvons fournir une expression plus

détaillée de chacune des mesures introduites ci-dessus.

Corollaire 4.14 Pour tout (z',y') € RTT" et tout (z'!, y'™) € RTI" avec & = (of, ') €
[0, 1] et £ = (ol B1TY) € [0,1]™™, les mesures de productivité de Luenberger népé-

riennes des périodes (t) et (t + 1) sont respectivement :

Li, (In(z"), In(z""), In(y"), In(y"*); ¢, €7) = Dj, (In(2"), In(y"); o, B°)

— D}, (In(z"), In(y"™); o, 8771, (4.24)

Lf;{l (ln(xt), ln(xtﬂ), ln(yt), ln(yt“); £, §t+1) = Df:l (ln(xt), ln(yt); al, ﬁt)

— DY (In(2"h), In(y™); o, 851 L (4.25)

Corollaire 4.15 Pour tout (z',y') € RTT" et tout (z1, y"™) € R avec & = (af, ) €
[0, 1] et £ = (ot B1FY) € [0,1]™™, la mesure de productivité globale de Luenberger

exponentielle orientée dans le graphe est reformulée de la maniere suivante :

Lexp (2', 2",y €, €71) = Lin (In(2), In(a"), In(y"), In(y"); €7, 67) (4.26)
1
=3 [Lfn (In(z?), In(z1), In(y?), In(yt+1); €, £4+1)
L (In(at), Inet ), In(y'), In(y ;€ 64 |.
Lorsque les indicateurs de productivité de Luenberger exponentiels ont une valeur positive
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alors, I’unité de production présente un gain de productivité tandis qu’une valeur négative indique
une perte de productivité. Une valeur nulle démontre qu’il n’existe aucun changement, que ce soit
au niveau des inputs ou des outputs, d’une période a une autre.

yt

Isoq]}fjl

(In(zt*1), In(yt+1))
o

! IsoqT,

° (ln(zt)7 ln(yt))

gt — (_ht7 kt)

FIGURE 1 — Indice de productivité exponentiel de Luenberger et infaisabilité.

La figure 1 montre que la projection de (2!, 4*™!) sur la technologie T} se fait dans le cadre
du cone délimité par les pointillés. Nous pouvons voir que certaines valeurs de («, ), peuvent
engendrer des infaisabilités lorsque la projection ne rencontre pas la fronticre efficiente de la tech-
nologie relative a la période (t). Cette situation peut survenir des lors que 1’ensemble de production
de la période (¢4 1) est supérieure a celui de la période (¢). De maniere similaire, cette infaisabilité
peut également survenir lors de la projection de I’unité de production (¢, y*) sur T} lorsque T,

4 5 Tt
est supérieura 7 ™.

2.2 Indicateur Exponentiel de Luenberger-Hicks-Moorsteen

Les indicateurs de productivité de Luenberger présentent des infaisabilités. En effet, ce cas peut
survenir lorsque les mesures de distance croisées sont évaluées. Ainsi, Briec et Kerstens (2004)
introduisent un nouvel indicateur basé sur les mesures directionnelles, qui permet d’éviter ces

éventuels infaisabilités. La mesure de productivité de Luenberger-Hicks-Moorsteen (LHM) dépend
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des indicateurs de quantité de Luenberger. Nous présentons d’abord sa formulation exponentielle
par rapport a la période (¢) puis, (¢ + 1). Enfin, nous définissons 1’indicateur de productivité global

de LHM relativement aux deux périodes successives.

2.2.1 Indicateur de la Période (7)

L’indicateur de productivité de LHM de la période (t) est évalué grice a la différence entre la
mesure de quantité de Luenberger orientée en output et celle orientée en input de la période ().
Ainsi, en s’inspirant des travaux de Briec et Kerstens (2004), nous pouvons définir un indicateur de
productivité LHM exponentiel pour la période () tel que celui-ci dépend des mesures de distance

exponentielles présentées dans le Chapitre 2.

Définition 4.16 Pour tout (z',y') € R7[", (o', y'*h) € R tels que &' = (o, BY) € [0, 1]™+"
et £ = (o Bt € [0,1]™™, Pindicateur de productivité de Luenberger-Hicks-Moorsteen
exponentiel de la période (t) est défini de la maniére suivante :

LHMt ({Et,l’tJrl, yt’ytJrl; gt’ §t+1) —_ OLt ({Et,yt,ytJrl; /Bt, /BtJrl)

exp exp

— 1L, (=, 2"yt ol o™t (4.27)

exp

o OLL, (a,y',y"* 61, 1) er TLL, («f, 2"yt of, a'tY) sont les mesures de quantité de

Luenberger orientées respectivement en output et en input de la période (t).

Ces mesures de quantité de Luenberger ne sont pas les mesures initialement introduites par
Chambers et al. (1996b). En effet, afin de résoudre les problemes d’infaisabilités, Briec et Kersents
(2004) font intervenir des observations fictives composées simultanément des observations des
périodes (t) et (¢ + 1). Lorsque la mesure de quantité de Luenberger est axée sur les intrants
alors, les extrants sont considérés comme fixes. Inversement, lorsqu’elle est orientée en output, les

facteurs sont considérés comme stables.

Proposition 4.17 Pour tout (z,y') € R7T", (81, y*1) € RTT" avec (o, B) € 0 x [0, 1]" ou

(ar, B) € [0,1]™ x 0, les indicateurs de quantité de Luenberger exponentiels orientés en output et
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en input de la période (t) sont respectivement :

OLL, (a", ',y 8", B) = DL, (2',4%;0,8") — DLy, (2,950,871, (4.28)
ILL, (a8, 2™ ol ol ) = DL (2t 0/ 0) — DL, (28,9504, 0) (4.29)

Nous pouvons observer que les mesures de quantité en output et en input font respectivement
intervenir les observations (¢, ') et (21, y'). Les fonctions de distance exponentielles croisées

relatives a celles-ci sont définies comme suit :

Déxp (l,t’ yt 0, 6t+1) _ Sgp {5t(t+1) : (xt, 65t(t+1)6t+lyt+1) c Tj——i—} ’

(
Dl (=1, a1, 0) = Sup {5“”1) : (e‘st ol yt) € Tfr+} :

Ainsi, I'indicateur de productivité de LHM exponentiel de la période (¢) signifie que la mesure
de productivité est estimée relativement a I’ensemble de production de la période (). L’ équivalence
entre la fonction de distance exponentielle et la mesure de distance népérienne permet d’établir la

proposition ci-dessous.

Proposition 4.18 Pour tout (z*,y') € RP1", (211, y'*1) € RTT™ avec (o, B) € 0 x [0,1]" ou
(e, B) € [0,1)™ x 0, les indicateurs de quantité de Luenberger exponentiels orientés en output et

en input de la période (t) peuvent étre réécrites de la maniére suivante :

OLL, (', 4",y B, 5) = OLY, (In(z"), In(y"), In(y"*"); 87, 1) , (4.30)
ILL, (a8, ™yt of o) = TLL (In(2'), In(2"), In(y"); of, oY) (4.31)

on OL! (In(z'),In(y?), In(y*™1); 8%, B4FY) et TLE, (In(z?), In(z'™), In(y"); of, o) sont respecti-
vement les mesures de quantité de Luenberger népériennes en output et en input de la période

().

Corollaire 4.19 Pour tout (z*,y') € R1", (271 y1) € RT{™ avec (o, 8) € 0 x [0,1]" ou

(e, B) € 10,1]™ x 0, les indicateurs de quantité de Luenberger népériens orientés en output et en
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input de la période (t) sont :

OL, (In(2"), In(y"), In(y"*1); 8, B1) = Dy, (In(="), In(y"); 0, 8") — Df, (In(a"), In(y™);0, 57 ,
(4.32)

ILj, (In(z'), In(z"™), In(y"); o', o) = Df, (In(2™*1), In(y"); 0+, 0) — Di, (In(a"), In(y"); o, 0) .

(4.33)

Ainsi, les deux mesures de distance croisées présentées ci-dessous sont :

Df (Infa). In(y);0, 37) = sup {07 & (1n(a!), Iy +1) + 31050 € T

D, (In(2™1), In(y"); o'+, 0) = sup {6V : (In(z") — " Vo In(y")) € T1L } -
5

Corollaire 4.20 Pour tout (z*,y") € R71", (2, y*1) € R7T" avec & = (af, 8Y) € [0,1]™
et &1 = (!t BT € [0,1]™"", Uindicateur de productivité de Luenberger-Hicks-Moorsteen

exponentiel de la période (t) peut étre caractérisé comme suit :

LHM_, (¢, 2™yt y™h € €7Y) = LHM, (In(2'), In(2"), In(y'), In(y™): €%, €71)
= OLj, (In(2'),In(y"), In(y"*1); 8*, B")
—ILj, (In(z'), In(z"*1), In(y); o, @) .
(4.34)

De maniere similaire a I’indicateur de productivité de Luenberger, lorsque la mesure de pro-
ductivité de Luenberger-Hicks-Moorsteen est positive (respectivement négative) alors, il existe un
gain (respectivement une perte) de productivité tandis qu’une valeur nulle indique qu’il n’y a pas

de modification de la performance entre les deux périodes successives.

2.2.2 Indicateur de la Période (¢ + 1)

Dans cette sous-section, nous présentons 1’indicateur de productivité de Luenberger-Hicks-
Moorsteen exponentiel de la période (¢ 4 1). Ce dernier est évalué relativement a la technologie de

production de la période (¢ + 1).
Définition 4.21 Pour tout (z',y") € RTT", (2! y*1) € R7" avec £ = (af, §7) € [0, 1]™H"
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et &1 = (ot BN € [0, 1™, la mesure de productivité de Luenberger-Hicks-Moorsteen
exponentielle de la période (t + 1) est définie de la maniere suivante :

LHMt+1 ({L’t, xt—f—l’ yt’ yt—i—l; gt’ gt—f—l) — OLt+1 (.I‘H—l, yt’ yt-i-l; /Bt, Bt—f—l)

exp exp

— Lt (xt, Tyt ot ozt“) , (4.35)

exp

o OLE (a7 gt g™+ B8, B7Y) er TLLE (2f, 2, 4™ of , a'*) sont respectivement les indi-

cateurs de quantité de Luenberger exponentiels orientés en output et en input de la période (t+1).

Nous pouvons donner une définition plus détaillée de ces mesures de quantité de Luenberger

orientées grace a la fonction de distance exponentielle.

Proposition 4.22 Pour tout (2*,y") € R7T", (', y"*h) € RTT" avec (a, B) € 0 x [0,1]" ou
(o, B) € [0,1]™ x 0, les indicateurs de quantité de Luenberger exponentiels orientés en output et

en input de la période (t + 1) sont :

OLt+1 (IL‘H_l,yt,yH—l; 6t76t+1) — Dt+1 (I’H—l,yt; Oa/Bt) _ Dt+1 (l’t+1,yt+1; 0,6t+1) ’ (436)

exp exp exp
t+1 (ot o+l o+l t 1\ _ pyt+l (41 e+l 1 t41 (ot 41, ¢
IL, (:L‘,l‘ YT ol a )—Dexp (ZE YT« ,O)—Dexp (x,y ,a,O). 4.37)

Les mesures de distance exponentielles croisées qui font intervenir les observations fictives

(z1, yt) et (2, y*), définies par :

exp

Dity (0/50.8) = sup 0710 (a1, 70 ) e T

DiH! (IEta?/tJrl%ﬁt,O) = sup {5t+1(t) : (e“sHl(t)atxt,ytJrl) € Tfn—tl} :

exp
0

Proposition 4.23 Sachant que la fonction de distance exponentielle est équivalente a la mesure de
distance népérienne, pour tout (z',y') € R71", (21 y!1) € RTL™ avec (o, ) € 0 x [0, 1] ou

(ar, B) € [0,1)™ x 0, les indicateurs de quantité de Luenberger exponentiels orientés en output et
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en input de la période (t + 1) peuvent étre exprimés de la maniére suivante :

OLggy (2, y™h 8% 871) = OLy (In(2™),In(y"), In(y™1); 8% 1), (4.38)
ILQ:; (xt, AR TLAR TR at“) = ILf;fl (ln(xt), ln(le), ln(yt+1); al, at“) , (4.39)

ott OLI (In(x1), In(y?), In(y+Y); 8¢, B Y) et ILIH! (In(2?), In(xt1), In(y+); of, al*t?) sont res-

pectivement les indicateurs de quantité de Luenberger népériens orientés en output et en input.

Corollaire 4.24 Pour tout (z*,y") € R}L", (2, y') € RT™ avec (o, B) € 0 x [0,1]" ou
(v, B) € [0,1]™ x 0, les mesures de quantité de Luenberger népériennes orientés en output et en

input de la période (t + 1) sont définies par :

OL (In(2"), In(y"), In(y™); 8%, B71) = D! (In(2""), In(y"); 0, 5)

— D{f! (In(2"1), In(y"*1); 0, 1) (4.40)

TL (n(at), In(at*), Iny s of, ') = DL (In(a), In(y); o+, 0)

— Dit (ln(xt), In(y™1); o, O) . (441

Dans ce cas, les mesures de distance népériennes croisées orientées en output et en input,
relatives aux observations (In(z'™), In(y)) et (In(2?), In(y**1)) sont respectivement :
D (tn(a"), In(y");0, %) = sup {671 : (In(a"*1), In(y") + 61057 € i}
5

Ditt (ln(xt), In(y**1); o, 0) = sup {5t+1(t> : (ln(:vt) — 5Ot ln(yt+1)) e T,
5

Corollaire 4.25 Pour tout (z*,y") € R7L", (2 yt1) € R avec ¢ = (of, 8Y) € [0, 1]

et £ = (ot Bt € [0,1]™™, lindicateur de productivité de Luenberger-Hicks-Moorsteen
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exponentiel de la période (t + 1) peut étre redéfini comme suit :

LHMS) (28, 2yt y ¢ 7Y = LHME (In(2"), In(2"), In(y"), In(y**); €4, )
= OLI (In(2™), In(y!), In(y**); B¢, 1)
—IL{ (In(2!), In(2 1), In(y"*1); of, ot ).

(4.42)

2.2.3 Indicateur Global de Luenberger-Hicks-Moorsteen Exponentiel

Les indicateurs de productivité LHM exponentiels des périodes (t) et (¢ + 1) permettent d’ob-
tenir une mesure globale relative a ces deux périodes successives. Celle-ci est constituée par la

moyenne arithmétique des indicateurs des périodes (¢) et (¢ + 1).

Définition 4.26 Pour tout (z',y') € R, (2! ¢ € R avec £ = (af, 8Y) € [0, 1™t
et £ = (!t BIH) € [0,1]™™, Pindicateur de productivité de Luenberger-Hicks-Moorsteen

exponentiel global est défini par :

exp

1
LHMesg, (2!, 2yt g 68 67 = 3 [LHM, (o, 2yt y €, €7

FLHMSS (a0 gty el €))L 4.43)

exp

Nous avons €établi précédemment que les indicateurs de productivité LHM exponentiels et né-
périens en (¢) et en (¢ + 1) sont équivalents. Nous pouvons constater cette similitude au niveau de

la mesure de productivité globale.

Proposition 4.27 Pour tout (z*,y") € RT", (2!, y*h) € RTT" avec &' = (of, §%) € [0, 1™+

et &1 = (aftL pHY) € [0, 1™, I’équivalence suivante est valable :
§ ; ; q

LHMeyg, (2, 2"yt y™ €5, €7Y) = LHMy, (In(2"), In(2), In(y"), In(y"1); £, €1
(4.44)
ou LH M, (In(z?), In(z"1), In(y"), In(y'); £, £11) est la mesure de productivité de Luenberger-

Hicks-Moorsteen népérienne globale.
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L’indicateur de productivité de LHM népérien global est également obtenu grace a la moyenne

arithmétique des indicateurs de productivité de LHM népériens des période (t) et (¢t + 1).

Corollaire 4.28 Pour tout (z*,y") € R71", (2!, y'*!) € R avec & = (of, 8Y) € [0,1]™F"
et £ = (!t Bt € [0,1]™™, Pindicateur de productivité de Luenberger-Hicks-Moorsteen

népérien global est :

LHM, (ln(xt)’ ln(xtJrl)’ ln(yt), ln(y”l); ft, §t+1) _

© [LHM, (1n(e), In(a), In(y'), In(y™*'); €1, )

+LHM (In(a"),In(2"), In(y"), In(y"); €', €)] . (4.45)

TtJrl

In

Isoq

—l (In(zt+1), In(y* 1))

| (In(z?), In(y**1 Ishofn

- _ e .
(ln(zt), ln(yt))(ln(zt+1), ln(yt))

(_htv kt)

gt

FIGURE 2 — Indice de productivité exponentiel de Luenberger-Hicks-Moorsteen.

La figure 2 décrit les mesures de distance dans le cadre de I’estimation de I’indicateur de pro-
ductivité de LHM exponentiel global. Les pointillés et les lignes rouges sont relatifs aux mesures
de distance intervenant dans I’évaluation des indicateurs de quantité de Luenberger orientés en out-
put des périodes (t) ou (t+1). Les pointillés et les lignes bleus concernent quant a eux, les mesures

de quantité de Luenberger orientées en input des périodes (t) et (¢ + 1). Nous pouvons constater
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qu’aucune infaisabilité ne peut survenir dans I’estimation de 1’indicateur de productivité de LHM
puisque la projection de chaque observation rencontre effectivement, les fronticres efficientes de

t t+1
T, et,de T ™.

3 Notions Additionnelles

Dans cette section nous présentons des concepts additionnels relatifs aux indicateurs de pro-
ductivité présentés la section précédente. En effet, nous montrons que 1’estimation des fonctions
de distance croisées par rapport a deux périodes peut conduire a I’obtention d’une formulation dy-
namique des fonctions de distance. Par ailleurs, grace a cette spécification dynamique, nous identi-
fions un nouveau parametre influencant la performance des unités de production. Par ailleurs, nous
décomposons les mesures de productivité introduites précédemment afin de différencier les sources

de la variation de la performance, a savoir le gain de productivité et le changement technologique.

3.1 Dynamisme a Deux Périodes

Dans un premier temps, nous présentons les fonctions de distance dynamiques que ce soit
de forme exponentielle ou népérienne. Nous constatons que cette formulation fait intervenir un

nouveau parametre. Celui-ci est exposé plus en détail dans un second temps.

3.1.1 Fonctions de Distance Dynamiques

Soient deux périodes consécutives (t) et (¢ + 1). La performance d’une unité de production a la
période (¢ + 1) dépend de son efficacité en (¢) mais également des décisions managériales. Cette
interdépendance est mise en évidence grace a 1’estimation des fonctions de distance croisées qui

interviennent dans les mesures de productivité.

Proposition 4.29 Pour tout (z',y") € R7I", (21 1) € R avec (of, BY) € [0, 1™

tel que s’il existe un couple de parametres (pﬁﬂ(t), pto+1(t)) € R™™ alors, la fonction de distance

exponentielle D'} (x', " of, B') orientée dans le graphe, peut étre définie de maniére dynamique,
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comme ci-dessous :
( In(z') — In(z™)

p§+1(t)at

DI (af s of, BY) = (4.46)
In(y"*') —In(y")
pZJrl(t) Bt

Preuve :

Nous savons que la fonction de distance exponentielle équivaut a la fonction de distance népé-
rienne. Posons, D51 (2!, y'; o, BY) = DI (In(z'), In(y'); o, BY) = "7 Si (2!, y") est inef-
ficace a la période (t), I'unité de production cherchera a réduire cette inefficacité afin de I’étre
pleinement a la période (¢ + 1). Cependant, il est possible que cet objectif ne soit pas atteint malgré
les ajustements managériaux et, I’inefficacité n’est réduite que pour une proportion p*+'®). De ce

fait, nous pouvons établir que 1’observation de la période (¢ + 1) dépend de celle de la période ()

ainsi que des efforts managériaux. Ainsi, nous avons :

In(z!) — In(xt1)

S =
t+1(t
ln(l,tJrl) — ln(xt) N pt_+1(t)5t+1(t)at pi+ ()oﬁ
ln(ytﬂ) = hl(?/t) + PZ+1(t)5t+1(t)5t t+1 ¢
i v ™) = In(y)
0 - t+1(t) ot L.
\ po /8

Proposition 4.30 Pour tout (z',y") € R7{", (271 y') € RTT™ avec (o1, 111 € [0, 1™+
HCRNICON

tel que s’il existe un couple de paramétres (p; ; € R™™ alors, la fonction de distance

t

L (@1 YT ot BTY) dynamique orientée dans le graphe, peut étre définie

exponentielle D

par:
( In(z') — In(z™)
p'?(t+1) att!
DY, (@ g™ ot gt = (4.47)
In(y™*!) —In(y")
\ pZ(Hl)ﬁtJrl )
Preuve :

Nous savons que (z!™! y**1) dépend a la fois des décisions managériaux afin d’atteindre 1’ef-
ficacité, mais également de 1’observation en (¢). De ce fait, nous pouvons établir une relation

inverse telle que 1’on peut retrouver (z,y") griace a 1’observation de la période (¢ + 1). Posons
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Dl (a1 yt*h ol gitt) = 61D Ainsi, nous avons les relations suivantes :

In(z') — In(z")
tt+1) —
In(zt) = In(zt*1) + 5t(t+1)p§(t+1)oét+1 ) TET

In(y!) = In(y) 4 810+ D g sy — M) —In(y’) o
pg(t+1)6t+1

3.1.2 Parametre d’Influence Dynamique

Nous avons introduit dans la sous-section précédente un nouveau parametre p. Celui-ci repré-
sente la proportion de réduction de I’inefficacité d’une période a I’autre.Il correspond a I’influence
de facteurs internes et externes qui entravent la recherche de I’efficience par les entreprises. En
effet, les unités productives peuvent améliorer leur performance grace a un gain de productivité
et/ou a un ajustement technologique. Les facteurs internes concernent essentiellement le processus
de production ainsi que les décisions managériales. Les facteurs externes tels les politiques et/ou

les conjonctures économiques, quant a eux, ne peuvent étre influencés par 1’unité de production.

Proposition 4.31 Pour tout (z',y") € R7L", (z', yt1) € R avec (of, B) € [0,1]™F, les
paramétres d’influence dynamiques orientés en input et en output de la période (), relativement a

la technologie de production de la période (t + 1), sont respectivement :

11t In(z') — In(z")
i - 1) ot )

(4.48)

In(y"*t) —In(y")
t+1(t) _
o o Jt+1() At ) (4.49)

La définition ci-dessus présente la caractérisation des parametres d’influence dynamiques rela-

tifs aux observations de la période (¢) et, a I’ensemble de production (¢ + 1).

Proposition 4.32 Pour tout (z',y") € RTT", (281, 4™ € RTE™ avec (o1, 1) € [0, 1],

les parametres d’influence dynamique orientés en input et en output de la période (t + 1), relati-
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vement a la technologie de production de la période (t), sont respectivement :

we+1)  In(z') —In(z't1)
( - Stt+1) o t+1 ’

(4.50)

(1) ln(yHl) — In(y")
o o Stt+1) B+l

(4.51)

Lorsque le paramétre p't1(*) est inférieur a 1 alors, les facteurs 2 la fois internes et externes ne
permettent pas a la firme d’étre pleinement efficiente. Ainsi, ils freinent les ajustements techniques
et/ou technologiques. Cependant, ces contraintes n’influencent pas de maniere similaire les intrants
et les extrants. De ce fait, il existe de deux parametres distincts relatifs aux inputs et aux outputs. Par
ailleurs, lorsque ce parametre est supérieur a 1 alors, les influences externes et internes permettent
la réduction plus que proportionnelle de I’inefficacité de 1’unité de production. Il est a noter que
lorsque la valeur de p!(**1) est inférieure a 1 alors, des sources externes et internes contribuent 2
une hausse plus que proportionnel de 1’efficacité. Cependant, si celui-ci a une valeur supérieure a 1
alors, ces facteurs d’influence freinent la recherche de la performance. Enfin, lorsque p!*®) et/ou
p"*1) prennent une valeur unitaire, les contraintes internes et externes n’ont aucun impact sur les
transformations techniques et/ou technologiques de 1’unité de production relatives a la recherche
de I’efficacité.

La figure 3 décrit les différentes possibilités d’évolution de I’unité de production de la période
(t) a la période (¢ + 1). Elle illustre le paramétre d’influence dynamique p**'®). Posons A =
(2%, y") tel que a la période (¢ + 1), la firme produit (z**!, y**1). Selon les facteurs internes et
externes influencant les activités de 1’unité productive, la production de la période (¢ + 1) peut étre
représentée entre autres par les points B, C, D, E ou F. Dans ce cas, nous pouvons donner les
interprétations suivantes :

— B correspond au cas ou I’entreprise est techniquement efficiente a la période (¢ + 1) tel que

p§+1(t) _ pZJrl(t) 1

— C(C'représente la situation ol les inputs sont réduits et les outputs sont augmentés. Cependant,

la firme n’est pas efficace techniquement tel que pﬁl(t) #+ p?l(t)

; avec

(PO by >,

— D décrit la circonstance ou I’entité de production augmente sa production pour un méme
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Tt+1

In

Isoq

IsoqT,

FIGURE 3 — Parametre d’influence dynamique.

t+1(t)

niveau de facteurs, correspondant a celui de la période (¢). Dans ce cas, p; = 0et

pg+1(t) =0,

— FE est le cas ou les inputs et les outputs augmentent simultanément tel que pt“(t) # pffl(t)

avec p§+1(t) <0Oet pffl(t) > 0.

— Lorsque la quantité de facteurs utilisée diminue tandis que la production reste constante
t+1(t)

i

=10 _

alors, nous avons [ de telle sorte que p > 0 et po

3.2 Décomposition et Dynamisme des Indicateurs Exponentiels

Dans cette sous-section, nous proposons une décomposition des indicateurs définis précédem-
ment. En effet, les mesures de la productivité concentrent a la fois la réduction (ou non) de I’inef-
ficacité et la mutation (ou non) technologique de 1’unité de production. Par ailleurs, nous donnons
une formulation dynamique de ces mesures de productivité grace aux fonctions de distance dyna-

miques, présentées dans la sous-section précédente.
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3.2.1 Décomposition des Mesures de Productivité

Dans un premier temps, nous donnons la décomposition de I’indicateur de productivité de
Luenberger exponentiels puis, dans un second temps, celle de la mesure de productivité de
Luenberger-Hicks-Moorsteen exponentiel. Nous avons mentionné précédemment que les indica-
teurs de productivité sont composés d’un gain en efficacité technique et d’'une augmentation de la

performance imputable aux transformations technologiques dans le processus de production.
Proposition 4.33 Pour tout (z',y") € RT{", (', y'*h) € RT{™ avec &' = (of, 57) € [0, 1™+

et £ = (!, 1) € [0, 1]™™, Uindicateur de productivité global de Luenberger exponentiel

peut étre exprimé de la maniere suivante :

Lexp(xtaxtJrlaytaytJrl g €t+1) [Déxp(xtvyt;atvﬁt) Dé:pl( tJrl’y t+176t+1)]

1
[(Dt+1< t+1’y t+1 6t+1) Dt ( t+1’y t+1 Bt+1>)

2 exp exp

+ (Dt y'sal, 8) = Dl (' y'sa',8) | (4.52)

Preuve :
D’abord, rappelons que I'indicateur de productivité global de Luenberger exponentiel est défini

1
par I'expression suivante, Ley, (z!, /1 yf ¢t &8 ) = 3 [Li (ah, 2Tyt gyttt gt ¢y +

Ltej(—[}(x .T 7yt7yt+1;£t7§t+1)]' Si Léxp( t+17yt7yt+1;§t7£t+1) = Déxp($t7yt;&t76t)

—Dep(2 ’*“,y alth, ) etside plus, Lefy (af, 2y, yt €6, €1 = D (af, ' o, B)—
1

Déipl( gt gyt t+1’ 3+1) alors, Ona Lo (2!, 2t 1oyt gt gt gttty = 5 [(Déxp(xt7 yt:at, ) —

Déxp( t+1’y t+1 BtJrl)) (Dé:;(l’ 7y ;@ 7B> Dé:;( t+1’y t+1 BtJrl))}‘ Sachant que

1 1 .
_Déxp<xt7yt;at7ﬁt) = Déxp('r Y ;at7ﬁt) - Dt (.’L‘ 7yt;at7ﬁt> et que par ailleurs on a,

2 2 P

1 1

SOt B = Dt 9 DL (e, 0, 6 alors,
1

Lexp(l‘ta l‘t+1, yt’ yt—i—l; gt’ gt—l—l) — [Dgxp(xt’ yt7 at’ /Bt) ngpl( t+1’ yt-i-l; at-i-l’ /Bt+1)] + 5

(Dt g st B = DL (g ot B)) (D et )
szp@,yt;at,/at))} o

Nous avons vu dans le premier chapitre que lorsque les mesures de productivité sont structurel-

lement additives alors, elles sont composées de la somme de la part imputée aux gains d’efficacité
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et de celle attribuée aux changements technologiques.

Corollaire 4.34 Pour tout (z',y') € RI", (2! y*1) € RTL™ avec (af, B) € [0,1]™F" et

(ot BHY) € [0,1]™™, le gain d’efficacité et le changement technologique sont respectivement

définis par :
EFFCH = D (2" y"0', 8") — DI (a1 y ™t ot gt (4.53)
1
TECH = 5 [(Déipl ('Tt+17 yt+1; at+17 ﬁt+1> - D£Xp<xt+17 yt+1; Oét+17 Bt"rl))
+ (D y'ial, 8 = Dhgla',y'50, 89 ) |. (4.54)

Une valeur positive (négative) des composantes £ F'FCH et T'EC H indique qu’il existe res-

pectivement un gain (une perte) d’efficacité et un progres (une régression) technologique.

Ang et Kerstens (2017) proposent une décomposition de I’indicateur de productivité de
Luenberger-Hicks-Moorsteen standard de telle sorte que celui-ci est la somme de trois compo-
santes a savoir, le changement d’efficacité, la transformation technologique et, un résidu qu’ils
considerent comme étant la modification de I’efficacité d’échelle. Nous nous inspirons de ces tra-

vaux afin d’identifier les composantes de la mesure de productivité de LHM exponentielle.

Proposition 4.35 Pour tout (z*,y') € R71", (21, y'™) € RTI"™ avec & = (of, BY) € [0, 1]™™
et £ = (o BHHL) € [0,1]™™, lindicateur de productivité de Luenberger-Hicks-Moorsteen
exponentiel peut étre redéfini par :

exp exp

+ % [(Déipl (2%, 40,8") — Diy, (2", 950, 8") )
— (DUt (a1 550, 84) = DLy (a7 40,80 )] e, @59)

exp exp
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ou

LHMeyp (:Et,xtJrl,yt’ytJrl;gt’gtJrl) |:Dt (xt’yt;atjo) D+l ( gt gt 0)]

exp exp
b2 [(De (0t vt 0) = DL, (0 020 0) )

(Diiiﬁ( t+1’yt+1;at+1’0) Dt ( t+1’yt+1;at+1’0)>] Yo (4.56)

exp

ou ¢ correspond a un résidu.

Notons que la décomposition proposée par Ang et Kerstens (2017) est caractérisée soit en input
soit en output. A partir de ces définitions, nous pouvons identifier chaque composante.
Corollaire 4.36 Pour tout (z',y') € RI", (2! y*1) € RTL™ avec (af, BY) € [0,1]™"" et
(o't Bt € [0,1]™", la variation de Uefficacité et le progres technologique sont respective-

ment :

t t ot LHL (4l gt t+1
Dey (2,90, 8") — Dy (2 0,8

EFFCH = exp exp (4.57)
Dgxp (xt7yt;05t70> Déipl ( t+17yt+ ;&t+170) )
(o1
S| (Dh @t y0,89 = DL, (2t 40,8 )
DEL (g1 i1, 0, gE+L DE_ (a1, ytt1 0, grH1 )}
TECH = ( p ( ) = Doy (@ ) (4.58)

1
S| (D ytsat,0) = DL, (o ,o>)
(Dg&}( L g gL ) - DL (g gt t+1’0)>]

exp

Une valeur positive (négative) de la composante /F' F'C'H signifie qu’il y a un gain (une perte)
d’efficacité technique. De maniere similaire, lorsque 7'E'C' H est positive (négative) alors, il existe

un progres (une régression) technologique.

3.2.2 Mesures de Productivité Dynamiques

Nous reformulons les indicateurs de productivité présentés précédemment a 1’aide des mesures
de distance exponentielles dynamiques. De ce fait, nous obtenons des mesures de productivité

dynamiques.
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Dans la section précédente nous avons établi que Loy, (@f, 281 ¢t ¢t Tl gt ¢ty =

Ly, (In(2?), In(z1), In(y?), In(y"); £, £71).De ce fait, nous pouvons fournir la proposition sui-

vante.
Proposition 4.37 Pour tout (z',y') € RT{™ et (8, y"*1) € RTI™ avec & = (of, ) €

[0, 1] et 171 = (afT, B1) € [0,1]™"", la mesure de productivité globale de Luenberger

exponentiel dynamique orientée dans le graphe est définie par :

1 In(zt) — In(zt+!
Lexp (xt7xt+17yt7yt+1;§t7£t+1) = [(Déxp (xt7yt;at7ﬁt) - ( ) ( )>

2 PE(HI) at+l

In(z?) — In(zt1) el et L g
T < thrl(t)at De;(rp ( * 7y * B + ) y (459)

i

ou

1 In(y"™") — In(y")
t 4+l t 41, ¢t st t t b, t t
Lexp(xax YLy 7§7§ )—2[<Dexp($>?/,a>5)— pZ(H_l)BH‘l

In(y™) — In(y") W Lo
*( S0 5 — DI (a1 yt ol B | | L (4.60)

Notons que les indicateurs de productivité de Luenberger exponentiels dynamiques orientés

dans le graphe des périodes (¢) et (¢ + 1) sont respectivement :

( In(z!) — In(xt1)
t (ot b ot By _
Dexp (.CU 7y ,Oé 76) (t+1)at+1

t t 41 t o, t+1, ¢t #t4+1)
Lexp ("E 7$ 7y 7y ag 7§ ) - hl(’yt+1) ll’l(’y )

Dgxp (xt7 ytv Oétu Bt) -

L pf)(t“)ﬁtﬂ
4 ln(ZL‘t) - ID(ZL‘tJrl) . Dt+1( t+1 altl Bt—H)
1 (ot ottt et et p’%+1(t)&t exp YT )
Lexp(x7~r ,y,y ’£7£ ): ln(ytﬁl)_

ln(yt) t+1 (bl b+l t+l Qi+l
thrl(t)ﬁt _Dexp (SL’ Y ;¢ 76 )

Les expressions dynamiques des indicateurs de productivité de Luenberger orientés en input et

en output peuvent également €tre pourvus.

Proposition 4.38 Pour tout (z',y') € RI" et (21 y*1) € RTI™ avec ¢ = (of, ) €
10,17 x 0, 1 = (a1, B+1) € 0, 1] x 0, ¥ = (at, B) € 0 x [0, 1]" et 41 = (at+1, g+1) €
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0x[0, 1], les indicateurs de productivité globaux de Luenberger exponentiels dynamiques orientés

en input et en output sont respectivement définis par :

1 In(z') — In(z"1)
t o+l ot )t ot gty t tot t
[Lexp<x7x Yy 7¢7¢ )—§[<Dexp(l’7y;a70)— pl?(tJrl)atJrl
In(z') —In(z"") t41 (41 t+1, ]
+ ( F0, — DL (a7 gt at o) ||, @6l
1 In(y"*t) —In(y")
to 1t b1 gt 1) t t ot t
OLexp(xax Y,y 777Z)777Z) )_§[<Dexp(xay7076)_ t(t+1) 1
Po B
In(y"*") — In(y") 1 1 1 1
+ ( pt+1(t)6t — Df;p (xH cytth0, Bt ) . (4.62)

Chaque mesure de productivité globale est la moyenne arithmétique des indicateurs de produc-
tivité de deux périodes successives. De ce fait, nous pouvons indiquer que les mesures de produc-

tivité exponentiels orientées en input et en output des périodes () et (¢ + 1) sont respectivement :

In(z') — In(z"1)

[Lt (.Tt,l‘t+1,yt,yt+1;()ét,0ét+1) — Dt (.Tt,yt;()ét,()) o

exp exp pg(t+1) ottt
1 t\ _ 1 t+1
ILgH (o eyt y ol o) = e )m(t?(f - Dty (271 g0t 0)
In(y™") —In(y")
t t t+1 t t+1, 1 t+1) __ t t t. t
OLeXp($,$ Yy ﬂ/}ﬂ/f )_Dexp(l‘ayaoaﬁ)_ pi(t—i_l)ﬁt'f‘l )

In(y**1) — In(y?)
t+1 t t+1 t t+1. 1 t+1\ __ t+1 t+1 t+1, t+1
OLexp (37 , L Yy 71/} 71/} ) - thrl(t)Bt _Dexp (ZU , Y ,0,6 ) .

De maniere similaire, nous pouvons donner une expression dynamique aux indicateurs de pro-
ductivit¢ de Luenberger-Hicks-Moorsteen exponentiels. Sachant que LH M, (z', 2! ",
yt gt ¢ = LHME (In(2f), In(21), In(y?), In(y"+); £, €71 | nous avons la proposition ci-

dessous.

Proposition 4.39 Pour tout (z,y') € RT{", (21, y'*1) € RT{™ avec & = (af, B7) € [0, 1]™+"

et £ = (o't Bt € [0,1]™™, lindicateur de productivité de Luenberger-Hicks-Moorsteen
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exponentiel dynamique de la période (t) est défini de la maniére suivante :
In(y*!) — In(y")
t t .t £y
[<<Dexp( .,y 70,5) pg(tJrl)ﬁt'f'l
t+1) t t t. t
t+1 o — D' (z%,y";a",0) (4.63)

<< = t)ﬂt(yt) DE (2t L 5t+1)>

Dt+1 L gt ’at+1’0) _ In(a) — 1n(95t+1)>>] .

LHMexp (,It,$t+1,yt,yt+1;£t,£t+l) —

DO =

_l’_

exp 1) ¢

)

Rappelons que
1
LHMeg, (o', 2y, y™ 15 €, 67 = 5 [LHME, (o, 27y 7 €, 6)
HLHM (o', 2™yt y el 6]

exp

Ainsi, les mesures de productivité de Luenberger-Hicks-Moorsteen exponentiel dynamiques

des périodes (t) et (¢ + 1) sont respectivement :

In(y'*!) — 1n<yt>>

t t+1 t t+1., ¢t #t4+1\ t t t. t
LHMS (2,2, oy €1 641) = (aexp@,y,o,ﬁ)— o

B (ln(azt) — In(z™)

t(t+1
(t+1) 41

— D' (2!, v o, 0)) . (4.64)
Pi

In(y"*!) —In(y")
1 1 1. 1\ 1 1 1. 1
LHMg)—(i_p ( , L t+ ’ yta yt+ ) gt’ §t+ ) - ( pt+1(t)/8t - Déip (:Et+ ) yt+ ) 07 Bt+ )

In(z") — In(z"1)
1 (41 1
_ (Dﬁip ( BRL L ot 0) pt+1(t)0zt . (4.65)

i

De ce fait, les indicateurs de quantité de Luenberger exponentiels dynamiques orientés en input
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et en output des périodes () et (¢ + 1) sont définis par :

In(z') — In(z"1)
t t t+1 ,t t+1. .t t+1\ __ t t t. 1
[Lexp($7$+ay7y+704704+)— pl?(tJrl)Othrl - D (xay7a70)7

t+1,,t t+1 t t4+1. t t4+1\ __ t+1 t+1 | t+1. 41
‘[Lexp(x7x YLy oA )_Dexp (‘T Yy 70)_

In(zt) — In(2t1)

t+1(¢ ’
0 o

In(y"*") — In(y’)
pf)(tﬂ) B+

OL! (:Et’l,t—l—l’yt’yt—l—l;wt’wt—l—l) — Dt (xt,yt; O,Bt) _

exp exp

In(y"*!) — In(y")
pZJrl(t)Bt

9

exp

_ ptt! (xt+17yt+1; O,Btﬂ) .

exp

4 Application Numérique

Dans cette section, nous donnons un exemple empirique relatif aux mesures de performance et

de productivité définies dans les chapitres 2 et 4.

4.1 Mesures de Performance

Dans cette sous-section, nous présentons, a titre d’exemple, les mesures de distance exponen-
tielles orientées dans le graphe, en input et en output. Nous placons notre analyse selon un point

de vue primal.

4.1.1 Cadre d’Etude

Dans cette application, nous utilisons les données agricoles de 12 pays européens relatives aux
années 2008 et 2009. Celles-ci sont présentées dans I’Annexe 1. Notons que les données de la
période 2008, ont également été utilisées dans le Chapitre 3.

Tout d’abord, rappelons que pour tout (o, %) € [0, 1]™*" la fonction de distance exponentielle

orientée dans le graphe est définie de la manicre suivante :
t to,t. t gt t —&tat t 6Bt t
Dexp(x,y;a,ﬁ):sgp{dz(e ax,66y>ET++}.

Suivant I’approche DEA et la technologie Cobb-Douglas de Banker et Maindiratta (1986),
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rappelons que la spécification non-paramétrique de la mesure définie ci-dessus, est :

_Stat t t gt t
Despla’,y'; o, 57) = sup {5t ce 0t > T @)%, Py < TJ)%,60>0,) 6" = 1} .

JjeT JjeTJ JjeTJ

Sachant que D! _ (2!, y%; of, %) = Df (In(z"),In(y"); o, B*), nous obtenons :

exp

Di,(at yhal, pY) = sup {5t ‘In(2') — 8l > ZG; In(z}),
JjeJ

In(y") +6'8" <> 6 In(xh),6" > 0,) 6" = 1} .
jeT jeT
Nous effectuons une étude empirique d’un point de vue primal de la mesure d’efficacité ex-
ponentielle tels que les parametres (of, 8%) € {(1,1),(1,0),(0,1)}. Par ailleurs, notons que la

normalisation des pondérations ) | = 1 indique une hypothese de rendements d’échelle va-

t
JjET 9]‘
riables.

4.1.2 Résultats

Le tableau 4.1 présente les scores de performance exponentiels de 12 pays européens suivant
une approche primale que ce soit dans une orientation en input, en output ou dans le graphe. La
premiere partie du tableau concentre les résultats relatifs a I’année d’exercice 2008 tandis que la
seconde partie concerne les performances des entités de production durant la période 2009. L’ étude
se fait pour les mémes unités de production soit 12 pays européens sur les 27 Etats composant la

communauté.

4.1.3 Interprétations

Nous pouvons constater que la République Tcheque, la France, la Lituanie, le Luxembourg, les
Pays-Bas, la Slovaquie et le Royaume-Uni (7 pays) sont efficaces durant la période 2008. De ce
fait, ces unités de production reposent sur la frontiere efficiente et possedent un score d’efficacité
nul. Ces pays sont efficaces que ce soit dans une orientation en input, en output ou, dans le graphe.

Ainsi, on peut raisonnablement déduire qu’il n’existe aucun slack dans les mesures présentées.
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Orientation | Inputs  Outputs  Graphe
Année 2008
République Tcheque 0 0 0
Danemark 0,2752 0,2637 0,1347
Espagne 0,6719 0,7214 0,3667
France 0 0 0
Lettonie 0,0834 0,3071 0,0834
Lituanie 0 0 0
Luxembourg 0 0 0
Pays-Bas 0 0 0
Slovaquie 0 0 0
Finlande 0,5991 0,7198 0,3269
Suede 0,2309 0,2774 0,1260
Royaume Uni 0 0 0
Année 2009
République Tcheque 0 0 0
Danemark 0,2049 0,1937 0,0996
Espagne 0,8057 0,9568 0,4583
France 0 0 0
Lettonie 0 0 0
Lituanie 0 0 0
Luxembourg 0 0 0
Pays-Bas 0 0 0
Slovaquie 0 0 0
Finlande 0,4846 0,6394 0,2757
Suede 0,0925 0,1221 0,0526
Royaume Uni 0,0065 0,0055 0,0030

TABLE 4.1 — Scores d’efficacité exponentiels

Remarquons que les scores de performance non-nuls sont moins élevés selon une orientation dans

le graphe que suivant une orientation en input ou en output.

Relativement a ’année 2009, nous observons que la République Tcheque, la France, la Lettonie, la
Lituanie, le Luxembourg, les Pays-Bas et la Slovaquie (7 pays) sont efficientes. Ainsi, leur mesure
de performance est nul que ce soit suivant une direction en input, en output ou dans le graphe. Cette
constance indique qu’il n’existe aucun slack en input ou en output, pour les unités de production
efficientes. Par ailleurs, notons que les scores d’efficacité non-nuls sont également plus élevés
lorsque les mesures sont axées sur les facteurs et la production que selon une orientation dans le
graphe. Enfin, remarquons que la Lettonie, qui est inefficace en 2008, devient efficiente en 2009.

Inversement, le Royaume-Uni n’est pas performant en 2009 tandis qu’elle 1’était durant la période
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2008.

4.2 Mesures de Productivité

Dans cette sous-section, nous appliquons les mesures de productivité de Luenberger et de
Luenberger-Hicks-Moorsteen exponentielles dans le cadre d’un exemple empirique. Nous nous
appuyons sur les données utilisées dans la sous-section précédente ainsi qu’aux résultats obtenus

dans celle-ci.

4.2.1 Environnement d’Analyse

Rappelons que les indicateurs de productivité de Luenberger exponentiels nécessitent 1’es-
timation des fonctions de distance croisées entre deux périodes consécutives. Ainsi, pour tout
(af, BY) € [0,1]™ et (afTh, BHF1) € [0,1]™™, la mesure de distance exponentielle des unités
de production de la période (t) évaluées relativement a la technologie de la période (¢ + 1), et

inversement, sont respectivement :

Dz:pl(xt’yt; o', BY) = sup {5t : (6_5iatxt’ e‘stﬁtyt> c Tf;l} :
0

t t+1 t+1. t+1 pt+1y t+1 . —ottlattl 41 gttlpgttl ¢4 t
D, (z" y" B )—St;p{é .(e e Y eT, ¢.

exp

Sachant que la mesure exponentielle est équivalente a la mesure népérienne, la spécification

non-paramétrique népérienne de ces mesures sont respectivement :

DI ('t af, BY) = sup < 6 : In(a!) — 6fal > Z 0;-“ ln(x?l),

exp
0

JjeT
1n<yt) + 5t6t < Ze§+1 ln(y§+1>’9t+1 > ), Ze}&l =1,
jeTJ jeTJ
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¢+l L ] a1y — t+1 t+1 t+1 1+ E (ol
Do (@ g™, B = sgp {5 dn(2™) =0 a T > Zﬁj In(z;),
JET

In(y') 4 61T < Z@; In(y;),0" > 0, Z@; = 1} .
jeT JeT
De maniere similaire, les mesures de productivité de Luenberger-Hicks-Moorsteen exponen-
tiels nécessitent des scores d’efficacité croisés relatifs a des unités de production fictives. Ces
derniéres sont composées de la combinaison des inputs et des outputs des périodes (t) et (t + 1)
tel que nous avons (zf, ') et (z'*1, y!). Ainsi, les mesures de distance orientées en input de ces
observations selon la méthode DEA, par rapport a la technologie de la période (t), peuvent étre

définies comme suit :

Dl (', y™*at0) = sgp {(V In(2') — 8l > Z@; In(z}),
JjeJ

In(y'*!) < ZH; In(y;),0" > 0, Z@; = 1} :

JjET JjeJ

DL, (@™t o, 0) = sup {5t+1 dIn(z™) — ettt > E 0} In(x}),
5 ;
JjeJ

) < Y0 iy, 02 0,50 = 1} .
JjET JET

Pour chaque période, selon I’orientation des mesures, les parametres (af, 3?) et (aft1, gi11)

prendront successivement les valeurs suivantes : (1,1), (1,0) et (0,1). L’évaluation des perfor-

mances se fait sous I’hypothese de rendements d’échelle variables.

4.2.2 Résultats

Le tableau 4.2 présente les mesures de productivité de Luenberger exponentielles orientées a la
fois en input, en output et dans le graphe. Nous avons les indicateurs par période puis les estima-
tions globales. Dans le tableau 4.3, nous offrons une décomposition des indicateurs de productivité

de Luenberger exponentiels en deux composantes a savoir, le changement d’efficacité (EFFCH) et
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Période | 2008 2009 2008/2009
Orientation en inputs
République Tcheque | -0,0167 -0,0339 -0,0253

Danemark 0,1240 0,1256 0,1248
Espagne -0,1568 -0,1369 -0,1469
France Infini Infini Infini

Lettonie 0,3572 0,1926 0,2749
Lituanie 0,1979 0,0552 0,1266
Luxembourg 0,0228 -0,0545 -0,0159
Pays-Bas 0,0922 0,0260 0,0591
Slovaquie -0,0021 -0,1381 -0,0701
Finlande 0,0426 0,0409 0,0417
Suede 0,0601 0,0625 0,0613
Royaume Uni -0,0644 -0,1567 -0,1105

Orientation en outputs
République Tcheque | -0,0260 -0,0476 -0,0368

Danemark 0,1188 0,1187 0,1188
Espagne -0,2050 -0,2063 -0,2056
France 0,0932 -0,0035 0,0448
Lettonie Infini 0,2977 Infini

Lituanie Infini 0,1095 Infini

Luxembourg Infini Infini Infini

Pays-Bas 0,1089 0,0388 0,0739
Slovaquie -0,0555 -0,2127 -0,1341
Finlande 0,0512 0,0540 0,0526
Suede 0,0722 0,0825 0,0773
Royaume Uni -0,0644 -0,1314 -0,0979

Orientation dans le graphe
République Tcheque | -0,0102 -0,0198 -0,0150

Danemark 0,0607 0,0610 0,0609
Espagne -0,0856 -0,0779 -0,0817
France 0,0609 -0,0035 0,0287
Lettonie 0,3572 0,1169 0,2371
Lituanie 0,1332 0,0392 0,0862
Luxembourg 0,0228 -0,0442 -0,0107
Pays-Bas 0,0473 0,0156 0,0315
Slovaquie -0,0021 -0,0829 -0,0425
Finlande 0,0232 0,0233 0,0233
Suede 0,0328 0,0356 0,0342
Royaume Uni -0,0331 -0,0715 -0,0523

TABLE 4.2 — Indicateurs de productivité de Luenberger exponentiels
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Décomposition EFFCH TECH Indicateur
Orientation en inputs
République Tcheque 0 -0,0253  -0,0253
Danemark 0,0703 0,0545 0,1248
Espagne -0,1337 -0,0131 -0,1469
France 0 Infini Infini
Lettonie 0,0834 0,1915 0,2749
Lituanie 0 0,1266 0,1266
Luxembourg 0 -0,0159 -0,0159
Pays-Bas 0 0,0591 0,0591
Slovaquie 0 -0,0701 -0,0701
Finlande 0,1145 -0,0727 0,0417
Suede 0,1383 -0,0770 0,0613
Royaume Uni -0,0065 -0,1040 -0,1105
Orientation en outputs
République Tcheque 0 -0,0368  -0,0368
Danemark 0,0701 0,0487 0,1188
Espagne -0,2354 0,0298 -0,2056
France 0 0,0448 0,0448
Lettonie 0,3071 Infini Infini
Lituanie 0 Infini Infini
Luxembourg 0 Infini Infini
Pays-Bas 0 0,0739 0,0739
Slovaquie 0 -0,1341 -0,1341
Finlande 0,0804 -0,0278 0,0526
Suede 0,1553 -0,0780 0,0773
Royaume Uni -0,0055 -0,0924 -0,0979
Orientation dans le graphe

République Tcheque 0 -0,0150 -0,0150
Danemark 0,0351 0,0257 0,0609
Espagne -0,0916 0,0099 -0,0817
France 0 0,0287 0,0287
Lettonie 0,0834 0,1536 0,2371
Lituanie 0 0,0862 0,0862
Luxembourg 0 -0,0107 -0,0107
Pays-Bas 0 0,0315 0,0315
Slovaquie 0 -0,0425 -0,0425
Finlande 0,0513 -0,0280 0,0233
Suede 0,0734 -0,0392 0,0342
Royaume Uni -0,0030 -0,0493 -0,0523

TABLE 4.3 — Décomposition des indicateurs de productivité de Luenberger
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2008
IL OL LHM

République Tcheque -0,0275 -0,0689 -0,0414
Danemark -0,0104 0,1088 0,1193
Espagne -0,0968 -0,3048 -0,2080
France -0,0295 0,0609 0,0904
Lettonie -0,3572 0,0596 0,4168
Lituanie -0,1014 0,1985 0,2999
Luxembourg -0,0228 -0,0058 0,0169
Pays-Bas -0,0632 0,0267 0,0899
Slovaquie -0,0301 -0,0857 -0,0556
Finlande -0,0363 0,0075 0,0438
Suede -0,0522 0,0094 0,0616
Royaume Uni -0,0708 -0,1235 -0,0526

2009

IL OL LHM
République Tcheque -0,0177 -0,0725 -0,0548
Danemark -0,0104 0,1088 0,1193
Espagne -0,0941 -0,3048 -0,2107
France -0,0058 -0,0035 0,0023
Lettonie -0,1684 -0,0157 0,1527
Lituanie 0,0129 0,1065 0,0936
Luxembourg 0,0442 -0,0668 -0,1110
Pays-Bas -0,0081 0,0126 0,0208
Slovaquie -0,0018 -0,2170 -0,2152
Finlande -0,0352 0,0075 0,0427
Suede -0,0554 0,0094 0,0648
Royaume Uni -0,0625 -0,1838 -0,1214
2008/2009

LHM
République Tcheque -0,0481
Danemark 0,1193
Espagne -0,2093
France 0,0464
Lettonie 0,2847
Lituanie 0,1968
Luxembourg -0,0470
Pays-Bas 0,0553
Slovaquie -0,1354
Finlande 0,0433
Suede 0,0632
Royaume Uni -0,0870

TABLE 4.4 — Indicateurs de productivité de Luenberger-Hicks-Moorsteen
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p2008(2009) p2009(2008)

Prix Prod. Prod. Prix Prod. Prod.

SAU SAU (mill€) (KT) SAU SAU (mill€) (KT)
Orientation Inputs Outputs Inputs Outputs
Rép. Tcheque 3,2557  0,4257  -2,6473 -2,8869 || -1,6036 -0,2097 1,4481 1,5792
Danemark 1,3215  0,0690 1,0193 0,7512 || 0,6047 0,0316 0,4728 0,3484
Espagne 0,0573  0,1257 0,1303 -0,3290 || 0,0710  0,1558 0,1608 -0,4061
France Infini Infini -0,6533 0,0377 Infini Infini -17,3473 1,0000
Lettonie -2,3671  -0,0229 Infini Infini 3,3646  0,0325 0,2003 -0,0527
Lituanie -0,5124  0,3876 Infini Infini 1,8378 -1,3904 1,8127  0,9728
Luxembourg 4,9883  -1,0000 Infini Infini 2,0839 -0,4177 Infini Infini
Pays-Bas 1,5145 -0,6851  -0,2448 -0,1159 || -5,3716  2,4298 0,6871  0,3252
Slovaquie -17,8219 19,2958  -1,5444 -3,9110 || 0,2681 -0,2902 0,4029 11,0204
Finlande 0,0298  0,0706 0,4988 0,0112 || 0,0315 0,0748 0,4810 0,0108
Suede 0,6399  0,2562 0,3024 0,0457 0,7050  0,2822 0,3033  0,0458
Royaume Uni 1,4985  0,9699  -2,8530 -1,8035 || -0,6429 -0,4161 1,4597  0,9227
Orientation Graphe
Rép. Tcheque 5,3442  0,6988  -6,7743 -7,3874 || -2,7460 -0,3591 3,4809  3,7959
Danemark 2,7006  0,1410 1,9960 1,4710 1,2444  0,0650 0,9197 0,6778
Espagne 0,1050  0,2303 0,2668 -0,6738 0,1248 0,2738 0,3172 -0,8011
France -0,0958 -0,4848  -1,0000 0,0576 || -1,6614 -8,4095 -17,3473  1,0000
Lettonie -2,3671  -0,0229  -0,2178 0,0573 5,5417  0,0536 0,5099 -0,1342
Lituanie -0,7615  0,5761  -1,4907 -0,8000 || 2,5860 -1,9565 5,0625  2,7167
Luxembourg 4,9883  -1,0000 2,9351 0,2555 2,5690 -0,5150 1,5116  0,1316
Pays-Bas 2,9520 -1,3353  -0,5635 -0,2667 || -8,9707  4,0578 1,7124  0,8105
Slovaquie -17,8219 19,2958 -41,2631 -104,4917 || 0,4466 -0,4835 1,0340 2,6183
Finlande 0,0545  0,1293 1,0981 0,0247 0,0554 0,1314 1,1156  0,0251
Suede 1,1725  0,4693 0,6657 0,1006 1,2393  0,4961 0,7036  0,1063
Royaume Uni 29139  1,8860  -5,5498 -3,5083 || -1,4093 -0,9122 2,6841  1,6968

TABLE 4.5 — Parametres d’influence dynamiques

la transformation technologique (TECH). Le tableau 4.4 concentre les indicateurs de productivité
de Luenberger-Hicks-Moorsteen (LHM) exponentiels pour chaque période ainsi que la mesure
globale relative aux deux périodes consécutives. Notons que IL et OL sont respectivement les
indicateurs de quantité de Luenberger exponentiels en input et en output. Ils interviennent dans
I’évaluation de la mesure de LHM. Enfin, le tableau 4.5 propose les estimations des parametres
d’influence dynamiques des scores de performance croisés relatifs a deux périodes consécutives.

En effet, ces derniers sont nécessaires afin d’obtenir les mesures de productivité dynamiques.

4.2.3 Analyse

Tableau 4.2

Nous pouvons constater que le Danemark, la Lettonie, la Lituanie, les Pays-Bas, la Finlande et
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la Suede ont une mesure de productivité global de Luenberger en input positive. Cette derniere
signifie que les pays ont un gain de productivité tel que la quantité de facteurs utilisée a diminué
entre 2008 et 2009, pour la production d’un niveau donné d’outputs. A I'inverse, la République
Tcheque, I’Espagne, le Luxembourg, la Slovaquie et le Royaume-Uni présentent un indicateur
de productivité de Luenberger en output négatif. Ces pays subissent une perte de productivité
puisque le niveau d’inputs nécessaire a la production d’une quantité donnée d’outputs a augmenté
d’une période a I’autre. Enfin, la France a une mesure de productivité en input infinie telle que la
projection des observations ne rencontrent pas les frontieres efficientes.

Selon une orientation en output, le Danemark, la France, les Pays-Bas, la Finlande et la Suede
possedent une mesure de productivité de Luenberger positive. En effet, ces pays présentent un
gain de productivité c’est-a-dire que la quantité produite a augmenté d’une période a I’autre pour
un niveau donné de facteurs. Inversement, la République Tcheque, I’Espagne, la Slovaquie et le
Royaume-Uni ont un indicateur négatif. Ce dernier signifie qu’une perte de productivité intervient
telle que la production d’outputs a baissé pour une quantité fixe d’inputs utilisés. Enfin, la Lettonie,
la Lituanie et le Luxembourg ont une mesure de productivité indéterminée.

Suivant une orientation dans le graphe, le Danemark, la France, la Lettonie, la Lituanie, les Pays-
Bas, la Finlande et 1a Suede présentent un gain de productivité (mesure positive) tel que ces unités
de production ont réussi a augmenter leur production et a baisser leurs facteurs utilisés de maniere
simultanée. En revanche, la République Tcheque, 1’Espagne, le Luxembourg, la Slovaquie et le
Royaume-Uni subissent une perte de productivité (mesure négative). De ce fait, les outputs produits
ont diminué tandis que les inputs utilisés ont accru simultanément d’une période a 1’autre. Notons
qu’aucun pays ne possede une mesure indéterminée puisque la direction choisie a permis aux

projections d’atteindre les frontiere efficientes.

Tableau 4.3

Nous observons que la perte de productivité de la République Tcheque, du Luxembourg et de la
Slovaquie est provoquée par un retard de mutation technologique que ce soit suivant une orientation
en input, en output ou dans le graphe. En effet, on peut voir que ces pays ne présentent aucun
changement d’efficacité d’une période a 1’autre, ce qui explique leurs scores de performance nuls,

toutes orientations confondues, durant les périodes 2008 et 2009 (tableau 4.1). Par ailleurs, on
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constate que 1’Espagne subit des pertes de productivité provoquées par une baisse de 1’efficacité.
Un retard dans les changements technologiques existe également selon 1’orientation en input. On
observe alors, que la diminution de I’efficacité explique les scores de performances positives de

I’Espagne en 2008 et en 2009.

Concernant la Finlande et la Suede, nous pouvons noter que ces pays ont des mesures de producti-
vité positives engendrées par un gain d’efficacité, qui pallie un ralentissement de la transformation
technologique (composante négative). Cette derniere justifie leurs scores d’efficacité positifs du-

rant les périodes 2008 et 2009.

La France, la Lituanie et les Pays-Bas quant a eux, posseédent des scores de performance nuls et des
mesures de productivité positives. Ces dernieres sont dues a des transformations technologiques

positives.

Le Danemark a un indicateur positif grace a une hausse de 1’efficacité et a un progres technolo-
gique. Cependant, ses scores de performance sont positives c’est-a-dire que les changements in-
duits dans le processus de production ne sont pas suffisants pour que le pays puisse tre pleinement

efficace.

Enfin, le Royaume-Uni subit une perte de productivité engendrée a la fois par une perte d’efficacité
et un ralentissement dans la transformation technologique. La combinaison de ces deux facteurs
conduit a I’inefficacité du pays en 2009 alors qu’il était performant en 2008. Réciproquement, la
Lettonie connait la situation inverse puisqu’elle présente un gain d’efficacité et une transformation
technologique positive. Ces derniers conduisent le pays a étre efficace en 2009 alors qu’elle était

inefficiente en 2008.

Il est nécessaire de remarquer que suite aux infaisabilités intervenant dans les mesures de pro-
ductivité de Luenberger (Chambers et al. (1996b)), Briec et Kerstens (2004) proposent I’indicateur
de productivité de Luenberger-Hicks-Moorsteen basé sur les indicateurs de quantité en input et en
output de Luenberger. Ainsi, nous pouvons observer qu’aucune indétermination n’apparait dans le
tableau 4.4. En effet, ce dernier présente les indicateurs de productivit¢é LHM exponentiels pério-

diques et global relatifs aux périodes 2008 et 2009.

202



Des Mesures de Productivité Exponentielles et Logarithmiques

Tableau 4.4

Nous notons que la République Tcheque, I’Espagne, la Slovaquie et le Royaume-Uni ont des me-
sures de productivité de LHM exponentielles négatives que ce soit relativement a la période 2008,
2009 ou dans un contexte global. Ainsi, ces pays présentent une perte de productivité telles que la
quantité de facteurs utilisée a augmenté pour la production d’un niveau donné d’outputs, et/ que
la quantité produite a baissé pour un niveau fixé d’inputs. Inversement, le Danemark, la France, la
Lettonie, la Lituanie, les Pays-Bas, la Finlande et la Su¢de possedent des indicateurs de producti-
vité positifs par rapport aux périodes 2008 et 2009 puis, dans un cadre global . En effet, ce pays ont
un gain de productivité tel que le niveau de facteurs consommé, pour produire une quantité donnée
d’outputs, s’est accru et/ou le niveau de la production a diminué pour une quantité fixe d’inputs.
Remarquons que le Luxembourg a un gain de productivité relativement a la période 2008 mais
subit une perte de productivité durant I’année 2009 et de maniere globale.

Notons que durant la période 2008, les 12 pays européens ont une mesure de quantité de Luenber-
ger en input négative. Cette derniere signifie que ces pays ont vu leur quantité utilisée de facteurs
augmenter Pour la production d’un niveau donné d’outputs. Cependant, le Danemark, la France, la
Lettonie, la Lituanie et les Pays-Bas possedent des indicateurs de quantité en output positifs c’est-
a-dire que leur quantité produite a haussé pour un méme niveau de facteurs. De la méme maniere,
11 pays européens ont un indicateur de quantité en input négatif pour ’année 2009. En effet, la
Lituanie a une mesure positive. On constate également que le Danemark, la Lituanie, les Pays-Bas,

la Finlande et la Suede ont un indicateur de quantité en output positif durant cette période.

Tableau 4.5
Les mesures de productivité permettent de déduire les parametres d’influence dynamiques. En
effet, ces derniers interviennent lorsque des scores de performances croisés sont estimés. Dans

notre exemple empirique, nous retrouvons ces parametres, estimés de maniére non-paramétrique,

2008(2009) 2009(2008)

dans le tableau 4.5. Nous présentons les parametres p et p pour chaque input et
output que ce soit selon une orientation en intrant, en extrants ou, dans le graphe. Notons que les
inputs sont composés du prix des SAU ! et des SAU elles-mémes. Les outputs sont, quant 2 eux,

constitués de la production en valeur (millions d’euro) et en volume (milliers de tonne).

1. SAU est I’acronyme désignant les surfaces agricoles utilisées.
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Suivant une orientation en input, nous constatons que le parametre p?°°5(2099) du prix des SAU est
inférieur a 1 pour I’Espagne, la Lettonie, la Lituanie, la Slovaquie, la Finlande et 1a Suede. 11 est
également en dessous de 1 par rapport a la SAU pour la République Tcheque, le Danemark, 1’Es-
pagne, la Lettonie, la Lituanie, le Luxembourg, les Pays-Bas, la Finlande, la Suede et le Royaume-
Uni. Suivant une orientation en output, ce parametre est inférieur a 1 quant a la production en
valeur de la République Tcheque, de I’Espagne, de la France, des Pays-Bas, de la Slovaquie, de la
Finlande, de la Suede et du Royaume-Uni. Il est en dessous de 1 relativement a la production en
quantité de la République Tcheque, du Danemark, de I’Espagne, de la France, des Pays-Bas, de la
Slovaquie, de la Finlande, de la Suede et du Royaume-Uni. Lorsque I’étude est concentrée dans
le graphe, le parametre est inférieur a 1 par rapport au prix des SAU pour I’Espagne, la France, la
Lettonie, la Lituanie, la Slovaquie et la Finlande. Il I’est également a 1’égard des SAU pour tous
les pays exceptés la Slovaquie et le Royaume-Uni. Hormis le Danemark, le Luxembourg et la Fin-
lande, tous les autres pays ont un parametre ayant une valeur en-dessous de 1 pour la production

en euro et, seul le Danemark a un parametre supérieur a 1 concernant la production en tonne.

A présent, nous nous concentrons sur le parametre p2009(2008)

. Nous observons que suivant une
orientation en intrants, la Lettonie, la Lituanie et le Luxembourg ont un parameétre prenant une va-
leur supérieure a 1 relativement au prix des SAU. Concernant les SAU, seuls les Pays-Bas ont une
grandeur au-dessus de 1. De maniere similaire, selon une orientation sur les extrants, la République
Tcheque, la Lituanie et le Royaume-Uni posseédent un parametre supérieur a 1 par rapport a la pro-
duction en valeur et, seuls la République Tcheque et la Slovaquie sont concernés pour la production
en quantité. Lorsque 1’on s’intéresse a une analyse dans le graphe, on note que le Danemark, la
Lettonie, la Lituanie, le Luxembourg et la Su¢de ont une grandeur au-dessus de 1 selon le prix des
SAU et, seuls les Pays-Bas sont concernés relativement a la SAU. La République Tcheque, la Li-
tuanie, le Luxembourg, les Pays-Bas, la Slovaquie, la Finlande et le Royaume-Uni ont, quant a eux,
un parametre supérieur a 1 pour la production en euro. Conformément a la production en tonne,
la République Tcheque, la Lituanie, la Slovaquie et le Royaume-Uni ont également une grandeur
au-dessus de 1. Lorsque ce parametre prend une valeur supérieure a 1 alors, les influences internes
et/ou externes permettent une mutation positive de I’efficacité des unités de production. Remar-

quons que suivant une étude axée sur les outputs et dans le graphe, la France a un parametre égal

a 1 relativement a la production en quantité. Cette valeur signifie que les facteurs internes et/ou
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externes n’interviennent pas dans I’ajustement de la performance du pays a travers les périodes.

Conclusion

Ce chapitre présente des mesures de productivité exponentielles grace a la fonction de distance
exponentielle présentée dans le chapitre 2. Nous constatons que celles-ci ont une équivalence ayant
une nature additive puisque les mesures de distance exponentielles sont log-additives. Ainsi, nous
estimons les variations de productivité grace aux indicateurs de productivité de Luenberger et de
Luenberger-Hicks-Moorsteen tels que les mesures de performances sont fournies par les fonctions
de distance exponentielles. La définition de ces mesures de productivité nous conduit a déduire
une formulation dynamique des mesures d’efficacité exponentielles. Nous observons que dans ce
cas, un nouveau parametre intervient tel que celui-ci représente les contraintes internes et externes
influengant la performance des entités productives dans le temps.

Ce chapitre introduit quelques extensions théoriques a la mesure de distance présentée dans le
chapitre 2. Cependant, il est possible de réaliser d’autres études qui peuvent amener a de nouveaux
résultats, telles les efficacités d’échelle. En effet, nous verrons dans le chapitre suivant que les
rendements d’échelle peuvent avoir une influence non-négligeable sur la performance d’une unité

de production.
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Chapitre 5

Mesures d’Efficacité et Rendements

d’Echelle Optimaux

Fiére et al. (1988) proposent une technologie CES (Constant Elasticity of Substitution) - CET
(Constant Elasticity of Transformation) dans un cadre non-paramétrique selon une approche par
enveloppement de données. Cet ensemble de production se présente comme étant la généralisation
de différentes technologies de production non-paramétriques telle celle de Banker et al. (1984) ou
celle de Banker et Maindiratta (1986). En s’appuyant sur la notion de technologies homogenes de
degré a, dans les travaux de Lau (1978) et de Fire et Mitchell (1993), Boussemart et al. (2009)
proposent de modéliser ce qu’ils nomment les "rendements d’échelle o". Dans un contexte non-
paramétrique, ce concept considere des rendements d’échelle strictement croissants et strictement
décroissants. En effet, ces derniers sont négligés par les modeles non-paramétriques usuels tels
ceux de Charnes et al. (1978), de Banker et al. (1984) ou de Banker et Maindiratta (1986). Les
auteurs introduisent cette notion a travers I’analyse de I’efficacité des firmes, relativement a la
frontiere efficiente de I’ensemble de production. De ce fait, plusieurs mesures d’efficacités ont été
appliquées telles les mesures de Debreu (1951)-Farrell (1957), la mesure hyperbolique de Fire et
al. (1985) ou la fonction de distance généralisée de Chavas et Cox (1999). L’ étude évalue 1I’impact
que peuvent avoir les rendements d’échelle sur la performance des entités de production.

Boussemart et al. (2018), grace au concept de rendements d’échelle o et aux mesures de
Debreu-Farrell, appliquent le principe de 1’extrapolation minimale sur un ensemble d’unités de

production. Cette méthode permet de déterminer, de maniere non-paramétrique, le meilleur rende-
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ment d’échelle global d’un secteur d’activité ou d’un ensemble. En effet, celui-ci signifie que le
plus grand nombre de firmes est efficiente relativement au rendement d’échelle considéré. Deux
méthodes d’estimation sont proposées par les auteurs, a savoir I’approche par une grille de re-
cherche et la programmation linéaire. La premiere ne permet pas une évaluation endogene du
rendement d’échelle optimal « tandis que la seconde rend possible cette démarche. Par ailleurs, ils
proposent une endogénéisation complete de la détermination de ce rendement d’échelle optimal
dans le cadre d’une technologie FDH (Free Disposal Hull) a la fois individuelle mais également
globale. Notons que cette derniere est la réunion des ensembles de production individuels.

Ce chapitre est consacré a I’application de la notion de rendements d’échelle optimaux « a
travers des mesures d’efficacité multiplicatives et additives. De ce fait, nous présentons dans une
premiere section le cadre d’analyse adopté dans ce chapitre. La deuxieme section est dévolue a
I’analyse des rendements d’échelle optimaux globaux tandis que la troisieme section introduit le
concept de rendements d’échelle optimaux spécifiques. Enfin, la derniere section présente une

illustration empirique des éléments qui auront été introduits précédemment.

1 Contexte d’Analyse

Soient respectivement les vecteurs d’inputs z* = (zf,---,2f) € R et d’outputs y* =

(yi, - ,yh) € R7 de la période (t), qui permettent de définir la technologie de production

T(a', y") = {(', y") € RT*™ : 2 peut produire y' }, associée & la méme période.

Boussemart et al. (2009) présentent le concept de rendement d’échelle «, associé a un ensemble
de production homogene de degré o (Fire et Mitchell (1993)). Ils consideérent des ensembles pro-
ductifs qui tiennent compte de rendements d’échelle strictement croissants ou décroissants. Notons
que 7" est homogene de degré « si pour tout A > 0 et tout (2%, y") € T on a (A\zf, \*y") € T".
Les auteurs établissent une relation directe entre cette notion d’homogénéité et les rendements
d’échelle. De ce fait, pour tout ensemble de production T satisfaisant 7'1-7'4 alors, un o > 1 est
relatif a un rendement d’échelle strictement croissant tandis que 0 < a < 1 indique un rendement
d’échelle strictement décroissant. Ainsi, toute technologie de production vérifiant une homogé-
néité de degré «, satisfait également un rendement d’échelle de degré «. Pour illustrer cette notion,

Boussemart et al. (2009) reprennent 1I’ensemble de production CES-CET (Fére et al. (1988)) qui
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est définie de la maniere suivante :

Tos = {W’y” L (Z 0 %(as;-)) Y <o) (Z 0 ¢B<y§>> ,
&g ied
0" 20,295:1}.

jeJ

Rappelons que cette définition de Fire et al. (1988) est relative a un ensemble productif corres-
pondant a des rendements d’échelle variables et, cette hypothese est matérialisée par la contrainte
> jeg 0; = 1. Cependant, celle-ci n’est pas compatible avec le concept de rendement d’échelle «.

Ainsi, Boussemart et al. (2009) relaxent celle-ci.

Dans ces travaux, afin de différencier le rendement d’échelle « et le parametre intervenant
dans de la technologie CES-CET, nous utiliserons dans ce chapitre le terme "rendement d’échelle
" tel que v = %. Ainsi, selon les travaux de Boussemart et al. (2009), I’ensemble de production
CES-CET satisfait : un rendement d’échelle strictement croissant si v > 1, un rendement d’échelle
strictement décroissant si 0 < v < 1 et un rendement d’échelle constant si ¥ = 1. Notons que les

auteurs imposent le choix a priori des parametres « et (5.

Rappelons que les mesures de Debreu-Farrell orientées en inputs et en outputs sont respective-

ment :
E! (xt,yt) = iI)l\f {)\t : ()\txt, yt) € Tt} ,
Ep (2, ') =sup {\": (2", \N'y) e T'}.
A

Par ailleurs, la fonction de distance directionnelle CES-CET orientée dans le graphe pour un

vecteur de direction g* = (h', k') € RT™ est définie par :
a B
Dg g (2,95 1Y k') = sup {5t : (fct — &', Yt + 5tkt) S Tt} .
5

Lorsque le vecteur de direction est g* = (h',0) et g* = (0, k') alors, nous obtenons les mesures

CES-CET respectivement orientées en input et en output.
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2 Rendements d’Echelle Globaux

Dans cette section, nous nous intéressons aux concepts introduits par Boussemart et al. (2009).
Suivant les travaux de Boussemart et al. (2010) et Boussemart et al. (2018), nous les appliquons
successivement aux mesures de Debreu-Farrell et a la fonction de distance directionnelle CES-
CET. Nous montrons que grace ces mesures d’efficacité, nous pouvons déduire le rendement

d’échelle global permettant 1’efficacité du plus grand nombre.

2.1 Mesures Radiales Non-paramétriques

Cette sous-section est dévouée a I’analyse du meilleur rendement d’échelle global () relatif a
I’ensemble des firmes. Nous meénons une premiere étude en terme d’efficacité individuelle que ce
soit dans une orientation en input ou en output. Puis, nous évaluons le rendement d’échelle global

~ qui permet au plus grand nombre d’€tre pleinement performant.

2.1.1 Efficacité en Input

Comme mentionné dans les chapitres précédents, la mesure de Debreu-Farrell en input permet
d’évaluer les réductions potentielles a ’utilisation des facteurs de production pour une quantité
donnée d’outputs. Dans cette sous-section, nous proposons de définir celle-ci dans le cadre d’une

technologie de production CES-CET qui est compatible avec la notion de rendements d’échelle .

Proposition 5.1 Pour toute unité de production j € J et tout (z*,y") € R7* " avec (o, ) € R?
la mesure de Debreu-Farrell en input peut étre définie selon le modele CES-CET, de la maniére

suivante :

Ei(a',y') = inf X" (Atmt >0 (Z eﬁ-%(wé)) < @5t (Z 9}%(119)) €Top

JjeJ JjeT
5.1

Boussemart et al. (2009) proposent un programme non-paramétrique selon la méthode DEA,
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qui permet d’évaluer la mesure de distance en input. Celui-ci se présente comme suit :

Ei(z' y") =min X

s.C. Nzt > ¢! (Z 9§¢a($§)>

JjeT
y' <oy (Z 9§%<y§>>
JjeJ
NLOE> 0.

En posant A* = (A\")®, nous obtenons le programme linéaire ci-dessous :

[Ef (2", y")] “ =min A’

s.c. Ad,(2") > Z 05 (2)
JET

Da(y') <Y 0i05(y))
JjeT

ALOE>0.

Sachant que la notion de rendements d’échelle v n’exige pas la convexité des ensembles de
production, Boussemart et al. (2009) proposent I’estimation de cette mesure de Debreu-Farrell
orientée en input dans le cadre d’un ensemble de production FDH. Dans ce cas, pour chaque firme

J € J, latechnologie de production FDH individuelle est définie par :

b5, y5) = {(fct,yt) e R at > (0) 0ty < (05)Pyl 0 > 0,5 € J}- (5.2)

Relativement a Qf% 5 et pour tout j € J, Boussemart et al. (2009) et, Boussemart et al. (2010)

démontrent que la mesure de performance orientée en input de la firme, ayant pour observation
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(1, 1), est :
B (af,yf) = inf (A : (Maf, yf) € Qas(a}v))} (53)
t 18/ t
b .
= [max yi’r] X max% ) (5.4)
r€(n] yj,?" 1€[m)] SCM

Ainsi, nous obtenons par énumération, les mesures de Debreu-Farrell relative a chaque techno-

(l)(

logie de production individuelle Q, (7%, ;). Il est a noter que EM(zt yf) = 1.

2.1.2 Performance en Output

La mesure d’efficacité de Debreu-Farrell orientée en output permet d’estimer les gains poten-
tiels de production pour un niveau donné de facteurs. En s’inspirant des travaux de Boussemart et
al. (2009), nous présentons cette mesure selon le modele non-paramétrique CES-CET de Fire et

al. (1988), adapté au concept de rendements d’échelle .

Proposition 5.2 Pour toute unité de production j € J et tout (z*,y") € R7* " avec (o, ) € R2
la mesure de distance de Debreu-Farrell en output selon le modéle CES-CET, peut étre définie de

la maniere suivante :

Eh(zt,y') = sup A [ 2f > ot ZG;-CDQ(QU;-) ,)\tytgfbgl 295@5(3/;) eTlsp.
AZ0 JjeTJ JjeJ

(5.5)

Le programme d’optimisation non-paramétrique associé a cette définition est le suivant :

Eh(2',y") =max \

s.C. ot >t (Z 9§<I>a(x§)>

JjET
Nyt <@t (Z 9§%<y§>>
JjET
ALOE >0 .

Par un changement de variable tel que A* = (\!)?, le programme ci-dessus devient linéaire et,
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caractérisé par :

[EH (2", y")]" = max Af
s.c. P, (2') > Zﬁj»(l)a(xz)
JET

ADy(y') <Y 050s(y))
jeJ

AL O >0

Dans le cadre du modele FDH, nous pouvons également obtenir la mesure d’efficacité des
firmes grace a la méthode d’énumération individuelle. Pour tout j € 7, la mesure de Debreu-

Farrell orientée en output de I’observation (z;, y;) est :

E§) (at,yb) = Sup (A (a1, Myp) € Qh (), y5) ) (5.6)
a/B t
xt. ]
= {min il] X |min @ ) (5.7)
i€[m] x;; ren] yl,r

[’évaluation de la performance est faite relativement a la technologie de production indivi-

duelle de chaque entité de production 5 € J. Remarquons que Eto(l) (ah,yb) = 1.

2.1.3 Extrapolation Minimale et Approche Globale

Nous avons vu précédemment que nous pouvons obtenir les mesures d’efficacité radiales de
telle sorte le score de performance est le meilleur possible compte tenu du rendement d’échelle .
Suivant Boussemart et al. (2009), nous présentons dans un premier temps, 1’estimation de mesures
de Debreu-Farrell dans le cadre d’un modele FDH global. Suivant les travaux de Boussemart et
al. (2018), nous introduisons, dans un second temps, une approche pour évaluer le rendement

d’échelle v global relatif a I’ensemble des unités de production.

Pour chaque entité de production ;7 € J, soit la technologie de production individuelle

4.5(2%,y%). Lensemble de production FDH global S/, ; est constitué par la réunion de chaque
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technologie individuelle telle que :

Ste = Qhslah uh) - (5.8)
JjeET
Pour tout ensemble A* = {(21,y7), -, (z%,9%)}, si (0,0) € A" alors, S, 4 satisfait les pro-

priétés T'1 — T4 et, vérifie un rendement d’échelle v = «/ 3. Par ailleurs, grace a la définition de
St _g» nous pouvons établir que les mesures de Debreu-Farrell orientées en input et en output de

’observation (z}, y}) € S, s, dans le cadre d’'un modele FDH global, sont respectivement :

yt 1%/ zt
Eﬁ(*)(x’;,yf) = min lmax lr] X |max ;’Z , (5.9
JjeET r€n| yj?" 1€[m] SL’M
ot 19/P Yt
EX) 2!, yf) = max [ | min L X |min 22~ . 5.10
o ( ! yl) JjeTJ ze[m]ﬂf ren] yltr ( )

Les mesures présentées ci-dessus permettent de déterminer les meilleurs scores de performance
en input et en output, de chaque unité de production relativement a 1’ensemble de production
global. Grace a ces derniers, nous pouvons déterminer le meilleur rendement d’échelle global ~*.
Pour ce faire, nous introduisons des indices d’ajustement en input (M) et en output (M) tels que

~7 maximise M et, v, minimise M. Ces deux indices sont définie de la maniere suivante :

My (X,)Y) = maXHEt(* x],yj)
jeJ

ME(X,Y mmHE ],yj
JjeTJ

Deux méthodes d’estimation sont présentées par Boussemart et al. (2018). La premiere consiste
a appliquer la méthode de grille de recherche de telle sorte que les valeurs des parametres « et 3
sont fixées a priori. Dans ce cas, la détermination du rendement d’échelle v* n’est pas incorporé
dans I’estimation de I’indice. La seconde approche permet d’évaluer de maniere endogene le ren-
dement d’échelle v* grace a la méthode de programmation linéaire. Dans cette sous-section, nous

nous intéressons a cette derniere méthode.
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Sachant que v = a/3, I'indice d’ajustement en input défini de maniére détaillée, est :

t 91/ t
; . Yir Lji
M; (X,Y) = max | | min ([max - ] X [max —]) . (5.11)

. . t
Y 7 JET ren] yj,?“ i€[m)] xl,i

La transformation logarithmique de (5.11) s’écrit :

ol relnl Yj,

1 t
In (M;(X,Y)) =max » min <— -In {max yl’r} +In

xt
max —* ) (5.12)
i€[m] xp;

yi?" x;ﬂ
Posons, n = 1/71’ ap; = In MaX,efn] —7— et, bl,j =1In MaXic(m] —7
2 xt.
7,7 l7Z

. De ce fait, I’indice

logarithmique (5.12) devient,
In (M; (X,Y)) = mgxg;rj%%l (n-ay; +biy) - (5.13)

Le programme linéaire associé a (5.13) est alors,

In (M; (X,Y)) = max pRY
e

s.c. AN <n-ap;+ by Vi,j€J . (5.14)

Nous pouvons voir que le programme ci-dessus permet une estimation endogene du parametre
n de telle sorte que le rendement d’échelle vF peut en étre déduit. Etant relativement similaire au

cas d’une orientation en input, nous omettons de présenter 1’indice d’ajustement en output.

2.2 Mesures Directionnelles Non-paramétriques

Dans cette sous-section, nous présentons la notion de rendements d’échelle v dans le cadre
de la fonction de distance directionnelle CES-CET, introduite dans le Chapitre 3. De ce fait, nous
proposons d’estimer le meilleur rendement d’échelle global relatif & un ensemble de firmes grace

a une mesure non-radiale directionnelle.
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2.2.1 Orientation en Input et en Output

Nous avons vu dans le Chapitre 3 que la fonction de distance directionnelle CES-CET (FDD
CES-CET) peut s’inscrire dans un ensemble de production CES-CET suivant une approche non-
paramétrique. En ce sens, la performance de chaque firme est évaluée de maniere linéaire. La FDD
CES-CET orientée en input estime la réduction potentielle des facteurs utilisés pour une quantité
donnée de production tandis que la mesure orientée en output évalue I’augmentation éventuelle de

la production pour un niveau défini d’inputs.

Proposition 5.3 Pour toute unité de production j € J et tout (z*,y") € R7*" avec (o, B) € R% |
tel que g' = (h',0) € R ou g* = (0, k") € R, les fonctions de distance directionnelles CES-CET

orientées en input et en output définies selon le modele CES-CET, sont respectivement :

Dg p(a',y' 1", 0) = sup {5t >0: 2! = §'ht > )t (Z e;.cpa(x;,)) ,
JET

y' < D5 (Z 95»%(115»)) 0" > 0} , (5.15)

JjET

Dfx,ﬁ(wt,yt; 0, k") = sup {5t >0:2' > ! (Z 9;?(1)&(3;;)) :

0 JjeJ
B
y'+ ok < o5t (Z e;cpﬁ(y;)) L0t > 0} . (5.16)
JET
Le programme d’optimisation non-paramétrique relatif a chaque mesure présentée ci-dessus,

peut étre fourni. Cependant, nous présentons uniquement celui de la mesure en input. En s’ inspirant
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des travaux de Boussemart et al. (2009), nous pouvons établir que :

Dy, 5(a',y'5 h',0) =max ¢

s.C. ot = 5tht > P 1 (Z 0§¢a(x§)>

JjET
yt < @yt (Z Hﬁ%(yﬁ-)) (5.17)
JjeT
5.0t >0.

En développant chaque contrainte, nous obtenons :

Dgﬁ(xt, y'; h',0) =max '
5.c. ()™ — (8 (h')* > Y~ 0h(xh)°
€T

(" <> 0y

JjeET
et >0.

En posant A" = (6*)®, nous avons le programme linéaire suivant :

[wa(xt, y's bt 0)}(1 =max A’
5.c. (z)™ = AN (R )* =Y 0h(h)”
JjeET

(" <) o)’ (5.18)

JjET

et >0.

De méme que dans la sous-section précédente et en s’inspirant de Boussemart et al. (2018),
nous proposons de déterminer le meilleur rendement d’échelle v* grace aux mesures de perfor-
mance directionnelles CES-CET. De ce fait, nous proposons également des indicateurs d’ajuste-

ment en input (M} o) et en output (M, ) tels que 77 et v minimisent ces deux grandeurs.
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Ces dernieres sont définies par :

Mj ops (X, Y50, ) = min ) D g(a", 93 1',0), (5.19)
JjeT

M cps (XY, ) manD (z', 4% 0, k). (5.20)
JjeJ

Les rendements d’échelle 7 et v, correspondent aux valeurs de « et 5 qui permettent au plus
grand nombre d’unités de production d’étre efficace. De ce fait, plus la valeur des indicateurs est

faible, plus les observations sont proches de la fronticre efficiente.

Dans la lignée de Boussemart et al. (2009) et Boussemart et al. (2018), nous pouvons égale-
ment inscrire les FDD CES-CET dans le cadre du modele FDH. Rappelons que la technologie de
production FDH individuelle de chaque firme j € J est définie par : Q}, 5(z},y}) = {(z',y") €
R ot > (05t gyt < (08)YPyl 0" >0, € J}. Ainsi, nous pouvons fournir les proposi-

tions ci-dessous.

Proposition 5.4 Pour tout (z',y") € RY™ avec (a, 8) € R%, tel que g' = (h',0) € R, la
mesure de performance directionnelle CES-CET axée sur les intrants selon le modele FDH, de

I’observation (x},yl) est :

B 1/a
. ) 1 N ytr N
D.Y)(x},y}; h',0) = min i ((xfﬂ-) - [max( . ) ] - (at) ) : (5.21)

1€[m] : ren]

Preuve :

Soit la FDD CES-CET orientée en input définie dans le cadre du modele FDH tel que

Dfl(]ﬁ(xl, yl ht0) = sup {5t : (xf ¢ Otht, yf) € QL (5, yj)} En développant cette définition,
5 K

pour tout i € [m] et tout r € [n], nous avons : Dg(fg(xf,yf;ht,()) = s%p {6t : af, ° d'ht >

()Y eah  yf, < (05)YPy! 6" > 0}. Nous pouvons obtenir I'expression de 6" grice a la contrainte

concernant les extrants tel que Dfx(v)(:cl,y“ht 0) = sgp {5t ey ° 8'ht > (05)Yoat ;0 >

t N\ B
Y . . . .
( ir) 0t > 0}. En remplagant 0; par son expression dans la contrainte relative aux intrants,
yj r
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1/
1 tr B
nous obtenons, Dt(J)(:cl,yl7 ht,0) = m[m} [ﬁ ((l’t )Y = [max (yfs ) ] ' (fcﬁz)“>

Proposition 5.5 Pour tout (z',y") € RT™ avec (o, 3) € R2, tel que ' = (0,k') € R", la
mesure de distance directionnelle CES-CET orientée en output selon le modele FDH, de toute

unité de production (z!,y}) est :

DY) (zf,yl; ', 0) = min L min i ) (Yt )P = (y)P " (5.22)
B\ I refn] | Kt \ Lietm) \ @, g b ' '

N2

La preuve de cette proposition étant similaire a celle de la Proposition 5.4. Ainsi, elle est omise.

Les indicateurs d’ajustement relatifs au modele FDH deviennent alors,

1/
1 t B
Mj cps (X,Y50,8) = miny min | <<x§,z~>“— [max (yi) ] -(sc;,i)a> , (523)
leg

1 i\ /8
MtO,CES (X7 Y7 Oé,ﬁ) = min min E <|:an€[17111} <T7Z) } ’ (y;',r)ﬁ - (y;,r)ﬁ) ] : (524)

T e e |

2.2.2 Relations d’Equivalence

Boussemart et al. (2009) établissent des relations d’équivalence entre la fonction de distance
hyperbolique et les mesures de Debreu-Farrell lorsque 1’ensemble de production satisfait un rende-
ment d’échelle . Ils démontrent qu’un lien existe également entre les mesures de Debreu-Farrell
et la fonction de distance généralisée de Chavas et Cox (1999). Nous démontrons dans cette sous-
section que sous I’hypothese d’un rendement d’échelle 7, il existe des relations d’équivalence entre
les mesures radiales usuelles et la FDD CES-CET . Par ailleurs, nous montrons que les mesures
directionnelles CES-CET orientées en input et en output sont liées lorsque la technologie de pro-

duction vérifie cette hypothese.

Rappelons que dans le cadre de la technologie de production CES-CET, les fonctions de dis-
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tance de Shephard orientées en input et en output sont respectivement :

t
Dz, y) =sup N [ Syt ) €T,
A At
t
Dy (', y") = iI)\lf {)\t : <;1:t, %) € Tt} .

Notons que les mesures de Debreu-Farrell sont I’inverse des fonctions de distance de Shephard.

Proposition 5.6 Pour tout (z',y") € R7*" avec (o, ) € R2, tel que g* = (2',0) € R ou

g"' = (0,y") € R%, on a les relations suivantes :

[e% « ]_

t t t., .t _ t t t\ __
Da76<x’y7x’0)_1_EI(x’y)_l_Dg(xt’yt)’ (525)
D! s(2', 40,9 = EL (2", y") ? 1= 7z 1. (5.26)

a,f y Y 9 Yy ) Dto(l‘t,yt)

Preuves :

Equation (5.25) : Supposons que D}, s(z*,y';2%,0) = sgp {5t : (:ct 2 5t:ct,yt> € T;ﬁ}. Nous
pouvons factoriser (xt 2 5txt> afin d’obtenir (1 ° 5t> x'. En posant \' = (1 2 5t>, nous avons
D} s(2',y%2",0) = 1 2 irif{)\t (Mt y') € TL 5} Dans ce cas, D}, 5(2',y";2",0) = 1 2

a 1
B2t y) =1 - R O
I )

B
Equation (5.26) : Admettons que D}, 5(z",y%0,y") = Sup {5t : (xt, Yt + 5tyt) € T«i,ﬁ}' En fac-
. B B . B
torisant <yt + 5tyt) par ', nous avons (1 + 5t) y'. De ce fait, si nous posons A = (1 + 5t) ,

B
nous avons D, ;(z',y%0,y") = Sup {A': (', Ny') € T, 5} — 1. Ainsi, nous obtenons effective-

B 1

B
tDt t t.o t:Et t t_l 7—1D

Cette proposition démontre qu’il est possible de déduire les valeurs des fonctions de distance
directionnelles CES-CET orientées en input et en output grace aux mesures de Debreu-Farrell ou
de Shephard. Nous pouvons également €tablir que lorsque 1’ensemble de production satisfait un
rendement d’échelle ~, il existe une relation d’équivalence entre les mesures directionnelles CES-

CET orientées en input et en output.
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Proposition 5.7 Pour tout (z',y") € RT"" avec (a, ) € R2, tel que g* = (2',0) € R7 ou

g"=(0,y") €R%, ona:

-1/
« B
D! (', yh 2t 0) =1 — (D;ﬁ(:ct,yt;o,yt) + 1) : (5.27)

e - B
Dl s g0,y = (15 Dl pla’syfia',0)) = 1. (5.28)

Preuves :

Equation (5.27) : Pour tout (2!, y*) € RT™™, on sait que (2!, ES (2, y')-y') appartient a la frontiere
efficiente de I’ensemble de production. Par ailleurs, si la technologie de production est homogene
de degré ~ alors, (\z!, \E} (2, y") - y') appartient également a cette frontiere. On peut établir
que I'unité de production (z* 2 D, s(z',y" 2",0) © 2, y") appartient également a cette derniere.
De ce fait, on peut affirmer que (Az', \"E§ (2%, yf) - y*) = (2t ° D}, 5(zt, y% 2", 0) © 2, y") tel
que A =1 2 D!, s(x', yt 2", 0) et NVEG (2!, y') = 1. En remplagant A par son expression dans la
derniere égalité, nous obtenons 1’équation (5.27) L.

Equation (5.28) : Pour (E%(z",y") - 2*,y") € R} appartenant a la frontiere de production effi-
ciente, si I’ensemble de production est homogene de degré  alors, (AE% (2!, y') - %, \Vy") repose
également sur cette frontiere. Par ailleurs, on peut statuer que (x*,y* i D! s(z 9% 0,9") © yh)
appartient a cette derniére. Ainsi, on a (AE4 (2!, y') - 2, \y') = (2, ¢/ i D! (=", 40,4 ©y')
avec AEt (2!, y') =let AV =1 —f— D}, 5(z*,y%0,y"). En remplagant A par son expression dans la

premiere égalité, on obtient (5.28) L.

2.2.3 Orientation dans le Graphe

Nous avons vu précédemment la notion de rendements d’échelle v dans le cadre des mesures di-
rectionnelles CES-CET orientées en input et en output. Dans cette sous-section, nous inscrivons la

FDD CES-CET orientée dans le graphe, dans ce concept et selon une approche non-paramétrique.

Proposition 5.8 Pour toute unité de production j € J et tout (z*,y") € RT™" avec (o, B) € R2,

tel que g' = (h', k'), la fonction de distance directionnelle CES-CET orientée dans le graphe selon
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le modele CES-CET est définie par :
Dy, g’ y' h! K = sgp {(V >0:2 = §tht > P! (Z 0§<I>a(x§)> ,
JjET

B
Yt + 0k < 9yt (Z 9§q>5(yt)> L0 > 0} . (5.29)

JjeJ

Le programme associé a cette définition est présenté ci-dessous :

Dfm(xt, y' bt k') =max 6

s.C. ot = 5tht > P 1 (Z HE(I)Q(:E?))

JjET
B
y'+ o'k < @3 (Z 9§q>5(yt)> (5.30)
JjeTJ
6,0">0.

Grace au Chapitre 3, nous savons que ce programme d’optimisation ne peut étre estimé de
maniere non-paramétrique et linéaire que si et seulement si, « = = s. Cette contrainte signifie
que la technologie de production vérifie un rendement d’échelle constant puisque v = 1. Dans ce
cas, le programme (5.30) peut devenir linéaire grace a un changement de variable.

En ce sens, afin de déterminer un rendement d’échelle ~ pour tout (cv, 3) € R3 ,, nous propo-
sons une mesure de distance directionnelle CES-CET mixte orientée dans le graphe. Cette derniere
est définie ci-dessous.

Définition 5.9 Pour tout (z',y") € R}™™ et tout (o, ) € R2 . tel que g* = (h', k') € RT™™,
Papplication M D}, ; : R x RP"™ — R U {oo} définie par :

sups {092 05 (051 (@a(a) — 6'0a(h)), @5 (@a(yf) + 5D (KY))) € T, 5}
MD{ (a3 ') = si (01 (@alat) = 8'0a(h)), @51 (D(y') + ' D)) NTL 5 # 0

(5.31)

est la fonction de distance directionnelle CES-CET mixte orientée dans le graphe.

Cette mesure peut étre inscrite dans le cadre d’un modele CES-CET. Ce cas est décrite dans la
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proposition ci-dessous.

Proposition 5.10 Pour toute unité de production j € J et tout (z*,y") € R avec (o, B) €
R? | tel que g' = (h', k') € R, la fonction de distance directionnelle CES-CET mixte orientée

dans le graphe, définie selon le modele CES-CET est caractérisée par :

MD, 4(z',y"; g') = sup {5t >0: 0" (Po(a') — 0'Pa(h)) > .1 (Z e;cba(x;)) ,
9

jeJ

O 1 (Da(y) + 6" @p(k")) < @5 (Z 0§¢B(y§)> L0 > 0}. (5.32)
jEJ
Il est évident que cette optimisation peut étre évaluée suivant la méthode de programmation

linéaire. Le programme associé a cette définition est la suivante :

MDY}, g(x*,y"5 ' k') = max

s.c. (xh)> =o' (R")* > 37 05(af)”
i (5.33)
(y')7 + 0" (k") < 37 04(yh)°
JjeJ

50> 0.

Les mesures de performance obtenues dépendent des valeurs des parametres « et 3. Ainsi, on
peut en déduire la valeur du meilleur rendement d’échelle ~*, a I’aide d’un indicateur d’ajustement

orienté dans le graphe. Cette mesure d’ajustement est définie de la maniere suivante :

MgES(X, Y;«, ) = min E MD(’;B(:ct,yt; h', kt). (5.34)
,y b
jeJ

Le meilleur rendement d’échelle v* correspond aux valeurs de « et de S qui minimisent la valeur de

(ML g)- En ce sens, la valeur de ces paramétres permettent au plus grand nombre d’étre efficace.

3 Rendements d’Echelle Spécifiques

Dans la premiere section, nous considérons qu’une modification dans les mémes proportions

des quantités de facteurs implique un changement homogene de la production d’outputs. Cepen-
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dant, il est possible que chaque input soit augmenté ou réduit différemment et que I’impact sur
chaque produit de tout changement du niveau des intrants, soit différent. Cette section est dévouée
a ’analyse de ce cas. Par ailleurs, nous I’appliquons aux mesures étudiées dans la section précé-

dente.

3.1 Principes et Mesures de Debreu-Farrell

Tout d’abord, nous exposons les principes relatifs aux rendements d’échelle spécifiques, en
I’intégrant dans la logique des rendements d’échelle globaux présentés précédemment. Ensuite,
nous analysons les mesures de Farrell axées sur les inputs et les outputs dans le cadre de cette

nouvelle notion de rendements d’échelle.

3.1.1 Généralités

Dans cette sous-section, nous proposons une définition plus générale de la notion de "techno-
logie homogene de degré 4" !, évoquée dans la premicre section. Nous montrons également que
I’ensemble de production CES-CET vérifie cette propriété. Enfin, nous déduisons les rendements

d’échelle spécifiques inhérents a ce concept généralisé.

Définition 5.11 Pour tout (z*,y") € R et tout (o, ) € RTT", la technologie de production T*

est homogeéne de degré vy si, quel que soit \ > 0, (z*,y) € T implique que (\"/*xt, \'/Byt) € T,

Preuve : On sait qu'un technologie 7" est homogene de degré v si pour tout (zf,y") € T" et
si quel que soit 41 > 0 on a, (uzt, uy*) € T Posons p = A'/®. Ainsi, puisque v = /3 nous
avons, (uz!, Wy') = (AVez!, (AV*)*/Fy") Donc, (pz', p0y") = (AY*z!, \1/Py"). Par conséquent,
(Mgt AVByt) € Tt [,

Nous pouvons montrer que I’ensemble de production CES-CET satisfait cette propriété.

Proposition 5.12 Pour tout (z%,yt) € RT*" et tout (a;, B, )RT{"™ avec i € [m] et r € [n], si

(xta yt) € Téﬁ alors ()\1/0‘1’1*2;’ Al/ﬁryi) c Té,ﬁ-

1. Nous faisons référence a la notion d’ "homogénéité de degré " introduite par Lau (1978). Afin d’éviter tout
confusion par rapport aux notations, nous décidons de désigner le concept comme étant I’ "homogénéité de degré v".
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Cette proposition indique que la technologie de production CES-CET est homogene de degré

~ suivant la nouvelle définition 5.11.

Preuve :
Nous savons que pour toute unité de production j € J tel que les parametres (o, 3,) € R}'["

soient propres a chaque input ¢ et a chaque output r alors, I’ensemble CES-CET est définie par :

1/0y 1/Br
Ty 5@ yr) = {(ﬁ&/i) € R 1 af > (Z 9;(@,0”) Yy < ( > 9;,@;»@) 0" >

JjeJ JjeJ

0 p. Ainsi, pour tout A > 0 on a, T ;(A\Vizl XY/Pryl) = ¢ (al,9l) € R o AVeigh >

—

1/ 1/Br
Al/“”( > 5;(5"3,0“") APyl < AWT( > 9;(3/;,7")&) 0> 0} = {(Jfﬁayi) € RY™

jeJ JjeJ

1/0{2' 1/57‘
Aeigt > (ezj)ﬁ;(x;l)a> A Bt < (;A@;(yir)ﬁT) 00 > 0}. En posant pf =
J J

1/
A, nous avons : T2 (\/eaf, \1/5) — {<x§,y:> € RI™: AVergt > ( -%u;@;,ﬁ) |
j€

1/Br

APyt < ( > uﬁ-(yﬁ,r)ﬁ“) 0" > 0} 0.
JjeJ

Pour tout (;, 3,) € R*I™, nous pouvons également redéfinir la technologie FDH individuelle

de la maniere suivante :
Lol = {(ah,yl) e Ry ol > (05)Veal gl < (00)/Pryl 0> 0,5 € T}, (5.35)

La proposition précédente nous permet de voir que les parametres relatifs aux inputs et aux
outputs sont spécifiques a chaque composante. Ainsi, il existe m parametres « et n parametres 3.
Ces derniers permettent de définir les rendements d’échelle spécifiques de sorte qu’une modifica-
tion d’'une composante du vecteur d’inputs impacte différemment chaque composante du vecteur

d’outputs.

Proposition 5.13 Pour tout (o, 8,) € R" tel que ;, = /B, I'unité de production satisfait
localement :

— un rendement d’échelle croissant si 7, , > 1,
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— un rendement d’échelle constant si vy; , = 1,

— un rendement d’échelle décroissant si v; , < 1.

vir > 1 signifie qu’une augmentation dans une proportion de la quantité d’input ¢ contribue
a une augmentation plus que proportionnelle de la production d’output 7. Pareillement, v, , = 1
indique qu’une modification du niveau de facteur ¢ utilisé, induit un changement proportionnel du
niveau de I’output 7. Enfin, lorsque ~; , < 1 alors, une variation du niveau de I'input ¢ provoque

une modification moins que proportionnelle de la production 7.

3.1.2 Mesure de Debreu-Farrell en Input

Cette sous-section nous permet d’appliquer la notion de rendements d’échelle spécifiques a
la mesure de Debreu-Farrell en input. Nous présentons dans un premier temps, cette fonction de
distance dans un ensemble de production CES-CET puis, dans un second temps, dans le cadre

d’une technologie FDH.

Proposition 5.14 Pour toute unité de production j € J et tout (z,y’) € RT" avec (ay, 5,) €
R'Y1", la mesure de Debreu-Farrell en input peut étre définie selon le modéle CES-CET, de la

maniere suivante :

E}(mf,yﬁ) = inf ¢\ )\tng > q);il Z 9§q)ai(x§',i) 7yf“ < q)grl Z 9§q)ﬁr(y§,r) 79t >0

A>0 ; ;
jed jed
(5.36)
Cette définition permet d’établir le programme d’optimisation suivant :
Ei(z",y") =min \’
s.c. )\t t Z@t
JjeJ
g, (yh) < Y055, (4),)
JjeJ

N0 > 0.

Ce dernier devient linéaire lorsque «; = -+ = «,,, = «. Posons A" = (A\")®. Ainsi, nous
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avons :

JjeJ
ALOE>0.

Dans ce cas, le rendement d’échelle spécifique ;- devient 7, = «/f,. Ce cas signifie que
chaque composante du vecteur d’inputs est modifiée de maniere similaire mais chaque production

r est impacté différemment.

Il est également possible d’évaluer cette mesure dans le cadre d’un modele FDH.

Proposition 5.15 Pour toute unité de production j = (1,---,J) € J et tout (2,4} ,) € R}
avec (o, B,) € R'T", la mesure de distance de Debreu-Farrell en input selon le modéle FDH, de

I’observation (x},y) avec | € J relativement a la technologie j s’écrit comme suit :

B (s ut,) = b (N Nal, > (0"l of, < (6)"y),, 00205 € T} (537)

Cette proposition permet de déduire I’expression énumérative de la mesure définie ci-dessus.

Lemme 5.16 Pour tout (o, 3,) € R'[", la mesure de Debreu-Farrell axée sur les facteurs de

Uobservation (xy, y[), relativement a I’ensemble de production global S}, 5, est la suivante :

xt . y; Br /i
Ei(z! .yl ) =min |max [ 2 | x max ( ’r) . 5.38
I( i yl,r) jeT |i€im] xzi ren] y;"r ( )

Preuve : Soit Ef(j)(xf,i,yf’r) = infyso {A': Naf, > (05t yf, < (0)YPyl . 00 >0,5 €

J L. Nous pouvons déduire I’expression de la pondération #% par le biais de la contrainte rela-
p p p ;i P

t Br
tive aux extrants tel que, E1Y) (2, 4t ) = igfo{)\t Nl > (0 Vet 0 > (L) , 0 >
) ) > b k) yj77‘
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1€[m]

b
0,j € j} En remplagant % par son expression, nous obtenons El(])(a:l @ Yi,) = max ( “)

t 6r/az
X max <yir) -Sachant que S’ ; = |J QF, 4(a%,yt) alors, Ef(x};, yf,) = inf {\': (Naf,yf)
refn) \ Y5, i AT \>0

t t Br /i
eSts)= min Eﬁ(J)(xii, Yi ). Ainsi, Ep(x};,y/,) = min [max (%) X max ( ir)

jed | i€lm] \ x[;

L.

Dans ce cas, le résultat obtenu permet de déduire le meilleur rendement d’échelle pour chaque

observation avec v, = «;/[;.

3.1.3 Mesure de Debreu-Farrell en Output

La mesure de Debreu-Farrell axée sur les extrants peut étre estimée suivant la notion de ren-
dements d’échelle spécifiques. Pour ce faire, nous présentons cette fonction dans le cadre d’un

modele CES-CET plus général puis, selon un ensemble de production FDH.

Proposition 5.17 Pour toute unité de production j € J et tout (z,y’) € RT" avec (o, 5,) €
R'71", la mesure de Debreu-Farrell en output selon le modele CES-CET, peut étre définie de la

maniere suivante :

Eo (i, yp) = sup q X' N0t (af ) | A <@gt [ S 0hes, (y),) | 00 >0
A>0 jeT jea

(5.39)

Nous pouvons associer a cette définition le programme d’optimisation suivant :

Eb (2", y") =max \f

s.C. D, (xf) > Ze;q)az(xzz)

JjeJ

g, (Nyp) <> 00, (y5,)
JjeJ

NLOP> 0.

I1 est évident que le programme ci-dessus ne devient linéaire que si et seulement si, ; = - - - =
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B, = 3. En posant A' = (\*)?, nous obtenons le programme linéaire ci-dessous :

[Eto(xt,yt)}ﬁ =max A’
s.c. (xh)* > Zﬁﬁ(le)c“
JET

A(yh)? <N 6y,
jeJ

ALOE >0,

Cette situation signifie que les parametres influencant les intrants sont spécifiques a chaque
composante du vecteur d’inputs tandis que le parametre 3 est unique pour toutes les composantes

du vecteur d’outputs. Ainsi, le rendement d’échelle spécifique ; , devient v; = o /.

Lorsque 8, € R, I’estimation non-paramétrique de la mesure en output selon un modele
FDH, est possible. Rappelons que la technologie FDH individuelle est @}, 5(%, %) et, que I’en-
semble de production FDH global est Sfl, 5

Proposition 5.18 Pour toute unité de production j = (1,---,J) € J et tout (2,4} ,) € R
avec (a;, 3;) € R7T", la mesure de Debreu-Farrell en output selon le modele FDH, de I’observa-

tion (2}, y7) avec | € J relativement a la technologie j, s’écrit comme suit :

B (2t 0t,) = sup (N x> (0l Nyl < (0D)YOyE L 60 >0,j€T}. (5.40)

L’expression énumérative de la mesure de Debreu-Farrell en output relativement a la technolo-

gie de production FDH globale est proposée ci-dessus.

Lemme 5.19 Pour tout (o, 3,) € R7'I", la mesure de Debreu-Farrell axée sur les extrants de

Uobservation (xj, y[) relativement I’ensemble de production S}, 5, est la suivante :
.T; ; /B yt
EL(x! . yf ) = max |min | =2 X min | 225 || . 541
O( i yl,r) jed |ieim x;ﬂ ren] yir ( )

Preuve : Soit Eto(j)(xf’i,yf’r) = Supyso (A ¢t > (9;)1/(1%1;

Lo Nyl < (0)YPryt 68 >0,5 €
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J } Nous pouvons déduire 1’expression de la pondération 9; grace a la contrainte relative aux

t a;
t . xl7' .
extrants tel que, EO(])(fo,yir) = ili}g{)\t 0 < <xtl) , Ny < 05y5,, 00> 0,5 € j}-
= J5%
) .’L‘f ) ai/ﬁr

En remplagant % par son expression, nous obtenons Eto(] )(:cfi,yfr) = Milepm) ( t’l) X

) ) xt .
j7Z

t

. y T

o (—) Pour 5 = U Qlalel ) on o, Fplrtyonf,) = sup (N + (sf, o) €
lr JE e

0 t N @i/Br t
t — L) (b it T Y O S : Ly : Jr
S max Eo" (%14, 9;,). Ainsi, E§(z],;, y/,) = max | min < ) X min

ied | ielm) \ 2% r€ln) yir

De ce fait, dans le cadre d’un ensemble de production FDH global, on peut obtenir les rende-

ments d’échelle spécifiques v, , = /5,

3.2 Mesures CES-CET

Cette sous-section nous permet de présenter les mesures directionnelles CES-CET dans le
contexte des rendements d’échelle spécifiques. Cette notion permet d’évaluer I’influence de la
modification de chaque facteur sur chaque produit, individuellement. En effet, nous supposons
qu’il est possible d’augmenter ou de diminuer les inputs de manieére non-homogene selon les cir-
constances. Par ailleurs, nous admettons que la contribution de chaque intrant a la production de
chaque extrant n’est pas homogene. De ce fait, nous présentons chaque orientation de la fonction

de distance directionnelle suivant cette hypothese de rendements d’échelle spécifiques.

3.2.1 Orientation en Input

Nous montrons que le principe de rendements d’échelle spécifiques peut étre appliqué dans le
cadre d’une mesure directionnelle CES-CET axée sur les facteurs. Pour ce faire, nous la présentons
dans un ensemble de production CES-CET tel que nous pouvons définir un programme linéaire
d’optimisation. Puis, nous la définissons selon un modele FDH de telle sorte que 1’on peut faire

une estimation par énumération de la mesure.

Proposition 5.20 Pour toute unité de production j € J et tout (x!,y') € RT" avec (o, 5,) €

RTI™ et g = (h,0) € RT, la fonction de distance directionnelle CES-CET orientée en input
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selon le modele CES-CET, est définie de la maniére suivante :

Diiﬁr(xg,yﬁ; Rt 0) = sgp {5t >0:x - §'hl > @;il <Z 9§¢ai (x§1)> ,
JjeJ

yh <@ (Z 0,0, <y§,r>> 0> 0} . (5.42)
JjeJ
Nous pouvons associer a cette définition non-paramétrique de la fonction de distance CES-

CET, un programme d’optimisation. Ce dernier se présente comme suit :

Dy, s, (a",y's ', 0) = max §"
e ()™ = (@) (h)™ = 3 (s )™
JjeJ

(o) < o>

JjET

5.0t >0.

Il est évident que le programme ci-dessus est non-linéaire puisque le parametre o peut étre
différent pour chaque intrant. De ce fait, cette optimisation n’est linéaire que si et seulement si,
a; = -+ = a,, = a. Dans ce cas, en posant A’ = (§")*, nous pouvons obtenir le programme

linéaire suivant :

[Déhﬁr (", y"5 1, O)P =max A’
s ()" = AR = D05 (f)°
JjeJ

W <> 0yt

JjET

80" >0.

Dans ce contexte, le rendement d’échelle spécifique se présente comme suit : v, = «/f,. En
effet, cette expression signifie que les inputs sont modifiés de maniere homogene tandis que I’in-

fluence de chaque facteur sur chaque extrant est différent.
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Nous pouvons également exprimer la mesure CES-CET orientée en input dans le cadre d’un

modele FDH. Dans ce cas, il est possible de déduire I’expression énumérative de la fonction.

Proposition 5.21 Pour toute unité de production j € J et tout (z';,y},) € R7™" avec (a;, f,) €
R et g = (R,0) € R, la fonction de distance directionnelle CES-CET axée sur les facteurs
selon le modéle FDH, de I’observation (z!,y}) relativement a la technologie j € J, est définie de

la maniére suivante :
Da(j%r(xlwylr’ ht O) = Sl;p {5t >0: ‘r;,i (ﬁ 5thf (et)l/az‘%‘j ) ylr — (0§)1/ﬁry§,r70t > O} :
(5.43)

La solution par énumération de cette mesure est présentée dans la proposition ci-dessous.

Lemme 5.22 Pour tout (2%, y%,) € RY™ et tout (a;, 5,) € RTT" avec g* = (ht,0) € R, la
mesure directionnelle CES-CET axée sur les intrants pour I’observation (xz},y}), relativement a

[’ensemble de production S B est la suivante :

1/Bi
1 t Br
Dy, (%14 Yi,p3 hi, 0) = max | min — [(fUtz)m - <max <yi7r) ) (xjr)%] . (544

j€J \ i€[m] ht

Preuve : Soit Dt(]) (@, yts bt 0) = sups {6 > 0 ¢ 2l — 5tht > (05t yt < (05)Y5yt

ot > 0}. La contrainte relative aux outputs permet de déduire 1’expression de la pondération «9}
t Br

tel que Da( )B (at,yt; bt 0) = sup {6t > 0: 5tht > (0h)Veiat 0L > (%) 0t >

i vi =
Yjr
O}. En remplacant «9} par son expression dans le contrainte relative aux inputs, nous obtenons :

18,
1 .
DY, (at,yts ht,0) = minepy 7 [(xf,i)c” — <maxre[n1 (yl ) ) (ﬂfir)"i] .Comme S}, ; =

j7r

gj@fm(x;,y;) alors, nous avons D} 5 (xf,y.;hi,0) = I?%;(Dofjigr(xl,yr,hf,O). Donc,
J

B 1/Bi
1 . Yi, N
Dt ('levylrﬂh't 0) = max;jcy | miniep, ht [( t,i) t = (maxre[n] <yt7 ) ) <~”€§r) ] 0.

j7r

Dans ce cas, nous avons bien une estimation globale des rendements d’échelle spécifiques avec

Yigr = ai/ﬁr.
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3.2.2 Orientation en Output

Nous présentons la mesure CES-CET orientée en output dans le contexte des rendements
d’échelle spécifiques. Nous la définissons successivement dans le cadre plus général du modele

CES-CET puis suivant un ensemble de production FDH.

Proposition 5.23 Pour toute unité de production j € J et tout (zt,yt) € R7*" avec (s, 5,) €
R et g' = (0, kL) € R, la fonction de distance directionnelle CES-CET axée sur les extrants

selon le modele CES-CET, est définie de la maniére suivante :
Dy, 5, (25,90, k) = sgp {(V >0:2) >} <Z 0§¢ai(x§7i)> ,
JjeET

BT
yr + 0k, < @5 (Z 0P, (y;»,r)) 0" > 0} . (5.45)

JjeT

Le programme d’optimisation associé a cette définition est la suivante :

Dt s (a',4%0,k') = max o'

s.c. (2h)™ > Zﬁj(xzz)o"

JjET
t\Br t\Br ( 1.t \ Br t/ t \Br
(yr)ﬁ + (5 )B (kr)ﬁ S Zej<yj,r>5
JjeJ
6,0t >0.
Cette optimisation devient linéaire si et seulement si, 51 = --- = 3, = [ tel que nous obte-

nons :

(D!, 5 (2,44 0,k"))” = max A*
o e

JjeET
() + AR <30 (yt,)°
JjeET
5.0t >0.
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Ainsi, les rendements d’échelle spécifiques deviennent ; = «; /3. Cette expression signifie que
chaque facteur de production est modifié différemment tandis que leur impact sur chaque extrant

est homogene.

Proposition 5.24 Pour toute unité de production j € J et tout (z';,y,) € RT™" avec (a;, f,) €
RTI™ et g' = (0,k%) € R, la fonction de distance directionnelle CES-CET orientée en output
selon le modéle FDH, de I’observation (!, y}) relativement a la technologie j € J, est définie de
la maniére suivante :
; Br
DY), (al;,yt,5 0,k = sup {5t >0:af, > (052l yp, + 6'kL < (00)Pryl 600 > 0} .

(5.46)

Cette définition permet d’obtenir I’expression énumérative de la mesure.

Lemme 5.25 Pour tout (z;,y%,) € R et tout (ay, 8,) € RTT" avec g* = (0,k}) € R, la
mesure CES-CET axée sur les extrants de I’observation (x},y}), relativement a chaque I’ensemble

de production FDH globale Sf)h s est la suivante :

r

(677 1/67"
1 ) xfz
D'ay, By ()1, 43 0, ky) = max <f}g;}5 I K% (x) ) (v,)" = (ymﬁf] ) . (547)

Br
16 = 7,00 yir + 525]{:722 <

Preuve ; Soit DIV (¢l 0t 0.K) = sup, {‘5t >0, > (0)
(9§)1/ Pr y;-,r, 0t >0 } L’expression de la pondération 0; peut étre déduite de la contrainte concer-
t Qg
. . t y xl7
nant les intrants. De ce fait, nous avons : D Oé(z])ﬁr (:cfl, yfﬁ 0, k!) = sup; {5t >0 9;, < (TZ) ’
]72

Br
yh, + OkL < (0)YEyL L0t > 0}. En remplagant ¢ par son expression, nous obtenons :

% 1/Br
. 1 :L't . o
¢ . . 1, 3 . .
DY (i yf,i 0,k = mingepy o [(rg[gl] (f) ) (5, — (yi,.)° } . Puisque
r 7,0
D}, 5 (2135 91,50, k) = max D;(f,)ﬁr (1.4, Y1, 0, kL) alors, nous pouvons exprimer la fonction comme

Qg 1/6r
) 1 ) iy
suit : D' (z];, 97,50, kL) = mex (Iréffj W [(Ig[g}} <g> )(yﬁ,r)ﬁr - (yi,«)‘”] ) .
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Par cette méthode d’estimation énumérative, nous avons les rendements d’échelle spécifiques

Yir = O‘i/ﬁr'

3.2.3 Orientation dans le Graphe

A présent, nous introduisons la fonction de distance directionnelle CES-CET orientée dans le
graphe dans le contexte des rendements d’échelle spécifiques. Pour ce faire, nous la définissons

successivement dans le cadre du modele CES-CET puis selon le modele FDH.

Proposition 5.26 Pour toute unité de production j € J et tout (z,yt) € R7*" avec (a4, 5,) €
RTT™ avec g' = (hi, kL) € RT™™ | la fonction de distance directionnelle CES-CET orientée dans

2 °r

le graphe selon le modéle CES-CET, est définie de la maniére suivante :
D, 5, (abo i ' K) = sup {cv >0 af = 30 > g (Z Hz»%xxz,i)) ,
JjeJ

Br
yl+ o'kl < @5 <Z 0Dy, (yir)) 00 > 0} . (5.48)

JjeT

Nous pouvons associer un programme d’optimisation a la proposition ci-dessus. Il se présente

comme suit :
Dy, 5, (", 9" 0, k") = max ¢’
tyoy o (1 t\ to .t i
S.C. (z1)™ = (6") (hy)™ > Zej(xj,i)a
jeT
t\Br t\Br ( 1.\ Br tiot \Br
(yr)ﬁ + (5 )B (kr)ﬁ S Zej<yj,r>5
JjeJ
5,0t >0.
Il est évident que ce programme n’est linéaire que si et seulement si, «; = -+ = ,;, = « et,
si et seulement si, 5, = --- = (3, = [ avec a = f. Dans ce cas, nous obtenons un rendement

d’échelle global tel que v = «//3. Afin d’obtenir de maniére non-paramétrique les rendements
d’échelle spécifiques, nous proposons une analyse grace a la fonction de distance directionnelle

CES-CET mixte.
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Proposition 5.27 Pour toute unité de production j € J et tout (x!,yl) € RT" avec (o, 5,) €
R et g' = (hi kL) € RT™™ | la fonction de distance directionnelle CES-CET mixte orientée

27T

dans le graphe selon le modele CES-CET, est définie de la maniere suivante :

Da 5r('rzvyr7h't kt) - Sl;p {5t >0: (I);il ((I) ( >_5t az(ht (Z@t al ,' ) )

JjeT

O (g, () + ' Pg, (KL)) (Z 0'0s, (y! ) 0t > 0} . (5.49)
JjEJ
Dans ce cas, le programme d’optimisation associé a cette mesure est linéaire et se caractérise

de la maniere suivante :

D! (2,450, k") =max o'
s (af) = 8" (h)™ = Y O (af )
JjeET

() + 0" (k)™ < 04(ys,)”
JjeT

5,0t >0.

Grace a cette estimation lin€aire non-paramétrique, nous pouvons déduire les rendements
d’échelle spécifiques, a savoir v; , = «; /S,
Proposition 5.28 Pour toute unité de production j € J et tout (z';,y! ) € RT™" avec (a;, f,) €
R et g' = (bl kt) € RT™™, la fonction de distance directionnelle CES-CET mixte selon le

modele FDH, de I’observation (x},y}) relativement a la technologie j € J, est définie par :

i Vr
é

DI i K) = sup {87 2 0 a0 = )™ 2 B4tat ),
(i) + 8" (k)™ < 0(y;,)™ 0" > 0}. (5.50)
Cette formulation peut étre estimée grace a la méthode de programmation linéaire. Cependant,

contrairement aux mesures directionnelles CES-CET orientées en input et en output, nous ne pou-

vons pas donner une expression énumérative de la fonction mixte orientée dans le graphe. Néan-
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moins, le cadre d’analyse FDH permet de déduire de maniere non-paramétrique les rendements

d’échelle spécifiques tels que 7, ., = a; /[,

4 Illustration Empirique

Dans cette section, nous donnons un exemple numérique relatif aux notions de rendements
d’échelle v, définies dans les sections précédentes. Nous nous intéressons dans un premier temps,
aux rendements d’échelle globaux. Dans un second temps, nous nous concentrons sur les ren-
dements d’échelle spécifiques. Remarquons que notre analyse se base sur la mesure de distance

directionnelle CES-CET.

4.1 Rendements d’Echelle Globaux

Tout d’abord, nous introduisons le cadre d’analyse de notre illustration empirique. Puis, nous

présentons les résultats. Enfin, nous donnons une interprétation de ces derniers.

4.1.1 Cadre d’Etude

Dans cette section, nous utilisons les données agricoles de 12 pays européens, durant la période

2008. Ces données ont également été utilisées dans les chapitres 3 et 4.
Rappelons que la fonction de distance directionnelle CES-CET orientée dans le graphe est
définie de la maniere suivante :
a B
wa (xt,yt; h', kt) = sgp {5t : (:Ct AT 5tkt) € Téﬁ} )
Lorsque g* = (h',0) (respectivement g* = (0, k")) alors, cette fonction est axée sur les intrants
(respectivement sur les extrants). Nous évaluons ces mesures dans le cadre d’une technologie de

production CES-CET tel que la contrainte sur les rendements d’échelle > ._ 6" = 1, est relaxée.

j€T
En effet, Boussemart et al. (2009) ont démontré que cette contrainte est incompatible avec la notion

de rendements d’échelle v que nous étudions dans ce chapitre. Ainsi, selon I’approche DEA, nous
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pouvons caractériser la fonction ci-dessus, comme suit :

1/a
Dgg (2, y's b KY) = P oot Zstht > <Z 9;(37;)&) ;
JjeET

Remarquons que la mesure dans le graphe ne peut étre évaluée de manieére non-paramétrique
que si et seulement si, « = (3. De ce fait, lorsque o # (3, nous proposons d’estimer la fonction de

distance CES-CET mixte ci-apres :

MD, 5 («',y"; b EY) = sgp {5t (x> = 8N > Zﬁﬁ(xz)a,
JjeJ

t t(1.t t(,,t t
(y )B + 0" (k )B < Zej(yj)ﬁae > 0} .
JjeJ
Afin de mener a bien notre analyse, nous faisons une comparaison entre les mesures de perfor-
mance axées sur les intrants, sur les extrants et dans le graphe. Par ailleurs, afin de déterminer le

meilleur rendement d’échelle v, nous évaluons les indicateurs d’ajustement suivants :

Mycps(X, Y0, 8) =miny_ Dis(a', ' 1, 0),
JjeET

Mo crs(X,Ysa, ) =miny | Di s(x', 45 0,K"),
JjeJ

Meps(X,Y; . 5) = min > DL gty .
jeT
Nous utilisons la méthode de grille de recherche afin de déterminer le meilleur rendement
d’échelle v*.
Dans notre analyse, nous choisissons successivement les vecteurs de direction ¢' = (1,0),

g =(0,1) et g* = (1,1). De plus, les paramétres prennent successivement les valeurs suivantes :

a| 122 34 1 32 7/4
g 12 3/4 1 372 74
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4.1.2 Résultats

a=0,5; a=0,5; a=0,5; a=0,5; a=0,75 a=0,75 a=0,75 «a=0,75
B8=0,7 =1 =15 pB=1,7 B=0,5 =1 B=1,5 B=1,75
Orientation en inputs
Rép. Tchéeque 373,98 761,18 1246,67 1368,44 0 660,00 1222,46 1355,86
Danemark 238,52 584,60 1098,87 1244,81 125,11 485,47 1059,26 1223,08
Espagne 1438,29 2329,32 3874,71 4474,67 2786,77 3030,21 447421 498342
France 0 0 0 0 0 0 0 0
Lettonie 300,16 439,49 527,23 537,49 20,15 398,76 520,92 535,00
Lituanie 47421 738,77 955,55 990,50 41,98 680,80 943,78 985,06
Luxembourg 18,33 27,74 30,91 31,05 0 22,28 30,56 30,97
Pays-Bas 36,50 123,03 214,13 229,57 0 60,88 194,28 220,27
Slovaquie 272,99 505,56 721,93 760,74 0 421,02 702,21 751,13
Finlande 548,81 867,65 1150,68 1200,93 268,86 809,17 1138,46 1195,07
Suede 356,86 653,58 952,51 1011,89 69,17 566,14 931,32 1001,13
Royaume Uni 0 67,60 511,93 792,54 0 0 402,46 759,28
Orientation en outputs
Rép. Tchéeque 8281,58  94,95-10°% 528-10°9  3,39-1017 0 3928,36 1.50-10°6  2,51-10°07
Danemark 5343,08 71,51-109¢  4,62-109°  3,07-101! 6,98 3402,17 1,29-1096 2,25-1007
Espagne 55470,19  4542-10°°  2,19-1010  1,40-10'2 108,18 24752,98  6,83-10°6  1,09-1098
France 0 0 0 0 0 0 0 0
Lettonie 6511,43  53,81-109%  221.10%°  1,32-1011 0,94 2446,03 6,37-10°  9.87.10°6
Lituanie 11366,02  96,37-10°%  4,09-10%°  2,46-1011 1,38 4098,39 1,17.1096 1,83-1007
Luxembourg 399,60 33939,66 1,30-1098  7,65-1009 0 142,82 3,73-1094  5,71-109°
Pays-Bas 791,02 15,05-109¢  9,00-1098  5,66-1010 0 381,36 2,37-109  4,06.-1006
Slovaquie 7864,29  71,64-10°%  3,16:10%°  1,91-10'! 0 2989,55 9,07-10%% 1,42-1007
Finlande 2046046  13,85-109°  5,19.109°  3,07.1011 28,19 7091,48 1,50-109¢  2,29.1007
Suede 10731,55  94,31.109%  4,22.10%9  2,57-1011 4,72 4459,14 1,21.1096 1,91-1007
Royaume Uni 0 82698,06  2,15-1099  1,95.10'! 0 0 4,92-10%% 1,40-1007
Orientation dans le graphe

Rép. Tcheque 16,30 27,09 35,31 36,99 0 108,27 206,73 223,44
Danemark 12,83 23,51 33,13 35,28 3,91 87,09 184,78 206,69
Espagne 37,08 48,20 62,25 66,89 31,10 402,83 547,03 593,12
France 0 0 0 0 0 0 0 0
Lettonie 14,37 20,39 22,95 23,18 0,88 73,35 108,54 111,18
Lituanie 19,10 27,14 30,91 31,47 1,18 111,76 170,27 175,83
Luxembourg 3,53 5,12 5,56 5,57 0 8,33 12,93 13,12
Pays-Bas 4,97 10,78 14,63 15,15 0 17,40 51,79 57,14
Slovaquie 15,81 22,45 26,87 27,58 0 87,49 136,40 143,48
Finlande 22,90 29,41 33,92 34,65 10,96 149,64 195,98 203,26
Suede 18,22 25,53 30,86 31,81 2,87 109,57 168,58 177,98
Royaume Uni 0 7,99 22,61 28,15 0 0 89,42 144,55

TABLE 5.1 — Mesures de performance directionnelles CES-CET pour « # [ (partie 1)

Les tableaux 5.1, 5.2 et 5.3 présentent les scores de performance des 12 pays européens selon
les valeurs des parametres lorsque v # (3. Ainsi, les grandeurs relatifs a une orientation dans le
graphe sont évalués grace a la mesure de distance directionnelle CES-CET mixte orientée dans le
graphe de la production. Le tableau 5.4, quant a lui, relate les mesures d’efficacité quand o = f3.
De ce fait, les scores orientés dans le graphe sont estimés a travers la fonction de distance direction-
nelle CES-CET, définie dans le Chapitre 3. Les indicateurs d’ajustement relatifs aux rendements

d’échelle v sont exposés dans les tableaux 5.5, 5.6 et 5.7. Ces résultats nous permettent de déduire

le meilleur rendement d’échelle v selon chaque orientation.
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a=1; a=1; a=1; a=1; a=15 a=15  a=15; a=1,5;
=05 pg=0,75 B=1,5 B8=1,75 B8=05 pg=0,7 =1 =17
Orientation en inputs
Rép. Tcheque 214,58 0 1150,06 1315,63 850,82 532,01 0 1127,90
Danemark 493,96 171,46 959,71 1160,19 1106,50 720,74 271,07 958,91
Espagne 4833,24 3750,50 4788,82 5245,49 6348,87 6036,43 5623,29 5486,90
France 0 0 0 0 3348,11 0 0 0
Lettonie 0 124,44 508,16 530,01 0 0 157,22 503,57
Lituanie 0 212,88 918,12 973,20 0 0 288,41 919,34
Luxembourg 0 0 29,42 30,70 0 0 0 27,00
Pays-Bas 0 0 151,98 199,41 135,65 0 0 94,41
Slovaquie 0 0 661,31 731,37 0 0 0 632,71
Finlande 485,46 469,05 1108,57 1180,60 853,02 782,57 776,31 1116,63
Suede 203,34 144,48 884,01 977,13 562,41 427,48 372,92 865,12
Royaume Uni 898,62 0 0 416,89 2604,51 1644,80 0 0
Orientation en outputs
Rép. Tcheque 3,11 0 24536,95 21,16-10%% 5,32 7,77 0 1684,84
Danemark 8,05 29,55 21042,76 18,53-10%4 8,78 11,92 16,07 1966,46
Espagne 74,08 253,04 121697,61  97,17-10%4 41,73 91,53 205,03 9016,16
France 0 0 0 0 16,03 0 0 0
Lettonie 0 10,86 10878,30 84693,31 0 0 6,34 825,30
Lituanie 0 13,70 19816,12  15,78-10%4 0 0 8,79 1341,67
Luxembourg 0 0 638,27 4904,06 0 0 0 50,41
Pays-Bas 0 0 3293,27 31859,35 1,08 0 0 170,95
Slovaquie 0 0 15107,31  12,18-10%4 0 0 0 1030,19
Finlande 13,64 80,30 26647,11 19,86-1004 8,38 17,78 49,19 2247,48
Suede 4,73 28,16 20732,43 16,36-1004 5,25 9,17 21,65 1631,88
Royaume Uni 14,50 0 0 66603,97 20,67 27,21 0 0
Orientation dans le graphe

Rép. Tcheque 3,07 0 1113,88 1315,58 12,28 21,63 0 25943,27
Danemark 7,93 27,40 919,48 1152,97 26,01 41,09 63,50 25069,82
Espagne 73,02 239,89 4786,33 5245,32 269,42 874,11 2917,11 32,11-10%4
France 0 0 0 0 64,18 0 0 0
Lettonie 0 10,30 487,05 526,81 0 0 15,86 8345,95
Lituanie 0 13,02 903,16 973,16 0 0 25,92 18435,51
Luxembourg 0 0 28,16 30,50 0 0 0 104,15
Pays-Bas 0 0 145,27 198,17 1,12 0 0 650,41
Slovaquie 0 0 660,96 731,35 0 0 0 12404,07
Finlande 13,43 74,45 1107,99 1180,56 24,24 74,79 341,96 31003,97
Sueéde 4,66 25,77 883,55 977,10 12,03 27,72 99,99 22604,74
Royaume Uni 14,27 0 0 414,29 93,94 141,66 0 0

TABLE 5.2 — Mesures de performance directionnelles CES-CET pour « # [3 (partie 2)
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a=1,75; a=1,75; a=1,75; a=1,75
6=0,5 B8=0,75 s=1 B=1,5
Orientation en inputs

République Tcheque 1060,48 828,10 453,72 212,51
Danemark 1266,39 990,39 459,89 489,91
Espagne 6562,88 6388,46 6185,01 5376,10
France 4130,76 2480,35 0 0
Lettonie 0 0 0 397,02
Lituanie 0 0 0 673,65
Luxembourg 0 0 0 0
Pays-Bas 228,47 0 0 0
Slovaquie 0 0 0 0
Finlande 972,64 884,49 880,41 944,09
Suede 704,09 543,66 498,68 512,81
Royaume Uni 2914,95 2420,14 923,45 0

Orientation en outputs
République Tcheque 5,24 8,45 9,54 55,72
Danemark 8,18 12,01 10,47 161,91
Espagne 34,06 67,72 133,37 729,68
France 15,65 18,97 0 0
Lettonie 0 0 0 62,54
Lituanie 0 0 0 88,87
Luxembourg 0 0 0 0
Pays-Bas 2,03 0 0 0
Slovaquie 0 0 0 0
Finlande 7,19 13,63 25,87 221,47
Suede 5,01 8,46 13,53 132,31
Royaume Uni 18,82 29,35 21,02 0

Orientation dans le graphe

République Tcheque 18,14 41,90 51,77 1111,47
Danemark 39,52 77,46 60,82 7000,01
Espagne 480,19 1597,93 5227,96  100198,06
France 123,18 172,41 0 0
Lettonie 0 0 0 1360,38
Lituanie 0 0 0 2516,05
Luxembourg 0 0 0 0
Pays-Bas 3,44 0 0 0
Slovaquie 0 0 0 0
Finlande 31,54 96,64 296,34 12110,44
Suede 16,75 41,95 95,32 5048,37
Royaume Uni 170,00 369,92 205,99 0

TABLE 5.3 — Mesures de performance directionnelles CES-CET pour « # [ (partie 3)
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a=0,5 a=0,7 a=1 « a=1,75
=05 pB=0"7 p=1 = B=175

Orientation en inputs

République Tcheque 29,66 180,61 396,92 780,36 921,41

Danemark 19,47 129,99 301,63 635,23 768,56
Espagne 608,93 2083,95 3437,88 5091,49  5552,54
France 0 0 0 0 0
Lettonie 68,00 204,65 316,73 440,97 472,96
Lituanie 106,44 344,32 552,44 796,58 862,46
Luxembourg 0,72 4,10 8,72 16,59 19,40
Pays-Bas 0 0 0 0 0
Slovaquie 20,28 111,60 233,13 435,76 507,19
Finlande 134,84 429,36 683,87 980,11 1059,76
Suede 40,32 193,34 377,31 657,39 749,86
Royaume Uni 0 0 0 0 0

Orientation en outputs

République Tcheque 24,95 108,78 201,68 334,63 377,06

Danemark 37,55 159,70 294,38 490,47 554,46
Espagne 641,02 1432,45 1910,58 2295,62  2363,29
France 0 0 0 0 0
Lettonie 48,78 120,11 167,77 209,86 217,89
Lituanie 66,20 171,04 245,32 317,08 333,34
Luxembourg 1,43 5,39 9,32 14,43 15,92
Pays-Bas 0 0 0 0 0
Slovaquie 36,63 109,72 168,82 232,68 248,61
Finlande 318,26 513,59 594,87 642,77 649,22
Suéde 90,14 231,24 329,70 420,95 439,62
Royaume Uni 0 0 0 0 0
Orientation dans le graphe

République Tcheque 9,53 64,47 147,02 292,99 344,79
Danemark 10,33 84,70 193,66 396,09 472,76
Espagne 244,89 848,91 1392,76  2010,02  2161,03
France 0 0 0 0 0
Lettonie 18,64 71,18 122,30 183,75 199,25
Lituanie 25,29 101,36 178,83 277,63 304,81
Luxembourg 0,40 2,61 5,65 10,91 12,79
Pays-Bas 0 0 0 0 0
Slovaquie 10,80 65,02 123,07 203,73 227,33
Finlande 71,82 272,39 391,35 519,09 553,55
Suéde 21,46 137,04 240,34 368,58 402,00
Royaume Uni 0 0 0 0 0

TABLE 5.4 — Scores d’efficacité CES-CET pour a = 3
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p @ 0,5 0,75 1 1,5 1,75
0,5 1028,66  3312,05 7129,21 15809,89 17840,66
0,75 4058,65 3681,92 4872,82 10144,02 14535,58
1 7098,52  7134,74  6308,63  7489,22  9401,15
15 11285,11 1161991 11160,17 9834,49  8606,09
1,75 12642,65 13040,28 12760,61 1173248 10914,14
TABLE 5.5 — Indicateur d’ajustement en inputs
o
3 0,5 0,75 1 1,5 1,75
0,5 1264,96 150,40 118,12 107,25 96,17
0,75 1272,19-10% 2852,02 415,62 165,39 158,59
1 1102,10-10% 53692,29 3922,43 307,07 213,79
1,5 5396,13-10%7  1585,84-10% 2643,90-10°2  4958,49 1452,51
1,75 34439,18-10% 2609,85-10% 2198,86-10% 19965,33 5199,41
TABLE 5.6 — Indicateur d’ajustement -y en outputs
o
3 0,5 0,75 1 15 1,75
0,5 413,15 50,89 116,36 503,22 882,76
0,75 165,13 1647,68 390,83 1181,01 2398,21
1 247,62 1155,73 279499  3464,34 5938,19
1,5 319,00 1872,46 11035,84 4262,79 129344,78
1,75 336,74 2049,79 12745,84 465720,92 4678,30

TABLE 5.7 — Indicateur d’ajustement -y dans le graphe

4.1.3 Analyse

Tableaux 5.1, 5.2 et 5.3
Nous pouvons noter que lorsque o = 0, 9, seule la France est efficace quelle que soit la valeur prise
par le parametre 3. Cependant, lorsque S = 0, 75 alors, le Royaume-Uni est également performant.
Pour une valeur o = 0, 75, la République Tcheque, la France, le Luxembourg, les Pays-Bas, la
Slovaquie et le Royaume-Uni sont efficaces avec 5 = 0, 5. On remarque que plus la valeur de 3
augmente, moins il y a d’unités de production performantes. De ce fait, lorsque 5 = 1 alors, seuls
la France et le Royaume-Uni ont un score nul. Enfin, pour § = 1,5 et § = 1,75, la France est
I’unique pays performant parmi les 12.

Avec a = 1, la France, la Lettonie, la Lituanie, le Luxembourg, les Pays-Bas et la Slovaquie
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sont les pays efficaces pour une valeur de 3 égale 2 0,5. Lorsque 5 = 0, 75, la République Tcheque,
la France, le Luxembourg, les Pays-Bas, la Slovaquie et le Royaume-Uni ont des mesures d’effi-
cacité nulles. Plus la valeur de 5 augmente moins il existe d’unités de production performantes.
Donc, lorsque 8 = 1, 5 alors, la France et le Royaume-Uni sont les seuls pays efficaces et enfin,
pour 5 = 1,75, la France est I’'unique pays performant.

On constate que lorsque o = 1, 5, la Lettonie, la Lituanie, le Luxembourg et la Slovaquie ont
un score nul avec 5 = 0,5. Quand 8 = 0, 75, la France, la Lettonie, la Lituanie, le Luxembourg,
les Pays-Bas et la Slovaquie sont les pays efficaces. De maniere similaire, pour une valeur de
égale a 1, les pays performants sont la République Tcheque, la France, le Luxembourg, les Pays-
Bas, la Slovaquie et le Royaume-Uni tandis que lorsque 5 = 1,75 alors, seuls la France et le
Royaume-Uni présentent une mesure nulle.

Pour o = 1,75, la Lettonie, la Lituanie, le Luxembourg et la Slovaquie sont les pays per-
formants lorsque § = 0, 5 tandis que la Lettonie, la Lituanie, le Luxembourg, les Pays-Bas et la
Slovaquie sont efficaces pour une valeur de [ égale a 0,75. Quand 3 = 1, la France, la Lettonie, la
Lituanie, le Luxembourg, les Pays-Bas et la Slovaquie sont les pays efficients tandis que lorsque
B = 1,5 alors, la France, le Luxembourg, les Pays-Bas, la Slovaquie et le Royaume-Uni sont les
pays performants.

Nous notons que lorsqu’une unité de production est efficace suivant une orientation, celle-ci
I’est également selon les autres orientations. Ainsi, nous pouvons déduire qu’aucun slack n’existe
pour chaque mesure estimée. Nous pouvons constater que le plus grand nombre de pays (soit 6

pays sur 12) est efficace pour les combinaisons des parametres suivantes :

all0,75] 1 1 15 [1,5]1,75
51 051051075]075] 1 1
v 32243 2 [32] 74 ]

Selon les valeurs des parametres, nous pouvons comparer, de maniere générale en terme de
valeur, les scores d’efficacité relativement a 1’orientation des mesures. Les résultats sont exposés
dans le tableau ci-dessous :

Ce tableau récapitulatif donne une indication quant a la nature du rendement d’échelle qui

permet I’efficacité du plus grand nombre d’unités de production. Suivant les valeurs de « et de /3,
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a<p a <1 || Outputs > Inputs > Graphe
a > 1 || Graphe > Outputs > Inputs
as> B a <1 || Inputs > Outputs > Graphe
a > 1 || Inputs > Graphe > Outputs

on peut supposer que v > 1. Ainsi, on peut présumer que 1’extrapolation minimale est réalisée sous
I’hypothese de rendements d’échelle croissants. Nous pouvons confirmer ou non cette hypothese
grace aux indicateurs d’ajustement en input, en output et dans le graphe. Ceux-ci sont relatés dans

les tableaux 5.5, 5.6 et 5.7.

Tableau 5.4

Nous pouvons constater que lorsque o« = /3, quelles que soient les valeurs prises par ces parametres,
seuls la France, les Pays-Bas et le Royaume-Uni ont un score de performance nul. Ainsi, ces pays
sont efficaces. Nous remarquons également que les scores non-nuls sont moins élevés suivant une
orientation dans le graphe que selon une orientation en input et en output. Par ailleurs, on observe

que plus la valeur des parametres augmente plus les mesures non-nulles croissent.

Tableaux 5.5, 5.6 et 5.7

Nous pouvons constater que lorsque 1I’on évalue les indicateurs d’ajustement orientés en input, en
output et dans le graphe, nous obtenons les meilleurs rendements d’échelle v* suivants : 77 =
1,75 = 7/2 et y* = 3/2. En effet, lorsque « = [ = 0,5 nous avons M;cps = 1028, 66.
Pour a = 1,75 et 8 = 0,5 on a, Mo crs = 96,17. Enfin, si « = 0,75 et B = 0,5 alors,
Mcgs = 50, 89. Ainsi, dans une orientation en input, le meilleur rendement d’échelle est constant
tandis que lorsque les mesures sont axées sur les outputs et dans le graphe, le rendement d’échelle
optimal est croissant. Nous pouvons voir que les résultats fournis par les indicateurs confirment

notre hypothese a savoir, vy > 1.

4.2 Rendements d’Echelle Spécifiques

Cette sous-section nous permet d’illustrer le concept de rendements d’échelle spécifiques. En
effet, I’ impact de chaque facteur sur chaque produit n’est pas homogene. De ce fait, il est pertinent

de connaitre sous quelle hypothese de rendements d’échelle spécifique, I’ensemble des unités de
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production est le plus efficace. Nous présentons tout d’abord I’environnement d’analyse. Puis, nous

montrons les résultats obtenus. Enfin, nous interprétons ces derniers.

4.2.1 Environnement d’Analyse

Dans la lignée de la sous-section précédente, nous utilisons les données agricoles relatives a la

période 2008 concernant 12 pays européens. Nous avons deux facteurs ainsi que deux produits.

Pour tout intrant i € [m] et tout extrant r € [n], la mesure de distance directionnelle CES-CET
dans le graphe, sous I’hypothese de rendements d’échelle spécifiques et, suivant la méthode DEA

est définie comme suit :

1/
Di s (ahyls k) = sup 4 62t = gt > (S0t ) )
J jed
5 1/Br
o< (Saur) oo
JjeJ

Notons que lorsque g* = (R, 0) et g* = (0, k%) alors, la mesure dans le graphe ci-dessus devient

des fonctions de distance directionnelles CES-CET orientées respectivement en input et en output.

Dans le cadre de notre étude, nous analysons uniquement les mesures orientées en input et en
output tels que ¢g* = (1,0) et ¢* = (0,1). Remarquons que la fonction axée sur les intrants ne
peut étre évaluée grace a la programmation linéaire que si et seulement si, a; = -+ = a,, = a.
De maniere similaire, une mesure axée sur les extrants n’est possible grace a la programmation
linéaire que si ; = --- = [, = (. Ainsi, les fonctions de distance directionnelles CES-CET

orientées en input et en output sont respectivement :

1/a
D, (913 14,0) = sup ot Dotz (Y eat)t )
JjET
1/57.
e I PUATN N BN
JjeT
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1/a;
Déiﬁ (SCf, yfw 07 kf«) = Sl;p (St : Jj‘f > (Z ‘9;(56272)(%) ’
JjeJ

1/8

Yl & §kE < (Z 9§(y§’T)6> 08>0
JjeT

Afin de pouvoir déterminer les meilleurs rendements d’échelle, nous évaluons également les in-

dicateurs d’ajustement en input et en output définis auparavant. Ces derniers nous permettent de

déduire les rendements d’échelle spécifiques tel que I’ensemble des unités productives ont le plus

bas score d’efficacité possible.

Comme précédemment, les valeurs prises par les parametres « et 3 sont successivement :

a| 12 34 1 372 7/4
g 172 3/4 1 32 74

Lorsque nous évaluons les mesures orientées en input, nous prenons les valeurs 3 telles que
B1 # P2. De maniére similaire, quand nous estimons les mesures axées sur les extrants, nous

choisissons les valeurs de « telles que oy # .

4.2.2 Résultats

Les scores d’efficacité orientés en input lorsque le parametre o prend successivement les va-

13 .37
leurs {5, n 1, o Z} sont relatés dans les tableaux 5.8, 5.9, 5.10, 5.11 et 5.12. De maniere simi-

) . 13 37
laire, quand S prend successivement les valeurs XL 1, 31
performance orientées en output dans les tableaux 5.13, 5.14, 5.15, 5.16 et 5.17.

, nous présentons les mesures de

4.2.3 Interprétations

Tableaux 5.8, 5.9, 5.10, 5.11,5.12  Nous pouvons constater que certaines unités de production
sont efficientes de manieres récurrentes selon les valeurs de «v. Par ailleurs, d’autres pays possedent
des scores de performance positives similaires par rapport aux valeurs des parametres « et [3,.

Si I’on considere par exemple le tableau 5.8, nous pouvons observer que les mesures d’efficacité
positives sont sensiblement similaires lorsque :

a) B =0,5¢et By € {0,75;1;1,5; 1,75},
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51 0,5 0,5 0,5 0,5 0,75 0,75 0,75 0,75
B2 0,75 1 1,5 1,75 0,5 1 1,5 1,75
Rép. Tcheque 65,34 65,34 65,34 65,34 29,66 394,38 394,38 394,38
Danemark 69,88 73,81 73,81 73,81 19,47 246,57 246,57 246,57
Espagne 1382,67 1643,09 1678,98  1678,98 608,93 2329,32  2636,50 2641,59
France 0 0 0 0 0 0 0 0
Lettonie 117,25 117,25 117,25 117,25 68,00 304,70 304,70 304,70
Lituanie 173,39 173,39 173,39 173,39 106,44 541,27 541,27 541,27
Luxembourg 2,21 2,21 2,21 2,21 0,72 18,44 18,44 18,44
Pays-Bas 0 0 0 0 0 36,50 36,50 36,50
Slovaquie 95,93 95,93 95,93 95,93 20,28 374,51 374,51 374,51
Finlande 523,43 612,67 625,50 625,50 134,84 867,65 944,21 944,21
Suede 210,33 210,33 210,33 210,33 40,32 499,29 501,45 501,45
Royaume Uni 0 0 0 0 0 0 0 0
Mr.cEs 2640,44  2994,02  3042,75 3042,75 1028,66 5612,64 5998,55 6003,64
B1 1 1 1 1 1,5 1,5 1,5 1,5
B2 0,5 0,75 1,5 1,75 0,5 0,75 1 1,75
Rép. Tcheque 29,66 373,98 776,20 776,20 29,66 373,98 761,18 1256,58
Danemark 19,47 309,53 584,60 584,60 19,47 309,53 679,94 1098,87
Espagne 608,93 1438,29  3712,76  3712,76 608,93 1438,29  2329,32 4474,67
France 0 0 0 0 0 0 0 0
Lettonie 68,00 300,16 439,90 439,90 68,00 300,16 439,49 527,33
Lituanie 106,44 474,21 787,76 787,76 106,44 474,21 738,77 972,90
Luxembourg 0,72 19,47 27,74 27,74 0,72 19,47 28,21 30,91
Pays-Bas 0 74,40 123,03 123,03 0 74,40 161,59 214,13
Slovaquie 20,28 272,99 585,66 585,66 20,28 272,99 505,56 753,20
Finlande 134,84 548,81 1132,40  1132,40 134,84 548,81 867,65 1200,93
Suede 40,32 356,86 770,96 770,96 40,32 356,86 653,58 1004,22
Royaume Uni 0 67,60 67,60 67,60 0 166,62 511,93 511,93
M ces 1028,66  4236,31 9008,61 9008,61 1028,66 433533 7677,22 12045,67
51 1,75 1,75 1,75 1,75

B2 0,5 0,75

Rép. Tcheque 29,66 373,98 761,18 1246,67
Danemark 19,47 309,53 679,94 1170,27
Espagne 608,93 1438,29 2329,32 3874,71
France 0 0

Lettonie 68,00 300,16 439,49 527,23
Lituanie 106,44 474,21 738,77 955,55
Luxembourg 0,72 19,47 28,21 30,95
Pays-Bas 0 74,40 161,59 228,12
Slovaquie 20,28 272,99 505,56 721,93
Finlande 134,84 548,81 867,65 1150,68
Suede 40,32 356,86 653,58 952,51
Royaume Uni 0 166,62 540,25 792,54

M. ces 1028,66 4335,33 7705,54 11651,15

TABLE 5.8 — Scores en inputs CES-CET lorsque o = 0,5
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51 0,5 0,5 0,5 0,5 0,75 0,75 0,75 0,75
B2 0,75 1 1,5 1,75 0,5 1 1,5 1,75
Rép. Tcheque 0 0 0 0 1,91 289,04 289,04 289,04
Danemark 129,99 175,03 175,03 175,03 107,51 292,65 309,34 309,34
Espagne 2083,95 2721,88 2958,14 3010,24  2536,91 3030,21  3741,03 3805,99
France 0 0 0 0 0 0 0 0
Lettonie 29,05 29,05 29,05 29,05 50,07 280,38 280,38 280,38
Lituanie 48,19 48,19 48,19 48,19 48,11 454,46 454,46 454,46
Luxembourg 0 0 0 0 0 8,33 8,33 8,33
Pays-Bas 0 0 0 0 0 0 0 0
Slovaquie 4,92 4,92 4,92 4,92 0 291,51 291,51 291,51
Finlande 429,36 692,08 719,97 719,97 268,86 809,17 985,46 994,81
Suede 168,85 168,85 168,85 168,85 67,34 481,36 525,13 525,13
Royaume Uni 0 0 0 0 0 0 0 0
M; ces 2894,30  3839,99 4104,15 4156,25 3080,71 5937,10 6884,67 6958,99
B1 1 1 1 1 1,5 1,5 1,5 1,5
B2 0,5 0,75 1,5 1,75 0,5 0,75 1 1,75
Rép. Tcheque 28,01 180,61 716,47 716,47 67,86 180,61 660,00 1233,43
Danemark 117,12 129,99 543,13 543,13 141,35 129,99 562,78 1059,26
Espagne 2500,49 2083,95 4358,61 4434,31 2582,18 2083,95 3030,21 4983,42
France 0 0 0 0 0 0 0 0
Lettonie 50,41 204,65 414,57 414,57 50,41 204,65 398,76 521,06
Lituanie 48,11 344,32 747,48 747,48 48,11 344,32 680,80 964,32
Luxembourg 0 4,10 22,80 22,80 0 4,10 23,10 30,56
Pays-Bas 0 0 60,88 60,88 0 0 105,80 194,28
Slovaquie 0 111,60 545,24 545,24 0 111,60 421,02 741,65
Finlande 268,86 429,36 1121,54 112991 268,86 429,36 809,17 1195,07
Suede 66,24 193,34 750,39 750,39 67,31 193,34 566,14 992,16
Royaume Uni 0 0 0 0 0 0 402,46 402,46
M ces 3079,25 3681,92 9281,10 9365,17 3226,09 3681,92 7660,24 12317,67
51 1,75 1,75 1,75 1,75

B2 0,5 0,75 1 1,5

Rép. Tcheque 80,23 180,61 660,00 1222,46
Danemark 151,94 129,99 562,78 1139,95
Espagne 2619,78 2083,95 3030,21 447421
France 0 0 0 0
Lettonie 50,41 204,65 398,76 520,92
Lituanie 48,11 344,32 680,80 943,78
Luxembourg 0 4,10 23,10 30,67
Pays-Bas 0 0 105,80 217,83
Slovaquie 0 111,60 421,02 702,21
Finlande 268,86 429,36 809,17 1138,46
Suede 67,87 193,34 566,14 931,32
Royaume Uni 0 0 439,42 759,28

M ces 3287,21 3681,92 7697,21 12081,09

TABLE 5.9 — Scores en input CES-CET lorsque o = 0, 75
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51 0,5 0,5 0,5 0,5 0,75 0,75 0,75 0,75
B2 0,75 1 1,5 1,75 0,5 1 1,5 1,75
Rép. Tcheque 188,38 51,44 106,31 139,86 0 0 0 0
Danemark 230,61 236,43 319,67 353,84 240,15 301,63 376,06 376,06
Espagne 3750,50  3437,88  4014,52  4203,61 4455,15 3437,88  4407,32 4513,87
France 0 0 0 0 0 0 0 0
Lettonie 0 0 0 0 37,41 198,07 198,07 198,07
Lituanie 0 0 0 0 0 264,09 264,09 264,09
Luxembourg 0 0 0 0 0 0 0 0
Pays-Bas 0 0 0 0 0 0 0 0
Slovaquie 0 0 0 0 0 82,62 92,33 92,33
Finlande 469,05 683,87 789,78 809,25 485,46 683,87 1011,11 1021,74
Suede 144,48 177,69 222,59 243,07 190,78 377,31 484,31 484,31
Royaume Uni 333,79 0 0 0,14 0 0 0 0
Mr.cEs 5116,82 4587,31 5452,86 5749,77 5408,94 534546  6833,29 6950,48
B1 1 1 1 1 1,5 1,5 1,5 1,5
B2 0,5 0,75 1,5 1,75 0,5 0,75 1 1,75
Rép. Tcheque 33,37 27,32 542,46 542,46 247,27 121,61 396,92 1171,72
Danemark 278,39 172,57 566,07 566,07 371,04 190,27 301,63 969,48
Espagne 4351,12  3692,64 472945 4932,66  4486,62 3676,33  3437,88 5245,49
France 0 0 0 0 0 0 0 0
Lettonie 42,36 140,46 387,90 387,90 42,36 142,61 316,73 509,71
Lituanie 0 214,89 659,82 659,82 0 214,89 552,44 946,29
Luxembourg 0 0 14,38 14,38 0 0 8,72 29,46
Pays-Bas 0 0 0 0 0 0 0 151,98
Slovaquie 0 0 454,09 454,09 0 0 233,13 718,79
Finlande 485,46 469,05 1096,35  1128,29 485,46 469,05 683,87 1180,60
Suede 188,24 143,41 741,77 741,77 194,47 143,00 377,31 966,05
Royaume Uni 0 0 0 0 0 0 0 0

M ces 5378,95 4860,34 9192,29 942744 5827,23 4957,76  6308,63 11889,57
51 1,75 1,75 1,75 1,75

B2 0,5 0,75 1 1,5

Rép Tcheque 305,19 145,58 396,92 1150,06
Danemark 410,21 198,51 301,63 1054,76
Espagne 4536,49 3686,74 3437,88 4788,82
France 0 0 0 0

Lettonie 42,36 142,61 316,73 508,16
Lituanie 0 214,89 552,44 918,12
Luxembourg 0 0 8,72 29,74
Pays-Bas 0 0 0 194,69
Slovaquie 0 0 233,13 661,31
Finlande 485,46 469,05 683,87 1108,57
Suede 197,24 143,38 377,31 884,01
Royaume Uni 0 0 0 416,89

M. ces 5976,95 5000,75 6308,63 11715,12

TABLE 5.10 — Scores en input CES-CET lorsque o = 1
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B1 0,5 0,5 0,5 0,5 0,75 0,75 0,75 0,75
B2 0,75 1 1,5 1,75 0,5 1 1,5 1,75
Rép. Tcheque 799,69 610,04 390,17 545,25 532,01 532,01 235,62 301,24
Danemark 831,98 573,02 459,89 599,33 720,74 564,10 351,38 428,21
Espagne 6036,43 5623,29  5042,12  5288,04 6197,49 5623,29  5091,49 5327,74
France 980,55 0 0 0 0 0 0 0
Lettonie 0 0 0 0 0 0 0 0
Lituanie 0 0 0 0 0 0 0 0
Luxembourg 0 0 0 0 0 0 0 0
Pays-Bas 0 0 0 7,17 0 0 0 0
Slovaquie 0 0 0 0 0 0 0 0
Finlande 782,57 776,31 886,10 942,10 853,02 776,31 975,78 1014,48
Suede 427,48 372,92 381,80 454,80 554,42 372,92 394,56 443,26
Royaume Uni 2219,78 1473,62 0 169,00 1644,80 1362,63 0 0
Mr.cEs 12078,47 9429,20 7160,07 8005,69 10502,48 9231,26 7048,83  7514,94
B1 1 1 1 1 1,5 1,5 1,5 1,5
B2 0,5 0,75 1,5 1,75 0,5 0,75 1 1,75
Rép. Tcheque 0 0 0 0 366,53 263,29 170,31 916,72
Danemark 381,63 312,00 484,93 484,93 654,60 502,99 371,10 876,72
Espagne 5942,39 5880,31  5091,49  5425,07 6023,21 5843,81  5538,97 5486,90
France 0 0 0 0 0 0 0 0
Lettonie 0 55,01 184,27 184,27 0 114,31 229,77 486,49
Lituanie 0 0 310,57 310,57 0 0 313,12 868,66
Luxembourg 0 0 0 0 0 0 0 22,27
Pays-Bas 0 0 0 0 0 0 0 0
Slovaquie 0 0 101,55 101,55 0 0 0 625,27
Finlande 853,02 782,57 980,11 1096,99 853,02 782,57 776,31 1116,63
Suede 464,01 408,18 635,72 635,72 498,06 410,39 366,47 859,52
Royaume Uni 0 0 0 0 0 0 0 0

M ces 7641,05 7438,07 7788,64  8239,11 839543  7917,35 7766,05 11259,19
51 1,75 1,75 1,75 1,75

B2 0,5 0,75 1 1,5

Rép Tcheque 610,13 492,85 363,39 780,36
Danemark 783,82 578,02 414,85 635,23
Espagne 6075,76 5863,85 5538,77 5091,49
France 0 0 0 0
Lettonie 0 114,31 231,57 440,97
Lituanie 0 0 313,12 796,58
Luxembourg 0 0 0 16,59
Pays-Bas 59,39 0 0 0
Slovaquie 0 0 0 435,76
Finlande 853,02 782,57 776,31 980,11
Suede 519,41 415,15 367,58 657,39
Royaume Uni 0 0 0 0

M ces 8901,54 8246,75 8005,59 9834,49

TABLE 5.11 — Scores en input CES-CET lorsque oo = 1,5
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B1 0,5 0,5 0,5 0,5 0,75 0,75 0,75 0,75
B2 0,75 1 1,5 1,75 0,5 1 1,5 1,75
Rép. Tcheque 1003,59 868,14 390,21 577,63 828,10 828,10 390,21 449,69
Danemark 1013,40 827,94 407,95 595,41 990,39 819,97 359,85 456,39
Espagne 6388,46 6185,01 5376,10  5514,65  6494,49 6185,01 5376,10  5531,43
France 2970,01 0 0 0 2480,35 0 0 0
Lettonie 0 0 0 0 0 0 0 0
Lituanie 0 0 0 0 0 0 0 0
Luxembourg 0 0 0 0 0 0 0 0
Pays-Bas 0 0 0 0 0 0 0 0
Slovaquie 0 0 0 0 0 0 0 0
Finlande 884,49 880,41 910,90 965,31 972,64 880,41 940,47 1013,66
Suede 543,66 498,68 438,43 481,77 697,62 498,68 442,83 480,83
Royaume Uni 2646,14 2226,21 0 0 2420,14 2185,54 0 0
M; ces 15449,75 11486,38  7523,58  8134,77 14883,72 11397,70  7509,46  7932,00
B1 1 1 1 1 1,5 1,5 1,5 1,5
B2 0,5 0,75 1,5 1,75 0,5 0,75 1 1,75
Rép. Tcheque 453,72 453,72 390,21 194,19 0 0 0 488,15
Danemark 459,89 459,89 247,53 303,06 695,14 551,86 447,81 768,56
Espagne 6307,69 6307,69  5376,10 555254  6302,68 6220,55  6085,64  5552,54
France 0 0 0 0 0 0 0 0
Lettonie 0 0 0 0 0 16,40 212,59 464,28
Lituanie 0 0 0 0 0 0 165,62 778,60
Luxembourg 0 0 0 0 0 0 0 16,82
Pays-Bas 0 0 0 0 0 0 0 0
Slovaquie 0 0 0 0 0 0 0 500,52
Finlande 972,64 884,49 944,09 1059,76 972,64 884,49 880,41 1059,76
Suede 594,52 543,12 512,81 549,53 622,29 517,58 484,96 749,86
Royaume Uni 923,45 923,45 0 0 0 0 0 0

M ces 9711,90 9572,35  7470,73 7659,08  8592,75 8190,88  8277,03 10379,10
B1 1,75 1,75 1,75 1,75

B2 0,5 0,75 1 1,5

Rép. Tcheque 575,50 476,39 362,93 311,94
Danemark 861,46 666,66 539,46 489,91
Espagne 6351,37 6238,05 6085,42 5376,10
France 0 0 0 0

Lettonie 0 16,40 218,44 397,02
Lituanie 0 0 165,62 673,65
Luxembourg 0 0 0 0
Pays-Bas 0 0 0 0
Slovaquie 0 0 0 0
Finlande 972,64 884,49 880,41 944,09
Suede 649,66 525,04 487,56 512,81
Royaume Uni 0 0 0 0

M ces 9410,62 8807,03 8739,83 8705,53

TABLE 5.12 — Scores en input CES-CET lorsque v = 1, 75
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(o351 0,5 0,5 0,5 0,5 0,75 0,75 0,75 0,75
g 0,75 1 1,5 1,75 0,5 1 1,5 1,75
Rép. Tcheque 0 0 0 0 16,01 0,17 1,27 1,42
Danemark 18,16 25,94 279,57 471,85 37,76 53,57 515,70 1121,56
Espagne 680,02 862,76 913,40 882,94 636,08 1876,02 2354,75 2383,70
France 0 0 0 0 0 0 0 0
Lettonie 3,36 0 0 0 33,03 0 0 0
Lituanie 6,34 2,76 0,75 0,47 40,96 0,03 0 0
Luxembourg 0 0 0 0 1,43 0 0 0
Pays-Bas 0 0 0 0 0 0 0 0
Slovaquie 0 0 0 0 26,16 0 0 0
Finlande 170,19 150,87 292,93 369,77 278,49 179,35 419,40 547,93
Suede 13,48 13,00 40,48 56,34 67,35 18,42 64,61 92,06
Royaume Uni 0 35,78 202,78 218,07 0 140,11 2425,71 2849,84
Mo cEs 891,56 1091,10 1729,91 1999,43 1137,27  2267,67 5781,43 6996,51
(o351 1 1 1 1 1,5 1,5 1,5 1,5
g 0,5 0,75 1,5 1,75 0,5 0,75 1 1,75
Rép. Tcheque 12,69 0 22,77 28,98 0,82 0 13,38 190,18
Danemark 37,80 18,24 606,20 1315,95 37,55 18,33 76,70 1448,80
Espagne 627,13 1223,27 8602,45 8645,08 605,07 1262,20 7274,57 111171,81
France 0 0 0 0 0 387,92 3480,93 4122,17
Lettonie 26,96 0,22 0 0 21,59 0,03 0 0
Lituanie 0 0 0 0 0 0 0 0
Luxembourg 1,43 0 0 0 1,22 0 0 0
Pays-Bas 0 0 0 0 0 0,10 1,20 0,71
Slovaquie 0 0 0 0 0 0 0 0
Finlande 251,82 134,64 572,92 795,32 220,96 115,16 183,79 992,00
Suede 55,86 8,58 93,70 135,97 45,69 5,63 22,84 260,41
Royaume Uni 0 0 5199,03 11503,11 0 0 235,98 28524,05
Mo cEs 1013,71 1384,95 15097,07 2242441 932,89 1789,37 11289,40 146710,13
(o351 1,75 1,75 1,75 1,75

g 0,5 0,75 1 1,5

Rép. Tcheque 0 0 14,95 168,18
Danemark 37,33 25,44 97,57 750,83
Espagne 593,71 1257,77 7337,99 87932,17
France 0 419,64 7389,58 15174,41
Lettonie 12,23 0,02 0 0

Lituanie 0 0 0 0
Luxembourg 1,06 0 0 0
Pays-Bas 0 3,93 11,06 13,41
Slovaquie 0 0 0 0

Finlande 211,46 109,23 182,57 588,85
Suede 43,37 491 22,73 145,59
Royaume Uni 0 0 243,72 8970,17

Mo cEs 899,16 1820,95 15300,17 113743,61

TABLE 5.13 — Scores en output CES-CET pour 5 = 0,5
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ay 0,5 0,5 0,5 0,5 0,75 0,75 0,75 0,75
g 0,75 1 1,5 1,75 0,5 1 1,5 1,75
Rép. Tcheque 155,45 1,12 0 0 405,24 0 0 0
Danemark 159,55 92,74 39,70 112,70 305,63 92,38 99,66 251,12
Espagne 1439,90 1397,42  1276,35 1209,30 1453,92 1382,80 1705,67 1722,08
France 0 0 0 0 0 0 0 0
Lettonie 147,55 53,36 0,41 0 343,81 44,61 0 0
Lituanie 215,26 110,00 25,59 20,51 455,11 47,64 18,11 12,33
Luxembourg 5,39 0 0 0 54,25 0 0 0
Pays-Bas 0 0 0 0 85,53 0 0 0
Slovaquie 153,84 0 0 0 391,64 0 0 0
Finlande 517,62 370,03 245,92 291,18 742,60 354,81 275,93 340,72
Suede 274,41 144,92 46,92 63,25 480,99 119,51 56,71 80,34
Royaume Uni 0 0 0 0 0 0 230,94 485,98
Mo cEs 3068,97 2169,59 1634,89 1696,94 4718,72 2041,74  2387,02 2892,57
ag 1 1 1 1 1,5 1,5 1,5 1,5
g 0,5 0,75 1,5 1,75 0,5 0,75 1 1,75
Rép. Tcheque 403,44 87,03 0 0 185,02 71,33 0 79,87
Danemark 305,63 159,59 130,44 306,61 305,63 158,86 88,09 332,63
Espagne 1452,91 1419,11  2543,45 2654,59 145040 1385,60 1765,32  11287,90
France 0 0 0 0 0 0 0 0
Lettonie 341,62 94,80 0 0 322,73 76,50 10,53 0
Lituanie 202,19 154,67 1,88 0 0 0 0 0
Luxembourg 54,25 5,39 0 0 54,25 5,39 0 0
Pays-Bas 85,53 0 0 0 85,53 0 0 0
Slovaquie 256,61 92,47 0 0 3,57 0 0 0
Finlande 738,69 468,85 310,12 399,85 733,89 407,26 281,20 444,13
Suede 477,85 193,30 67,53 98,19 474,79 155,83 53,78 139,71
Royaume Uni 0 0 471,05 1463,27 0 0 0 2630,53
Mo cEs 4318,72  2675,23 352447 4922,52 3615,82 2260,77 2198,93 14914,77
ag 1,75 1,75 1,75 1,75

Qg 0,5 0,75 1 1,5

Rép. Tcheque 99,65 68,89 0 64,95
Danemark 305,63 158,34 86,07 139,18
Espagne 1449,09 1368,07 1776,86 8988,98
France 0 0 202,40 959,87
Lettonie 214,77 73,49 8,73 0
Lituanie 0 0 0 0
Luxembourg 54,25 5,39 0 0
Pays-Bas 85,53 0 0 0
Slovaquie 0 0 0 0
Finlande 732,35 387,68 261,25 314,78
Suede 474,05 146,51 46,44 84,31
Royaume Uni 0 0 0 747,42

Mo ,.cEs 3415,32 2208,37 2381,74 11299,50

TABLE 5.14 — Scores en output CES-CET pour 5 = 0, 75

254



Mesures d’Efficacité et Rendements d’Echelle Optimaux

[o %51 0,5 0,5 0,5 0,5 0,75 0,75 0,75 0,75
g 0,75 1 1,5 1,75 0,5 1 1,5 1,75
Rép. Tcheque 525,06 336,04 0 0 974,47 248,53 0 0
Danemark 445,47 294,78 69,89 12,10 845,69 294,68 74,68 19,72
Espagne 197596  1933,22  1809,59 1739,87 2131,23  1924,60 1786,38 1715,32
France 0 0 0 0 0 0 0 0
Lettonie 363,77 205,94 55,34 15,19 733,60 202,90 41,90 1,21
Lituanie 537,07 354,04 168,27 95,42 923,78 277,97 103,53 76,42
Luxembourg 41,31 9,32 0 0 184,23 9,32 0 0
Pays-Bas 86,30 0 0 0 387,95 0 0 0
Slovaquie 431,60 276,31 0 0 846,46 205,74 0 0
Finlande 772,77 599,86 376,77 299,00 1177,01 596,66 361,99 281,47
Suede 567,68 390,29 139,42 85,22 971,18 387,17 123,36 77,38
Royaume Uni 0 0 0 0 287,57 0 0 0
Mo .cEs 5746,98 4399,82 2619,28 2246,80 9463,17 4147,56 2491,83 2171,52
i 1 1 1 1 1,5 1,5 1,5 1,5
g 0,5 0,75 1,5 1,75 0,5 0,75 1 1,75
Rép. Tcheque 974,47 481,72 0 0 670,10 470,69 162,48 1,81
Danemark 845,69 445,47 73,19 45,56 845,69 445,47 293,40 62,35
Espagne 2131,23  1968,88  1973,72  2091,75 2131,23  1957,42 187595 3600,66
France 0 0 0 0 0 0 0 0
Lettonie 733,60 331,35 33,58 0 710,03 318,75 127,08 0
Lituanie 579,85 502,63 61,89 49,53 190,49 190,49 190,49 4,74
Luxembourg 184,23 41,31 0 0 184,23 41,31 9,32 0
Pays-Bas 387,95 86,30 0 0 387,95 86,30 0 0
Slovaquie 664,25 392,91 0 0 248,30 248,30 144,78 0
Finlande 1177,01 753,00 353,13 284,01 1177,01 724,82 516,50 296,96
Suede 971,18 524,87 114,75 79,07 971,18 503,28 262,24 93,20
Royaume Uni 287,57 0 0 0 287,57 0 0 196,17
Mo .cEs 8937,03 5528,45 2610,26 2549,92  7803,79 4986,84 3582,25 4255,89
i 1,75 1,75 1,75 1,75

Qg 0,75

Rép. Tcheque 480,79 468,93 155,06

Danemark 845,69 445,47 292,79 59,05
Espagne 2131,23 1951,40 1857,87 2996,95
France

Lettonie 538,09 316,61 119,43 9,09
Lituanie 84,43 84,43 84,43 14,54
Luxembourg 184,23 41,31 9,32

Pays-Bas 387,95 86,30

Slovaquie 129,50 129,50 129,50

Finlande 1177,01 715,64 488,32 323,42
Suede 971,18 497,72 244,30 86,09
Royaume Uni 287,57

Mo ,cEs 7217,68 4737,31 3381,02 3489,15

TABLE 5.15 — Scores en output CES-CET pour 5 = 1
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ay 0,5 0,5 0,5 0,5 0,75 0,75 0,75 0,75
g 0,75 1 1,5 1,75 0,5 1 1,5 1,75
Rép. Tcheque 1228,40 859,14 610,12 500,31 1741,91 849,55 509,13 431,31
Danemark 1138,37 762,20 491,92 383,69 1665,75 762,20 491,62 382,69
Espagne 2615,13 2457,24 2347,99  2285,25 2800,87 2456,68 2338,37  2270,39
France 0 0 0 0 0 0 0 0
Lettonie 798,41 495,96 258,46 186,96 1304,13 495,96 256,00 180,21
Lituanie 1086,15 745,09 488,72 391,55 1542,38 736,14 432,86 376,05
Luxembourg 193,35 74,13 14,43 0 506,58 74,13 14,43 0
Pays-Bas 487,52 221,35 0 0 965,73 221,35 0 0
Slovaquie 952,54 624,92 362,77 270,94 1468,69 615,89 361,12 266,40
Finlande 1228,38 892,14 646,44 554,91 1731,98 892,14 644,73 550,53
Suéde 1101,73 761,35 499,30 402,54 1616,48 761,35 497,40 397,54
Royaume Uni 701,68 0 0 0 1291,31 0 0 0
Mo cEs 11531,67 7893,52 5720,15 4976,16 16635,81 7865,40 5545,65  4855,12
ag 1 1 1 1 1,5 1,5 1,5 1,5
(o2 0,5 0,75 1,5 1,75 0,5 0,75 1 1,75
Rép. Tcheque 1741,91 1228,40 422,21 303,29 1443,68 1228,40 840,07 152,10
Danemark 1665,75 1138,37 491,27 381,59 1665,75 1138,37 762,20 379,22
Espagne 2800,87 2615,13 2325,44  2251,78 2800,87 2615,13 2453,53  2210,26
France 0 0 0 0 0 0 0 0
Lettonie 1304,13 798,41 254,92 177,14 1278,50 798,41 485,06 159,93
Lituanie 1177,54 1086,15 366,32 280,09 676,04 676,04 676,04 201,10
Luxembourg 506,58 193,35 14,43 0 506,58 193,35 74,13 0
Pays-Bas 965,73 487,52 0 0 965,73 487,52 221,35 0
Slovaquie 1276,40 952,54 297,13 235,24 766,29 766,29 608,00 0
Finlande 1731,98 1228,38 643,71 547,85 1731,98 1228,38 883,74 545,29
Suéde 1616,48 1101,73 496,42 394,88 1616,48 1101,73 746,30 351,32
Royaume Uni 1291,31 701,68 0 0 1291,31 701,68 0 0
Mo cEs 16078,67 11531,67 5311,85 4571,85 14743,20 10935,30  7750,92  3999,21
ag 1,75 1,75 1,75 1,75

g 0,75

Rép. Tcheque 1241,67 1228,40 839,25 314,59
Danemark 1665,75 1138,37 762,20 490,04
Espagne 2800,87 2615,13 2452,37 2280,42
France 0

Lettonie 1082,84 798,41 483,94 187,12
Lituanie 505,29 505,29 505,29 309,69
Luxembourg 506,58 193,35 74,13 14,43
Pays-Bas 965,73 487,52 221,35

Slovaquie 587,68 587,68 587,68 221,63
Finlande 1731,98 1228,38 880,70 608,34
Suede 1616,48 1101,73 744,70 384,92
Royaume Uni 1291,31 701,68

Mo ,cEs 13996,17 10585,95 7551,61 4811,19

TABLE 5.16 — Scores en output CES-CET pour 5 = 1,5
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(o351 0,5 0,5 0,5 0,5 0,75 0,75 0,75 0,75
g 0,75 1 1,5 1,75 0,5 1 1,5 1,75
Rép. Tcheque 1485,46 1104,76 770,60 666,71 1969,86 1104,76 700,22 612,62
Danemark 1417,83 1023,98 665,52 555,94 1914,44 1023,98 665,52 555,68
Espagne 2793,24 2639,15 248490 242596 2954,85 2639,15 2479,37 2416,24
France 0 0 0 0 0 0 0 0
Lettonie 994,83 654,51 352,53 269,41 1506,06 654,51 352,53 267,31
Lituanie 1298,45 934,11 606,67 507,27 1743,87 934,11 565,21 495,61
Luxembourg 293,37 128,50 28,80 15,92 666,88 128,50 28,80 15,92
Pays-Bas 680,08 374,35 82,01 0 1181,07 374,35 82,01 0
Slovaquie 1164,86 805,69 479,85 382,56 1674,10 805,69 479,85 381,24
Finlande 1428,56 1065,20 746,25 652,04 1914,72 1065,20 746,25 650,82
Suede 1321,13 953,79 622,98 523,30 1820,02 953,79 622,98 521,90
Royaume Uni 1155,82 570,54 0 0 1682,75 570,54 0 0
Mo cEs 14033,62 10254,58 6840,10 5999,11 19028,61 10254,58 6722,73 5917,35
(o351 1 1 1 1 1,5 1,5 1,5 1,5
g 0,5 0,75 1,5 1,75 0,5 0,75 1 1,75
Rép. Tcheque 1969,86 1485,46 640,77 512,21 1690,74 1485,46 1104,76 403,62
Danemark 1914,44 1417,83 665,52 555,39 1914,44 1417,83 1023,98 554,77
Espagne 2954,85 2793,24 2471,94  2404,06 2954,85 2793,24 2639,15 2376,92
France 0 0 0 0 0 0 0 0
Lettonie 1506,06 994,83 352,53 266,36 1480,89 994,83 654,51 251,15
Lituanie 1389,36 1298,45 515,64 412,02 877,07 877,07 877,07 344,49
Luxembourg 666,88 293,37 28,80 15,92 666,88 293,37 128,50 15,92
Pays-Bas 1181,07 680,08 82,01 0 1181,07 680,08 374,35 0
Slovaquie 1487,62 1164,86 430,76 354,26 973,22 973,22 805,69 265,40
Finlande 1914,72 1428,56 746,25 650,08 1914,72 1428,56 1065,20 649,37
Suede 1820,02 1321,13 622,98 521,16 1820,02 1321,13 953,79 484,67
Royaume Uni 1682,75 1155,82 0 0 1682,75 1155,82 570,54 0
Mo cEs 18487,61 14033,62 6557,19 5691,46 17156,64 13420,60 10197,54 5346,31
(o351 1,75 1,75 1,75 1,75

[e %} 0,5 0,75 1 1,5

Rép. Tcheque 1498,22 1485,46 1104,76 570,12
Danemark 1914,44 1417,83 1023,98 665,52
Espagne 2954,85 2793,24 2639,15 2446,09
France 0 0 0 0

Lettonie 1286,42 994,83 654,51 297,95
Lituanie 693,56 693,56 693,56 474,20
Luxembourg 666,88 293,37 128,50 28,80
Pays-Bas 1181,07 680,08 374,35 82,01
Slovaquie 784,30 784,30 784,30 374,28
Finlande 1914,72 1428,56 1065,20 720,76
Suede 1820,02 1321,13 953,79 540,73
Royaume Uni 1682,75 1155,82 570,54 0

Mo cEs 16397,21 13048,17 9992,64 6200,45

TABLE 5.17 — Scores en output CES-CET pour 5 = 1,75
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b) 1 € {0,75;1;1,5;1,75} et B, = 0, 5,
c) f1=0,75¢et By € {1;1,5;1,75},

d) p1€{1;1,5;1,75} et By = 0,75,

e) B =1letfy € {1,5;1,75},

f) B €{1,5;1,75} et By = 1,

g) p1€{1,5;1,75} et 5y € {1,5;1,75},

Pour les cas (a) et (b), on dénombre 3 unités de production efficaces. Les pays efficientes sont
identiques relativement aux deux situations, a savoir la France, les Pays-Bas et le Royaume-Uni.
Pour (c) et (d), on peut constater que le premier cas recense deux unités efficientes (la France et le
Royaume-Uni) tandis que le second ne fait apparaitre qu’un seul pays performant (la France). Les
situations (e), (f) et (g), quant a elles, ne dénombrent que la France comme unité de production

efficace.

Néanmoins, nous remarquons que le constat évoqué ci-dessus est valable si « < 1. En effet,
lorsque le parametre est supérieur a 1, nous observons des écarts assez conséquents relativement
aux scores de performance mais également une différence par rapport au nombre et a 1’identité
des unités de production efficaces. Notons également que plus la valeur de o augmente, plus les
mesures de performance positives s’accroissent. Ainsi, le parametre o conduit a une déformation
de la frontiere efficiente telle que plus la valeur de celle-ci est grande, plus la distance a la fronticre

augmente également.

Grace aux résultats des indicateurs d’ajustement, nous pouvons identifier les meilleurs rende-
ments d’échelle spécifiques. Les cinq premiers tableaux permettent de produire le tableau récapi-

tulatif suivant :

Le tableau 5.18 montre que I'indicateur d’ajustement axé sur les intrants est le plus faible pos-

. 31 1 31 71 Lo
sible pour a« = 0,5 et (31, f2) € {(Z’ 5) , (1, 5) , (5, 5) , (1, 5) } Ainsi, les rendements

d’échelle spécifiques relatifs aux outputs 1 et 2, pour chaque couple (31, 32), sont les suivants :

2 1 1 2
(71,72) € {<§, 1) , (5, 1) , (5, 1) , <?, 1) } Ces résultats démontrent que I’indicateur mi-

nimal est obtenu lorsque les rendements d’échelle par rapport a ’output 1 et a I’output 2 sont

respectivement décroissants et constants.
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« 0,5

A 0,5 0,75 1 1,5 1,75
62 9 b 9 b
0,5 - 1028,66 1028,66 1028,66  1028,66
0,75 2640,44 - 423631 433533 433533
1 2994,02  5612,64 - 7677,22  7705,54
1,5 3042,75  5998,55  9008,61 - 11651,15
1,75 3042,75  6003,64 9008,61 12045,67 -
o 0,75
5 o 0,5 0,75 1 1,5 1,75
0,5 - 3080,71 307925 3226,09 328721
0,75 2894,30 - 3681,92 368192  3681,92
1 3839,99  5937,10 - 7660,24 769721
1,5 4104,15  6884,67 9281,10 - 12081,09
1,75 4156,25  6958,99  9365,17 12317,67 -
o 1
5 & 0,5 0,75 1 1,5 1,75
0,5 - 5408,94 5378,95 582723 597695
0,75 5116,82 - 4860,34  4957,76  5000,75
1 458731 534546 - 6308,63  6308,63
1,5 5452,86 683329 919229 - 11715,12
1,75 574977  6950,48 942744 11889,57 -
« 1,5
5 & 0,5 0,75 1 1,5 1,75
0,5 - 10502,48 7641,05 839543  8901,54
0,75 12078,47 - 7438,07 791735  8246,75
1 942920 923126 - 7766,05  8005,59
1,5 7160,07  7048,83  7788,64 - 9834,49
1,75 8005,69  7514,94 823911 11259,19 -
« 1,75
5 b 0,5 0,75 1 1,5 1,75
0,5 1488372 9711,90 8592,75 9410,62
0,75 15449,75 9572,35 8190,88  8807,03
1 11486,38 11397,70 8277,03  8739,83
1,5 7523,58  7509,46  7470,73 8705,53
1,75 8134,77  7932,00 7659,08 10379,10

TABLE 5.18 — Indicateurs d’ajustement en input

Tableaux 5.13, 5.14, 5.15, 5.16, 5.17  Nous observons que contrairement aux résultats de la
mesure axée sur les inputs, hormis certains cas, les scores orientées en output ne montrent pas de
similitude selon les différentes valeurs prises par . En effet, nous constatons que les scores de per-
formance non-nuls et les unités de production efficaces, sont différents pour chaque combinaison

des parametres sauf dans certains situations. Cependant, nous remarquons que plus la valeur de
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[ s’accroit, plus les mesures de performance positives augmentent. Par ailleurs, cette hausse des
scores engendre une diminution du nombre de pays efficaces.

Le tableau 5.19 montre que lorsque 5 = 0,5 et (ay, ) = alors, I'indicateur d’ajus-

13
274
tement est minimal. Ce résultat indique que les rendements d’échelle spécifiques optimaux sont
respectivement y; = 1l ety = 3 tels que ceux relatifs a I’input 1 et a I’input 2 sont respectivement

constants et décroissants.
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B 0,5

o 0,5 0,75 1 1,5 1,75
Q2
0,5 _ 1137,27  1013,71 932,89 899,16
0,75 891,56 - 1384,95  1789,37  1820,95
1 1091,10  2267,67 - 1128940  15300,17
1,5 172991 578143  15097,07 - 113743,61
1,75 199943 6996,51 2242441 146710,13 ;
B 0,75

aq

0,5 0,75 1 1,5 1,75

Q2
0,5 _ 471872 4318,72 361582 3415732
0,75 3068,97 - 267523 2260,77  2208,37
1 2169,59  2041,74 ; 2198,93  2381,74
1,5 1634,89  2387,02  3524,47 - 11299,50
1,75 1696,94  2892,57  4922,52  14914,77 ;
3 1

™ 0,5 0,75 1 1,5 1,75
(6]
0,5 - 9463,17  8937,03  7803,79  7217,68
0,75 5746,98 - 552845  4986,84 473731
1 4399.82  4147,56 - 358225  3381,02
1,5 261928 249183 261026 - 3489,15
1,75 2246,80 2171,52  2549,92  4255,89 ;
B 15

o 0,5 0,75 1 1,5 1,75
Qo
0,5 _ 16635,81 16078,67 1474320  13996,17
0,75 11531,67 - 11531,67  10935,30  10585,95
1 7893,52  7865,40 7750,92  7551,61
1,5 5720,15  5545,65  5311,85 - 4811,19
1,75 4976,16  4855,12  4571,85 399921 -
3 1,75

™ 0,5 0,75 1 1,5 1,75
(6]
0,5 - 10028,61 18487,61 17156,64 1639721
0,75 14033,62 - 14033,62  13420,60  13048,17
1 10254,58  10254,58 ; 10197,54 999264
1,5 6840,10  6722,73  6557,19 - 6200,45
1,75 5999,11 591735 569146 534631 ;

TABLE 5.19 — Indicateur d’ajustement en output
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Conclusion

Ce dernier chapitre applique la théorie des rendements d’échelle o a la mesure non-linéaire
présentée dans le chapitre 3. En effet, la structure particuliere de celle-ci permet de 1’implanter
dans le modele a rendements d’échelle o de Boussemart et al. (2009). Nous pouvons voir que
lorsque I’on considere une situation globale ou tous les inputs varient dans une méme proportion
et ol tous les outputs fluctuent dans une autre méme proportion, il existe un rendement d’échelle
global relatif a I’ensemble du processus de production (Boussemart et al. (2009), Boussemart et
al. (2018)). Cependant, lorsque chaque intrant et chaque extrant sont modifiés différemment, on ne
peut fournir un rendement d’échelle global a la totalité du processus productif. En effet, dans ce
cas, nous obtenons le rendement d’échelle relatifs a chaque facteur et a chaque produit. L’exemple
numérique nous montre que les rendements d’échelle impactent fortement la performance des
entités de production. Les propositions faites dans ce chapitre ne sont qu’une partie des extensions

possibles de la fonction de distance directionnelle CES-CET.
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Ces travaux introduisent de nouvelles mesures d’efficacité relatives a I’économie de la produc-
tion. Ces nouveaux outils sont des réponses éventuelles aux difficultés rencontrées avec les outils
traditionnels, proposés dans la littérature. Par ailleurs, nous démontrons que ces mesures s’inserent
dans les diverses méthodes d’analyse de la performance notamment, I’appréciation de la produc-
tivité des firmes et 1’étude de I’influence des rendements d’échelle sur I’efficience des entités de
production.

Nous exposons notre positionnement économique dans I’introduction générale. En effet, nous
nous placons dans la lignée des écoles de pensées classique et néoclassique. En ce sens, nous
supposons que I’objectif des entités de production est la recherche de I’efficience. Par ailleurs,
nous admettons que les résultats que nous proposons ne tient pas compte des interventions de
I’Etat, que ce soit a I’échelle des firmes ou sur les marchés. Afin de pouvoir mieux appréhender
les apports théoriques de ce travail, nous relatons dans le premier chapitre, les outils d’analyse
traditionnels existant dans la littérature. Nous définissons tout d’abord, les concepts de technologie
de production, de correspondance en inputs et en outputs. Ces notions sont les bases de toute
analyse en économie de la production puisque les mesures de performance sont définies dans le
cadre des hypotheses relatives aux ensembles de production. Ensuite, nous présentons les fonctions
de distance fréquemment rencontrées dans la littérature a savoir, les mesures de Debreu( 1951)-
Farrell(1957), de Shephard (1953), la fonction de distance directionnelle (Luenberger (1992b),
Chambers et al. (1996a)) et la fonction de distance proportionnelle de Farrell (Briec (1997)). Enfin,
nous exposons les diverses mesures de productivité relatives aux fonctions de distance présentées
auparavant. Nous définissons d’abord les indices de Malmquist (Caves et al. (1982a, 1982b) et les
indicateurs de Luenberger (Chambers et al. (1996b)). Puis nous présentons les extensions de ces

mesures de productivité a savoir, les indices de Hicks-Moorsteen (Diewert (1992a, 1992b)) et les
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indicateurs de Luenberger-Hicks-Moorsteen (Briec et Kerstens (2004)). Cette revue de littérature
chronologique n’est pas exhaustive mais contribue a la compréhension des apports théoriques,

exposés dans les chapitres restants.

Le deuxieme chapitre de ces travaux est consacré a la proposition d’une mesure de distance
exponentielle. Celle-ci est de nature log-additive telle que, dans ce cas, nous obtenons une fonction
structurellement similaire a la fonction de distance directionnelle. En effet, nous pouvons avancer
qu’il existe des firmes qui ont des productivités marginales strictement croissantes (par exemple le
secteur de la nouvelle technologie) ou strictement décroissante (par exemple les entreprises ayant
un monopole naturel). Cette mesure de performance s’adresse a ce type d’unités productives. A
cet effet, nous présentons cette fonction selon une orientation dans le graphe (respectivement en
input et en output). Nous explorons également la théorie de la dualité qui nous amene a définir
des pseudo fonctions de cofit, de revenu et de profit non-linéaires. Ces fonctions possedent cette
structure non-linéaire lorsqu’il existe des facteurs internes et/ou externes qui influencent les cofits,
le revenu ou le profit des firmes. Ce cas peut également survenir lorsqu’il y a un lien non-constant
entre la production et les intrants. Cette relation duale nous permet de déduire des fonctions de
prix implicites grace au théoréeme de 1’enveloppe. Ces fonctions de prix ajustés correspondent aux
prix lorsque la firme est efficiente au sens de Pareto-Koopmans. Par ailleurs, nous relions la notion
de rendements d’échelle a la mesure de distance exponentielle tel que nous obtenons une analogie
avec les fonctions de production de type Cobb-Douglas. De ce fait, nous pouvons déterminer les

rendements d’échelle spécifiques de chaque facteur relativement a chaque produit.

Dans le troisieme chapitre de ces travaux, nous définissons une mesure de performance non-
linéaire de type CES-CET. Cette fonction hérite de la structure de la mesure de distance direc-
tionnelle (Luenberger (1992b), Chambers et al. (1996a)) et celle de la technologie de production
CES-CET (Fare et al. (1988)). En effet, celle-ci coincide avec la mesure de distance directionnelle,
dans un cas particulier. Nous la présentons dans un cadre orienté que ce soit en input, en output
ou dans le graphe. Nous constatons que cette fonction est équivalente aux mesures de distance
radiales de Shephard (1953) et de Debreu(1951)-Farrell(1957), sous certaines conditions. Nous
explorons la propriété relative a la translation homothéticité que la fonction vérifie. Nous abordons
également la théorie de la dualité telle que nous obtenons des pseudo fonctions de cofit, de revenu

et de profit non-linéaires. Grace au Lemme dual de Shephard, nous en déduisons des fonctions de
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prix ajustés non-linéaires qui peuvent survenir lorsque des tarifications non-linéaires sont appli-
quées. Ces prix correspondent aux prix lorsque I’efficience de Pareto est atteinte. La fonction de
distance directionnelle CES-CET est également définie dans un cadre non-paramétrique grace a la
méthode DEA telle que nous supposons que la technologie de production est de type CES-CET.
Enfin, un exemple numérique est présenté dans le chapitre afin d’illustrer les notions définies au-
paravant. Nous constatons que lorsque nous estimons la mesure dans un ensemble de production
CES-CET, le nombre d’unités de production efficaces est supérieur au nombre d’entités de pro-
duction efficientes dans une technologie DEA classique. Dans ce cas, nous avons la confirmation
que la technologie non-linéaire permet d’apprécier 1’efficience des unités productives ayant des
productivités marginales strictement croissantes ou décroissantes. En effet, celles-ci sont négligées

dans I’approche standard tel qu’elles peuvent €tre considérées comme étant inefficientes.

Nous proposons une extension de la mesure de performance exponentielle dans le chapitre
quatre de ces travaux. En effet, sachant que la productivité d’une firme est liée a sa performance,
nous proposons de mesurer les variations de la productivité grace a la fonction de distance expo-
nentielle. Puisque celle-ci est log-additive, nous mettons en relation la mesure d’efficacité exponen-
tielle et les indicateurs de productivité de Luenberger (Chambers et al. (1996b)) et de Luenberger-
Hicks-Moorsteen (Briec et Kerstens (2004)). Nous les présentons selon une orientation dans le
graphe (respectivement en input et en output). Nous observons que dans ce cas, la structure des
mesures de productivité ne changent pas. De plus, nous proposons une décomposition de ces me-
sures de productivité en deux composantes distinctes a savoir, le changement d’efficacité entre
deux périodes et, la mutation technologique. Nous constatons que 1’estimation des mesures de dis-
tance croisées par rapport a deux périodes consécutives peut amener a une définition dynamique de
celles-ci. Cette nouvelle formulation conduit a I’apparition d’un nouveau parametre qui représente
les contraintes internes et externes influencant la performance des firmes. Effectivement, malgré
la recherche active de I’efficacité, les entités de production peuvent se heurter a des difficultés in-
ternes (par exemple les syndicats) et/ou externes (par exemple les contraintes du marché), quant a
la mise en place de leurs stratégies. Enfin, nous illustrons nos apports théoriques dans la derniere

section du chapitre.

Le dernier chapitre de ces travaux est consacré a I’extension de la mesure de distance direc-

tionnelle CES-CET a la notion de rendements d’échelle o« (Boussemart et al. (2009)). En effet,
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nous admettons que lorsque cette fonction de distance est estimée dans le cadre d’une technologie
de production CES-CET, nous pouvons étendre I’analyse économique au modele de rendements
d’échelle optimaux «.. Ce dernier a été proposé par Boussemart et al. (2009) en s’inspirant de I’en-
semble de production CES-CET de Fire et al. (1988). Les travaux de Boussemart et al. (2018)
démontrent que dans un objectif d’extrapolation minimale, la notion de rendements d’échelle «
conduit a la détermination d’un rendement d’échelle optimal qui est global a I’ensemble des firmes.
Celui-ci permet au plus grand nombre des entités de production d’étre efficaces ou bien, d’€tre les
moins inefficientes possible. Nous adoptons cette démarche dans le cadre de notre fonction de dis-
tance directionnelle CES-CET. Nous montrons également que nous pouvons identifier ces rende-
ments d’échelle optimaux de maniere non-paramétrique, grace a la méthode de grille de recherche
lorsque I’ensemble de production considéré est de type CES-CET. De plus, lorsque la technologie
de production est de type FDH (Deprins (1984), Tulkens (1993)), nous pouvons déduire ceux-ci
par une méthode énumérative. Nous étendons les travaux de Boussemart et al. (2009) a la notion de
rendements d’échelle spécifiques optimaux. En effet, nous considérons que chaque facteur contri-
bue différemment a la production de chaque produit lorsque la production est multi-output. Dans ce
cas, nous ne pouvons fournir un rendement d’échelle global quant a I’ensemble du processus pro-
ductif. Néanmoins, nous pouvons identifier les rendements d’échelle spécifiques a chaque intrant
et a chaque extrant qui permettent aux firmes d’étre les moins inefficaces possibles. Dans certains
cas particuliers, nous pouvons retrouver ceux-ci grace a la méthode de grille de recherche lorsque
I’on considere un ensemble de production CES-CET. Sous certaines conditions, une identification

par énumération peut €tre réalisée lorsque nous retenons une technologie de production FDH.

Nous pouvons constater que les apports théoriques de cette these peuvent paraitre incomplets au
regard des nouvelles mesures de performances proposées. En effet, nous n’explorons que les pro-
priétés traditionnelles et non-exhaustives, de celles-ci. Nous proposons également des extensions
possibles a ces mesures d’efficacité. Ainsi, les futures recherches peuvent se porter sur 1’appro-
fondissement des propriétés de ces nouvelles fonctions de distance (exponentielle et directionnelle
CES-CET). D’une part, il serait intéressant d’étudier la propriété de translation homothéticité de la
mesure exponentielle de sorte qu’il serait possible de mettre en lumiere des relations d’équivalence
entre les indices et les indicateurs de productivité. D’autre part, proposer des mesures de producti-

vité basées sur les fonctions de distance directionnelles CES-CET serait une extension possible de
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ces mesures de performance.
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Annexe 1 : Présentation des Données

Les données utilisées dans ces travaux proviennent de la base de données de 1’office de statis-

tique rattaché a I’'Union Européenne "Eurostat". Celles-ci concernent les productions céréalieres

de I’année 2008 et de I’année 2009. Deux inputs et deux outputs ont été sélectionnés, a savoir :

— input 1 : surface agricole utilisée (SAU) exprimée en milliers d’hectares (1000ha ou Kha),

— 1input 2 : le prix moyen des surfaces agricoles utilisées (Prix SAU) manifesté en milliers

d’euros par hectare (1000€/ha ou K€/ha),

— output 1 : la production en quantité exprimée en milliers de tonnes (1000T ou KT),

— output 2 : la production en volume manifestée en milliers d’euros (1000€ ou K€).

Les grandeurs statistiques relatives a ces données sont exposées dans les tableaux ci-dessous.

Grandeurs Minimum Moyenne Maximum Ecart-type
Prix des SAU 1075,07 11842,48 40916 12427,17
SAU 31,1 2308,55 9662,2 2813,59
Production 189,7 13096,28 70246 18896,97
Production en valeur 10,83 631,17 3438,11 959,81

TABLE 5.20 — Description des données en 2008

Grandeurs Minimum Moyenne Maximum Ecart-type
Prix des SAU 971,39 47 051,00 11735,64 13226,28
SAU 30,40 9 381,20 2205,55 2665,16
Production 188,6 699999 12331,85 18489,63
Production en valeur 10,13 3 653,93 642,7925 989,02

TABLE 5.21 — Description des données en 2009
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Annexe 2 : Notations et Notions

Mathématiques

Notations

Dans cette section, nous présentons quelques notations mathématiques utilisées dans ces tra-
vaux :
e N : ensemble des entiers naturels.
e R : ensemble des nombres réels.
e R’ : espace Euclidien de dimension s.

e kels]:k=1,--+,s«— k€ |[s]

11, : matrice identité ayant s éléments.

keS:k=1,---,S<=keS.

V. f(x,y) : différentiel de la fonction f(z,y) par rapport a la variable .

Notions

Monotonicité : Une fonction monotone est une fonction ayant un sens de variation constant. Elle
est soit croissante soit décroissante. Cet affirmation peut étre stricte. Ainsi, une fonction f définie
sur Dy est croissante si V(x1, 22) € D7 avec 71 > xy ona, f(x1) > f(x2). Elle est décroissante si

V(x1,22) € D} avec 11 > xyona, f(x1) < f(xa).

Ensemble convexe : Un ensemble E est convexe si Pour tout (21, 22) € E et Pour tout A € [0, 1]

ona, (Az1, (1 —N)xg) € E.
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Quasi-convexité : Une fonction f définie sur Dy est quasi-convexe si V(z1,z2) € D]% et VA €

[0,1] ona, f (Azy, (1 — N)xo) < max { f(21), fz2) }.

Isomorphisme : Soient deux espaces vectoriels £ et F'. Une application f de £ dans [’ est iso-
morphe si elle est linéaire et bijective. Elle admet une réciproque f ! telle que f et f~! préservent

la structure algébrique.
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RESUME

Ces travaux proposent deux nouvelles mesures de 1’efficience. La premiere est une fonction
de distance log-additive qui peut étre orientée soit en input, soit en output, soit dans le graphe.
Celle-ci est duale a des pseudo fonctions de colt, de revenu et de profit non-linéaires. Cette struc-
ture des fonctions, indique une relation non-constante entre les intrants et les extrants. Cet outil de
mesure de I’efficacité peut servir a estimer la variation de la productivité dans le temps. A cet effet,
nous proposons des indicateurs de productivité, de type Luenberger (Chambers, Fire et Grosskopf
(1996)) et Luenberger-Hicks-Moorsteen (Briec et Kerstens (2004)), exponentiels. La seconde me-
sure, est une fonction de distance non-linéaire structurellement inspiré des fonctions CES (Solow
(1956)) et CET (Powell et Gruen (1968)). La théorie de la dualité amene a présenter des fonctions
de coflit, de revenu et de profit non-linéaires. De ce fait, des fonctions de prix ajustés non-linéaires
en sont déduites. Une telle structure des prix peut étre rencontrée lorsque les unités productives
font face a des tarifications non-linéaires en interne et, en externe. Nous appliquons cette nouvelle
mesure de I’efficacité au modele de rendements d’échelle o (Boussemart, Briec, Peypoch et Tavéra

(2009)). En effet, ce modele permet d’estimer I'influence des rendements d’échelle sur I’ efficacité.

This thesis aims to present two efficiency measures. First, a log-additive distance function is
introduced. It is dual to non-linear pseudo cost, revenue and profit functions. This structure means
that the relation between factors and products is not constant. Moreover, exponential Luenberger
(Chambers, Fire and Grosskopf (1996)) and Luenberger-Hicks-Moorsteen (Briec and Kerstens
(2004)) indicators are proposed. Second, a non-linear distance function is defined. It inherits the
structure of CES (Solow (1956)) and CET (Powell and Gruen (1968))functions. The duality theory
allows to present non-linear cost, revenue and profit functions. In this sense, non-linear adjusted
price functions are deduced. Non-linear prices occur when the production unit faces internal and/or
non-linear tariffs. The a-returns to scale model (Boussemart, Briec, Peypoch and Tavéra (2009)) is
applied to this new non-linear efficiency measure. Indeed, it is shown that returns-to-scale impact

efficiency of production units.



