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Introduction

The aim of this dissertation is to study the Sharp Large Deviations of some statistics: the
empirical correlation coefficient between 2 random variables and a self-normalized statistic
called Moran statistic. Throughout the whole thesis, the study of Laplace’s method is
presented as a powerful mean of approximating the integral of type f; e~ q(t)dt when
x goes to infinity.

In the early history of the Large deviation principle (LDP), the term “large deviation”
is commonly known as refinements of the Central limit theorem (CLT), when an expansion
is set at some points which are different from the mean. The definition of the LDP is
formally introduced at the end of the 1970s. Cramér [22] has first stated the so-called
Cramér’s theorem for distributions on R and Chernoff [16] extended this theorem by the
following result. Let {X,}, be a sequence of independent, identically distributed (i.i.d.)
random variables with law g on R, S, = >~ _, Xy and ¢ > E(X;). Then the following
values

1 1
lim sup — log P(Sn >c¢) and liminf —log P(S”

nooo M n n—oo 1 n

> c)

are controlled by a function L*, which is the dual Fenchel-Legendre transform of the log—
Laplace function L(\) = log £ (eAXl). The extension of Cramér’s theorem in dependent
case is considered by Plachky and Steinebach [43] (in R) and Gértner [31] (in RY). We
will mention the LDP and its fundamental properties in Chapter 1 of this thesis. For
more details in general cases, we refer to [26] or [27].

The large deviations results only show the comprehensive view of limiting behavior,
through their asymptotic upper and lower exponential bounds, of a family of probability
measures in terms of a rate function.

In 1960, Bahadur and Rao [6] established an asymptotic expansion of large deviations for
the tail probability P(%" > ¢) as follows. Let {X,}, and S, be defined as above. Let a
be a constant (a > F(X)). Under some assumptions (which are detailed in Chapter 1),
there exists a sequence (b,),, of positive numbers such that

Sh A™ b,

~ 2 )= (1+o(1), (1)

il (27n)1/2

and logb, = O(1) as n — +oo. Here, A is a constant defined by

_ —a\ 1 (AX1
A—igjg{e E (eM1)1,

where the domain D = {\ : E(e**1) < 400}.
Furthermore, for each j =1,2,..., there exists a bounded sequence (c; ), such that, for
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any given positive integer k,

S Anb Cin Con Ckn 1
mnos - n Ly zen oLy B0
PE o -t (142 e %) (1h0( ) @

as n — +o0.

The distribution of {X,}, in paper [6] is considered in three different cases: X;’s dis-
tribution is absolutely continuous, X; is a lattice variable or X; is none of these two
cases.

In the spirit of |6], many results on tail probability’s asymptotic expansions have
been developed and are commonly known as “sharp large deviation principles” (SLDP)
or “strong large deviations” (SLD). The paper of Bahadur and Rao [6] contains the other
result of Blackwell and Hodges ([11], 1959) in lattice case. Book studied SLD for weighted
sums of i.i.d. random variables ([12], 1972). Chaganty and Sethurama generalized The-
orem 1 of [6] to arbitrary sequence of random variables under some conditions on the
moment generating function (m.g.f.) of S, ([14], 1993) and extended their earlier result
to multi-dimensional case ([15], 1996). Cho and Joen (|17], 1994) proved SLD theorem
for the ratio of the independent random variables. In the statistical field recently, there
have also been numerous results. Bercu, Gamboa, and Lavielle ([9], 2000) established
SLDP for Gaussian quadratic forms. Bercu and Rouault ([10], 2002) studied SLD for
Ornstein—Uhlenbeck processes and later, Bercu, Coutin, and Savy extended the previous
results to fractional Ornstein—-Uhlenbeck processes (|7], 2011) and non-stationary cases
([8], 2012). Rovira and Tindel studied SLD for a certain class of sets on the Wiener
space (|49], 2000) and for the Stochastic Heat Equation ([50], 2001). Joutard obtained
SLD results in nonparametric estimation ([32], 2006), for the conditional empirical pro-
cess ([33], 2008) and for arbitrary sequences of random variables ([35] and [34], 2013).
In [35], Joutard illustrated his results with the kernel density estimator, sample variance,
Wilcoxon signed-rank statistic and Kendall tau statistic. The large deviations results for
each case was proved earlier in [38], [56], [36], respectively. Daouia and Joutard studied
SLD properties of the quantile-based frontier estimators ([23], 2009). Zhou and Zhao
derived SLD for the log-likelihood ratio of an a-Brownian Bridge (63|, 2013). Zhao, Q.
Liu, F. Liu and Yin gave a SLD for the Energy of a-Brownian Bridge ([62], 2013).

In this thesis, we prove SLDP proceeding as in Bercu et al. [9, 10]. Their work is
detailed in Chapter 1, where we also briefly mention the work of Joutard [35]. Under the
assumption of [35], the SLD result is merely obtained in the first-order expansion. The
process in [9, 10| allows us to expand the SLD in higher order depending on the expansion
given by Laplace’s method. Let us now detail the remaining chapters of this thesis.

Chapter 2 is devoted to the presentation of the powerful so-called Laplace’s method
(or stationary phase method for the general complex case) Which gives the asymptotic
behavior —as z goes to infinity— of integrals I(x f e~ q(t)dt, where the functions
p, ¢ and the real numbers a, b, are independent of the parameter 2. Such methods appeared
in the early 18th century with the work of Laplace (|25], 1820) and the expansion can
be given explicitly for several usual functions (see e.g. [37]). Expansions for the Stirling
formula and hypergeometric functions are mentioned in Chapter 3. To the best of my
knowledge, Laplace’s method is often presented in the first order form (in z, see e.g. [28|
or [45]) and rarely described in its full expansion as follows (see more details in forthcoming
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Theorem 2.3.10)

2p(t) _aftto) (Colto) | alte) e (to) 1
/Rep q(t)dt = e*7'%° < NG torant +(2N)!:1cN+1/2+O N :

The coefficients ¢g, - - - , ¢y depend on the values of the k-th derivatives of functions p
and ¢ at the minimum tq of p.

Chapter 3 presents SLD for the empirical correlation coefficient in two different cases:
spherical and Gaussian distributions. In 1895, Karl Pearson introduced an index to
measure correlation, which was called Pearson product-moment correlation coefficient,
Pearson’s correlation coefficient or more simply correlation coefficient. To measure the
dependence between two random variables X and Y, the Pearson’s correlation coefficient
is given by

Cov(X,Y)

N V/Var(X)/Var(Y)

At the same time, Pearson developed the empirical Pearson correlation coefficient between
two samples (X1, --,X,) and (Y3,---,Y,) as

p

— Z?:l(Xi - Xn)(Yz - Yn) ‘
\/Zizl (Xl - XH)Q Zizl (}/z - Yn>2

where X, = %22:1 X, and Y, = %22:1 Y). are the empirical means of the samples. In
case F(X) and E(Y) are both known, we can consider

Tn

LG BX)Vi-BY)
\/Zizl (Xi - E(X))2 Zi=1(Yi - E(Y))2

By using Cauchy—Schwartz inequality, it can be shown that the absolute values of p, r,
and 7, are less than or equal to 1. p = 41 if and only if X and Y are linearly related i.e.
there exists a functional relationship between X and Y; and if p = 0 then we say that
X and Y are uncorrelated. The study of the correlation coefficient is detailed in many
references (see e.g. [40] or [52]) and it is shown that many “competing” correlation indexes
are special cases of Pearson’s correlation coefficient (|48]). The SLD results for r,, and 7,
when two samples have Gaussian distribution and spherical distribution, respectively, are
presented.

Spherical distribution: Muirhead studied the distribution of the sample correlation
coefficient in several multivariate cases (see [40]). Under some assumptions detailed later
on, we know from [40] that the density function of r, is

T'n

(2=
(—2(1 — 7,2)(7174)/2’ (-1<r<1)

(1 =72 (1 <r<]1).
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The SLD results of r,, and 7,, will be obtained as follows

144/ 14422
,nL*(c)félog(l+4)\E)+%log Ty e

2
A0V 2TN

e

P(r, >c) = (1+o(1))

and

R e—nL*(c)—i log(1+4X2)+log B\ 21+4/\%
Plin > c) = e (1+o(1)),

where L*(s) = —1 log(1 — s?) is the Fenchel-Legendre dual of L()) which is the limit of

the normalized cumulant generating function L,, of r,

: : 1 nATy,
L(\) = nh_)rglo L,(\) = 7}1—{& - log E(e™™) .

Gaussian distribution: In 2007, Si presented large deviations results for r,, and 7, as
follows [55]. Let (X;,Y;),i = 1,2,...n be the i.i.d. sample of R% -valued Gaussian vector
(X,Y). Assume that Var(X) = ¢ > 0 and Var(Y) = 03 > 0, Cov(X,Y) = poy09, where
|p| < 1. Then the law of r, and 7, satisfy the LDP on R with the same rate function I,
where

1—
log °p

15) =4 VT A1)

400 , otherwise.

,—l<s<1,

In Chapter 3, we prove the SLD results for r,, and 7, independently of the work of [55].
Once again, Muirhead [40] gave the density function of 7,4, as follows

(n — 1)T'(n)
['(n+ 1/2)v2r

(1 o p2)n/2(1 o pT)_n+1/2(1 o T2)(n_3)/2

11 11
Fil =, = — —(1 -1 1).
2 1(2a2an+272( +p7’)) ( <r< )

where o F7 is the hypergeometric function.
We can obtain the SLD for r,

oL (€)+10g, (ro(N)—3 log (A" (ro (V)|
P(r, >c) =
( ) A0 2N
where for any —1 < s < 1,
1—ps
L*(s) = log : (3)
(\/(1 =)V (1 - 32)>

The explicit form of L*(s) is obtained and matches I(s). However, the condition |p| < po,

po = V34 2v/3/3, must be added.
The SLD for 7, is given by

(1+0(1)),

R e—nL* (c)—% log(1—4X2)
P(f, > ¢) =

- AT/

(1+0(1)),
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where L*(s) = —3log(1 — s?). Here the function L()) is similar to one obtained in the
spherical case.
Higher-order developments are discussed in both cases and proposed as follows

“~ Se e 1
L+ +0( =5

where Ry(\) is the function obtained from the expansion of the normalized log—Laplace
transform L.

One application of SLD is to study the rejection region of a test using Bahadur exact
slope. This slope is studied here for r,, in the Gaussian case to test (Ho) : p = 0 against
the alternative (H;) : p # 0.

e~ L*(©)+Ro(Ac)

Plrn 2 ¢) = ———p=—

Chapter 4 of this thesis studies the SLD result for a self-normalized statistic. A well-
defined function of observations, which is a so-called statistic (see e.g. [13]), can include
many types of property of the sample. There are three commonly used statistics to

provide a quick look of the sample: sample mean X, = %Zzzl X, sample variance
o = =3 (X, — X,)? and sample standard deviation o = vo?2. Among the variety
of statistics, self-normalized statistics or scale-free statistics are given by

1 n
ﬁ;f(x

=) ()

which are often used to construct scale-free tests of shape.

In 1997, Shao studied large deviations of such statistics in the special case f(s) =
—sP,p > 1 [53]. In 2005, Tchirina developed large deviations for a class of scale-free
statistics of type (4) under Gamma distribution for various cases of functions f [58]. At
the same time, Tchirina considered the statistic T, = |y + % >y log —))-(% , Where 7y is the
Euler constant and she obtained large deviations asymptotics under the null exponential
hypothesis. She also got results on the Bahadur efficiency of such statistics [57]. These
previous quantities are known as Moran statistics. In 2007, Tchirina studied the asymp-
totic properties of the exponentially tests based on L-statistics T}, = ﬁ Y ore WinX(i),
where X(1), X(2), -+, X(n) are the order statistics and w;,,7 = 1,...,n, is an array of
coefficients [59]. In Chapter 4, we study the SLD for the Moran statistic

1 & X;
T, = — 1 |,
e (%)

where 7 is the Euler constant. The explicit expression of the rate function is not reachable
in this case. However, we can present a SLDP.

The Appendix aims to present several definitions used in this thesis, as well as some
highly technical computations that helped us to understand the behavior of different
coefficients in Laplace development and that can be possibly used for the proofs.
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Chapter 1

Large and Sharp Large Deviations

In this first chapter, we recall some elementary definitions and theorems about the LDP
and SLDP on which this thesis relies. The work of 6] in continuous case is reformulated
in Section 1.2 as the major premise of SLDP. We provide in Section 1.2.2 the framework
of the method as in [9] to establish SLD and briefly compare it to the one in [35]. An
example is introduced at the beginning of this chapter in order to illustrate the large
deviation in the most comprehensive way.

Contents
1.1 Large Deviation Principle . .. ... ... ... ......... 10
1.2 Sharp Large Deviation Principle . ... ... ... ....... 13
1.2.1 Motivation and SLDP . . . . ... ... ... L. 13
1.2.2  Framework and Main method for establishing SLD . . . . . .. 17

First of all, let us consider an example, which arises from the Law of Large Numbers
and the CLT, in order to have a first view of Large Deviations.

Example

Let ;1 be the probability measure on R and (X,,), be a sequence of i.i.d. random variables
with law p. Consider S, = >°;_; X and the empirical mean X, = L3 | X It is
well-known that if X,, € L?(R) with mean F(X,,) = m and variance Var(X,,) = 02, then

X, —— m a.s

and

Vi (X, —m) === N (0,0%).

n—0o0

In the particular case of u = N(0,1), remark that X, has a Gaussian distribution
N(0,n71) and for all z > 0, lim,,_,, P (|Xn‘ > x) = 0. More precisely, we have

% 2 e —t2/2
P(}Xn\>m):E/f Pt



1.1. LARGE DEVIATION PRINCIPLE

7

2€—n:v2/2 +oo

From the change of variable t = x/n + , We obtain

P(|X,| >z) = "—=— e~/ @)=z g
(‘ | ) V2mn Jo
From dominated convergence, the preceding integral converges to fOJrOO e ds = z L

Therefore, as n — +o00,

267nac2/2

V21N ’

P(|X,|>x) = % (1 +O(%>> : (1.1)

We can express the previous result in a weak version as

P(|X,| > ) ~

i.e.

1 _ x?

nEIJPOOEIOgP(‘Xn| > 1) =3 (1.2)
The equations (1.2) and (1.1) are known as large deviations and precise (or sharp) large
deviations, respectively. One can now ask whether the limit (1.2) also holds for non-
Gaussian case. The answer of this question is pointed out through Cramér’s theorem
for i.i.d. random variables: the limit of n~!log P (‘Xn| > x) depends on p and always
exists. Furthermore, Gartner-Ellis theorem shows that the preceding result also holds for
non-i.i.d. case.

Our motivation here is the following: on the one hand, we give the characterization of
the LDP in general cases with Cramér’s and Gartner—Ellis theorems. On the other hand,
we study the tail probabilities (SLDP) presenting the results of Bahadur and Rao [6],
Bercu et al. [9] and Joutard [35]. This second section is the main part related to our
work.

1.1 Large Deviation Principle

We present in this section the LDP and elementary theorems, which are the first steps
for SLDP of Section 1.2.

Let (E,&) be a measurable topological space. The LDP characterizes the limiting
behavior, as n — oo, of a family of probability measures {u,} on (E,€), in terms of a
rate function.

Definition 1.1.1 Let I be a real (or extended-real) function on a topological space E.
It is a lower semicontinuous mapping if the level set

Ui(a) ={z:I(x) < a}
1s closed for every real o. The effective domain of I, denoted by Dy, is defined by

Dy :={x:1(x) < +oo}.

10



1.1. LARGE DEVIATION PRINCIPLE

Definition 1.1.2 A rate function I is a lower semicontinuous mapping from E to
[0,4+00]. A good rate function is a rate function for which all the level sets V() are
compact subsets of E.

Definition 1.1.3 (The LDP) The family of probability measures {pu,} satisfies the
LDP with rate function I and speed (or scale) n if, for allT € &,

1 1
— inf I(z) < liminf —log 11, (I") < limsup — log p1,,(I") < — inf I(x). (1.3)

zelo n—oo M n—soo N z€l

Remark 1.1.4 (Uniqueness) The rate function associated with the LDP of a probability
measures {1, } family on a metric space (more generally on a reqular topological space) is
unique.

Since &€ in (1.3) is not necessarily be the Borel o-field, when the Borel o-field on E' is
included in &, the LDP is equivalent to the following inequalities:

i) (Large deviation upper bound) For any closed set F’

1
lim sup — log 1, (F') < — inf I(z). (1.4)

n—00 LS

ii) (Large deviation lower bound) For any open set G

1
liminf — log i, (G) > — inf I(z). (1.5)
n

n—00 zeG

The following theorem shows the transformation of the LDP through continuous map-
ping.

Theorem 1.1.5 (Contraction Principle) Let X and Y be Hausdorff spaces and f :
X = Y be a continuous function. Consider a good rate function I : X — [0,+o00]| and
the function I' : Y — [0, 4+00], defined by I'(y) := inf{l(x):xz € X,y = f(z)}.

i) I' is a good rate function on'Y .

it) If I controls the LDP associated with {u,,} on X, then I' controls the LDP associated
with {p, o 1} ony.

The two following subsections deal with the LD of the empirical mean.

Cramér’s Theorem for i.i.d. case
Let p be a probability measure on R.

Definition 1.1.6 A log—Laplace transform (commonly known as a cumulant generating
function or logarithmic m.q.f.) L associated with the law p is a mapping from R to
[0, +00], defined as either

L(\) := log/exp(/\a:) p(dx), (1.6)
or in case X s a random variable with law p

L(\) :=log E (). (1.7)

11



1.1. LARGE DEVIATION PRINCIPLE

Definition 1.1.7 The dual Fenchel-Legendre transform of L is

L*(x) := sup{ z — L(\)}, (1.8)

AER

for x € R.

Theorem 1.1.8 (Crameér) Let (X,,), be a sequence of i.i.d. random variables with law

. Define by
_ 1 <&

Then the sequence (X,,), satisfies a LDP with rate function L*, namely
i) For any closed set F C R,

1 _
limsup — log P (X, € F) < — inf L*(x). (1.9)

n—+oco M zeF

i1) For any open set G C R,

liminfllogP (X, € G) = — inf L*(). (1.10)

n—+oo N zeG

The Gartner—Ellis Theorem

We now extend the Cramér’s theorem to the more general Gartner—Ellis theorem.
Definition 1.1.9 y € R is an exposed point of f if for some A € R and all x # y,
Ay — fy) > Az — f(). (1.11)
A in (1.11) is called an exposing hyperplane.
Definition 1.1.10 A convex function f : R — (—o0, +0o0] is essentially smooth if:
i) The interior of the effective domain D? 18 non-empty.
ii) f is differentiable throughout D?c.

iii) f is steep, namely, lim, o | f,| = +o0o whenever (f,), is a sequence in D? converg-
g to a boundary point of D?.

Let (Z,)n be a sequence of random variables, of laws (u,). Define the log-Laplace
function

L,(\) = %logE (e"7). (1.12)

Assumption 1.1.11 For each A € R, the logarithmic m.q.f., defined as the limit
L(A):= lim L,(}\) (1.13)

n—-+o0o

exists as an extended real number. Moreover, 0 € DY, where Dy, = {\ € R: L()\) < +o0o}
18 the effective domain of L.

12



1.2. SHARP LARGE DEVIATION PRINCIPLE

Theorem 1.1.12 (Gértner—Ellis) Let Assumption 1.1.11 holds.

i) For any closed set F C R,

1
lim sup — log u,, (F') < — inf L*(z). (1.14)

it) For any open set G C R,

1
liminf —log i, (G) > — inf L*(x), (1.15)

n—+oco N zeGNF
where F is the set of exposed points of L* whose exposing hyperplane belongs to DY .

it) If L is an essentially smooth, lower semicontinuous function, then the LDP holds
with the good rate function L*.

Remark 1.1.13 In the particular case where F' = ¢, +oo[, ¢ > E(Z,), we have

1
lim —log P (Z, > c) = —inf L*(z). (1.16)

n—+4o0o N r>c

Remark 1.1.14 (Properties of functions L and L*) Under Assumption 1.1.11,

i) L is a convex function and L* is a convex rate function. Moreover, L*(x) > 0 for
all v € R.

ii) Suppose that L is differentiable for some A € DY and y = L'()\), then

I\ =y = L*(y)=Xy—L(\). (1.17)

This convexity property above will be used further on.

1.2 Sharp Large Deviation Principle

1.2.1 Motivation and SLDP

The (1.1) and (1.2) not only show the result of large deviations, but also inspire us
to develop the tail probability in the asymptotic expansion (1.1). Since the LDP and its
properties only give the logarithmic equivalent for P (})_(n‘ > 3:) in term of a rate function,
then a “sharper” tool is considered in order to estimate this tail probability.

SLDP has been studied widely and commonly known as a “strong large deviation” in
many results. Bahadur and Rao [6] (1960) were one of the first mathematicians establish-
ing such expansions for the sample mean. The sequence of i.i.d. random variables (X,,),
is considered in three separate cases: X;’s distribution is absolutely continuous, X; is a
lattice variable (namely, there exists constants xy and d > 0 such that X; is confined to
the set {xg +rd : r = 0,£1,42---} with probability one) or X; is none of these two
cases. The result of Blackwell and Hodges [11] (1959) in the lattice case is contained in [6].
Chaganty and Sethuraman (1993) generalized Theorem 1 of [6] to arbitrary sequences of

13



1.2. SHARP LARGE DEVIATION PRINCIPLE

random variables under some conditions on the m.g.f. of S, = X; +--- + X, [14] and
extended this result to multi-dimensional case [15] (1996) (strong LD). Cho and Joen
proved a strong LD theorem for the ratio of independent random variables [17| (1996).
Joutard obtained SLD results in the nonparametric estimation setting [32] (2006), for
the conditional empirical process [33] (2008) and for arbitrary sequences of random vari-
ables [35]-[34] (2013). Bercu, Gamboa, and Lavielle established the SLDP and gave the
result for Gaussian quadratic forms [9] (2000). Bercu and Rouault (2002) studied the SLD
for the Ornstein—Uhlenbeck process [10] and later on, Bercu, Coutin and Savy widened
the previous results to non-stationary cases [8] (2012).

We now present briefly the results of Bahadur and Rao [6] (1960):

Let (X,), be a sequence of i.i.d. random variables and a be a constant (—oo < a <
+00). Denote by () = E (e**) the m.gf. of X;, where A is a real variable and
0 < ¢ < 400. Define function () = e **¢(\) and let D, = {\ : ¢(\) < +oo} be the
effective domain of ¢.

Theorem 1.2.1 ([6]) Suppose that the distribution of X is absolutely continuous and
e P(X;=a)#1.
o D, is a non-degenerate interval, i.e. D, is not a single point.
e There exists a positive T € DY such that ¢ (1) = infaxep, {Y)(N)} = A.

Then there ezists a sequence (by,), of positive numbers such that

X1+ + X, A™b,
P > =— 0 (1 1 1.1
(Pt z 0] = e (o) (118)
and
logb, = O(1) (1.19)
asn — +o00. Furthermore, for each j = 1,2, ... there exists a bounded (possibly constant)

sequence (¢jn)n such that, for any given positive integer k,

X1++Xn Anbn Cin Con Ck,n 1
P > = (1 P L T _’> 1+0
( n - &) (27n)1/? Tt T T =

(1:20)
as n — +00.
Proof:
[Ideas from [6]] We first remark that 7 and A are uniquely determined by
(1) ,_dy
= h = — 1.21
o0) a, where ¢’ = -+ (1.21)
and
A=1y(r), (0<A<1). (1.22)

Xi+---+ X,
n

Next, we can decompose p, = P ( > a) as p, = A"I,, and expand I, to

finally obtain (1.20).
We now detail I,, as follows

14
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i)

ii)

Let Y} = X; —a and F(y) = P(Y: < y) be the distribution function (d.f.) of Y.
Define z; a random variable having d.f. G(z) = [7__A~'e™ dF (y).

Remark 1.2.2 The m.g.f. of z1 exists in a neighborhood of the origin,

E(z)=0 (1.23)
and
"
o= Var (z1) = #'(7) —a? < 4o0. 1.24
( 1) 90(7_> ( )
Define o = o7, (0 < @ < +00) and let 2, 29,... be i.i.d. random variables. For
each n, let
21+t 2y
n = T Ty (1.25)
and
H,(z) = Plu, < z), (—00 <z <+00). (1.26)

Then it follows that p, = A™I,, where
+eo 1/2
I, = n'a / =m0 [ (2) — H,(0)] da. (1.27)
0

The expansion of I,, therefore depends on H,, and we develop it as follows.

Suppose that the d.f. of X, denoted by F}, satisfies

+oo
lim sup ‘/ e dF (z)] < 1. (1.28)
|t|%+oo —00
Then G also satisfies
“+o0o
lim sup / e dG(x)| < 1. (1.29)
[t| =400 —o0

and from error estimation in asymptotic expansions (see Cramér, page 81, [21]) we
have for each fixed positive integer k,

H,(z) = K,(z) + R,(x), (1.30)
where
Ko(a) = > n2Py(=9) (1.31)

where R, () is of order the n~(**1)/2 uniformly in = and we detail below

¢ and P;

15
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Remark 1.2.3

- From the CLT, the function ¢ is defined by

n—-+oo

o(z) = lim H,(z)= / ’ (2m) "2 T2 at (1.32)

—00
for every —oo < x < +00.

- P; are polynomials, obtained by expanding an analytic function [n(w/n1/2)] " emw?/2
in a domain independent of n as a power series in w as follows

+oo
[n(w/n!?)]" e = " 0732 Py(w), (1.33)
=0
where n(w) is the m.g.f. of Z1/o.
From (1.27), we have

+oo
I, = n'2a / e %o (K, () — K, (0)] do + o( (1.34)
0

1
nk/2+1/2 | -

Next, using integration by parts and Parseval formula, we obtain

1 oo it \ (s e 1
ot () () o)
J:
(1.35)
Define

s — /_ Tty Pty delt)  (rs—=0.12,. ). (1.36)

o0

We denote by pi, s = 0 if r + s is odd and let us define for every n
1\" _
Cin = Z —— ) s (j=0,1,2,...). (1.37)
r4s=2j
Consequently, it follows that
[ o1 1.38
" a(2mn)l2 Z Cim T~ nk/2+1/2 ) (1.38)
0<j<k/2

These steps establish the Theorem 1.2.1 with b,, = a~".
O

Through the work of Bahadur and Rao [6], the SLDP is formally known in the following
way.

16
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Definition 1.2.4 (SLDP [9]) Let (Z,), be a sequence of real random variables con-
verging almost surely to some real number v. We say that (Z,), satisfies a Local Sharp

Large Deviation Principle of order p € N at point ¢ € R whenever the following expansion
holds

P(anc):w\/(ﬁ_nb)(1+%+---+%+0(%)),(c>v) (1.39)
N P(anc):w\/(ﬁ_nb)(1+%+---+%+0(%>),(0<v). (1.40)

Example 1.2.5 (SLD for the sample variance [35]) Let X; have a normal distribu-
tion N(p;02),0% > 0 and consider the sample variance

1 _
Zy = X, — X,
n—lZZ:;( )

Then for a real a such that a > o® and n large enough,

o~ (n=1)I(a)

P(Zy>a) = 1+ 0(1)).

oz )= 14 0(1)
1/a a a— o2

where[(a>:§<§_log(§)_1>>0and7—a:m

1.2.2 Framework and Main method for establishing SLD

In this section, we propose the framework of [9] for establishing SLDP. This framework
is used throughout this thesis. After that, we briefly mention the work of Joutard [35],
which gives the SLD results in the first-order expansion under some assumptions.

Framework

Let (Z,), be a sequence of random variables. We now present the outline of the method
in four steps:

1
1. Study functions: L,()\) = —log E (¢"*?") and L(\) = lim,_,4c0 Ln(A). (Note that
n
L is a convex function).

2. Consider the dual Fenchel-Legendre transform of L(\): L*(y) = sup,cp{\y—L(\)}.
According to Remark 1.1.14, for each ¢ € R if L is differentiable and ¢ = L'()\,)
then L*(c) = A\.c — L()\.). Denote by 0% = L"()\.) > 0.

3. Set a new probability ),, by change of probability:

dQn XeZn—nLn(Xe)
— = eVefnTimlAe) 1.41
5 = ¢ (1.41)

17
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4. We consider the decomposition P(Z, > ¢) = A, B,,, where

A, =exp [n(Ly(A) — cAo)] (1.42)
and
B, = E, (exp[—n\(Z, — )] 1z,>¢) - (1.43)
Here, E, denotes the expectation under probability @),,. Decompose L,, as:
1 1
L,(A\) =LA\ +-HWA\+0|—|. 1.44
N =20+ 210 +0( ;) (1.44)

We study the expansions of A,, and B, as follows:

4a. According to Step 2,

An = exp {” (LW FH() - c/\c> ; 0(%)]
— exp (—nL*()\c) L HO) + o(l)) |

n

4b. Let us denote by
Vi(Z, = ¢)
O ’
and study ®,(u) be the c.f. of U, over the probability @,, namely &, (u) =
E,(e™tn). Tt follows from Parseval formula that

Bn = En (eXp (_)\cac\/ﬁUn) ]lZan)

= i/ (%) P, (u)du = L
27 Jg \ AeOer/n + iu AoV 2
where
C, = L/ (1 + L) B P, (u)du.
vV 2w R )\cgc\/ﬁ

The expansion of ®,,(u) gives the SLDP.

Remark the result in [35]

We present here a slightly different method to establish the first-order expansion of SLD
as in [35]. This result can apply for the corresponding case 1 and 2 in [6]. We now
summarize the assumptions and elementary ideas in [35].

Let (b,), be a sequence of real positive numbers such that lim,, ., b, = co. Define

Pu(t) = E (e7m)
and
1

on(t) = 7 log E (") .

Assume that there exits the limit lim,,_, o @, (t) = ¢(t) for all t € (—a, ) (o > 0). For
constant a such that |a — ¢/(0)| > 0, assume there exits 7, € {t € R: 0 < |t| < a}, such
that ¢'(7,) = a.

18
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Assumption 1.2.6 i) ¢, is an analytic function in Do :={z € C: |t| < a} and can
be bounded for all z € Do and n large enough.

i1) There exist g € (0, —17,) and a function H such that for eacht € (1, — g, T+ )
and for n large enough,

ult) = l0) + - H () + (bi) ,

where the function ¢ is three times continuously differentiable in (1, — ag, To + o),
©"(1,) >0, and H is continuously differentiable in (1, — v, Ta + p).

iii) There exists 69 > 0 such that,

sup
o<|t|<B|al

()

for any given § and B such that 0 < 6 < §y < .

Then if a > ¢/(0) and Assumptions (1.2.6) holds, for n large enough,

efbnl(a)+H(Ta)
Planza) == e

where 7, > 0 is such that ¢'(7,) = a. Further, I(a) = 7,a — ¢(7,) and 02 = ¢"(7,).

Here, we want to note that the frameworks of [9] and [35] are quite similar. The
different step between them is to study the expansion of c.f. ®,, of U, in step 4b. Bercu et
al. |9] study the expansion by directly bounding ®,, under assumption of L;k)()\) whereas
Joutard [35] develops ®,, based on the results of [14], which only gives the asymptotic
behavior in the first-order. The Assumption 1.2.6 is mentioned in order to apply the
results of [14].

[1+o(1)],

Résumé

Ce premier chapitre est consacré a la présentation des théoréemes classiques de grandes
déviations (PGD) et grandes déviations précises. Dans un premier temps, nous rappelons
le résultat de Cramér: soit (X;) une famille de variables réelles indépendantes et iden-
tiquement distribuées, on définit

L(\) :=1log E (eM) |
et la duale de Fenchel-Legendre de L:

L*(z) := sup{\z — L(\)},

AER

pour z € R. On a alors
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Theorem 1.2.7 (Cramér) Soit (X,), une suite de v.a. i.i.d. de loi p. Soit

_ 1 &
X, =-S5 X,
iy
1=1
Alors (X,,) satisfait un PGD de fonction de taux L*, i.e.
i) Pour tout fermé F' C R,

1 _
limsup — log P (X, € F) < — inf L*(x). (1.45)

it) Pour tout ouvert G C R,

1 _
liminf —log P (X, € G) > — inf L*(z). (1.46)

n—+oo 1 zeG

Une généralisation est donnée par le théoréme de Gértner—Ellis: Soit (Z,),, une suite de
v.a. de loi (py,). On définit la log-Laplace :
1
L,(\) := —log E (e"7"). (1.47)
n
On admet que la fonction limite log—Laplace (ou fonction génératrice des cumulants nor-
malisée):
L(\) = HETOO L,(\) (1.48)

existe pour tout A € R, limite éventuellement infinie. On suppose de plus que 0 € D9, ou
Dy ={NeR: L(\) < +o0} est le domaine de L. On a alors:

Theorem 1.2.8 (Gartner—Ellis) i) Pour tout fermé F C R,

1
lim sup — log i, (F') < — inf L*(x). (1.49)

it) Pour tout ouvert G C R,

1
liminf — log u,, (G) > — inf L*(z), (1.50)

n—+oo 1 2eGNF
ot F est l’ensemble des points exposés de L* dont I’hyperplan exposé est dans DY.
ii) Si L est essentiellement lisse et semi-continue, on a le PGD de fonction de taux L*.
Dans une deuxiéme partie, on définit un PGD précises:

Definition 1.2.9 Soit (Z,), une suite de v.a. réelles qui converge presque strement
vers un réel v. On dit que (Z,), satisfait un PGD précises d’ordre p € N au point ¢ € R
st on a

P(Zan):w\/%_nb)(1+%+--~+%+0(%)),(c>v) (1.51)
b P(anc):w\/(ﬁ_nb)<1+%+~~+%+0(%>),(0<v). (1.52)
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Dans les Chapitres 3 et 4, on prouve un PGD précis en 4 étapes comme suit:
Soit (Z,), une suite de v.a.:

. On étudie : L, = —log e et = lim,, 1 Ln(A). emarque: L est
1. O d L, (A 1 E (em? L(A 1 L,(A). (R L
n

convexe).

2. On calcule la duale de Fenchel-Legendre de L(\): L*(y) = supyer{Ay — L(A)}. On
a vu que si pour ¢ € R, L est différentiable et ¢ = L'(\.) alors L*(¢) = A.c — L(\.).
On note o2 = L"()\.) > 0.

3. On définit le changement de probabilités (), par:

Ci% = gMeZnnln(Ae) (1.53)
4. On décompose P(Z, > c¢) = A,B,, avec
A, = exp [n(Ln(Ae) — cAe)] (1.54)
et
B, = E, (exp[—n\(Z, — )] 1z,>c) - (1.55)

Ici E,, est I'espérance sous ),,. On décompose L,, comme suit:
1 1
L, AN)=LN+-HMN+0[(—=|. 1.56
) = L)+ 1) +0( ) (1.56)

Puis on développe A,, and B,,:

4a. D’apres I'étape 2,

oo (s - ) o2

~ exp (—nL*(/\c) +H(O) 40 (%)) |

U, = \/H(Zn_c)7

Oc

4b. On définit

et on étudie @, (u) = E,(e™U"). D’aprés Parseval,
= o (Ao 0) 152

=, G o -
n(u)du = ———=—,
T or A ac\/_—i- 1 ATV 2N

ou

C, \/ﬁ/< )\UC\/_)_ch)n(u)du.

Le développement de ®,(u) donne le PGD précis.
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Chapter 2

Laplace transforms and asymptotics

This chapter deals with Laplace’s method and the asymptotic expansion of the integral
fab e~ oPMadt (see e.g. [45], [42], [28], or [20]). The main work in Section 2.3 gives the
explicit form of the integral around the maximum of function p(t) by another approach.
The application of Laplace’s method is detailed for the incomplete Gamma function,
hypergeometric function, Euler integral and Stirling formula.

Contents
2.1 Generalresults . . . ... ... ... .. 000 oo 23
2.1.1 Integration by part . . . . . . . .. ... Lo 24
2.1.2 Watson’s Lemma . . . . . .. ... 25
2.2 Laplace’smethod. . . . ... .. ... ... ... L. 27
2.3 Anotherapproach . . ... ... ... ... ... ..., 30
231 Mainresults. . . . . . ... 31
2.3.2  Proof of Proposition 2.3.3 . . . . ... ... ... ... ... .. 32
2.3.3 Proof of Theorem 2.3.10 . . . . . . ... ... ... ... .... 38

2.1 General results

This chapter aims to describe several techniques of integral computations when the inte-
gral depends on a parameter tending to infinity. The archetype of integrals studied here
will be

I(x) = /b e~ PWq(t)dt, (2.1)

where a, b are real numbers, possibly co; p, g are sufficiently smooth real functions and x
is a real number. We want to describe the asymptotics of I when z — oo.
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2.1.1 Integration by part

The first idea is to perform integration by parts. It is particularly interesting when we
consider a simpler form of (2.40), namely

I(x) = / e "q(t)dt. (2.2)
0
We assume that ¢ is C*° on [0, 00| and for any o € N, independently on N,
¢™M(t) = o(e”?), when t — oco.
An obvious computation gives

Lemma 2.1.1 We can write for any N € N

where

The main point is now to bound ey. If ¢ is bounded as follows:
vt e [0,00), |¢™(t)] < Ket, (2.3)

where K and o are real constants independent of N, then for any N € N and for x >
max{0, o}

K
< 2.4
‘EN<x)’ = l’N(l'—O') ( )
Hence,
S )
I(x) ~ Z qst(r(l)) when z — o0. (2.5)
s=0

When there exist a maximum of ¢/ in [0, oo|, say in 0, we can bound

|4™(0)]
len(z)] < TN

If we do not have (2.3) then the obvious extension is

Cn

len(z)] < TN
where

Cy = sup [¢™ (1)
t€]0,00]

and if Cy is big compared to ¢ (0) then we can seek for a bound of type

g™ ()] < g™ (0)]e"
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where oy is independent of ¢ then we get similarly to (2.4), when 2 > max(oy, 0)

4™ (0)]

|€N(x)| < m-

The best value for oy is then

q™M(t) ‘
g™ (0) |

on = sup - log
[0,00]

Incomplete Gamma function

We give here some computation which is slightly different from the above framework
but that will help in the computation of (2.40). The following integral is known as the
complementary incomplete Gamma function defined by

Do, x) = / et tdt .
We have from integration by parts:
D(a,z) =e 2% '+ (a — D' (a — 1,2)

and therefore

P(a,2) = e weet 3 22 Do _xf) B Gl B 2.7)

where _
En(I) = (Oé — 1)(0_/ — 2) R (a _ n) / e_tta_n_ldt7
which can be bounded by
len(7)] < (o= 1) (a—2) - (a—n)|e " .

Hence for fixed o and large =,

e (e D=2 (0
T(a,z) ~ e "z 1280: = , (2.8)
2.1.2 Watson’s Lemma

The idea now is to substitute directly the MacLaurin development in (2.2).

/! (N)
a(t) = q(0) +t¢'(0) + t2q2_<!0> N N§0>

+ Rn(t). (2.9)
Of course this development has to be valid throughout the whole range of integration in

(2.2). Can a similar expansion can be built if the power of ¢ are non integer? The answer
has been given by Watson (see [42]) in the following result
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Theorem 2.1.2 (Watson, 1918) If

q(t) ~ Z agt AR when t — 0, (2.10)
s=0
then .
< s+ A, as
/0 e q(t)dt ~poo ZOF( I )x(s+/\)/u '
Proof:
For any N € N define
N—-1
Qn(t) = q(t) — Z a tETA /e,
s=0
Since -
/ tstA=m)/po=at gy (8 + )‘) 7
0 H
we have
s+ a e
I(x) = ZF( ; ) RSV +/ e QN (t)dt . (2.11)
s=0 0

From assumption (2.10), for any N, and for t < ky, we have

QN ()] < Ky t NN/l

ke N+ )\ K
—rt N
/0 e QN(t)dt’ <Tr ( p ) W (2.12)

For the remaining part fkj e "' Qn(t)dt we fix X such that fooo e XtQn(t)dt converges
and for x > X we have

and therefore

o0

| et = [ et e Quinin = (- ) [ e ey,

kn kn kn

where .
By (t) = / O ()l
kn
It is obvious that ®y is continuous and bounded on [ky, 0o[. Hence we can define Ly
the supremum of @y on [ky, 0o[. Therefore

/ e‘””tQN(t)dt' < Lye™ @0k (2.13)

kn

Putting together (2.12) and (2.13), we get for some constant Ky

N—-1
s+ A as
Im_ZF( p )x(NJr/\)/u =

s=0

Ky
g;(5+>\)/l/» ’
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Application to Hypergeometric function

For any Re(c) > Re(b) > 0, we consider the hypergeometric function:

%/{) (1 — )P (1 — 2t)dt

(see Appendix A for more details on this function). With a suitable change of variable,
for any A\ we get

2F1(a7 b7 & Z) =

Filabet Az = [ fuje
0

where
e —1
U

Flu) = ( )b_l (1O (] — 4 4 2oy,

We can develop f in series around 0 as follows:

|
k=1 p=0 P r=0
b—1 —a
=t = (1 —c)PuP = (=1)u”
=11 1 1
(aty) () (e
k=1 p=1 =1
Hence we get
uP ™t f(u) = Z cr(z)ut (2.14)
k=0

where ¢(2) =1, e1(2) = 52 + (1 — ¢) + az and ¢4(z) are polynomials in 2.
From Watson’s Lemma we have

o0

Cle+ A)

c+)\—b — )\b““

oFi(a,b,c+ X\ 2) = (2.15)

2.2 Laplace’s method

In this paragraph we look for an expansion of integrals of type (2.40). We assume the
following:

Assumption 2.2.1
(i) p has a unique minimum in |a,b] at a.
(i1) p' and q are continuous in a neighborhood of a.
(111) the integral I converges absolutely in its range for large x.

We assume furthermore the following developments around a:

Assumption 2.2.2

(i) p(t) ~pla) + 32 ps(t — ).
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(v) q(t) ~ 32320 a5t — )™
(vi) We assume furthermore that p can be differentiated as follows

o0

P(t) = (s + pps(t — a)™ L,

Then we have the following result

Proposition 2.2.3 Under Assumptions 2.2.1 and 2.2.2, we have

b
ap(t) p S+ A Qg
/ae POg(t)dt ~ e” ZF( ) T (2.16)

Proof:
Let us define k € (a, b) such that in (a, k], p’ is continuous positive and ¢ is continuous.
Since p is strictly increasing on (a, k|, we can define

v =p(t) — p(a)
and 0
q
flo) = P(t)
We get

k K
L2p(a) / =) g (1)t = / e F(v)dv, (2.17)
a 0

where k = p(k) — p(a). And we have the expansions

o
t—an~ g csvs/“
s=1

and .
v) ~ Z apEtA—m/p
s=1

See more details in Olver [42]. We can split f into two terms, a finite sum and the
reminder for any v > 0,

n—1

fv) = Z asv(s+>\—u)/u + v(”+’\_”)/“fn(v) (2.18)
s=0

n—1
J— 54 A s
fy e OF( ) st~ enal@) + cnalo)

Ss=

where

aS
éna Z I ( ) RETSYY
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2.2. LAPLACE’S METHOD

and I'(u,v) is the incomplete Gamma function. Furthermore,

(—:mg—/ e_"wv("J”\_“)“fn(v)dv.
0

From the development of the complementary incomplete Gamma function detailed in
2.1.1, we have

€n1(x) = O0(e ™ /x)
Let us bound €, 5. Since « is finite and f,, is continuous on [0, x),we have

1
Enyg(iﬁ) = O(W) .

For the remaining range [k,b), let X be a value for which I is absolutely convergent,
and denote by 1 = infp, ) {p(t) — p(a)}. Hence,

b b
o | e‘xp(t)Q(t)dt‘ Sl Ol

K

And for z large enough the LHS above is bounded by e/z=*/*.

Euler integral and Stirling formula
We will use later on a development of the Euler function and we detail here these com-
putations. We consider Euler’s integral in the form

[(z)=2"" / e “wdw (x> 0).
0

The integral is zero at w = 0 and increases to a maximum at w = z then decreases
steadily back to zero as w — oco. Setting w = z(1 + t) gives

F(Zlf) _ e—x$x/ e—xt(l +t)$dt _ 6—z$,:c/ e—ﬂﬂlo(lf)dt7 (219)
-1 —1

where p(t) =t — log(1 + ¢). The minimum occurs at ¢ = 0.
We get

0o 1
e“r " T'(x) :/ e_xp(t)dt—l—/ e~ (Dt (2.20)
0 0

Since p/(t) =t/(1 +t) for —1 <t < 1,

=S Cicicn,

n>2

then each integral of (2.20) satisfy the conditions of Proposition 2.2.3 and with v = p(¢),
the reversion of the last expansion yields

21/2

2 2
+—9ol/2,1/2 | £ 3/2 2 52
(R 3v+—18 v —135v +_108OU + ,
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2.3. AN OTHER APPROACH

which converges for sufficiently small v. Hence,

dt
flv) = i agv™ Y2 +ay + av'? + .. (2.21)
For example,
21/2 2) 21/2 4 21/2
“=Tg @Sy @S B s g

According to Proposition 2.2.3,

&0 —zp(t) - > 3+1 Qg
[ emar Zr( )

Similarly,

1 00
—zp(—t) - s s+ 1 Qg
/O € dt ~ > (1) F( 9 ) NETSIER

s=0

We finally obtain

I(x) —9”2”1/21+1+1+ (z — o0) (2.22)

The leading term in this expansion is known as Stirling’s formula and no general expres-
sion is available for the coefficients.

Remark 2.2.4 The alternative way of expanding function I'(z) for large z with error
bounds is shown in Chapter 8, §4, [42]. It gives

m—1
1 1 B,
logl'(2) = — =1 — —log(2 E 2.2

where m is an arbitrary positive integer and

R(2) = /Ooo By ~Banle — o), O(L> .

2m(x + z)?m z2m—1

Here B and B4(x) denote Bernoulli number and Bernoulli polynomial.

2.3 An other approach

In this section, we still consider Laplace’s method for integrals

T(z) = / " (1)t (2.24)

as r — +oo and the development will be around the maximum of p. We present a
method which is slightly different from the previous one, the idea here is to consider a
Taylor development of \/zI(z) at 0. Some references can be found in [45].
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2.3.1 Main results

First, we recall some definitions

Definition 2.3.1 Partial exponential Bell polynomials are defined for any positive inte-
gers k <n by

B n' T c1 X9 c2 xn—kz-i—l Cn—k+1
B (w1, @2, -+ Tnki1) _201!02!---Cn—k+1! (F> <§> ((”—k+1)!) ’
(2.25)

where the sum is taken over all positive integers ci,co - -+ , Cph_gr1 Such that

at+ct -+ g1 =k,
ci+2c+--+n—k+1)chr1 =n.

Definition 2.3.2 The complete exponential Bell polynomials are defined by
By =1,

Vn>1, B,=)» Bu
k=1

where B, are partial exponential Bell polynomials defined above.

For detailed formulas on Bell polynomials, see Comtet [18, 19|

Proposition 2.3.3 Let p be a real function of class C*°(R) and q be a real function of
class C* with support on the interval [—c,c| (¢ > 0). We suppose that

1) p(0) =p'(0) =0,
ii) p” < 0 on the segment [—c, c|.

Then there ezists a function F' of class C*°(R) which satisfies, for all x > 0,

N /]R P Og(t)dt = F(1/y/7). (2.26)

For allm >0, as © — +o00, we have

/Rezp(t)q(t)dt = % (F(O) n Fz”!(;)) T g;)'fg + O(;ﬂ)) , (2.27)

where the coefficients F®)(0) depend only on the values of the derivatives p"(0),p(0),
-, p%2(0) and q(0),¢'(0),. .., ¢*(0).
In particular,

FC(0) =0 for alln >0
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2.3. AN OTHER APPROACH

and for allm > 1

Z B p3(0) pE=m+3)(0) (2m +2n — 1!
2 b\ "m0 ;

"(k—m+2)(k—m+3) |p”(0)[m+n

where 2n+ 1)l =1.3.5...(2n+1) and By (21, T2, . . ., Tp—m+1) @S the partial exponential
Bell polynomial.

For an integral on an a-priori non-centered interval [a, b], we have an analogous result

Theorem 2.3.4 Let (a,b) be a non-empty open interval, possibly non bounded and ty be
some point in (a,b). Denote by Vi, a neighborhood of to such that p,q : (a,b) — R are
functions of class C*(V4,).

We suppose that

i) p is measurable on (a,b),

it) The mazximum of p is reached at ty (i.e. p'(to) =0 and p”(ty) < 0),

b
iii) There exists xo such that / e™P®) g (t)|dt < +oo.

Then there exist coefficients co(to), c1(to), ... depending on derivatives of p and q at to,
such that for any N >0, as v — 400 we have

b
zp(t) _ apite) [ Colto) | alte) e (to) 1
/a g ()t = ( D Gt s O v ) ) - 229
Moreover, (¢y)n can be computed as
2N
2m 2N _
en(to) = ()] Z( k )q(zN ") (to)
ZB ( '(to) Pk 1) (2m + 2N — 1)1
k,m goe ey .
(

k=m+2)(k—m+3)/) |p'(to)|"

2.3.2 Proof of Proposition 2.3.3
Setting y = ty/z and u = 1/4/x, the LHS of (2.26) can be written

\/_/ "(t)dt = / "Fg (%) dy:/Rep(“yWQ(uy)dy,

which allows us directly write function F' with proposal: For any u # 0

F(u) = /Rep("y)/uzq(uy)dy. (2.29)
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By changing variable z = —y, we obtain

Flu) = / W (Cy)dy = F(—u),

then I is even. We thus get F?"*1(0) = 0 for all n > 0 and it remains to extend function
F at u = 0. Tt is feasible since the expression p(uy)/u? can be extended by continuity at
u=0.

Indeed, according to Taylor’s formula at point ug we have

p(u) = p(uo) + p'(uo) (v — ug) + /u p"(t)(u — t)dt.

uo

For u # 0, since p(0) = p/(0) = 0 then

pluy) _ 1 /Ouyp”(t)(uy—t)dt = y2/0 (1 —s)p"(suy)ds.

u? u?

We can therefore define function F' by placing for any v € R

Fu) = / 00 g uy)dy (2.30)

where .
r(y,u) = y2/ (1—39)p"(suy)ds, Vu,y € R. (2.31)
0

Due to classical theorems of derivation under the integral, the function r(y,u) is clearly
of class C* with respect to u, for all fixed y.
By using the notation

ak
DF = —
ouk’
it is easy to obtain for all £ > 0
1
(D)) =2 [ (=)o D sup)is, (2:32)
0
k E+2  (k+2) ! k k+1 yk (k+2)
D _ _ ds = — 7 2.
(Dr)(5.0) = 2 p5400) [ (65 = 1) ds = om0, (239

and if |uy| < ¢,

|y‘k+2

|Dkr(y, u (2.34)

where
My io(c) = max P2 ()]

—c,q]

We now prove that function F' is of class C*°(R) by inductive method. The first step
is detailed in the following lemma.
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Lemma 2.3.5 The function F(u) is well-defined, differentiable and F'(u) is continuous
on R.

Proof:
Setting E(y,u) = e"@%q(uy). We begin to prove that function F in (2.26) is well-
defined.

Indeed, we have p” < 0 in [—c, ¢] then there exists ¢ > 0 such that p”(t) < —e for all
2

t € [—c,c]. It thus follows from (2.31) that r(y,u) < —e % when |uy| < c.
Besides, function ¢ has support in the interval [—c, ¢| then ¢(uy) = 0 when |uy| > c.
Therefore, there exists a constant

No = max|g(?)]

[—ed]

such that ,
Vu,y €R, |E(y,u)| =" ¥"|q(uy)| < Noe ¥ /2, (2.35)

hence FE(y,u) is bounded independently of u. The function N e~<¥’/2 is integrable for all
y. Therefore F' is well-defined and continuous. Let us now show that F' is differentiable
and F’ continuous.

Recall that when |uy| < ¢, Dr(y,u) < Ms(c) —
The derivative of E(y,u) with respect to u is

DE(y,u) = &' (Dr(y, u) q(uy) +y q'(uy)) ,
which is bounded for all u,y € R by

Iyl3
6

3
(M) o 2 4 iy ) e (2.36)

where
Ny = max FAGI

—CC

and
Ny = max |q'(t)].

[~

Once again, DE(y,u) is bounded independently of u. Besides, the RHS of (2.36) is
integrable for all y, then F' is differentiable on R and for u € R,

/a (y, u dy—/ @) (Dr(y,u) q(uy) + y ' (uy)) dy. (2.37)

This leads to the continuity of F”(u).
0

The inductive steps hold according to the following lemma.

Lemma 2.3.6 Assume that for any n > 1, F € C*(R) where
an
» Ou"

/ yu)Z( )" ¢" P (uy) By (Dr(y.w),..., Dkr(y,u)) dy. (2.38)

F (u) = (e q(uy)) dy
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Then F € C"Y(R) and F" Y (u) is defined as (2.38), where By, denotes the complete
exponential Bell polynomials.

Remark 2.3.7 The way to obtain the function under the integral in (2.38) is to derive
function "W q(uy) n-th times. From Leibniz’s rule and Faa di Bruno’s Formula

o () =3 () o) S o)

k=0

=3 () e ),
0

k=

in which for k > 0,

" e
I (e = Z "W By, (Dr(y,u), ..., DF " r(y,u))
u
-1

=€ 20 Bk (DT(g; U), ceey Dkr<y7 u)) ’

Here, By and By, denote the partial and the complete exponential Bell polynomial, re-
spectively (see Definitions 2.5.1 and 2.8.2). By = 1, Bog = 1, Bro =0 for k > 1 and
By =0 form > 1.

Hence, for k>0

k
Dk(er(y’U)) = er(y:“) Z Bk,m (DT(:% U), s >Dk7m+1r<y’ U))

m=0

= '@ By (Dr(y,u), ..., D"r(y,u)) .

Proof of Lemma 2.3.6:
We prove first that function F™(u) in (2.38) is well-defined. Let us first show some

bounds on Bell polynomials appearing in (2.38) and shorten notations of the derivative
D¥r(y,u) into DFr

— k! |Dr| gl ‘Dkfqulr‘ Jk—m+1
By (Dr, ..., D) | < s
| k,m( r, ) T)l - %;jl'jQ' .. 'jk—m—i—l! ( 1! > <(k —m+ 1)'

< Z (M3<C> 'y|3)”‘ o ( My malc) lyl"—+ )
gzl geema U 1123 (k—m+ 1D (k—m+2)(k—m+3)

Y

where sequences 1, jo, - - ., Jk—m+1 Of non-negative integers satisfy two conditions
(%) g2t F Jkemtr =m
Ji+2j+- - (k—m+ 1) =k
Defining
Ms(c) My—m+3(c)
My m(c) = max § ——, ...,
() X{ 2.3 (k—m+2)(k—m+3)

35



2.3. AN OTHER APPROACH

we get
k! k+2m M (c 1 J1 1 Jk—m+1
| By (Dr,..., DM ) <> '|y.| , fm () <_) (_)
= Jilgel e Jkem! \ 1! (k—m+1)!

< Jy[F2m M () Bem(1,. .., 1).

Back to bounding F™(u), we obtain

n k
n T u n n— n m m
D" B @S ()10l 3 1 M) B
k=0

m=0

n k
<e vy ( Z ) Nok D ly"2" M2, (€) B (1, 1), (2.39)
k=0 m=0

The function bounding F™ (u) (in the RHS of (2.39)) is once again independent of u and
integrable in y. Then F(™(u) is well-defined and continuous.

We now prove that F' € C"*}(R).
On the one hand, the function under the integral of F™ (u) has its derivative

D <er(y,u) kz_o < Z ) Yk q(n*k)(uy) By, (Dr(y,u), o ,Dkr(y,u))>

- D (Dn (er(y,u)q(uy))) — Dn+1 (er(y,u)q<uy))
n+1

- n+1 n— n—
=t 3 () ) B (Dr(y, ) D).
k=0

By using similar arguments, we not only conclude that F(™(u) is differentiable on R, but
also shows that F"*1(u) is continuous and well-defined on R. For u € R,

anJrl

R aun—l—l

n+1
r(y,u n+1 n— n—
2/6 v, )Z( N )y gD (uy) By (Dr(y,w), ..., D¥r(y,u)) dy.
R k=0

POt () = (e"g(uy)) dy

O
The remaining work of the proof of Proposition 2.3.3 is to consider the coefficients
F(™(0) on the Taylor’s expansion of F at 0.
We showed that F"+1(0) = 0 for all n > 0. Then from (2.38)

2n

n T 2n n— n—
F® )(O)Z/e (y’O)Z( . )y2 kq®m(0) By, (Dr(y,0),. .., D*r(y,0)) dy
R k=0
2n
Lo M e p(0)y* p*+2(0) y*+2
_ y2p"(0) 2n—k (2n—k) 0) B dy.
/Rez ;(k)y 0 ’“( 23 U (k+k+2)) Y
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Since for £ > 0

B p(3)(0) y3 p(k+2)(0) yk+2
U233 T kD (k+2)

k —m —m
_ Bk p(3) (O) y3 - p(k +3) (O) yk +3
mZO " 23 77 (k—m+2)(k—m+3)

=

3%

p(3)(0) y3>j1 ( p(k—m+3)(0) yk—m+3 )jkm+1
0 (x) ( ) )

Jiljel o Jkemet! ( 11.2.3 k—m+1D)l(k—m+2)(k—m+3

where sequences J1, jo, - - ., Jk—m+1 Of non-negative integers satisfy two conditions
(%) NtJet o F Jkemer =M
Jit+2p+ o+ (k=m+1)jm =k

This yields

B p(3)(0)y3 p(k+2)(0) yk+2
"\ 23 7 k+D)(k+2)

prmp, (000
23 7 T (k—=m+2)(k—m+3)

Mw

Then

mzé(?)www

k —m
> By p9(0) P (0) / e3V’P"(0)y2nt2m g,
m\ 23 h—m+2)(k—-m+3)) Ja ‘

m=0

Remark 2.3.8 (One form of Gaussian integrals) For a > 0

L _1n
/e2a12x2n dq: — <2n ]') 2_7-(7
R a” a

2n)!
where (2n — 1)1 =135...2n—1) = % forn > 1.
"n!

The assumption of p” < 0 on the segment [—c, c] leads us obtain

Z . 29)(0) pk=m+3)(0) (2m + 2n — 1!
L\ 3 k= m A 2)(k—m+3)) [0y

for n > 1. When n = 0, we get

2
" (0)|

The remaining of the proof is a Taylor expansion.

F(0) = q(0)
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2.3.3 Proof of Theorem 2.3.10

We will consider the asymptotic expansion of

as r — +00.
We define a function 6 which equals 1 in V(¢p) and such that 0 < 6 < 1. Let us
consider the function

I(z) = / e Og(1)(1 - 0(t))d.

to

Lemma 2.3.9 Iy(z) is negligible with respect to e*?*0) gz~ for any «, as v — +o0.

Proof:
Since 1 — 6(t) = 0 for all t € V}, then

r) = =P — )
I(x) /m,b)\vto A(0)(1 — 0(t))dt

On the one hand, from the assumption of ¢3 being the maximum of p on (a,b), we
have p(ty) > p(t), for all t € (a,b)\V;,. Then there exists € > 0 such that

p(to) — p(t) > € >0, for all t € (a,b)\Vi,.

On the other hand, for all x > xg

b
|I5(z)] < /( . e(@=e0)p(t) gzor(t) | ¢(1)| dt < / e(@=20)(p(t0)=0) gop(V)| ¢ (1) it
@ to a
then b
|12<m)| < 6:cp(to) e—a:e/ 6xop(t)|q(t)| dt e—af()p(to)-i-exo'

According to the assumption i) of Theorem 2.3.10, we get, for any x > x,

b
|I5(z)] e=P0) < §e~% where constant § = / PO |q(t)| dt e~ =oplto)Fezo
We know that lim,_, o L —0forall @ and all @ > 1, this shows that I(x) is negligible
a$

with respect to ™) z= for all a, as x — +o0.
U

We now only consider the remaining part of integral, namely

b
(o) = I(0) = L) = [ e™a(t)o(0)e

has formed a development of terms of the scale e®P(t0) z = (we will see later), which are
infinitely large to Iy(x). Thus, the asymptotic expansion of I(z) in this scale is reduced
to that of I1(x).
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We can find ¢ > 0 such that the interval [ty — 2¢,to + 2¢| is contained in (a,b); over
[to — 2¢, to + 2¢], functions p, g are C* and p” < 0. We assume now that the support of 6
is contained in [ty — ¢, tg + ¢].
Putting

U(y) = q(to +y) 0(to +v)

and

o(y) = (p(to +y) — p(to)) x(y),

in which y is a function of class C*, equals 1 on [—¢, ¢|] and has support in [—2¢, 2¢].
Functions p, ¢ now is extended to ¢, ¥ on R and it is easy to see that they are C* on R
as well. We have

b
e—xp(to)ll (z) = / 6ﬂc(p(t)—zv(to))q(,g) O(t) dt

to+c

— / err(p(t)fp(to))q@) O(t) dt
t

0—C

= / ew(P(to+y)—p(to))q(t0 + 1) 0(to +y) dy

C

= [ i) .
R

We see that function ¢ has support in [—c¢,¢] and on this interval, x(y) = 1, ¢"(y) =
p"(to +y) < 0. Moreover, ¢(0) = 0 and ¢'(0) = p/(to) = 0.
By using Proposition 2.3.3, there exists function F' of class C*°(R) and coefficients ¢y, c1, . . .

such that
1 -/ 1
emone = 2F ()

! IS RO Y
= — | c — ...
vz \ U2l (2n)! xm antl ) )7

as ¥ — 400, in which ¢, = F©?"(0).
In particular,

FCr(0) =0 for all n > 0

and for alln > 1

P00 = Z( )vetio

zk:B (@(3)(0) =m+3) () ) (2m +2n — )N
k.m 23 P (k—m+2)(k—m+3) |90//(0)|m+n :

This establishes Theorem 2.3.10.
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Résumé

Le Chapitre 2 est consacré a la méthode de Laplace et au développement asymptotique
d’intégrales. L’archetype des intégrales étudiées ici est

I(z) = / b e~ PO q(t)dt (2.40)

avec a, b des réels, éventuellement co; p, ¢ sont des fonctions réelles suffisamment réguliéres
et x est réel. On cherche 'asymptotique de I quand z — oo.

Dans un premier temps, des intégrations par parties ainsi qu’'un résultat de Wat-
son [42] donnent des décompositions pour la fonction Gamma incompléte, la fonction
Hypergéométrique ainsi que l'intégrale d’Euler et la formule de Stirling. Dans une deux-
iéme partie, on donne une décomposition en série:

Theorem 2.3.10 Soit (a,b) un intervalle ouvert non vide, (a ou b éventuellement o) et

to un point dans (a,b). Soit Vi, un voisinage de ty tel que p,q : (a,b) — R sont C>*(V,,).
On suppose

i) p est mesurable sur (a,b),

it) Le mazximum de p est atteint en ty (i.e. p'(to) =0 et p"(to) <0),
b
iii) Il existe xq tel que / e®P®) | q(t)|dt < +oo.

Alors il existe des coefficients cy(ty), c1(to), ... dépendant des dérivées de p et q en ty, tels
que pour N >0, et x — +00 on a:

b
p(t) _aplty) [(Golto) | alto) | en(to) 1

/a e = e ( i Tagn T T aayrevan O\ v ) ) - (24D

De plus, la suite (cy)n est donnée par

2N
2 2N) (2N—k)
q t

7 (t0) Z( k (o)

Zk: B ¥ (to) pE=m3) () (2m + 2N — 1)!!
2P\ T ke mr 2)(k—m +3)) ()N

CN(to) =

et By sont les polynomes de Bell.
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Chapter 3

Sharp Large deviations for empirical
correlation coefficients
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3.1 Introduction

The Pearson correlation coefficient between two random variables X and Y is defined by
B Cov(X,Y)
V/Var(X)/Var(Y)’

p
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whenever this quantity exists. The empirical counterpart is the following. Let us consider

two samples (X1, -+, X,) and (Y3, -+ ,Y,). The empirical Pearson correlation coefficient

is given by - -
Z?:l(Xi - Xn)(Y; - Yn)

\/Zizl(Xi - Xn)Q Zi:1 (Y; - Yn)Q ’

where X, = 130 X and Y, = £ 377V}, are the empirical means of the samples.
In the Gaussian case, when F(X) and E(Y') are both known, we consider 7,,:

(3.1)

n —

P Y- B -EY)
VX - B, (Y- B(Y))?

When the (X;,Y;); are a sample from a distribution (X,Y’), r, and 7, converge almost
surely to the Pearson correlation coefficient of (X,Y’) given above. The coefficients r,,
and 7, describe the linear relation between the two random vectors. We study SLD for
empirical coefficients r,, and 7, in two general cases: spherical and Gaussian distributions.

This chapter is organized as follows: in Sections 3.2 and 3.3, we present the SLD
results in the spherical and Gaussian cases; Section 3.4 is devoted to the proofs and in
Section 3.6, we study the Bahadur exact slope of r,, in the Gaussian case.

(3.2)

3.2 Spherical distribution

In this section, we study empirical correlations under the following assumption.

Assumption 3.2.1 We assume that (X1, -+, X,,) and (Y1,---,Y,) with n > 2 are two
independent random vectors where X has a n-variate spherical distribution with P(X =
0) =0 and Y has any distribution with P(Y € {1}) =0 where 1 ={k(1,--- ,1),k € R}.

3.2.1 SLDP for r,

The strategy is to compute the normalized cumulant generating function of r,:

L,(\) = % log E(e™ ™). (3.3)

The asymptotics of L,, are given in the following proposition:

Proposition 3.2.2 For any X\ € R, we have

E () = W;F—%e”h(TO<A>> (Ciﬁg) + O<#>) , (3.4)

where
o h(r) = Ar+ 3log(l—r?),
e 1o(A) is the unique root in | — 1,1[ of k(1) =0, i.e.

1+ VI+ 4N

ro(A) = 2\

(3.5)
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3.2. SPHERICAL DISTRIBUTION

o g(r) = (1= 12)~2 and co(\) = ,/Wfﬁg(m(m.

Therefore

11 3. 1+/144X 1
La(N) = L) — — [5 log V14X — Jlog ——— | + 0<ﬁ) . (3.6)

where L is the limit normalized log—Laplace transform of r,:
L(A) = h(ro(})). (3.7)

The proof of this proposition is postponed to Section 3.4. Now we have the following
SLDP:

Theorem 3.2.3 For any 0 < ¢ < 1, under Assumption (3.2.1), we have

. 144/ 14422
e—nL (¢)— % log(1+4A2)+2 log —

P(r, >c¢) = oo (1+o0(1)), (3.8)
where
e ). is the unique solution of L'(A\) = c, i.e. Ao = 1%02,
1—c*)?
o L*(y) = —zlog(1 —y*).
Proof:

To prove the SLD on r,, we proceed as in Bercu et al. [9, 10]. See also Chapter 1 for
more details. The following lemma, which proof is given in Section 3.4, gives some basic
properties of L:

Lemma 3.2.4 Let L(\) = h(ro()\)) where h and ro are defined in Proposition 3.2.2, we
have

o L is defined on R, C* on its domain.
e L is a strictly convex function on R, L reaches its minimum at A = 0 and L' €]—1,1].

e The Legendre dual of L is defined on | — 1,1[ and computed as

L(y) = sup{y — LN} = — los(1 — 4?). (3.9)

AER
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3.2. SPHERICAL DISTRIBUTION

Let 0 < ¢ <1 and A, > 0 such that L'(\.) = ¢. Then
L*(c) = che — L(N.) ,
We denote by o2 = L”(\.), and define the following change of probability:

dQn _ eAchn_”Ln(AC) . (310)

dP
The expectation under @), is denoted by FE,. We write

P(r,>c¢)=A,B,, (3.11)
where
A, = exp[n(L,(A\.) — c\)],
B, = E,(exp[—nA:(rn — )1y, >c) -
On the first hand, from (3.6)

1
Ay = expl=nL*(c) = 7 log(1 +4X7) + 7 log
n

2 2

3 1+m] <1+0(1)>.

On the other hand, let us denote by

U, = Vn(r, — C))

Oc

O, (u) = B, () = eXp(—wg\/ﬁC L + 0235) —nLn(\)).

We have the following technical results on ®,,, proved in Section 3.4.

Lemma 3.2.5 For any K € N*, n > 0, for n large enough and any u € R,
1 Co(/\)
A + 52z 1K (M)

where co and ¢ are the first coefficients in Laplace’s method (see Theorem 2.5.10), re-
spectively and cl¥ corresponds to

§(r) = ()< (1= 22

[P (u)] < (1+n). (3.12)

From lemma above, choosing K > 2, we see that ®,, is in L? and by Parseval formula,
1 1 C
B, = E,[e ?<ocVnUn] = —/ (—) P, (u)dy = ———,
| 0.20) 21 Jr \ AcOc/n + iu (w) A0V 20
where )
1 w B
C’n:—/ 1+ —— d,, (u)du.
V21 Jr ( )‘CUC\/E> (u)
Lemma 3.2.6 We have

lim ®,(u) =e /2 and lim C, = 1.

n—oo n—0o0

From lemma above, which proof is postponed to Section 3.4, we have equation (3.8).
[
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3.3. GAUSSIAN CASE

3.2.2 Known expectation

In case E(X) and E(Y') are known, we consider 7, as follows

(X — BQX)Y (v — B(Y))
"X BV - B0 (3.13)

where X' is the transpose of vector X. We can derive a SLD result similar to the previous
one. The following proposition gives the expression of the n.c.g.f. of 7,:

Proposition 3.2.7 For any A € R, we have

I'( ) )€nh(m(x>) (% n 0(#)) , (3.14)

wl/21

I3

f;(enAFn) —

D N)

where
o h(r)=Ar+ 3log(l—r?),
e 1o(A) is the unique root in | — 1,1[ of K'(r) =0, i.e.

—14+ 1+ 42

ro(A) = 2\

27
[h" (1o (A))]

The normalized cumulant generating function of T, is

o §(r) = (1—73)732 and é()\) = g(ro(N)).

La(A) = h(ro(N) — = [ log VI T AN _ Jog LT VLTV m

+O<m)' (3.15)

This proposition is proved in Section 3.4. We have the following SLDP:
Theorem 3.2.8 For any 0 < ¢ < 1, under Assumption (3.2.1), we have

+4/ 14422
—nL*(c )—7 log(1+4A2)+log é
o A0V 2N

(1+ o(1)). (3.16)

Proof:
The proof of Theorem 3.2.8 is exactly similar to the one of Theorem 3.2.3 and formula
(3.8) is changed to (3.16) according to the way formula (3.6) is changed to (3.15).
O

3.3 (Gaussian case

Assumption 3.3.1 Let (X,Y) be a R?-valued Gaussian random vector where o3 =

Var(X), o3 = Var(Y) and p is the correlation coefficient: Cov(X,Y) = pojoy. We
consider an i.i.d. sample {(X;,Y;),i =1,---n} of (X,Y).
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3.3. GAUSSIAN CASE

3.3.1 General case

We deal with the Pearson coefficient given in (3.1). Large deviations for (r,,) are detailed
in the paper of Si [55]. It can be noted that the contraction principle used by Si is not valid
here. The rate function is correct however. We can give an expression of the normalized
log-Laplace transform L, given by (3.3).

Proposition 3.3.2 Let us define

3+2V/3
P03=T~

For any X\ € R and p such that |p| < po, we have the n.c.g.f. of ry:

L) = R(ro()+ 3 toe(1 = )+ 13, (o) — 5 o " (a0 | +0 () (3.1)
in which
o h(r) =Ar —log(l — pr) + $log(1 —r?),
e 79(\) is the unique real root in ] — 1,1] ofﬁl(r) =0,
0 G,(r) = (1= p?) V(L — pr)?/2(1 —r?) 2.
The proof of this proposition is postponed to Section 3.4. We prove the following SLDP:

Theorem 3.3.3 For any 0 < p <c <1 and |p| < py (with the notations of Proposition
3.8.2), we have

o—nL*()+log g, (ro(Ae)— 5 log[B (ro(Ac))]

Pl 2 ¢) = A0 2N

(14 0(1)), (3.18)

where for any —1 <y <1,

L =lo . 3.19
(v) g(\/(l_pQ)\/(l_yz)) (3.19)
Proof:

Following the Proof of Theorem 3.2.3, we can easy obtain (3.18). Note that the rate
function in Si [55] matches our (3.77).

U

3.3.2 Known expectations

In case E(X) and E(Y) are known; and p = 0, we have the following result

Proposition 3.3.4 The normalized cumulant generating function of 7, is given for any
AER by
1 1
L,(\) = — —log(1 + 4\ — 2
) = hunW) = g tog(1+48) +0( ) (320)

where
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3.4. PROOFS

o h(r)=Ar+ 3log(l—r?),
e uy(A) is the unique solution of h'(\) =0 in | —1,1].
The proof is postponed to Section 3.4. The SLDP is therefore:

Theorem 3.3.5 When p =0 and under Assumption 3.3.1, for 0 < ¢ < 1, we have
—nL* (c)fi log(1—4A2)

AT/ T

Py >c) =&

(1+o(1)), (3.21)

where L* 1s given in Theorem 3.2.3.

3.4 Proofs

3.4.1 Proof of Proposition 3.2.2
We know from Muirhead (Theorem 5.1.1, [40]) that

n— 9)1/2 T'n
N I S D2

has a t,,_o-distribution. Hence the density function of r, is

r 1
fulr) = %ﬁ’n_)(l — ) (1 <r < 1), (3.22)
2
Applying Theorem 2.3.10, we get

E (en)\rn) _ /_1 e")‘rfn(r)dr _ /_1 en)\r 1/2( (2n) )(1 o 7”2)(7174)/261’)"

1 1

G ahiro(v)) [ Co(A) 1
-zt (o () )

where h, ro and ¢y are given in Proposition 3.2.2.

So we have
E (e™m) = 7r1/2<r—(2)) 2;;6”“’“0( ”%( +O( )> (3.23)

:Eiéi\/genh(TO(A))(1_ro(A)2)1 T+ ro(\)? (HO(%)) (324

From the duplication formula

22710 (2)D (2 + %) = /7['(22),

as well as the Stirling formula
1 1
logT'(z) = zlogz — z — §logz + log v 2w + O(W) , as Re(z) — o0,
formula (3.24) above becomes

B = ) (o(3))

With the expression of 7y, we get formula (3.6).
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3.4. PROOFS

3.4.2 Proof of Lemma 3.2.4

We can explicit the full expression of L:

—14+V1+4)\2 1+ v1+44X2

1
L\ — _ Clog(— YA 2
o) . log(— ) (3.25)
It is easy to see that L is defined on R, C* on its domain.
From the definition of L we can deduce
L'(A) = 1o(A) + B (ro(N) = 10(N), (3.26)

and by construction of o, L' €] — 1, 1[. Now we can compute

L) = ri(\) = 2—; (1 _ ﬁ) | (3.27)

and it is easily seen that L”(\) > 0 for any A € R* and L”(0) can be defined by continuity
as 1. Hence L is strictly convex on R and has its minimum at A\ = 0. Moreover, if we
have

then 0 < ¢ < 1 implies A\, > 0 and we can obtain
Ae(Ae(1 = ¢*) —c) = 0.

This leads us to the expression
c

Ao = )
1 —¢?

Hence the preceding expression yields

1—c?)?
2 — L// )\C — ( )

3.4.3 Proof of Lemmas 3.2.5 and 3.2.6

The proof of Lemma 3.2.5 is based on iterated integrations by parts. We detail below the
steps.

i . /n(r—c)
Cbn(u) = En<€zuUn) — €Zqun(T)€>\cnr_nL”()‘c)dr
R

1
_ s, Vnec . n _
= Fne Wge e nLn()\C)/ €(lu oc +)\Cn)T(1 — 7,2)71/2 2d7“,
-1

where for seek of simplicity we denote by

(3.28)
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3.4. PROOFS

For K € N*  performing K integrations by part, since f, is zero at —1 and 1 when n is
large enough, we get:

®,(u) = Fne_i“ﬁc —nln(Ae) |
Coylge Pk
2 2 2 = / 6(w\[{—;+/\cn)r(_2r)K(1 . TQ)n/Q_Z_KdT.
(zu‘g—? + /\Cn> -1

Hence,

n n n

E g Bk 1) p

@, (u)] < Tpe En(e) 2 2 2K / eXenr (2r)K (1 — p2)n/2-2-K gy
ZU\O{—E + An -1

Using Laplace’s method once again (see Chapter 2), for a given n > 0 we can find N large
enough such that for any n > N,

1 C()(/\)

()] <
et K ()

(I1+mn). (3.29)

O
To prove Lemma 3.2.6, we first split C), into two terms:

1 zu -1 U -1
Cn:—_/ (1+ ) du+— ( ) P, (u)du.
2m Ju|<n> )\CO-C\/E |u|>ne A Uc\/_ ( )

(3.30)
For the second term in the RHS of (3.30) we have
1 1
/ —0, (u)du| < / Cbn(u)du
wne (14 227 ) uisne |14
1 o (e
5/ K+1ducO ()\ )<1+77)
[u|>n IAo|E ‘1 + /\c;g\/ﬁ co(Ae)
e () 1
< A (L) / du
’)\C|KCO<>\C> |u|>ne (1 + )\ZUQQ )(K+1)/2
K -
i (Ae) 2 2 \(K+1)/2
——(1 A p
< RS (e =

In order to have a negligible term, it is enough to have —Ka + % < 0, i.e. fixing
K =3, a=3. Now for the domain {|u| < n®}, we study more precisely the expression
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We first remark that E(e™™) is analytic in A on R, hence it can be expanded by analytic
continuation and L, (A 4 iy) for A,y € R is well defined. From the analyticity, we can
expand in Taylor series the expression (3.31) above.

D, (Ae) = exp{—iu Ve

B . /ne v, v \"LP ()
= exp{—iu p +nac\/ﬁL"<)\0)+nk§ X }. (3.32)

We detail now a development of L, — and its derivatives — which will be useful in the
whole chapter.

Technical Lemma 3.4.1 For any A\ € R, we have

L,(N\) = h(ro(N)) + % logT, — % logn + %Ro()\) + 1 Z () (3.33)

where T, is defined in (3.28) and

Ro(\) = logeo(N), (3.34)
Ry(A) = > (=1)"(s—1)!Byalcr,ca -+ ), (3.35)

where the coefficients ¢; are given by Laplace development (see Section 2.3) and B, s is
the partial exponential Bell polynomials (see (2.25)).

Proof of Technical Lemma 3.4.1:
From Chapter 2 we can develop

nh(ro
E(en/\rn) _ 71-1/2(1-‘(2 ) \/_ Z |np (336)

where

cp(A) =

ey Z( )4 H0)

)(ro(N)) RE=m+3) (o (X)) (2m + 2p — D!
'mZ:OBk’m( 53 e (k:—m+2)(k;—m+3)) Bt e (3.37)

From Faa di Bruno formula (see e.g. formula [5¢| of Comtet [18]):

nATR\ __ ( ) RP()\)
log E(e™™) = nh(ro(N)) + log (\/—Wl/z (=2 )> +logco(N) + p; ol (3.38)
where R, is defined in formula (3.35) above. Hence the formula (3.33) is proven. U
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From expressions (3.35) and (3.37), we see that R, is a polynomial in ¢ (ry()\)) and
h()(r5()\)) where the derivatives are taken with respect to r. The function r7o()\) is C* on
R. We can therefore express the derivatives of L,, as follows:

RPN 1« RPN
LGy >+— B (A (3.39)
n n npp!
p>1

LP(A) = LB () +

Back to formula (3.32), and from the choice of \., we have

0

STha)| = L0 =c
and
u\/n iu \" 72’“) c
D, (u) = exp{ (;C/—I:L;Z()\C) — (] +nz (gc\/ﬁ> L k(!)\ )}

u " (A u? T k %k) c
= exp{ [R{)(A)+ZR”( )]—T‘QL;;(AC)MZ( ) L k(!”}

Vno. et nPp! 2 P

5 2 Nk T 2p Nk k) N (k)
B u iz nL"(\.) 7 Ry’ (A\e) i 1 Ry’ (A\e)
= oxpd 2 +§ <ac\/ﬁ) k! +Z (UC\/H> k! +Z o./n) k! Z nPp! b

T p>1

For p large enough such that {u*/(y/n)*"2} is bounded on {|u| < n®}, we can have a
uniform bound on the rest of the sum in the last term on the RHS above. Hence we can
write, for a given m € N large enough

2 2m+-3 . k (k) 2m+1 . k (k)
u iu nL"(\,) iu Ry’ (Ae)
Pulw) = exp{=5 + ) <acﬁ) TR <a\/ﬁ> A

k=3 1
2mallm) ' k (k) 2m-+4
L 1 RP (AC) 1+ |u’

We follow the scheme of Cramer [21] Lemma 2, p.72 (see also Bercu and Rouault [10]),
and we get the wanted results.
U

Remark 3.4.2 A thorough study of expressions LY and Rj(gk) are given in the Appendiz.

3.4.4 Proof of Proposition 3.2.7

By symmetry, the mean £X = 0 if it exists. Then, 7, from (3.13) becomes

T'n

XY - E(Y)
“IXTIY - QT

(3.42)

51

(3.40)



3.4. PROOFS

, . . Y —EY)
Applying Theorem 1.5.7 from Muirhead [40]|, with « = —————— € R", then
1Y = E(Y)]
1/2 T'n

has a t,_;-distribution. Comparing to r,, the degree of the t-distribution is one degree
less than 7,.
Hence the density function of 7, is

(%)

2

_TN27 (1 2\(n=3)/2 _
Wl/QF("T’l)(l %) , (—l<r<l). (3.43)

Applying Laplace’s method we get

~ ! (2) _
E(e)‘"):/_le’\—7T1/2F(2 >(1—T2)( 324y

PG heey (G0N 1
_7-(-1/2]_—‘(717_1)6 \/ﬁ +O W ,

where h, ry and ¢y are given in Proposition 3.2.7. Then

B () = 1/2r((2 > %eﬂh(m(m% (1 n O(%))

) rg(A)l)(l —7 (1 L0 (%)) . (3.44)

And we can obtain formula (3.15) from the expression of .

3.4.5 Proof of Proposition 3.3.2

From Muirhead, we know that the density function of a (n + 1) sample correlation coef-
ficient r,,, is given by

(n—1)I'(n) _ 2YV2(] — o\ nL/2(]  p2)(n=3)/2
Fo (L ) )

1 11
o Fy (2 3 —1—2 2(1—1—,07“)) (—l<r<l).

where 5 F7 is the hypergeometric function (see [42]). Hence Laplace transform is

n+1)Ary, (n _ 1)F<n) 2\n /2
B = s v e
' (n+1)Ar —n+1/2 2\(n—3)/2 1 1 11
e (1—pr) (1—1r7) o Fy 305 +22(1—|—pr) dr.
-1

Looking for a limit as n — oo, we can use the following result due to Temme [60, 61]
(see also [30] and Section 2.1): the function oF; has the following Laplace transform

representation
I'(c) R
Fi(a,b,c;2) = dt 3.45
2Fifa,b, ei2) F(b)F(c—b)/ (1— 2t)e (3:45)
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and
(c+)) &
Fi(a,b A 3.46
2 1(@, 7C+ 7'2) C+)\—b — )\b+s ( )
where the equivalent is for A — +o00 and
t_ 1 b—1
f(t) _ (6 . ) e(l—c)t<1 P 'Z@ft)fa7
f(t) =Y ()
s=0
In our case, we get as n — oo:
111 1 L(i+n) /1 24pr 1
=== i=(1 ~—2 2 —4 — . 3.47
2 1(272a2+n;2< +PT)) F(n) <\/ﬁ+ 8n3/2 +0(n3/2)> ( )
Hence we have to deal with the following integral:
! 2 1
/ €(n+1))\r(1 . pT)_n+1/2(1 o 7“2)("_3)/2 <1 4 + pr + O<—)> dr. (3.48)
-1 8n n
Neglecting the terms of lower order in n we focus on
1 r _
/ QHON (1 ) HEL2(1 )2 gy — / Mg (r)dr, (3.49)
-1 -1
where ]
h(r) = Ar —log(1 — pr) + 5 log(1 —r?), (3.50)

g(r) = V(= pr)(1 - )2

The following lemma detail the properties of the function h:

Lemma 3.4.3 For any p €] — 1,1 and r €] — 1,1, the function h of formula (3.50) is
defined for any A € R. Moreover, h'(r) = 0 has at least one solution in | — 1,1] and

V3+2V3

R"(r) <0 on]—1,1[ for any |p| < po where py = 3

Proof:
We compute easily

B (r)=A -
(r) * L—pr 1—12
and see that H(r) = h/(r)(1—r?) = 0 has at least one root in | —1, 1[ (since H(—1)H(1) <
0). Hence there exists at least one solution r9 €] — 1,1[ such that A'(r) = 0. Next, we
compute

_ 2 1 2
h”(?“) _ P B +7r
(1—pr)2  (1—12)2
and we have
A 3+ 2vV3
h'(r) <0 for any r €] — 1,1] <= |p|§p0;_+\/_' 0
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We know from Si [55] that the rate function in this case is

1—ps

I,(s) =log (\/(1 == 32)) for —1<s<1. (3.51)

However this function is obtained by a contraction principle which is not applicable
here (the functions applied in the principle are not continuous, see Dembo and Zeitouni
for more details [26]), we claim that the expression above is correct. We prove it below.
We have

L) = h(ro() + 5 og(1 = 4?).

where ry satisfies

Now we compute

L'(\) = 19(\) + r5(A)R (1o(N)) = 10(N). (3.52)
For every —1 < ¢ < 1 and A. such that L'(\.) = ¢, we have
L*(c) = cAe — L(A\.)
1 1
= cAe — {Aero(Ae) + 5 log(1 — 7’8()\ ) — log(1 — pro(Ae)) + 5 log(1 — p*)}

1 11—
=3 log(1 — ¢*) +log(1 — pc) — = log(l —p?) = pe

lo
g\/l—CQ\/l—p2

Becali%e of the dual properties of Legendre transform, the condition of Laplace’s
method A (r) < 0 is compatible to the condition of convexity of I, in | — 1, 1][.

It means that for py < |p| < 1, I, is not convex. We can infer from the fact [; = L
and L* = I, that function L does not exist.

From that point, under condition |p| < py, we can get

B (i) — 712—mlr _ n/2\/§ (ro(A (>\))))| <1+O<%)> (3.53)

|h 7”0(

— p(m+Dh(ro(x ))(1—0) (1—P7”o()\))3/2 1+0 l (3.54)
(1—r2(N)2/ [ <ro<A>>|( (”))

We can adjust the size of sample into n and obtain

_ 2 (nfl)/2(1 _ PTO(/\))B/Q 1
E (emm) = et d-r) 1+0( =), (3.55)
(1= 32\ [B" (ro(N)] < <”)>

which leads us to (3.17).
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3.4.6 Proof of Proposition 3.3.4

For the asymptotics of L, in this case, we follow the steps of Si [55]. Up to considering
Xi=X-FEX)and Y; =Y — E(Y), we can boil down to E(X) = E(Y) =0.
If we denote by (,) the euclidean scalar product in R?, and

(x/Z?lef’ ’\/Z?lez?)’ (x/Z?zlYf’ ’\/Z?zlYf>

therefore o
T = (X,Y). (3.56)

Large deviations for {7,} are proved in [55]. We derive here the corresponding sharp
principle. Since X, Y are independent random variables with uniform distribution &,, on
the unit sphere S"~! of R", we can compute

E(eM) = // NV G (da)é, (dy)dady (3.57)

Snfl ><$n71
App1 1 n—1
== / e <\/1 — u2) du, (3.58)
a, J_4
where a,, is the area of the unit sphere:
27T1<gl
a; = 7 .
L(5h)

In order to get the SLD, we want to compute the normalized log-Laplace transform: for
any A € R, From Stirling formula (see Chapter 2), we get easily

wren (e(l)

1 el 1
/ e <\/ 1-— u2> du = / e g(u)du
-1 _

1

Then we can write

where h(u) = A+ £ log(1 — u?) and g(u) = \/11_7 We apply Laplace’s method to get:

1
nh(u) _ nh(uo(N) CO()\) L
/16 du=e ( NG +0 3 , (3.59)

W) = T ) = et ).

This leads to . )
Ln(A) = h(ug(\)) — > log(1+4X%) + O (ﬁ> : (3.60)

where
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3.5. ANY ORDER DEVELOPMENT

3.5 Any order development

We present in this section a quite general result that can be used to get SLD at any
order in our cases, since the so-called Laplace’s method, — or stationary phase method —
is applied on very smooth functions. Recall that we can write the normalized cumulant
generating function as

1 1 1 Ro(A 1 R,(A
L,(\) = - log E (") = L(\) + ﬁlog K(n) — %logn + % + - Z (N (3.61)

Pyl
= nPp!

where K(n) is a function of n, Ry and R, are given in (3.34), (3.35). For example, the

Fl/ F// /
coefficients of L, () and LY (A), respect to scale ™2 are 2FE:2)) ~ [F((;O))} ,
respectively.
Note that:
F"(ro) 15 3,0, 1 2 _o, 9'(r0) 19" (o)
= —1h h —|h h h h h 3.62
F(TO) 36| 2| 3+4| 2| 4+| 2| Sg(ro) +| 2| g(ro) y ( )
g,(rro) ! 1 —1
=H () —=h h 3.63
g<7,.0> ( ) 2’ 2‘ 3 ( )
9" (ro) " (g/(ro))z 1. 5 1. 4
and = H"(\) + — —1|h hi — =|h hy. 3.64
s =)+ (208 ) il 0 = il (3.6)

SLD functions can be shown similarly to the method used in both papers of Bercu et
al. [9, 10].

Theorem 3.5.1 In the framework of Sections 3.2 and 3.3, for any 0 < ¢ < 1, there exists
a sequence {0.x i, such that

777,[/3< ( )+R0

)\ OV 2N

P(r, >c¢) =

1+Z e (np+1)]_ (3.65)

Proof:
Similarly to the proof of Theorem (3.2.3), we can remind briefly the main ideal as
follows: From the decomposition P(r, > ¢) = A, B,, in which

A, = exp[n(Lu(Ae) — eA)]

= exp[—nL*(c) + Ro(\.) + Z

np

= exp[—nL*(c) + Ro(\))] (1 + M) .

= 7P (2p)!

where {7,}, is a sequence of smooth functions of A. From the development of ¢ in (3.40)

o (u) 1—|—u p
(1+ Acac\/ﬁ> D, (u) = e 2 <1+ Z nm T 0(1)), (3.66)

where P, are polynomials in odd powers of u for k odd, and polynomials in even powers
of u for k even. From that points, we can complete the proof of Theorem (3.5.1).

U
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3.6. CORRELATION TEST AND BAHADUR EXACT SLOPE

3.6 Correlation test and Bahadur exact slope

3.6.1 Bahadur slope

Let us recall here some basic facts about Bahadur exact slopes of test statistics. For
a reference, see [4] and [41]. Consider a sample X7,---, X, having common law
depending on a parameter § € ©. To test (Hp) : 0 € ©y against the alternative (H;) : 0 €
©; = O\, we use a test statistic S, large values of S, rejecting the null hypothesis.
The p-value of this test is by definition G,,(S,,), where

Gn(t) = eseug) Py(S, > t).

The Bahadur exact slope ¢(#) of S,, is then given by the following relation

¢(0) = —2Timinf = log (Gi(S,)) - (3.67)
n—oo M
Quantitatively, for § € ©1, the larger ¢(f) is, the faster S,, rejects Hy.

A theorem of Bahadur (Theorem 7.2 in [5]) gives the following characterization of ¢(6):
suppose that lim, n~'/25, = b(f) for any 6 € O, and that lim, n~'log (G,(n'/?t)) =
—1I(t) under any 6 € Oq. If [ is continuous on an interval containing b(0,), then c(0) is
given by:

c(0) = 21(b(0)). (3.68)

3.6.2 Correlation in the Gaussian case

In the Gaussian case, under Assumption 3.3.1, we have the following strong law of large

numbers:
rn — p=cov(X,Y) (3.69)

We wish to test Hy : p = 0 against the alternative H; : p # 0. It is obvious that under
Hla

lim r, = p.
n—oo

and this limit is continuous when p # 0.
Besides, we have here

G, (t) = sup P,(v/nr, > t)

PEBO)
and ) ]
—log G (v/nt) — —5 log(1 —t%).
n

Therefore the Bahadur slope is

c(p) = log(1 = p?). (3.70)

We show that this statistic is optimal in a certain sense. In the framework above, to test
0 € Oq against the alternative § € ©; we define the likelihood ratio:

SUPpeo, | [1—q Ho(Ti)

)\n = n
SUPgeo, [Ti= to(zi)
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3.6. CORRELATION TEST AND BAHADUR EXACT SLOPE

and the related statistic:
A 1
S, = —log A\,. (3.71)
n

Bahadur showed in [3] that S, is optimal in the following sense: for any 6 € O,

1 A
lim —log G, (S,) = —J(0), (3.72)

n—oo 1

where J is the infimum of the Kullback—Leibler information:

J(6) = mf{K (6, 0,), 6 € O} (3.73)
and
_ o ,uao(x)
K(6,00) =~ [ 1og oy (3.74)

Definition 3.6.1 Let T, be a statistic in the parametric framework defined above, then
if ¢(0) is the Bahadur slope of T,,, we have

c(0) <2J(0)
and T,, is said to be optimal if the upper bound is reached.

We have the following result on the statistic r,

Proposition 3.6.2 The sequence of empirical coefficients {r,}, is asymptotically optimal
in the Bahadur sense ([3]).

Proof:
We can easily compute the Kullback—Liebler information in this case:

Let # = (u,X) corresponds to the distribution of (X,Y’) in the case # € ©; and
0 = (o, Xo) for 0 € ©y. Since p = 0 in the case § € O, the matrix ¥, is diagonal.

1 1 1,
K(0,60) = — log [X] + 5 log [Xo| — 1 + StrX 8 = (= p0) (1 — po)], (3.75)

where |X| stands for the determinant of 3. The infimum in (3.75) is reached when py = p
and the diagonal terms in ¥, are the ones of 3.

Hence,

, 1 1 1 1 )
J(e) = 9(}2(%0 K(Q,eo) = —5 IOg ‘E‘ + 5 lOgO’ll + 5 lOgO'QQ = —510g(1 —p )
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3.6. CORRELATION TEST AND BAHADUR EXACT SLOPE

Résumé

Dans le Chapitre 3, nous étudions les grandes déviations précises pour des coeflicients de
Pearson empiriques qui sont définis par:

— Z?:l(Xi j Xn)(yz - Yn) _
\/Zizl(Xi - Xn)2 Zi:l (Y; - Yn)2

ou, quand les espérances sont connues,

Y (G - E(X)(Y — E(Y))
\/Zizl(Xi - E(X))2 Zi:l(Yi o E<Y>>2
Notre cadre est celui d’échantillons (X;,Y;) ayant une distribution sphérique ou une dis-

tribution gaussienne. Dans chaque cas, le schéma de preuve suit celui de Bercu et al.
Dans le cas sphérique, la fonction de taux est donnée par

T'n

L(y) = — 5 log(1 — 7). (3.76)

Dans le cas Gaussien, les grandes déviations ne sont valides que dans un domaine restreint
de corrélation p: I’échantillon {(X;,Y;),i = 1,---n} est issu du vecteur Gaussien (X,Y)
avec 0?2 = Var(X), 03 = Var(Y) et p est le coefficient de corrélation: Cov(X,Y) = po0s.

Soit
V3+2v3
—
Pour tout A € R et p tel que |p| < po, on a alors le PGD précis avec la fonction de taux

wlN 1—py
Flv) =tos (\/(1 - V(1 —y2)> ' 70

Po =
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Chapter 4

Self Normalized statistics

In this chapter, we prove the SLD for a particular case of a self-normalized statistic, which
is Moran statistic. We recall a theorem of Darling [24] to study the moment generating
function of the statistic. The properties related to the Digamma function and Hurwitz
zeta function are mentioned in [42]. The first-order expansion will be shown in Section
4.2 and we also discuss higher-order development.

Contents
4.1 Introductionand model . . .. ... ... ... ... .. 61
4.2 Mainresult . . . . . ... L o e e 62
4.3 Proofs . . . . ... e e e e e e e e e e e e e e e 64
4.3.1 Proof of Proposition 4.2.2 . . . . . ... ... ... ... 64
4.3.2 Proof of Proposition 4.3.5 . . . . . ... ... ... ... .. .. 66
4.3.3 Proof of Proposition 4.2.5 . . . . .. ... ... ... 66
4.3.4 Proofs of Lemmas 4.2.6 and 4.2.7 . . . . . ... ... ... ... 67

4.1 Introduction and model

A self-normalized statistic is formally defined in the following way

Definition 4.1.1 Let X, X5, , X, be a random sample of size n. A self-normalized

statistic is defined by
1 < X;
()
[ Xn

where f is a real valued function and X, is the empirical mean of X1, Xo, -, Xp:
_ 1 <
X, =- X .
IR
k=1
In this section, we focus on a particular function f(s) = logs. Let Xj, X5,---, X, be
non-negative random variables and consider the so-called Moran statistic:
1 < X;
T, == log =% 4+, 4.1
PR A (4.

61
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where 7 is the Euler constant. This test is known to be the most powerful unbiaised expo-
nential test against the Gamma alternative (see Moran [39] and Plachky and Steinebach [43]).
Large deviations for the Moran test has been thoroughly described by Tchirina [57]. We
propose here a SLD result. Moreover, our method for computing the normalized cumulant
generating function of 7}, is completely different from the one of [55] and relies on the
results of Darling [24]. For a reference on self-normalized statistics for tests of normality,
see the work of Arcones [2].

4.2 Main result

The statistic 7, is used to test H, (Exponential distribution) against H; (Gamma alter-
native). As a matter of fact, the random sequence T,, tends to 0 as n tends to infinity.
We have the following asymptotics:

Proposition 4.2.1  a) Under Hy, T,, — 0 a.s., as n — 00.
b) Under Hy, \/nT,, — N(0, %2 — 1) in distribution, as n — 0.

The proof of proposition above is given in Tchirina [57|, Theorem 1.

We can compute the normalized cumulant generating function of 7, and give its limit
as n grows to infinity. It is detailed in the following two propositions which proofs are
postponed to Section 4.3.

Proposition 4.2.2 Under Hy and for any real A > —1, Laplace transform of nT,, is

L(n) n™ (A + 1)
[(n(A+1))

Ele*] = ™ (4.2)

Proposition 4.2.3 Under Hy, the normalized cumulant generating function of T,, is

L)) = %log E[e*"T]) = L(\) + % log(A+1)+ O (i) , (4.3)

n2

where

L) =92 —=(A+1)log( A+ 1)+ A+ logl'(A+1). (4.4)
We can now present the main result of this chapter:

Theorem 4.2.4 Under Hy and for 0 < c < v,

—nL* (c)+% log(1+Ac)

P(T, > ¢) = =2

o A0 2T

where L* is the Legendre dual of the function L defined above, namely the limit n.c.qg.f.
of T,,, and A\. > 0 is the unique \ such that L'(\) = c.

(1+o0(1)), (4.5)

Proof:
We begin the proof by some results on L:
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Proposition 4.2.5 The function L is strictly convex, L' €] —oo,~[. Moreover, L'(0) = 0
and therefore for any 0 < ¢ < ~y there ezists a unique A\, > —1 such that L'(\.) = c.

The proof of this proposition is postponed to the Appendix. To prove the SLD of T,
we proceed as in [9]. Let us fix 0 < ¢ < v and A. such that L'(\.) = ¢. We denote by
02 = L"()\.) and define the following change of probability:

dQn AenTy—nLn(Ae)
—— = el EnAe), 4.6
7p =€ (4.6)

The expectation under @,, is denoted by FE,. Now
P(T, >c)=A,B, (4.7)
and
A, =expn(L,(A\) —cAe)], Bn = E,(exp[—nA(T, — o)]11,>¢) -

On the first hand,

A, = exp | —nL*(c) + %log(l + )\c)} (1 + 0(1)) |

n

On the other hand, let us denote by

Lemma 4.2.6 For n large enough, ®,, is L*(R).

Therefore by Parseval formula,

1 1 C
Bn - En _)\CJC\/EURH = —/ ——— (bn d = S —
¥ 020 = 50 Jo \Sovn i) T = S o
where
= /(1+—w >1<1> (u)d
= n(w)du.
\/271' R )\co_c\/ﬁ
We have

Lemma 4.2.7 C,, — 1 as n — oo.

From lemma above, we have equation (4.27).
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4.3 Proofs

4.3.1 Proof of Proposition 4.2.2

We use here a result of Darling [24].
It is well-known (see for instance Proposition 1 of Shorack and Wellner [54] p.335)
that the distribution of

(s sw)

Z?:l Xi Z?:l X

follows a Dirichlet distribution of order n with parameters (1,...,1). In other words, it is
the law of n uniform spacing (D;, ..., D,) where D; = Uy — Uy for 1 <4 <n —1 with
Uy, - .., Up—1) are the order statistics of a (n — 1)-sample of uniform random variables
on [0,1] (with the convention Ugy = 0 and U,y = 1).

Remark 4.3.1 The density distribution of (D1, ..., D,,) with respect to the Lebesgue mea-
sure of R" (since D, =1 — Z?;ll D; ) is just the uniform density over the open simplex

n—1
Sn—l = {(.1‘1,...,.’En1) ERn_l, [Bi>0, 1 Szgn—l, ZIEZ < 1}
i=1
We recall that the Lebesgue measure of S,_1 is equal to ﬁ Moreover, the marginal
distribution of D; for 1 < i < n — 1 is a Beta distribution Beta(l,n — 1) with density
(n—1)(1 — 2)" *L1((z) with respect to the Lebesgue measure on R.

Remark 4.3.2 e Rao and Sethuraman [46] proved a Central Limit Theorem for the
statistic T, under some alternative assumption that the distribution of the U; is not

uniform (it is assumed that the distribution function is equal to F(x) = x + Lnnl(/ﬁ))

e Rao and Sethuraman []7] have established the weak convergence of the empirical
measure + 3" 6up, -

e Zhou and Jammalamadaka [64] have studied a large deviation result for the Dirichlet
distribution for spacings of the form D; = Up,n — U with 1 < i < k and
0=X <A1 <--- < X =1, and where k is fized and n goes to infinity.

Thus, this will allow us to calculate Laplace transform of the statistics 7T;, since, for
any positive real A,

E (en/\Tn) — en)\’yE (e)\ > log(nDi)> — E( f[ 6/\ log(nDi)) )
=1

Then we can apply the following result of Darling (Theorem 2.1, [24]) which is based on
the inversion of the Laplace transform of a convolution product:

Theorem 4.3.3 Let fi,..., f, be n real-valued functions which the abscissas of conver-
gence of corresponding Laplace transforms are all less than some real c. If (Dy,...,D,)
denotes n uniform spacings on [0,1] then,

E(ilifi(Di)> = %/B(ﬁ 0

where B={c+ 1y, y € R}.

+oo
filx;) e ™% dxi> e*dz,
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Proof:

The proof of this theorem is based on Laplace transform of a product of convolution.
Using the distribution of the (n — 1) order statistics Upy, ..., Uy, we can calculate as
follows:

i i Tl—]. 1\T1 2$2—$1...n1—$n_1 d.%l...dl’n_l
(Hf )R N C LA
— (n—1)IF(1),

where F' is the convolution product of the functions (f;)i<;<, denoted by

F(x) = fus - ful@),

for any positive real x. In order to calculate F(1), we consider the Laplace transform of
F and derive that L(F) = L(f1) * - -- x L(f,) which is equivalent to

+00 n +oo
/ F(z)e ™ de =[] / filw)e " da,

provided Rez > c¢. Now, we can apply the complex inversion for the Laplace transform

which gives,
+0o0o
F . z fz:rl z) zZT
() QW/ ||/ filw) e day ) e do,

and we apply this to x = 1 to conclude.
OJ

Applying this theorem to the functions f;, 1 < i < n all equals to the same function
fi(x) = eMoe(?) this leads to:

— 1) ct+ioco o n
E<enATn) _ en)\'yu/ e (/ e—rzeA log(m“)dr) dz. (48)
c 0

2mi oo

We have

/ efrze)\ log(nr) dr = / efrz<nr))\dr
0 0

n)\

= F(A+1) (as ReA > —1).

A+l

Then we obtain from (4.8) that

1 c+100
Ele*™] =™ (n — D! n™ T\ +1)=— 5 / e 2D g,
i J.

I )
T\ + 1))
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4.3.2 Proof of Proposition 4.3.5

From Proposition 4.2.2, we have

log'(n) log I'(n(A + 1))

n

1
—log E[e* "] = Ay + + Alogn +logl'(A+ 1) — (4.9)
n

The Stirling’s formula (see also Remark 2.2.4) gives
logT(n) = (n—=)logn—n+~log2m+0/(~
ogl(n) ={n—g5|logn—n+log2m ~
1 1 1
logI'(n(A+1)) = (n(A +1)— 5) (logn +log(A+1)) —n(A+1) + 3 log 27 + O(ﬁ) :

Accordingly,

n2

logl'(n) logI'(n(A+1))  —nAlogn — (n(A+1) = 3)log(A+ 1) + nA N O< 1 )

1 1
=—Alogn—(A+1)logA+1)+ A — —logA+1)+0| = | .
2n n?
Then we get the limit of the normalized log-Laplace transform of T,

1 n—oo
La(\) = ~log B[] 2% L(A) i= —(A+ 1) log(A + 1) + A+ logT'(A + 1).

4.3.3 Proof of Proposition 4.2.5

Recall that
L) =92 —(A+1)log( A+ 1)+ A+ logl'(A+1).

For z > 0, first and second derivatives of logI'(z) exist and are known as Digamma
function ¢ (x) and Hurwitz zeta function ((z,s), respectively (see Chapter 1, [1]). We
show that L()\) is a convex function.

Indeed, we can represent L'(\) and L"()\) as

L'AN) =7+ 1vY(A+1) —log(A+ 1),

1

According to Exercise 42iii and 43b ([1]), we have

1 o 2t dt
=1 - — — 4.10
Y(z) =logz o /0 (22 + 2)(e2™ — 1)’ ( )
1 1 o 4zt dt
2)=— +— : 4.11
((5,2) =55 +-+ / Rt (4.11)

Therefore, for any A\ > —1,

, 1 ot dt
L) =v-5 <, (4.12)

(A+1) /0 (A +1)2412)(e2mt — 1)
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1 o 4 Htd
L0 = g /0 e 1)9++t2))f(6;t 5 >0 (4.13)
Moreover, L'(0) = 0. The Legendre dual of L exists and is defined by
P) = { Supb_l{i\g,_ O gtie?\,zvise. (4.14)
Recall that for > 0
)(w) = /m (e: _ )dt (4.15)
0 t 1 —et

is well defined and continuous on |0, +oo[ and besides,

= —00

lim (¢(z) —logz) = lim (z/;(x +1)—

z—0t z—0t

(Since (1) = —vy and lim zlogx = 0) :
z—07F

1—|—x10gm>

According to [1], Corollary 1.4.5, for |argz| <7 — 4, § > 0,

1 " By 1 1
-1 _ . A — . 4.1
o) =osr 33 +0{) (19
Therefore,
lim (¢(z) —logz) =0. (4.17)
r—+00

After all, one get that for A > —1, function L'()\) is continuous, L'(\) < v, L"(\) > 0,
limy, 100 L'(A) = 7 and limy_,(_1y+ L'(A) = —oo. Even though the explicit form of L*(y)
may not be obtained, we know that for any 0 < ¢ < « there exists a unique A\, > 0 such
that L'(\.) = ¢, then

L*(c) = cAe — L(\.) .

4.3.4 Proofs of Lemmas 4.2.6 and 4.2.7

As in (3.31) we can write

®,(u) = E,(e™Un) = E[exp(—wfc +nLy (X + aj\u/ﬁ) —nLn(Ac))] -

To study if ® is L?, we can consider |®(u)| and in this expression, there is only the terms
depending on u. Therefore we boil down to considering

U

L ) 4.1
exp{nLy(\e + ) (@.15)
From expression (4.2),
L —— ) =logl l log I’ —log’ .
n "(chLac\/ﬁ) og (n)+n()\6+ac\/ﬁ) og n+nlog ()\C+Ucﬁ) og (n()\c—l—o_c\/ﬁ))
(4.19)
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Hence from (4.18) we consider only
w w
—logI'(n(A.
oom) " loe (e + 2=

We use here an expression for logI" due to Binet and detailed in Andrews et al. [1] (see
Theorem 1.6.3):

|exp{nlogI'(A\. +

)} (4.20)

1 1 */1 1 1
logl'(z) = (x — 5) logx —x + 5 log(2m) + / (— ——-+ ) dt, (4.21)
0

which leads (4.20) to study

Jexp{(5 — o) log(h + )} (122

Obviously, expression (4.22) is L?, it corresponds to the Fourier transform of a L? function.
L]

Now we can develop as in (3.40):

UM iu \" 5{‘“) c
B, (u) = exp] {1%&&—4+n§:( > Ln )y

g

We see from expression (4.21) that L, is an analytic function. Proceeding as in the
previous chapter, we can develop L%k) and get the convergence of C,.

As a matter of fact, the preceding results of (4.27) can be generalized to any order
development. It is based on how far we can develop L, ()\).

The asymptotics of Gamma function with large argument are detailed in [42], as follows

m—1

B2$
25(2s — 1)z%71

1 1
logl'(z) = <z — 5) logz — 2+ 5 log(2m) + + R (2), (4.23)

s=1
where By is Bernoulli number and m is an arbitrary positive integer. Moreover,

RM@:AWBM_BMQ_MWMZO( 1), (4.24)

2m(x + z)?m z2m—1

for large |z|. From that point, we can proceed as in Chapter 3.

Résumé

Par la suite, nous considérons la statistique de Moran

] — X;
To==) log = :
nkiOan+7

ou 7 est la constante d’ Euler. La statistique T;, est utilisée pour tester Hy (distribution
exponentielle) contre I'alternative H; (Gamma). On a:
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Proposition 4.3.4  a) Sous Hy, T, — 0 p.s., quand n — oc.
b) Sous Hy, /nT,, — N (0, %2 — 1) en distribution, quand n — co.

Cette proposition est donnée par Tchirina [57|, Theoréme 1.

On montre alors :
Proposition 4.3.5 Sous Hy, pour tout réel A > —1, la log—Laplace normalisée de T,, est
Lo(A) = ~log B[] = L(\) + — log(A+ 1) + O (i) | (4.25)
n 2n n?
o
L) =92 —(A+1)log A+ 1)+ A+ 1logl'(A+1). (4.26)
Le résultat principal de ce chapitre est le suivant:
Theorem 4.3.6 Sous Hy et pour 0 < ¢ <7,
—nL*(c)+3 log(1+Xc)
Ao 270

ot L*est la duale de Legendre de L (définie ci-dessus), et A\. > 0 est l'unique X\ tel que
L'\ =c.

exp

P(T, > ¢) = (1+0(1)), (4.27)
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A.1 Fundamental definitions and notations

In this section, we deal with the introduction of fundamental notations and definitions
used throughout the thesis. Good references could be [42] for paragraph 1; [60], [1] for
paragraph 2; [18| or [19] for paragraph 3.

1. We use several notations related to the asymptotic analysis such as ~, o and O. Let
us remark the definition of those symbols, as + — oo, as follows

i) If f(x)/g(x) = 1, we write

f(@)~g(z) (2= o0).

In words, f is asymptotic to g, or g is an asymptotic expansion to f.

ii) If f(z)/g(x) — 0, we write

In words, f is of order less than g.

iii) If | f(x)/g(x)| is bounded, we write

In words, f is of order not exceeding g.
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iv)

(Asymptotic expasion) Let f(z) be a real (or complex) function, > asz~* be a
formal power series (convergent or divergent), and define R, (z) be a remainder
as follows

S R.(2).

n
anl

a a
f@)=ao+—+ 5+t

Then, following Poincaré [44], if R,,(z) = O(z~") for fixed value of n, as z —
o0 in a certain unbounded region R, we say that the series Y a,z™* is an
asymptotic expansion of f and write

f(z)%ao%—%—i-g—i—... (z = oo in R).

In collaboration with holomorphic (or analytic) property (see e.g. [51], p.198),
a complex function f is representable by convergent power series > .o as(z —
2p)~° in some open disk centered at z, i.e.

f(z) = Zas(z —2z9) "

s=0

2. The upcoming paragraphs are to introduce the definition of several special functions.

i)

Gamma function originated in 1729 and is defined through Euler’s integral
'(z) = / ettt (Re z > 0).
0

Integrating by parts the above integral we get

—

B

_10b
Figure A.1: Gamma function, y = I'(x) for x € R.
[(z+1) =2zI'(2),

and when z = n, a positive integer, we have

I'(n)=(n—-1)! (n=1,2,...).
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i)

iii)

iv)

10~

Figure A.2: Digamma function, y = ¢(x) for z € R.

Digamma function or so-called Psi function is defined by

U(z) =1"(2)/T(2).

Hurwitz zeta function is defined by the series

— 1
C(Z) = Z ;7
s=1
when Re z > 1 and by analytic continuation elsewhere, ((z) is holomorphic in
the half-plane Re z > 1.

Hypergeometric function: The so-called hypergeometric equation is defined, for
any real or complex parameters a, b, ¢ by
d*w dw
2(1—2)—+(c—(a+b+1)z)— — abw = 0. Al
(=255 + (e (atb+1)2) T (A1)
A solution for |z| < 1 and ¢ # 0 is given by the hypergeometric function, which
is a converging series

NG

o Fi(a,b,c;2) = ZO %z—j, (A.2)

where () stands for the Pochhammer’s notation:

o (a)=1,

o (a)s=ala+1)(a+2)---(a+s—1),fors>1

For Re(c) > Re(b) > 0, we have an integral representation of the hypergeo-
metric function:

[(c)

F(a,b, C; Z) = m/o t(b_l)(l _ t)c_b_l(l _ Zt)_adt.
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The graphs of I'(x) and 1 (x) for real values of x are in Fig.A.1 and Fig.A.2

3. The Stirling numbers of the second kind S, ;, count the number of ways to partition
a set of p labelled objects into k nonempty unlabelled subsets. S, can be computed
from the sum

1< k
_ k—j '
Sp,k = E;(_l) ! ( j )]p'

In this thesis, we use a recurrence relation of the Stirling numbers of the second

kind

D
Sp+1,k+1 = Z ( ]; ) Sj,k

J=k

:<Z>Sk,k+(kf_1 )Sk+1,k+"'+<§)sp,k

with the initial conditions S, 9 = So, = 0 for p > 0 and Sy = 1.

A.2 Some Technical Computations

Although they did not have a direct application in this thesis, we present here two auxiliary
technical results that appeared in the process and seemed valuable to us.
We recall here the expression (3.40) of the c.f. @, (u):

1 u? iu \? 7(110) .
@n(u) = expf \/ﬁOC[L;L(/\c)—C]—202LZ(AC)+nZ(UC\/ﬁ) L),

|
p>3 P

where

1
LON) = L® ) + RPN + =
(M) () + o<)+n;

k
&)

nep!
We also study the expansion of nL¥ '(A) and the bounding of Rﬁ,k)(/\c). Although such
tedious calculus is not applied on the proofs in the main results, it leads us to gain two

following theorems. We note that we consider the particular case in spherical distribution
to illustrate for the proof in these theorem.

Theorem A.2.1 For anyp > 3, nL%p)()\) can be expressed by the following power series

nLP(X) = (nro(A\)P Y w.n™, (A.3)
s$>p
and, namely,
ws =0, for each s =0,1,2...,p. (A.4)
Theorem A.2.2 Fork=1,2,..., we have
IR (N)] < 6 AL, (A.5)

in which constants 0y, and A, are computed by (A.50) and (A.51), respectively.

The proofs of these results follow.

74



A.2. SOME TECHNICAL COMPUTATIONS

A.2.1 Proof of Theorem A.2.22
Recall that
E (en)\rn) — /1 en)\rf (T)d?" — /1 en)\r ( 2 ) (1 . r2)(n—4)/2d7«
- ! -1 Wl/zr( %)

1

then from the definition of L,

L,(\) = %logE (e

where F,(A) = [1, 0 g(r)dr, g(r) = (1 = r)"=9/2 and T, = T(751)/(x21(%52).
It is easy to see that

where gi(r) = (nr)fg(r). Then it follows the Faa di Bruno’s formula, for every p =
1,2,..., that

DO =3 1og® (FuN)} By (FLN). ELN. ... EFD(3)).

where B, (z1,...,%p_k+1) denotes the partial exponential Bell polynomials. According
to the Leibniz rule and definition of Bell polynomial, we have

-5

PO Bpi (FL(N), EV(N), ..., FPI(\)
k=1 n

DL () — Xp: (—l)kJrl(k)— 1)! - p! | ‘

; j1|]2' <o IJp—k+1-

. (Fél(!»)ﬁ (Fé(!A))jz B ( H )

where (j;);, () represents for the meaning that (j;); be the sequences of non-negative in-
tegers which satisfy two conditions

itjet k1 =k
Ji+2j+ -+ (p—k+1)jpr1=p
Remark A.2.3 The previous definition of the sequences (j;); is still compatible with the
original version of the Bell polynomial. Indeed, it follows from the definition that

J1+2)+3)3+-=p
and therefore,
ji =0, fori=p—k+2p—k+3,.... (A.6)
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A.2. SOME TECHNICAL COMPUTATIONS

From now, remind (A.6) and we have the decompositions

p

nLP0) = 3 () E -1 S p_'G) (%)

N
k=1 (Fa)i> (%) SR

We now describe

= Tt () ()G B

(F4)i, (%)

as a power series. According to Theorem 2.3.10 in Chapter 2, fort=1,2,...,p— k + 1,
there exists the sequences of numerical coefficients (¢,)s and (cy(;))  associated with F,())

and Féi)(k), respectively, namely

e RNen I A I S S 1
F(\) = o <ﬁ+2!n3/2+ +(2p)!np+1/2+0(np+3/2

and

() (\\ — nh(Aro(\) [ €0G) C1(3) p(i) 1
) = e (ﬁ o T T e TO\ e ) )

Here, r¢(\) is from Proposition 3.2.2 and notations 7, ¢s are substituted for ro(A), cs(r0(A)),
respectively.
Then, it follows

| TG R O N ( 1 )
Fél)()\) _col) n Cos) (2p)! nP ¢ npt+1

F.(\) o 1 Cp 1
1+ L 4P
* nco i (2p)!nP ¢ +0 nptl

_ Cogs) 1 - 1 A 1 A 1
= o (1 + ﬁ dl(z) + E dQ(z) 4+ ﬁ dp(z) 1+0 ) . (AS)

Substitute (A.8) into (A.7), we obtain

) . ; ; G
j Z p! 1 I 1 72 . o) o2y Cozzpizlﬂ)
1! 2! ck

150
(F4)i>(*) SR

1 1 n 1 1 72 1
I+ odg ot —dyy | (1 —dig et e ) o (14O )

Lemma A.2.4
o)Wk (), (A.10)
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Proof:
Indeed, ¢y and coy;) are the first coefficients in Laplace expansion of F, and Fr(f),
respectively. Hence, fori =1,2,...,p—k+1,

(%)j _ (91(7”0))ﬁ — (nry)
k - - o)
Co g(ro)
By the second condition in (x), (A.10) holds.
According to the multinomial theorem and Lemma A.2.4, we obtain

p! 1 Ji 1 J2
_ p _ i —
P = (o) ) AT <1!) ol

(d)i,(*)
Z < Ji ) 1ko(1)dk1(1) o dkp(l) n—(k1<1)+2k2<1)+~~-+pkp(1))
s Kp(1)

(km@)) ko), ki), - - 1(1) p(1)
m(1) ),
j2 k k1(2) . kp<2) (kK +2k +—‘,—pk; -
Z ( Ko@) k12), - - -+ kp(2) ) 1@ dy o) - d i) (F12)+2ka(2) »(2)
(knL(Z))m

: (1 + O(np1+1)) . (A1)

Here, for : = 1,2,...,p— k+ 1, (km(i)) . be the sequences of all combinations of

non-negative integer such that

m:071 7777

and

()i
Koy, K1gays - - - 5 Epgi Koy ki) -+ - Fpay!

be a multinomial coefficients. Then we can rewrite (A.11) as follows

_ p _ _ —
P = (o) 2 A (1!) 2l

(561>, (ki) )

i,m

, k1) k(1) . ki2) kp(2)
! ha) b Ja! he) b

(1= 30 k) B! Ep)! (o — D0 k) Fry)! K]
(S k2 S kst S ) (1 - O( : >> (A.12)
np+1 ’ '
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A.2. SOME TECHNICAL COMPUTATIONS

Define
:ka(i)a 0<wy < (i=1,2,...,p—k+1). (A.13)
> ke =ji—yi =0 (i=12....p—k+1). (A.14)
p—k—+1
= > k@, Tm =0 (m=12.p) (A.15)

Then (A.12) follows that

kl(l) Ep(1) k1(2) kp(2)
(nr Z 1<1> dﬂ 1\ ey Ge (1)
o)* k11 T L k! \ 2

(o) kpy! ki)! p2)!

p' 1 & 1 & —(z To+-+px 1
: Z W (ﬂ) (§> @ R2mtetpry) (4 i) ] (A.16)
2z 1 2. . .

(74)i>(¥%)

where (J;);, (%) represents for the meaning that (j;); be the sequences of non-negative
integers which satisfy two conditions

Ziz1iji =pP—- Z Zyi
=1

Then we obtain from (A.16) that

dipn 0 1 dy ko) 1
P:(n?”‘o)p Z (1(')) |<§(')) '...

k11! kp(1)!
(km(i))Lm 1(1) p(1)

(i) ey (D ECI| g o -
2 ki) 2 kp(@)! P ek =30

| 1
' D n—(@2zttpz) (14 0 , (A7)
(p B Zp—k-‘rl z'y~>' np+l
i=1 i)

where Sp, ;. denotes the Stirling numbers of the second kind. Consequently, it follows that

p
1
nLﬁLp))\:nr P pl — DMk —1)! S
(knl(”)i,m
—k+1 . —k+1 .
I (dm‘))kl“) LTI (%)% !
=1 Z! kl(i)! i=1 Z! kp(i)!

1
. Sp_z§;ﬁ+l s 5] kb1 .n—($1+2x2+.‘.+pxp) (1 + O(anrl)) . (A18)
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Remark A.2.5 During the proof, in order to avoid many significant conditions related to
the notations of the factorial and the Stirling number of the second kind, we might agree
that:

e z! is non-zero if © > 0,
o S, is non-zero if 0 < k < p.
Otherwise, they can be eliminated and do not affect to our computations.

The rest of proving Theorem A.2.22 is to show that the sum related to sequence
(km(i))im in (A.18) can be expanded as a power series ) hsn~°. Moreover, for s =

1,2,...,p, we have
p

D (=DF (k= 1)1 hy = 0. (A.19)

k=1
It is shown by induction: firstly in base case by Proposition A.2.6 and in inductive case
by Proposition A.2.11.

Proposition A.2.6
p

D (=DM k= 1)1 he = 0. (A.20)

k=1

Proof of Proposition A.2.6:
Follow this case, we have s = 0. Therefore, k,,;; = 0foralli=1,2,...,p—k+1 and
m=1,2,...,s. The LHS of (A.20) becomes

p
> (=1 (k= 118, =0. (A.21)
k=1
Let us follow the RHS of above equation
P P
S =DM (k= DSy = S0 (k= D! (Syo10m1 — Spora)
k=1 k=1
P p—1
=D (=DM = DSy + Y (- DFTELS,
k=2 k=1
p—1 p—1

=S DRSS ()RS,

1

I
—_
i

O
We begin the very first step of induction of (A.19) by considering the coefficients h.
We have

p—k+1 p—k+1 p—k+1

§=x1+2x9+ -+ 5T, = Z Fig +2 Z ka@y + -+ +s Z Esiy- (A.22)
i=1 =1 i=1
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For s > 0, all combinations of non-negative integer (km(i))i ., set up s- subsets of com-
binations x1, Ts, . . ., s which satisfy (A.22) and are defined by Zf;f“ k1), Zf;lkﬂ ko),
it My respectlvely For each set of x1, 2o, ..., x,, setting

1'0Z:$1+$2+"'+$s:y1+y2+'”+yp—k+1' <A23)

We infer from (A.23) that 0 < zo < s. For given s = 1,2,...,p and for each x,

p—k+1 k1
P> > (%)
.= . Ce
- Z! kl(z)'
=13 (k1(i)); =
To = x1 -‘r tTs =z =kya)+ -+ kip_kt)

s ds(i) Fato 1 S =Py ko
> 11 g ™ T (A.24)
(ks()), =1 ' < — i )

Ts = kg1 + 0+ Ks(p—k+1)

Since zy > 0 then there exist at least k,,; # 0. It leads to the fact that there exists
a positive m € [1, s] such that z,,, > 0. Remark that

p—k+1 p—k+1 p—k+1 p—k+1
Z W = Z 1k + Z ko) + - + Z k(i
=1 =1 =1 =1

and formula (A.24) shows that hg is not effected by eliminating the case when z,, = 0 for
some m € [1, s]. Therefore, we can subdivide terms in (A.24) as the following lemma

Lemma A.2.7 For each o < s (s fized), let M be a positive constant between 1 and x
associated with finite non-negative sequence ki, ka, ..., ky_rt1 such that M = ky + ko +
4 kp_jt1, then

Z ( N > p_ﬁl (dmu’ ) b S ik ko
oo kl,kz,...,kp7k+1 paie} 7! <q_2§:1k+1 Zk?z>'

M=k + - +kp g1

p—k+1

. Qi) Amiz)  Aming)  Sgis—ip——ias k=0 (A.25)

inyiz,eying=1
holds for all M from 1 to s.

Proof:
The lemma follows by induction. Indeed, when M = 1, we have

_k )
> ( 1 )pﬁl (dmu))h S-S by b0
ki >0 R Bpi i=1 ! (q — Zkz)

l=ki+ -+ kp_pt1

p—k-+1
=3 Sy
—~ IR (g =)
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Assume that (A.25) holds for M, we now prove that

- M+1 pﬁ“ (i) \ ™ S5 i b
Ky, . i

cey ]zfp_k_t'_l <q o le;lk+l Zl%@) '

ki >0 =1
1

p—k+1
_ § : dm(il) L dm(iM) dm(iM+1) Sq—il—'"—iMH,k—Io
- . . . . . 9
) = _ 01! in! iy (q—h — —ZM+1)!
U1y M EM+1=1

where <kz> is a sequence of non-negative numbers associating with M + 1 such that
7

M+1= /2?1 +"'+I;3p—k+1~ Since

(~ M +1 ) (M 4 1)! M!(ky + -+ kp_gy1)

kla ) kp—k—i—l ]~€1' Ce kp—k+1! k)ll c. kp—k—i—l!
E i)
o\ ke k=1 )

then

p—k+1 M
LHS = Z Z (/;;1,...712;1—1,...,/;7pk+1>

MA1=ki+-A+ky 1 =1

(" (AT Ay nery )
1! I I (p—k+1)
S

q=>" 41 tki—1(ki—1)—Lk—xo

(q — Yt Zf%)'

If we set k; = k;— 1 (fori=1,2,...p—k+1) and k; = k; (fori=1,2,...p—k+1and

i # 1), the sequences of non-negative number k1, . .., k,_x11 associates with M. Therefore,
p—k+1
dim(1) ( M )
s =y 0y
|
LT = U TSRS

’ pﬁl (dm(i) ) ) Sq-1-3%, ihi h—o
i! (

i=1 qg—1->"r " zki>!
p—k+1 p—k+1

Z (1) Z in(in) Am(in)  Aming)  Sqei—is—iz——is,, k—z0

| 11 1o | ] — i — e — e — g 1’
— l! P PIT (LE O iv! (q—1—1i1 — iy ig,,)!

It complete the proof where index 7,1 replaces for I.
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For each xy, we have for all m = 1,2,...,s, x,, can take any value between 1 and x.
Therefore, we can apply Lemma A.2.7 when z,,, = M, ¢g=p—> "] ML Gy +> ko i Km(
and substitute notation k) for k;

Z pﬁl (dm(z))km(l) 1 S Zp k+1 . i k—z0
(km@), =1 & fin ( g i )

Zm = k(1) + -+ B (p—k41)

p—k+1 S =T p—hTT . ) .
_ 1 3 m(ir) dm i) fﬂnazm> P=SiZn iy = (614t ) o0
X! i g ! i=1p—kt1 . . )
Ty igyeim=1 2 Tm Z#ml _1s ki) — (i1 4+ +ig,))!

(A.26)

Remark A.2.8 Next, we substitute notation (zl m)) for (i;); by meaning the sequence of
index generated by the m-th term.

Accordingly, the entire terms in the form (A.24) of hs; can be computed as

10y) "7 ¥y (1)
hs = Z | [ Z ll
I ZEQ *Tg

11(1) Zx1(1)

. d2(i1(2)) U d2("zz(2)) N ds(h(s)) o 'dS(izs(s)) Sp D (1) = 2 Sm(s) =0 .
gy (2)! h@““%@!(p—zm%m— c= D m(s))!

(A.27)

Here, () represent for the meaning that the sequences of index (im(l))m=m> (im(g))m:E e
(im(s))m 17 take their value on [1,p — k + 1]. Since the number of these indexes is

r1+- +$5 = o and the factors d,,(;)/i! respect to m in range [1, s], then we can simplify
the expression of hy as follows

s p—k+1
=Y Y by Dt st i),
s N ol N |
wom] @1+ twa=a0 T1:T2! Tg- il,iz,...,izozl 11- 19 Zxo.
S
p—i1—io—-—ig,,k—T
. S o % g (A.28)
(P—Zl—h—'“ iz )!
where mq,mo, ..., m,, are the indexes taking values from 1 to s.

The next step is to consider coefficients d,,;). We mainly mention the dependence of
results on ¢ and k. We recall that all function respect to A from now is considered at
A = A, the notations do not change. The following technical lemma will show us that
d, ) can be expressed to a series, which depends on i:

Technical Lemma A.2.9 We can express

2m .

w=1

where {Q,} is a sequence of constants Q. (ro(\.)) which is independent of index i.

82



A.2. SOME TECHNICAL COMPUTATIONS

Proof:
Remark again the formula (A.9), we will proceed to consider the formulas of gfk),
(k) (k)
9i = 9 Gm)  Cm g
Gi g ’ Co(i) co’ o)
Firstly, we have the view about d,,(;.

Cm(z) —-m
m 2 @m)l o) o L)
Z dm(i)n = Cm = Z C’m(i)n Z C’mn

Zom 2m)l e m
- Z Cn@n™™ Z Byn™™,
where C, ;) := #{20@), C,, = (27;% and sequence (B,,),, can be defined by
B() CQ =1
Yoo BiCrpy =0, form=1,2,... °

It is easy to see that Cy;) = Cop = By = 1. Since Zﬁo B, C,,_; = 0 then

(i) = Z Ciiy Bm-1 = Z (Cisy — C1) B
=0 -1
N Ci(3) Cz)
=3 ~ ) B
lzl (2[)' (CO(i) Co !

Secondly, according to Laplace development (Theorem 2.3.10, Chapter 2), we have

2m
BRI

) i B 5 <h(3)(7"0) h(ai’g+3)(7"0) ) (26 + 2l — ].)”

g 23 7 (a—B+2)(a—B+3)) |B(r)|PH
Therefore,
2l (2-a)
a g (7o)
SN __p, ),
Co ;:0 g(ro) J( o)
where
921 o h3) (ro) hla=06+3) (o) (26420 — 1!
Da’l(ro) = ( ) Ba,ﬂ (—07 R I _0 ) " B+l
Q 2.3 (a—=p+2)(a—5+3) |h" (o)
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is a polynomial of variable ry (namely the derivative of h), depend on [ and not depend
on 4. Similarly, we can obtain

, 20— (2l—a) (2l—a)
Ci(4) C <gz (TO) g (TO)) D
- — E - a,l (TO)

Co(s) Co g gZ TO 9(7”0)
_ 3 gz(a)( 0) _ g (ro)
N a—1 ( 9i(ro) g(ro) DQZ*QJ(TO)' (A.30)

Thirdly, we have g(r) = (1 — 7?)72, then it follows to the Faa di Bruno’s formula, for
a=1,2,...,

@(r) = {u(o(r)} = Zu(ﬁ Bas (v/(r), 0" (1), 0l PH(1r)

)l
—Z s Baa (-2-2,0.0),

in which, u(r) = r=2, u® (r) = (=1)# (B + 1)!7=¥+Y and v(r) = 1 — r%. Since

a' _op 71 ) 72 0 J3 0 Ja—B+1
Ba _27_2707”‘70 = ; y Bl 3! S \(a—-B+1) 7
8 (=2r ) Z jlyj2!...( 11 ) (2!) <3!) ((a—ﬁ+1)!)

Gk ) 1es (%)

where (ji)g, (**) represents for the meaning that (jx), be the sequence of non-negative
integers which satisfy two conditions

(**){ Zkzljk =B
Zkzl kjr =«

We know that 0° =1 and 0* = 0 (k > 1), then
B.g(—2r,—2,0,---,0)=0 if ,#0 (k=34 ,a—pF+1).

Then it follows

a! ; -
B, (—2r,—2,0,---,0) = ——(=2r)" (-1),
jlg(:»?*) It

where ji, jo are non-negative integers which satisfy

~ t+Jj=B82>20
(**){jl—l—ZjQ:aZO '

Then

o o
(=17 (2r)" Laja<pea

Ba,ﬁ <_27“7 —2,0, tee 70) = (Qﬁ — a)' (Oé - B)
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Consequently, we obtain

W = (DB al "
= ; (1— 252 (26— a)l(a - p)! (=1)7 (2r)""* Laja<za
a2 2\ 5
C oo (1 —r2)2 B;:/Q (268 —a)! (a — pB)! <1 _ TQ)
and therefore
g ol & 2P B+ ) 2\ P
g(T) o 52204/2 (Qﬁ—a)!(a_ﬂ)! (1_7,2) . (A.31)

Fourthly, we know that g;(r) = (nr)'g(r) then according to Leibniz’s rule, we have

:ni « o ) {.;!Ti_a—i_ﬁ]l >ai}'
H(ﬁ (i—a+p) =

Al I CE r2 \?
(1 —r?)? 2 2y =B (B =) (1—7”2)

v>B/2
(= & (a—Blli—ath)l =" 2 By =B F - \1-1

It follows that

gz(a)(r)_g! . 1 ' p 227—5(7_1_1)! r2 ¥
g(r) 7 Bzo(a—ﬂ)]l”“" I el Cer) I

v>B/2

From (A.31) and (A.32), we get that

9™ (ro) 9o _ — < i )]1 ol ZB: 22 F(y + 1) ( TS >W
gi(ro) g(ro) = a—p3 pa—i e ey 2y =N (B—\1-1%)

Remark A.2.10 Here, we note the above expression that we can compress the last sum
of index 7y to the polynomials Ag(ro), which do not depend on i, namely

2y 2v—2 2 Y
al 22772 (y + 1) o :
A = — - 2
(7o) rg ZW @y =29y - \1—=7r3) vo=zy
2y+1 2y—2y—1 2 ol
al 22772 (y + 1) e _
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A.2. SOME TECHNICAL COMPUTATIONS

Then we see that

9 (ro) ~ g“(ro) _ ( (i ) Tisado(ro) + < N ! 1 ) Lisa-1A1(r0)+

9i(ro) g(ro)

+ -+ ( i ) ]11'21140(,1(7“0).

Accordingly, we can express (A.30) as follows

2l . :
Ci(i C
& — C_j) = ; {( é > ]lz'ZCMAO(TO) + < a 2_ 1 ) ]liZa—lAl(TO)—'_

o(i)

44 ( i ) ]li>1Aa_1(T0)} D2l—a,l<7"0)

= ( 2Zl ) Lo B (10) + ( 9 Z_ 1 ) Tisor1Ey-1(r0)+
4+ 4 ( :Z[ ) ]liZIEl(TO)

in which, fora =1,2,...,2l

Ea(ro) = Y As(ro) Dar—a-pu(ro)-
5=0

Finally, we imply the last expression

m 21

3 2L > ( | ) LisaBa(ro) Br_1(ro)

=1

3 (Z) ) i>w Qu(ro),

w=1

where

m

Qulro) = Eulro) 3 B"(Z#)(?).

a>w/2

O

Base on the expression of hg, we prove the inductive case of (A.19) for any s < p by
the following proposition
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A.2. SOME TECHNICAL COMPUTATIONS

Proposition A.2.11 Let zo(< s) be given and my,ma,...,my, < s be arbitrary non-
negative numbers such that 1 < mq,ma,...,my, < s, then

p
1
S oY Y

k=1 ro=1 1+ 4xs=20
p—k+1
dml(il) dmz(iz) dmazo (l:co) Sp_il_iQ_"'_ixoyk_xO
S , ali) ., Sy iz °_—0. (A.33)
n io! oo (p—11—dg— = iyy)!

i1i,0 iy =1

Proof:
Inspired by the result (A.21), we will demonstrate that

p—k+1

Z dml(il) dmg(iz) . dmxo ('Laco) Sp_il_iQ_”'_ixoyk_-TO

2'1! 22' 2'330! (p—ll—Zg——Zxo)'

11,0y =1

can be expressed by the finite sum formed as ), Q;S,—; » where @Q); is a certain constant.

Here again, we remark that the significant condition of notation .S, is unspoken.
However, it will be mentioned specifically on the proof.

Let us consider sequence (Xr)r, T'=1,2...,x¢ which satisfies
E _ Z dm1(i1) p—il—i2—"'—ix07k—$0
Al (i —dgy)!
(Xr)r - ey )
. mr (iT)
Sr= ), PR
\ =1

then the sum we mentioned at the beginning of this proof is expressed by ,,. We now
point out the general formula of Y7 as follows

T ji—1+1 . 1
Yr = H Z (—1)de-1t1-i ( jt_}t )

t=1 5:=0
2my Q
we pT+JT+1k xo+T
) Ly tirt1>k—ao+1; (A.34)
we=1
in which jo = -1, pfy =p—wy — - —wp —ipy; — -+ — iy and 7' = 1,2...,x9. The

above formula is proved by induction.

When T = 1, from Lemma A.2.9 and the recurrence relation of the Stirling numbers
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A.2. SOME TECHNICAL COMPUTATIONS

of the second kind, for k — xq > 0, we have

p—k+1

Y, — dm1(i1) Sp—il—i2—~~-—ixo,k—mo
1= — 7 Lp—in—iy—ming 2k—z0
= gyl (p—iy —dg— e —iyy)!
i1=1
p—k+1 2mq X
{ ( i1 ) 1 Quy } Spip =gy —ir k=0 1
- E : E : 112wi s . . . i1<p—ig—-+—ig,—(k—20)
w ! ey — e — — ) 0
i1=1 wi1=1 1 3! (p b2 bzg Zl)
2m1 p—ig—+—izg—(k—20)
_ § : le 2 : 1 Sp*izf---*izofh,kfxo
wq! w—w)! (p—ig— - — iy —i1)!
ooy W1 o (41 ! (p— 2 o — 1)
2my 1 p—ig—+—igy—(k—z0) i
_ Qo 1 § : Py S o
- ; 1 ; p—ig—-+—izy —i1,k—T0
wy! pi! — o — e — 0 — 1 0
P L 1 oo pP—12 o 1

2m1
: : le p1+1k zo+1

1 pi>k—x0-
wi=1

So the base case of inductive proof holds. Now, we assume that (A.34) holds for 1 < T <
xo, k — x¢g > 0 and then we will show it still holds for 7"+ 1. Indeed,

Pkl g '
E — mT+1('LT+1) E
T+1 E —iT+1! T
irp1=1
p—k+1 2mr4 . 1
_ 1741 1. Q
- Wra1 IT412WT+1 Y WT+1 ﬁ
it | weet + T+1!
T ji—1+1 2my
1)de-1+1-de Jt— 1 +1 th pr+ir+1k—zo+T 1
. (—1) o Phtir+1>k—ao+T-
t=1 ji=0 we=1 Pr:
Since ph.+jr+1 > k—x9+171 is equivalent top—wy — - —wpr—ipp1 — - — gy +Jjr+1 >
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A.2. SOME TECHNICAL COMPUTATIONS

k —xo+ T, then

T jt—1+1 2my 2mr41
ZT—H = H Z (—1)jt—1+1—jt ( Jt— 1 +1 ) Z th Z QWT+;

LW
t=1 j;=0 wi=1 T+l

p—k+1

Z 1 Sp?-l—jT-l—lJf—wo-&-T 1
' . 41 >Wre1
(ir41 — wrgr)! pr!

ir41=1
) ]liT+1 <p—w1——wr—ir4a——igg+jr+1—(k—z0+T)

= ﬁjtzlzl Jt 1+1—7¢ ( " j Y ) szf Q% 2sz? QUJTH

w
Wt= 1 W41 *1 T+1

P—wl— - —wp —irq — o~ lggt
+ir +1—(k—z0+T)

1 jo
T+1
) § : < p} SP*T+J'T+1J€—1"0+T‘

Prya IT41=WT 41

Technical Lemma A.2.12 Let x be given such that v =1,2,...,n — k, we have

( K ) e ( ! ) ( . ) Lo—i<nt. (A.35)

=0

Proof of Technical Lemma A.2.12:
This lemma holds by induction. Indeed, the base step when z = 1 is easy to get since

n+1Y\ [ n n n
E+1 )  \ k k+1 )"
Now, let us assume (A.35) holds for z, the inductive step also holds for x + 1 as follows
—~ e n+l\ e T n+li+1Y n+1
lz; 2 (l)(k+x>_lz_;( D (l){(k+x+l k+x+1
+ ~ xX
xi+1 oz n+1 a1 [T n+1
Z (l—l)(k+x+1)+lz_;( D (l)(k+x+1
n+xz+1 - a4l T x n+1
<k+x+1)+;( 1 {(l—l)+(l>}(k+x+1 *
_1\z+1 n
+(=1) (k—l—x—irl)
_(ntz+1 et [+l n+1 et n
_<k—|—x+1)+l 1( D ( ! )(k+x+1 (=1 k+x+1

:xzﬂ(—l)x_lﬂ(%;l ) ( kﬁiil)

=0

\\Ma

All above transformations are reasonable when z +1 -1 <n — k.
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A.2. SOME TECHNICAL COMPUTATIONS

Back to the proof of Proposition A.2.11, by applying formula (A.35), where x = jpr+1
and index [ is substituted by jri1, we can write

v (R JrA1 [ Doyt

i 1—4 T T+1

()= Evrrm () (i ) e
Jr+1=0

where p;“—i—l + jT—l—l Z p} + jT + 1 is equivalent to iT+1 Z W1 + jT +1-— jT+17 then it
follows

T jt—1+1 j 1 2m Q 2mry1 Q
— _1\Jt-1t+1—3 t—1 wt WT 41
S = [[ 3 iyt (St ) 3D e 5T B

t=1 ji=0 we=1 U wp =1 Wr1:
Jjr+1 .

. (_1)]T+1—jT+1 ( Jr+1 ) 1

E . P

Jr+1=0 Jr+1 pT+1'
pP—wi— - —wp —irge — o — gyt

+ir +1—(k—z0+T) .
*
Pri1 T JT+1 S .
2 A

ir41=wri+1tir+1-—Jri1

T+1 je—1+1 2my
= H Z (—1)jt—1+1*jt ( Jt— 1 +1 > Z th 1
I px

t=1 j;=0 w1 Wt Pra

_ Pro t+Jra . Pry1 T T o
{ < p}Jrl + jT+1 > SPT+1+3T+1,k—mo+T + < p%+1 +jT+1 _1 SPT+1+JT+1—1,/€—$0+T+

Pry1tJ
44 < kTile _i_T}l ) Sk—wo—‘rT,k—a:o—i-T}

T+1 je—1+1 . 2mi
it — —j Jt— + 1 Qw 1
— H Z (_1)],5 1+1—j¢ ( t 1jt ) Z 't .

wy! !
t=1 j;=0 w1 @t P

’ SP*T+1+J'T+1+1J€—IE0+T+1 ]lP*T+1+jT+1+1Zk—w0+T+17

which consequently establishes the proof of formula (A.34).

Remark A.2.13 For k — x9 > 0, we have formula (A.34). However, we note that if
xo >k, Spr—w, =0 for allp > 0. Then (A.34) still holds for any .

The entire proof of Proposition A.2.11 is to prove

p

k=1 zro=1 1+ +xs=x0
It is easy to see that the RHS of above equation, in company with the formula of 3,
implies their equivalence with

/

p

> (=DF k= 1) Sy b = 0, (A.37)

k=1
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A.2. SOME TECHNICAL COMPUTATIONS

where p' =p —wy — -+ — w,,. Hence, we finish the proof of Proposition A.2.11.
O
Consequently, Proposition A.2.11 and preceding remark lead us complete the proof of
Theorem A.2.22, where ws = > v_, (—1)*™(k — 1)! hs.

A.2.2 Proof of Theorem A.2.23

To study the k-derivatives of R,(\), according to equation (3.35) of R,()), we now study
the n-derivatives of the product of functions as follow

Technical Lemma A.2.14 For given n, we have

p+1 (n) n k1 kp—1 n
Q}MM> :EZZ:“§:<n—M&—@P“%4—%@)

AT )T 0] R T, ()]0

Proof:
We can prove by induction. Indeed, when p = 1, according to Leibniz’s rule

n

GIEIREDS ( )m( N [0

k1=0

and the inductive step is proved as follows

P2 ) ™

(1_11 f,-()\)> (H FiN) foa(A )

( ) [for2 (V)" rﬁ fi(/\)] )

( )fp+2 ”’“Z %(/ﬁ_kl,...kl;_l—kmkp)

k=0 ki=0  kp=0

AT 0] [ ()]

SHM

n k p—1
pert ;%(n—hk—h,ngl—ﬁj¢)
-[fp+2< MO LR 0] g ()%
]
We have
_ iy p! AW\ Cpur (V)
)= 1;5,3( v 1)'%):1_[]0 g <Co(>\)) ( co(A) ) 7
(A.38)
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where sequences j1, jo, . . ., Jp—u+1 Of nON-Negative integers satisfy two conditions
Nt Jet o F w1 =u
(x)9 . . . .
Jit2+ -+ (P—ut1)jpusr =p

i et | dk C1 A 2 Cp—u+1 A
RP(N) = Z (1) (u— WZ = ufj 1(i1)ds ANF {(COEAD ( Co(/\§ )

1<u<p (+) Lli=1
_ pl
B SISy pa—
1<uZ;p Z Hp +1 ( )
SIS :
k1=0 ko=0 kp— =0 k— k1, kl - k27 cee 7kp—u—1 - kfp_u, kp—u

i (k*kl) i —ut1 (kp—u)
_ (Cl(A))J (cpqul()‘))Jp !
co(A) o co(A) '
According to Faa di Bruno’s formula,

k k
T AP GO} = 32 P (G0N) B (G-, GOV

For F(z) = 27 and G(x) = ¢;(\)/co(N), we have

> Jp—u-t1 }

e () b 22 () o (GO G GR) )

then apply above formula for k£ > 0,

(ER (T

(kp—u)

$1=0

kp—u Jp—ut1—8p—ut1
1. Jp—ut1! Cp u+1
]p7u+125p7u+1 ( . '

— S
Sp—ut1=0 Jp-utt = Sp-ui)

(0 () )
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A.2. SOME TECHNICAL COMPUTATIONS

RP(N) = Z (=1)" H(u—1)! Z = uﬁ'l( 1)di

1<u<p
kp—u—1 k
Ig:()kzz kpzu:—o< b=k k= ko Rpouet = Bpouy By )
kz:kl klz: ki:“ Jl>81 ]lj2>82 s ]ljpquZsp,uH
51=0 s2=0 ws1=0 jl - 51 ]2 - 32)' (jp—u-‘rl - Sp—u-i—l)!

R

e (20 () )

The idea of the entire bounding is to define

pup1(N) ’} (A.39)

and

oo () G )
Cp—ut1(A Cp—ut1(A
() (252 )} ao

The constants to bound C,(\) and D,(\) can be found. We will detail constant C), such
that C,(\) < C, in three Technical Lemmas A.2.15, A.2.17, A.2.18. Constant D,, which
satisfies D,(A\) < D,, can be obtained by the similar technique.

We now assume that we have two constant C),, and D,, then

(®) . P!
‘Rp (/\)| S Z ( 1> ZH;D u+1( )

1<u<p
p u— 1( k
ZZ ) A ...k_—k:__k;__>
k1=0 ko=0 kp—u=0 1M 25 p—1 p—u—1, vp—u—1
k—k1 k1—ko
E E Z ]1>81 ]lj2>82" ]ljpfu+125p7u+1
- —So) oo (Up—ur1 — Sp !
51=0 s2=0 Sp—ut+1=0 jl 1 j2 2) (]p u+1 D u+1)

i S; u+1
L O s pputl,

93



A.2. SOME TECHNICAL COMPUTATIONS

Since C), > 1,

!
}Rz(ak)(/\” < Z (U - 1)! C;j Dé"““ Z p—upT-h

1<u<p (+) Lli=1 (1)

pul

k
Z Z Z ( k — ]{1,]{1 — ]{2, ce kp—l - kp—u—l,kp—u—l )

k1=0 ko=0 kp—u=0
k—k1 k1—kso

Z Z Z J1>S1 Ljp>er - Ly 1) uia
51=0 s2=0 Sp—utr1=0 (U1 = s1)102 = s2)! - (p—us1 — Sp—ut1)!
Setting
) | P!
=D W‘”‘Z%
1<u<p (*) i=1
Ty k )
k1=0ka=0  kp_u=0 k=R k= ko, o kpt = Kpouet, Kpu
k—k1 k
Z:l 12: Z J1>81 ﬂj2>52 e 1jp—u+125p—u+1 (A 41>
5120 59=0  sp_wr1=0 (J1 — s (2 — s2)! e o (p—ut1r — Speus1)!’
and

A, =max{C,, D,}, (A.42)

then we can obtain (A.49) and complete the proof of Theorem A.2.23.

We now present some technical lemmas to prove that there exists constant C), such
that C,(\) < C,.

We have h(r) = Ar+1log(1—7r2), h"(r) = —(1+r?)(1—r?)~2. We recall from formula
(3.37) that

ad) o= 2 9% (r(\)
co(A _g( a ) g(ro(A))
B, ( 1 (rg(X)) h@=543) (7 (X)) ) (28 + 20— 1)!!

230" (ro(W)I" T (e = B+2)(a—B+3)[h"(ro(A)] ) W (ro(A)["
(A.43)

~—

Q

B=

Technical Lemma A.2.15 Forn > 1

D) s e (B ) ) 2%
) P S (o 5e) wgar U roam)
r3(A) +2s+3

+nl
TSRO+

()\)) ﬂn:25+2,520 . (A44)
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Proof of Technical Lemma A.2.15:

Let us express h"(r) = —(1 + r?) g(r) then for positive integer n, Leibniz rule gives
(n+2) () — _ ~(n 2\(n—k) (k)
A () — g;(k)<r+r> §(r)

:=—(Z)<Lwﬁng%—(nil)u+w%wm*mﬁ—( "y )y

Hence
WD) g 2o ") | = 1) g7 D)
7 (r) o) 1+ g(r) L+ g(r)
We have
MO0 _g) 2 A 2

R (1) _g(r) 1+T2_1—T2+1+T’2

and we recall formula (A.31) that

(n) n 2k—n 2k—n
g\ (r) ol Z ( 2 (k+1)! r

_ | — | _ »2\k
g(r) ey 2k —n)!(n—k)! (1 —1r2)
n k 7,2k—n
— 2k—n o
nl Yy 2 (k+1)(n—k)(1—r2)k'
k>n/2
Then for n > 2
h(n+2) ( k 7,2k n(>\)
| 22k n k 0
W (ro(A P> o (n—k)(l—%u»k

k>n/2

2nro()) S ( k > e )
+ ——7(n—1)! 92k—ntl(l 4 1 LU
Ty Y anm D\ k=1 ) Q=)

”(” - 1 2%— n+2 k rgk—n+2()\)
+1+r<>”‘2 E: ’ k*”)<n—k—2><1—%u»k

n . k Tgk n(/\)
:n!Z2 (k—i_l)(n—k)m

k>n/2
n—1 2k—n+2
n! _ k T (M)
+ o 22k‘ n+2(k, + 1) ( > 0—
PO n—k-1) L=}
n—2 2k—n+2
n! _ k T (M)
4y 22k n+2(k+1)( ) o\
ORI n—k-2 ) (=)
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n L T,2kfn(/\)
—n! 22k—n 1 0 A\
nh Y 2k )(n—k)(l—rg()\))k
k>n/2
n' "1 7’”()\) n—2 i L Tgk—n+2()\)
+———— <" ( > ; + 2 (k1 (1 — 2Ok
1+12()) { 0 ) (1 —rg(n)? kz(nzl)/2 RN S
2 2k—n+2
B k r (A)
2k—n+2 1 -0 7
+k2(nz_l>/22 b+ )(n—k—2 ) 1~ rO)F
» k T2k—n+2()\)
_|_22k +2(k + 1) < n k2 ) (IO—TW ]l(n—2)/2§k<(n—1)/2}

(1) 75t

_ 2k—n
=nl ) 2k
k>n/2
Nl n—1 Tn()\) n—2 N k41 T(Q)k—n-‘rQ()\)
+————<2"n ( ) 0 + 92k=1+2 (1] 2
i TR Rrer ey i S W S § ey
Tgk—n+2(>\) }

k
2k—n—+2
+2 (k+1) < n k9 ) 0 =20 Lin—2)/2<k<(n-1)/2

" k g (A
=t 3 e (0 ) G

k>n/2
n! n—1 T3 () S 2k—n ], k 7»(2)’5*"()\)
+———492"n ( ) 0 + 27k i 2
1+ 7“30‘) { 0 (1 - rgo\))nil ic>(nz+1)/2 nok (1 B TS(A))kil
i 2 p2k—nt2(
4222 (F 4 1) ( n k9 ) ( 2 ( )k 1(n2>/zgk<<n1)/2}

1—=r5(N)

EOY o)
W Lnjo<k<(ni1)/2

— 1 92k—n
n!2 (k+1)(n_k

a k
! 22k (k41 0
e 3 Ewen (L)
k>(n+1)/2
nl n _ _ ]’% r21~€7n(>\)
A 22k—n L B 0
+1+r8()\)~z (n—k>( "
k>(n+1)/2
L TgkfnJrZ()\) "
E_9 W (n—2)/2<k<(n—1)/2

|
T 22k—n+2(k, 1) (
n —

M=oY
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. k o (A
= nl 2% (k‘ + 1) ( n— k ) O()?nw ]ln/2glc<(n+1)/2

k e
k=2 ) L= 20 He-2/sk<tn/z

(
Z 2% "(nﬁk> %{wrwrk%gg}

k>(n+1)/

n!
G geni2(f (
1472\ ( )

_n k 5 "(A)
=nl 227" (k4 1) ( — ) OOTW n/2<k<(n+1)/2

n! k T?k—n—i—Q()\)
22k n-+2 k 1 o A 1, )
+ 1 + ’I“O(/\) ( + ) < — k= ) (1 — TQ()\))k (n—2)/2<k<(n—1)/2
n k 7"2k n(/\) 9.
kZ(nZ—H)/2 n—k ) (L=rg\)* 1+72()\)

Remark A.2.16 We note that if n = 2s+2 (s > 0), two conditionsn/2 < k < (n+1)/2
and (n—2)/2 < k < (n—1)/2 are therefore k = s+1 and k = s, respectively. Ifn = 2s+3
(s > 0), there do not exist any integer k which satisfy these conditions.

Therefore,

{2 ( iﬁ ) a —:3? )>>s+1 1 +2;<A> 6+ (3) e f T

By simplifying above formula, we get (A.44) and Technical Lemma A.2.15 is proved.

O
Technical Lemma A.2.17 Forn >1
h(n+2)(,r,) on
“l <nl—=—— M, A.45
| = )

where M, is the constant defined by M, = ZZZnT—l ( . E 1 ) (2k + 1).  Moreover,
M1 > M, for anyn > 1.

Proof of Technical Lemma A.2.17:

Denote by
“ k p2k—n 2k
H,(r) = 92k 1
(r) k;ﬂ (n—k)(l—ﬂ)’f{l—i—r2+ }
2"

2+ 2543
(1 _ 7»2)3—}-1(1 + 7”2) n=2s+2,5>0
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namely, H,(r) = n! h(:;?) .Since |[r| <1then 0 <1 —72 <1, |r[* " <1 (if 2k—n > 1)

and (25)" < (:=2)" (if k¥ < n). Therefore,

SN k 1 1 r? +2s + 3
< 3 2 (5 ) g R0 o e e
1

2" k 1
= (1 _ r2)n Z ( n—k ) (Qk + 1) + m (23 + 3) Ln=2s12,5>0-

k>ndL
Setting
~ n k
My =) (n_k> (2k + 1)
k>t
then
2" ~ n+1
2" - n+1
< o o+ g o
2" ~
(1—r2)n {Mn +(n+1) ]ln:25+2,320} :
Putting

0|3

= i <nfk7><2k+1)+(nﬁk) 2k + 1) Tugrsys

- 1
— M, + ( s—(l)— ) (25 +3) L—2542,5>0-

On the other hand, M, .1 > M,. Indeed, we have

fam k (k41
My = Y (n—k+1 ) 2k+1)= > (n_l~€ ) (2k + 3)
then
k+1 . k
n+1>z< ) 2/<;+3)2~ (n_];>(2k+3)2Mn.
k>n k>n
Accordingly, we obtain that
H < —M
| n(/r)| — (1 o r2)n )
which complete the proof of Technical Lemma A.2.17.
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Technical Lemma A.2.18 Forl>1

‘ <N, (A.46)

where Nj is the constant defined by Ny = (41)! (204 1) My (Mo 41 +1)*. Moreover, Nyjy1 >
N; for any | > 1.

Proof of Technical Lemma A.2.18:
First of all, let us consider the Bell polynomials in formula (A.43), we have

h®) (1) hle—B43) (1)
Bas (23¢h”0ﬂ|w"’(a'-5-+2)@1-'5‘F3)VV%TN)

N T (Y
el (T

where sequences j1, jo, . . ., Ja—p+1 Of non-negative integers satisfy two conditions
Nttt jeprn=p0
Ji1+ 24+ A+ (@ =B+ 1)japi1 =
Then
B h®) (r) hle=B+3) (.
o (2-3-|h”(7’)! (e =B+2)(a— 5 + 3).[h(r )
a—pB+1
—1) z' H;(r
= o!
- ; I (505) oo
/j a—p+1 Ji 1
| A SV _
ey 11 ( M))

Remark A.2.19 (Double factorial or semi-factorial of an odd number) We recall
again the notation !! in Section 2.3 that for n > 1,

(20— ) =135... (2n—1) = 2!

then it is easy to see that (2n — 1)!! is increasing in n. Indeed,

@n+2)! _@n+2)@ntl) @)l o

2mn+1) -1l = 20+ (4 1) 2(n+1) 2npl =
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Therefore,
o 1) () hle=B+3)(r)
> (28+20— 1B, <2.3_|h,/(r)| U la— B+ 2)(a— B+ 3).Ih”<r>\) ‘

B=0

o a—p+1 jil
=D o@s+a-n=n'ad " ] <2+1—2+2)) —

|
B=0 (xx) =1 Ji:
a—p+1

<Zza+2z—1 Halz H

(k) =1

a—p+1 Ji
(204—1—2[—1”@'22 H (1_T2 )

=

§(2a—|—2l—1)!!a‘ _TH ZMQBH

Remark A.2.20 (The stars and bars method (see more [29]) For any pair of pos-
itiwe integers n and k, the number of k-tuples of non-negative integers whose sum is n
18 equal to the number of multi sets of cardinality k — 1 taken from a set of size n + 1.
Namely, this number is given by the binomial coefficient

(GE )=

Accordingly, when n := 8 and k := o — 8 + 1, the number of selected sequences
J1s 925 - - -y Ja—p+1 Which satisfy (sx) is equal or less than
()
g )
Hence,

) h(S) (r) h(a—5+3) (7’)
2(25 + 9 — 1)” B.g (2.3.|h”(7’>‘ Y (Oé — B+ 2)(a - B+

8=0

3
L

2¢ Z o B
2¢ o
S (2Q{+2l—1)"a'm (Ma+1+1)

Next, let us bound % in formula (A.43). According to formula (A.31), we can
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obtain
(2l—a) 2l—a 2k—(2l—a)
‘g g(r>(r> _ (21 . Oé)' Z 22]47(21711)(]{;_’_ 1) < . _l; . ) 7;1 — r2>k
k> (2l—a) /2
9] — ! 2l—« . I
5% >, 2 (k+1)<2l—a—k)
k>(21—a)/2
9] — ' . 2l—« e
S(l(_r—2;l)_a22[ Z <2k+1)<2l—a—l€)
k>(20—a)/2
21
_(1(_7,.2)2 22l aMl e
ro(A). We have ()\)’
cl(/\) Z g(%a) (ro(N)) ‘
co(N) |~ |h” ro(A |l o! 2l — ) g(ro(N))
- N h® (ro(N) R4 (g (M) )
2202 = B (S G=FT =3 L9 P

(1=r2(A)2\ & (20)! (21 — a)! -
= (Tg()\)) ; ol (21 — a)! (1 —r2(\))2-« 2 My

«

o

(2a 420 - 1 al My + 1)

1 1 21
<(— 201 2% My (200 + 21 — DI (M, 1)“.
< (o) 002" Maca 20 = 101 (s 5

Remark again the increasing of double factorial, we have

D!
(4=l = G

so we can obtain

2l
’ < (20)!127 T My (41— D (M + 1)
a=0
2l

< (4)! ZMQZ (Myyq + 1)

a=0
< (41204 1) My (Ma4q + 1>21

Putting N; = (41)! (21+1) My (Ma41+1)% | we can imply that N;,; > N by the increasing
of sequence {M,, },.

U
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Remark A.2.21 i) Constant C, equals to Np_ 1.

g(2 a>

ii) To bound D,()\), we can compute the k-th derivative of L (formula (A.31))

and —h(Zj(QZéZi) (formula (A.44)) respect to .

Résumé

Le Chapitre 5 est un appendice consacré a deux calculs techniques de combinatoire. Soit
L, la fonction génératrice des cumulants normalisée dans chacun des cas des Chapitres 3
et 4. On montre que
Ry (N)

nep!

1
LPX) = LY0) + RO + - >

p>1

ou les Ry, sont donnés par la méthode de Laplace. On montre les deux résultats suivants,
dans le cas des variables sphériques:

Theorem A.2.22 Pour tout p > 3, nL(p)()\) peut étre développé comme suit:

nLP(\) = (nre(A Z wen” %, (A.47)
s>p
avec
wg = 0, pour tout s =0,1,2...,p. (A.48)
Theorem A.2.23 Pourk=1,2,..., on a
RO < i A7, (a9

ot les constantes 0, and A, sont données par

Okp = u—1)! p—'l
’ Z( 1) ZH:D u-i-(|)]Z

1<u<p (*) i=1
DI ol ’f )
k1=0 ko= kp—u=0 k- kl’ kl - k2’ ce kp*1 - kp*ufla kp*ufl
— < .71>51 ]lj2>52 t ]]'jp_u+125p_u+1
D Z Z — e (A50)
$1=0 s2=0 Sp—ut1=0 jl 51 ]2 52 Jp—u+1 — Sp—u+1)-
et
Ap = max{Cy, Dy}, (A51)
avec o) o
€1 Cp—u+1
A) = P A.52
Cp(A) rygg{ CO(A)’, Sy '} (A.52)
et

e (22 () )} ao
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Thi Kim Tien TRUONG

Grandes déviations précises pour des statistiques de test

Résumé :

Cette thése concerne I’étude de grandes déviations précises pour deux statistiques de test:
le coefficient de corrélation empirique de Pearson et la statistique de Moran.

Les deux premiers chapitres sont consacrés a des rappels sur les grandes déviations précises
et sur la méthode de Laplace qui seront utilisés par la suite. Par la suite, nous étudions les
grandes déviations précises pour des coefficients de Pearson empiriques qui sont définis par:
o= (Xi= X)) (Yi=Y,) /> (X — X0)2 Y, (Vi — Y,)? ou, quand les espérances
sont conues, 7, = 31, (X, —~E(X)) (i—E(Y))/v/5,_ (X — ECOP 5, (Y — E(V)P.
Notre cadre est celui d’échantillons (X;,Y;) ayant une distribution sphérique ou une
distribution gaussienne. Dans chaque cas, le schéma de preuve suit celui de Bercu et al.
Par la suite, nous considérons la statistique de Moran 7T,, = %22:1 log —))?% + 7, ou 7y est
la constante d’ Euler. Enfin 'appendice est consacré aux preuves de résultats techniques.

Mots clés : grandes déviations précises, coefficient de correlation de Pearson, test de
Moran, statistiques auto-normalisées, méthode de Laplace.

Sharp Large Deviations for some Test Statistics

Abstract:

This thesis focuses on the study of Sharp large deviations (SLD) for two test statistics:
the Pearson’s empirical correlation coefficient and the Moran statistic.

The two first chapters aim to recall general results on SLD principles and Laplace’s meth-
ods used in the sequel. Then we study the SLD of empirical Pearson coefficients, namely
o= Yo (Xi = X)) (Yi = V) /v Do (X — X0)2 >, (Y — V)2 and when the means
are known, f, = 1 (Xi — E(X))(V; — E(V))/ /3o (Xi — B(X))? Sy (Vi — B(YV))2.
Our framework takes place in two cases of random sample (X;,Y;): spherical distribution
and Gaussian distribution. In each case, we follow the scheme of Bercu et al. Next, we
state SLD for the Moran statistic 7T}, = % >y log ;((—; + 7, where 7 is the Euler constant.
Finally the appendix is devoted to some technical results.

Keywords : Sharp Large Deviations, Pearson correlation coefficient, Moran test, Self-
normalized statistics, Laplace’s method.
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