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Chapter 1 – General introduction 

 

Acacia gum (AG, E414), also named gum arabic, is a natural edible gummy exudate 

collected from Acacia senegal and Acacia seyal trees. The Acacia gum production is a 

protective mechanism of tree against insect and molds invasion and of healing of 

wounds (Clarke, Anderson, & Stone, 1979; Islam, Phillips, Sljivo, Snowden, & Williams, 

1997; Sanchez et al., 2018). Acacia gum is extensively used as food additive and an 

international definition was given by FAO/WHO during the 31st Codex Committee for 

Food Additive. This definition specifies that Acacia gum is “a dried exudation obtained 

from the trunks and branches of A. senegal (L) Willdenow or close species from Acacia 

such as A. seyal (leguminosae family)” (FAO, 1999). Although the difference in 

taxonomic series of these gums, i.e. Acacia seyal (A. seyal) is from Gummiferae and 

Acacia senegal (A. senegal) is from Vulgares, these two Acacia gums are composed of 

the same sugars, amino acids and salts components. 

Acacia gums are found and harvested in arid regions of the sub-saharian belt, the so-

called “gum belt of Africa”, from Senegal to East Africa, beyond to Pakistan and India 

(Jales, 2018; Sanchez et al., 2018). Acacia trees are perfectly acclimatized to dry and 

desert areas and offer many advantages. Environmentally, they act as a barrier to 

desertification, it nourishes the soil by drawing nitrogen from the air and then 

transferring it to the soil. The main gum producing countries are Sudan, Chad, Nigeria 

covering 95% of global gum export market. Their main missions are to collect, dry, 

pack, and deliver the gums to a point of sale (Jales, 2018; Muller & Okoro, 2004). The 

major importing countries were India and France in 2014-2016 with 75% of world 

importation amount (Jales, 2018).  

Since the ancient times, humans used Acacia gums for food, medicine and other non-

food applications as an adhesive ingredient to bone technologies (Sanchez et al., 2018). 

At time of Ancient Egyptians, it was used as a pigment binder in paints and inks for 

making hieroglyphs and as adhesive to make flaxen wrappings for embalming mummies 
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(Verbeken, Dierckx, & Dewettinck, 2003; Whistler, 1993). By the Middle Age, Acacia 

gum was valued in Europe among scribes and illustrators for application of color. 

Between the 12th and 19th centuries, it was also used for pigments stabilization, in the 

composition of metallo-gallic ink, the most popular ink in Europe used by painters like 

Rembrandt. The modern industrial era has produced an explosion of manufacturing 

uses for Acacia gum. It is widely used as emulsifier, stabilizer, surface finishing agent, 

thickener and flavoring agent in food and non-food industries including pharmaceutical, 

printing, textile and cosmetic applications. It is used as a binder for color pigments in 

crayons, a coating for papers and a key ingredient in the microencapsulating process 

for the production of carbonless copy paper, laundry detergents, etc. In relation to its 

adhesive properties, it was deployed in matchsticks and in moisture-sensitive postage-

stamp. In cosmetic industry, it is in the composition of face powder, masks, creams and 

lotions thanks to its adhesive and emulsifying properties. In food industry, Acacia gum 

is used for the production of beverages, confectionery, emulsions, flavor or colorant 

encapsulations, bakery products and brewing. As examples, Acacia gum allows a 

uniform distribution of essential oils and fats in aqueous solutions, the delay of sugar 

crystallization in confectioneries, icings, cake mixes, whipped creams. In beverages, it 

is especially used for the stabilization of essential oils and mixture of aroma compounds. 

In wine production, Acacia gum confers body, stabilizes the color and prevents 

polyphenols and proteins precipitation. The production of beverages and confectioneries 

are found to be the main applications of Acacia gum in food industries. 

Acacia gum is becoming a highly strategic product with a huge growth of the demand, 

by 25%, over the last ten years. The gum is important for producing countries, 

especially for local people for whom it is often the only source of income, but as well 

for importing countries. Between an irregular production (dryness, politic instability of 

producing countries) and a growing demand of low cost natural gum, Acacia gum 

companies are faced to several challenges. The first challenge is to assure a high and 

constant quality of the product despite climatic fluctuations and processing variability 

(tapping, storage, transport, temperature control). The second one is to develop new 
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high-value added applications based on new knowledge on Acacia gum composition, 

structure and techno-functional properties and the development of new Acacia gum 

based products. For this reason, a research program, named the DIVA program, was 

created between the ALLAND&ROBERT Company (Port-Mort), a worldwide supplier 

of gums, and UMR IATE 1208 (Montpellier), a research unit dedicated to the 

engineering of agro-polymers and emerging technologies since 2012. Alland&Robert is 

a French company specialized in Acacia gum production since 1884 and worldwide 

recognized by the largest food groups. Their social and economic policies in France and 

in Africa cover many levels: to guarantee sustainable and quality raw materials, to 

ensure an ethical and clean production process, and to develop a sustainable 

partnership with social and safety practices and environmental and ethical compliance. 

Following this collaboration, the DIVA program is generally divided into fundamental 

and applications projects which are strongly interconnected. The different projects 

focused especially on the fractionation of A. senegal and A. seyal gums, the 

characterization of the composition, structural and physicochemical properties of 

Acacia gum macromolecules (whole Acacia gums and fractions), and the study of the 

interfacial and emulsifying properties of Acacia gum macromolecules (whole Acacia 

gums and fractions).  

My PhD project is fully focused on the characterization of the interfacial and 

emulsifying properties of Acacia gum macromolecules (whole Acacia gums and its 

fractions). It is closely linked to the other topics mentioned earlier. Among them, the 

following subjects which are running in parallel or already fulfilled were crucial to the 

best accomplishment of my Ph.D.: 

- Characterization of composition, structural and physicochemical properties of 

A. senegal and A. seyal gums 

This subject aimed to review basic composition and structural properties of 

macromolecules from A. senegal and A. seyal gums in relation to their functional 

properties. The gums were especially characterized in terms of sugar, protein and 
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mineral composition and content, and degree of branching. This work was done during 

the prior Lopez Torrez Ph.D. project (Lopez Torrez, 2017). 

- Fractionation/purification of Arabinogalactan-proteins (AGP) from Acacia 

senegal gum 

The aims of this study are to isolate arabinogalactan-proteins (AGPs) from A. senegal 

gum according to their structural and physicochemical properties. The classical 

chromatographic methods were used including hydrophobic interaction 

chromatography (HIC) and Ion-Exchange Chromatography (IEC). These methods 

allowed to obtain isolated AGP fractions: three main fractions were isolated using HIC, 

i.e. HIC-F1, HIC-F2 and HIC-F3 while two major fractions were obtained using IEC, 

i.e. IEC-F1 and IEC-F2. After the isolation of these fractions, their biochemical 

composition, structural and physicochemical properties were characterized in-depth. 

This subject corresponds to the postdoctoral project of Apolinar Valiente. 

- Physicochemical properties in solution of AGP from Acacia gums 

The main objective of this project is to study the volumetric properties, partial specific 

volume and partial specific adiabatic compressibility; and hydrodynamic properties: 

dynamic viscosity, intrinsic viscosity, and hydrodynamic radius, of Acacia gums at 25°C 

and later at temperatures up to 70°C. A. senegal, A. seyal and the macromolecular 

fractions of A. senegal, i.e. HIC-F1, HIC-F2 and HIC-F3 from HIC and IEC-F1 and 

IEC-F2 from IEC fractionations were characterized. This work has been a part of the 

Ph.D. project of Mejia Tamayo (Mejia Tamayo, 2018). 

 

In the framework of my PhD project, the main scientific objectives are:  

(i) to establish the relationship between the biochemical composition 

and structural properties of A. senegal and A. seyal gums and their 

interfacial properties. For this purpose, the ability of Acacia gums and IEC-F1 

fraction isolated from A. senegal dispersions to lower interfacial tension and to form 

interfacial film at hexadecane-water interface will be investigated and compared 

considering gum species and concentration. Despite the difference in biochemical 
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composition and structural properties between A senegal and A seyal gums, their 

interfacial properties will be compared as function of their protein content and the 

impact of their specific nature will be hypothesized. Moreover, by varying the gum 

concentration, not only the impact of protein content but also the high molar mass 

protein-rich AGPs content which is largely described as responsible of interfacial 

properties of Acacia gum will be assessed. The provision of different fractions of A 

senegal obtained by IEC purification will allow to confirm the major role of high molar 

mass protein-rich AGPs in interfacial properties of Acacia gums. 

(ii) to evaluate the impact of dispersed phase nature on the A. senegal 

and A. seyal gums interfacial properties. Indeed, as the nature of the interfacial 

phase in contact with Acacia gums can impact their interfacial properties, the behavior 

of different compounds will be studied. Hexadecane was the first compound chosen for 

interfacial properties study of A. senegal, A. seyal and IEC-F1 because of abundant 

study on characterization of Acacia gums, HIC fractions and Acacia matured gums 

using this compound (Castellani, Al-Assaf, Axelos, Phillips, & Anton, 2010; Chanamai, 

Horn, & McClements, 2002; Dickinson, 1999; Dickinson, Murray, Stainsby, & 

Anderson, 1988). Special attention was given to other interfaces such as limonene and 

octanol, being different in their nature and polarity, in order to understand the effect 

of interfacial nature on the interfacial behavior of A. senegal and A. seyal. The new 

acquired knowledge about the interfacial properties of Acacia gums at each interface 

can allow us to better understand the emulsifying properties of Acacia gum. 

(iii) to characterize the emulsions produced by A. senegal, A. seyal and 

a reconstituted A. senegal gum using well characterized fractions in order 

to relate their biochemical and structural properties to their interfacial 

properties. It is important to keep in mind that A. senegal is preferentially used to 

stabilize aroma compounds diluted emulsions in beverages with long storage, while A. 

seyal is used in emulsification step before aroma encapsulation, i.e. when the stability 

is not crucial. To achieve this objective, the selected dispersed oil phase was limonene 

with fixed concentration (5 wt%) because of its high content found in orange oil. The 
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stabilization of limonene emulsion alone is challenging due to its low viscosity. However, 

the use of limonene can offer the advantage to emphasize the difference in emulsifying 

behavior between A. senegal and A. seyal gums. In term of emulsification technology, 

microfluidisation was selected as it is adapted to the weak viscosity of Acacia gum 

dispersions allowing to investigate the effect of Acacia gum concentration variation. A 

high attention will be brought to the role of high molar mass protein rich AGPs to 

stabilize emulsions. Indeed, it is widely accepted that these AGPs were responsible of 

gum emulsifying properties (Alftrén, Peñarrieta, Bergenståhl, & Nilsson, 2012; Flindt, 

Al-Assaf, Phillips, & Williams, 2005; Nishino, Katayama, Sakata, Al-Assaf, & Phillips, 

2012; Padala, Williams, & Phillips, 2009; Randall, Phillips, & Williams, 1988; Ray, 

Bird, Iacobucci, & Clark, 1995). The different approaches usually reported to 

demonstrate and understand the role of these AGPs consist to vary the gum 

concentration (Yao et al., 2013), to use different gums with different high molar mass 

AGPs and protein amount (Dickinson et al., 1988; Katayama et al., 2006), to use 

matured gums which contain more high molar mass protein-rich AGPs (Al-Assaf, 

Phillips, Aoki, & Sasaki, 2007; Aoki, Katayama, et al., 2007; Aoki, Al-Assaf, Katayama, 

& Phillips, 2007) and to study the emulsifying properties of gum degraded by 

proteolytic enzyme (Al-Assaf, Sakata, McKenna, Aoki, & Phillips, 2009; Flindt et al., 

2005). Additionally, some authors reported the effect of gums constitutive fractions 

effect on the emulsifying properties and identified the most efficient fraction (Nishino 

et al., 2012; Ray et al., 1995). Moreover, another usually used method involves 

removing the adsorbed molecules to the droplet interface and characterizing these 

molecules (Buffo, Reineccius, & Oehlert, 2001; Katayama et al., 2006; McNamee, 

O’Riordan, & O’Sullivan, 2001; Mikkonen, Xu, Berton-Carabin, & Schroën, 2016; 

Nakauma et al., 2008; Randall et al., 1988; Xiang et al., 2015). According to the results 

obtained from the studies cited above, the important role of high molar mass protein 

rich fractions in Acacia gum emulsifying properties makes no doubt. However, the 

question is still asked “Are functional properties of Acacia gum simply the sum of 

functional properties of individual fractions or a positive synergism does exist?”. In an 

attempt to answer this question, an innovative approach is proposed by mixing two 
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fractions isolated from A. senegal in order to control high molar mass protein-rich 

AGPs content in bulk and the total concentration of gum. The total concentration and 

the protein amount will be chosen according to general applications of Acacia gums. 

The two fractions are a high molar mass protein-rich fraction isolated from A. senegal 

using ion exchange chromatography and a low molar mass fraction isolated from the 

same gum using a traditional hydrophobic interaction chromatography. These fractions 

have been isolated and well-characterized in terms of biochemical composition and 

structural properties.  

In parallel, the effect of Acacia gum specie will be investigated using A. senegal and A. 

seyal. Both gums are characterized by the difference of protein content, structural and 

physicochemical properties such as viscosity. On the other hand, other parameters of 

emulsification such as emulsification process and effect of glycerol addition will be also 

studied. The obtained knowledge could allow to better understand the effect of 

emulsifier nature on the physical characteristics of produced emulsions (globule size 

distribution, temporal particle stability caused by creaming, coalescence, Ostwald 

ripening) and within the context of developing a new gum with optimal emulsifying 

properties. 

(iv) to characterize the surface structure and interfacial properties of 

A. senegal and A. seyal gums dried films and the relationship with water 

permeability and ability to trap aroma compounds. Indeed, Acacia gum is also 

widely used as coating agent with as major ambition to avoid fat oxidation. Currently, 

new trends are proposed to coat natural products as fresh fruits and fish (Ali, Maqbool, 

Ramachandran, & Alderson, 2010; Binsi et al., 2016; El-Anany, Hassan, & Rehab Ali, 

2009; Jiang, Feng, Zheng, & Li, 2013; Maqbool, Ali, Alderson, Zahid, & Siddiqui, 2011). 

However, the in-depth knowledge about the surface properties is still not available as 

the water wettability. One explanation is the difficulty to form homogeneous film based 

on hyper branched polymer as Acacia gums without cracks. Therefore, the first step of 

this study will be to produce films without cracks on a model surface using spin coating 

technology. Then, the surface properties i.e. water wettability, surface free energy and 
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corresponding polar and dispersive components of Acacia gum films will be evaluated 

using contact angle measurements. Surface film structure will be characterized using 

microscopic observation. According to the gum structure and composition, the network 

formation of A. senegal and A. seyal at the interface of solid films will be discussed in 

regard to the determined surface properties. Moreover, the affinity between the films 

and different compounds varying in nature and polarity will be assessed to evaluate 

their potential impact on films functionalities as water permeability and aroma 

compounds retention. The new knowledge acquired in this section should allow to 

establish a relationship between interfacial properties of Acacia gums solid film and 

gum biochemical composition and structural conformation and therefore improve the 

use of Acacia gum as coating agent. 

 

The better comprehension of the behavior of Acacia gums at different interfaces should 

allow to optimize their usage as emulsifier for beverages or aroma encapsulation and as 

coating agent for diverse products.  

 

This thesis is divided into 5 chapters: 

Chapter 1 mentions the context and objectives of the PhD project.  

Chapter 2 presents an overview of the biochemical, physicochemical and structural 

properties of Acacia gums with a specific focus on the materials used in this project. 

Chapter 3 contains the study of the effect of A. senegal, A. seyal and IEC-F1 and 

their concentrations on the lowering interfacial tension of hexadecane and the 

rheological properties of interfacial films. In the same chapter, the effect of oil drop 

nature on interfacial properties of Acacia gums was characterized. 

Chapter 4 deals with the emulsifying properties of Acacia gums. The effect of 

biochemical composition and structural properties of Acacia gums on the formation of 

emulsion droplets and their stability was investigated. In order to control high molar 

mass protein-rich AGPs content in bulk and the total concentration, an innovative 
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approach by mixing two fractions isolated from A. senegal was used. In parallel, A. 

seyal and initial A. senegal were used to produce emulsions and their protein, sugar 

content and structural conformation effects on emulsifying properties were investigated.  

Chapter 5 is focused on the properties of Acacia gum film surface. The film surface 

structure, water wettability and affinity between compounds with different polarity 

were highlighted. Moreover, functionalities of films as water permeability and aroma 

retention were related to these specific characteristics of gum films. 

Chapter 6 presents the overall conclusion and perspectives.  
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Introduction générale 

 

La gomme d’Acacia (AG, E414), également appelée gomme arabique, est un exsudat 

naturel comestible de gomme récolté sur les arbres Acacia senegal (A. senegal) et Acacia 

seyal (A. seyal). La production de gomme d'Acacia est un mécanisme de protection de 

l'arbre contre l'invasion des insectes et des moisissures et la cicatrisation des plaies 

(Clarke et al., 1979; Islam et al., 1997; Sanchez et al., 2018). La gomme d'Acacia est 

largement utilisée comme additif alimentaire et une définition internationale a été 

donnée par la FAO / OMS au cours du 31ème Comité du Codex pour les additifs 

alimentaires. Cette définition précise que la gomme d’Acacia est « une exsudation 

séchée obtenue à partir des troncs et des branches d’A. senegal (L) Willdenow ou 

d’espèces proches d’Acacia telles que A. seyal (famille des légumineuses) » (FAO, 

1999). Bien qu’appartenant à des séries taxonomiques différentes, à savoir A. seyal 

appartient à l’espèce des Gummiferae et A. senegal à celles des Vulgares, ces deux 

gommes d’Acacia sont composées des mêmes sucres, acides aminés et sels. 

Les gommes d'Acacia sont principalement récoltées dans les régions arides de la ceinture 

sub-saharienne, dite « ceinture de gomme d’Afrique », du Sénégal à l'Afrique de l'Est, 

au Pakistan et en Inde (Jales, 2018; Sanchez et al., 2018). Les arbres sont parfaitement 

acclimatés aux zones sèches et désertiques et leur présence offre de nombreux avantages. 

Sur le plan environnemental, ils agissent comme une barrière à la désertification, ils 

nourrissent le sol en utilisant l’azote de l’air puis en le transférant dans le sol. Les 

principaux pays producteurs de gomme sont le Soudan, le Tchad et le Nigeria, qui 

représentent 95% du marché mondial des exportations de gomme. Leurs principales 

missions sont de collecter, sécher, emballer et livrer les gommes à un point de vente 

(Jales, 2018; Muller & Okoro, 2004). Les principaux pays importateurs sont l'Inde et 

la France en 2014-2016, avec 75% du montant des importations mondiales (Jales, 2018). 

Depuis les temps anciens, les humains utilisent les gommes d'Acacia pour 

l'alimentation, la médecine et d'autres applications non alimentaires comme par 
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exemple dans les technologies osseuses pour ses propriétés adhésives (Sanchez et al., 

2018). À l'époque des anciens Égyptiens, la gomme était utilisée comme liant 

pigmentaire dans les peintures et les encres pour la fabrication de hiéroglyphes et 

comme adhésif pour fabriquer des emballages en lin pour l'embaumement des momies 

(Verbeken et al., 2003; Whistler, 1993). Au Moyen Age, la gomme d'Acacia était 

appréciée en Europe par les scribes et les illustrateurs pour l'application de la couleur. 

Entre le XIIe et le XIXe siècle, elle a également été utilisée pour la stabilisation des 

pigments, dans la composition de l'encre métallo-gallique, l'encre la plus populaire en 

Europe utilisée par des peintres tels que Rembrandt. L'ère industrielle moderne a 

engendré une explosion des utilisations manufacturières de la gomme d'Acacia. Elle est 

largement utilisée comme émulsifiant, stabilisant, agent de finition de surface, 

épaississant dans les industries alimentaires et non alimentaires, y compris les 

applications pharmaceutiques, textiles et cosmétiques ou dans l’imprimerie. Elle est 

intéressante de part ces propriétés comme liant pour les pigments de couleur dans les 

crayons, comme revêtement pour les papiers et comme ingrédient essentiel dans le 

procédé de micro-encapsulation pour la production de papier autocopiant, ou encore 

dans la fabrication des détergents pour lessive, etc. Ces propriétés adhésives, ont été 

largement employées pour les allumettes et les timbres-poste. Dans l'industrie 

cosmétique, on la retrouve dans la composition des poudres pour le visage, des masques, 

crèmes et lotions là aussi à cause de ces propriétés adhésives et émulsifiantes. Dans 

l'industrie alimentaire, la gomme d'Acacia est utilisée pour la production de boissons, 

de confiseries, d'émulsions, d'encapsulations de composés d’arômes ou de colorants, de 

produits de boulangerie et de brassage. À titre d'exemple, la gomme d'Acacia permet 

une distribution uniforme des huiles essentielles et des graisses dans des solutions 

aqueuses, mais aussi de retarder la cristallisation du sucre dans les confiseries, les 

glaçages, les mélanges à gâteaux, les crèmes fouettées. Dans les boissons, elle est 

spécialement utilisée pour la stabilisation des huiles essentielles et des mélanges de 

composés aromatiques. Dans la production de vins, la gomme d'Acacia confère du corps, 

stabilise la couleur et empêche la précipitation des polyphénols et des protéines. La 

production de boissons et de confiseries s'avère être la principale application de la 
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gomme d'Acacia dans les industries alimentaires. 

La gomme d'Acacia est en train de devenir un produit hautement stratégique avec une 

forte croissance de la demande, d’environ 25% au cours des dix dernières années. La 

gomme est importante pour les pays producteurs, en particulier pour les populations 

locales, pour qui elle est souvent la seule source de revenus, mais aussi pour les pays 

importateurs. Entre une production irrégulière (sécheresse, instabilité politique des pays 

producteurs) et une demande croissante de gomme naturelle à faible coût, les 

entreprises de gomme d’Acacia sont confrontées à plusieurs défis. Le premier défi 

consiste à assurer une qualité élevée et constante du produit malgré les fluctuations 

climatiques et la variabilité du traitement (entaille, stockage, transport, contrôle de la 

température). Le second consiste à développer de nouvelles applications à haute valeur 

ajoutée basées sur de nouvelles connaissances de la composition, la structure et les 

propriétés techno-fonctionnelles de la gomme d'Acacia et sur le développement de 

nouveaux produits à base de gomme d'Acacia. Pour cette raison, un programme de 

recherche, baptisé DIVA, a été créé entre la société ALLAND & ROBERT (Port-Mort), 

fournisseur mondial de gommes, et l’UMR IATE 1208 (Montpellier), unité de recherche 

dédiée à l’ingénierie des agropolymères et des technologies émergentes depuis 2012. 

Alland & Robert est une société française spécialisée dans la production de gomme 

d'Acacia depuis 1884 et mondialement reconnue par les plus grands groupes 

alimentaires. Leurs politiques sociales et économiques en France et en Afrique couvrent 

plusieurs niveaux : garantir des matières premières durables et de qualité, garantir un 

processus de production éthique et propre et développer un partenariat durable avec 

des pratiques sociales et de sécurité éthique et en conformité avec le respect de 

l’environnement. Dans le cadre de cette collaboration, le programme DIVA est divisé 

en projets fondamentaux et d'applications fortement interconnectés. Les différents 

projets portent notamment sur le fractionnement des gommes d'Acacia senegal et 

d'Acacia seyal, la caractérisation de la composition, les propriétés structurales et 

physicochimiques des macromolécules de gomme d'Acacia (gommes d'Acacia entières 

et fractions) et l'étude des propriétés interfaciales et émulsifiantes des macromolécules 
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de gomme d'Acacia (gommes d'Acacia entières et fractions). 

Mon projet de thèse est entièrement axé sur la caractérisation des propriétés 

interfaciales et émulsifiantes des macromolécules de gomme d’Acacia (gommes d’Acacia 

entières et leurs fractions). Il est étroitement lié aux autres sujets mentionnés 

précédemment. Parmi ceux-ci, les suivants, qui ont déjà été réalisés ou se déroulent en 

parallèle, ont joué un rôle crucial dans la réalisation de mon doctorat.  

Il s’agit des projets portant sur :  

- La caractérisation de la composition, des propriétés structurales et physico-

chimiques des gommes d'A. senegal et A. seyal. 

Ce sujet visait à examiner la composition de base et les propriétés structurales des 

macromolécules d’A. senegal et A. seyal en fonction de leurs propriétés fonctionnelles. 

Les gommes étaient spécialement caractérisées en termes de composition et de teneur 

en sucres, en protéines et en minéraux, et de degré de ramification. Ce travail a été 

effectué lors de la précédente thèse de doctorat de Lopez Torrez (Lopez Torrez, 2017). 

- Le fractionnement/purification d'arabinogalactanes-protéines (AGP) à partir de 

gomme d'Acacia senegal 

Les objectifs de cette étude sont d'isoler les arabinogalactanes-protéines (AGP) de la 

gomme A. senegal en fonction de leurs propriétés structurales et physico-chimiques. 

Des méthodes chromatographiques classiques ont été utilisées, notamment la 

chromatographie d'interaction hydrophobe (HIC) et la chromatographie par échange 

d'ions (IEC). Ces procédés ont permis d'obtenir des fractions d'AGP isolées : trois 

fractions principales ont été isolées en utilisant HIC, à savoir HIC-F1, HIC-F2 et HIC-

F3, tandis que deux fractions majeures ont été obtenues en utilisant IEC, à savoir IEC-

F1 et IEC-F2. Après l'isolement de ces fractions, leur composition biochimique, leurs 

propriétés structurales et physico-chimiques ont été caractérisées en profondeur. Ce 

sujet correspond au projet postdoctoral de Apolinar Valiente. 

- Les propriétés physicochimiques en solution d'AGP des gommes d'Acacia 

L'objectif principal de ce projet est d'étudier les propriétés volumétriques, le volume 
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spécifique partiel et la compressibilité adiabatique spécifique partielle; ainsi que les 

propriétés hydrodynamiques: viscosité dynamique, viscosité intrinsèque et rayon 

hydrodynamique des gommes d'Acacia à 25°C et jusqu'à 70°C. A. senegal, A. seyal et 

les fractions macromoléculaires d’A. senegal, à savoir HIC-F1, HIC-F2 et HIC-F3 issues 

de HIC et IEC-F1 et IEC-F2 issues du fractionnement par IEC ont été caractérisées. 

Ce travail fait partie du projet de doctorat de Mejia Tamayo (Mejia Tamayo, 2018). 

 

Dans le cadre de mon projet de thèse, les principaux objectifs scientifiques sont :  

 

(i) d’établir la relation entre la composition biochimique et les propriétés 

structurales des gommes d’A. senegal et d’A. seyal et leurs propriétés 

interfaciales. Pour y répondre, la capacité à réduire la tension interfaciale et à former 

un film à l'interface hexadécane-eau des gommes d'Acacia et de la fraction IEC-F1 

isolée à partir d'A. senegal sera étudiée et comparée en tenant compte de l’espèce et 

les concentrations en en gomme. En dépit de la différence de composition biochimique 

et des propriétés structurales entre les gommes A. senegal et A. seyal, leurs propriétés 

interfaciales seront comparées et reportées en fonction de leur teneur en protéines et 

des hypothèses sur l’impact de leur nature spécifique seront émises. En outre, la 

variation de la concentration en gomme a un impact non seulement sur la teneur en 

protéines, mais également la teneur en AGP de masse molaire élevée et riches en 

protéines. Ces molécules largement décrites comme responsables des propriétés 

interfaciales de la gomme d’Acacia seront évaluées. La possibilité d’utiliser différentes 

fractions de A. senegal obtenues par purification permettra de confirmer le rôle majeur 

des AGP riches en protéines de masse molaire élevée dans les propriétés interfaciales 

des gommes d’Acacia. 

(ii) d’évaluer l'impact de la nature de la phase dispersée sur les propriétés 

interfaciales des gommes A. senegal et A. seyal. En effet, la nature d’interface en 

contact avec les gommes d’Acacia pouvant influencer les propriétés interfaciales, le 
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comportement de différents composés sera étudié. L’hexadécane a été le premier 

composé choisi pour cette étude en raison de l’abondance d’études des propriétés 

interfaciales des gommes à l’interface de ce composé (Castellani et al., 2010; Chanamai 

et al., 2002; Dickinson, 1999; Dickinson et al., 1988). Une attention particulière a été 

accordée à d’autres interfaces, telles que le limonène et l’octanol, dont la nature et la 

polarité diffèrent afin de comprendre l’effet de la nature de l’interface sur le 

comportement de A. senegal et A. seyal. Les nouvelles connaissances acquises sur les 

propriétés interfaciales des gommes d'Acacia à chaque interface peuvent nous permettre 

de mieux comprendre les propriétés émulsifiantes de la gomme d'Acacia. 

(iii) de caractériser les émulsions produites par A. senegal, A. seyal et à 

partir d’une gomme reconstituée en utilisant des fractions bien caractérisées 

d’A. senegal, ceci afin de relier leur aptitude à produire et à stabiliser des 

gommes à leurs propriétés biochimiques et structurales et à leurs propriétés 

interfaciales. Il est important de garder à l’esprit que A. senegal est 

préférentiellement utilisée pour stabiliser les composés aromatiques sous forme 

d’émulsions diluées dans les boissons à longue conservation, tandis que A. seyal est 

utilisée dans l’étape d’émulsification avant l’encapsulation des arômes, c’est-à-dire 

lorsque la stabilité n’est pas cruciale. Pour répondre à cet objectif, la phase d'huile 

dispersée choisie était le limonène à concentration fixe (5% en poids) en raison de sa 

teneur élevée dans l'huile d'orange. La stabilisation de l'émulsion de limonène seule est 

difficile en raison de sa faible viscosité. Cependant, l’utilisation du limonène peut offrir 

l’avantage de mettre en évidence plus clairement la différence de comportement 

émulsifiant entre les deux gommes. En termes de technologie d'émulsification, la 

microfluidisation a été choisie car elle est adaptée à la faible viscosité des dispersions 

de gomme d'Acacia, ce qui permet d'étudier l'effet de la concentration en gomme 

d'Acacia. Une grande attention sera portée au rôle des AGP de masse molaire élevée 

riches en protéines pour stabiliser l'émulsion. En effet, il est largement admis que ces 

AGP sont responsables des propriétés émulsifiantes des gommes (Alftrén et al., 2012; 

Flindt et al., 2005; Nishino et al., 2012; Padala et al., 2009; Randall et al., 1988; Ray 
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et al., 1995). Les différentes approches habituellement décrites pour démontrer et 

comprendre le rôle de ces AGP consistent : 

- à faire varier la concentration de gomme (Yao et al., 2013),  

- d’utiliser différentes gommes avec différentes quantité de protéines et donc 

d’AGP de masse molaire élevée (Dickinson et al., 1988; Katayama et al., 2006),  

- d’utiliser des gommes matures qui contiennent plus de AGP riches en protéines 

et ayant des masse molaires élevées due à l’agrégation (Al-Assaf et al., 2007; 

Aoki, Katayama, et al., 2007; Aoki, Al-Assaf, et al., 2007)  

- ou encore d'étudier les propriétés émulsifiantes de la gomme dégradée par 

l'enzyme protéolytique (Al-Assaf et al., 2009; Flindt et al., 2005). 

De plus, certains auteurs ont rapporté l’effet des fractions constitutives des gommes 

sur les propriétés émulsifiantes (Nishino et al., 2012; Ray et al., 1995). De plus, une 

autre méthode habituellement utilisée consiste à récupérer les molécules adsorbées à 

l'interface des gouttelettes et à les caractériser (Buffo et al., 2001; Katayama et al., 

2006; McNamee et al., 2001; Mikkonen et al., 2016; Nakauma et al., 2008; Randall et 

al., 1988; Xiang et al., 2015). D'après les résultats des études citées ci-dessus, le rôle 

prépondérant des fractions riches en protéines de masse molaire élevée dans les 

propriétés émulsifiantes de la gomme d'Acacia ne fait aucun doute. Cependant, une 

question reste toujours posée : « Les propriétés fonctionnelles de la gomme d’Acacia 

sont-elles simplement le résultat de la somme des propriétés des fractions individuelles 

ou une synergie positive existe-t-elle ? » En tentant de répondre à cette question, une 

approche innovante a été mis en place en mélangeant deux fractions isolées de A. 

senegal afin de contrôler la teneur en AGP riches en protéines de masse molaire élevée 

dans le milieu (bulk) et la concentration totale de gomme. La concentration totale et 

la quantité en protéines ont été choisies en fonction des applications générales des 

gommes d'Acacia. Les deux fractions sont une fraction riche en protéines de masse 

molaire élevée isolée de A. senegal en utilisant une chromatographie par échange d'ions 

et une fraction de faible masse molaire isolée à partir de la même gomme en utilisant 

une chromatographie d'interaction hydrophobe traditionnelle. Ces fractions ont été bien 



Chapter 1 : General introduction 
 

19 
 

caractérisées en termes de composition biochimique et de propriétés structurales.  

En parallèle, l’effet de l’espèce de gomme d’Acacia sera étudié en utilisant A. senegal 

et A. seyal. En effet, les deux gommes sont caractérisées par la différence de teneur en 

protéines, de propriétés structurales et physico-chimiques telles que la viscosité. D'autre 

part, d'autres paramètres d'émulsification tels que le processus d'émulsification et l'effet 

de l'addition de glycérol seront également étudiés. Les connaissances obtenues 

pourraient permettre de mieux comprendre l'effet de la nature des émulsifiants sur les 

caractéristiques physiques des émulsions produites (distribution de la taille des globules, 

stabilité temporelle des particules, apparition des phénomènes de crémage, coalescence, 

maturation d'Ostwald) et d’envisager le développement d'une nouvelle gomme aux 

propriétés émulsifiantes optimales.  

(iv) de caractériser la structure de la surface et les propriétés interfaciales 

de films séchés à base de gommes et la relation entre ces propriétés et la 

perméabilité à l'eau mais aussi la capacité à piéger des composés d’arômes. 

En effet, la gomme d'Acacia est également largement utilisée comme agent de 

revêtement avec comme ambition majeure d'éviter l'oxydation des graisses. 

Actuellement, de nouvelles application sont envisagées comme l’enrobage des produits 

naturels comme les fruits frais et les poissons (Ali et al., 2010; Binsi et al., 2016; El-

Anany et al., 2009; Jiang et al., 2013; Maqbool et al., 2011). Cependant, les 

connaissances approfondies sur les propriétés de surface ne sont toujours pas disponibles 

comme la mouillabilité de l'eau. Une explication est la difficulté de former un film 

homogène sans fissure à base de gomme d’Acacia qui est un polymère hyper ramifié. 

Par conséquent, la première étape de cette étude consistera à produire des films sans 

fissure sur une surface modèle en utilisant la technologie de revêtement par 

centrifugation (spin coating). Ensuite, les propriétés de surface, à savoir la mouillabilité 

de l'eau, l'énergie libre de surface et les composantes polaires et dispersives, des films 

de gomme d'Acacia seront évaluées en utilisant la mesure de l'angle de contact. La 

structure du film en surface sera caractérisée par une observation microscopique. En 

fonction de la structure et de la composition des gommes, la formation du réseau d’A. 
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senegal et d’A. seyal à l’interface des films solides sera discutée par rapport à des 

propriétés de surface déterminées. En outre, l'affinité entre les films et différents 

composés de nature et de polarité différentes sera évaluée pour estimer leur impact 

potentiel sur les fonctionnalités des films, telles que la perméabilité à l'eau et la 

rétention des composés d’arôme. Les nouvelles connaissances acquises dans cette section 

devraient permettre d'établir une relation entre la composition biochimique, la 

structuration du film solide et ses propriétés interfaciales et donc d'améliorer 

l'utilisation de la gomme d'Acacia en tant qu'agent de revêtement. 

 

La meilleure compréhension du comportement des gommes d'Acacia à différentes 

interfaces devrait permettre d'optimiser leur utilisation comme émulsifiant pour des 

boissons ou l'encapsulation d'arômes et comme agent de revêtement pour divers 

produits. 

 

Cette thèse est divisée en 5 chapitres : 

Le chapitre 1 mentionne le contexte et les objectifs du projet de thèse. 

Le chapitre 2 présente un aperçu des propriétés biochimiques, physicochimiques et 

structurelles des gommes d’Acacia, avec un focus spécifique sur les gommes et les 

fractions utilisées dans ce projet. 

Le chapitre 3 étudie l'effet de A. senegal, A. seyal et IEC-F1 et leurs concentrations 

sur la diminution de la tension interfaciale de l'hexadécane et les propriétés rhéologiques 

du film interfacial. Dans le même chapitre, l’effet de la nature de la goutte sur les 

propriétés interfaciales des gommes d’Acacia a été caractérisé. 

Le chapitre 4 traite des propriétés émulsifiantes des gommes d'Acacia. L'effet de la 

composition biochimique et des propriétés structurales des gommes d'Acacia sur la 

formation des émulsions, la taille des gouttelettes et leur stabilité a été étudié. Afin de 

contrôler la teneur en AGP riche en protéines de masse molaire élevée dans le milieu 
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(bulk) et la concentration totale, une approche innovante consistant à mélanger deux 

fractions isolées chez A. senegal est exposée. En parallèle, les gommes A. seyal et A. 

senegal ont été utilisées pour produire des émulsions. Par conséquent, l’effet de la 

teneur et composition en protéines et en sucres ainsi que la conformation structurale 

sur les propriétés émulsifiantes ont été étudiés. 

Le chapitre 5 se concentre sur les propriétés de la surface de films de gomme d'Acacia. 

La structure de la surface des films, la mouillabilité de l'eau et l'affinité entre les 

composés de polarité différente ont été mises en évidence. De plus, les fonctionnalités 

des films comme la perméabilité à l’eau et la rétention en arômes seront reportées. 

Le chapitre 6 clôture le document par une conclusion générale et des perspectives.  
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Chapter 2 – Acacia gums 

 

This chapter presents a brief overview of Acacia senegal (A. senegal) and Acacia seyal 

(A. seyal) gums and their fractions obtained using chromatographic technics. The 

biochemical composition and the structural properties of A. senegal and A. seyal gums, 

and the fractions used in this Ph.D. project are also presented (Tables II.1 and II.2) 

and compared to literature. 

 

1. A. senegal and A. seyal gums  

Acacia gum macromolecules are highly glycosylated hydroxyproline-rich 

arabinogalactan-proteins (AGPs) belonging to the glycoprotein superfamily (Akiyama 

et al. 1984; Showalter 2001). Experimentally, AGPs are identified and defined by their 

ability to react with a chemical reagent: a phenylazoglycoside dye named Yariv reagent 

((Yariv, Lis, & Katchalski, 1967; Yariv, Rapport, & Graf, 1962). AGPs are 

hyperbranched complex polysaccharide, neutral or slightly acidic, found as a mixture 

of calcium, magnesium, and potassium salt. Basically, AGPs are mainly composed of 

galactose, arabinose, rhamnose, glucuronic acid, proteins and minerals (D. M. W. 

Anderson & Stoddart, 1966; Idris, Williams, & Phillips, 1998; Islam, Phillips, Sljivo, 

Snowden, & Williams, 1997; Lopez-Torrez, Nigen, Williams, Doco, & Sanchez, 2015; 

Menzies, Osman, Malik, & Baldwin, 1996; Renard, Lavenant-Gourgeon, Ralet, & 

Sanchez, 2006; Sanchez et al., 2018). Typically, A. seyal gum contains more arabinose 

than galactose sugar, while A. senegal gum is characterized by a higher content of 

galactose than arabinose (Idris et al., 1998; Lopez-Torrez et al., 2015; Nie et al., 2013b, 

2013a; Sanchez et al., 2018). A. senegal gum is richer in protein than A. seyal gum 

(∼1.5 to 3% vs. ∼0.5 to 1%), but the relative distribution of amino acids between Acacia 

gum species remained quite similar (Islam et al., 1997). The proteinaceous part of 

Acacia gums is predominantly composed by hydroxylproline and serine with a 
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significant content of proline, threonine, histidine, and leucine amino acids (D. M. 

Anderson, Douglas, Morrison, & Wang, 1990; Lopez-Torrez et al., 2015; Mahendran, 

Williams, Phillips, Al-Assaf, & Baldwin, 2008; Mejia Tamayo et al., 2018; Randall, 

Phillips, & Williams, 1989). Both Acacia gum species contain also some minor 

components as traces of lipids, tannins, phenols and enzymes (D. M. W. Anderson, 

Bridgeman, Farquhar, & McNab, 1983; Kunkel, Seo, & Minten, 1997; Mhinzi, 2003a, 

2003b). The biochemical composition and physicochemical properties of Acacia gums 

may vary depending on the geographical origin, age of the trees, climatic conditions 

and gum species (Idris et al., 1998; Islam et al., 1997; Lopez-Torrez et al., 2015).  

AGPs consist of a hydroxyproline-rich core protein covalently linked to polysaccharide 

blocks rich in arabinose and galactose. The polysaccharide blocks exhibit a so-called 

type II arabinogalactan glycan structure with the polysaccharide backbone formed by 

1,3-linked β-D-galactopyranosyl units. The side chains consist of two to five 1,3-linked 

β-D-galactopyranosyl units, joined to the main chain by 1,6-linkages. The main and 

side chains include units of α-L-arabinofuranosyl, α-L-rhamnopyranosyl, β-D-

glucuronopyranosyl, and 4-O-methyl-β-D-glucuronopyranosyl, the latter two mostly as 

end-units (D. M. W. Anderson & Stoddart, 1966; Islam et al., 1997). The 

polysaccharide blocks of both Acacia gum species were organized into hyperbranched 

structure with a more branched polysaccharide architecture for A. senegal than for A. 

seyal (degree of branching of 78.2% and 59.2%, respectively) (Lopez-Torrez et al., 

2015). 

In term of structural parameters, the mean molar mass (Mw) of A. senegal is generally 

lower than that of A. seyal, while the polydispersity index (Mw/Mn) was higher for the 

former (Lopez-Torrez et al., 2015). This highlighted a higher proportion of high molar 

mass AGPs in A. senegal gum than in A. seyal gum. Generally, A. seyal gum is also 

characterized by a lower intrinsic viscosity (η) than A. senegal gum (Lopez-Torrez et 

al., 2015). The higher molar mass and lower intrinsic viscosity of A. seyal (lower 

hydrodynamic volume) reflects a higher compact structure of AGPs from this gum 

compared to those of A. senegal gum (Lopez-Torrez et al., 2015). This greater 
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compactness of A. seyal macromolecules could be explained by (i) the smaller charge 

density, thus less intra-chain electrostatic repulsion, (ii) the lower protein content, 

resulting in the less distance between polysaccharide blocks, and (iii) the presence of 

long flexible arabinosyl chains able to self-assemble and mutually interact through 

hydrogen bonds. According to the analysis of the conformation plots from SEC-MALLS 

experiments of A. senegal and A. seyal gums, it was advanced that the AGPs 

conformation from A. seyal varied from spheres to oblate ellipsoids whereas those from 

A. senegal varied from oblate ellipsoids to more anisotropic conformations, such as 

oblate and prolate ellipsoids (Gillis, Adams, Alzahrani, & Harding, 2016; Lopez-Torrez 

et al., 2015; Mahendran et al., 2008; Sanchez et al., 2008, 2018). Recently, the flexibility 

and hydration of both Acacia gums were studied through the characterization of their 

volumetric properties (Mejia Tamayo et al., 2018). Authors reported that A. senegal 

gum was more flexible and less hydrated than A. seyal gum according to the higher 

protein content and the greater value of partial specific volume of the former. This 

better molecular flexibility could be related to the better interfacial properties of A. 

senegal compared to A. seyal.  

The biochemical compositions and structural properties of A. senegal (lots N° 

OF110676 and N° OF152413) and A. seyal (lots N° OF110724) gums used in this project 

are presented in Table II.1. The results are in accordance with those previously 

described. It can however be noted some slight differences between Acacia gums from 

a same specie, especially in their protein content. Concerning the A. senegal gum, the 

lot N° OF110676 is richer in protein than the lot N° OF152413 (27.0 mg.g-1 vs. 21.5 

mg.g-1). 
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Table II.1: Biochemical compositions and structural parameters of A. senegal and A. seyal used in the PhD project. Adapted from *Lopez Torrez et al. 2015 and 

**Mejia Tamayo et al., 2018. na stands for non-available. 

 A. senegal*  

(lot N° OF110676) 

A. senegal**  

(lot N° OF152413) 

A. seyal*  

(lots N° OF110724) 

Total dry matter (mg.g-1) 889.0±0.3 893.4±4.0 893.0±0.0 

Moisture (%) 11.1 10.7 10.7 

Sugar (mg.g-1)a 940.0 944.4 950.0 

   Arabinose (%) 30.3±2.5 30.2±0.6 47.6±0.6 

   Galactose (%) 35.8±1.2 40.5±1.7 36.9±1.1 

   Rhamnose (%) 15.5±0.4 12.4±0.4 3.0±0.3 

   Glucuronic acid (%) 17.4±1.2 17.8±1.7 6.7±0.4 

   4-O-Me-Glucuronic acid (%) 1.0±0.1 1.0±0.1 5.8±0.6 

   Uronic acid/neutral sugar ratio 0.23 0.23 0.14 

Protein (mg.g-1) 27.0±0.0 21.5±0.9b 10.0±0.0 

Mineral (mg.g-1) 33.0±0.2 34.1±0.1 40.0±0.1 

Average molar mass (Mw, g.mol-1) 6.8×105 6.8×105 8.2×105 

Polydispersity index (Mw/ Mn) 2.0 2.0 1.5 

Branching degree (%) 78.2 78.0 59.2 

Intrinsic viscosity (mL.g-1) 22.8 29.8 16.5 

Partial specific volume (cm3.g-1) na 0.5842 na 

Partial specific adiabatic compressibility(×1011 cm3.g-1.Pa-1) na -7.1 na 

aTotal content of sugars calculated from the difference of proteins and minerals from 1 000 mg.g-1. bProtein content was measured using the Kjeldhal method.
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2. Fraction of AGPs isolated from A. senegal gum 

A. senegal gums are defined as a continuum of AGPs differing by their sugar, amino 

acid and mineral content and composition, sugar to amino acid ratio, polarity, number 

of charges, molar mass, size and shape (Islam et al., 1997; Mejia Tamayo et al., 2018; 

Randall et al., 1989; Renard et al., 2006). These AGPs can be separated according to 

their physicochemical properties using different chromatographic technics. In this PhD 

project, A. senegal gum is fractionated according to hydrophobic interaction 

chromatography (HIC) and ion exchange chromatography (IEC). 

The hydrophobic interaction chromatography (HIC) is the most used technique to 

separate AGPs from A. senegal gums (Randall et al. 1989; Renard et al. 2006). Using 

HIC, AGPs are separated according to their polarity. Usually, three fractions were 

obtained and traditionally named arabinogalactan-peptide (AGp), arabinogalactan-

proteins (AGP) and glycoproteins (GP) according to their elution order and then their 

growing hydrophobic index. However, since all these fractions react to Yariv’s reactant, 

they are all AGPs. Then, they will be more rigorously named HIC-F1 (AGp), HIC-F2 

(AGP) and HIC-F3 (GP) in the order of elution to avoid any possible confusion. HIC-

F1 is the most abundant fraction (85-92% of the whole gum) as compared to HIC-F2 

(6-16% of the whole gum) and HIC-F3 (1-3% of the whole gum). The sugar composition 

was similar between the three fractions, with however a larger content of arabinose in 

HIC-F2 and HIC-F3 and a larger content of charged sugars in HIC-F1. HIC-F3 was the 

richest fraction in proteins with values around 10-40%, while the amount of proteins 

was around 8-10% and 1% for HIC-F2 and HIC-F1. These three HIC fractions differed 

also by their mean molar mass and high molar mass AGPs content (AGPs with Mw 

upper than 106 g.mol-1). HIC-F1 was mainly composed of low molar mass AGPs, while 

HIC-F2 and HIC-F3 were richest in high molar mass AGPs. HIC-F1 can be considered 

as constituted by low molar mass AGPs poor in proteins. In contrary, HIC-F2 and 

HIC-F3 are mainly composed by high molar mass AGPs rich in proteins. The 

characterization of the volumetric properties of these three HIC fractions highlighted a 
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less hydrated and more flexible structure of HIC-F3, in contrast to a less flexible and 

more hydrated structure of HIC-F2, and especially HIC-F1 (Mejia-Tamayo et al. 2018). 

In the DIVA research program, the Acacia senegal gum (lot N° OF110676) was also 

fractionated using HIC chromatography and the three eluted HIC fractions have been 

characterized. As HIC-F1 fraction is the only HIC fraction used in this PhD project, 

only its biochemical composition and structural parameters are presented and 

compared to those of HIC-F1 fraction obtained by Renard et al. (Table II.2) (Renard 

et al., 2006). The biochemical composition and structural parameters of these two HIC-

F1 fractions were in accordance with slight differences. The HIC-F1 fraction obtained 

at UMR IATE is especially characterized by a lower protein content and a higher 

intrinsic viscosity in comparison to that obtained by Renard et al. 

In this PhD project, we also used another AGPs fraction obtained with a different 

chromatography technique, the ionic exchange chromatography (IEC) (Apolinar-

Valiente et al. 2018, submitted article). The fractionation of A. senegal gum (lot N° 

OF152413) using IEC allowed to obtain two fractions named IEC-F1 and IEC-F2. The 

biochemical composition and structural properties of IEC-F1, the only IEC fraction 

used in this PhD project, are presented in Table II.2. IEC-F1 is composed of the same 

sugar as HIC-F1. However, the proportions of galactose, arabinose and glucuronic acid 

are different. IEC-F1 contains a higher amount of arabinose, and a lower amount of 

galactose and glucuronic acid as compared to HIC-F1. The sugar composition of IEC-

F1 is closer to that of HIC-F2 and HIC-F3 fractions than to HIC-F1. IEC-F1 is also 

characterized by a high protein content as compared to HIC-F1. Based on the amino 

acid composition of IEC-F1, it can be argued that this fraction corresponds to the mix 

HIC-F2 (30%) and HIC-F3 (70%) fractions. The AGPs of IEC-F1 presents a high molar 

mass with a value of 30x105 g.mol-1. Hence, IEC-F1 fraction is only composed of high 

molar protein-rich AGPs. As these AGPs are supposed to be crucial for the emulsifying 

properties of Acacia gums, this fraction appears to be suitable to characterize the 

emulsifying properties of Acacia gums and their involvement in this functional 

property.
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Table II.2: Biochemical composition and structural parameters of fractions from A. senegal obtained using hydrophobic interaction chromatography (HIC) and 

ion exchange chromatography (IEC). Adapted from **Mejia Tamayo et al., 2018 *** Apolinar-Valiente et al. 2018. na stands for non-available values. 

aUsing the method of Kjeldahl.

  HIC**    IEC*** 
  HIC-F1 HIC-F2 HIC-F3  IEC-F1 
Yield (%)  na na na  4.2 
Total dry matter (mg.g-1)  921.6 926.2 921.9  na 

Sugar (mg.g-1)  961.3 918.3 813.0  882.1 
   Arabinose (%)  26.8 35.6 38.3  35.5 
   Galactose (%)  39.0 34.4 33.3  33.5 
   Rhamnose (%)  12.5 13.7 13.9  12.8 
   Glucuronic acid (%)  20.3 15.6 13.7  17.3 

   4-O-Me-Glucuronic acid (%)  1.4 0.6 0.7  1.0 

Protein (mg.g-1)  4.9±0.1a 63.1±1.2a 137.7±2.7a  114.9 
Mineral (mg.g-1)  30.5±1.1 19.3±1.1 49.3±2.6  3 
Average molar mass (Mw, g.mol-1)  3.5×105 15.0×105 16.0×105  30×105 

Polydispersity index (Mw/Mn)   1.4 1.3 1.9  1.2 

Intrinsic viscosity (mL.g-1)  22.1 64.3 54.7  87.8 
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3. Summary of Acacia gums and their fractions used in the different topic of this 

Ph.D. project 

The crossing strategies used in the following chapters in order to investigate the effect 

of gums and different characteristics of compounds on interfacial and emulsifying 

properties of Acacia gums is summarized in the Table II.3. 

 

Table II.3: Acacia gums, their fractions and different compounds investigated according to the objectives 

of this Ph.D. project presented in different color. 

         Compounds 

Gums 

Octane Decane Hexadecane Hexanol Octanol Decanol Linalool Limonene 

A. senegal 

(lot N° OF110676) 

        

        

        

A. senegal 

(lot N° OF152413) 

        

        

        

A. seyal 

(lot N° OF110724) 

        

        

        

IEC-F1 

        

        

        

HIC-F1+IEC-F1 
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Chapter 3: Liquid-liquid interfacial properties: 

To establish the relationship between the interfacial properties of 

Acacia gums dispersion and the gum specie, the concentration and the 

nature and polarity of interfaces. 

Chapter 4: Emulsifying properties: 

To investigate the emulsifying properties of Acacia gums, i.e. the 

emulsification ability and the stability, and to specify the role of high 

molar mass protein-rich AGPs usually described as responsible of 

these emulsifying properties. 

Chapter 5: Solid-liquid interfacial properties: 

To establish a relationship between the different film properties 

(surface structure, wettability, surface energy, affinity with different 

compounds) and the gum species, their biochemical composition and 

structural properties. 
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Chapter 3 – Interfacial properties of Acacia senegal 

and Acacia seyal gums 

 

This chapter focuses on the interfacial properties of Acacia gums dispersion taking into 

account the gum specie, the concentration and the nature and polarity of interfaces 

(air and varied liquids). 

The major aim is to establish the relationship between the composition and structural 

properties of gums, and their interfacial properties such as the ability to decrease the 

interfacial tension and to form interfacial films at specific liquid/liquid interfaces 

through the measurement of interfacial tension but also the viscoelastic modulus. 

Indeed, the interfacial tension decrease depends on the amphiphilic characteristic and 

structure of the molecules, whereas the interfacial rheology is related to the capacity of 

interactions between adsorbed molecules and their structural stabilization (Benjamins, 

Lyklema, & Lucassen-Reynders, 2006). The second purpose is to determine the surface 

tension (liquid/air) of Acacia gums dispersions and to estimate the polar and dispersive 

components as a function of gum species. The knowledge of interfacial properties of 

Acacia gums should provide information about their emulsifying properties, i.e. their 

ability to form but also to stabilize emulsions. 

For these purposes, A. senegal and A. seyal gums dispersion at different concentrations 

(between 0.05 and 5 wt%) were compared since they differ in their biochemical 

composition (particularly their protein content), in their AGPs distribution (especially 

their high molar mass protein-rich AGPs content) and in their structural properties. 

Furthermore, the interfacial properties of a specific fraction from A. senegal (IEC-F1) 

which was composed of high molar mass protein-rich AGPs were investigated in order 

to gain more information about the importance of this fraction which is currently 

described as having a major role in the interfacial properties of Acacia gums (Elmanan, 

Al-Assaf, Phillips, & Williams, 2008; Randall, Phillips, & Williams, 1988). A. senegal 
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and A. seyal gum dispersions at 5wt% were furthermore investigated at different 

liquid/liquid interfaces. Indeed, organic compounds with different chemical functions 

and polarity, i.e. hexadecane, limonene and octanol were considered. Hexadecane was 

chosen because it has been largely used in the characterization of Acacia gums 

interfacial properties (Castellani, Al-Assaf, Axelos, Phillips, & Anton, 2010; Dickinson, 

Galazka, & Anderson, 1991a, 1991b; Dickinson, Murray, Stainsby, & Anderson, 1988; 

Mahfoudhi et al., 2014; Mahfoudhi, Sessa, Ferrari, Hamdi, & Donsi, 2016). Limonene 

and octanol are aroma compounds characterized by different level of polarity and water 

solubility which could affect the interfacial properties of Acacia gums.  

In order to acquire supplementary information about interfacial properties, the surface 

tension at the air interface of A. senegal and A. seyal dispersions at high concentration 

was determined and the polar and dispersive components calculated. This could 

contribute to explain the difference between the gums and to enhance the use of Acacia 

gums in food applications, e.g. as foam stabilizing agent. 

As an introduction of this chapter, a quick point defining the terms and methods used 

in this chapter is shown.  
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I. Definition of terms and methods 

 

Since we proposed to characterize both the surface and the interfacial tension, it is 

important to clearly define the terms and the methods used. 

The term surface tension (γ) is used to characterize the interface air/liquid. It is an 

intrinsic property of a liquid, which is caused by the unbalanced forces of the liquid 

molecules at the contact of air and corresponds to the intermolecular forces to contract 

the surface of the droplet liquid for a determined volume. Indeed, surface tension is 

defined as the quantity of energy needed to increase the interfacial area in one unit of 

surface (Langevin, Delorme, & Cagna, 2004). 

Interfacial tension is defined at any interface between two different media as liquid, 

solid or gas and their different combinations as the energy which must be expended to 

increase the size of the interface between the two adjacent phases which do not mix 

completely with one another. Then, surface tension is a derivation of interfacial tension, 

defined to a single liquid surface as water or Acacia gum suspensions when forces from 

the second surface is negligible or equal to zero (as for air). This explains why the two 

terms surface tension and interfacial tension at the air/liquid interface are used. 

  

In this work we characterized: 

- the surface tension of A. senegal and A. seyal gums through pendant drop method 

(Figure III.1.A) and its dispersive and polar components using contact angle 

measurement or sessile drop method (Figure III.1.C). 

- the interfacial tension of two immiscible liquids, i.e. Acacia gums dispersion and 

hexadecane, limonene, or octanol by the measurement of interfacial tension and 

viscoelastic modulus using rising drop method (Figure III.1.B).  

Therefore, we proposed to succinctly describe the employed methods which are based 

on the same theory of axisymmetric drop shape analysis.  
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A.       B. 

 

C. 

 

Figure III.1: Shape of droplet, pendant (A), rising (B) and sessile (C) drops, representing the forces at 
the apex for rising and pendant drops and at the triple point air-solid-liquid for sessile drop. 
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Pendant and rising drop methods: 

The balance between gravitational and capillary forces of the liquid determines whether 

the rising (Figure III.1.B) or pendant (Figure III.1.A) drop could be formed. In both 

case, the shape of drop depends on the competition of two forces: surface tension and 

gravitation. The spherical shape results from the surface tension, i.e. the energy which 

tends to minimize the surface area while the curvature of drop interface changes in 

vertical direction due to the gravitational force. The degree of variation of spherical 

shape is related to the ratio between the drop weight (liquid density) and the surface 

tension. However, the theory of the measurement is the same for both drop types. 

The analysis of axisymmetric drop shape was done using Young-Laplace Equation 

(Equation 1) which relates the Laplace pressure throughout the interface with the 

interfacial tension and the curvature of the interface (Berry, Neeson, Dagastine, Chan, 

& Tabor, 2015): 

 

∆P= γ ( 1
R1

+ 1
R2

)   (1) 

 

where R1 and R2 represented the principal radii of curvature at the point at coordinate 

(X, Z), ΔP is the Laplace pressure corresponding to the pressure difference between 

inside and outside of the drop. According to Pascal’s law, ΔP can be also expressed as:  

 

ΔP = Pin-Pout   (2) 

ΔP = ΔP0- ΔρgZ   (3) 

 

where, ΔP0 represented a reference pressure at Z = 0, g is the acceleration of gravity 

and Δρ = ρd−ρ with ρd and ρ the drop phase and continuous phase density, respectively.  
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Equation (1) can be expressed in terms of the cylindrical coordinates X and Z, together 

with the tangent angle θ, as shown in Figure III.1.A and III.1.B. Then, the Young– 

Laplace equation can be obtained as a coupled set of dimensionless differential 

equations in terms of the arc length S measured from the drop apex: 

 

dθ
dS�

= 2 − Bo Z� − sinθ
X�

   (4) 

dX�

dS�
= cos θ   (5) 

dZ�

dS�
= sinθ   (6) 

 

where the bar indicates dimensionless quantities scaled by the radius of curvature at 

the drop apex. All variables are shown in Figure III.1. In Equation (4), Bo corresponds 

to the Bond number (dimensionless): 

 

Bo = ∆ρgR0
2

γ
   (7) 

 

The associated boundary conditions are: X� = 0, Z� = 0, θ = 0 at S� = 0 and R0 is the 

radius of curvature at the drop apex. Thus, the shape of the pendant drop depends on 

Bo. If the Bond number associated with a pendant drop can be determined together 

with the drop radius at the apex (R0), the interfacial tension (γ) is then readily obtained 

from Equation (7). The interfacial tension of a liquid as water can evolve with time in 

the presence of surface active molecules or impurities. Therefore, the terms of “transient 

interfacial tension” and dynamic surface tension are usually used.  
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Sessile drop method: 

Contact angle measurement is a simple and widely used method to estimate the solid 

surface free energy. This method is based on the measurement of the left and right 

angles formed at the solid-liquid-vapor interfaces of sessile drop which is deposited on 

solid surface (Figure III.1.C). The three forces interacting at the interface are interfacial 

tensions at liquid-vapor interface (γLV), solid-liquid interface (γSL) and solid-vapor 

interface (γSV). At equilibrium, the balance on the three phases is given by the equation 

of Young (Equation 8):  

 

γLV ∙ cosθ =  γSV −  γSL   (8) 

 

The parameters γLV and cosθ are measurable, but the values of of γSV and γSL are 

unknown and diverse approaches as Fowkes, Lifshitz-van der Waals/acid-base and 

Owens & Wendt (Karbowiak et al, 2006) allowing to estimated one of them using 

diverse liquids and system of equations can be applied. In this chapter, the method 

called “surface tension component approach” was used to estimate the polar and 

dispersive components of γLV for both Acacia gums considering that each surface energy 

is composed of different components (polar and dispersive) as proposed by Fowkes and 

using a specific support without polar component.  
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1. Introduction  

An emulsion is defined as a thermodynamically unstable system constituted of two 

immiscible liquids. This system tends to break down during the storage. However, it 

can be stabilized by the addition of emulsifiers. The stabilization properties of emulsifier 

are variable and depend on their physicochemical and structural properties, and 

therefore their ability to adsorb and form a film at the interface.  

Acacia gum is recognized as an efficient emulsifier due to its interfacial properties 

allowing not only to form a film by covering the surface of newly-formed emulsion 

droplets but also to stabilize them. Moreover, its high water solubility and the low 

viscosity of Acacia gum dispersions favor their industrial use in pharmaceutical and 

food industries, specifically for beverage industry. Acacia gum or gum arabic (AG, E414 

EC) is “a dried exudate obtained from the stem and branches of Acacia senegal (L.) 

Willdenow or Acacia seyal (family Leguminosae)” (FAO, 1999). These two species 

differed in emulsifying properties: the former gives more stable emulsions than the latter 

in relation to their biochemical composition and structural properties (Flindt, Al-Assaf, 

Phillips, & Williams, 2005; Mansour & Hassan, 2016).  

Both A. senegal and A. seyal gums are composed of highly glycosylated hydroxyproline-

rich arabinogalactan-proteins (AGPs) belonging to the glycoprotein superfamily 

(Akiyama, Eda, & Kato, 1984). AGPs are mainly composed of sugars (D-galactose, L-

arabinose, L-rhamnose, D-glucuronic acid, and 4-O-methyl-D-glucuronic acid) with a 

small fraction of proteins (∼ 0.8 – 3%) and minerals (∼ 3 – 4%) (Lopez-Torrez, Nigen, 

Williams, Doco, & Sanchez, 2015; Street & Anderson, 1983). AGPs are organized into 

hyper-branched polysaccharide blocks covalently linked to the polypeptide backbone in 

serine- and hydroxyproline-rich domains (Lopez-Torrez et al., 2015; Mejia Tamayo et 

al., 2018). Depending on the gum specie and their origin (tree location, age, weather), 

the relative proportions of the constitutive sugars and protein, as well as the structural 

properties of AGPs, slightly varied. Typically, A. senegal is richer in protein than A. 

seyal, while the latter is richer in arabinose than the former (Biswas, Biswas, & Phillips, 
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2000; Gashua, Williams, & Baldwin, 2016; Lopez-Torrez et al., 2015). A. senegal gum 

is also more ramified and more flexible than A. seyal one suggesting a greater facility 

to cover the surface of droplet (Lopez-Torrez et al., 2015; Mejia Tamayo et al., 2018). 

Despite a greater molar mass, AGPs from A. seyal gum adopted a more compact 

conformation with a smaller hydrodynamic volume than the ones of A. senegal gum 

resulting in a less viscous dispersion (Lopez-Torrez et al., 2015) and potentially a faster 

diffusion ability to the interface.  

Both gums are constituted by a continuum of AGPs differing by their sugar, amino 

acid and mineral content and composition, sugar to amino acid ratio, polarity, number 

of charges, molar mass, size and shape (Islam, Phillips, Sljivo, Snowden, & Williams, 

1997; Mejia Tamayo et al., 2018; Randall, Phillips, & Williams, 1989; Renard, 

Lavenant-Gourgeon, Ralet, & Sanchez, 2006). These AGPs can be separated according 

to their physicochemical and structural properties using different chromatographic 

techniques. Using hydrophobic interaction chromatography (HIC), three main fractions 

were isolated from A. senegal as a function of their hydrophobicity.(Randall et al., 

1989; Renard et al., 2006). HIC-F1, also called the arabinogalactan peptide fraction 

(AG), is the most abundant fraction (80-90% of total gum) as compared to HIC-F2, 

also called the arabinogalactan protein fraction (AGP, 9-10% of total gum) and HIC-

F3, also called the glycoprotein fraction (GP, 1.3-2% of total gum). The sugar 

composition was similar between the three fractions, with however a larger content of 

arabinose in HIC-F2 and HIC-F3 and a larger content of charged sugars in HIC-F1. 

HIC-F3 was the richest fraction in proteins with values around 20-25%, while the 

amount of proteins was around 8-10% and 1% for HIC-F2 and HIC-F1. These three 

HIC fractions differed also by their mean molar mass and high molar mass (Mw) AGPs 

content (AGPs with Mw upper than 7.5x105 g.mol-1). HIC-F1 was mainly composed of 

low molar mass AGPs, while HIC-F2 and HIC-F3 were richest in high molar mass 

AGPs and supramolecular assemblies (Mw > 2-3 x 106 g.mol-1) (Mejia Tamayo et al., 

2018).  

For A. seyal, the three main fractions are also isolated using HIC. The major fraction 

is constituted by AGPs containing low amount of protein. But the high molar masses 
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AGPs are present in lower extend in A. seyal than A. senegal (Siddig, Osman, Al-Assaf, 

Phillips, & Williams, 2005). The distribution of protein in A. senegal differs from A. 

seyal: in the latter, protein location is not mainly found in the fraction historically 

named AGP (HIC-F2). 

Recently, A. senegal gum was fractionated using ionic exchange chromatography (IEC) 

with the isolation of two fractions called IEC-F1 and IEC-F2 (Apolinar-Valiente et al. 

2018). IEC-F1 (Mw = 3.0×106 g.mol-1) corresponded to the high molar mass protein-

rich AGPs from the classical HIC-F2 and HIC-F3 fractions, whereas IEC-F2 (Mw = 

5.2×105 g.mol-1) was mainly composed by HIC-F1 fraction. A high aggregation rate was 

observed for IEC-F1. The authors suggested that this could be related to the high value 

of arabinose/galactose (1.1) ratio, the low content of glucuronic acid group and the 

high amino acid content (115 mg.g-1) in this fraction. The protein content, the high 

aggregation rate and the flexibility of AGPs from IEC-F1 were suitable to provide a 

greater interfacial and emulsifying properties to Acacia gum.  

The lower emulsifying ability of A. seyal is generally attributed to its poor content in 

protein and high molar mass protein-rich AGPs but this affirmation needed to be 

confirmed. 

The knowledge of interfacial properties of Acacia gums in relation to their biochemical 

composition and structural properties should provide useful information about 

emulsifying properties. Interfacial properties include both the ability to decrease 

interfacial tension at liquid-liquid interfaces and to stabilize these interfaces through 

the formation of interfacial film (Adamson & Gast, 1997). It was described that the 

adsorption of Acacia gum is a slow process and that long-time is needed to reach the 

equilibrium as described for proteins (Beverung, Radke, & Blanch, 1999; Bouyer et al., 

2011; Dickinson et al., 1988; Erni et al., 2007). The interfacial properties of different 

Acacia gums specie were linked to nitrogen and protein content because of a relative 

good correlation between the protein content (varying between 0.6% to 47%) of Acacia 

gum samples and the interfacial activity (Dickinson et al., 1988). However, the same 

authors suggested that the variability in the emulsifying properties of the gum samples 
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depend also on the distribution of the protein between the low- and high-molecular 

weight fractions, and on the molecular accessibility of the protein/peptide to the 

adsorption at interface. Nowadays, it is widely accepted that the high molar mass 

protein-rich AGPs fractions mainly provide the interfacial properties of Acacia gum. 

Studying the interfacial tension of the three HIC fractions obtained from a matured A. 

senegal gum, Castellani et al. showed that GP (HIC-F3) fraction was more efficient to 

decrease the hexadecane interfacial tension with value at equilibrium of about 23 mN.m-

1 than AGP (HIC-F2) and AG (HIC-F1) fractions lowering interfacial tension value up 

to 30 mN m-1 and 45 mN m-1, respectively (Castellani et al., 2010). These authors also 

compared A. senegal and A. seyal and reported that there was no difference in the 

decrease of tension between both gums at the used concentration (0.05wt%).  

In addition, dilatational rheology gives information about the orientation and 

interactions of molecules at the interfacial film and on the elastic and viscous nature of 

films (Sun et al., 2011). The rheological properties of films was often related to the 

stability of emulsions (Randall et al., 1989; Sun et al., 2011). It is generally known that 

Acacia gum interfacial films exhibit an elastic characteristic (Castellani et al., 2010; 

Erni et al., 2007; Sanchez et al., 2018; Vasile, Martinez, Pizones Ruiz-Henestrosa, Judis, 

& Mazzobre, 2016). Using HIC fractions obtained from a matured A. senegal gum, 

Castellani et al. showed that only AGP (HIC-F2) and GP (HIC-F3) were able to form 

interfacial film resulting in the change of dilatational modulus while no change was 

observed when AG (HIC-F1) was used indicating that this fraction poor in protein did 

not adsorb at the interface. Comparing A. senegal and A. seyal at 0.05wt%, Castellani 

et al. found that conventional A. senegal formed less elastic interfacial films than A. 

seyal after 15h at hexadecane-buffer interface. Contrary to Castellani et al., the 

comparison of interfacial rheology between A. senegal and A. seyal at limonene-buffer 

interface using Acacia gums at 3wt% demonstrated that A. seyal interfacial film showed 

interfacial viscosity while an elastic response was observed for A. senegal (Elmanan et 

al., 2008). 



Chapter 3 : Interfacial properties of Acacia senegal and Acacia seyal gums 
 

55 
 

For the majority of interfacial experiments done so far, only one Acacia gum 

concentration was evaluated and experimented, the assessment of concentration effect 

should be instructive. In addition, interfacial properties of A. senegal was largely 

studied whereas only some studies were carried out on A. seyal and, as mentioned 

above, some confusing results were found (Castellani et al., 2010; Elmanan et al., 2008). 

Some scarce assessments studied the effect of oil nature on emulsion stability and 

interfacial properties of Acacia gums (Chanamai, Horn, & McClements, 2002; Dickinson 

et al., 1991b) demonstrating the need to consider the oil nature to better understand 

the behavior of the emulsifier.  

The purpose of this study was to compare the liquid-liquid interfacial properties of 

Acacia gums dispersion. Interfacial tension kinetic and dilatational rheology of Acacia 

senegal and Acacia seyal with different protein content will be characterized using 

dynamic drop tensiometry. A range of gum concentrations (between 0.05 and 5%) was 

studied in order to easily discriminate the adsorption kinetic between both gums and 

to take into account the impact of real concentrations used for commercial flavor oil 

emulsions production. The combined influence of oil nature and emulsifier type on 

interfacial tension and dilatation rheology will be considered. Furthermore, the 

interfacial properties of the high molar mass protein-rich AGPs obtained from A. 

senegal using ion exchange chromatography will be investigated to confirm their 

preponderant role in this physicochemical properties of Acacia gums.  

 

2. Materials and methods 

2.1. Materials  

Soluble powder of Acacia senegal (A. senegal, lot n° OF110676) and Acacia seyal (A. 

seyal, lot n° OF110724) were provided by ALLAND & ROBERT Company-Natural 

and organic gums (Port mort, France). Gums powders were purified by the same 

process including 4 steps: the dissolution, the elimination of insoluble matters, the 

pasteurization and the spray drying. The biochemical composition and structural 
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properties of these gums was previously characterized (Lopez-Torrez et al., 2015; Mejia 

Tamayo et al., 2018). Biochemically, A. senegal contained 829.0 mg.g-1 of sugar, 27.0 

mg.g-1 of protein and 33.0 mg.g-1 of mineral while A. seyal was composed by 843.0 mg.g-

1 of sugar, 10.0 mg.g-1 of protein and 40.0 mg.g-1 of mineral. The mean molar mass 

(Mw) of A. senegal and A. seyal gums was 6.8×105 and 7.1×105 g.mol-1, respectively. 

The dry matter corresponded to 90% and 87% for A. senegal and A. seyal, respectively.  

To investigate the impact of high molar mass protein-rich AGPs on the formation and 

characteristic of interfacial film hexadecane-buffer interface, A. senegal gum was 

fractionated by Ion Exchange Chromatography (IEC) according to Apolinar-Valiente 

et al. (Apolinar-Valiente et al. 2018, submitted article). The fraction obtained (named 

IEC-F1) contained only high molar mass protein-rich AGPs. It was characterized by a 

mean Mw of 30×105 g.mol-1 and the following biochemical composition:, 100.1 mg.g-1 of 

protein and 170.5 mg.g-1 of mineral based on total fraction humid mass.  

The volatile organic compounds (hexadecane, limonene and octanol) and Florisil® (60-

100 mesh) used for the purification of organic volatile compounds were purchased from 

Merck-Sigma Aldrich (Saint-Quentin Fallavier, France). The physicochemical 

characteristics of the organic volatile compounds are presented in Table III.5. 

Acetate buffer at 10 mM (pH 5) was used to dissolve Acacia gums and prepared using 

anhydrous glacial acetic acid and sodium acetate trihydrate provided by Merck-Sigma 

Aldrich (Saint-Quentin Fallavier, France). 

 

2.2. Purification of organic volatile compounds 

Although the high purity of organic volatile compounds (99%), hexadecane and 

limonene needed a further purification. Two methods of purification were used in 

parallel for comparison purpose. The first purification method was done using Florisil® 

at the ratio of 2:1 (compound:Florisil) (Pérez-Mosqueda, Maldonado-Valderrama, 

Ramírez, Cabrerizo-Vílchez, & Muñoz, 2013). Then the mixture was stirred overnight 
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and subsequently filtered with glass wool in order to collect the pure compound. 

Another method was also used to purify compounds consisting to saturate the liquid 

with water by mixing them at the ratio of 1:3 (liquid-water) and agitating for 1 min. 

The mixture was left for 1h to separate organic and aqueous phases. Then, the organic 

phase was picked up and used for the measurements. As non-significant difference of 

interfacial tension of each compound was found between the two methods, they have 

been interchangeably used. 

 

2.3. Preparation of Acacia gum dispersions  

The dispersions of Acacia gums were prepared in 10 mM (pH 5.0) acetate buffer at 

different concentration (0.05, 0.5, 1, 5 and 20 wt% based on humid mass). The 

dispersions were stirred overnight at room temperature to ensure complete dissolution, 

and then centrifuged at 20 000 g for 30 minutes at 25°C to remove traces of insoluble 

matter. 

 

2.4. Methods  

2.4.1. Liquid-liquid interfacial properties measurement  

Interfacial tension and viscoelasticity modulus at the oil-buffer interface were 

determined using a drop tensiometer (Tracker, IT concept, Longessaigne, France). A 

rising axisymmetric drop of volatile organic compounds was formed at the tip of U 

shaped needle connected with a syringe whose the formation and volume were 

controlled by a computer. The droplet volume of hexadecane, limonene and octanol 

was 10 µl, 15µL and 4µL, respectively. The drop was formed in a glass cuvette 

containing the gum dispersions at different concentrations. The syringe and cuvette 

were thermostatically-controlled at 25°C. The shape of the drop was monitored by a 

CCD camera and digitized. The digital images were recorded over time (for 24h in the 

case of hexadecane and 7h for octanol and limonene) and the interfacial tension was 
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determined through the Laplace equation (Equation 1) basing on the drop shape which 

resulted from the combination of surface tension and gravity effects.  

Three characteristics parameters from the evolution of drop shape during time were 

obtained, i.e. area (A), volume (V) and interfacial tension (γ). The tensiometer 

efficiency was evaluated by measuring the interfacial tension of water in air at 25°C. A 

value of 71.3± 0.8 mN.m-1 was found in agreement with literature value of 72 mN.m-1 

(Dickinson et al., 1988). 

The interfacial tension of each purified organic volatile compound in Milli-Q water, i.e. 

in the absence of Acacia gums, was then determined after purification of the liquid. 

The experimental values of purified compound interfacial tension were found equal to 

48.3±1.8, 27.8±0.6 and 8.4±0.4 mN.m-1 for hexadecane, limonene and octanol, 

respectively. As the difference of these values compared to the values found in literature 

(Table III.5) remained slight, no further purification was performed. 

Drop tensiometer also allows to investigate the dynamic behavior of the adsorbed 

layers, according to oscillating drop methodology which consists to apply sinusoidal 

oscillation of interface. The harmonic sinusoidal oscillation of drop volume resulting in 

droplet area deformation (∆A/A), was performed according to time (t) at 25°C with 

an amplitude of 0.1 (∆V/V) and an oscillation frequency (ω) of 0.1 s-1. The oscillation 

was done for 5 repetitive cycles followed by 50 sec of pause period without oscillation 

before the beginning of another 5 oscillation cycles and so on. The measurement was 

carried out for 40h for hexadecane and 7h for octanol and limonene. It is possible to 

extract the interfacial tension during the “blank” periods where the interfacial area 

remained constant. These extracted data could be used to investigate the decrease of 

interfacial tension as a function of time.  

The surface viscoelastic modulus (Equation (11)) and the phase angle (δ) were therefore 

derived from the change in interfacial tension γ (Equation (9)) resulting from the drop 

area fluctuation (Equation (10)): 
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γ =  γ0 sin(ωt +  δ)    (9) 

A =  A0 sin(ωt)    (10) 

E = A (∆γ)/∆A    (11) 

 

The obtained dilatational viscoelasticity (E) is a complex quantity with real (E’) and 

imaginary (E’’) parts, the dilatational elasticity and dilatational viscosity, respectively 

(Ravera, Loglio, & Kovalchuk, 2010). 

All interfacial experiments were carried out in triplicate. A new freshly drop was formed 

and interfacial tension measurements started once its settled volume was reached 

depending on volatile compound.  

 

2.4.2. Modeling of data 

Parameter estimation for Equations 12 and 13 was performed by using a non-linear 

fitting procedure from Matlab© (Matlab and statistics Toolbox Release 2015b, The 

MathWorks, Inc., Natick, Massachusetts, United States).  

The first equation used for the fitting of the experimental data was a logistic curve 

model (Equation 12) as proposed by Castellani et al. (Castellani et al., 2010):  

 

γt =  γ∞ + (γ0−γ∞)
1+( t

t50
)SL50

    (12) 

 

The physical parameters obtained by this model were: the interfacial tension at the 

free interface (γ0), the interfacial tension at equilibrium (γ∞), the time to reach the half 

of the total decrease of interfacial tension (t50) and the decreasing rate or slope of the 

kinetic curve at the t50 point (SL50). 
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Another estimation model has been used to characterize the properties of Acacia gum 

(Equation 3) (Mahfoudhi et al., 2014) : 

 

γ =  γf + (γ1 − γf) × exp(−t/τ1) + (γ2 − γf) × exp(−t/τ2)  (13) 

 

where γf was the asymptotic interfacial tension for t→ ∞ and γ1, γ2, τ1 and τ2 

corresponded to the dynamic parameters which described the decay kinetics of the 

interfacial tension overtime until an equilibrium value was reached. τ1 represented the 

characteristic time of decay corresponding to the migration of the emulsifier to the oil-

water interface, and τ2 characterized the time decay involving the reorganization of the 

emulsifier at oil-water interface (Mahfoudhi et al., 2014).  

Concerning parameter initialization for the estimation procedure, the parameters were 

set to different values taking into account the values previously estimated by Castellani 

et al and Mahfoudhi et al. (Castellani et al., 2010; Mahfoudhi et al., 2014). 

 

3. Results and discussion  

3.1. Interfacial properties of Acacia gum at the hexadecane-buffer interface 

3.1.1. Effect of A. senegal and A. seyal gums concentrations on transient 

interfacial tension 

The impact of Acacia gums on the transient interfacial tension (γ) of hexadecane was 

investigated by varying the specie (A. senegal and A. seyal) and the concentrations 

(0.05, 0.5, 1 and 5 wt%) of gum. The lowest concentration was selected to discriminate 

more severely between the two gums, since at these concentrations the most of gum is 

probably adsorbed at the interface. In contrast, the highest one (5 wt%) was in large 

excess to cover the drop interface, but it corresponded to the concentration applied for 

food emulsions and can give useful information of gums behavior during emulsification 

process. A kinetic time of 24h was chosen to be sufficiently long to achieve the 

equilibrium time as preconized for Acacia gums (Castellani et al., 2010). However, even 
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after 24h, the interfacial tension seemed to slightly evolve for all gum concentrations 

then the kinetic was prolonged to 40h for some experiments to reach the limiting values. 

First, the repeatability of the method was studied because some variability between 

the different runs was observed which could be due to some variation in the real Acacia 

gum concentrations used and in the degree of hexadecane purity. Indeed, the 

concentration of gums can be slightly varied depending on the precision of weighting, 

the dilution step and the moisture content of the gums. In Figure III.2, the 3 repetitions 

of transient tension obtained with A. senegal at the theoretical concentrations of 

0.05wt% and 5 wt% are reported. The poor repeatability of experiments at the weakest 

concentration was observed (Figure III.2.A) while appropriate repeatability was 

observed at 5 wt% (Figure III.2.C). For the three Acacia gum dispersions prepared at 

the theoretical concentration of 0.05 wt%, the real concentrations were determined by 

measuring the densities of the dispersions and equal to 0.043 (orange curve), 0.042 (grey 

curve) and 0.052 (blue curve) wt%, respectively. According to their close 

concentrations, similar kinetic was observed for the two first experiments (orange and 

gray curves), while the last (blue curve) strongly differed (Figure III.2.A). It is obvious 

that a slight difference in concentration can have a strong impact on the interfacial 

tension decrease and this especially at low concentration. The Figures III.2.A and 

III.2.C show also a difference in the initial value of interfacial tension with the lowest 

for the highest concentration. This difference can be explained by the effect of the 

highest Acacia gum concentration (5 wt%) causing the rapid decrease of initial 

interfacial tension.  
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A.       B. 

 

C.       D. 

 

Figure III.2: Semi-logarithmic plots of interfacial tension (A and C) and surface pressure (B and D) of 

hexadecane in the presence of A. senegal at 0.05 wt%(A and B) and A. senegal at 5 wt% (C and D). 

Three replications were shown for each A. senegal gum concentration. 

 

To override the variability of the initial tension, we have determined the dynamic 

surface pressure (Π). Indeed, the surface pressure corresponds to the change of 
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interfacial tension of the compound in contact with Acacia gum at time ti compared to 

the initial interfacial tension value of the compound in water without emulsifiers or at 

t0 (Beverung et al., 1999). In our case, the value of interfacial tension at time 0.06s was 

taken into account as initial value since it corresponded to the first measuring time. 

For gum dispersion at 0.05 wt% (Figure III.2.B), we assumed that the high variation 

observed in Figure III.2.A came from the difference in the concentration between the 

replications thus high A. senegal concentration rapidly decreased initial interfacial 

tension. Therefore, the variability between results were less pronounced when the data 

was reported in term of surface pressure. 

For the Acacia gum concentration of 5 wt%, the effect of initial interfacial tension of 

hexadecane was more pronounced (Figure III.2.D). Despite the similar curve profile, 

the dynamic of surface pressure evidenced that the decrease of surface tension at 

equilibrium varied between 22 and 26 mN.m-1 (Figure III.2.D). This difference could be 

due to the minor variation of concentration as previously explained or variation in 

hexadecane purity. Moreover, other intrinsic parameters of the apparatus can induce 

some variabilities in the analysis affecting the accuracy of the approach, e.g. 

temperature of the cell, the water evaporation, the great sensitivity of method which 

could be disturbed by a slight environmental vibration.  

In order to increase the number of essays and to decrease the variability for a same 

concentration, the interfacial tension was also extracted from experiments carried out 

to characterize the viscoelastic modulus (when the droplet oscillation was stopped) and 

compared to the classic interfacial tension measurement. It is worth noting that the 

early state of interfacial tension (the first 50 s) could not be determined because the 

drop oscillation started immediately after the formation of the drop. Figure III.3 

demonstrated that the interfacial tension kinetics obtained from the viscoelastic 

modulus measurements followed similar curves to that resulting of usual interfacial 

tension measurement. Moreover, the variability between data from two methods was 

not observed since the final values of interfacial was in the same magnitude, i.e. the 

range of values was 18.3-20.5 mN.m-1 and 17.0-18.6 mN.m-1 for gum concentration at 
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0.5 wt% and 5 wt%, respectively. Then, these curves will be taking into account in the 

determination of characteristic parameters in the following of the study. It is therefore 

important to keep in mind that when we are discussing the effect of gum concentration 

in the following part, we are talking about targeted values and we try to consider the 

impact of variability. 

 

A.       B. 

 

Figure III.3: Semi-logarithmic plots of interfacial tension profiles obtained from the measurement of 

static interfacial tension (blue tone) and viscoelastic modulus (green tone) and for A. senegal at 0.5 (A) 

and 5 wt% (B). 

 

Another source of difficulty to interpret the effect of gums concentration on the ability 

of Acacia gum to lower interfacial tension is associated with the content of aggregates 

in dispersions. Indeed, the protein rich AGPs, and especially those from A. senegal 

gum, are able to self-associate and form reversible aggregates in the physicochemical 

conditions used (acetate buffer). The level of these aggregates seemed to depend on 

ionic strength (more aggregate in water than in buffer at 10mM) and gum 

concentration: lower level of aggregates was found for concentrations between 0.5 and 
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1 wt% compared to the lower (as 0.05 wt%) and higher (as 5 wt%) concentrations for 

A. senegal (personal data, Mejia Tamayo et al. 2018). At this date, the characterization 

of the nature, composition and content of these aggregates are incomplete, but it can 

be hypothesized that the increase of gum concentration allowed to increase the content 

of high molar mass protein-rich AGPs. However, their conformation, i.e. their 

aggregated form, could change for each concentration. Moreover, the amount of 

aggregates was higher for A. senegal than for A. seyal. This feature need to be 

considered when studying the effect of gum specie and concentration because their 

presence affected the interfacial tension as demonstrated in the case of matured gums 

(Castellani et al. 2010). Indeed, when maturated gums was compared to original ones, 

the former were more efficient to decrease the interfacial tension (Castellani et al, 2010). 

This ability was due to the increased content of high molar mass molecules rich in 

protein through the formation of aggregates induced by heat and Maillard reactions. 

However, if the aggregation during maturation process was complete and irreversible, 

in our case, the aggregation was reversible and the amount of aggregate was relatively 

low and concentration-dependent. 

Regarding the concentrations with the lowest aggregates content (0.5 and 1 wt%), the 

effect of gum concentration was not obvious either for A. senegal and A. seyal since 

similar average values of interfacial tension at 15h were found for these two 

concentrations (Table III.1). This was certainly due to the weak difference between the 

two concentrations (2 times). Accordingly, the comparison between two concentrations 

(2 and 5%,) of A. senegal gum containing 1.37% of protein, i.e. on the fish oil–water 

interface showed only a slight difference in the tension decrease (Vasile et al., 2016). 

However, these authors found that the value of onset time which corresponded to the 

time to reduce the interfacial tension by 5% was 2 times higher for the weakest 

concentration. Then, this parameter which corresponds to the initial decrease of the 

tension seemed to evidence the concentration effect within a same gum. This 

assumption was confirmed regarding the other concentrations studied in this work. 

Indeed, the onset time decreased with the increase of concentrations for both gums 
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(Table III.1). The values exceeded 100s at 0.05 wt% and becoming null at 5 wt% in 

relation to the fast decrease of interfacial tension. The concentration effect was less 

pronounced comparing the interfacial tensions at 15h since similar final interfacial 

tensions were observed for the three highest concentrations for A. senegal. For A. seyal, 

the values of interfacial tension at 15h were close for the three lowest concentrations. 

It was obvious that for each gum, when a critical concentration was reached, no effect 

of gum concentration on pseudo-equilibrium interfacial tension occurred. Accordingly, 

the critical concentration may lie between 0.05 wt% and 0.5 wt% for A. senegal and 

between 1 wt% and 5 wt% A. senegal. A. seyal differ in their structure, composition 

but also protein content. It can be suggested that the critical concentration was, among 

other, a function of protein concentration independently to the specie of gums. The 

fastest initial decrease of interfacial tension, thus the highest interfacial diffusion, was 

reached when the protein concentration was superior to 0.01 wt% for both gums (Figure 

III.4). This protein content was reached for a concentration of A. senegal of 0.5 wt% 

and ≥ 1wt%. By consequence, for the high concentration (5 wt%) the effect of gum 

specie was not observed despite the higher protein content of A. senegal compared to 

A. seyal. This statement was in agreement with the observation of Dickinson et al. who 

observed a good correlation between the protein content and the interfacial tension. 

Additionally, authors remarked that other parameters such as distribution of the 

protein between the low- and high-molar mass AGPs, and the molecular accessibility 

of the protein/peptide to the adsorption at interface were implied in the efficiency of 

emulsifier (Dickinson et al., 1988). In the same vein, our results highlighted that the 

onset time decreased with the protein concentration (Figure III.4), but that this 

decrease was more pronounced for A. seyal than for A. senegal at equivalent protein 

concentration. This indicated that the protein concentration was not the only 

parameter to be considered. A. seyal was characterized by a more compact structure 

and lower viscosity than A. senegal and seems to diffuse faster than the latter for the 

same protein concentration. To better evidence the behavior of the two gums, 

experiments with low Acacia gum concentrations and using the same concentration of 

protein from A. senegal and A. seyal are needed to be done.  
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Figure III.4: Effect of protein concentration from A. senegal (blue) and A. seyal (orange) on the value 
of onset time. The fitting of data with power law was represented in solid line in the same color for each 
gum. The equations corresponding to the power law fitting were shown in the boxes.  

 

In Table III.1, the onset times obtained for 0.05 wt% were weak comparing to the 

values reported by Castellani et al. for the same type of gums and at the same 

concentration (3308 s for A. senegal and 3808 s A. seyal) indicating that the gums used 

in our case faster diffused at the interface (Castellani et al., 2010). Moreover, the values 

of interfacial tension at 15h was found higher than those obtained in our work (39 and 

38 mN.m-1 for A. senegal and A. seyal, respectively). Castellani et al. prepared gum 

dispersions in ultra-pure water and not in acetate buffer at 10 mM with the final pH 

of 4.5 which could modify the charge of gums, the conformation of the high molar mass 

protein-rich AGPs and interfacial efficiency. Moreover the protein content of their gums 

was equal to 21 and 12 mg.g-1 for A. senegal and A. seyal respectively compared to our 

values of 27 mg.g-1 and 10 mg.g-1. This suggested that the interfacial properties of 

Acacia gums were clearly not only depending on the protein content but also on 

structural and conformational parameters in interaction with the solvent nature. 
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Table III.1: Onset time of interfacial kinetic and the values of interfacial tension at 15h at hexadecane-

buffer interface in the presence of different concentration of A. senegal and A. seyal gums. nd stands for 

non-determined. 

Gum type Gum concentration 

(wt%) 

Protein concentration 

(wt%) 

Onset time (s) γ at 15h (mN.m-1) 

A. senegal 0.04 0.000972 197±30 27.8±1.1 

 0.05 0.001215 130±17 21.6±1.9 

 0.5 0.01215 33±4 18.2±1.6 

 1 0.025 17±2   17.2±2.5 

 5 0.1215 nd 17.3±0.6 

A. seyal 0.05 0.00045 248±32 22.7±0.4 

 0.5 0.0045 25±10 22.6±0.1 

 1 0.0090 12±5 21.9±0.4 

 5 0.045 nd 18.4±1.7 

 

In the objective to better understand the dynamic of interfacial tension for each gum, 

several models were applied to point out the different successive mechanisms.  

The entire data plotted in a semi-logarithmic scale of time as presented in Figure 

III.2.A, III.2.C and III.3 allowed to evidence the different regimes as described for 

proteins but also for Acacia gums (Beverung et al., 1999; Castellani et al., 2010). 

Indeed, the interfacial tension kinetic can be divided into three time regimes (Figure 

III.5.A). Regime I is the induction period or initial lag time characterized by minimal 

tension reduction. Its duration depends on the diffusion, quantity and interfacial 

affinity of emulsifiers. Regime II corresponds to a steep tension decline which is due to 

saturation, continuous rearrangement of interfacial molecules and initiation of gelation 

phenomenon. Regime III is attributed to slow relaxation of the adsorbed monolayer, 

continuous formation of gel-like network and possible build-up of multilayer. The 

duration of regime I (tI) and the values of slope of regime II (SII) and III (SIII) have 

been determined in order to compare quantitatively the effect of gums specie and 

concentration on the decrease of interfacial tension (Table III.2). This model was found 

adapted for low protein concentrations, i.e. 10 mg.L-1 to describe the different 
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phenomena and to evidence the impact of structure and physicochemical properties 

(Beverung et al., 1999).  

 

A.       B. 

Figure III.5: Typical interfacial tension dynamic of protein adsorption at the oil-water interface (A). The 

parameters corresponding to duration of regime I (tI), the slope of regime II (SII) and III (SIII) were 

shown. (Adapted from Beverung et al., 1999). Semi-logarithmic plots of the interfacial tension of 

hexadecane in the presence of A. senegal (bleu curve) and A. seyal (beige curve) at 0.05 wt% (B). 

 

For both gums at 0.05 wt%, i.e. low protein content, the three regimes were clearly 

identified (Figure III.5.B). The extend of induction period (with the interfacial tension 

lowering <10%) slightly varied between both gums being equal to 250 s and 320 s for 

A. seyal and A. senegal, respectively. This was in agreement with the difference in 

onset time. Both gums showed a similar profile with close value of slope for regime II 

(around -16.7 mN.m-1.log(s)-1). Regime III started at close values of tension and time 

(7000s) but the slope of this regime was weaker for A. seyal compared to A. senegal. 

The kinetic profiles indicated that for this gum concentration (i) A. senegal seemed to 

diffuse to interface faster than A. seyal (ii) the interface was saturated by A. senegal 

as well as by A. seyal after 24h (iii) slow conformation changes and rearrangement 

seemed to take place for both gums but seemed more restricted for A. seyal. As 
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highlighted for Acacia gums by Dickinson et al., the initial tension decrease was related 

to the ability and facility of protein part to adsorb and to surround the oil interface 

(Dickinson et al, 2003). This can occur when (i) the molecules have a low molar mass 

to rapidly diffuse, (ii) the protein part covalently linked to the polysaccharide is 

sufficiently accessible and (iii) the hydrophobic amino-acids are not buried. As A. 

senegal possesses a high content of protein-rich AGPs compared to A. seyal at this 

concentration, the initial adsorption was more rapid. Moreover, the saturation of the 

interface was favored by the greater flexibility of A. senegal AGPs which also 

authorized the relaxation. As mentioned earlier, A. senegal contains more aggregates 

than A. seyal, then the former could have a greater ability to lower interfacial tension. 

Different dynamic behaviors at the interface were also described for proteins depending 

on molar mass, conformation, surface hydrophobicity and bulk stability (Beverung et 

al., 1999). Beverung et al emphasized that the surface hydrophobicity and the bulk 

stability were directly related to the rate of the tension decline in the regime II. During 

the regime III, the surface hydrophobicity became less important, the conformational 

changes were promoted when protein was unstable in the bulk having a random coil 

structure (β-casein) compared to globular proteins as ovalbumin. It seemed difficult to 

compare the Acacia gums with pure proteins behaviors because are mixture of 

arabinogalactan proteins less and more aggregated.  But we observed that the slope of 

regime II were similar for the both gums and differed for regime III. Accordingly, it can 

be suggested that the bulk stability was a key parameter which impact the kinetic. 

This needs to be verify.  

For 5 wt% of gums, the extend of induction period was not observed for both gums 

(Table III.2). The transition between the three regimes were less marked at this gum 

concentration. This behavior was already described for globular protein as ovalbumin 

(Beverung et al., 1999). Moreover, the behavior of A. seyal seemed very similar to the 

one of A. senegal. It can be suggested that the regime III was rapidly reached because 

the content of high molar mass protein-rich AGPs was not limiting and that the 
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behavior to lower interfacial tension of A. seyal became similar to A. senegal 

independently to the conformational structure. 

 

Table III.2: Kinetic parameters of interfacial tension corresponding to duration of regime I (tI), the slope 

of regime II (SII) and III (SIII) determined from plotting of interfacial kinetic on a semi-logarithmic scale 

for the adsorption of A. senegal and A. seyal at 0.05 and 5 wt% at hexadecane-buffer interface. 

Gum type Gum 

concentration 

(wt%) 

Protein 

concentration 

(wt%) 

tI (s) -SII (mN.m-1.log(s)-1) -SIII (mN.m-1.log(s)-1) 

A. senegal 0.05 0.001215 250±29 16.0 3.2 

 5 0.1215 nd 7.9 2.8 

A. seyal 0.05 0.00045 320±35 17.5 2.4 

 5 0.045 nd 5.9 2.7 

 

The experimental data were also fitted by a logistic curve model (Equation 12) as 

proposed by Castellani et al. They found that this model allowed to connect the three 

described regimes by a sigmoidal decrease with a good correlation. For comparison 

purpose, we decided to report the parameters of the model only for gums at 0.05 wt% 

(Table III.3). Indeed, for the concentrations of 0.5, 1 and 5 wt%, because of the highly 

rapid diffusion phase and the lack of acquired data, a large variability in the values of 

t50 and SL50 was found. A good correlation between experimental data and estimated 

values was found with low value of RMSE (0.3 mNm-1) for both gums at 0.05 wt%. As 

the lowest value of t50 corresponded to the highest capacity to decrease interfacial 

tension, the reported data indicated a lower capacity of A. seyal to lower interfacial 

tension compared to A. senegal. As evidenced for the onset time (Table III.1), the 

values of t50 found in this study was much lower than the value reported by Castellani 

et al. for A. senegal (t50 = 12 816 s) and A. seyal (t50 = 13 489 s). The value of SL50 

indicates the capacity of emulsifier to form films which rapidly decreases interfacial 

tension, independently to the initial induction time (Castellani et al., 2010). The value 

of SL50 slightly differed between both gums indicating that each gums behaved in the 
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similar manner to lower interfacial tension at t50. The results were in agreement with 

the similitude of regime II slope previously mentioned. The value of SL50 found was in 

the same order of magnitude as the data of Castellani et al. indicating that the value 

of SL50 was less affected than t50 by the gum specie, origin, nature, composition and 

protein content. Finally, the values of γ∞ were close for both gums suggesting that, at 

indefinite time, the lowering ability of interfacial tension was similar for both gums. 

According to these parameters, we could confirm that the behavior of both gums at 

0.05 wt% especially differed by the initial diffusion-adsorption stage. In contrast, these 

assumptions were not obvious when 0.5 or 1 wt% were used (Table III.1). 

 

Table III.3: Kinetic parameters from the fitting of the curves of interfacial tension with Equation 2 

(model 1) and Equation 3 (model 2) for A. senegal and A. seyal. RMSE and SS stand for root mean 

square error and sum of the squared deviation, respectively.  

 Model 1   Model 2  

 γ t50 SL50 RMSE  γ1  γ2 τ1 τ2 γf SS 

A. senegal 22 1057 1.26 0.3251  40 26 1246 13651 21.6 4752 

A. seyal 23 1254 1.6 0.3414  39 26 1203 14175 21.8 6180 

 

Another estimation model (Equation 3) has been proposed by Mahfoudhi et al. to 

characterize the interfacial properties of Acacia gum (Mahfoudhi et al., 2014). 

This equation allowed to determine, τ1 which represented the time of decay 

corresponding to the migration of the emulsifier to the oil-water interface, and τ2 the 

time decay involving the reorganization of the emulsifier at oil-water interface, 

respectively (Mahfoudhi et al., 2014). Thus, this model could be useful to better predict 

the gum behavior in the long term. 

This model allowed only a good fitting with experimental data at low gum 

concentration (0.05 wt%). The value of γ1, γ2, τ1 and τ2 was in the same order of 

magnitude for A. senegal and A. seyal (Table III.3) and as described by Mahfoudhi et 

al the lower values of γ1 and τ1 than the one of γ2 and τ2 for each gum. The model was 
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not successful to clearly evidence the difference of interfacial ability of A. senegal and 

A. seyal. This should be due to that the estimation of parameters was done at the “long 

term” of measurement. This confirmed that, at this period, interfacial tension kinetic 

was not affected by gum specie as demonstrated by previous models. 

To conclude this part, within a same gum, the selected concentrations were not adapted 

to precisely identify the impact of gum concentrations and to determine the critical 

concentration for which the lowering interfacial tension remained unchanged. However, 

the onset time values gave some useful indications and clearly established that the fast 

adsorption at the interface was dependent on the protein concentration but also to the 

gums specie. The lack of knowledge on the high molar mass protein-rich AGPs content 

of A. seyal and the difference of conformation forms of these AGPs in A. senegal 

depending on concentration and gums specie make difficult the comparison. 

 

3.1.2. Effect of A. senegal and A. seyal gum concentration on viscoelastic 

modulus 

Dilatational rheology was also studied to gain information about the viscoelastic 

properties of interfacial films. The evolution of viscoelastic (E), elastic (E’) and viscous 

(E’’) moduli was studied for A. senegal and A. seyal gums at the following 

concentrations 0.5, 1 and 5 wt%. The assessment of adsorption kinetic helps to 

determine the properties of interfacial films which was related to the stability of 

colloidal systems, such as oil-in-water emulsions (Dickinson, 2001, 2009; Wilde, Mackie, 

Husband, Gunning, & Morris, 2004, Vasile 2016). Indeed, the efficiency of Acacia gums 

to stabilize an emulsion was linked to the way the gum adsorbed onto interfaces and 

the final mechanical properties of the interfacial films (Shotton & Wibberley, 1961). As 

already mentioned for interfacial tension measurement, some variability within the 

repetitions can be observed and will be taken into account in the discussion. However, 

for each gum concentration, only one representing curve was reported. 

The data acquired from the measurement of dilatational modulus for A. senegal at 0.5 

wt% were shown in Figure III.6 as an example. Whatever the gums and concentrations, 
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the curves describing the dilatational modulus (E) and the elastic modulus (E’) were 

close. Indeed, the variations of E’ remained well above the viscous modulus (E’’). Thus, 

the interfacial films clearly showed more elastic than viscous behavior in agreement 

with previous reported data for Acacia gum films (Bouyer et al., 2011; Castellani et al., 

2010; Vasile et al., 2016). This was confirmed by the strong decrease of phase angle as 

observed in Figure III.6. Indeed, the phase angle (δ) is related to E’’ and E’ moduli 

through the following equation: 

 

tanδ =  E
′′

E′
   (14) 

 

The lower the phase angle value, the less contribution of dilatational viscous 

characteristic to the dilatational viscoelastic modulus is. For both gums at all 

concentrations, the phase angle drastically decreased at the early stage (up to 20 000 

s) and rapidly reached the value below 10° indicating a predominantly elastic interface. 

The variation of E’ and E’’ with time but also with Acacia gum concentration for both 

gums are reported in Figure III.7. The increase of the two dilatational moduli with time 

indicated the built up of a molecular layer at the interface. For a given concentration, 

the maximum for the viscous modulus was reached before the one for the elastic 

modulus, showing that the interface became more and more elastic and structured with 

time as previously reported (Bouyer et al., 2011). The evolution of E’ clearly depended 

on A. senegal concentration (Figure III.7.A). Indeed, for the highest gum concentration, 

the increase of E’ started at the beginning of the experiment and the maximum value 

was reached earliest. The time that the maximal value was reached was ~2 200 s, 3 

800 s, and 15 000 s for gum dispersions at 5, 1 and 0.5 wt%, respectively. For the lowest 

concentrations, a delay time was evidenced for the E’ and E’’ moduli and the increase 

of E’’ was less pronounced than E’. 
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A.       B. 

 

Figure III.6: Viscoelastic modulus (E, yellow), elastic (E’, violet) and viscous (E’’, red) moduli (A) and 

phase angle (B) of A. senegal 0.5wt% at the interface of hexadecane droplet. The scatter plots were 

linked by lines to guide the eyes. 

 

It is admitted that Acacia gum is anchored by its hydrophobic proteinaceous part at 

the interface while the carbohydrate blocks extended into the bulk suspension 

(Dickinson, 2003; Fauconnier et al., 2000; Fincher & Stone, 1983). It was also 

demonstrated that among different samples of A. senegal, those having the most 

important part of high molar mass protein-rich AGPs (12%) showed the highest 

interfacial elasticity and that the elasticity collapsed with enzyme treatment inducing 

the decrease of high molar mass protein-rich AGPs (Elmanan et al., 2008). Therefore, 

the adsorption kinetic would be controlled by the diffusion of high molar mass protein-

rich AGPs to the interface which would occupy a maximum of the free interface area. 

Then, depending on concentration and time, intermolecular interactions would take 

place between the carbohydrates block inducing a more compact conformation of the 

AGPs, the formation of multilayers and as a consequence an increase of the film 

elasticity as suggested by Bouyer et al. (Bouyer et al., 2011). The value of pH was 

another factor which can affect Acacia gum structural properties thus interfacial 
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properties. Castellani et al. reported that lowering the pH from 4.5 to 3.1 considerably 

improved the kinetic of Acacia gums at the hexadecane-water interface. At pH 3.1, an 

unorganized rapid adsorption occurred. Authors suggested that this may be caused by 

the neutralization of acidic moieties implying a smaller activation energy of interfacial 

adsorption than at pH 4.5.  

 

A.       B. 

 

Figure III.7: Elastic (E’, filled) and viscous (E’’, empty) moduli for A. senegal (A) and A. seyal (B) at 
0.5wt%, 1wt%, and 5wt%. The highest concentration was represented by the darkest color and the 
lowest concentration corresponded to lightest color. The scatter plots were linked by lines to guide the 
eyes. 

 

The difference in maximum values of E’ were observed as a function of concentration 

(from 50 to 60 mN.m-1) with the lowest value found for the highest gum concentration. 

These results suggested that the high concentration favored the greater availability 

high molar mass protein-rich AGP to adsorb and to saturate to the interface but 

interfacial film was not optimally structured. The observed decrease of E’ and loss of 

elasticity which was evidenced at 1 and 5% (Figure III.7.A) is consistent with a new 

rearrangement of the interface as described for proteins and Acacia gum (Beverung et 

al., 1999; Bouyer et al., 2011). High concentrations enhanced intermolecular 
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interactions with an increase of the thickness of the interfacial layers. Bouyer et al. 

studied the viscoelastic moduli of Acacia gum interfacial films at sweet almond oil-

water interfaces and showed that the saturation was not reached with Acacia gum at 

0.5% compared to 2.5% and that the maximum of E’ for 0.5% was largely superior 

compared to the value obtained at 2.5% (Bouyer et al., 2011). They suggested that 

AGPs rearranged freely in their optimal conformation for the lowest concentration 

compare to the highest concentration (2.5%) for which the optimal interface 

organization is disturbed. In our case, it was clear that, AGPs needed more time to 

diffuse to interface (11h) and to form an elastic film when the concentration of A. 

senegal was equal to 0.5% but the saturation was evidenced since the maximum value 

of E’ was reached and slightly decreased. This difference in behavior for the same 

concentration of gum but using sweet almond oil against hexadecane could be related 

to the nature of interface and also to the high molar mass protein-rich AGPs content 

of the A. senegal gums used. Bouyer at al. stipulated that the protein content was 

equal to 2.5% determined by Kjeldalh and that the average molar mass was about 

3.5×105 g.mol-1 for the Acacia gum used (Bouyer et al., 2011). In our study the protein 

content determined using the same method was equal to 2.7% and an average molar 

mass of about 6.8×105 g.mol-1 was determined suggesting a higher content of high molar 

mass protein-rich AGPs. In agreement, any limiting long time decrease of viscoelastic 

modulus at hexadecane interface was reported by Castellani et al. using A. senegal at 

0.05% but also with the matured gum which was richer in high molar mass protein-

rich AGPs suggesting that the saturation was not reached because the amount of high 

molar mass protein-rich AGPs was too low for the concentration used (0.05 wt%). 

However, the increase rate of the elastic modulus was more pronounced for the matured 

compared to the not treated one. Moreover, they observed for A. seyal the same initial 

increase of viscoelastic modulus as for A. senegal. However, in a second phase while the 

elastic modulus of the latter increased weakly because the saturation level was reached, 

those of A. seyal strongly increased proving the efficiency of this gum to develop 

interactions over a long period of time. In our study, for a higher gum concentration 

than the one studied by Castellani et al., the increase of E’ modulus seemed to be 
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slower for A. seyal than for A. senegal. For instance, the maximum values of E’ for the 

highest concentration 5 wt% was reached at 12 000 s and 2 200 s for A. seyal and A. 

senegal, respectively (Figure III.7.A and III.7.B). However, the maximum value of E’ 

for A. seyal was around (52 mN.m-1) in the same order of magnitude of A. senegal for 

this concentration. In contrast, for the 1 wt% and 0.5 wt% of A. seyal dispersions, the 

maximal value of E’ modulus was reached even after 40h suggesting that the gum 

continued to develop interfacial interactions. A slight decrease of E’ was observed only 

for the highest concentration of A. seyal as described for A. senegal confirming that the 

saturation and successive rearrangement occurred when the high molar mass protein-

rich AGPs content preferentially adsorbed at the interface were present in sufficient 

amount. For A. seyal, the behavior at interface could also depend on its more compact 

conformation and the weakest accessibility of the protein part which slowed down the 

increase of E’ moduli (Flindt et al., 2005). Beverung et al. reported that protein 

molecules with a greater flexibility attainted sooner the equilibrium conformation 

(Beverung et al., 1999). In agreement with our observations, a more flexible structure 

of A. senegal compared to A. seyal was recently reported (Mejia Tamayo et al., 2018). 

In term of the viscous moduli value, as for A. senegal, the values of E” were always 

lower than the values of elastic moduli E’. The difference in maximum values of E” for 

the different concentration was less pronounced for A. seyal in contrast to A. senegal. 

Moreover, for all the concentrations, E” decreased with time but more rapidly than for 

A. senegal, proving that A. seyal is able to give a strong elastic films as A. senegal even 

if the high molar mass protein-rich AGPs content was lower. By contrast, Elemanan 

et al. have reported that for 3% of A. seyal, viscous modulus (G”) was superior to 

elastic modulus (G’) indicating a viscous surface rather than elastic at limonene 

interface using an interfacial rheometer (Elmanan et al., 2008). However, the A. seyal 

gum used for their experiments were characterized by lower content of protein (0.66%) 

compared to the gum used in this study (1%) confirming the crucial role of AGP in 

elasticity.  

According to all these results, it can be concluded that both A. senegal and A. seyal 

allowed the formation of elastic films at hexadecane interface but that the biochemical 
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composition, the structural conformation of AGPs of the two gums and their 

concentrations affected the adsorption kinetic, the reorganization and the final 

composition of the films. As previously suggested, the interface rheological response of 

A. senegal gums at high concentration was reminiscent of the behavior of flexible 

globular proteins (Beverung et al., 1999; Elmanan et al., 2008; Erni et al., 2007). For 

A. seyal, its lower content in high molar mass protein-rich AGPs and its compact 

structure induced a slower formation and structuration of the films. A similar behavior 

could be observed for A. senegal at the lowest concentration. 

 

3.1.3. Effect of IEC-F1 on transient interfacial tension and viscoelastic modulus 

To highlight the role of a specific fraction and the role of global interfacial properties 

of the gum, the following part emphasize on the experiment of IEC-F1. The high molar 

mass protein-rich AGPs fraction (IEC-F1) was obtained by fractionating A. senegal 

gum using ion exchange chromatography. Its biochemical composition and structural 

properties were previously reported (Apolinar-Valiente et al. 2018, submitted article). 

It was composed of high molar mass protein-rich AGPs with a Mw of 3.0×106 g.mol-1 

and the major population corresponded to 70% and 30% of the classic HIC-F2 of HIC-

F3 fractions, respectively. The biochemical characterization of IEC-F1 showed a high 

ratio of arabinose/galactose (1.1) compared to A. senegal (0.77), a similar content of 

glucuronic acids but a very high amino acid content (~100 mg.g-1) against 21.5 mg.g-1 

for A. senegal. These different elements suggested a variation in molecules aggregation 

which could involve changes in interfacial properties. Therefore, in this part, the 

interfacial properties of IEC-F1 were investigated since this fraction was suggested to 

play an important role in interfacial properties of A. senegal according to its 

composition and conformation. 

The interfacial tension and viscous and elastic moduli measured for two concentrations 

of IEC-F1 and for A. senegal (5 wt%) are reported in Figure III.8. As this fraction 

contained a high amount of mineral salts ~17% against 3% for A. senegal, this implies 
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that the gums concentration, i.e. in term of macromolecules, was nearest to 0.415 and 

4.15 wt% than 0.5 and 5 wt% (the targeted concentrations). 

 

A.       B. 

 

Figure III.8: Effect of IEC-F1 concentration (0.415 wt% (light green) and 4.15wt% (dark green)) and A. 

senegal at 5 wt% (dark blue) on interfacial tension of hexadecane plotted in a semi-logarithmic scale of 

time (A) and on viscoelastic modulus (E’ (filled) and E’’ (empty)) (B). The scatter plots were linked by 

lines to guide the eyes. 

 

At the concentration of 4.15 wt%, the decrease of interfacial tension in the presence of 

IEC-F1 was pronounced since the first value of tension measured after 0.05 s was lower 

than those reported for the same time for raw A. senegal at the same concentration 

(Table III.4). For this reason, the time onset could not be determined. However, as 

evidenced by the Figure III.8 and the values of interfacial tension reported at different 

time in Table III.4, the initial decrease of interfacial tension depended on the 

concentration of IEC-F1: interfacial tension was faster lowered by 4.15 wt% than 0.415 

wt% of IEC-F1. These results evidenced that the amount of AGPs was important to 

adsorb faster to interface and to lower interfacial tension. 
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It was also noted that the tension values obtained at selected times (60 s and 7 200 s) 

for the IEC-F1 fraction at 0.415wt% were similar to those found for A. senegal at 5wt% 

(Table III.4). The rate of high molar mass protein-rich AGPs in A. senegal was near 

to ~14%. The ratio of A. senegal and IEC-F1 concentrations (5/0.415) was equal to 12, 

indicating comparable level of high molar mass protein-rich AGPs in the two 

dispersions. This means that the ability of original gum to lower interfacial tension was 

well related to the preferential adsorption of these AGPs at the interface as previously 

suggested (Castellani et al., 2010; Fauconnier et al., 2000). Moreover, for the longest 

time of measurement (10h or 36 000 s), a value of 17 mN.m-1 was reached using this 

low concentration (data not shown). The same value of interfacial tension was observed 

for the highest concentration of IEC-F1 but at a shorter time. In short, the final tension 

seemed to be independent on the concentration but the decrease rate was favored by 

the increase of concentration as in the case of original gum. It is worth noting that 

IEC-F1 contained high concentration of mineral salts due to the fractionation process 

and these mineral salts may affect the interfacial properties of this fraction.  

 

Table III.4: Effect of A. senegal and IEC-F1 at 0.415 and 4.15wt% on the values of interfacial tension 

at 0.05s, 56s and 7200s (2h) at hexadecane-buffer interface. 

 Low concentration   High concentration  

 A. senegal 

at 0.5wt% 

IEC-F1 at 

0.415wt% 

 A. senegal 

at 5wt% 

IEC-F1 at 

4.15wt% 

Interfacial tension at 0.05 s (mN.m-1) 44.1±2.2 41.2±3.0  40.5±1.8 30.5±0.2 

Interfacial tension at 60 s (mN.m-1) 41.2±1.7 34.1±1.7  32.3±0.5 24.7±0.4 

Interfacial tension at 7200 s (mN.m-1) 24.2±0.1 19.1±1.0  19.0±0.5 16.9±0.8 

 

In term of dilatational interfacial rheology, the IEC-F1 fraction followed a similar 

behavior as the total gum with elastic modulus superior to viscous one (E’ >> E’’). 

The higher IEC-F1 concentration, the faster interfacial film formation was (Figure 

III.8.B). Using IEC-F1 at 0.415 wt%, elastic modulus increased with time up to 54 
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mN.m-1 and then slightly decreased. For 4.15 wt% of IEC-F1, the elastic modulus 

reached faster the maximum E’ modulus (19 min against 47 min for 0.415%wt) with a 

lower value (47 mN.m-1) than IEC-F1 at 0.415 wt%. After reaching the maximum 

value, the E’ modulus remained stable. As for interfacial tension measurement, the 

dilatational interfacial rheology observed for IEC-F1 at 0.415 wt% was very similar to 

those found for A. senegal at 5 wt% even if it was known that the content of high 

molar mass protein-rich AGPs was higher for A. senegal at 5wt% than for IEC-F1 at 

0.415 wt%. The loss of elasticity for IEC-F1 at 0.415 wt% can be related to the 

rearrangement of the films according to the type and strength of saturation and freedom 

degree of adsorbed molecules and also to the changes in composition at the interface 

due to the presence of several type of AGP. Indeed, as specified, the IEC-F1 fraction 

corresponded to ~30% of HIC-F2 and 70% of HIC-F3 with the latter being more 

hydrophobic. Indeed, HIC-F2 contains around 6.3% of protein with mean molar masses 

of 1.4-1.8 × 106 g.mol-1 while HIC-F3 have a highest content of proteins around ~13.7 

% and molar masses ranging from 2.95×105 to 26.7×105 g.mol-1 (Mejia Tamayo et al., 

2018). The assessment of protein mixture behavior at the air-water interface or oil-

water interface allowed Damodaran et al. to propose that the largest protein adsorbed 

first and when the surface became saturated, the smallest protein evinced the large 

protein and replaced them at the interface (Damodaran & Razumovsky, 2003). The 

authors indicated that this behavior was independent on the hydrophobic nature of the 

protein. It can be hypothesis that this competition phenomenon occurred also in the 

gum (Figure III.7.A) or fraction (Figure III.8.B) which are constituted by glycoproteins 

of different size. On the other hand, the competition for adsorption at the interface 

between GAGP of Acacia gum and β-casein, the interchange of molecules at the 

interface was demonstrated and it was proved that the thickness of adsorbed molecules 

of gum depended on the presence of the protein (Damodaran & Razumovsky, 2003).  

 

3.2. Interfacial properties of 5wt% Acacia gum dispersion at the hexadecane-, 

limonene-, and octanol-buffer interface 
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The oil phase properties could strongly influence the behavior of emulsifier at interface 

resulting in the production of emulsions with more or less stability (Chanamai et al., 

2002). Moreover, a previous study carried out in our laboratory with the same gums 

but at sunflower oil interface had shown difference in term of onset time, slope of regime 

depending on the concentration and the gum specie comparing to hexadecane (Lopez 

Torrez, 2017). Therefore, the physicochemical properties such as polarity, solubility, 

volatility of organic compounds are needed to be taken into account when the 

interfacial properties of an emulsifier were studied.  

In this part, the interfacial properties of A. senegal and A. seyal at 5 wt% were 

determined for octanol and limonene and compared to those found previously for 

hexadecane. This concentration was chosen according to the concentrations used to 

produce limonene emulsion (Chapter 4). The three components are characterized by 

varied polarity and solubility in water (Table III.5). For comparison purpose, as the 

time of experiments was limited to 7h for limonene and octanol, the data of hexadecane 

were only reported up to this time. 

 



Chapter 3 : Interfacial properties of Acacia senegal and Acacia seyal gums 

 

84 

 

Table III.5: Physicochemical characteristics of the used organic volatile compounds. 

Compound 

formula 

Chemical structure Molecular 

weight (Da)* 

Solubility in water 

at 25°C (mg.L-1)* 

logP at 

25°C* 

Oil-water interfacial 

tension (mN.m-1)** 

Oil-water interfacial 

tension (mN.m-1)*** 

Viscosity 

(mPa.s) 

Hexadecane 

(C16H34) 

 226.4 0.0009 8.20  53.5 at 25°Ca; 53.3 at 

20°C b; 52 at 20°Cc  

48.3±1.8 at 25°C 3.454 at 20°Cd 

Limonene  

(C10H16) 

 136.2 13.8 4.57 27.2g  27.8±0.6 at 25°C 0.890 at 25°Cf 

Octanol  

(C8H18O)  

 130.2 540 3.00  8.52 at 20°Cb 8.4±0.4 at 25°C 7.365 at 25°Ce 

From *ChemSpider.com, ** values found in the literature, *** experimental values, aWu & Hornof, 1999, bDemond & Lindner, 1993, cCastellani et al., 2010, 

dHardy, 1958, eBhattacharjee & Roy, 2010, fClará, Gómez Marigliano, Campos, & Sólimo, 2010, gGregson, Rong, Sillick, & Parker, 2011. 
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3.2.1. Effect of A. senegal and A. seyal gums on transient interfacial tension 

Figure III.9 shows the impact of volatile organic compound nature on the ability of A. 

senegal and A. seyal gums to lower interfacial tension. Both gums were able to decrease 

the interfacial tension of all compounds. The difference between the 3 compounds and 

the impact of gums were clearly obvious. A. senegal seemed to slightly lower more 

interfacial tension than A. seyal and affected the speed to decrease the tension by 

slowing down especially regarding limonene and octanol (Figure III.9). The 

characteristic diffusional lag time (phase I) which was not evidenced for hexadecane at 

the selected gum concentration was clearly observed for the two others compounds. It 

was more pronounced for octanol (between 150 and 200 s for A. senegal and A. seyal, 

respectively) than for limonene (between 10 and 20 s for A. senegal and A. seyal, 

respectively) and few dependent on the gum specie. For the same gum concentration 

at sunflower-water interface, the lag time was estimated around 22 s and 4 s for A. 

senegal and A. seyal, respectively, confirming the impact of interface nature and the 

slightly difference between the two gums (Lopez Torrez, 2017). However, the gum 

dispersions used in the study reported by Lopez Torrez was prepared in water while in 

our case gums were dissolved in acetate buffer and solvent can affect the conformation 

and aggregation of macromolecules.  

For comparison purpose, the data were plotted in semi-log scale and the parameters of 

interfacial tension kinetic can be used according to Beverung et al. (Beverung et al., 

1999). The decrease of interfacial tension in Regime II for limonene was less pronounced 

than hexadecane but more pronounced than for octanol (Figure III.9). For A. senegal, 

the slope of interfacial decrease in Regime II was –7.9, -6.5 and -1 mN.m-1.s-1 at the 

interface of hexadecane, limonene and octanol, respectively. On the other hand, for A. 

seyal, the value was –4.9, -4.1, –0.003 mN.m-1.s-1 at the interface of hexadecane, 

limonene and octanol, respectively. The values of interfacial tension after 7h can be 

classified as following from lowest to highest: octanol<limonene<hexadecane. This 

classification was also related to the initial values of the compounds interfacial tension 

in buffer. Indeed, the initial interfacial tension of each compound was strongly different 
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(Table III.5), then the surface pressure was calculated to facilitate the comparison 

(Figure III.10). 

 

A.       B. 

 

Figure III.9: Semi-logarithmic plots of the interfacial tension of hexadecane (blue), octanol (green) and 

limonene (orange) in the presence of A. senegal (A) and A. seyal (B) at 5wt%. 

 

A less increase of surface pressure was observed for limonene compared to hexadecane. 

Indeed, the increase of surface pressure for hexadecane varied between 25 and 21 mN.m-

1 and for limonene between 17 and 14 mN.m-1 for A. senegal and A. seyal, respectively. 

This showed the strong adsorption of both gums for the two compounds but with a 

highest affinity advantage for hexadecane and highlighted the most efficiency of A. 

senegal as already specified. For octanol, the very low increase of surface pressure 

(between 3 and 4 mN.m-1 depending on gums) suggested that both Acacia gums were 

not strongly absorbed at the interface. 
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Figure III.10: Semi-logarithmic plots of the surface pressure of hexadecane (blue), limonene (red) and 

octanol (green) in the presence of A. senegal (dark tone color) and A. seyal (light tone color) at 5wt%. 

 

Octanol has an amphiphilic characteristic inducing the reorientation of the molecule at 

the contact of aqueous solution as previously suggested for decanol, which has similar 

structure and interfacial tension in water (8.3 mN.m-1) as octanol but a higher apolar 

characteristic (logP=4.57). The alcohol group could protrude into the bulk volume, 

favoring the formation of hydrogen bond with water molecules, and therefore the 

decrease of tension at the decanol-water interface (Chanamai et al., 2002). As suggested 

by Chanamai et al., when the interfacial tension of the compound fall below a certain 

value, i.e. around 8 mN.m-1, the Acacia gums are not able to strongly adsorb at the 

interface. Moreover, this behavior was found independently of the concentrations 

tested. It can be suggested that, when Acacia gum was added, the interface was 

partially stabilized and a competition between the octanol molecules and the 

emulsifying molecules of gums occurred at the interface explaining the extended 

induction time. Therefore, the compounds with high polarity and water solubility 

should be used to emphasize the slight difference between gums which could be better 

observed. For long-time adsorption, the gums allowed to slightly decreased the absolute 

interfacial tension. The weak effect of A. seyal gum which is poorer in high molar mass 
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protein-rich AGPs content compared to A. senegal confirmed the preferential 

adsorption of these AGPs at the interface. For A. senegal, the presence of the three 

regimes was evidenced but the slope for Regime III was quasi null whereas for A. seyal, 

the Regime III was not still reach at the end of experiments. This confirmed that for 

octanol only the more hydrophobic molecules of the gums were adsorbed at the interface 

and conformational change or rearrangement were limited. Previous study on effect of 

A. senegal and A. seyal at 5 wt% on sunflower oil with the value of interfacial tension 

of ~30 mN.m-1 showed that A. seyal lowered interfacial tension faster than A. senegal 

indicating that the former diffused faster at the interface than the latter. For the long 

term, A. senegal allowed to slightly lower more interfacial tension than A. seyal with 

surface pressure of 10 and 8 mN.m-1 for A. senegal and A. seyal, respectively (Lopez 

Torrez, 2017). The hydrophobicity of sunflower oil was not specified in the study but 

the logP value of 7.05 was found for linoleic acid which is the major compound of this 

oil (50-70wt%). Regarding this logP value which is slightly lower than hexadecane, it 

was clear that the ability of Acacia gum to lower interfacial tension was not only 

dependent on the polarity. It is obvious that sunflower was characterized by high 

viscosity. However, considering the 3 compounds studied which have weak viscosity (< 

7.4 mPa.s), the impact of both gums on the adsorption kinetic at the interface was 

clearly dependent on the physicochemical properties of oil phase such as polarity, i.e. 

the solubility in the bulk and the interfacial tension in water of the component. Indeed, 

the gums showed more difficulty to adsorb at the interface of the most polar 

components compared to the highest apolar components. For the mixture of several 

compounds as in the case of sunflower oil, the polarity of the major compound was not 

a sufficient parameter explaining the overall behavior of oil. This could be due to the 

intrinsic interaction between contained compounds within the oil. 

Chanamai et al have also studied the effect of Acacia gum at the decane interface and 

have found a similar increase of surface pressure than for hexadecane (26 against 27 

mN.m-1) in relation to their similar interfacial tension in water. Decane is characterized 

by a higher value of logP (5.0) than decanol and a weak solubility (0.052 mg.L-1 against 
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35 mg.L-1) that explained the strong adsorption of gum compared to decanol (Chanamai 

et al., 2002). In our study limonene was characterized by intermediary properties 

between hexadecane and octanol (Table III.5) and it was obvious that both gums well 

adsorbed at the limonene interface but with more limited efficiency than observed for 

hexadecane. This can be attributed to its lower interfacial tension in water 28 mN.m-1 

compared to hexadecane (48 mN.m-1). The direct comparison of the behavior of 

limonene and decane interfaces was difficult since the gums specie, composition and 

concentration and solvent used by the cited authors were different of those used in our 

study. However, as the behavior of the two components was related to hexadecane, it 

can be suggested that the lack of efficiency of gums to lower interfacial tension of 

limonene was related to the stronger solubility (200 times) and in lower interfacial 

tension of limonene compared to decane. There is a need of knowledge of the component 

physicochemical properties involving in emulsion stability since it was proposed by 

Chanamai et al that the components with low polarity and low solubility will be more 

stable against Ostwald ripening and coalescence than the other. Polar and water-soluble 

components can diffuse in the bulk and favor the Ostwald ripening. Moreover, these 

compounds are characterized by low interfacial tension in water and emulsifiers as 

protein or Acacia gum could be underperforming to stabilize against coalescence. This 

assumption can be also tested observing the impact of the component polarity and 

interfacial tension in water on the dilatational rheology. 

 

 

3.2.2. Effect of A. senegal and A. seyal gums on viscoelastic modulus 

The dynamic of viscoelastic moduli was related to the compound nature but was also 

affected by the gum specie. As observed for hexadecane interface, the interfacial films 

of Acacia gum at the interface of octanol and limonene exhibited an elastic behavior 

since E’ always followed the profile of E (data not shown) and was higher than E” 

(Figure III.11). Both viscous and elastic moduli initially increased as a function of time. 
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However, the highest elastic and viscous moduli were observed at the interface of 

hexadecane, followed by limonene and octanol. Moreover, the ratio between the 

maximum values of viscous modulus and elastic modulus was dependent on the 

compound. This ratio was higher for hexadecane than for limonene and octanol. The 

difference between the gums seemed less pronounced than between the aroma 

compounds. 

 

A.       B. 

 

Figure III.11: Effect of volatile compound nature, hexadecane (blue), limonene(orange) and octanol 
(green), and gum specie, A. senegal (A) and A. seyal (B) on E’ (filled) and E’’ (empty) moduli. The 
scatter plots were linked by lines to guide the eyes. 

 

For hexadecane and limonene, E’’ increased and quickly reached its maximum then 

slowly decreased. For octanol, the variation of viscous modulus was only perceptible 

for A. senegal gums. For each gum, the rate of E’ increase with time was in the same 

order of magnitude for limonene and hexadecane but was slower for octanol compounds. 

Moreover, the increase was faster for A. senegal compared to A. seyal. For A. senegal, 

after the maximum E’ was reached, a slow decrease of E’ at the interface of octanol 

and hexadecane was observed whereas the modulus drastically decreased for limonene. 
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This decrease suggested saturation of the interface and a rearrangement and/or 

desorption of the A. senegal interfacial films but also highlighted the impact of the 

nature of interface. The specific behavior of the gum at the limonene interface was also 

found for A. seyal while for octanol and hexadecane, the elastic moduli continue to 

slowly increase. It means that for the two gums, the elastic film formed at the limonene 

interface was the same nature and was affected by the same rearrangement but with a 

delay in time. Indeed, the dilatational modulus reached the maximum and decreased 

earlier for A. senegal than for A. seyal. As maximal values of E’ and E” obtained for 

the three components with the two gums were close, it can be concluded that the 

behavior at the interface was also similar but it was delay for A. seyal. This delay in 

film formation as already mentioned could be due to the lower content and accessibility 

of high molar mass protein-rich AGPs in A. seyal compared to A. senegal (Flindt et 

al., 2005). Even if the process of interfacial film formation and the nature of interaction 

differed for A. senegal and A. seyal, the major factors impacting the interfacial film 

formation were the structure and nature of organic compound. The strong 

rearrangement observed at the limonene interface could be explained by its cyclic 

structure compared to the linear structure of hexadecane and octanol. The weak 

structural stability of film at limonene interface seemed to be related to the orientation 

of the molecules at the interface which can hinder the stabilization or the great capacity 

of limonene to diffuse into the bulk. 

In conclusion, despite the highest interfacial tension at equilibrium of hexadecane 

(Figure III.9 and III.10), it seemed that the films at its interface exhibited the greatest 

elastic characteristic (Figure III.11). Therefore, the hexadecane emulsions formed by 

Acacia gums could probably have a good stability against coalescence compared to 

limonene and octanol. On the other hand, it could be hypothesis that the emulsions of 

octanol produced by Acacia gums could be more prone to coalescence. The production 

of octanol emulsions could be done to check this hypothesis. 
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III. Surface tension of Acacia gum dispersion 

1. Introduction  

As a surface active agent, Acacia gums can accumulate and form films also at liquid/air 

interface. This property is used in technological processes, e.g. food foam manufacture, 

but only some studies of the surface tension of Acacia gum dispersions were hitherto 

done (Cao, Zhang, Zhang, & Du, 2013; Castellani et al., 2010; Damodaran & 

Razumovsky, 2003). In this part, we would like to determine the surface tension of 

both suspension of A. senegal and A. seyal gums and to estimate the polar and 

dispersive components through an indirect method consisting to use a plate with a 

known surface free energy and the contact angle measurement. New knowledge of 

interfacial properties at liquid-air interface could contribute to explain the difference 

between the Acacia gums and to enhance the use of Acacia gums in food applications, 

e.g. as foam stabilizing agent. Moreover, this could give a supplementary information 

about surface conformation of Acacia gums between gum dispersion and gum semi-

solid film (reported in Chapter 5). 

 

2. Materials and methods 

The surface tension measurement of Acacia gum dispersions (γLV) was done through 

the pendant droplet shape method using Digidrop goniometer (model ASE, GBX, 

Roman-sur-Isere, France) equipped with a video measuring system with a CCD camera. 

A droplet with a volume of 2 µL of Acacia gum dispersion at 20wt% was formed. The 

chosen gum concentration corresponded to the one used to form film of Acacia gums 

(reported in Chapter 5). The analysis of axisymmetric droplet shape was done following 

Young equation (Equation 8). Then, the surface tension of drop-forming liquid was 

determined as already explained above using an image analysis software Windrop++v1 

(GBX, Roman-sur-Isere, France).  

In addition, the contact angle (θ) of Acacia gum dispersions on a dispersive coating 

SFE-DS plate was determined by depositing 2µL of gum dispersion on the plate. The 
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measurement of contact angle was done on the left and right sides of the drop and 

averaged. At least 10 measurements were carried out for each sample in ambient 

condition in similar temperature and relative humidity (RH), i.e. 25±2 °C and 

25±5%RH. 

 

Combining the surface tension of gum dispersion (γLV), the contact angle and the 

properties of dispersive coating SFE-DS plate which has a surface free energy of 13.5 

± 0.5 mN.m-1 with zero polarity (<0.1 mN.m-1), the dispersive (γLVd) and polar (γLVp) 

components of surface tension of the gum solutions were calculated using the equations 

of Fowkes (Equation 15 and 18).  

According to Fowkes (Fowkes 1968), the surface tension (γ) can be described by the 

sum of a dispersive component γd and a polar component (γp) which are attributed to 

the polar and non polar interactions: 

 

γ = γd + γp    (15) 

 

The mathematical model proposed by Fowkes to calculate the surface energy takes into 

account only the dispersive interaction for the study of interfacial energy between water 

(W) and saturated hydrocarbons (H) without polar components. The interactions 

between the two phases involve only the apolar contribution of surface energy. Thus, 

if only the dispersive components were available between two phases, the surface energy 

corresponds to the geometric mean of the dispersive components of the surface tension 

of each phase: 

 

γWH = γWV + γHV − 2�γWV
d ∙ γHVd    (16) 
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where, γWH corresponds to interfacial energy between water and saturated 

hydrocarbons and γWV and γHV are surface energy of water and hydrocarbons, 

respectively. γWV
d  and γHVd  represent the dispersive components of water and 

hydrocarbons phases.  

In the case of solid-liquid interface, this equation becomes:  

 

γSL = γSV + γLV − 2�γSVd ∙ γLVd    (17) 

 

where, γSL corresponds to interfacial energy between solid and liquid drop and γSV and 

γLV are the surface energy of solid and liquid, respectively. γSVd  and γLVd  represent the 

dispersive components of solid and liquid, respectively.  

Taking into account dispersion forces and Young’s equation, Fowkes proposed the 

following Equation (18): 

 

γLV ∙ (cosθ + 1) =  −2 �γSVd ∙ �γLVd    (18) 

 

This approach needs only a single contact angle measurement of a liquid with a known 

γLVd  on the solid surface in order to estimate γSVd . However, this approach is true only 

when only dispersive forces act in at least one of two phases.  

 

3. Results and discussion  

As expected the surface tension of gums were inferior to the value of water (i.e. 72 

mN.m-1). proving that the Acacia gums were able to decrease the surface tension of 

water (Table III.6). A value of 67 mN.m-1 was also reported for a solution of Acacia 
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gums at 2% (Bergenstahl, Fogler, & Stenius, 1986). The net reduction compared to 

water was about 5 mN.m-1. This was in agreement with reduction found by Damodoran 

et al. for gum arabic glycoprotein (GAGP) at above 4wt% at the saturated monolayer 

coverage (Damodaran & Razumovsky, 2003). GAGP corresponded to the first fraction 

isolated from crude Acacia gum by gel permeation chromatography and represented 

about 10% of total mass with 90% carbohydrate and 10% protein content. The decrease 

of surface tension of Acacia gums was weak compared to other hydrocolloids as β-casein 

for which the reduction was about 18 mN.m-1 measured in the same condition as for 

GAGP (Damodaran & Razumovsky, 2003). These results were consistent since the 

interfacial properties of protein are known to be superior to Acacia gums. 

 

Table III.6: Contact angle (θ) of film forming solution at 20wt% on dispersive plate and its surface 

tension (γLV) and dispersive (γLVd) and polar (γLVp) components determined using Equation of Fowkes 

(Equation 18) and Owens and Wendt (Equation 19).  

Gum type  θ (°) γLV (mN.m-1) γLVd(mN.m-1) γLVp(mN.m-1) 

A. senegal  136.4±3.7 67.8±2.8 9.3 58.5 

A. seyal 132.2±4.1 67.8±3.6 6.5 61.3 

 

The effect of gum specie on surface tension was not significantly observed. This meant 

that the value of surface tension was not affected by the difference of biochemical 

composition and structural properties. It may be because the concentration used was 

too high and the effect of different parameters was compensated by the concentration 

of gum.  

The results of contact angle measurement are reported in Table III.6. First, regarding 

the high contact angles values of both gum dispersions on the apolar SFE-DS plate, 

the low affinity between the gums and the dispersive coating was obvious and in 

agreement with the major hydrophilic characteristic of gums. An ANOVA analysis 

showed that the values were similar for the two gums suspensions.  
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Both gums contained polar and dispersive components which was in agreement with 

the amphiphilic characteristic of gums. However, the polar components of surface 

tension were higher than dispersive components confirming the preponderant 

hydrophilic characteristic of Acacia gum. On the other hand, the dispersive part was 

not negligible representing 6.5% of the value of surface tension for A. seyal and 9.3% 

for A. senegal. As expected, the slightly higher hydrophobic characteristic of the A 

senegal gum compared to A. seyal was in agreement with a higher content of protein 

and by consequence of hydrophobic amino acids, a lower content of arabinose and 

charged glucuronic acids compared to A. seyal. These results were in agreement with 

the outcome previously found by Mejia-Tamayo et al (Mejia Tamayo et al., 2018). A 

further study measuring the impact of concentration on the surface tension at the 

liquid-air interface is needed in order to better understand whether this difference in 

dispersive component could be detected at lower gum concentrations using this method. 
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IV. Major outcome 

In this chapter, we showed the impact of gum concentration and specie, high molar 

mass protein-rich AGPs and oil nature on the interfacial properties of Acacia gum 

including the ability to lower interfacial tension and to form stabilizing interfacial films. 

The main results are described in the following table: 

 

Interfacial tension kinetic: impact of gums and oil  

• At 0.05wt%, A. senegal allowed to lower interfacial tension faster than A. seyal. This could 

be due to (i) higher protein concentration (ii) greater content of high molar mass protein-rich 

AGPs and aggregate form (iii) greater structural flexibility. 

• For a given protein concentration, A. seyal seemed to diffuse faster to the interface than A. 

senegal. This could be due to the more compact structure of the former. 

• The interfacial properties of IEC-F1 confirmed the major role of high molar mass protein-rich 

AGPs in interfacial properties of A. senegal since transient interfacial tension was similar for 

the IEC-F1 at 0.415wt% and A. senegal at 5wt%. 

• Independently of gum composition and structural properties, the higher gum concentration, 

the faster interfacial tension decrease at the early stage of measurement 

• The higher initial interfacial tension and the lower water solubility of compounds, the faster 

Acacia gums diffuse at the interface. 

• The difference between two gums in the ability to lower interfacial tension was more 

highlighted at octanol interface because of the higher competition at the interface between 

Acacia gum molecules and soluble. 

Rheology of interfacial films: impact of gums and oil 

• Elastic films were formed by all gums at all concentrations. 

• The interfacial films formation was faster for A. senegal than A. seyal due to the higher 

content of high molar mass protein-rich AGPs. 

• The dilatational interfacial rheology was very similar for IEC-F1 at 0.415 wt% and A. senegal 

at 5 wt% in relation to the content and role of high molar mass protein-rich AGPs in 

interfacial properties of Acacia gums. 

• Independently of gum composition and structural properties, the higher gum concentration, 

the faster maximum value of viscoelastic modulus was reached  
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• At all concentrations of A. senegal, at 5wt% of A. seyal and 0.415wt% of IEC-F1, the value of 

viscoelastic modulus decreased after the maximum value was reached due to the interfacial 

saturation and new rearrangement of interfacial molecules.  

• For A. seyal at 0.5wt% and 1 wt%, the interfacial saturation was not reached due to the low 

content of high molar mass protein-rich AGPs, the more compact molecules and the weak 

accessibility of protein part of this gum.  

• For IEC-F1 at 5wt%, no decrease was observed after the maximum value of elastic modulus 

was reached. This could be due to the interfacial saturation occurring without new 

arrangement of interfacial molecules.  

• The higher interfacial tension and the lower water solubility of compounds, the higher value 

of maximum viscoelastic modulus. 

• The value of viscoelastic modulus drastically decreased after the maximum value was reached 

at the interface of limonene. This could be due to the stronger rearrangement at the limonene 

interface which can be explained by its cyclic structure compared to the linear structure of 

hexadecane and octanol. 

• For all compounds, the viscoelastic modulus of A. senegal interfacial film reached the 

maximum value before the one of A. seyal films due to the higher content and accessibility of 

high molar mass protein rich macromolecules in A. senegal. 

Surface tension of Acacia gum dispersion 

• A. senegal and A. seyal at 20wt% were similarly able to decrease surface tension of water. 

• Both gum dispersions showed polar and dispersive components in agreement with their 

amphiphilic characteristic with the value of polar component higher than dispersive one. 

• A. senegal showed a higher value of dispersive component than A. seyal due to a lower 

content of arabinose, charged glucuronic acids and especially a higher protein content and by 

consequence a greater amount of hydrophobic amino acids compared to A. seyal. 
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Chapter 4 – Emulsifying properties of Acacia gums 

and involvement of high molar mass protein-rich 

AGPs 

 

In the previous chapter, taking into account all the results, A. senegal showed greater 

interfacial properties than A. seyal allowing the faster formation of films at the 

interface. The behavior of both gums at the interface depended not only on the protein 

content but also on the amount of high molar mass protein-rich macromolecules and 

on the structural conformation such as the molecular compactness, the accessibility of 

protein part and the molecular flexibility. The data obtained from the comparison of 

interfacial properties between IEC-F1, a high molar mass molecules protein-rich 

fraction, and original A. senegal confirmed the important role of these macromolecules 

in interfacial properties of A. senegal gums. The interfacial properties were clearly 

affected by oil phase nature and the choice of dispersed phase can impact the emulsion 

formation and stabilization. The understanding of the fundamental forces that drive 

Acacia gum to interfaces and the role of high molar mass protein-rich macromolecules 

in the process that lead to tension reduction is essential to anticipate the mechanism 

of the films formation and their properties at interfaces in order to stabilize emulsions.  

The aims of this chapter are to study the emulsifying properties of Acacia gums, i.e. 

the emulsification ability and the stability, and to specify the role of high molar mass 

protein-rich AGPs usually described as responsible of these emulsifying properties. 

Therefore, a special focus on the impact of these AGPs on emulsifying properties was 

made through an innovative approach consisting to formulate reconstituted gums from 

two purified fractions which have been previously characterized in term of biochemical 

composition and structural properties. In parallel, the assessment of the emulsifying 

properties of A. senegal and A seyal was also done since these gum species differ by 

their biochemical composition and structural properties, but also by their high molar 
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mass protein rich AGPs content. Thus, the effect of gums specie, protein and high 

molar mass protein-rich AGPs concentration will be addressed.  

The global objective is to establish the relationship between the functional properties 

and the biochemical composition, structural and physicochemical properties such as 

interfacial properties and viscosity of natural gums and reconstituted gums.  

To reach these objectives, the emulsification process was standardized using 

microfluidisation as high energy emulsification technology. As dispersed phase, 

limonene (5 wt%) was selected. Despite its low viscosity which can be a drawback for 

stability study, it was demonstrated that the difference in interfacial properties between 

both gums was emphasized compared to more apolar compounds as hexadecane. 

The parameters analyzed were the droplet size to estimate the emulsifying ability, and 

the creaming index and delay time to estimate the emulsion colloidal stability. 

This chapter includes: 

- A first part which evidences the effect of microfluidisation process parameters 

on the emulsifying ability of A. senegal and A. seyal gums.  

- A second part in the form of an article which reports the major objectives 

described above: effect of A. senegal and A. seyal gum concentrations and high 

molar mass protein rich AGPs on the emulsifying properties. This article is going 

to be submitted to “Food chemistry”. 

- A third part which reports some complementary studies as the effect of strong 

addition of glycerol on the size and colloidal stability of emulsions and the 

calculation of the surface load of droplets.  
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I. Preliminary study - Effect of process parameters on limonene emulsion 

droplet size using Acacia gums as emulsifier 

The most commonly high-energy emulsification techniques are rotor-stator, ultrasound 

and high-pressure systems such as valve homogenizer and microfluidizer (Jafari, He, & 

Bhandari, 2007a; Schultz, Wagner, Urban, & Ulrich, 2004).  

A preliminary study has demonstrated that ultrasound technology was not adapted to 

the preparation of limonene emulsions with Acacia gums. Indeed, the combined 

presence of limonene and gums promoted the damage of the probe and the formation 

of aggregates. We have turned to microfluidisation which is able to produce emulsions 

with small droplet size from a large material range and has been already tested with 

Acacia gum (Zhang, Peppard, & Reineccius, 2015). Moreover, microfluidisation was 

shown to be more efficient to produce narrow droplet size distribution than 

ultrasonication for limonene emulsions stabilized by the combination of maltodextrin 

and surface-active biopolymer (Hi-cap) (Jafari, He, & Bhandari, 2007b). 

A high pressure is used in microfluidisation system in order to guide the flow stream 

through micro-channels toward the interaction chamber where droplet collision occurs 

along with cavitation and shear allowing to obtain fine emulsion (Maa & Hsu, 1999).  

The process parameters influence the final droplet size, and as an evidence, the 

controlled increase of microfluidizer pressure and number of passes is a determining 

factor (Jafari, He, & Bhandari, 2006; Zhang et al., 2015). When microfluidisation energy 

increased over moderate pressure (400-600 bar), an “over-processing” phenomenon, i.e. 

the droplet re-coalescence occurred (Jafari et al., 2007a). 

Therefore, in this section, the effect of microfluidizer pressure and number of passes 

were firstly studied in order to define adapted parameters for the production of 

limonene emulsions using A. senegal and A. seyal gums 

The limonene/Acacia gum emulsions were prepared at a fixed concentration of 

limonene (5 wt%) and a defined concentration for each gum using a microfluidizer at 
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room temperature (~25°C). The emulsification pressure was varied from 190 to 1310 

bar and the number of passes from 1 to 5. The concentrations of Acacia gums at 10 

wt% and 20 wt% for A. senegal and A. seyal, have been selected in regard to the 

emulsification ability of the two gum species towards limonene (data reported in the 

following article).  

As expected and described in literature (Jafari et al., 2007a; Zhang et al., 2015), the 

increase of pressure from 190 to 1310 bar using 1 pass induced a decrease of the droplet 

size (D4,3) for emulsions prepared with both Acacia gums (Figure IV.1). Whatever the 

pressure, the droplet size was inferior to 1 µm for A. senegal and never reached this 

values for A. seyal. Moreover, the droplet size decrease was more pronounced for A. 

senegal (31%) than A. seyal (21%). Similar decrease was reported for 10 wt% corn oil 

emulsion stabilized by 5 wt% of A. senegal gum: the droplet size decrease reaching 20% 

(from 0.82 to 0.65 µm) when the pressure of microfluidisation increased from 620 to 

1300 bar and with 3 passes (Bai, Huan, Li, & McClements, 2017). 

In microfluidisation process, the droplet disruption occurs when the local stresses on 

droplet become greater than the retaining forces for a sufficiently long time. The droplet 

size depends on the applied energy density (Ev) as the following equation: 

 

D4,3 = C.Ev-b    (1) 

 

where b is a constant affected by the flow condition in the dispersing volume, C is a 

constant depending on the efficiency of droplet disruption and Ev is the ratio of the 

power input on the volume flow rate of emulsions (Stang, Schuchmann, & Schubert, 

2001). Since the residence time in microfluidic interaction chamber was short and the 

input volume of emulsions was small, the energy density corresponded therefore to the 

pressure input (Jafari et al., 2007a). 
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Figure IV.1: Effect of pressure and passes number (1 pass (empty), 3 passes (filled) and 5 passes (gray)) 

on volume mean diameter D4,3 of 5 wt% limonene emulsions stabilized by 10 wt% A. senegal (○) and 20 

wt% A. seyal (□) at around 25°C. The estimated variation of D4,3 using equation 1 was represented in 

line for 1 pass. 

 

Our results showed that the decrease of D4,3 as a function of microfluidisation pressure 

followed a power law with the sum of squared deviations <0.01 and b values of -0.19 

and -0.12 for emulsions stabilized by A. senegal and A. seyal, respectively. The b value 

was higher for emulsions prepared with A. senegal than A. seyal which could be related 

to the difference of concentration used (10 and 20 wt% respectively) and thus viscosity 

between both gums. Indeed, the former was characterized by two times lower value 

than the latter in relation to the concentrations used. Bai et al. reported a b value of -

0.34 for emulsions of corn oil at 10 wt% produced by 5 wt% A. senegal containing 3.2% 

of protein (Bai et al., 2017). The authors observed difference in the value of b depending 

on the emulsifier type and highlighted that their values were lower (in absolute value) 

than previously reported for microfluidisation process (generally between I0.6I and 

I0.8I). The same trend was reported by Jafari et al. using maltodextrin and modified 

starch or by Qian et al. using β-lactoglobulin (Jafari et al., 2007a; Qian & McClements, 

2011). This could be explained by the nature of emulsifier, i.e. biopolymer which 
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adsorbs slowly in the case of large molecule retarding the breakup of droplet or favoring 

the re-coalescence (Bai et al., 2017). The higher absolute value of b found for emulsions 

produced by A. senegal compared to A. seyal suggested that microfluidisation 

treatment is more efficient for A. senegal. Our results confirm this as it was observed 

that the droplet size of coarse emulsions produced before microfluidisation by rotor-

stator for A. senegal at 10wt% and A. seyal at 20wt% was 7.19 ± 0.51 µm and 3.95 ± 

0.24 µm, respectively.  

Thus, it is important to note that, depending on the homogenizing system, the 

physicochemical properties and structural conformation of gums were the main factors 

determining the emulsion droplet size.  

A way to increase the process time and favor the droplet disruption is to increase the 

number of passes. Therefore, it was varied between 1 and 5 at the lowest and highest 

pressure (Figure IV.1). For emulsions produced with A. senegal, a D4,3 decrease was 

observed but was more pronounced at 190 (16%) than 1310 bar (12%). Similar impact 

was found for emulsions prepared with A. seyal, the effect of the number of passes 

being greater at 190 bar (10%) than at 1310 bar (4%). At the high pressure, the time 

process increased and could induce a re-coalescence of droplet explaining the weak effect 

observed for both gums as described by Jafari et al. for modified starch (Jafari et al., 

2007a). According to our results, the emulsification pressure showed a higher impact 

than the number of passes on D4,3 decrease. This greater effect of pressure on droplet 

was previously reported for 5% of Miglyol oil emulsions stabilized by 10% of Acacia 

gum (Zhang et al., 2015). Comparing the two gums, the droplet size of emulsions 

produced by A. seyal was always higher than those produced by A. senegal whatever 

the process conditions in relation with the poorer emulsification ability of the former. 

Moreover, the impact of pressure and number of passes was always more pronounced 

on A. senegal than A. seyal. Nevertheless, in the remaining experiments, the moderate 

microfluidisation conditions with one pass at 440 bar was used to study the effect of 

gum type and amount of high molar mass protein-rich AGPs on limonene emulsions.  
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Abstract 

The emulsifying properties of A. senegal and A. seyal were compared using limonene 

(5wt%) as dispersed phase and the microfluidisation technique. The concentration of 

each gum was varied and the ability to produce stable emulsions was measured through 

the droplet size and the delay time and creaming index. A. senegal suspensions allowed 

to produced emulsions with smaller droplet size and greater stability during storage 

than A. seyal. These results were related to the biochemical composition (protein and 

sugar contents) and structural conformation (molecular compactness, flexibility, 

accessibility of protein moiety) of each gum. The increase of apparent viscosity of 

Acacia gum dispersions had weak effect on droplet size but strongly impact the 

emulsion stability. To evidence the importance of high molar mass protein-rich AGPs 

in the emulsifying properties, reconstituted gums with varied amount of characterized 

fraction from A. senegal rich in these AGPs (0.9 to 29%) were tested at different 

concentrations (4 to 19.7%). The results showed that to produce emulsions with small 

droplet size and high emulsion stability, the high molar mass protein-rich AGPs 

fraction needed to be combined with high total concentration. As for the same protein 

content, the reconstituted gum allowed a greater emulsion stability compared to 

original A. senegal gum, it can thus be hypothesized that the aggregated form of the 

AGP plays a major role. This work allowed to anticipate the composition and structural 

conformation of formulated gums and to adapt it to targeted applications.   

 

Keywords: Acacia gum, AGPs aggregation, emulsifying properties, emulsions, 

microfluidics, limonene 
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1. Introduction  

Emulsions are extensively used in food, pharmaceutical, cosmetic and petroleum 

industries (Khan et al., 2011; McClements, 1999; Müller, Petersen, Hommoss, & 

Pardeike, 2007; Schramm, 1992). Emulsions are generally characterized by two phases 

or more which are immiscible with each other. They are classified into two types: oil-

in-water emulsions (O/W) with the oil droplets dispersed in an aqueous continuous 

phase, and water-in-oil emulsions (W/O) with the water droplets dispersed in an oil 

phase (McClements, 1999). In aroma field, the most common type is O/W emulsions 

that are mainly used after dilution for beverages flavoring or as a prior step in the 

encapsulation process. The most used and effective emulsifier for aroma compound 

emulsions is Acacia gum (AG, E414 EC) in relation to its ability to decrease interfacial 

tension, to form a protective film around emulsion droplet and to stabilize the liquid-

liquid interface through steric and electrostatic repulsions and hydration forces 

(Castellani, Guibert, et al., 2010; Lopez-Torrez, Nigen, Williams, Doco, & Sanchez, 

2015; Sanchez et al., 2018). This ability to stabilize the emulsion is crucial to avoid the 

break down and migration of droplet with time (Padala, Williams, & Phillips, 2009; 

Zhang et al., 2015; Jafari et al., 2007a) which induce coalescence, creaming or 

sedimentation but also flocculation and Ostwald ripening (Dalgleish, 1997; Rousseau, 

2000). The stability is dependent on the nature, structural conformation, concentration 

and viscosity of dispersing phase and the inter solubility between dispersed and 

dispersing phases. In contrast to other hydrocolloids, Acacia gum is characterized by 

high water solubility, low viscosity at concentrated gum dispersions and good surface 

properties (Eric Dickinson, 2009; McNamee, O’Riorda, & O’Sullivan, 1998). These 

properties can be related to the structure of Acacia gum which is constituted by 

different arabinogalactan proteins (AGP) more or less represented with different molar 

masses (between 2.8×105 and 2.5 ×106 g mol-1) and protein content (0.35 to 12.7%) 

(Akiyama, Eda, & Kato, 1984; Islam, Phillips, Sljivo, Snowden, & Williams, 1997; 

Mejia Tamayo et al., 2018; Randall, Phillips, & Williams, 1989; Renard, Lavenant-

Gourgeon, Ralet, & Sanchez, 2006). The chemical composition, structural and 
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physicochemical properties also vary according to the origin of gums. This is relevant 

to the two authorized gums, i.e. A. senegal and A. seyal, the former being richer in 

protein (2.7% of protein) than the latter (1% of protein) (Lopez-Torrez et al., 2015). 

Moreover, A. seyal gums have a less branched structure but a higher mean molar mass 

and compactness than A. senegal ones. (Lopez-Torrez et al., 2015).  

By hydrophobic interaction chromatography (HIC), Acacia gum is separated into three 

main fractions historically named arabinogalactan-peptide (AG or HIC-F1), 

arabinogalactan-protein (AGP or HIC-F2) and glycoprotein (GP or HIC-F3) which 

differ especially by their molar masses and protein content. The three main fractions 

are also present in A. seyal and as for A. senegal, the major component is the 

arabinogalactan fraction with low protein content. But in A. seyal the high molar mass 

AGP fraction is present in lower extent than in A. senegal (Siddig, Osman, Al-Assaf, 

Phillips, & Williams, 2005). Moreover, a low molar mass protein-rich component was 

found (fraction 4) in A. seyal which does not appear to be present in A. senegal. The 

distribution of protein is different in A. senegal and in A. seyal: in the latter, protein 

location is not mainly found in high molar mass fraction. Using ionic exchange 

chromatography, A. senegal is separated into two fractions called IEC-F1 and IEC-F2 

(Apolinar-Valiente et al. 2018). The characterization of IEC-F1 using size exclusion 

chromatography combined with laser light scattering (SEC-MALLS) showed that 

AGPs from IEC-F1 (Mw = 3.0×106 g.mol-1) corresponded to the high molar mass 

protein-rich AGPs from the classical HIC-F2 and HIC-F3 fractions, whereas IEC-F2 

(Mw = 5.2×105 g.mol-1) was mainly formed by HIC-F1 fraction. For IEC-F1, a high 

aggregation was observed which could be due to the high value of ratio 

arabinose/galactose (1.1), the low content of glucuronic acid group and the high amino 

acid content (115 mg.g-1). Authors suggested that the high aggregation of IEC-F1 and 

its flexibility could greatly improve emulsifying properties of Acacia gum.  

In this study, we are focusing on the impact of structural and composition of natural 

Acacia gums and high molar mass protein-rich AGPs on their surface activities in 

emulsifying process. Regarding the most studied gum, A. senegal, the interfacial model 
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called ‘wattle blossom model’ was proposed to explain the action of gums: it suggested 

that the more hydrophobic protein chain anchors at the interface and the protruding 

hydrophilic carbohydrate blocks attached to proteinaceous chain provide a strong steric 

barrier against flocculation and coalescence (Islam et al., 1997). It is generally accepted 

that the surface properties are provided by the protein-rich high molar mass AGPs 

(Nishino, Katayama, Sakata, Al-Assaf, & Phillips, 2012; Randall, Phillips, & Williams, 

1988, 1989). The consequence of the hydrolysis of A. senegal using a mixture of 

proteases was the loss of emulsifying properties according to the significant decrease of 

protein-rich high molar mass AGPs (Chikamai, Banks, Anderson, & Weiping, 1996). 

On the other hand, in order to increase the amount of high molar mass AGPs (i.e. 

aggregates), the production of ‘SUPER GUMTM’ was done using controlled Maillard 

reaction on A. senegal. The average molar mass of Acacia gum increased from about 

4.2 x 105 g.mol-1 to about 20 x 105 g.mol-1 suggesting that the maturation process 

induced the aggregation of AGPs (Al-Assaf, Phillips, Aoki, & Sasaki, 2007). The use of 

‘SUPER GUMTM’ allowed to produce emulsions characterized by small droplet size 

and better stability (Al-Assaf et al., 2007). This reinforced the assumption that 

emulsifying properties of gums were greatly influenced by the high molar mass protein-

rich AGPs (Al-Assaf et al., 2007; Aoki et al., 2007; Castellani, Guibert, et al., 2010; 

Xiang et al., 2015). The efficiency of different gum fractions of A. senegal to produce 

and stabilize citrus oil emulsions was studied and the comparison was done on equal 

nitrogen content (Ray, Bird, Iacobucci, & Clark, 1995). The fraction corresponding to 

10.7% of total gum, containing AGPs with mean molar mass of 6.5 x 106 g.mol-1 and a 

0.91% of nitrogen content equivalent to 6% of protein produced emulsions with similar 

droplet size as the whole gum with 2.2% protein. The use of other fractions, with low 

mean molar mass of 0.034 x 105 g.mol-1 and 2.1% protein, allowed to produce lower 

emulsion droplet size. However, this fraction induced a high instability of emulsion. 

This study has demonstrated that for comparable protein content, the fractions can 

produce either good or poor emulsions depending on their composition.  
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The lowest emulsifying properties of A. seyal is generally reported to be linked with its 

lowest protein content. In addition, the compact conformation of A. seyal makes 

difficult the accessibility of the protein backbone to the interface. Indeed, the high 

molar mass protein-rich AGPs of A. seyal were difficultly hydrolyzed by protease 

(Flindt, Al-Assaf, Phillips, & Williams, 2005).  

Although it was clear that protein content alone was not enough to predict the 

efficiency of Acacia gum (Dickinson 1991) and that the high molar mass protein-rich 

AGPs played a crucial role, there are still some confusions. Indeed, Padala et al. 

reported that protein rich AGPs of Acacia gum adsorbed onto limonene oil droplets 

with no significant molar mass dependence (Padala et al., 2009). Aggregation process 

induced by gums maturation was indirectly assumed to play an important role in 

emulsifying properties of Acacia gum. However, the effect of AGP aggregates naturally 

present in gums on the emulsifying properties is not clearly demonstrated yet.  

The purpose of this study was to understand the effect of natural high molar mass 

protein-rich AGPs content on the formation and stability of limonene based 

emulsification. To reach this objective, reconstituted gums with controlled high molar 

mass protein-rich AGPs concentrations were formulated by mixing two selected 

fractions: one containing exclusively high molar mass AGPs rich in protein and the 

other mainly low molar mass AGPs poor in protein. This approach allows to overcome 

the natural variability of gums and to clearly define the impact of each type of AGPs. 

In a first stage, the emulsifying properties of A. seyal and A. senegal have been 

compared varying the concentration but bearing in mind that the difference between 

both gums was not limited to their protein and high molar mass protein-rich AGPs 

content. The conditions of emulsification were selected to easily evidence both 

emulsifier ability and destabilization phenomena. Pure limonene was used as dispersed 

phase and moderated microfluidization conditions were applied.  
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2. Materials and methods 

2.1. Materials 

Acacia seyal (A. seyal, lot n° OF110724) and Acacia senegal (A. senegal, lot n° 

OF152413) gum powders were provided by ALLAND & ROBERT Company-Natural 

and organic gums (Port mort, France). The same purification process with elimination 

of insoluble materials, pasteurization and spray drying were applied on both gums. 

Their biochemical composition was previously characterized showing a higher protein 

content in A. senegal (2.2%) than A. seyal (0.7%) (Lopez-Torrez et al., 2015; Mejia 

Tamayo et al., 2018). 

The reconstituted gums were formulated by mixing two selected fractions of A. senegal 

gum at different rates: the first called HIC-F1 obtained via Hydrophobic Interaction 

Chromatography (HIC) according to the classical fractionation method (Randall et al., 

1989; Renard, Lavenant-Gourgeon, Ralet, & Sanchez, 2006) and the second named 

IEC-F1 obtained by Ion Exchange Chromatography (IEC) recently characterized 

(Apolinar-Valiente et al. 2018, submitted article). HIC-F1 showing a low protein 

content (0.4% of protein) is mainly composed by low molar mass AGPs while IEC-F1 

contains only high molar mass protein-rich (11.5% of protein) AGPs (Mejia Tamayo 

et al., 2018; Apolinar-Valiente et al. 2018). The composition and structural properties 

of these two fractions, A. senegal and A. seyal are presented in Supplementary Table 

IV.1. 

Acetate buffer (10 mM, pH 5) was prepared with anhydrous glacial acetic acid and 

sodium acetate trihydrate powder provided by Merck KGaA (Darmstadt, Germany) 

and Fluka-Sigma Aldrich (Saint-Quentin Fallavier, France), respectively. 

Limonene (97% of purity) used as oil phase for emulsion was purchased from Fluka-

Sigma Aldrich (Saint-Quentin Fallavier, France). Glycerol (99% purity) used to adjust 

the viscosity of gums dispersions was provided by Acros Organics (Ilkirch, France). 
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2.2. Preparation of the dispersions of Acacia gum and the mixture of fractions  

The Acacia gums and fractions powders were dispersed in 10 mM acetate buffer (pH 

5) and stirred during 8h at room temperature to ensure the total hydration. The 

concentrations of gums were based on wet weight of powder and varied between 0.5 

and 20 wt% for A. senegal, and between 5 and 25 wt% for A seyal. The moisture 

content of gum was 12% and 10% for A. senegal and A. seyal, respectively. Before use, 

all gum dispersions were centrifuged at 5 000 rpm and 25°C during 20 minutes to 

eliminate insoluble matters. 

The influence of apparent viscosity of the Acacia gum dispersions on the formation and 

stability of limonene emulsions was investigated by adding glycerol to A. seyal 

dispersions. For this, 8 wt% of glycerol was added to 20 wt% A. seyal dispersion to 

reach the comparable viscosity of A. senegal dispersion at 20 wt%.  

The reconstituted A. senegal gums were formulated according to an experimental design 

and resulted from the mixing of HIC-F1 and IEC-F1 fractions: the total concentration 

varied between 1.3 to 19.7 wt% with IEC-F1 content ranging from 0.9 to 29.1 wt% of 

the total concentration. 

2.3. Methods 

2.3.1. Apparent viscosity of Acacia gum dispersions 

The apparent viscosity of Acacia gum dispersions without and with glycerol was 

measured at 25°C using a rotating stress controlled rheometer (RheoCompass MCR 

702, Anton Paar, Les Ulis, France) equipped with a sanded cylindrical geometry (cup 

diameter: 22mm; bob diameter 19.997 mm). The apparent viscosity of samples was 

measured at increasing shear rate from 0.1 to 1000 s-1. For all dispersions, the flow 

curves showed a Newtonian behavior with a plateau at high shear rate (data not 

shown). The apparent viscosity obtained at 100 s-1 was used to compare samples. 
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2.3.2. Preparation of limonene emulsions 

The oil in water emulsions were prepared by adding 5 wt% of limonene to 95 wt% of 

Acacia gum dispersions (original or reconstituted). Coarse emulsions were preliminarily 

prepared using rotor/stator homogenizer (Silverson L4RT, Evry, France) equipped 

with a square hole high shear screen stator at 7500 rpm for 5 min at room temperature 

(~25°C). Afterwards, the coarse emulsions were homogenized using a microfluidizer 

with a F12Y diamond interaction chamber (LM20, Microfluidics Corporation, MA, 

USA) using a pressure of 440 bars and 1 pass. In order to control the temperature 

during the emulsification step, the outlet coil was immersed in a water bath maintained 

at 25°C. All emulsions were prepared in triplicate.  

2.3.3. Emulsion droplet size measurements 

The mean droplet diameter and distribution of emulsions were determined by laser 

light scattering using a Mastersizer 2000 (Malvern Instrument, Orsay, France) with an 

obscuration of ~10%. Refractive index of 1.33 for water and 1.47 for limonene were 

used. For all emulsions, three cycles of measurements were performed 10 minutes after 

the emulsification step. The mean droplet diameter was expressed as the volume mean 

diameter (D4,3): 

 

D4,3 = �nidi4 /�nidi3 

 

where ni is the number of droplets of diameter di. 

2.3.4. Emulsion stability measurements  

The colloidal stability of emulsions was monitored using a vertical scan analyzer 

Turbiscan Tower (Formulaction, Toulouse, France) equipped with a pulsed near 

infrared light source (λ = 880 nm) and two synchronous detectors, a transmission (T) 

and a backscattering (BS) detectors. 15 ml emulsion sample (equivalent to ~3.5 cm 
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height) were loaded into cylindrical glass tubes 15 minutes after emulsification and 

scanned throughout its entire height. The transmittance and backscattering were 

recorded every 1 min 50 sec during the first 24h before recording one measurement at 

days 2, 3, 7, 15, 24 and 30 during the storage of emulsions at 25°C. Each sample was 

analyzed in duplicate. The Turbiscan allows to monitor the emulsion stability in time 

and space and to characterize the emulsion instability phenomena such as creaming, 

sedimentation and coalescence.  

In order to compare all samples, the creaming index was calculated using the following 

equation:  

 

Creaming index (%) = Hs/Ht *100 

 

Where Hs is the height of the serum layer determined at the apex of ∆BS at the bottom 

of sample and Ht is the total height of emulsion. The backscattering profiles were 

plotted in delta mode in order to see the variation of the intensity of BS in comparison 

to the first measurement. 

The time for which the destabilization of emulsions reached 10% called “delay time” 

was evaluated. It corresponds to the time when the backscattering at bottom zone 

decreases from 10% of its height (Castel, Rubiolo, & Carrara, 2017). 

2.3.5. Experimental design 

Response surface methodology was used to evaluate the effect of two independent 

variables on the droplet size and the stability of emulsions. The first independent 

variable was the amount of IEC-F1 (x1, 0.9 – 29.1 % of total concentration) and the 

second was the total concentration of the A. senegal reconstituted gums resulting from 

the mixing of fractions HIC-F1 and IEC-F1 (x2, 1.3 – 19.7 wt%). The experiments were 

planned using central composite design (CCD) according to a 22 factorial plan with 

star points, central point. In Table IV.2, the coded and uncoded independent variables 

were listed. Eight experimental setting and four central points were carried out 

randomly. The repeatability of the emulsification method was estimated by repeating 
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the center points (4 times). The experimental design and data analysis were generated 

using Statistica version 10 (Paris, France). A second-order polynomial equation was 

constructed to estimate the responses using the following equation: 

 

y = b0 +b1x1 + b2x2 + b11x12 + b22x22 + b12x1x2 

 

where y is the estimated dependent variable, 𝑏𝑏0 a constant, 𝑏𝑏𝑖𝑖 the linear effect 

coefficient, 𝑏𝑏𝑖𝑖𝑖𝑖 the quadratic effect coefficient, 𝑏𝑏𝑖𝑖𝑖𝑖 the interaction coefficient for the 

regression equation, 𝑥𝑥1, 𝑥𝑥2 the independent variables (Montgomery, 2011). The 

adequacy of the models was evaluated by lack of fit, coefficient of determination (R2) 

and adjusted R2 (Adj-R2) analysis.  

 

3. Results and discussion 

3.1. Effect of concentration and gum type on emulsion droplet size and 

stability 

The emulsification property of Acacia gums was studied by producing emulsions with 

limonene (5 wt%) and A. senegal (0.5 to 20 wt%) and A. seyal (5 to 25 wt%) gums 

using a microfluidizer operating at 440 bar and 1 pass.  

All emulsions, even those produced at the lowest concentrations of Acacia gums, 

showed a monomodal droplet size distribution with an index of polydispersity close to 

1 (data not shown). As expected, the D4,3 decreased with the increase of Acacia gum 

concentration for both gum emulsions (Figure IV.2.A). Two phases can be distinguished 

in the evolution of D4,3 according to the concentration with a strong decrease of D4,3 

before reaching a quasi-constant value. For the emulsions produced with A. senegal, 

the D4,3 decreased from 2.2 µm to 0.7 µm (i.e. decrease of 68%) for concentration 

ranging from 1 to 5 wt% before reaching a constant D4,3 value around 0.65 µm for the 
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upper concentrations. For the emulsions stabilized by A. seyal, D4,3 strongly decreased 

from 3.5 µm to 1.5 µm (i.e. decrease of 57%) for concentrations ranging from 5 wt% to 

20 wt% before remaining unchanged (D4,3 ∼ 1.3 µm) for the upper concentrations. As 

previously stated for emulsions produced with different emulsifiers using microfluidizer, 

the two phases are related to different operating parameters: (i) for the first phase 

characterized by the strong D4,3 decrease, the major parameter is the initial emulsifier 

concentration which is needed to cover the newly formed droplets and prevent their 

coalescence (ii) whereas for the second phase, the major parameter acting on the droplet 

size is the energy input provided by microfluidisation (Bai et al., 2017; Charoen et al., 

2011; Tcholakova, Denkov, & Banner, 2004; Tcholakova, Denkov, Sidzhakova, Ivanov, 

& Campbell, 2003). This last hypothesis was clearly confirmed by complementary 

essays which showed the decrease of D4,3 with the pressure increase for emulsions 

prepared with Acacia gum at concentrations of 10 wt% for A. senegal and 20 wt% for 

A. seyal (data not shown).  

The Acacia gum concentration between these two phases can be viewed as a critical 

concentration that was approximated to 2.3 wt% for A. senegal and 14.8 wt% for A. 

seyal gum (Figure IV.2.A). It was previously observed that the critical concentration 

varied depending on both emulsifier properties (surface activity, molar mass, structural 

configuration) and disperse phase properties (nature, polarity and viscosity) (Bai et al., 

2017; Charoen et al., 2011; Ozturk, Argin, Ozilgen, & McClements, 2015). It was found 

largely inferior, i.e 0.1% for emulsions of Acacia gum using rice bran oil (5%) as 

dispersed phase and stronger operating conditions (642 bar with 3 passes) and without 

specification on the composition of Acacia gum that could influence the formation of 

oil droplets (Charoen et al., 2011). For emulsions of 10 wt% corn oil obtained at 900 

bar and 3 passes, a concentration of 3 wt% of A. senegal demarked the two regions 

(Bai et al., 2017). The critical concentrations found in our study were close or higher 

compared to literature, that can be explained by (i) the unfavorable process condition 

used (440 bar and 1 pass), (ii) the weak viscosity of limonene compared to oil (0.89 

mPa.s versus 50 mPa.s, respectively), (iii) the ratio dispersed phase and gum (iv) the 
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biochemical composition of Acacia gums, and especially the protein content, that could 

differ. 

A.       B. 

 

C.       D. 

 

Figure IV.2: Effect of A. senegal (blue) and A. seyal (orange) and protein concentration on the 
characteristics of 5 wt% limonene emulsions. The emulsion droplet size was expressed as volume mean 
diameter (D4,3) (A and B) and the critical concentrations (CC) of gum and protein were estimated. The 
emulsion colloidal stability of emulsions was described by the delay time (C) at 10% of destabilization 
of emulsions and the creaming index (CI) at 24h of storage (D). Boxes on top of the histogram denotes 
the protein content within each emulsion (C and D). 
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It was especially showed that the viscosity of the disperse phase is crucial for the 

emulsification efficiency. The droplet breakage tended to be more difficult in 

microfluidizer device when the oil viscosity is too high because the time in the 

disruption zone is insufficient to the droplet deformation (Qian & McClements, 2011; 

Schultz et al., 2004; Walstra, 1993). In contrast when the viscosity is too low as for 

limonene, it can be suggested that the residence time is sufficiently long to favor the 

deformation and disruption but the risk of re-coalescence could increase (Qian & 

McClements, 2011).  

Whatever the Acacia gum concentration, the D4,3 of emulsions produced by A. senegal 

were always lower than the ones produced by A. seyal. It is well demonstrated that the 

surface activity properties of Acacia gums are closely related to their protein-rich AGPs 

that preferentially adsorbed at interface (Castellani, Al-Assaf, Axelos, Phillips, & 

Anton, 2010; E. Dickinson, Murray, Stainsby, & Anderson, 1988; Randall et al., 1988; 

Ray et al., 1995). Dickinson et al. also evidenced a good correlation between the Acacia 

gum protein content and its emulsifying properties but presumed that other parameters 

influenced too (E. Dickinson, 2003; E. Dickinson et al., 1988). By reporting the droplet 

size as a function of the calculated protein rate (Figure IV.2.B), the estimated critical 

concentration of protein was higher for A. seyal (0.11 wt%) than for A. senegal 

(0.05wt%). Hence the protein content was not sufficient to explain the differences 

observed between the surface activity properties of both Acacia gums. Some differences 

in the polarity and conformation between the AGPs of both gums could also be 

advanced. Indeed, the two gums differed by their polarity both in solution or on the 

surface of structured film, A. senegal being characterized by a more hydrophobic surface 

than A. seyal (Aphibanthammakit et al., 2018; Mejia Tamayo et al., 2018). Moreover, 

the high molar mass protein-rich AGPs from A. senegal gum adopted a more extended 

and flexible conformation than those of A. seyal (Lopez-Torrez et al., 2015; Mejia 

Tamayo et al., 2018). Therefore, the protein backbone of AGPs from A. senegal was 

found to be more accessible to protease, and then to the bulk environment, than that 

of A. seyal  (Flindt et al., 2005). Recently, it was reported that the critical 



Chapter 4 : Emulsifying properties of Acacia gums and involvement of high molar mass 
protein-rich AGPs 

 

127 
 

concentration of protein decreased with increasingly exposed hydrophobicity due to an 

increase of the adsorption rate (Delahaije, Gruppen, Giuseppin, & Wierenga, 2015). 

This behavior is in well accordance with the lower critical concentration found for A. 

senegal than for A. seyal. Moreover, AGPs were not only composed by a protein core 

but also by some carbohydrate blocks covalently linked to the protein backbone. The 

carbohydrate blocks contained especially some arabinose and glucuronic acids in 

various amount according to the Acacia gum type. A. seyal gum is richer in arabinose 

and poorer in glucuronic acid as compared to A. senegal gum. As the arabinose 

promotes intra and intermolecular hydrogen bonding (Chalikian, 1998) and the 

glucuronic acid provides negative charge, their relative quantity in both gums impacted 

the aggregate form of AGPs in suspension but also the flocculation/coalescence 

phenomena between droplets during emulsification process. Then the bigger droplet 

size obtained with A. seyal could also be explained by an increase of 

flocculation/coalescence between droplets in relation to the higher arabinose and lower 

glucuronic acid contents. It could be also hypothesized that the higher presence of 

aggregated AGPs in A. senegal promoted the emulsifying activity.  

In addition to the study of droplet size after emulsification, the colloidal stability of 

emulsions was investigated by measuring the changes in backscattering (BS) intensity 

with time at 25°C using a Turbiscan Tower. BS intensity is closely related to the 

number and diameter of droplets in emulsions. The ∆BS according to time of some 

emulsions (i.e. emulsions produced with 1, 5 and 20 wt% of A. senegal and 5, 10 and 

20 wt% of A. seyal) are shown in supplementary data (Supplementary figure IV.1). 

Whatever the concentrations of both Acacia gums used, all emulsions were unstable 

following the same behavior. Initially, BS in the middle of the samples decreased 

suggesting an increase in droplet sizes due to flocculation and/or coalescence 

phenomena. With time, the decrease of BS in the bottom of emulsions was more 

pronounced and accompanied by its increase in the top of the samples. Hence, the 

former phenomenon reflected a clarification process while the BS increase in the top of 

emulsion corresponded to the increase of droplet concentration due to creaming. The 
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influence of both gums (variety and concentration) on the destabilization of limonene 

– Acacia gum emulsions were further studied and compared by determining the delay 

time (Figure IV.2.C) and calculating the creaming index (CI) at 24 hours of storage at 

25°C (Figure IV.2.D). The increase of Acacia gum concentration improved the stability 

of emulsions by both delaying the instability mechanism and reducing the creaming 

index (CI). The delay time increased from 17 to 295 minutes and 14 to 164 minutes for 

concentrations ranging from 1 to 20 wt% for A. senegal and 5 to 20 wt% for A. seyal 

(Figure IV.2.C). In the same way, the CI values decreased from 19.9 to 4.2 % and 23.4 

to 7.4 % for concentrations ranging from 1 to 20 wt% for A. senegal and 5 to 20 wt% 

for A. seyal (Figure IV.2.D). As expected for a same concentration of gums, the delay 

time for A. senegal was always higher than for A. seyal and the CI was always lower 

highlighting the best colloidal stability properties of A. senegal gum. These results can 

be related to several parameters. The bigger size of droplets combined to the low 

viscosity of A. seyal dispersion favoring the move of droplets could intensify the 

creaming rate compared to the emulsions produced by A. senegal. Moreover, A. seyal 

contains more arabinose groups (Supplementary Table IV.1) which are implied in 

hydrogen bounding and could induce new liaisons between droplets favoring the 

emulsion instability. Moreover, the difference in stability between emulsion produced 

by both gums could be amplified by the higher uronic acid content over neutral sugars 

of A. senegal (ratio of 0.23) compared to A. seyal (ratio of 0.16 ) (Mejia Tamayo et al., 

2018). Then the highest negative charge of A. senegal carbohydrate part could favor 

the electrical stability of emulsion through electrostatic repulsions compared to A. 

seyal. Moreover, although the similar effect of two gums on lowering interfacial tension, 

A. senegal gum reached faster the maximum value of viscoelastic modulus than A. 

seyal. This indicated a greater ability to form a protecting film (Aphibanthammakit 

PhD thesis Chapter 3, 2018). Therefore, this could also explain the weaker 

flocculation/coalescence observed during the storage of emulsion with A. senegal gum.  

The value of delay time remained weak compared to the value of 168 h found for an 

emulsion prepared with 20 wt% Acacia gum and corn oil (10 wt%) but obtained by 
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ultrasound (Castel et al., 2017). In the same manner, the CI was lower than the value 

observed in this study for limonene emulsion produced by A. senegal. It is obvious that 

the disruption process of droplet was different giving initial droplet size of corn oil (546 

nm) lower than the one found in our conditions suggesting a link between stability and 

droplet size. However, the polarity and viscosity of the two oil phases strongly differ, 

corn oil being more viscous (52.3 mPa.s at 23.9°C for corn oil against 0.89 mPa.s for 

limonene at 25°C) and more apolar than limonene which could induce the greater 

quality of emulsions (Clará, Gómez Marigliano, Campos, & Sólimo, 2010; Noureddini, 

Teoh, & Clements, 1992).  

As already discussed, the two gums differed in viscosity, i.e. A. senegal being more 

viscous than A. seyal. According to the Stoke’s law, the creaming rate depends on the 

droplet size but also on the viscosity of the continuous phase. By increasing the 

viscosity, the droplet velocity decreases and the stability of emulsion against 

gravitational separation increases (McClements, 1999; Risch & Reineccius, 1988; 

Walstra, 1993). To confirm the importance of gum viscosity on colloidal stability, the 

viscosity of A. seyal solution at 20 wt% was adjusted to that of A. senegal at 20 wt% 

by the addition of glycerol (8 wt%) before the preparation of limonene-gum emulsion 

and the characterization of its droplet size and colloidal stability. While the droplet 

size was unchanged compared to the emulsion produced by A. seyal without glycerol, 

the colloidal stability was improved in presence of glycerol (Table IV.1). Indeed, the 

delay time and CI of emulsion prepared with A. seyal containing glycerol were 

respectively around 2 times higher and 1.7 times lower than those of emulsions prepared 

with only A. seyal. Moreover, the colloidal stability was found to be similar to that of 

emulsions prepared with A. senegal gum at 20 wt% presenting the same apparent 

viscosity. From this result, it could be concluded that at the high concentration of 

Acacia gum, the quantity of AGPs and protein was in sufficient amount to cover the 

surface of droplet and the increase of viscosity of continuous phase did not affect the 

droplet size but it played a crucial role in the colloidal stability of emulsions. The 

increase of bulk viscosity is known to favor the stabilization by steric effect (Jin et al., 
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2017). An increase of the stability of orange oil emulsion has also been observed by 

adding glycerol to Acacia gum (Mirhosseini, Tan, & Taherian, 2008). In this case, the 

glycerol addition induced pH changes and increase of the negatively charged ζ-potential 

and the repulsive forces. In addition to viscosity increase, the stabilization effect of 

glycerol could be also explained by its contribution to the charge of the A. seyal 

suspension. It is worth noting that desionised water was used to prepare gum dispersion 

in the study reported by Mirhosseini et al. while we used acetate buffer at 10 mM and 

pH 5. In their case, the pH increased from 4.0 to 4.4 and the absolute value of ζ-

potential from 25.6 to 28.9 mV with the glycerol addition of 1.5 wt%. Therefore, as our 

suspension was prepared in buffer, the change of ζ-potential should be less pronounced 

than the one observed by Mirhosseini et al. To confirm this hypothesis, the effect of 

glycerol on pH and ζ-potential need to be investigated. 

 

Table IV.1: Volume mean diameter (D4,3) and stability expressed in delay time and CI of 5 wt% 
limonene emulsions as a function of apparent viscosity of Acacia gum aqueous phase. 

Aqueous phase Glycerol 
concentration 
(wt%) 

Apparent 
viscosity at 
100 s-1 (mPa.s) 

D4,3 (µm) Delay time 
(min) 

CI (%) 

A. seyal at 20 wt% 0 29.4±1.2 1.30±0.13 164±15 7.4±0.7 
A. seyal at 20 wt%  8 39.6±0.6 1.34±0.005 339±84 4.4±0.1 
A. senegal at 20 wt% 0 41.0±0.4 0.66±0.03 295±13 4.3±0.7 

 

In short, the better emulsifying properties of A. senegal in terms of droplet size and 

colloidal stability was confirmed. The increase of concentrations and by consequence of 

the protein content of A. seyal even going beyond the critical concentration of A. 

senegal showed low effect suggesting that the structural conformation of AGPs in A. 

senegal gums is a major factor defining emulsion droplet size. The assessment of Acacia 

gums dilatational rheology at 25°C using 5wt% of gums showed that A. senegal was 

able to reach faster the maximum value of viscoelastic modulus at limonene surface 

compared to A. seyal (Aphibanthammakit PhD thesis Chapter 3, 2018). Therefore, the 

smaller emulsion droplet size produced by A. senegal could be inter alia in relation to 

its greater interfacial properties than A. seyal.  
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3.2.  Effect of high molar masses protein-rich AGPs on emulsion droplet size 

and stability 

The high molar mass protein-rich AGPs are generally accepted to be mainly responsible 

of the emulsifying properties of Acacia gum. The analysis of emulsion continuous phase 

using gel permeation chromatography (GPC) showed that only a small quantity of 

AGPs which corresponded to the high molar mass protein-rich AGPs were adsorbed to 

the oil droplet interface (Flindt et al., 2005; Randall et al., 1988). Furthermore, a linear 

relationship between emulsion stability and both molar mass of A. senegal gum and 

high molar mass AGPs content was previously reported (Nishino et al., 2012). However, 

these studies indirectly determined the relationship between the quantity of AGPs and 

the emulsifying properties of Acacia gums through the desorption of interfacial 

molecules which could induce error during experimentation (Katayama et al., 2006; 

Mikkonen, Xu, Berton-Carabin, & Schroën, 2016; Randall et al., 1988). Additionally, 

when the comparison of high molar mass protein-rich AGPs content was done, Acacia 

gums from different origins (batches) were used with as a consequence potential 

differences in their biochemical and structural properties, and therefore in their 

emulsifying properties (Nishino et al., 2012).  

Herein the role of high molar mass protein-rich AGPs content and conformation in 

emulsifying properties of A. senegal gum was investigated using a reconstituted gum 

formed by mixing two fractions (IEC-F1 and HIC-F1) obtained from the same batch 

of Acacia senegal gum. These two fractions differed totally by their protein and high 

molar mass protein-rich AGPs contents. HIC-F1 was characterized by a low protein 

content (0.45%) and a mean molar mass of 3.5 × 105 g.mol-1 ; while, IEC-F1 that 

contained only high molar mass protein-rich AGPs presented a protein content of 11.5% 

and a mean molar mass of 3.0 × 106 g.mol-1. Moreover, this fraction is rich in aggregates. 

Indeed, it was reported by dynamic light scattering measurements that IEC-F1 presents 

three molecular populations of AGPs with RH around 17, 75 and 250 nm confirming 

the aggregation behavior of high molar mass protein-rich AGPs (Apolinar-Valiente et 

al., 2018, submitted article). By varying the proportion and the amount of these two 
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fractions in the reconstituted gum, it was possible to control and modify both the 

protein and high molar mass protein-rich AGPs content of this newly formed gum.  

 

Table IV.2: Table of ANOVA for the experimental variables as a linear, quadratic and interaction terms 

of each response variable and corresponding coefficients for the predictive models. 

𝑏𝑏0 : a constant. 𝑏𝑏𝑖𝑖: the estimated linear coefficient of the quadratic polynomial equations. 𝑏𝑏𝑖𝑖𝑖𝑖: the 
estimated quadratic coefficient of the quadratic polynomial equations. 𝑏𝑏𝑖𝑖𝑖𝑖: the estimated interactive 
coefficient of the quadratic polynomial equations. 1: FA content; 2: total concentration of gum. * 
stands for a significant value. 

 

To avoid numerous experiments by changing one parameter while the others are kept 

constant and as the amount of original matter was limited, a response surface 

methodology was used to study the effect of IEC-F1 content (0.9 – 29.1 % of total 

concentration) and total concentration (IEC-F1 and HIC-F1 mixture varying between 

1.3 – 19.7 wt%) on droplet size (D4,3) and emulsion colloidal stability (delay time and 

CI). The randomized runs of the experiments and experimental responses were 

presented in Supplementary table IV.2. The second-order polynomial response surface 

model was carried out on the values of each measured variable (Supplementary table 

IV.2). Analysis of variance (ANOVA) was used in order to determine the statistical 

significance of regression coefficients and for the fitting of the model. Table IV.2 showed 

the estimated coefficients of regression of the model for the response variables and the 

Source  
 D4,3 (µm)  Delay time (min)  CI (%) 
 Coefficient p-value  Coefficient  p-value   Coefficient  p-value 

𝑏𝑏0  1.960* <0.0001  96.610 0.0701  7.036* 0.0033 
Linear           
   𝑏𝑏1  -0.045* <0.0001  -8.206 0.0628  0.107 0.2076 
   𝑏𝑏2  -0.125* <0.0001  -0.917 0.8515  -0.453* 0.0233 
Quadratic          
   𝑏𝑏11  0.0006* 0.00029  0.102 0.2723  -0.0027 0.2337 
   𝑏𝑏22  0.0033* <0.0001  0.657* 0.03506  0.01516* 0.037 
Interaction           
   𝑏𝑏12  0.0012* 0.0003  1.200* 0.00388  -0.005 0.1015 
Lack of fit   0.00036*   0.5178   0.4261 
𝑅𝑅2  0.9307   0.995   0.931  
Adj-𝑅𝑅2  0.873   0.990   0.874  
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corresponding coefficients of determination (R2) and adj-R2. A significant lack of fit (p-

Value < 0.05) indicates the failure of the model representing the experimental data and 

the response predictor is discarded (Koocheki, Taherian, Razavi, & Bostan, 2009). If 

the response surface model fitted for the response variable, it indicated that the variable 

was assessed as a function of linear, quadratic and interactions effects of IEC-F1 content 

and fraction mixture content. As specified by Montgomery (2001), a model is well fitted 

to the experimental data if it presents a significant regression and a non-significant lack 

of fit (Montgomery (2001)). 

Despite a relative high coefficient of determination (R2) and adjusted R2 (adj-R2), a 

significant lack of fit (p value < 0.05) was observed for the D4,3 variable indicating that 

the proposed model is not adapted to predict the experimental values as illustrated by 

the graphic comparison between predicted and experimental value (Supplementary 

figure IV.2). As the coefficients of regression for each variable were characterized by 

significant p-value, it was not possible to propose a reduced model. In order to achieve 

a more adequate model, complementary experiments inducing emulsions with larger 

droplet size are specifically needed. Additionally, it can be expected that the variability 

of D4,3 was higher when large droplet was obtained, i.e. for low content of IEC-F1 and 

low total concentration. Indeed, if the repeatability of D4,3 was good (variation 

coefficient of 1.22%), it has been determined for the central points (15% of x1 and 10.5 

wt% of x2) and reflected only the variation for small droplet size.  

By contrast, the two others variables used to characterize the stability (CI and delay 

time) were well predicted by the regressions models with a non-significant lack of fit (p 

value < 0.05) and high R2 and adj-R2 values (Table IV.2). Despite the non-significant 

p-value for some variables, they were kept in the model. The adequacy of the 

polynomial regression model was confirmed since the experimental results and predicted 

values were in good agreement (Supplementary figure IV.2). The model allowed to 

identify the major effect of each independent variable on the stability of 5 wt% limonene 

emulsions.  
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Regarding the regression coefficients of the model of delay time (Table IV.2), the only 

significant p-values were found for quadratic effect of total concentration and 

interaction effect. This latter was the major effect on delay time. In contrast, the 

ANOVA study of regression coefficients of CI indicated that linear and quadratic effects 

of total concentration were significant and that the major effect was induced by the 

linear effect. This highlighted the importance of total concentration for both stability 

parameters. However, the delay time showing the fast loss of colloidal stability was 

affected by protein concentration through the interaction effect while for CI measured 

after 24h of storage, it was the total concentration which played the major role on 

variation values. 

In order to evidence the relationship between IEC-F1 content and total fraction 

concentration in the mixture on the different selected variables (D4,3, delay time and 

CI), the experimental values are represented in Figure IV.3 using the easiest 

optimization technique called “one variable at a time” or using the surface response 

(Figure IV.4). Figure IV.3.A clearly showed that D4,3 decreased with the increase of 

IEC-F1 content, i.e. the high molar mass protein-rich AGPs content. Moreover, the 

effect of IEC-F1 content on D4,3 was greater in the emulsions with the lowest total 

concentration, i.e. for total concentration of 4 wt% the reduction of droplet size was 

around 49 % compared to total concentration of 17 wt% with 22% decrease of D4,3. 

This result demonstrated the combined effect between IEC-F1 content and total gum 

concentration on droplet size. High IEC-F1 content was especially useful to decrease 

the emulsion droplet size when the emulsions are characterized by low Acacia gum 

concentrations. This confirmed that high molar mass protein-rich AGPs adsorbed 

preferentially on droplet surface allowing to stabilize the newly formed droplet and 

preventing against re-coalescence during emulsification process. This could be due to 

the high protein content and the greater molecular flexibility of AGPs of IEC-F1 which 

favored their location at the droplet interface (Apolinar-Valiente et al., 2018, submitted 

article).  
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A.                                                       B. 

C. 

 
Figure IV.3: Effect of IEC-F1 content and concentration of reconstituted gums (4 wt% (○), 10.5 wt%(

) and 17wt% (□)) on volume mean diameter D4,3  (A), delay time (B) and CI (C) of 5wt% limonene 

emulsions. The lines were drawn to guide the eyes. 

 

The delay time was affected by total concentration and IEC-F1 content. At high total 

concentration, the increase of delay time was more pronounced (Figure IV.3.B). The 

slight decrease of total concentration, for example from 22 to 15 wt%, needed to be 

compensated by a strong increase of IEC-F1 content, from 15 to 35% to obtain the 
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same delay time (Figure IV.4.A). This compensation was less pronounced at the high 

total concentration. For a given total concentration, the CI slightly varied with the 

IEC-F1 content (Figure IV.3.C). However, the increase of total concentration was 

prevalent for the decrease of CI. To decrease the CI, a sufficient content of IEC-F1 is 

needed (> 20%) but even if the content of IEC-F1 is high, the total concentration 

should be enough (>10 wt%) to avoid strong variation of CI (Figure IV.4.B). These 

results showed that to avoid coalescence of droplets at relative long time (weak CI) a 

sufficient concentration of gum should be used. This result confirmed the crucial role 

of bulk viscosity but also to electro-steric repulsions. These latter were favored by the 

presence of high molar mass protein-rich AGPs from Acacia gum which contained 

higher amount of uronic acids (18.3% of whole sugar) as reported by Apolinar Valiente 

et al. (Apolinar Valiente et al. 2018 submitted article). Moreover, it was shown that 

IEC-F1 was able to adsorb at the interface of hexadecane allowing to decrease 

interfacial tension and to form elastic interfacial film (Aphibanthammakit PhD thesis 

Chapter 3, 2018).  

The effect of AGPs on emulsifying properties of Acacia gum appeared to be directly 

linked to the protein or nitrogen content (Anderson & Weiping, 1991; E. Dickinson et 

al., 1988; Ray et al., 1995). To confirm this assumption, the protein and high molar 

mass protein-rich AGPs contents of emulsions were calculated using the proportion and 

biochemical composition of each fractions in reconstituted A. senegal gums, but also in 

initial A. senegal gums using the biochemical composition mentioned in Supplementary 

Table IV.1. The impact of protein and high molar mass protein-rich AGPs 

concentration on the emulsifying properties of gums is summarized in Figure IV.5. 
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A.                                                       B. 

 
Figure IV.4: Response surface effect of IEC-F1 content and total concentration on delay time (A) and 

CI (B) of 5 wt% limonene emulsions produced by reconstituted gums. 

 

D4,3 drastically decreased up to protein concentration of 0.15 wt% for all emulsions. It 

means that an increase of protein content above 0.15 wt% or 2 wt% of high molar mass 

protein-rich AGPs did not allow a further decrease of D4,3. This protein or high molar 

mass protein-rich AGPs contents were determined for both initial and reconstituted A. 

senegal gum. This estimated critical protein concentration was in agreement with the 

one found for emulsions produced with proteins (Delahaije et al., 2015). As similar 

droplet size was observed between emulsions produced by reconstituted and initial 

gums, the reconstitution of gums using fractions is therefore a good approach to 

understand the emulsifying properties. Randall et al showed that the minimal droplet 

size was reached using 12% of Acacia gum which corresponded to 0.227 wt% of protein 

in solution. Our results were in agreement with these data. They also calculated that 

only 30% of total protein were adsorbed on droplet surface (Randall et al., 1988).  
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A.       B.

 

C. 

 
Figure IV.5: Effect of protein (empty) and AGPs (filled) concentration from initial (circular symbol) and 

reconstituted A. senegal gums (triangle symbol) on volume mean diameter D4,3 (A) and stability 

expressed in CI (B) and delay time (C) for 5wt% limonene emulsions. 

 

When initial A. senegal was used, CI strongly decreased with the protein concentration 

increase. For reconstituted gums, the CIs were already weak at low protein 

concentration and slightly decreased with the protein concentration (Figure IV.5.C). 

For the same protein content of 0.1 wt%, CI was two times higher for the emulsion 



Chapter 4 : Emulsifying properties of Acacia gums and involvement of high molar mass 
protein-rich AGPs 

 

139 
 

produced with initial A. senegal than reconstituted gum. For the delay time, the same 

difference of behavior between the initial and reconstituted gum was observed. The 

delay time stopped to increase with the protein concentration (above around 0.2 wt%) 

when the initial A. senegal gum was used. This showed that the reconstituted gum was 

more efficient to stabilize emulsions. Several explanations could be suggested such as 

the difference in interfacial film properties, the viscosity of system, the greater flexibility 

of IEC-F1 and the presence of aggregated AGPs. The interfacial rheological films 

properties of IEC-F1 were investigated compared to the ones of A. senegal 

(Aphibanthammakit PhD thesis Chapter 3, 2018) and it was observed that IEC-F1 at 

0.415 wt% was able to form interfacial films with a similar rheological characteristic as 

A. senegal at 5 wt% and if the concentration of IEC-F1 was increased, the interfacial 

properties increased too in contrary to the behavior of A. senegal. Although the 

minerals content was not the same as for the fraction used in this chapter, the similar 

ability of IEC-F1 to form interfacial film could be an argument to explain the highest 

efficacy of reconstituted A. senegal. Moreover, the higher viscosity of IEC-F1 

dispersions compared to A. senegal ones at a same concentration could also describe 

the difference of behavior. Indeed, this difference in viscosity was due to the higher 

content of high molar mass AGPs in IEC-F1 that were characterized by a higher 

intrinsic viscosity (Apolinar-Valiente et al., 2018, submitted article). Apolinar-Valiente 

et al. reported that IEC-F1 was a more flexible molecule compared to A. senegal 

(Apolinar-Valiente et al., 2018, submitted article). This greater flexibility could induce 

greater interfacial properties of IEC-F1 thus better emulsifying properties. Castellani 

et al. reported a good correlation between the emulsifying properties of matured gum 

rich in aggregates and its ability to lower interfacial tension and to form interfacial film 

(Castellani, Al-Assaf, et al., 2010). This was in agreement with the conformation of 

macromolecules constitutive of the fractions. Accordingly, Xiang et al. suggested that 

the stabilization of the conjugated linoleic acid (CLA) interface droplet was due to the 

aggregation and rearrangement of protein conformation of AGP rather than the 

selectively adsorption of AGP of high molar mass (Xiang et al., 2015). Moreover, this 
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aggregation increased with Acacia gum concentration. In our case, it could be suggested 

that more AGP aggregation occurred when reconstituted gum was used at high 

concentration favoring the emulsion stabilization. It was also possible that the ζ-

potential of the reconstituted gums differed from those of initial gums for a given 

protein content. A high absolute value of ζ-potential (>25 mV) is indicative of a 

deflocculated emulsions (Mirhosseini et al., 2008) thus a greater emulsion stability than 

a low absolute value of ζ-potential (<25 mV) which indicates flocculated emulsions. 

To confirm this hypothesis, ζ-potential of emulsions produced by reconstituted gum 

should be measured. However, this hypothesis can be already presumed based on the 

higher glucuronic acid content of reconstituted gum compared to initial gum 

(Supplementary Table IV.1). 

It is worth noting that, in our case, the results were specific for the limonene emulsions 

produced at the selected conditions of emulsification (pressure and passes number). 

The change in emulsification parameters such as oil phase type and concentration, 

addition of weight agent, pH and emulsification technique can influence the emulsifying 

properties of Acacia gum (E. Dickinson, Galazka, & Anderson, 1991). 

 

4. Conclusion 

In this study, the role of high molar mass protein-rich AGPs in emulsifying properties 

of Acacia gum was investigated by two ways (i) comparing A. senegal and A. seyal 

gums which differed in the content of the specific AGPs and protein but also in their 

sugar composition and structural conformation, and (ii) varying the amount of high 

molar mass protein-rich AGPs in reconstituted gums.  

Comparing the two gum species (A. senegal and A. seyal), for all range of 

concentrations, the D4,3 of limonene emulsions produced with A. senegal were always 

lower than the ones produced with A. seyal. Accordingly, the critical concentration was 

lower for A. senegal compared to A seyal but surprisingly not in terms of protein 

content. For all conditions, the flocculation and/or coalescence revealed by creaming 
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phenomena affected the emulsion stability. At the same concentration of gums, the 

colloidal stability was greater (higher delay time and lower CI) for emulsions produced 

by A. senegal than the ones produced by A. seyal. These results suggested that the 

biochemical composition (protein and sugar content) and structural properties 

(molecular compactness, flexibility, accessibility of protein moiety, aggregates content) 

and relative polarity of the two gums affected their emulsifying properties. A. senegal, 

having a more hydrophobic character, a higher protein and glucuronic acid content, a 

greater molecular flexibility leading to high accessibility of protein moiety is 

characterized by better emulsifying properties than A. seyal. This latter possesses a 

greater arabinose content which could cause intra and intermolecular hydrogen bonding 

leading to flocculation/coalescence of droplet during process and storage. The 

differences in viscosity of both gums impacted especially the emulsion stability as 

confirmed by the addition of glycerol to emulsions produced by A. seyal.  

Regarding the reconstituted gums, the results highlighted the combined effect between 

protein content and total gum concentration on the capacity of low droplet size 

formation by Acacia gum. Both response surface and “variable at a time” 

representations confirmed the importance of protein content and total concentration 

for a short term stability of emulsions (Delay time) while the total gum concentration 

seemed to play a major role in the long term stability of emulsions (CI). This study 

emphasized the importance of structural conformation of the high molar masses 

protein-rich AGPs. As the rate of the aggregated forms was higher in water suspensions 

compared to acetate buffer (pH 5, 10 mM) suspensions, it can be anticipated that the 

emulsifying properties will be better by the selection of good solvent but also of the 

concentration.  
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Supplementary data 

Supplementary table IV.1: Biochemical composition of A. senegal, A. seyal, fractions isolated by HIC 

(HIC-F1) and IEC (IEC-F1) from A. senegal in dry basis (mean ± standard deviation). 

Component (mg.g-1) A. senegal* HIC-F1* IEC-F1** A. seyal* 

Total sugarsa 944.4 965.46 861.1 978.6 

   Galactose 382.5 374.9 296.9 334.5 

   Arabinose 285.2 257.6 314.7 474.3 

   Rhamnose 117.1 120.2 113.5 31.3 

   Glucuronic acid 168.1 195.1 153.3 75.3 

   4-O-me-glucuronic acid 9.4 13.5 8.9 62.6 

Proteins  21.5 4.04 114.9 7.1 

Minerals  34.1 30.5 24.0 14.3 

Molar mass (Mw, g.mol-1) 6.8×105 3.5×105 30×105 7.1×105 

Mw > 7.5 × 105 g.mol-1 (%) 14 7 97 20 

* adapted from Mejia Tamayo et al., 2018. 

** adapted from Apolinar-Valiente et al., 2018. 
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Supplementary table IV.2: Matrix of the central composite design of two variables in units along with 
the experimental response. 

Treatment 
runs 

IEC-F1 
content (%) 

Total concentration 
of gum fractions 
mixture (wt%) 

Response variable 

D4,3 (µm) CI at 24h (%) Delay time (min) 

1 5 4 1.188 5.425 80 
2 5 17 0.663 3.408 327 
3 25 4 0.821 6.176 95 
4 25 17 0.615 2.922 654 
5 (C) 15 10.5 0.672 4.059 241 
6 (C) 15 10.5 0.677 3.633 275 
7* 0.9 10.5 1.080 4.510 176 
8* 29.1 10.5 0.631 3.036 355 
9* 15 1.3 1.429 7.516 18 
10* 15 19.7 0.594 3.659 584 
11(C) 15 10.5 0.662 4.551 247 
12(C) 15 10.5 0.681 4.585 230 

C, center point; *, star point (axial). 
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A.                                                       D. 

 

B.                                                        E. 
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C.                                                       F. 

Supplementary figure IV.1: Changes of delta backscattering intensity with time of limonene emulsions 
stabilized by A. senegal at 1 wt% (A), 5 wt% (B) and 20 wt% (C) and A. seyal at 5 wt% (D), 10 wt% 
(E) and 20 wt% (F). The measurements were carried out 15 min after emulsification (black) at 25°C for 
every 1h during the first 24h (blue) and then one measurement was done at 2 (purple), 3 (green), 7 
(yellow), 15 (brown), 24 (cyan) and 30 (red) days of storage.  
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A.                                                          B.  

 

C.                                                          

 

 

 

 

 

 

 

Supplementary figure IV.2: Predicted and actual values of D4,3 (A), delay time (B) and CI (C) of 5 

wt% limonene emulsions produced by reconstituted gums.  
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III. Complementary studies 

1. Effect of glycerol addition on emulsion droplet size and stability 

As previously demonstrated, the addition of glycerol to increase the viscosity did not 

impact the droplet size but the stability of emulsion. The addition of glycerol was 

relatively low (8%) compared to the other solvent, i.e water which represented 67 % of 

the suspension, but it is possible that its presence affected the composition of the oil 

and dispersive phase in relation to their relative solubility. In this complementary 

study, the glycerol was added to an A. seyal dispersion at 5 wt% to reach the apparent 

viscosity of A. seyal dispersion at 20 wt%. It needed to supplement with 60 wt% of 

glycerol which became the major solvent compared to water (only 30 wt%). Then, the 

concentration and viscosity of dispersed phase was kept constant (5 wt%) whereas the 

continuous phase is varied in viscosity but also in composition. It is important to note 

that the viscosity of the dispersed phases were in the optimum range defined for high 

pressure system, i.e. between 1 and 200 mPa (Schultz et al., 2004). 

According to the respective solubility of limonene in water and in glycerol-water, the 

ratio of dispersed phase, i.e. limonene, to dispersive phase was not similar. The stability 

of emulsions could increase with glycerol addition, because a part of limonene was 

solubilized in glycerol contained in the aqueous bulk. Indeed, with a log P 

(octanol/water partition) of -1.76, glycerol is considered as a less polar compound than 

water but as a polar compound compared to limonene. This means that in the 

suspensions containing glycerol, the limonene could be better solubilized. 

Therefore, the prior estimation of miscibility level or the interaction between glycerol 

and limonene compared to the one between water and limonene was done using the 

Hansen solubility parameters and calculating the ∆δ using the following equation (here 

given for glycerol (G) and limonene as solute (L)): 

 

∆δT
2 = (δDG − δDL)2 + (δPG − δPL)2 +  (δHG − δHL)2 
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where δD, δP and δH are the Hansen solubility parameters for the dispersive, polar and 

hydrogen bonding interactions. δT corresponds to the overall Hildebrand solubility 

parameter. The same equation was used for evaluate the interaction between water 

and limonene. 

The values of Hansen solubility parameters for glycerol, limonene and water were 

reported in Table IV.3. 

 

Table IV.3: Hansen solubility parameter values of limonene, glycerol and water.  

Substance  δD,  δP δH δT Refs. 

Glycerol 17.4 12.1 29.3 36.16 Hansen, 2007 

Limonene 18.0 1.0 1.0 18.1 Auras, Harte, & Selke, 2006 

Water 15.5 16.0 42.3 47.8 Hansen, 2007 

 

The lower the ΔδT, the better is the affinity between the solvent and the solutes 

assuming the “like dissolves like” rule. Comparing both ΔδT, equal to 44.01 for water 

and to 30.40 for glycerol, limonene has clearly a higher affinity for glycerol than for 

water thus the presence of glycerol at high concentration has to affect dispersed phase. 

The solubility of limonene in glycerol and the ability of glycerol to stabilise emulsion 

droplet without emulsifier was also experimentally checked by homogenizing 5wt% of 

limonene with water at 90wt% or 60wt% of glycerol and 30wt% of water using 

rotor/stator homogenizer at 7500 rpm for 5 min and their stability was monitored. For 

the mixture containing glycerol, water and glycerol were prior blended using magnetic 

stirrer before adding limonene.  
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A.1       B.1 

     

A.2       B.2 

     

Figure IV.6: Macroscopic observation of mixture 5wt%limonene-90wt% water (A) and 5 wt% limonene-

30wt% water-60wt% glycerol (B) 8 min after homogenization (1) and one day after storage at room 

temperature (2). 

 

Figure IV.6.A and IV.6.B showed that both glycerol and water allowed the production 

of limonene emulsion. The turbidity of the emulsion without glycerol seemed to be 

higher than the emulsions with glycerol. This result was in agreement with the data 

obtained by BS measurement. After 1 day of storage at room temperature (~25°C) a 
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shading ring limonene/water was clearly observed in case of emulsions without glycerol 

whereas for emulsions with glycerol addition, it allowed to delay the phase separation. 

These results confirmed that the drastic greater stability of emulsion with high glycerol 

content was due to the solubility of limonene in glycerol and we did not produce the 

same emulsion when glycerol was present or absent.  

Comparing the two emulsions produced by the dispersion of A. seyal at 5 wt% 

containing or not glycerol, a strong decrease of D4,3 was observed (35%) with glycerol 

addition (Table IV.4). However, the droplet size remained higher than the one of 

emulsion produced using 20 wt% of A. seyal. This result suggested that the apparent 

viscosity increase of continuous phase allowed to decrease the emulsion droplet size by 

restricting the movement of droplet and therefore frequency collision preventing re-

coalescence (Khouryieh, Puli, Williams, & Aramouni, 2015; Qian & McClements, 2011). 

As highlighted by Qian et al. who have also added glycerol to increase the viscosity of 

continuous phase, the effect of glycerol addition is dependent on the emulsifier nature 

(Qian & McClements, 2011). These authors showed an appreciable decrease of droplet 

size with the increase of glycerol concentration with 2 wt% SDS whereas with 2 wt% β-

lactoglobulin, the change was limited. From the droplet size decrease, the authors 

deducted that the shear forces are strongly implied in the disruption of the droplet 

during the microfluidization process and suggested that the difference between 

emulsifiers can be related to the slowest adsorption to the droplet surface of β-

lactoglobulin which did not allow to avoid the re-coalescence. A. seyal at 5wt% and β-

lactoglobulin at 2wt% dispersions are  both characterized by a Newtonian behavior and 

low viscosity (Garti & Reichman, 1993) but their sensitivity to glycerol addition 

differed. It is worth noting that the increase of β-lactoglobulin concentration (from 1 

to 10 wt%) did not allow to decrease emulsion droplet size (Qian & McClements, 2011) 

and we can assume that, at the tested concentration (2 wt%), the lowering of droplet 

size by β-lactoglobulin was already optimal. Then, the effect of glycerol addition was 

null. By contrast, for A. seyal, the estimated critical concentration was 14.8 wt % (as 

demonstrated earlier in the ‘to submit’ article). This indicated that for the 
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concentration of 5wt%, the decrease of emulsion droplet size is possible induced by 

glycerol. This confirmed that the effect of glycerol addition on emulsion droplet size 

particularly depended on nature and emulsifier concentration too.  

 

Table IV.4: Volume mean diameter (D4,3) and stability expressed in delay time and CI of 5 wt% 
limonene emulsions as a function of apparent viscosity of Acacia gum aqueous phase. 

Aqueous phase Glycerol 
concentration 
(wt%) 

Apparent 
viscosity at 100 s-1 
(mPa.s) 

D4,3 (µm) Delay time 
(min) 

CI (%) 

A. seyal at 5 wt% 0 2.4±0.0 3.46±1.00 13.5±4.4 23.4±6.0 
A. seyal at 5 wt%  60 29.4±1.2 2.23±0.004 674.3±41.1 9.1±0.5 
A. seyal at 20 wt% 0 29.4±1.2 1.30±0.13 163.5±15.1 7.4±0.7 

 

Other weighting agents such as ester gum (Zhang et al., 2015) or PEG (Wooster, 

Golding, & Sanguansri, 2008) were added to the emulsion formulation in order to 

improve the viscosity of the continuous phase. The consequence is an enhanced 

disruption of droplet thus a decrease of droplet size as described for glycerol. These 

authors reported that there is an optimal ratio of disperse/continuous phase viscosity 

allowing the formation of the smallest droplet size. According to them, for turbulent 

shears as to colloid mills, this ratio is optimum between the range of 0.1 and 5. The 

most important disruption mechanism of droplet in microfluidisation process results 

from the combination of laminar extension flow at the inlet of interaction chamber and 

the turbulent flow in the interaction chamber (Schultz et al., 2004). These last authors 

affirmed that the viscosity ratio has little influence because the oil droplet disruption 

mainly occurred in turbulent flow. In our case, due to the low viscosity value of 

limonene (0.923 mPa.s-1) and A. seyal gum, the values of ηd/ηc were very low for the 

three A. seyal emulsions varying between 0.35 and 0.03. The strong decrease of the 

ratio when the viscosity increased by addition of glycerol or by increase of gum 

concentration ratio could justify the greater droplet disruption. It can be also suggested 

that for the specified limonene/Acacia gum emulsions in regard to the weak viscosity 
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of Acacia gum and limonene, the optimum range ratio would be defined by weaker 

values than those proposed. 

However, even though the apparent viscosity increase impacted the droplet size, this 

effect is limited and suggested that a certain amount of A. seyal gum molecules having 

the required emulsifying properties were necessary to obtain low droplet size. By 

contrast concerning the emulsion stability, the glycerol addition improved greatly delay 

time comparing to the emulsions produced by A. seyal at 5 or 20 wt%. The decrease of 

CI value was less pronounced and the value remained similar to those established for 

A. seyal at 20 wt% (Table IV.4). It is important to note that the initial BS of emulsions 

produced by A. seyal at 5wt% with 60 wt% of glycerol showed the lowest value (Figure 

IV.7.B). Since BS intensity is a function of the volume of dispersed phase (number of 

droplets) and the particle size (Mengual, Meunier, Cayré, Puech, & Snabre, 1999), this 

means that these emulsions contained less droplets than the one containing only gums. 

The major destabilization process was always creaming but less 

coalescence/flocculation was detected during the first 24h compared to emulsions 

without glycerol (Figure IV.7.A and IV.7.C). This enhancement of emulsion stability 

could be due to (i) partial solubility of limonene in glycerol and (ii) the specific 

formation of new hydrogen bonds between hydroxyl groups of glycerol and A. seyal 

gum as previously suggested for film formation (Aphibanthammakit et al., 2018). The 

new created network can induce a thicker film at the interface or restricted movements 

of the droplets preventing flocculation and recoalescence and favored stabilization by 

steric repulsion. As already stated, an increase of the stability of orange oil emulsion 

has been observed by adding glycerol to Acacia gum (Mirhosseini et al., 2008). Indeed, 

the addition of a sufficient amount of glycerol (1.5 wt%) allowed to increase 

significantly the pH value (9%) and the negatively charged ζ-potential (10%) thus the 

repulsive forces. Authors explained these changes by the presence of the negatively 

charged side group (-OH) on the glycerol and therefore the increase of pH value. 
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A.       B. 

 

C. 

 

Figure IV.7: Changes of backscattering intensity with time of limonene emulsions stabilized by A. seyal 

at 5 wt% (A), by A. seyal at 5 wt% with 60 wt% of glycerol (B) and by A. seyal at 20 wt% with 8 wt% 

of glycerol (C). The measurements were carried out 15 min after emulsification (black) at 25°C for every 

1min 50 during the first 24h (blue) and then one measurement was done at 2 (purple), 3 (green), 7 

(yellow), 15 (brown), 24 (cyan) and 30 (red) days of storage. 
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The addition of solvent or the presence of other aroma compounds which can help to 

partially solubilize limonene in water appear as a good solution to stabilize limonene 

emulsion. This also confirms that the formulation (limonene-Acacia gum-buffer) used 

to produce emulsion in this study are not fully optimal for the production of long-term 

stable emulsions. 

 

2. Calculation of surface load concentration 

The surface load of the emulsifier at saturation (Γ) is an indicator to better understand 

the formation process of natural emulsifier-stabilized emulsions. This parameter allowed 

to estimate the required amount of emulsifier to form emulsion. Indeed, it corresponded 

to the mass of surfactant needed to cover a unit area of droplet surface. It is expressed 

in mg.m-2. Two different methods, named method 1 and method 2, have been used to 

estimate the value of surface load on droplet using Acacia gums as emulsifier:  

(i) method 1 - by using an equation involving some final emulsions parameters:  

 

Γ = (D3,2 × Cs)/(6 × φ)  (1) 

 

where D3,2, Cs and φ corresponded to the surface average diameter or Sauter mean 

diameter (m), the concentration of emulsifier in the emulsions (kg.m-3) and the volume 

fraction of dispersed phase, respectively (Bai et al., 2017; McClements, 2007). 

(ii) method 2 - by measuring the Acacia gum content in the cream and/or serum layers. 

First, the two layers were separated by centrifugation. The non-adsorbed molecules in 

the serum layer can be directly analyzed using SEC-MALLS. To characterize the 

adsorbed molecules, SDS had to be added to the cream phase. Indeed, surfactant SDS 

allowed to displace the proteinaceous molecules from the interfaces. These molecules 

were then separated and analyzed using SEC-MALLS (Katayama et al., 2006; 
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Mikkonen et al., 2016; Nakauma et al., 2008). Using this method 2, the value of surface 

load can be estimated based on the Equation 1. Other parameters can be also calculated 

as the recovered mass (%) and the concentration of adsorbed and non-adsorbed 

molecules (mg.mL-1) (Katayama et al., 2006). 

Although the estimation of surface load for both methods was based on the same 

equation (Equation 1), these methods differ in the way to determine the concentration 

of adsorbed-molecules. Indeed, method 1 supposed that the total emulsion droplet 

surface was rapidly covered by all the emulsifier present in the emulsions, i.e. Cs is 

equivalent to the adsorbed concentration., while, for method 2, the concentration of 

adsorbed molecules was indirectly experimentally determined. Generally, the use of the 

method 1 was only for the comparison purpose between different emulsifiers. This 

method rarely represents the reality when large molecule as Acacia gums and other 

polysaccharides were used (Bai et al., 2017). However, as suggested by these authors, 

the estimation of the surface load was useful to comparison purpose. The results 

obtained by different authors with these two methods by using Acacia gum as emulsifier 

and different dispersed phase are presented in Table IV.5. The highest value of surface 

load (31 mg.m-2) was found using the method 1 probably because all molecules of 

emulsifiers were assumed to adsorb to interfaces. For the method 2, the value of surface 

load drastically varied, i.e. between 0.761 and 14 mg.m-2. This variation should be 

dependent on, among others, the considered molecular types and probably the nature 

of oil phase. To authors’ knowledge, there are not any study which compares the two 

methods of surface load estimation. 
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Table IV.5: Values of surface load of Acacia gum droplet estimated by different methods and for varied dispersed phases. AG stands for Acacia gums. 

 

Emulsion formulation Measurements  Γ  (mg.m-2) Refs.  

10 wt% corn oil with 90wt% aqueous phase (0.1 – 10 wt% AG) Method 1 31  Bai et al., 2017 

20 wt% sweet orange oil with 0.25-25 wt% AG Method 2 4 by AG and 1.2 - 1.6 by proteineaceous 

component 

Randall et al., 1988 

 

6.5% orange oil with 20.0% AG, 0.1%sodium benzoate and 73.4% of 

deionized water 

Method 2  4.67 - 14.00 depending on gum 

composition 

Buffo, Reineccius, & 

Oehlert, 2001 

Refined soy oil/AG ratio varying between 0.25 and 5.0 Method 2 0.761- and 0.853 depending on oil/AG 

ratio with non-linear relationship between 

Γ and oil/AG ratio 

McNamee et al., 2001 

 

15 wt% oil phase (d-limonene and medium chain triglyceride with 50% 

of weighting agent) with 5-25 wt% AG  

Method 2  7.22 for 25% AG with low molecular 

weight and 7.04 for 25% AG with high 

molecular weight 

Katayama et al., 

2006 

15 wt% medium chain triglyceride with 1.0 – 10% AG containing 2.25 

wt% of protein 

Method 2 6  Nakauma et al., 2008 

15 wt% conjugated linoleic acid with 85wt% aqueous phase (2.5 to 15.0 

wt% AG) 

Method 2  The maximal value ~25  for 5 wt% AG Xiang et al., 2015 

1 or 5 wt% Rapeseed oil with 1 wt% AG Method 2  2.5  Mikkonen et al., 2016 



Chapter 4 : Emulsifying properties of Acacia gums and involvement of high molar mass 
protein-rich AGPs 

 

158 
 

In this study we have evaluated the surface load of the emulsifier at saturation using 

the method 1. To calculate the surface load, we have considered the droplet size for (i) 

the lowest emulsifier concentrations up to the critical concentrations, then making the 

average of surface load for all considered concentrations (limited concentrations) or (ii) 

the critical concentrations (Table IV.6). As expected, the surface load of A. senegal 

was lower than the one of A. seyal: about 11 times considering the limited 

concentrations and the critical concentrations confirming the relevant interfacial 

properties of A. senegal compared to A seyal. The surface load at saturation of A. 

senegal was found equal to 31 mg.m-2 (using the same type of calculation as us) for 

emulsions of 10 wt% corn oil (Bai et al., 2017). This value was in the same order of 

magnitude as our result. The slight difference can be explained by the variation of 

density of the oil phase which plays an important role in the surface load evaluation. 

Indeed, the density of limonene is relatively weak with a value 0.841 kg/m3 

(https://pubchem.ncbi.nlm.nih.gov consulted on the 11th of April 2018) while the 

density of corn oil was 0.92 kg/m3 (Noureddini et al., 1992). Moreover, this difference 

could be due to the gum origin. The high value of surface load evaluated for A. seyal 

suggested that the adsorbed concentration was largely different of the emulsifier 

concentration in solution and that the molecules having emulsifying properties as AGP 

were sparsely accessible.  

 

Table IV.6: The values of surface load (Γ) calculated as a function of gum concentration or protein 

concentration using Equation 1 for emulsions produced by A. senegal, A. seyal and reconstituted A. 

senegal.  

 A. senegal  A. seyal 

 Limited 

concentration  

Critical 

concentration 

Protein 

content 

 Limited 

concentration 

Critical 

concentration 

Protein 

content 

Γ (mg.m-2) 57 63 1.35  647 701 4.98 

 

https://pubchem.ncbi.nlm.nih.gov/
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Assuming that the protein part is preferentially adsorbed to the interface, we have 

estimated the surface load taking into account the protein content of each gum at the 

critical concentration. In this case, the surface load was equal to 1.35 mg.m-2 for A. 

senegal and 4.98 mg.m-2 for A. seyal and was in agreement with literature (Table IV.5). 

However, the hypothesis that only the protein part adsorbed at the interface was 

discarded and the estimation of surface load from the content of high molar mass 

protein-rich AGPs could be more relevant. This calculation can be done for A. senegal 

and the obtained values (8.8 mg.m-2) for the critical concentration was in the same 

order of magnitude as with method 2 for weak Acacia gum concentration (Table IV.5). 

This indicated that method 2 could be the most relevant for the estimation of surface 

load. Unfortunately, this information about high molar mass protein-rich AGPs was 

not available for A. seyal gums.  

The calculation of surface load as a function of high molar mass protein-rich AGPs was 

also done for the reconstituted A. senegal gum. For comparison purpose, we decided to 

use similar AGP concentrations from reconstituted A. senegal (0.31 wt%) and from 

original A. senegal (0.32 wt%) for the calculation. The surface load was estimated equal 

to 18.9 mg.m-2 against 8.8 mg.m-2 which is 53% higher than the one of initial A. senegal. 

These deviations of surface load value were related to the higher value of D3,2 of 

emulsion produced by reconstituted A. senegal (1.54 µm against 0.69 µm for 

reconstituted and initial A. senegal, respectively) but also to the slight difference 

between the concentration of AGPs from reconstituted and initial A. senegal. To verify 

the preponderant role of droplet size, another AGP concentration was chosen with 

similar D3,2 and minimal deviation between AGP concentration from initial and 

reconstituted A. senegal, i.e. 14 wt% and 13.2wt% of AGP respectively. We found that 

the value of surface load for initial and reconstituted A. senegal was 33.5 mg.m-2 and 

35.06 mg.m-2, respectively. Again, the difference in surface load value (4%) 

corresponded to the slight difference in AGP concentration between gums (5%) 

confirming the role of total concentration to obtain the smallest droplet size. These 
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results confirmed that the reconstitution of gums is a good approach to characterize 

and understand the emulsifying properties of A. senegal. 

The capacity of an emulsifier to form emulsions is related to its interfacial properties 

at oil-water but also air-water interfaces. Despite the quantitative differences in 

interfacial behavior at these interfaces, a similar general trend of adsorbed layer can be 

observed (E. Dickinson, 1999; Ganzelves, 2007). Damodaran et al., have studied the 

adsorption isotherm of one component isolated from Acacia gum through gel 

permeation chromatography, at the air-water interface. This component named GAGP 

which represent 10% of gum is a hydroxyproline–rich glycoprotein with ~90% 

carbohydrate and 10 % protein (Damodaran & Razumovsky, 2003) and having a molar 

mass of 2.2 to 5.6×105 g.mol-1 (Churms, Merrifield, & Stephen, 1983; Qi, Fong, & 

Lamport, 1991). Taking into account the protein content and molar mass, this fraction 

was similar to IEC-F1. Authors reported that the saturated monolayer coverage at the 

air-water interface was reached above 400 mg.L-1 (~0.04 wt%) of bulk concentration 

with a surface concentration of 250 mg.m-2. Authors pointed out that the surface 

concentration decreased up to 32 mg.m-2 for 39 mg.L-1 of bulk concentration. This last 

result was in agreement with the estimated surface load using method 1. Indeed, the 

value of surface load decreased with bulk concentration. Using a competitive adsorption 

experiments, authors demonstrated that despite the high value of surface concentration, 

the formed GAGP interfacial films were able to inhibit the penetration of β-casein even 

at unsaturated monolayer (at the bulk concentration of 39 mg.L-1). They concluded 

that this was due to the thermodynamic incompatibility through steric repulsive 

interactions between protruding polysaccharide chains of GAGP and the flexible β-

casein from the bulk causing the inability of β-casein to mix with or dissolve in the 

GAGP films. This competition phenomenon between molecules can also occur within 

entire gums because they contain several molecules rich in proteins which can compete 

to the surface and hinder their mutual adsorption. As specified, this study was done at 

air-water interface and further studies are needed to confirm the last hypothesis by 
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measuring the interfacial properties of different fractions mixtures at the oil-water 

interface and comparing their emulsifying properties.  

Finally, the method 2 used to estimate and characterize adsorbed interfacial molecules 

needs to be carried out to confirm the estimated results using method 1. Other method 

could be also done, such as competitive adsorption experiments, allowing to 

characterize in-depth interfacial films. 
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IV. Major outcome 

In this chapter, through an innovative approach we demonstrated that the emulsifying 

properties of Acacia gum depended on several factors: (i) functional synergism between 

high molar mass protein-rich AGPs content and total gum concentration (ii) gum 

concentration for a given gum specie (A. senegal and A. seyal) and (iii) emulsification 

process using microfluidizer. The main results are described in the following table:  

 

Gum characteristics  

   Reconstituted A. senegal gum • The short term emulsion stability mainly depended on 

the functional synergism between the amount of high 

molar mass protein-rich AGPs and the total gum 

concentration. 

• The long term emulsion stability was mostly related to 

the total gum concentration.  

• Reconstituted gums allowed a better stability than 

initial A. senegal in relation to a greater content of 

aggregated AGPs of IEC-F1 and resulting in higher 

molecular flexibility and greater interfacial properties 

but also to the higher bulk viscosity. 

• Innovative and appropriated approach allowing to better 

understand the role of high molar mass protein-rich 

AGPs in emulsifying properties of A. senegal. 

   Gum concentration  • For A. senegal and A. seyal, the increase of gum 

concentration decreased emulsion droplet size and 

enhanced emulsion stability. 

• The critical concentrations to reach the smallest droplet 

size in the process conditions used were 6.4 times lower 

for A. senegal (~2.3 wt%) than for A. seyal (~14.8 wt%). 

   Gum specie • At the same gum concentration, the emulsion droplet 

size was lower using A. senegal than A. seyal in relation 

to the greater high molar mass protein-rich AGPs and 

protein content of the former.  
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• The better stability of emulsion produced by A. senegal 

compared to A. seyal could be due to: (i) the smallest 

emulsion droplet size of emulsion produced by A. 

senegal, (ii) the higher apparent viscosity of A. senegal 

bulk, (iii) the higher uronic acid content of A. senegal 

allowing a greater electrostatic repulsion compared to A. 

seyal and (iv) the higher content of arabinose of A. seyal 

favouring new liaison between droplets. 

Process parameters  

   Emulsification process  • The decrease of droplets size of emulsion produced by A. 

senegal was greater than the one of emulsion produced 

by A. seyal.  

   Addition of glycerol  • The addition of glycerol allowed to increase the viscosity 

of aqueous phase and to enhance the stability of 

emulsion while droplet size was weakly decreased. 
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Chapter 5 – Surface properties of Acacia senegal vs 

Acacia seyal films and impact on specific 

functionalities 

 

The previous chapters reported the relationship between the interfacial (liquid/liquid) 

and emulsifying properties of Acacia gums, depending on their biochemical composition, 

structural properties and concentration, and the properties of interfaces (oil nature and 

type of emulsifier). Moreover, the assessment of the surface tension of Acacia gum 

dispersions at air/water interface allowed to obtain supplementary information about 

the behavior of Acacia gums. The results confirmed that, for the high concentration of 

gum used (20 wt%), A. senegal and A. seyal allowed to decreased the surface tension 

of water showing both polar and dispersive components in agreement with their 

amphiphilic properties. A. senegal gum was characterized by a higher dispersive 

component than A. seyal gum in relation with its biochemical (higher protein and lower 

arabinose contents) and structural (higher flexibility) properties. 

Acacia gum dispersions at high concentration are not only used in the form of liquid. 

As a film forming colloid, Acacia gums are also largely used in the form of film with 

low water content. In confectionery it is used to isolate the centers in dragee. Indeed, 

the centers, e.g. chocolate, almond, nuts, can be coated with gum dispersion to prevent 

fat oxidation and the migration of fat through the sugar coating. The Acacia gum based 

films are also used in the coating of fruit and fish allow to extend their self-life (Ali, 

Maqbool, Alderson, & Zahid, 2013; Binsi et al., 2016; El-Anany, Hassan, & Rehab Ali, 

2009; Jiang, Feng, Zheng, & Li, 2013; Maqbool, Ali, Alderson, Zahid, & Siddiqui, 2011). 

The understanding of fundamental interfacial properties of Acacia gum films such as 

film surface structure, the behavior of contact angle between liquids with different 



Chapter 5 : Surface properties of Acacia senegal vs Acacia seyal films and impact on specific 
functionalities 

 

178 

physicochemical properties and gum films is crucial to obtain Acacia gum films with 

optimal characteristics. 

In this chapter, the surface structure and characteristics of films obtained with both A. 

seyal and A. senegal gums were investigated. The experiments and conclusions were 

reported in a published article discussing: 

- the film formation process: supports and glycerol addition 

- the surface structure characterized by SEM and AFM  

- the surface properties evaluated by contact angle measurement. 

The wettability and the free surface energy of films were determined as the affinity of 

the films for different organic volatile compounds on gum films. Functionalities as water 

vapor permeability and ability to retain aroma compounds have been investigated.  

The objectives were to establish a relationship between the different film properties 

and the gums nature and biochemical composition.  
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Abstract 

The microstructure and surface properties of spin coated films were studied to 

determine the structuration of Acacia gum films depending on gum type and 

composition. The difference between A. seyal and A. senegal films was clearly evidenced 

by surface morphology (SEM and AFM) and through the contact angle measurement: 

A. senegal films having a smoother and more hydrophobic surface (θ = 62°) than A. 

seyal films (θ = 42°) characterized by aggregated structuration. The film 

hydrophobicity increased with glycerol addition for both gum films (A. senegal, θ = 68° 

and A. seyal, θ = 50°). This could be due to hydrogen-bonding between hydroxyl groups 

of plasticizer and polar groups of Acacia gums favoring their reduction on films surface. 

Both gum films behave as dual polar surface showing high disperse component of free 

energy compared to the polar component. Both gums showed strong affinity for apolar 

compounds (θ < 20°). The overall results indicated that the structuration of films 

depended on the protein content and accessibility. Similar surface properties were found 

with self-supported films: A. seyal cast films being still more hydrophilic than A. senegal 

ones, demonstrating that the former provides a more favorable environment for water 

interaction than the latter. The specific interactions pointed for each gum films with 

water and apolar compounds were reflected in functionality such as water vapor 

permeability and efficiency to retain limonene and linalool. The knowledge of these 

properties is recommended to design specific coatings anticipating water loss of the 

coated product and to evaluate antimicrobial efficiency when active agents as aroma 

compounds are incorporated in the film. 

 

Keywords: Acacia gum; edible films; surface properties; water vapor permeability; 

aroma compounds; emulsion based films. 
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1. Introduction 

Over few decades, films of biopolymers as polysaccharides, proteins or blends are used 

in diverse applications. They have been developed to supply the demand for new 

materials for medical and pharmaceutical uses, targeting tissue and cell lesion therapy 

thanks to their non-toxic characteristics, biocompatibility and biodegradability (Silva, 

Ducheyne, & Reis, 2007). In packaging domain, coated papers, self-supported films or 

edible coating formed directly onto food surface were developed to reduce or replace 

the synthetic polymers (Miller & Krochta, 1997; Nieto, 2009). They function as relative 

high barrier to water vapor, gases such as O2, CO2 or ethylene and aroma compounds 

and help to limit the degradation reactions, to improve the quality and to extent the 

shelf life of foodstuffs. Biopolymer films or coating are also used as carriers of active 

compounds to protect them and to control their delivery (Arfa, Preziosi-Belloy, Chalier, 

& Gontard, 2007; Hambleton, Debeaufort, Bonnotte, & Voilley, 2009; Hashemi 

Gahruie, Ziaee, Eskandari, & Hosseini, 2017). For this purpose, biopolymers have to 

possess film-forming properties and the ability to retain the active compounds through 

specific interactions and emulsifying properties. Acacia gum is one of these biopolymers. 

Acacia gum also called gum arabic (AG, E414 EC) is a natural arabinogalactan-protein 

(AGP) type polysaccharide with a low protein content (<3%). Acacia gum is defined 

as “a dried exudate obtained from the stem and branches of Acacia senegal (L.) 

Willdenow or Acacia seyal (family Leguminosae)” (FAO, 1999). Acacia gum is described 

as a continuum of molecular species which distinguishes by their protein to sugar ratio, 

molar mass and charge density (Renard, Lavenant-Gourgeon, Ralet, & Sanchez, 2006). 

The polysaccharide main chain backbone is formed of 1,3-linked β-D-galactopyranosyl 

units with numerous side chains. Side chains have units of α-L-arabinofuranosyl, α-L-

rhamnopyranosyl and β-D-glucuronopyranosyl and 4-O-methyl-β-D-

glucuronopyranosyl acid that are mostly located at the end units (Islam, Phillips, Sljivo, 

Snowden, & Williams, 1997; Verbeken, Dierckx, & Dewettinck, 2003). Depending on 

the botanic type, the proportion in the different types of sugars differs: A. seyal contains 
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greater proportion of L-arabinose relative to D-galactose (ratio 1.6) than A. senegal 

(ratio 1). Moreover, A. seyal gum is characterized by significantly more 4-O-methyl-D-

glucuronic acid, but less L-rhamnose and unsubstituted D-glucuronic acid than A. 

senegal one (Phillips & Williams, 2009). A. senegal and A. seyal differs also by their 

protein content, the last being poorer than the former. In terms of structure, an 

important point is that the average molar mass of A. seyal is greater than A. senegal 

despite a smaller hydrodynamic volume (Lopez-Torrez, Nigen, Williams, Doco, & 

Sanchez, 2015). A. seyal molecules are then more compact than A. senegal ones and 

give less viscous dispersions. The interfacial properties of Acacia gum dispersions have 

been largely described (Sanchez et al., 2017). Acacia gum is able to decrease the 

interfacial tension at gas-water, liquid-liquid or solid-liquid interfaces and to stabilize 

interface through electrostatic and steric repulsion and hydration forces (Castellani, Al-

Assaf, Axelos, Phillips, & Anton, 2010; Lopez-Torrez et al., 2015; Sanchez et al., 2017). 

These properties are related in part to the polarity and structure of the gum as 

demonstrated by the comparison between conventional A. senegal and matured A. 

senegal gum. Indeed the maturation process consisting to increase the molar mass of in 

protein-rich high macromolecules resulted in a better ability to lower the interfacial 

tension (Castellani, Al-Assaf, et al., 2010). As edible ingredient, Acacia gum is largely 

used for emulsification and encapsulation of food products (Buffo, Reineccius, & 

Oehlert, 2001; Kim & Morr, 1996; McNamee, O’Riorda, & O’Sullivan, 1998) but less 

for coating or film applications. Indeed, films of Acacia gums lack of strength after 

casting and drying. Acacia gums are polymers with high degree of branching, A. senegal 

having the highest degree of branching (Lopez-Torrez et al., 2015). This high degree of 

branching could prevent the intermolecular interactions and induce less cohesive films 

than those obtained with linear polymers (Nieto, 2009). 

However, some examples of coating applications showed that Acacia gum is successful 

to protect food against oxidation, to maintain the quality and to enhance the shelf-life 

of banana, papaya, mushroom, tomato, Anna apple and Indian mackerel (Ali, Maqbool, 

Ramachandran, & Alderson, 2010; Binsi et al., 2016; El-Anany, Hassan, & Rehab Ali, 



Chapter 5 : Surface properties of Acacia senegal vs Acacia seyal films and impact on specific 
functionalities 

 

183 

2009; Jiang, Feng, Zheng, & Li, 2013; Maqbool et al., 2011). The efficiency of Acacia 

gum enriched with garlic oil and cinnamon as active coating was also demonstrated to 

preserve fish and meat against microbial degradation and oxidation (Rakshit & 

Ramalingam, 2013). 

Understanding surface properties of films such as roughness, water wettability, and free 

surface energy allow to establish relationship between the chemical composition and 

properties of the developed films and to improve the material applications and the 

coating–food compatibility (Basiak, Lenart, & Debeaufort, 2016).Then the knowledge 

of surface water wettability is needed to select biopolymers with enhancing 

adhesiveness, cohesiveness for better spreading of the coating on a solid surface. 

Moreover, the controlled tuning of wettability may expand the applications domain of 

these materials (Farris et al., 2011). Contact angle measurement is the most basic 

method to determine the wettability of a surface by a liquid and the surface tension 

parameters (Basiak et al., 2016; Farris et al., 2011; Karbowiak, Debeaufort, Champion, 

& Voilley, 2006). It consists of measuring the angle formed at the three-phase contact 

line where liquid, gas and solid phases intersect. The lower the contact angle value, the 

more the affinity between the liquid and solid surface. Contact angle between film 

surface and water droplet is usually used to evaluate the film surface hydrophobicity 

which is an important indication to control moisture transfer (Kokoszka, Debeaufort, 

Hambleton, Lenart, & Voilley, 2010). Contact angle measurement was also used to 

determine the wettability of hydrophobic surface films by different compounds as 

alkanes (Fox & Zisman, 1950; Neumann, Haage, & Renzow, 1971). Surface formed with 

polar molecules or domains as found in Acacia gum or proteins are regarded as 

hydrophilic as an intrinsic property whereas the hydrophilicity can be modulated by 

the presence of other chemical groups. Moreover, the characterization of the behavior 

at the surface and wetting dynamics, i.e. physicochemical phenomena as spreading, 

absorption, swelling involved at the solid/liquid interface results in information about 

the structure and self-organization of the matrix exposed to air or support 
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(Bialopiotrowicz & Jańczuk, 2002; Farris et al., 2011; Kalin & Polajnar, 2013; 

Karbowiak, Debeaufort, & Voilley, 2006). 

The objectives of this study were to compare the surface organization of Acacia senegal 

and Acacia seyal gum films depending on their composition and supposed 

conformations in aqueous medium and to establish the relationship between these 

structuration and specific functionalities of self-supported films. To reach these 

objectives, the microstructure of spin-coated films was first characterized by SEM and 

AFM. The surface properties, i.e. water wettability, free surface energy and affinity 

between films and organic volatile compounds, were investigated using contact angle 

measurements. Then, the water vapor permeability and aroma retention of self-

supported films were studied and related to the surface properties. The final goal is to 

design active edible coatings with different wetting property compatible with varied 

fruits or vegetables allowing limiting water loss, to retain aroma compounds as 

antimicrobial agent and by consequence to increase shelf-life. 

 

2. Materials and methods 

2.1. Materials 

Acacia seyal (A. seyal, lot n° OF110724) and Acacia senegal (A. senegal, lot n° 

OF110676) gum powders were provided by ALLAND & ROBERT Company-Natural 

and organic gums (Port mort, France). Both gums were obtained by the same 

purification process with elimination of insoluble materials, pasteurization and spray 

drying. Their biochemical composition were previously characterized and are reported 

in Table V.1 (Lopez-Torrez et al., 2015). Acetate buffer at 10 mM, pH 5 used to dissolve 

gums was prepared with anhydrous glacial acetic acid and sodium acetate trihydrate 

provided by Merck KGaA (Darmstadt, Germany) and Fluka- Sigma Aldrich (Saint-

Quentin Fallavier, France), respectively. 
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Table V.1: Biochemical composition of Acacia senegal and Acacia seyal gums in dry basis (mean ± 
standard deviation) (adapted from Lopez et al., 2015). 

Component (mg.g-1) A. senegal A. seyal 

Total dry matter 889.0±0.27 893.0±0.02 

Total sugarsa 

Galactoseb 

Arabinoseb 

Rhamnoseb 

Glucuronic acidb 

4-O-me-Glucuronic acidb 

829.0±0.52 

296.8±9.9 

251.2±20.7 

128.5±2.9 

144.2±9.5 

8.3±0.4 

843.0±0.13 

311.1±8.9 

401.3±5.1 

25.3±2.5 

56.5±3.4 

48.9±4.6 

Proteins  27.0±0.01 10.0±0.04 

Minerals  33.0±0.24 40.0±0.07 

a total content of sugar was calculated by the difference of proteins and minerals from total dry basis. 

b sugar composition was determined by GC-MS. 

 

Glycerol (GLY) (99% purity and density 1.265) used as plasticizer was provided by 

Acros Organics (Ilkirch, France). Methanol, sulfuric acid and hydrochloric acid used 

for cleaning the glass plates were provided by VWR chemicals (Fontenay-sous-Bois, 

France). The volatile organic compounds (octane, decane, hexadecane, hexanol, 

octanol, decanol, linalool and limonene at 99% of purity) and the liquids of reference 

used to determine the surface tension of gum films, diiodomethane and ethylene glycol, 

were from Fluka-Sigma Aldrich (Saint-Quentin Fallavier, France). Physicochemical 

characteristics of volatile organic compounds were reported in Table V.2.  
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Table V.2: Physicochemical characteristics of the used organic volatile compounds. 

From *ChemSpider.com **thegoodscentscompany.com 

 

2.2. Methods 

2.2.1. Preparation of Acacia gum film-forming dispersions 

Film-forming dispersions were prepared by dispersing 20 g of Acacia gums (wet weight) 

in 70 g of acetate buffer (at pH 5, 10 mM). Different amount of glycerol was afterwards 

added (i.e. 0, 10, 15 and 20 wt% of wet weight of gum) and the mass of the suspension 

was adjusted to 100 g with buffer. The suspension was left overnight at room 

temperature under stirring to ensure complete dissolution. Gum solutions were 

centrifuged at 20 000 g for 30 minutes at 25°C to remove traces of insoluble matter. 

 

 

Compound formula Chemical 

structure* 

Molecular 

weight (Da)* 

logP at 

25°C* 

Vapor pressure at 

25°C (mm.Hg-1)** 

Solubility in 

water at 25°C 

(mg.L-1)* 

Octane C8H18 
 

114.229 4.27 14.157 0.66 

Decane C10H22 
 

142.282 5.01 1.430 0.052 

Hexadecane C16H34 
 

226.441 8.20  0.005 0.0009 

Hexanol C6H14O 
 

102.175 2.03  0.947 5900-6260 

Octanol C8H18O 
 

130.228 3.00  0.079 540 

Decanol C10H22O 
 

158.281 4.57  0.0085 37 

Linalool C10H18O 
 

154.249 2.97 0.016 1590 

Limonene C10H16 
 

136.234 4.57 1.541 13.8 
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2.2.2. Preparation of Acacia gum based films 

2.2.2.1. Spin coated films 

Spin coating consists in applying a thin film evenly across the surface of a substrate by 

casting a solution while it is rotating at high speed. It is a dynamic application with 

fast drying due to solvent evaporation (Hall, Underhill, & Torkelson, 1998). 800 µL of 

gum dispersions without or with glycerol at the concentration determined for cast films 

were deposited by SPIN 150 spinner (SDS Europe, Vourles, France) on two different 

supports one hydrophilic and the other hydrophobic: glass (RS, France) and Low 

Density Polyethylene (LPDE) blades for comparison purpose with cast films. 

The glass blades were previously cleaned by immersion in a solution of methanol and 

hydrochloric acid (1:1, v/v) for 30 minutes and then overnight in a bath of sulfuric 

acid. The LDPE blades were cleaned with ethanol. All blades were extensively rinsed 

in mili-Q water after cleaning and used rapidly. In order to form a uniform film, the 

following conditions were used: speed of 1500 rpm for 300 seconds with an acceleration 

of 100 rpm.s-1 at a controlled temperature (25 °C). The spreading and drying of gum 

dispersions have been performed by the evaporation of water on the support at high 

speed rotation. Before the film surface characterization, the spin coated films on blades 

were stored for 24 h in a desiccator at 25 ±2 °C and 52±1 %RH (relative humidity) 

maintained by using saturated solution of magnesium nitrate. 

2.2.2.2. Cast films 

When producing Acacia gum film by casting, adding a plasticizer and selecting a 

convenient support should be considered to optimize their macroscopic aspect, their 

mechanical properties (flexibility) and to be able to peel off the film. Therefore, different 

glycerol contents (0, 5, 10, 15, 20 wt% of gum solubilized in buffer) were tried and two 

types of support were tested: glass as hydrophilic surface and LDPE as hydrophobic 

material. For both gums, LDPE petri dishes have been selected as support and the 

optimal addition of glycerol depended on gum characteristics: 20 % for A. seyal and 15 
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% for A. senegal. For A. senegal, higher amount of glycerol than 15 % induced sticky 

films and decreased handle ability whereas A. seyal films containing 15 % of glycerol 

could not peel off in a whole piece. 

In case where an aroma compound was added at 5 wt%, the dispersion was additionally 

emulsified with rotor/stator L4RT homogenizer (Silverson, Evry, France) equipped 

with a square hole high shear screen stator at 7500 rpm for 5 min at room temperature. 

The size distribution of the aroma droplets in emulsions was determined by laser light 

scattering using a Mastersizer 2000 (Malvern Instruments, Orsay, France). Refractive 

indices of 1.33 for water, 1.473 for limonene and 1.462 for linalool were used. For all 

emulsions, three cycles of measurements were performed at ambient temperature and 

15 minutes after the emulsification process. The mean droplet diameter was expressed 

as the volume mean diameter (D4,3): 

 

D4,3 = ∑ nidi4 /∑ nidi3   (1) 

 

where ni is the number of droplets of diameter di. 

All of the films were slowly dried for 24 h at 25 °C and 60%RH in a constant climate 

chamber (HPP260, Memmert, Schwabach, Germany). Then, the films were peeled off 

and stored at controlled temperature (25±2 °C) and RH (52±1%) before their 

characterization.  
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2.2.3. Microstructure characterization of films 

2.2.3.1. Thickness measurement 

The mean thickness of the spin coated and casted films was measured at 5 random 

positions with an electronic digital micrometer (Lab-Kits, Lab Instruments & facility, 

Xiangtan, China) with a range from 0 to 25 mm and graduation of 0.001 mm. 

2.2.3.2. Scanning electron microscopy (SEM) 

The microstructure of the spin coated films deposited on glass and LDPE supports and 

casted films was observed using a scanning electron microscope S-4500 (Hitachi, 

Verrières-le-Buisson, France) at a magnification of ×4800 and using an accelerating 

voltage of 10 kV. Film samples were mounted on stub with double sided carbon tape. 

The edge and the film surface were coated with silver and platinum, respectively, before 

SEM analysis. For the spin coated films, blades were cut up and directly mounted on 

stub. 

2.2.3.3. Atomic force microscopy (AFM) 

To observe the film surfaces at nanoscale level, an atomic force microscope (dimension 

5, Bruker, Santa Barbara, US) equipped with a cantilever (super sharp silicon AFM 

probes) and piloted by a nanoscope 5 controller was used. The operation mode used 

was repulsive tapping at a scanning rate of 152-748 kHz with a constant force of 50 

N.m−1. The surface areas were scanned at a range from 9 to 100 µm2 operating under 

air and at room temperature. The 2D, 3D images and root mean square of roughness 

value (Rq) were obtained using software Gwyddion 2.49 released 2017-08-15. This 

parameter represents the standard deviation of the distribution of surface heights 

allowing to describe the surface roughness by statistical method. This parameter is very 

sensitive to large deviation from the mean line. The values of Rq were calculated by 

the following equation: 
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Rq = �1
l ∫ {y(x)}2l
0 dx   (2) 

 

where y(x) described the surface profile over the length (l) in function of height (y) and 

position (x) (Gadelmawla, Koura, Maksoud, Elewa, & Soliman, 2002). 

 

2.2.4. Contact angle measurement and characterization of film surface 

properties 

Surface hydrophobicity and wettability of films were evaluated from static contact 

angle by the sessile drop method using a Digidrop goniometer (model ASE, GBX, 

Roman-sur-Isere, France) equipped with a video measuring system with a CCD camera 

and with an image analysis software Windrop++v1 (GBX) for data acquisition. A 

droplet (2 µL) of water was deposited on the film surface with a precision syringe. 

According to the so-called pick-up procedure when the contact between liquid and solid 

is made, the measurements of contact angle between the width of the drop and the 

tangent at the drop boundary were realized on both sides and averaged. At least 3 

measurements were carried out for each sample in ambient condition in similar 

temperature and RH (25±2 °C and 25±5%RH). 

Acquired data were the contact angle (θ), the droplet volume (V) and the droplet width 

in contact with the solid surface (L). 

In dynamic mode, three kinetic parameters can be calculated by monitoring the 

variation of contact angle, droplet volume and droplet width for 10 s using a software-

assisted image-processing procedure: the velocity of angle variation, the droplet 

absorption and the spreading rate of droplet. The velocity of angle variation (∆θ) as a 

function of time was obtained according to the following equation: 
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∆θ (°.s-1) = (θtf  - θt0  )/(tf − t0)   (3) 

 

where θtf  is the contact angle (°) at the final time tf (s), θt0  is the contact angle at the 

initial time t0 (s).  

Absorption (∆V) and spreading (∆L) rate of drops were calculated from the drop 

volume and drop width kinetic, respectively, using the following equations: 

 

∆V (%) = (Vtf  -Vt0)/Vt0 × 100   (4) 

∆L (%) = (Ltf-Lt0)/Lt0 × 100   (5) 

 

where Vtf is the volume (µl) of droplet at the final time tf (s), Vt0 is the volume (µL) at 

t0 (s), Ltf is the width (mm) of droplet at the final time tf (s), and Lt0 is the drop width 

(mm) at t0 (s). 

In addition, the temporal variation of experimental water contact angles was fitted 

using the equation (6) proposed by Farris et al. (Farris et al., 2011): 

 

θ(t) =  θt0 exp(ktn)   (6) 

 

where k should be related to the ∆θ velocity and n to the process resulting to the contact 

angle evolution. In theory, n = 0 and n = 1 indicate pure absorption and pure spreading 

phenomena respectively. Parameter estimation for Equation 6 was performed by using 

a non-linear fitting procedure from Matlab© (Matlab and statistics Toolbox Release 

2015b, The MathWorks, Inc., Natick, Massachusetts, United States). Estimated values 

for k and n were obtained by 2 ways: (1) fixing the value of  θt0 and (2) estimating 

additionally the parameter θt0. Concerning parameter initialization for the estimation 
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procedure, n was set to different values, in order to avoid local minimum, while θt0, 

when estimated, was set to the first experimental measurement. Parameter k was pre-

estimated by interpolating experimental data around t = 1 s which allow to rewrite 

equation (6) as: 

 

k =  ln( θ(1)/ θt0)   (7) 

 

The film surface tension or surface free energy (γ, in mN.m-1) and polar and dispersive 

components were calculated using the acid-base approach (equation (9)) based on the 

Young’s equation (equation (8)) (Karbowiak, Debeaufort, & Voilley, 2006; van Oss, 

Ju, Chaudhury, & Good, 1989) : 

 

γLV × cosθt0 =  γSV − γSL   (8) 

 

where γLV, γSV and γSL are the surface tensions of the liquid-vapor, solid-vapor and solid-

liquid interfaces. 

The acid-based method was developed to express total surface tension (equation (9)) 

in term of a dispersive component or Lifshitz-van der Waals component (γLW)  and a 

polar component or Lewis acid-base component (γAB):  

 

γ = γLW + γAB   (9) 

 

Van Oss et al. (van Oss et al., 1989) proposed to determine the solid surface tension 

by using three reference liquids and the equation (10). This equation takes into account 
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the change of surface free energy and considering the dispersive and polar components 

and the γ− and γ+parameters of polar component: 

γLV(1 + cosθt0) =  2(�γSVLWγLVLW�
1/2

+ (γSV+ γLV− )1/2 + (γSV− γLV+ )1/2)   (10) 

Therefore, three reference polar and apolar liquids, milliQ water (18.2 MΩ), ethylene 

glycol and diiodomethane for which γLW, γ+  and  γ−are known, were used to determine 

the surface tension of Acacia gum films. 

2.2.5. Affinity of Acacia gum films for organic volatile compounds 

Contact angle measurements were used to evaluate the affinity between A. senegal and 

A. seyal films and the organic volatile compounds described in Table V.2. A droplet (2 

µL) of the selected compound was deposited on the spin coated films (glass support) 

and the variation with time of contact angle was monitored for 0.5 s since the total 

wettability was reached quickly for all compounds. The contact angle values at 

equilibrium and the absorption (∆V) and spreading (∆L) variation of drop were 

determined. 

2.2.6. Water vapor permeability 

Water vapor permeability at 25°C of the casted films was determined using a 

standardized gravimetric method (AFNOR NF H00-030, 1974). Disks of film samples 

were placed between two Teflon-based rings on the top of glass cells containing distilled 

water to provide a relative humidity of 100 %. Cells were put in a desiccator containing 

silica gel and placed in a ventilated chamber at 25°C. Tests were repeated 5 times for 

each sample. The theoretical RH gradient was 100% but was controlled by a relative 

humidity probe and the measured gradient was used for WVP calculation using the 

following equation (11): 

 

WVP = (∆m × e)/ (∆t × A  ×  ∆p)   (11) 
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where Δm/Δt is the weight loss per unit of time (g.s-1), A is the film area exposed to 

moisture transfer (9.08 × 10−4 m2), e is the film average thickness (m) and Δp is the 

measured water vapor pressure difference between the two sides of the film (Pa). 

2.2.7. Extraction of aroma compounds from emulsion based films 

The following extraction procedure was used to quantify the residual amount of 

limonene and linalool in films after drying. Pieces of films (0.1 g) were immersed in 

20ml water and n-pentane mixture (50:50 v/v). 100 µL of an internal standard solution 

(10 g.L-1 of 2-heptanol in absolute ethanol) were added, and the mixture was shaken 

for 16h under magnetic agitation (500 min-1). The solutions were then frozen to easily 

separate the water phase from the organic phase containing limonene or linalool and 2-

heptanol. The removed organic phase was dried over ammonium sulfate ((NH4)2SO4) 

and analyzed by gas chromatography. The analysis was carried out on a CP-3800 Gas 

chromatography (Varian, Les Ulis, France) equipped with a J&W scientific DB-5 

column (30 m x 0.320 mm i.d. x 0.25 µm of thickness and a flame ionization detector 

(FID); hydrogen, 30 mL.min-1; air; 300 mL.min-1; nitrogen; 30 mL.min-1). Hydrogen 

was used as carrier gas with a flow rate of 1.5ml.min-1. The oven temperature was 

programmed to rise from 40 to 150 °C at 6 °C.min-1, then at 15 °C.min-1 to 250 °C, and 

held at 250 °C for 10 min. Injector and detector temperatures were adjusted at 250 °C 

and 300 °C respectively. Injections were done in split mode with a 1:20 ratio. 

Quantifications of limonene and linalool were performed using the internal standard, 

2-heptanol. For these two components the response coefficients relative to this internal 

standard (k) were determined as 0.74±0.01 and 0.57±0.03, respectively. The 

extractions were done in triplicate. 

2.2.8. Statistical analysis 

The one-way analysis of variance was performed with Statistica version 10 (France) to 

detect significant differences between and within the groups of results. The signification 

level used was 0.05.  
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3. Results and discussion 

Two techniques namely spin coating and casting, were used in this study to make the 

different Acacia gum films. Spin coating was carried out to obtain thin films (around 

2±1 µm) with smooth surface and to investigate accurate surface properties without 

risk of variation due to roughness. Casting allows obtaining thicker self-supported films 

after removing from the support and was performed to measure functionalities as the 

water vapor permeability and aroma retention. Thus the thickness of cast films 

(180±21 µm) was 100 times higher than those of spin coated films.  

3.1. Microstructural characterization and surface properties of spin coated films 

In this part, the microstructure and the surface properties of spin coated films were 

investigated. Thus, the surface self-organization of the two gums, A. senegal and A. 

seyal, in relation to their composition was established. 

3.1.1. Film microstructure 

A rough surface can impact the  measured value of contact angle value (Yuan & Lee, 

2013) and by consequence the properties of films. The microstructure of A. seyal and 

A. senegal spin coated films without glycerol and with 20 % and 15 % glycerol, 

respectively, was first analyzed by SEM and AFM. The effect of support type, gum 

type and glycerol addition were studied. 

The morphology of spin coated films was not affected by the nature of the support 

(data not shown), therefore only the films coated on glass support were presented in 

Figure V.1 and V.2. The observation of microstructure by SEM and AFM showed that 

Acacia gum film surface was smooth and compatible with contact angle measurement 

since the root mean square of roughness value (Rq) was weak (< 2 nm), i.e. representing 

less of 0.1% to the film thickness. However, the film surface morphology was clearly 

depending on the nature of the gum. The surface of A. senegal films studied by SEM 

(Figure V.1) appeared smooth and homogeneous with some aggregated particles 

distributed on the surface whereas A. seyal films showed an irregular surface with a 
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repetitive organization as numerous large particle were uniformly distributed onto the 

surface. Additionally, the complex topography from AFM (Figure V.2) confirmed the 

more heterogeneous morphology of A. seyal film surfaces. A clear difference between 

the root mean square of roughness value (Rq) was observed which is equal to 0.71 nm 

and 1.95 nm for A. senegal and A. seyal, respectively. In agreement with our study, 

Castellani et al. (Castellani, Gaillard, et al., 2010) observed by AFM that A. senegal 

dried films obtained by depositing a solution at 1 µg.mL-1 on mica plate at 28 mN.m-1 

of surface pressure and applying the Langmuir-Blodgett method to transfer the films, 

showed a smooth surface with some aggregated particles inducing some protrusion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure V.1: SEM micrographs (x10.0k) of a spin coated film of A. senegal without glycerol (A), A. 
senegal with 15 wt% of glycerol (B), A. seyal without glycerol (C) and A. seyal with 20 wt% of glycerol 
(D) deposited on glass support. 

A B 

C D 
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The higher surface roughness of A. seyal films compared to A. senegal ones could be 

due to differences in their chemical composition and structural property. While 

composed with the same core structure of 1,3-linked β-D-galactopyranose chain 

substituted in position 6 by side chains, the sugar blocks of A. seyal gum presents the 

lowest degree of branching (~60% branching vs 80% branching for A. senegal) with 

short side branches (Lopez-Torrez et al., 2015). Moreover, A. seyal is richer in arabinose 

than A. senegal, this sugar favoring intra and intermolecular hydrogen bonding 

(Chalikian, 1998) and then probably playing a key role in its compact conformation. 

Recently, it was confirmed that A. seyal has higher hydration ability than A. senegal 

(Mejia Tamayo et al., 2018).  

It can be hypothesized that in contact with air and in concentrated medium, the 

macromolecular conformation and polarity characteristics of A. seyal induced their 

aggregation. Despite the higher polydispersity of A. senegal (Mw/Mn = 2) compared to 

A seyal (Mw/Mn = 1.5), the former produced a more homogeneous film surface (Lopez-

Torrez et al., 2015; Sanchez et al., 2017). 

A. senegal is also identified by a higher protein amount (Table V.1) than A. seyal with 

especially a higher proportion of protein-rich AGPs. Moreover, the protein fraction 

from these protein-rich AGPs was found to be more accessible to enzyme (protease), 

and then to the external environment, for A. senegal suspension than for A. seyal ones 

(Flindt, Al-Assaf, Phillips, & Williams, 2005). It can be hypothesized that to decrease 

the surface tension the process differed for A. senegal and A. seyal. In the case of the 

later, a clustering or aggregation of AGPs mediated by strong macromolecules 

interactions implying hydroxyl groups in hydrogen bond can be suggested whereas in 

the case of the former the solvent-accessible proteins part can move preferentially to 

the interface with air and recover all the surface explaining the homogeneity of A. 

senegal surface films. Aggregation of polysaccharide chain was already observed with 

cellulose ester ultrathin films in order to avoid an unfavorable interaction with air 

(Kosaka, Kawano, Salvadori, & Petri, 2005). At liquid-liquid interface, the structural 
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‘wattle blossom’ model is proposed to explain the adsorption of protein-rich AGPs of 

A. senegal: the protein part anchors at the oil-water interface and the repelling polar 

sugar blocks attached to this chain provide a steric barrier over the interface 

(Dickinson, 2003). Similar model could explain the structuration of A. senegal film.  

The effect of glycerol addition on film surface smoothness was also investigated. The 

compatibility between Acacia gum and glycerol as plasticizer was demonstrated since 

there was no phase separation with glycerol addition as observed by SEM and AFM in 

contrast to alginate-based films (Hambleton et al., 2009). SEM showed that A. senegal 

films surface was apparently not strongly affected by the addition of glycerol. In 

contrast, for A. seyal films, glycerol seemed act by decreasing the aggregated particles 

size and inducing more homogeneous and smooth film surface. Rq determined from 

AFM measurement confirmed these results. Indeed, Rq of A. senegal films with 15 % 

of glycerol remained constant with a value of 0.74 nm (as compared to 0.71 nm without) 

whereas Rq decreased under 1.69 nm for A. seyal films with 20 % of glycerol (compare 

to 1.95 nm without). Then the slight decrease of the A. seyal films roughness could be 

induced by intra- and/or intermolecular interaction changes due to new interactions, 

and especially hydrogen bonding between water, glycerol and A. seyal molecules. 

Indeed, glycerol is a protic solvent which each molecule has three donor and three 

acceptor sites favorable to the establishment of hydrogen bonding with water, Acacia 

gum molecules and glycerol molecules. In water-glycerol mixed solvent containing 

dextran, a branched polysaccharide, it was shown that the hydrogen bonding sites were 

more available than in pure water allowing its better solvation and expansion with an 

increase of the coil radius in this mixed solvent (Antoniou & Alexandridis, 2010). 

Similar effect can be suggested for A. seyal gum with the establishment of hydrogen 

bonding between glycerol and hydroxyl group of sugars from A. seyal gum molecules 

allowing a better solvation of these molecules at the interface, and then preventing 

their aggregation.
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Figure V.2: AFM 3D (10x10 µm2) and 2D images (3x3 µm2) of A. senegal film without glycerol (A), A. senegal film with 15% glycerol (B), A. seyal film without 
glycerol (C) and A. seyal film with 20% glycerol (D) on glass support. 

A B 

C D 
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This structural morphology study has revealed that the surface of Acacia films was 

smooth and clearly compatible with contact angle measurements. However, difference 

in surface properties between both gums films was obvious. 

3.1.2. Surface properties of films 

3.1.2.1. Water contact angle measurement 

The value of contact angle θ with water is a current parameter used to measure the 

degree of hydrophobicity of a material (Karbowiak, Debeaufort, & Voilley, 2006). As 

defined by Vogler (Vogler, 1998), the relative “hydrophilic” term was applied to surfaces 

exhibiting a water contact angle not exceeding 65 degrees (θ<65°) and “hydrophobic” 

to surfaces exhibiting a θ≥65°, based on the appearance and disappearance of long-

range hydrophobic interactions. Basically, hydrophobic surfaces are less water wettable 

than hydrophilic ones. 

In Table V.3, the contact angles of spin coated films are reported as a function of 

support (glass or LDPE blade), gum types and glycerol addition. The contact angle 

values were immediately measured after droplet deposition (θt0 value). Whatever the 

film composition, there was no significant effect of the support nature on the contact 

angle values. This confirmed the SEM observation that the structuration of gum films 

was similar on the hydrophobic (LDPE) and hydrophilic (glass) surface. The impact of 

support on contact angle values was not generally described in literature but, for the 

present study, the nature of support was assessed to find the convenient support for 

dried films to be peeled intact (Karbowiak, Debeaufort, Champion, et al., 2006). The 

only study reporting support effect concerned β-casein films for which a difference of 

structuration depending on support hydrophobicity was observed with change in 

wettability (Nylander & Tiberg, 1999). 

A. seyal films with θ around 40° displayed hydrophilic surface whereas the contact angle 

values (around 60°) of A. senegal films were close to the limit 65° value, suggesting that 

surfaces were equally hydrophobic and hydrophilic (Vogler, 1998). Then, A. seyal films 

showed significantly lower θ value than A. senegal confirming that the last films were 
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more hydrophobic in relation to its less strong moisturizing ability (Mejia Tamayo et 

al., 2018). This variation can be related to the differences in the protein content of the 

two gums, the establishment of specific intramolecular bond and resulting structuration 

at the surface of the films. Moreover, the difference between the two gum films was in 

agreement with the specific structural morphologies observed by SEM and AFM. 

Comparing to values reported in the literature, the θ values found for Acacia gum films 

were in the range of the values reported for polysaccharides and proteins films varying 

from hydrophilic (θ =32°) to hydrophobic surface (θ = 106°) (supplementary data). 

Whereas some polysaccharides films were reported as highly hydrophobic such as those 

made with Kafiran or chitosan, others were more hydrophilic such as starch films. 

However, protein based films were generally characterized by hydrophobic surface 

properties with θ≥65°.  

As suggested by microstructural observations and the underlying assumptions, protein-

rich AGPs from A. senegal gum could be mainly located at the air/solid interface with 

a structuration depending on the protein content and its accessibility. The protein 

adsorption at the air/water interface or to various kind of surfaces has been intensively 

studied (Damodaran, 2004; Vogler, 2012). This last author promoted the idea that 

protein adsorption at the solid/liquid interface is not fundamentally different than 

adsorption to the air/liquid interfaces in the case of hydrophobic solid surface. The 

level of surface hydrophilicity is the result to water displacement and change in water-

protein interaction. Then, the hydrophobic part of protein is found at the surface. 

However, the water displacement is function of different parameters as protein 

concentration, protein molecular size, protein conformation (Damodaran, 2004) and 

adsorbent surface energy (water wettability) (Vogler, 2012). 

The comparison of adsorption characteristics at air-water interface between β-casein 

and a glycoprotein obtained from crude gum after gel filtration purification has shown 

that the affinity of the last for interfaces was weaker than that of proteins (Damodaran 

& Razumovsky, 2003). The purified glycoprotein was a hydroxylproline-rich 
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glycoprotein (GAGP) with ~90% carbohydrate and 10% protein content and molecular 

weight between 2.2 × 106 - 5.6 × 106 g.mol-1. The monolayer coverage of the surface 

was estimated and depended on the way the GAGP lies at the interface (flat or by 

cross-sectional area).  

As demonstrated for apricot gums, the contact angle values slightly differed with gum 

origin and strongly changed with concentration (5 and 20%): increasing by instance 

from 37.7° to 50.6° with the concentration increase (Chichoyan, 2015). However, the 

film surfaces were always characterized by hydrophilic surface in contrast to our results. 

The author suggested the impact of composition to explain differences between 

varieties, i.e. the high hydrophilic films will be rich in uronic acids. The impact of 

concentration can be correlated to the water content and the reorganization of gum 

molecules at the surface. The fact that both Acacia gums are constituted by a 

continuum of AGPs with different protein content more and less accessible makes 

difficult to predict their behavior at interfaces. The higher content of sugar units 

correlated with a low protein content of A. seyal and the hydrophilic surface of films 

argued to the presence of carbohydrate part of AGPs at the surface whereas the protein 

part may cover the surface for A. senegal films. As glycerol affected microstructure, its 

addition in film-forming solution can also induce changes in surface properties and help 

to understand the structuration of films.
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Table V.3: Water contact angle (θ) of Acacia gum spin coated films deposited on glass and LDPE supports. Kinetic parameters from water contact angle 
measurements: Velocity of contact angle variation during 10sec (−∆θ )  in °.s-1; water droplet width (∆L) and volume (−∆V) variation expressed in %. Main 
parameters obtained from fitting equation 4 to experimental results describing contact angle evolution rate (k), physicochemical phenomena involving in kinetic 
process (n) and root mean square error (RMSE). 

Roman superscripts denote statistically significant differences in each column. 

  Parameters derived from contact angle 
measurement for spin coated films 

 Estimated parameters for spin coated 
films 

  θ at t0 (°) −∆θ (°.s-1) ∆L(%) −∆V(%)  -k n RMSE (°) 

Glass 
support 

A. senegal film without glycerol 62.2a±0.3 2.6a±0.1 23.9 4.5  0.119a±0.007 0.63±0.01 1.20±0.06 

A. senegal film with 15 wt% of glycerol 68.3b±1.2 4.0b±0.4 44 4  0.165b±0.008 0.73±0.13 1.31±0.35 

A. seyal film without glycerol 42.4c±0.1 1.6c±0.02 20 2  0.121a±0.000 0.57±0.01 0.86±0.10 

A. seyal film with 20 wt% of glycerol 50.8d±1.5 3.0d±0.2 38 7  0.305c±0.013 0.52±0.04 1.55±0.25 

LDPE 
support 

A. senegal film without glycerol 60.3a±1.2 2.1e±0.2 19 3  0.075d±0.005 0.79±0.04 0.61±0.19 

A. senegal film with 15 wt% of glycerol 69.5b±1.4 3.7b±0.2 37 7  0.131a±0.007 0.76±0.01 1.15±0.06 

A. seyal film without glycerol 41.7c±0.5 1.4c±0.1 15 6  0.066d,e±0.001 0.72±0.03 0.44±0.07 

A. seyal film with 20 wt% of glycerol 49.2d±0.8 2.8a,d±0.2 32 8  0.184b±0.003 0.65±0.01 0.83±0.03 
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3.1.2.2. Effect of glycerol on water contact angle value 

Similar behavior for both gums was observed with the addition of glycerol with an 

increase of the contact angle value and then of the film surface hydrophobicity (Table 

V.3). The increase was stronger for A. seyal films, the most hydrophilic polymer, than 

for A. senegal. This suggested a new surface organization in the presence of glycerol 

that is reflected by the increasingly smooth surface observed by SEM and AFM, 

especially for A. seyal gum films. 

According to literature, the effect of glycerol seems dependent on the hydrophobicity 

of films. For instance, the addition of glycerol to an iota-carrageenan based film, 

characterized by a hydrophobic surface (θ = 88.3±4.0°), tended to increase the surface 

hydrophilicity (θ = 44.1±3.8°) (Karbowiak, Debeaufort, Champion, et al., 2006). 

Authors suggested that the structure and composition of the film surface was changed 

by the addition of glycerol, inducing either a reduction of polymer–polymer interactions 

or an exposition of glycerol molecules at the surface of the film. Similar decrease of the 

water contact angle was reported for varied other hydrocolloids films (Supplementary 

table V.1) (Ahmadi, Kalbasi-Ashtari, Oromiehie, Yarmand, & Jahandideh, 2012; 

Ghasemlou, Khodaiyan, Oromiehie, & Yarmand, 2011; Jouki, Khazaei, Ghasemlou, & 

Hadinezhad, 2013; Seyedi, Koocheki, Mohebbi, & Zahedi, 2014). The only exception 

found in literature was for sage seed gum films, characterized by hydrophilic surfaces, 

since the contact angle value increased with glycerol concentration, as observed for 

Acacia gums. Sage seed gum is a galactomannan containing 28 to 32% of uronic acid 

but also a protein part which represents on average 2%, i.e. between A. seyal (1%) and 

A. senegal (2.7 %). The films of sage seed gum can be considered as hydrophilic (θ < 

65°) as for A. seyal films (Razavi, Cui, Guo, & Ding, 2014; Razavi, Mohammad Amini, 

& Zahedi, 2015). The authors explained the increase of hydrophobicity by the formation 

of hydrogen bond between the hydroxyl group of plasticizer and the hydrophilic group 

of the gums chain (carboxyl and hydroxyl group) reducing the available hydroxyl 

groups at the film surface. Then, the level of establishment of hydrogen bonding 
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between glycerol and hydroxyl group of Acacia gums is function of the sugar content 

and could (i) relatively decrease the available hydroxyl groups at the film surface and 

consequently the hydrophilic contribution, and (ii) induce conformational changes of 

Acacia gum molecules favoring the richness at the surface of hydrophobic residues such 

as acetyl group of 4-O-Me-Glucuronic acid (specifically for A. seyal) and of hydrophobic 

amino acids such as alanine, isoleucine, leucine, glycine, phenylalanine and valine. 

These amino acids are present in both gums but they represented 6.56 mg.g-1 for A. 

senegal against 2.28 mg.g-1 for A. seyal (Lopez-Torrez et al., 2015). 

3.1.2.3. Contact angle evolution 

Due to the hydrophilic nature of biopolymer films, the true water contact angle at 

equilibrium is unattainable and evolution of drops can occur due to absorption, 

spreading, swelling and evaporation (Colivet & Carvalho, 2017; Farris et al., 2011). 

Then, the kinetic changes of contact angle value have been studied and fitted by the 

model proposed by Farris et al. (Farris et al., 2011). In Table V.3, the evolution of 

contact angle and the variation of water droplet volume and width during the first 10 

s are reported. The increase of the droplet width in contact with film surface is 

correlated with the area variation. It indicates the spreading phenomena whereas the 

decrease of the droplet volume corresponds to the absorption phenomena. The 

evaporation was considered as negligible and swelling did not occur. 

Water contact angle diminished with time demonstrating the affinity of water for the 

both films. However, the contact angle evolution was faster for A. senegal than A. seyal 

films in relation to the higher hydrophobicity of the former. In the same way, the 

addition of glycerol favoring surface hydrophobicity increased the contact angle velocity 

for both gums. For all samples, the increase of droplet width (expressed in %) was 

higher than the volume evolution, suggesting that the changes of contact angle were 

mainly due to spreading. Comparing to other biopolymers, the contact angle evolution 

for Acacia gum films was close to the one of pectin and pullulan films, which was also 
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due to spreading phenomena. For other biopolymers such as chitosan and gelatin films, 

both absorption and spreading occurred (Farris et al., 2011). 

Additionally, the variation of water contact angles was fitted using the equation (4) 

which allowed to obtain “k” and “n” parameters. Estimated values for k and n were 

obtained by 2 ways: (1) fixing the value of  θt0 and (2) estimating additionally the 

parameter θt0. The last procedure was used since the estimated θt0  values were in 

agreement with the experimental values. Fitting the contact angle evolution shows a 

good correlation between the estimated values and experimental ones for all samples 

as proved by the RMSE which is always inferior to the standard deviation. According 

to Farris et al. (Farris et al., 2011), “k” is related to the velocity of contact angle 

variation and the value of n provided indication about the evolution process, with n = 

0 and 1 representing total absorption and total spreading process, respectively. k values 

were well correlated to the experimental data in term of the glycerol effect but not to 

the gum type that had no effect on contact angle evolution. For all samples, the values 

of n were close but slightly higher than 0.5 which indicated that absorption and 

spreading phenomena occurred during the contact angle evolution, with however a 

slight prevalence of spreading phenomenon. The model proposed by Farris et al. allowed 

to confirm the affinity of gums films for water but failed to predict precisely the 

evolution of contact angle and the predominant phenomenon. This might be due to the 

short time used to follow the evolution of the contact angle and deduced the value of 

model parameters. 

3.1.2.4. Free surface energy 

Using three liquids of reference (water, ethylene glycol and diiodomethane) and 

applying the method of van Oss, the surface tension (γ) of films without glycerol was 

evaluated. Additionally, the surface thermodynamic properties were characterized by 

the dispersive (γLW) components of surface tension and polar (γAB) but also by electron 

donor (γ-) and acceptor (γ+) parameters of the polar component. When a film contains 

both γ- and γ+ parameters at appreciable levels, it will be defined as “bipolar” whereas a 
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surface is considered as monopolar when one kind or the other (γ- or γ+ parameters) 

dominates (van Oss, Chaudhury, & Good, 1987). The surface tension (Table V.4) 

appeared higher for A. seyal films (46.8 mN.m-1) than for A. senegal films (40.5 mN.m-

1). This confirmed that the chemical structure of film at the surface differed. The 

surface energy of Acacia gum films was in the same order of magnitude (12 to 60 mN.m-

1) than the values found for other polysaccharides and protein films (Supplementary 

table V.1). Both films of Acacia gums were characterized by polar and dispersive 

components and behaved as polymers with dual polarity. However, the polar 

component was remarkably lower than the dispersive component for both gums (Table 

V.4). 

 

Table V.4: Contact angle (θ) of diiodomethane and ethylene glycol for Acacia gum spin coated films. 
Surface tension (γ), disperse (γLW), and polar (γAB) components, electron-donor (γ− ) and electron-acceptor 
(γ+) parameters of the polar component, in mN.m-1, calculated according to the method of van Oss. 

 θ diiodomethane 

(°) 
θ ethylene glycol 
(°) 

γ γLW γAB γ− γ+ 

A. 
senegal 
film  

40.9a±0.7 44.1a±0.5 40.7a±0.5 39.2a±0.4 1.5a±0.1 21.3a±0.6 0.0±0.0 

A. seyal 
film 

45.0b±0.3 51.6b±1.1 46.5b±1.3 37.0b±0.2 9.5b±1.2 56.8b±1.1 0.4±0.1 

Roman superscripts denote statistically significant differences in each column. 

 

In agreement with Acacia gum films, gelatin (Farris et al., 2011), whey proteins or 

wheat starch films (Basiak et al., 2016) showed polar and dispersive components of 

surface tension. The latter was predominant meaning that these films have more 

affinity for apolar compounds but are able to interact with polar compounds such as 

water. Pectin, pullulan and chitosan (Farris et al., 2011) films showed polar component 

value (γAB) equal to zero suggesting that these polysaccharides films behaved 
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preferentially as apolar surface. Moreover, the polar component of A. senegal (1.3 

mN.m-1) was significantly lower than that of A. seyal (9.7 mN.m-1) according to its 

higher hydrophobicity. The value of surface tension of an arabinogalactan (without 

protein part) having molar mass of 8×105 g.mol-1 was reported equal to 50.2 mN.m-1 

and its parameters were consistent with the results obtained with A. seyal films with 

γLW = 37.6 mN.m-1, γAB = 12.6 mN.m-1 (van Oss, 1994). For both gums but also for the 

arabinogalactan mentioned before (γ- = 53.1 mN.m-1 and   γ+ = 0.75 mN.m-1), the 

electron donor (γ-) represented the major contribution of the polar component (γAB) 

but differed between the two gums: the higher value was observed for A. seyal. For 

Van Oss, Chaudhury, and Good (van Oss et al., 1987), all polysaccharides are 

monopolar bases and the value of γ- exceeded 28 mN.m-1. It was the case for A. seyal 

but not for A. senegal, confirming as previously suggested that the dominant 

polysaccharide part was preferentially exposed at the surface of A. seyal gum films. 

Among the polysaccharide studied by Farris et al., only pullulan had the value of γ- 

exceeded 28 mN.m-1 (γ- = 35.6 mN.m-1). The authors justified this by the fact that 

pullulan possessed a strong monopolar electron donor characteristic in relation to the 

high content of hydroxyl groups. The behavior of A. seyal seemed to be more similar 

to arabinogalactan or pullulan in agreement with the high content of arabinose and the 

flexibility of the backbone which allowed to water to interact promptly (Farris et al., 

2011). The hydration properties of monosaccharides and affinity of water strongly 

depend on the number of hydroxyl group (pentose against hexose for example) but also 

on the relative position, the proximity, of other polar groups (Chalikian, 1998). 

Moreover, the value of γ+ for A. seyal is slightly superior to zero unlike A. senegal 

indicating that some electron acceptor groups could be present at the A. seyal film 

surface such as carboxyl function present in glucuronic acids or amino acids. However, 

A. seyal was poorer in glucuronic acids and amino acid than A. senegal. The dual 

polarity seemed less pronounce for A. senegal than A. seyal films that could be 

explained by (i) the ose compositions less rich in arabinose, (ii) the absence of COO- 

group at the surface in the relation to the value of γ+ equal to zero and (iii) the higher 



Chapter 5 : Surface properties of Acacia senegal vs Acacia seyal films and impact on specific 
functionalities 

 

209 

content of apolar amino acids in relation to the higher content of protein-rich AGPs at 

the surface as previously stated. 

3.1.3. Affinity of volatile organic compounds for Acacia gum films as determined 

by contact angle measurement 

For a better understanding of the surface organization, the wetting of Acacia gums 

films by apolar compounds was studied. 

The contact angle values of different organic compounds chosen (Table V.2) in order 

to investigate the effect of polarity and chemical function were measured. As the 

compounds are volatile at atmospheric pressure, the effect of evaporation was first 

studied by measuring the volume of droplet formed on the tip of needle in the air for 5 

min. The volume variation was found negligible for all tested compounds excepted for 

octane which evaporated at a rate of 0.017 µL.s-1. For this compound, the evolution of 

contact angle with time could not be evaluated. 

The contact angle values between the different volatile compounds and both Acacia 

gum films were weak, being all <20°, showing the high affinity between Acacia gum 

films and hydrophobic compounds and confirming the dual polarity of the Acacia gum 

films (Figure V.3). Whereas it is generally admitted that small contact angles below 

20° cannot be accurately measured due to the difficulty to assign a tangent line when 

the droplet profile is almost flat (Yuan & Lee, 2013), the values were repeatable and 

there was a graduation in the affinity with the compounds polarity as demonstrated 

for linear alcohols and alkanes (Figure V.3). This effect of alkanes polarity on contact 

angle values were also described for an apolar PTFE (polytetrafluorethylene) film (Fox 

& Zisman, 1950; Neumann et al., 1971). Additionally, the chemical nature of the 

compound impacted the contact angle values since the values for alkanes were lower 

than those of alcohols for the similar logP value. Thus, there was a better affinity 

between Acacia gum films and alkanes than alcohols. The increase of contact angle 

values for alkanes with decrease polarity showed non-linear relationship but the affinity 
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is always high even if the hydrophobicity of the compound is high. This non-linearity 

was not observed for alcohols because the number of values were insufficient to 

conclude. 

 

 

Figure V.3: Contact angle values of alcohols (◇, ◆), alkanes (▲, △), linalool (□, ■), limonene (○, ●) 
for films of A. senegal (black) and A. seyal (white) gums as a function of hydrophobicity of components 
(expressed by logP). 

 

The contact angle for a terpene (limonene) and a terpenyl alcohol (linalool) was also 

measured for both Acacia gum films (Figure V.3). Limonene is a more apolar compound 

than linalool and showed the lower contact angle value as observed for alkanes and 

alcohols. Linalool characterized by a linear structure and limonene by a cyclic structure 

are C10 compounds and showed similar affinity that decanol and decane, respectively. 

However, it seemed that the cyclic molecule had slightly more affinity for Acacia gum 

films than the linear one. The values of contact angle found using diiodomethane (Table 

V.4) which is also an apolar compound (logP = 2.48), were higher than those measured 

for other organic compounds with a similar polarity. These results demonstrated that 

contact angle values depended not only on the polarity and structure but also on 

chemical nature of the compound. 
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Despite the difference in surface tension and value of polar and dispersive components 

between A. seyal and A. senegal gum films, the contact angle values were not 

significantly affected by the nature of gum excepted for decanol characterized by a logP 

of 4.57. For this compound, A. senegal film showed a greater affinity. It can be 

hypothesized that decanol possesses a sufficient long chain to interact with A. senegal 

gum films with its two extremities: one (OH) with a polar part and the other (CH3) 

with an apolar part of the surface. For A. seyal, the interaction with decanol will be 

limited to one extremity (OH) explaining the lower affinity. 

Leelaphiwat et al. (Leelaphiwat et al., 2012) had studied the affinity between eucalyptol 

(an oxide monoterpene with logP of 2.74 (source: chemspider.com)) and polymeric 

packaging materials with different hydrophobicity by contact angle measurement and 

found that the affinity was stronger for polyethylene (θ=9°) and polypropylene (θ=11°), 

the most hydrophobic materials. However, the affinity remained high, with contact 

angle of 14°, for the average polar polymers as polyamide and polyethylene 

terephthalate. Moreover, the results showed that contact angle value followed the same 

trends as the solubility coefficient of eucalyptol for the polymers. 

The contact angle evolution was also monitored and for a same compound family, the 

velocity increased with polarity (Table V.5). Depending on the compound, the 

evolution was similar for both Acacia gum films or more pronounced for A. senegal 

gum films (decane, hexadecane and limonene). In the same way, depending on the 

compound and the gum, the evolution was due to more or less to absorption and 

spreading. For the A. seyal gum films, droplet width and volume moved in the same 

way for the majority of the compounds, then the contact angle evolution might be due 

to both spreading and absorption. However, for hexanol and limonene spreading was 

dominating. For A. senegal gum films, spreading and absorption were implicated in the 

same manner for hexanol and linalool the most polar components, spreading was 

preponderant for octanol and decanol and absorption clearly dominated for decane, 
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hexadecane and limonene, the most apolar compounds. Then it seems that for this gum 

film, the dominant phenomenon depended on the polarity of compounds. 

In the case of Acacia gum films, the laws describing the affinity between films and 

compounds were complex and not due only to the surface properties of films or only to 

the physicochemical properties of organic compounds. Moreover, even if the affinity for 

all apolar organic compounds was strong, the affinity for water was not negligible 

(especially for A. seyal). These results could be related to the specific structure and 

composition with dual polarity of Acacia gum films allowing affinity for both polar 

compound (water) and apolar compounds. As said above, both Acacia gums contain 

hydroxyproline-rich glycoproteins known to bind hydrophobic ligands such as tannins 

and phenolics in plants (Kieliszewski & Lamport, 1994). Then the strong affinity for 

apolar compounds suggested the presence of these molecules at the surface of A. senegal 

films with the protein part exposed to the surface as previously suggested and reported 

also by the ‘wattle blossom’ model at liquid-liquid interface. Protein-rich AGPs are 

present in greater extend in A. senegal than in A. seyal but the protein part is 

differently distributed between A. senegal and A. seyal (Siddig, Osman, Al-Assaf, 

Phillips, & Williams, 2005). Moreover, for A. seyal gum the protein can difficulty cover 

the interface for steric reason. Considering the overall results, it can be argued that the 

structuration of A. seyal film differed implying inter and intramolecular hydrogen 

bonding of polysaccharides and allowing to expose the most hydrophobic part of the 

molecules at the surface.  
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Table V.5 : Parameters derived from volatile organic compounds contact angle measurements for Acacia gum films on glass support: Velocity of contact angle 
variation during 10sec (−∆θ )  in °.s-1; water droplet width (∆L) and volume (−∆V) variation expressed in %. 

 −∆θ (°.s-1)  ∆L (%)  −∆V (%) 

 A. senegal A. seyal  A. senegal A. seyal  A. senegal A. seyal 

Octane ND ND  ND ND  ND ND 

Decane 0.95a±0.01 0.71a±0.05  11 13  29 12 

Hexadecane 0.54b±0.04 0.44b±0.02  6 8  9 9 

Hexanol 0.49b±0.05 0.55a,b,c±0.07  8 11  9 7 

Octanol 0.39b,c±0.05 0.44b,c±0.04  7 6  3 8 

Decanol 0.30c±0.13 0.37b±0.06  5 5  1 7 

Linalool 0.48b,c±0.02 0.47b,c±0.08  8 6  8 7 

Limonene 0.71d±0.05 0.62a,c±0.06  9 13  17 10 

ND: not determined. Roman superscripts denote statistically significant differences in each column. 
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3.2.  Properties of cast films 

The purpose of this part was to study the microstructure and functionalities of Acacia 

gum cast films as water vapor permeability and aroma retention efficiency and to 

establish relationship between these properties and the hydrophilicity/hydrophobicity 

of film surface. 

3.2.1. Film microstructure 

The microstructure of cast films made with glycerol was observed by SEM. The upper 

surface of film (in contact with air during casting) was smooth for both gums 

(supplementary data). For A. seyal gum films, some hollows were observed which could 

be due to the air bubble break during drying step, but at this scale the homogeneity of 

film was obvious. These observations were in agreement with the favorable impact of 

glycerol on films homogeneity previously described for spin coated films. 

3.2.2. Water contact angle 

In parallel to the analysis of spin coated films and for comparison purposes, water 

contact angle for casted films containing glycerol was measured. The contact angle 

values were 74.3±1.4 and 47.4±1.9 for A. senegal and A. seyal, respectively (Table 

V.6). The contact angle value of A. senegal was then higher than the one on A. seyal 

cast films, as found for spin-coated films. Even if cast A. seyal films showed similar θ 

than that for spin-coated films, θ was significantly higher (69.5 against 74.3) for A. 

senegal cast films and the films became more hydrophobic. As the moisture content of 

spin coated and cast films were similar (~10%), this difference could be the result of a 

different structural rearrangement during drying process. Indeed, the drying is fast for 

spin coating while for casting the drying was due to slow solvent evaporation. It can 

be suggested that in parallel to the water evaporation during slow drying, the protein-

rich AGPs which are present in A. senegal moved preferentially to air-solid interface. 

For A. seyal, the intramolecular network should rapidly be established and maintained 

whatever the drying process. As the value of contact angle discriminated the surface 



Chapter 5 : Surface properties of Acacia senegal vs Acacia seyal films and impact on specific 
functionalities 

 

215 

properties of both films, one (A. seyal films) behaving as hydrophilic surface and the 

other (A. senegal films) rather as hydrophobic surface, water vapor permeability is 

expected to be different between the two films. 

3.2.3. Water vapor permeability (WVP) 

The water barrier properties of A. senegal and A. seyal cast films with glycerol were 

measured. The water vapor permeability of both Acacia gum films was high with an 

order of magnitude of 10-11 mol.m-1.s-1.Pa-1. However, A. senegal gum films showed 

lower water vapor permeability than A. seyal gum films (Table V.6). These differences 

were consistent with the value of contact angle showing the greater hydrophobicity of 

A. senegal gum films than A. seyal ones. 

 

Table V.6: Contact angle of cast films, thickness and water permeability. 

Films Water contact angle (°) Thickness (µm) WVP (10-11 mol.m-1.s-1.Pa-1) 

A. senegal 74.3±1.4 180±0.021 2.05±0.15 

A. seyal 47.4±1.9 180±0.021 3.01±0.15 

 

It is well known that hydrophilic polysaccharide and protein based films possess high 

water vapor permeability (Fernandes Nassar, Dombre, Gastaldi, Touchaleaume, & 

Chalier, 2018; Ghasemlou et al., 2011; Jouki et al., 2013; Razavi et al., 2015; Sharma 

& Singh, 2016; Wagh, Pushpadass, Emerald, & Nath, 2014; Zhang & Whistler, 2004; 

Zhang, Zhao, & Shi, 2016). The WVP of different polysaccharides and proteins films 

varied from 0.07 to 14x10-11 mol.m-1.s-1.Pa-1 depending on the nature of the polymer, 

the RH gradient and the content of glycerol (Supplementary table V.2). Compared to 

other gums, the WVP of Acacia gum films was in the same order of magnitude that 

the films of cress seed gum prepared with glycerol at 25% (1.17x10-11 mol.m-1.s-1.Pa-1) 

(Jouki et al., 2013), but higher than sage seed gum prepared with glycerol at 40% 

(0.24x10-11 mol.m-1.s-1.Pa-1) (Razavi et al., 2015). Despite the protein content of sage 

seed gum that is in the range of Acacia gums, the barrier properties of Acacia gum 
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films are closer to those of cress seed gum films which did not contain proteins 

(Karazhiyan et al., 2011). It remained difficult to compare these films with Acacia gum 

films as the differences observed could be due to the composition and structure of those 

gums but also to the glycerol content that varied between 15% and 40% according to 

the gum films.  

It was shown for Acacia gum films that the addition of glycerol induced more 

homogenous films. However, it is important to highlight that the glycerol content in 

both films are different and that glycerol can modify WVP. It has been reported that 

the permeability increased with the addition of glycerol as plasticizer to the cress seed 

gum, kafiran, gellan, casein, and whey protein isolate based films (Ghasemlou et al., 

2011; Jouki et al., 2013; Kokoszka et al., 2010; Wagh et al., 2014; Yang & Paulson, 

2000). Authors explained the increase of WVP with the addition of glycerol by (1) the 

increase of free volume in the matrix due to the reorganization of network (2) the 

adsorption of water molecule that could be promoted by the presence of hydrophilic 

glycerol molecule and (3) the formation of glycerol cluster at high concentration of 

glycerol. For Acacia gum films which contain AGPs with different protein content, the 

high WVP could be explained by the reduction of intermolecular force between the 

macromolecules occurring due to the addition of glycerol. For films made with gum 

Cordia, an anionic polysaccharide covalently bound to protein, the WVP increased 

with the increase of glycerol (Haq, Hasnain, & Azam, 2014). It was shown by FTIR 

analyzes that the interaction with glycerol and the nature of hydrogen bonding changed 

with the concentration. Glycerol can be bound by its hydroxyl group to water, polymer 

and other molecules of glycerol. Moreover, hydrogen bonding between the polymer 

hydroxyl groups occurred. At low concentration of plasticizer as in the case of Acacia 

gum films, the hydroxyl groups of the polymer preferentially interacted with glycerol 

inducing the solvation effect of plasticizer.  

Additionally, the higher percentage of glycerol in A. seyal films could partially explain 

the greater permeability of A. seyal films. In the goal to confirm this hypothesis, films 
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of A. senegal containing 20 wt% of glycerol were performed and the water vapor 

permeability assessed, a value of 2.75±0.12 x 10-11 mol.m-1.s-1.Pa-1 was found indicating 

that the glycerol contributed to the increase of WVP. It can be concluded that the 

higher rate of glycerol induced the lower barrier properties of A. seyal gum films 

compared to A. senegal gum films. However, the water affinity of each gum could play 

a role in the difference of behavior as already stated. 

3.2.4. Aroma compound retention of films 

The limonene and linalool emulsion based films were formed in order to measure the 

aroma retention efficiency by Acacia gum films and to make a relationship between 

aroma level maintained in the emulsion based film and the results of contact angle 

measurements for these two compounds.  

 

A.            B. 

 

Figure V.4: Droplet size distribution of limonene (A) and linalool (B) emulsions stabilized by A. senegal 
(black) and A. seyal (white) gums.  
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First of all, the aroma emulsions were formed and the emulsion droplet size was 

measured since the size and homogeneity of droplet distribution can affect important 

film characteristics (Debeaufort & Voilley, 1995; Mchugh & Krochta, 1994). The 

limonene emulsions produced by both gums showed a monomodal particle size 

distribution (Figure V.4.A) with a D4,3 around 3 µm whereas the linalool emulsion 

exhibited a multimodal distribution and higher average droplet size (Figure V.4.B). 

Moreover, for this compound, the nature of gum impacted the size: A. senegal allowing 

to obtain smaller droplet size (around 38 µm) than A. seyal (around 50 µm).  

Acacia gums are well known for their emulsifying properties (Dickinson, Murray, 

Stainsby, & Anderson, 1988). It could be noted that the emulsification process was not 

especially efficient with linalool since the droplet size was very high. As the 

concentration of gums and the process conditions were the same, we can assume that 

the droplet size was dependent on the dispersed phase. The formation of smaller 

limonene droplet size compared to linalool could result of combination between two 

properties: (1) the polarity of the two components; linalool being more polar and soluble 

in aqueous phase than limonene could diffuse fast in the water phase inducing 

flocculation and (2) the affinity of component for gums; linalool having a smaller 

affinity for gums as demonstrated by contact angle measurement. The effect of oil type 

on emulsion droplet size was also reported for cinnamon or ginger essential oil 

incorporated sodium caseinate-based films or for basil and thyme essential oils 

incorporated in chitosan based films specially for emulsions produced by a milder 

emulsification process (Atarés, Bonilla, & Chiralt, 2010; Bonilla, Atarés, Vargas, & 

Chiralt, 2012). The authors suggested that the smaller droplet size of thyme oil could 

be due to the greater surfactant activity of thyme oil amphiphilic components. 

The fact that A. senegal allowed to produce smaller droplet size for linalool than A. 

seyal is due to its higher emulsifying properties in relation to its higher protein-rich 

AGPs and greater viscosity (Table V.1 and values given in paragraph 3.1). In contrast, 

the gum type is less impacting for limonene. This result could be related with the 
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behavior noted when contact angle evolution was followed, i.e. whereas absorption 

dominated for limonene and A. senegal gum films, absorption was counterbalanced by 

spreading which is usually the fastest phenomenon for A. seyal gum films.  

After the drying process, aroma emulsion based films were also characterized. The 

macroscopic observation showed that films with limonene had a homogeneous surface 

in relation with a good repartition of limonene. As expected, the films containing 

linalool showed heterogeneous aspect with a more transparent border and a light-tight 

center because of the phase separation of film-forming emulsions during film drying 

(data not shown). Similar results of destabilized film-forming solution due to creaming 

during drying process were reported with hexanal and limonene emulsions formed by 

iota-carrageenan (Fabra, Chambin, Voilley, Gay, & Debeaufort, 2012). Among 

emulsions characteristics playing important role in emulsion stability, it is admitted 

that the emulsion stability is partly related to the emulsion droplet size (Chanamai & 

McClements, 2000) thereby during the slow drying process of film, linalool emulsion 

destabilization was favored resulting in the heterogeneous aspect of linalool films. The 

stability of emulsions could be improved by reducing the emulsion droplet size by using 

secondary homogenization and high pressure homogenizer such as microfluidizer which 

will allow to increase the homogeneous repartition of aroma compound in films (Bonilla 

et al., 2012). 

In term of aroma retention efficiency by Acacia gum films, the results showed that 

Acacia gum based films had the capability to retain limonene and linalool (Table V.7). 

As expected, limonene was more retained than linalool by both Acacia gum films 

despite its 10 times higher volatility compared to linalool (Table V.2). The effect of 

gum type observed for linalool emulsions was not found again for the retention of aroma 

by films but it can be assumed that the variability between samples were high due to 

the bad repartition of linalool. 

In conclusion, the higher retention of limonene compared to linalool by Acacia gum 

films was consistent with the results of contact angle showing that limonene had more 
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affinity for Acacia gum films than linalool. This strong correlation could be useful in 

the fast prediction of aroma compound retention parameter and the selection of active 

agent for the design of antimicrobial Acacia coating. Indeed, numerous aroma 

compounds such as limonene and linalool are GRAS (Generally Recognized As Safe) 

compounds and exhibit antimicrobial properties against various microorganism strains 

(Espina, Gelaw, de Lamo-Castellví, Pagán, & García-Gonzalo, 2013; Suppakul, Miltz, 

Sonneveld, & Bigger, 2003). 

 

Table V.7: Limonene and linalool retention by A. senegal and A. seyal gum films (in mgaroma.g-1dry film 
and %). 

Aroma 
compound 

Acacia gum 
types 

mg aroma.g-1 dry film  % of Retention of aroma 
compounds 

Limonene A. senegal 141.9±10.4 

157.6±11.1 

59.4 

66.0 

 A. seyal 158.7±11.2 

126.5±8.9 

67.6 

53.9 

Linalool A. senegal 88.8±17.1 

85.6±16.5 

38.0 

36.6 

 A. seyal 77.5±15.0 

88.6±16.9 

33.4 

38.2 

 

4. Conclusion 

The contact angle method is a powerful tool to investigate the surface properties of 

biopolymer films with respect to water but also to other apolar compounds. The 

difference of structural surface organization observed by AFM between A. seyal and A. 

senegal spin coated films was clearly confirmed through their wettability and free 

surface energy: A. seyal gum films being more hydrophilic and having higher free surface 
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energy and polar component than A. senegal gum films. The protein part and the 

apolar groups of A. senegal would be concentrated at the interface giving homogeneous 

surface whereas A. seyal gum films were characterized by an aggregation phenomenon 

due to the richness of sugar units at the surface and strong inter and intra molecules 

interactions. Furthermore, the addition of glycerol affected the film surface properties 

by increasing their hydrophobicity due to new formed interactions between glycerol 

and gum molecules. The amphiphilic properties of Acacia gums were supported by the 

low value of contact angle of apolar compounds on Acacia gum films demonstrating 

high affinity for these compounds. The difference between the two gums is only 

expressed by variations of contact angles with time evidencing that absorption 

counterbalanced by spreading for the most apolar compounds depend on gum type and 

their emulsifying properties. 

In the case of cast films, they exhibited same wetting properties as spin coated films 

even if the difference of film microstructure was not observed by SEM. A good 

correlation between water contact angle value and the WVP depending on gum type 

was established. Moreover, the higher retention of limonene compared to the retention 

of linalool was in agreement with the greater affinity of limonene with Acacia gum spin 

coated films measured by contact angle technique. 
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Supplementary table V.1: Water contact angle and surface energy of different polysaccharide and protein films. NA stands for non-available value. 

   Glycerol (%) θ water (°) γ (mN.m-1) Refs. 

Polysaccharides  Starch  0 43 60.28 Basiak et al., 2016. 

  Pullulan  0 30.53 44.72 Farris et al., 2011. 

  Chitosan  0 103.70 27.8 Silva et al., 2007. 

   0 91.53 46.21 Farris et al., 2011. 

   0 78-82 NA Suyatma et al., 2005. 

   20 70 NA Suyatma et al., 2005. 

  Carrageenans 0 88.30 NA Karbowiak et al., 2006. 

   23 44.10 NA Karbowiak et al., 2006. 

  Kafiran  0 106.41 NA Ghasemlou et al., 2011. 

   35 95.44 NA Ghasemlou et al., 2011. 

  Psyllium hydrocolloid (PH) 15 84.47 NA Ahmadi et al., 2012. 

   35 41.01 NA Ahmadi et al., 2012. 

  Sage seed gum 40 32.26 15.07 Razavi et al., 2015. 
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   Glycerol (%) θ water (°) γ (mN.m-1) Refs. 

 100 55.98 12.64 Razavi et al., 2015. 

  Cress seed gum 0 79.80 NA Jouki et al., 2013. 

 50 43.76 NA Jouki et al., 2013. 

  Lipidium perfoliatum seed gum (LPSG) 40 72.90 NA Seyedi et al., 2013. 

 70 68.36 NA Seyedi et al., 2013. 

  Gum ghatti 15 77.25 NA Zhang et al., 2016 

   30 73.25 NA Zhang et al., 2016 

   45 70.00 NA Zhang et al., 2016 

  Apricot gum from Vayots Dzor 0 50.6 NA Chichoyan., 2015 

Proteins   Soy protein 10 67.6 33.NA9 Silva et al., 2007. 

  Whey protein 0 93 63.7 Basiak et al., 2016. 

  Gelatin  0 65.93 37.39 Farris et al., 2011. 
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Supplementary table V.2: Water vapor permeability (WVP) of different polysaccharide and protein films. NA stands for non-available value.  

  RH gradient Glycerol (%) WVP (× 10−11 mol m−1 Pa−1 s−1) Refs. 

Polysaccharides  Corn hull arabinoxylan 54%RH at 22°C 0 0.26 Zhang et al., 2004. 

   0.5 0.17 Zhang et al., 2004. 

 Potato starch 33%RH at 20°C 0 2.03 Garcia et al., 1999. 

   2 1.34 Garcia et al., 1999. 

 Corn starch 33%RH at 20°C 0 2.04 Garcia et al., 1999. 

   2 1.43 Garcia et al., 1999. 

 Amylomaize 33%RH at 20°C 0 1.46 Garcia et al., 1999. 

   2 1.19 Garcia et al., 1999. 

 Gellan 54%RH at 21±2°C 50 1.08 Yang et al., 2000. 

   75 3.01 Yang et al., 2000. 

   50 1.35 Jouki et al., 2013. 

 Kefiran  75%RH 0 0.28 Ghasemlou et al., 2011. 

   25 0.31 Ghasemlou et al., 2011. 
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  RH gradient Glycerol (%) WVP (× 10−11 mol m−1 Pa−1 s−1) Refs. 

   35 0.33 Ghasemlou et al., 2011. 

 Sage seed gum 97%RH at 22°C 40 0.24 Razavi et al., 2015. 

 Gum ghatti 75%RH at 25°C 15 0.32 Zhang et al., 2016 

   30 0.63 Zhang et al., 2016 

Proteins  Sesame protein 70%RH at 30°C 10 0.07 Sharma et al., 2016. 

 Casein NA 25 6.02 Wagh et al., 2013. 

   50 10.80 Wagh et al., 2013. 

 Whey protein NA 25 10.49 Wagh et al., 2013. 

   50 14.04 Wagh et al., 2013. 

  100%RH at 25°C 37.5 7.70 McHugh et al., 1994.  

   50 9.94 McHugh et al., 1994.  

 Gelatin  75%RH at 20°C 0 1.5 Rivero et al., 2010. 

   20 0.78 Rivero et al., 2010. 

 Soy protein isolate 75%RH at 25°C 40 1.06 Kokoszka et al., 2010. 



Chapter 5 : Surface properties of Acacia senegal vs Acacia seyal films and impact on specific functionalities 

 

227 

  RH gradient Glycerol (%) WVP (× 10−11 mol m−1 Pa−1 s−1) Refs. 

  50%RH at 25°C 20 0.94 Nassar et al., 2017. 
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Supplementary figure V.1: SEM images of upper surface of A. senegal (A) and A. seyal (B) cast films.
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II. Major outcome  

In this chapter, we reported, for the first time, the in-depth investigation of Acacia 

gum film surface. The effect of film formation process and the addition of glycerol as 

plasticizer on film surface structure and hydrophobicity were prior evaluated. Then, 

the spin-coated films were used as a model to determine the surface properties, i.e. 

surface free energy and affinity with different nature compounds. The obtained results 

have been related to the functionalities of film as water vapor permeability and ability 

to retain aroma compounds. The relationship between film properties and the gums 

nature and biochemical composition can be therefore established. The main results and 

some remarks are shown in the following table: 

 

Film forming process 

• Spin coating allowed to produce Acacia gum thin film with and without glycerol addition  

• The addition of glycerol was indispensable to produce a peeled off self-support films with a 

higher thickness compared to spin-coating technique. 

Spin coated film surface structure 

• A senegal films without and with glycerol addition: Smooth homogeneous surface with some 

aggregated particles was observed due to the high accessible protein to lower interfacial 

tension at air interface.  

• A. seyal without glycerol addition: Irregular surface with a repetitive organization as 

numerous large particle uniformly distributed on surface. This could be due to the low 

degree of branching, rich in arabinose favoring intra and inter molecular hydrogen bonding, 

high hydration ability causing aggregation of polysaccharide chain.  

• A. seyal with glycerol addition: Decrease number of aggregation making more smooth and 

homogeneous surface may be due to the hydrogen bonding between glycerol and hydroxyl 

group of A. seyal sugar.  

Water contact angle (Surface hydrophobicity) 
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• A. senegal films was more hydrophobic than A. seyal films. This could be related to the 

higher protein-rich AGPs content and accessibility of the former resulting in the different 

structuration of surface. 

• Addition of glycerol allowed to increase the contact angle for both gum films but the 

increase level was higher for A. seyal than for A. senegal. This could be due to relatively 

decrease of the available hydroxyl groups at the film surface and consequently the 

hydrophilic contribution, and induce conformational changes of Acacia gum molecules 

favoring the richness at the surface of hydrophobic residues such as acetyl group of 4-O-Me-

Glucuronic acid and of hydrophobic amino acids. 

Film surface properties  

• The surface energy of both gum films was composed of polar and dispersive components 

with the lower value of the former than the one of the latter. This was consistent with the 

amphiphilic characteristic of Acacia gum.  

• The dispersive component of A. senegal gum films was higher than the one of A. seyal gum 

films. This was in agreement with the higher protein content of the former. 

• Independently of gum specie, strong affinity between organic volatile apolar compounds and 

Acacia gum films was observed. The better affinity was found between Acacia gum films 

and alkane than alcohol compound.  

Functionalities  

• The higher water vapor permeability was found for A. seyal films than for A. senegal ones. 

This result was in agreement with the outcome of contact angle measurement. 

• The higher retention of limonene compared to the one of linalool was consistent with the 

greater affinity of limonene with Acacia gum films observed from contact angle 

measurement.  
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Chapter 6 –General conclusions and perspectives  

 

La gomme d'Acacia est une gomme naturelle unique par ses propriétés techno-

fonctionnelles. Dans l'industrie alimentaire, elle est principalement utilisée dans le 

domaine des boissons pour stabiliser les arômes sous forme d'émulsions ou pour 

encapsuler les composés d’arômes ou les colorants, et dans le domaine de la confiserie 

comme agent d’enrobage. La gomme d’Acacia, également appelée gomme arabique, est 

un continuum d’arabinogalactanes-protéines (AGPs) qui différent entre eux par leurs 

compositions biochimiques, propriétés physicochimiques et structurales à l’origine de 

leurs diverses fonctionnalités. La connaissance précise de la composition, de la structure 

et des propriétés physicochimiques, et techno-fonctionnelles, des AGPs constitutifs de 

la gomme d'Acacia devrait permettre de développer des produits innovants et à haute 

valeur ajoutée. Seulement deux espèces de gommes sont utilisées et autorisées comme 

additifs, l’A. senegal et l’A. seyal. Des fonctionnalités de ces deux gommes sont 

différentes qui s’expliquent par de faibles variations dans leur composition en 

particulier leur teneur en protéines mais aussi par des propriétés structurales (l’A. 

senegal étant plus ramifiée mais moins compacte que l’A. seyal) et physicochimiques 

(A. senegal est plus visqueuse que l’autre) qui accentue leur disparité. De plus, s’il 

existe beaucoup d’études sur l’A. senegal qui est considérée comme la plus « noble » 

c’est à dire ayant de meilleures propriétés émulsifiantes grâce à la présence d’AGPs de 

haute masse molaire et riche en protéines, il y a encore peu d’études concernant la 

gomme A. seyal qui est pourtant la plus produite. 

Dans ce contexte, le but général de mes travaux de thèse était d’aboutir à une meilleure 

compréhension des propriétés interfaciales et émulsifiantes des AGPs de gomme d’A. 

senegal, d’A. seyal et de leurs fractions. Pour atteindre ce but, les objectifs scientifiques 

suivants ont été fixés : 
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(i) Etablir les relations entre la composition biochimique et les propriétés 

structurales des gommes d’A. senegal et A. seyal et leurs propriétés 

interfaciales. 

(ii) Evaluer l'impact de la nature de la phase dispersée sur les propriétés 

interfaciales des gommes d’A. senegal et A. seyal. 

(iii) Caractériser les émulsions produites par les gommes d’A. senegal et A. 

seyal, et une gomme reconstituée en utilisant des fractions bien 

caractérisées issues de gomme d’A. senegal. 

(iv) Caractériser la microstructure et les propriétés interfaciales de films 

séchés à base de gommes et établir les relations entre ces propriétés et la 

perméabilité à l'eau mais aussi la capacité de rétention de composés 

d’arômes. 

 

Les conclusions clés issues de mes travaux de thèse sont expliquées ci-dessous. 

- La comparaison des propriétés interfaciales entre les gommes d’A. senegal et d’A. 

seyal a permis de montrer qu’à concentration égale en gomme, celles d’A. senegal 

étaient plus efficaces pour abaisser rapidement la tension interfaciale. Cela est lié de 

façon évidente à (i) une concentration plus élevée en protéines, (ii) à une plus grande 

teneur en AGPs de haute masse molaire riches en protéines qui peuvent, de plus, être 

sous forme d’agrégats, (iii) à une plus grande accessibilité de la partie protéique et (iv) 

à une plus grande flexibilité des AGPs et donc une adsorption facilitée. L’importance 

de la teneur en protéines des gommes d’Acacia a été clairement confirmée en faisant 

varier sa concentration au sein d’une même gomme alors que l’importance des AGPs 

de haute masse molaire et riches en protéines et de leur flexibilité est mise évidence 

lorsque l’on compare les gommes en fonction de leurs teneurs en protéines. Par contre 

il est important de souligner que pour une concentration en protéines équivalente, la 

gomme A. seyal de par sa plus grande compacité atteint plus vite l’interface que l’A. 

senegal. 
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Une autre conclusion de l’étude sur la tension interfaciale est qu’il est 

important de faire varier la concentration en gomme pour mieux 

différencier les gommes entre elles. De plus, il ne faut pas se limiter à la 

comparaison de leur tension à l’équilibre mais aussi caractériser plus 

finement les cinétiques de début d’adsorption. 

 

- En ce qui concerne l’étude rhéologique à l’interface, les films formés par les 2 gommes 

ont un caractère élastique. Les résultats indiquent que deux phénomènes se succèdent 

et qu’ils sont dépendants de la teneur en protéines et en AGPs de haute masse molaire 

riches en protéines qui viennent s’adsorber à l’interface. D’abord, on observe la 

formation du film élastique qui se traduit par une augmentation du module et se 

termine par la saturation de l’interface sans doute par la formation de nouvelles liaisons 

inter- et intra-chaines. Ce phénomène dépend directement de la concentration en 

gomme et de sa nature. En effet, plus on augmente la concentration en gomme et plus 

la vitesse de formation des films est élevée et la saturation atteinte rapidement. Si la 

saturation est atteinte pour l’A. senegal avec les 3 concentrations testées (0,5, 1 et 5 

wt%), ce n’est pas le cas pour l’A. seyal à 0.5 et 1wt%. Ceci est sans doute parce que 

la teneur en AGPs d’intérêt reste en dessous de celle de l’A. senegal à 0,5%. Le 2ème 

phénomène s’accompagne d’une diminution du module et correspond à la 

réorganisation des molécules adsorbées à l’interface. Ce phénomène dépend évidemment 

de la concentration en gomme et en protéines mais aussi de l’espèce des gommes. Le 

réarrangement n’a été observé pour l’A. seyal qu’à la plus forte concentration. On peut 

supposer que son apparition est décalée dans le temps par rapport à la gomme A. 

senegal. Cette réorganisation peut s’expliquer par la mise en place de nouvelles liaisons 

entre les blocs polysaccharidiques ou encore une compétition des différentes molécules 

riches en AGP pour l’interface due à la modification de concentration dans le milieu.  

La démarche utilisée dans cette étude, c’est à dire le choix des mêmes 

concentrations pour les 2 gommes n’a pas permis d’apporter toutes les 
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informations nécessaires à une bonne compréhension et comparaison des 2 

gommes. Il aurait été plus judicieux de comparer des gommes à teneur 

équivalente en protéines ce qui aurait fait mieux ressortir le rôle des AGPs 

riches en protéines. De plus cette comparaison est rendue difficile par le fait 

que les molécules d’AGPs de l’A. seyal sont différentes de celles de l’A. 

senegal. 

 

- Toutefois, dans le but de confirmer le rôle prépondérant des AGPs de masse molaire 

élevée riche en protéines sur les propriétés interfaciales, des expériences ont été réalisées 

avec une fraction obtenue à partir d’A. senegal à teneur élevée en ces molécules (IEC-

F1). Il a été clairement montré que les cinétiques des tensions interfaciales (vitesse de 

diminution) et la rhéologie des films à l’interface (valeur du module de viscoélasticité, 

et réorganisation des molécules à l’interface) étaient similaires pour la fraction IEC-F1 

issue de la gomme d’A. senegal à une concentration de 0,415 wt% et pour la gomme 

d’A. senegal à 5 wt%. Pourtant, il s’avère que la teneur en AGPs de masse molaire 

élevée riche en protéines contenues dans la gomme d’A. senegal à 5wt% est plus élevée 

que celle présente dans la fraction. De plus, l’augmentation de la concentration en 

fraction IEC-F1 a permis encore d’accroitre les propriétés interfaciales avec une 

diminution de tension interfaciale plus rapide et plus importante. En ce qui concerne 

le comportement rhéologique, l’utilisation de IEC-F1 à une concentration de 4,15wt%, 

c’est à dire avec une concentration en AGPs de haute masse molaire riche en protéines 

abondantes ne conduit pas à une diminution du module et à un réarrangement comme 

décrit pour la gomme entière. Cette fraction n’est pas constituée seulement par les 

AGPs de haute masse molaire, ce qui peut expliquer les différences trouvées avec la 

gomme initiale. Il faut aussi souligner une présence de sels non négligeables dans la 

fraction IEC-F1 qui a pu modifier la force ionique du tampon et impacter les propriétés 

interfaciales.  
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Ceci souligne d’une part l’importance d’étudier les propriétés des gommes 

en fonction de la force ionique et du solvant et d’autre part de considérer 

non pas les fractions purifiées seules mais de maitriser leurs concentrations 

en reconstituant les gommes pour mieux comprendre leur comportement, 

comme il a été fait dans notre cas pour les émulsions. 

 

- Concernant l’effet de la phase dispersée sur les propriétés interfaciales des gommes, 

les résultats ont montré avec les trois composés sélectionnés que plus la tension 

interfaciale initiale des composés est élevée et leur solubilité dans l'eau est faible, plus 

les gommes d'Acacia diffusent rapidement à l'interface et plus la valeur du module 

élastique est élevée. La différence entre les deux gommes au niveau de la capacité à 

diminuer la tension interfaciale et le module élastique est plus accentuée à l’interface 

de l’octanol, le composé le plus polaire. 

Parmi les composés étudiés, un fort réarrangement du film après saturation de 

l’interface est observé pour le limonène. Ceci pourrait être provoqué par la structure 

cyclique de ce composé qui est moins favorable à la formation de liaisons intra et 

intermoléculaires par rapport à la structure linéaire de l'hexadécane et de l'octanol. 

Mais aussi à sa plus faible viscosité par rapport aux autres composés qui pourrait 

induire des phénomènes de déstabilisation plus importants. 

La différence de comportement à l’interface des 2 gommes mise en évidence 

pour le limonène que ce soit au niveau de la tension interfaciale ou du 

module élastique se retrouve lors de la formation d’émulsions en utilisant 

ce composé.  

En effet, l’utilisation de gomme d’A. senegal a permis d’obtenir des émulsions avec une 

taille des gouttelettes plus faible que celles produites par l’A. seyal pour toutes les 

concentrations étudiées. De plus, les émulsions produites par l’A. senegal avaient une 

meilleure stabilité (delay time élevé et faible CI) que celles produites par l’A. seyal. 
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Ceci était en accord avec l’augmentation plus rapide du module élastique, et la 

saturation du film interfacial de l’A. senegal par rapport à l’A. seyal (Tableau VI.1). 

 

Tableau VI.1 : Propriétés interfaciales et émulsifiantes des gommes d’A. senegal et d’A. seyal à 5 wt% 
avec le limonène 5 wt%. 

 
 
Teneur en protéines 

A. senegal 
 
0.122 wt% 

A. seyal 
 
0.045 wt% 

Paramètres caractérisant les propriétés interfaciales    
   Onset time (s) 12 12 
   Tension interfaciale à 7 200 s (mN.m-1) 11.8 15.5 
   Vitesse de diminution de tension interfaciale au Régime II 
(mN.m-1.s-1) 

6.5 4.1 

   Vitesse de formation du film à l’interface (mN.m-1.s-1) 32.1 14.8 
   Temps mis pour atteindre la valeur maximale du module 
élastique (s) 

1 020 9 000 

   Valeur maximale du module élastique (mN.m-1) 35.3 36.6 
Paramètres caractérisant les émulsions   
   Taille des gouttelettes (µm) 0.73 3.46 
   Delay time (min) 75.8 13.5 
   CI 10.4 23.42 

 

De la même façon que pour les propriétés interfaciales, les propriétés émulsifiantes ne 

sont pas seulement dépendantes de la teneur en protéines. La taille des gouttelettes 

produites par l’A. seyal à une concentration de 20 wt% était en effet plus élevée que 

celles produites par l’A. senegal à 5 wt% contenant moins de protéines. De plus la 

stabilité de cette dernière était aussi plus importante. Ces résultats suggèrent que c’est 

à la fois la composition biochimique (teneur en protéines mais aussi en sucres chargés), 

les propriétés structurales et plus précisément la compacité, la flexibilité des AGPs, le 

taux d’agrégats ainsi que l’accessibilité de la fraction protéique et donc la polarité 

relative des deux gommes qui affectent leurs propriétés émulsifiantes. En effet, si l’A. 

senegal est caractérisée par de meilleures propriétés émulsifiantes que l’A. seyal, c’est 

parce qu’elle a un caractère plus hydrophobe, une teneur plus élevée en protéines et en 

acide uronique, une plus grande flexibilité moléculaire entraînant une plus grande 

accessibilité de sa fraction protéique. En revanche, l’A. seyal possède une plus grande 

teneur en arabinose qui est susceptible de favoriser la formation des liaisons hydrogènes 
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intra et intermoléculaires conduisant à des phénomènes de floculation/coalescence des 

gouttelettes pendant l’émulsification et le stockage. La viscosité des gommes contribue 

aussi à la stabilité des émulsions : la plus grande viscosité des dispersions de gommes 

d’A. senegal permet d’obtenir des émulsions plus stables que celles avec la gomme d’A. 

seyal. L’importance de ce paramètre sur la stabilité a d’ailleurs était confirmée par 

l’ajout de glycérol qui permet d’augmenter la viscosité des suspensions de gommes.  

La purification et la caractérisation des fractions de la gomme d’A. senegal par HIC et 

IEC qui ont été en réalisées en parallèle de cette étude, nous ont permis de reconstituer 

des gommes en utilisant des mélanges de la fraction HIC-F1 essentiellement constituée 

d’AGPs de faible masse molaire et pauvre en protéines et de la fraction IEC-F1 

constituée d’AGPs de haute masse molaire et riches en protéines. Par cette approche 

innovante, nous avons pu étudier des dispersions à différentes teneurs en protéines et 

en AGPs contrôlées. Les résultats ont montré une synergie entre la fraction de haute 

masse molaire riche en protéines de l’A. senegal (IEC-F1) et la concentration totale en 

gomme sur la formation de gouttelettes de petite taille et sur la stabilité à court terme 

de la gomme d’A. senegal. En revanche, seule la concentration totale avait un rôle 

déterminant dans le maintien de la stabilité à long terme des émulsions. A des 

concentrations en protéines égales, la gomme d’A. senegal reconstituée permet une 

meilleure stabilité que l'A. senegal ce qui peut s’expliquer par une teneur en agrégats 

plus importante dans la fraction IEC-F1, se traduisant par une plus grande flexibilité 

moléculaire et une plus grande facilité à aller s’adsorber à l’interface et à stabiliser le 

film mais aussi par une plus grande viscosité. Ce comportement est en accord avec les 

propriétés rhéologiques à l’interface de la fraction IEC-F1 précédemment mises en 

évidence.  

 

- En ce qui concerne les films de gommes, la différence de structuration de la surface 

observée par AFM entre les films d‘A. seyal et d’A. senegal s’est traduite par une 

variation de mouillabilité par l’eau et d’énergie libre de surface. Les films de gomme 
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d’A. seyal qui présentent une surface irrégulière mais organisée se sont montrés plus 

hydrophiles et avaient une énergie libre de surface et une composante polaire plus 

élevées que les films d’A. senegal qui eux avait une surface très homogène. Alors que 

les parties protéiques de nature apolaire de la gomme A. senegal peuvent facilement se 

positionner à la surface (de par leur nombre élevé, leur accessibilité et la flexibilité des 

AGPs), la gomme A. seyal est obligée d’adopter un comportement différent à l’interface 

solide/air en raison de son faible taux de ramification, sa compacité et son manque de 

flexibilité qui rendent encore plus difficile l’accessibilité des quelques AGPs riches en 

protéines qui la composent. Par contre, grâce à sa richesse en arabinose, elle est capable 

de former des liaisons hydrogènes intra- et inter-chaines favorisant ainsi l’agrégation 

de la partie polysaccharidique qui vient se positionner à la surface. Malgré la forte 

teneur en sucres des deux gommes, les deux types de films présentent à la fois une 

affinité pour l’eau et pour des composés plus apolaires. Cette dualité qui est retrouvée 

pour les deux gommes indépendamment de la structuration spécifique des films se 

traduit par une énergie libre de surface du même ordre de grandeur et la prédominance 

des composantes dispersives. Celle-ci est toutefois plus prononcée pour le film à base 

de gomme A. senegal que pour l’A seyal (Tableau VI.2). La légère différence en ce qui 

concerne le caractère hydrophile des films se traduit bien par des variations dans la 

valeur de perméabilité à l’eau.  

 

Tableau VI.2 : Comparaison de l’énergie de surface et ses composantes polaire et dispersive à l’interface 
air/solide (film) et air/liquide des gommes d’A. senegal et d’A. seyal à 20 wt%. 

 Interface air/solide  Interface air/liquide   
Gommes  A. senegal A. seyal  A. senegal A. seyal 
Energie de surface (mN.m-1) 40.7 46.5  67.8 67.8 
Composante polaire (mN.m-1) 1.5 9.5  58.5 61.3 
Composante dispersive (mN.m-1) 39.2 37.0  9.3 6.5 

 

Nous avons aussi pu montrer qu’au sein d’une même famille chimique, plus les 

composés étaient apolaires, plus l’affinité pour les films mesurés par angle de contact 
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était faible. Il serait cependant intéressant de le vérifier pour plus de familles 

chimiques et de composés.  

Pour un film de gomme donné, la plus faible affinité du linalool par rapport au limonène 

mise en évidence par angle de contact se retrouve lors de la formation des émulsions 

par des suspensions de gommes. Des émulsions du composé ayant moins d’affinité avec 

les films de gomme avaient des gouttelettes de taille plus élevée et une rétention dans 

l’émulsion séchée sous forme de films plus faible. Cette similitude de comportement 

entre les films et les suspensions de gommes vis à vis des composés d’arômes devra être 

confirmée avec plus de composés. En effet, si elle s’avère vérifiée pour nombre de 

composés, une mesure d’angle de contact permettra de prévoir de façon rapide le 

comportement d’une phase dispersée lors de la réalisation d’une émulsion. Il apparaît 

aussi nécessaire de vérifier si la réalisation de films avec des solutions de gommes moins 

concentrées (5 ou 10 wt%) conduit à la même structuration des films et aux mêmes 

types de réponses vis à vis des arômes et si on peut toujours relier l’affinité avec les 

propriétés émulsifiantes.  

Celles-ci sont habituellement décrites comme reliées aux propriétés interfaciales 

liquides/liquides et c’est ce que nous avons montré pour le limonène. Qu’en est-il 

maintenant des valeurs d’angles de contact des composés d’arômes par rapport aux 

pressions de surface mesurées pour ces mêmes composés ? Les valeurs vont dans le 

même sens mais les différences entre les composés sont moins prononcées si on regarde 

les valeurs d’angles de contact et la différence entre les gommes est plus difficile à 

anticiper. C’est d’ailleurs ce que nous avons observé pour le limonène qui bien qu’ayant 

des valeurs d’angles de contact qui sont très proches d’une gomme à l’autre (Tableau 

VI.3) conduisent à des émulsions avec des tailles de gouttelettes différentes (Tableau 

VI.1). 
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Tableau VI.3 : Comparaison des valeurs d’angles de contact, de pressions de surface et valeurs maximale 

de modules pour l’hexadécane, le limonène et l’octanol 

 Angle de contact (°)  Pression de surface à 

7200s (mN.m-1) 

 Valeur maximales du 

module (mN.m-1) 

Gommes A. senegal A. seyal  A. senegal A. seyal  A. senegal A. seyal 

Hexadécane 13 11  25 21  52.1 54.3 

Limonène 8.2 7.5  17 14  35.3 36.6 

Octanol 15 17  4 3  11.5 9.5 

On peut aussi se demander si les interfaces air/solide et air/liquide des 2 gommes 

présentent les mêmes caractéristiques et nous avons obtenu des éléments pour y 

répondre. 

La comparaison des composantes polaires et dispersives associées aux énergies de 

surface liquide/air et solide/air (Tableau VI.2) met clairement en évidence la différence 

de structuration entre des solutions diluées et fortement concentrées (solide). Alors que 

les dispersions à 20 wt% se caractérisent par des composantes polaires élevées, les films 

ont une nature très apolaire. Ceci peut s’expliquer par la présence de l’eau et son rôle 

sur la conformation des molécules et leur organisation à la fois dans le milieu et à 

l’interface mais aussi par l’influence du support sur lequel est formé le film. De plus, la 

capacité d’hydratation entre les deux gommes diffère, elle est en effet plus importante 

pour l’A. seyal et impacte donc la valeur de la composante polaire de façon plus 

marquée. 

Même si nous n’avons pas observé de réelles différences de structuration et de valeurs 

d’angles de contact entre les supports verre et LDPE qui sont pourtant l’un beaucoup 

plus polaire que l’autre, il est possible qu’ils influencent légèrement la structuration de 

l’interface. Ces hypothèses devraient pouvoir être vérifiées en réalisant des films avec 

des concentrations plus ou moins importantes ou en utilisant un support encore plus 

hydrophobe que le LDPE.  
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Parmi les perspectives issues de ces travaux de recherche, on peut souligner 

l’importance : 

- De comparer les propriétés interfaciales des 2 gommes pour des teneurs en 

protéines similaires ce qui permettrait d’apporter des informations 

supplémentaires quant aux rôles des différents AGPs, l’idéal étant d’utiliser des 

gommes reconstituées à partir des fractions constitutives de A. senegal et A. 

seyal.  

- D’étudier une plus grande gamme de composés d’arômes avec des polarités et 

des viscosités variables pour conclure sur l’importance de ces paramètres sur les 

propriétés interfaciales et ensuite les propriétés émulsifiantes des gommes 

d’Acacia. 

- De mesurer l’impact de la force ionique sur les propriétés interfaciales et 

émulsifiantes en relation avec le taux d’agrégation des AGPs. 

 

Les résultats obtenus à partir de ce travail permettent d’envisager diverses applications 

comme :  

- L’utilisation de gommes reconstituées ciblées en fonction de l’application et de 

la stabilité recherchées. 

- L’utilisation de la gomme A. seyal pour des applications comme la formation de 

films ou d’enrobage pour lesquelles la stabilité n’est pas cruciale. 

- La production de films actifs ou enrobage réalisés à partir d’émulsions de 

gommes. 
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Interfacial and emulsifying properties of Acacia gums and their fractions 

Acacia gum (E414 EC) is mainly composed of arabinogalactan proteins (AGPs). It is widely used as a stabilizer, 
emulsifier and film-forming agent for food and non-food applications. However, the relationship between these properties 
and the biochemical composition and structural conformation of the gum is still poorly understood. The objective of 
this work was to establish a relationship between the interfacial (liquid-liquid and solid-liquid) and emulsifying 
properties of two Acacia gums (A. senegal and A. seyal) and their biochemical and structural properties. The main 
results on liquid-liquid interfacial properties confirmed the greater interfacial properties of A. senegal compared to those 
of A. seyal. These properties are partly correlated with a higher content of high molar masses protein-rich AGPs, 
greater accessibility of protein fractions and flexibility of its AGPs. Similarly, it has been shown that these three factors 
strongly involved in the better emulsifying properties of A. senegal compared to A. seyal. In addition, it was established 
that the biochemical composition, in particular the arabinose and uronic acid content, but also the apparent viscosity 
of the continuous phase, played a crucial role in the stability of the emulsions. An innovative approach using different 
fractions of A. senegal in order to control the content of high molar masses protein-rich AGPs and total gum 
concentration confirmed the predominant role of these AGPs and highlighted the existence of a synergism between the 
content of high molar masses protein-rich AGPs and total gum concentration on emulsion droplet size and stability. 
The study of solid-liquid interfacial properties showed that the two gums were differently structured at the air-film 
interface: A. senegal surface being more homogeneous and less hydrophilic than that of A. seyal. For A. senegal, this 
can be explained by a higher content of high molar masses protein-rich AGPs on the surface of the film. The more 
irregular films of A. seyal evidenced the formation of aggregates at the interface, which can be explained by the 
compactness and hydrophilic characteristic of its AGPs and its high arabinose content, which favors hydrogen bonds 
and the high hydration capacity of its AGPs. These two films have an amphiphilic characteristic with an affinity either 
for water but also for highly apolar compounds such as linear alcohols and alkanes. The measurement of contact angle 
also allowed to predict a better emulsification and retention of the more apolar compound, i.e. limonene, compared to 
linalool. The importance of the dispersed phase polarity on all the properties tested has been also demonstrated. 
Keywords: Acacia gums, interfacial and emulsifying properties, arabinogalactan proteins, aroma compounds 

Propriétés interfaciales et émulsifiantes de gommes d’Acacia senegal, Acacia seyal et de leurs 
fractions 

La gomme d'Acacia (E414 EC) est principalement composée d’arabinogalactan-proténes (AGPs). Elle est largement 
utilisée comme stabilisant, émulsifiant et agent filmogène pour des applications alimentaires et non alimentaires. 
Cependant, le lien entre ces propriétés et la composition biochimique et la conformation structurale de la gomme reste 
encore mal connu. L'objectif de ce travail a été d’établir un lien entre les propriétés interfaciales (liquide-liquide et 
solide-liquide) et émulsifiantes de deux gommes d'Acacia (A. senegal et A. seyal) et leurs propriétés biochimiques et 
structurales. Les principaux résultats portant sur les propriétés interfaciales liquide-liquide ont confirmé les meilleures 
propriétés interfaciales d’A. senegal comparées à celles d’A. seyal en partie corrélées à une teneur plus élevée en AGPs 
de haute masse molaire riche en protéines, une plus grande accessibilité des fractions protéiques et flexibilité ses AGPs. 
De la même manière, il a été montré que ces trois facteurs sont fortement impliqués dans les meilleures propriétés 
émulsifiantes l’A. senegal par rapport à l’A. seyal. De plus, il a été établi que la composition biochimique en particulier 
la teneur en arabinose et en acide uronique mais aussi la viscosité apparente de la phase continue jouaient un rôle 
crucial dans la stabilité des émulsions. Une approche innovante mettant en jeu différentes fractions de gomme d’A. 
senegal permettant de contrôler la teneur en AGPs de haute masse molaire riches en protéines et la concentration 
totale en gomme a permis de confirmer le rôle prépondérant de ces AGPs et de mettre en évidence l’existence d’un 
synergisme entre la teneur en AGPs de haute masse molaire riches en protéines et la concentration totale en gomme à 
la fois sur la taille et la stabilité des gouttes. L’étude des propriétés interfaciales solide-liquide a prouvé que les deux 
gommes se structuraient différemment à l’interface air-film avec pour l’A. senegal une surface plus homogène et moins 
hydrophile que celle de l’A. seyal. Ceci peut s’expliquer pour l’A. senegal par une teneur plus élevée en AGPs de haute 
masse molaire riches en protéines à la surface du film. Les films plus irréguliers d’A. seyal montrent la formation 
d’agrégats à l’interface pouvant s’expliquer par la compacité et le caractères hydrophile plus important de ses AGPs 
et leur teneur élevée en arabinose favorisant les liaisons hydrogènes et la forte capacité d'hydratation de ses AGPs. Ces 
deux films présentent un caractère amphiphile avec une affinité à la fois pour l’eau mais aussi pour des composés 
fortement apolaires comme des alcools et alcanes linéaires. La méthodologie utilisée, c’est à dire la mesure de l’angle 
de contact, a aussi permis de prédire une meilleure émulsification et rétention du limonène composé plus apolaire 
comparé au linalool. L’importance de la polarité de la phase dispersée a d’ailleurs été démontrée pour toutes les 
propriétés testées.  
Mots clés : gomme d’Acacia, propriétés interfaciales et émulsifiantes, arabinogalactane-protéines, arômes 


