Rôle de la nanobiomécanique dans la formation de métastases cérébrales et la sclérose latérale amyotrophique

par Béla Varga

Thèse de doctorat en Physique

Sous la direction de Csilla Gergely et de György Varo.

Soutenue le 16-04-2018

à Montpellier en cotutelle avec l'University of Szeged (Hongrie) , dans le cadre de I2S - Information, Structures, Systèmes , en partenariat avec Laboratoire Charles Coulomb (Montpellier) (laboratoire) .


  • Résumé

    La nanobiomécanique est un domaine interdisciplinaire émergent qui apporte une contribution significative à l'étude des processus biologiques liés à des diverses maladies humaines. Dans le cadre de ces travaux, des méthodes nanomécaniques basées sur la microscopie à force atomique ont été directement appliquées pour comprendre les processus pathogènes sous-jacents de deux maladies qui sont la formation de métastases cérébrales et à la sclérose latérale amyotrophique.Une cellule tumorale maligne, pour se propager et former des métastases, doit modifier et adapter en permanence ses propriétés adhésives et élastiques. Ici, nous avons combiné la cartographie des forces avec la spectroscopie de force monocellulaire (SCFS) afin d'obtenir un aperçu direct du processus de "criblage" de surface des cellules tumorales pendant leur extravasation dans le parenchyme cérébral. Les cartes élastiques et adhésives obtenues ont montré que les propriétés adhésives ne dépendent que faiblement des caractéristiques élastiques, et souligne l'importance des liaisons à long distances de type attache pour des adhésions réussies.Afin d'étudier comment le potentiel métastatique est lié aux propriétés nanomécaniques des cellules tumorales, des mesures SCFS comparatives ont été effectuées entre trois types de cellules mélanomateuses (WM35, A2058 et A375), montrant des caractéristiques invasives altérées. Nos résultats indiquent une faible élasticité relative, une adhérence maximale élevée et un nombre de liaisons individuelles élevé, comme propriétés clés des cellules mélanomes hautement métastatiques. En conclusion nos études permettent de catégoriser les cellules suivant leur potentiel métastatique agrandissant dans l’ordre suivant : WM35, A2058 et A375.La pathogenèse de la sclérose latérale amyotrophique (SLA) est multifactorielle et ce caractérise également par la présence de processus inflammatoires. Nos études montrent des différences significatives dans l'adhésion de cellules T cytotoxiques CD8+ isolées chez des souris mutantes SOD1G93A et ce de type sauvage avec des neurones moteurs. Les cellules T dérivées de souris mutantes présentent une force d'adhésion améliorée par rapport aux souris saines dérivées. En outre, elle présente une réduction très significative après le blocage des liaisons entre pMHC-I et TCR. Ces résultats corroborent la contribution des lymphocytes T cytotoxiques au développement de la SLA, en tant qu'acteur actif de la neurodégénérescence.Les myoblastes jouent un rôle primaire dans les processus moléculaires impliqués dans le développement musculaire, le vieillissement et la réparation. Les cartes nanomécaniques à haute résolution réalisées sur des myoblastes et des myotubes multi-nucléaires, isolés à partir d'un modèle de souris SLA, ont révélé des modifications d'élasticité lors de la différenciation des myotubes. Des augmentations significatives du module d'élasticité ont été observées dans les projections des myoblastes allongés par rapport à leur corps cellulaire. Pour les myotubes, des différences ont été observées entre l'élasticité d'une population mince et épaisse de myotubes de souris sain. Cependant, chez le mutant SOD1, l'augmentation observée du module élastique de la population mince suggère un durcissement autonome accru des myotubes dérivés de souris SLA.En résumé, nos études mécaniques au niveau cellulaire ont décrypté divers aspects de deux pathologies graves, ce qui a donné lieu à de nouvelles découvertes sur leurs processus fondamentaux. Ces travaux mettent en lumière la pertinence et adéquation des méthodes d’études nanomécaniques basées sur l’AFM pour révéler des connaissances précieuses sur la physiopathologie, le développement, le diagnostic et la progression des maladies.

  • Titre traduit

    Role of nano-biomechanics in brain metastases formation and amyotrophic lateral sclerosis


  • Résumé

    Nano-biomechanics is an emerging field of science that opened a new horizon in scientific research by generating significant contribution in the study of human diseases. In this work, atomic force microscopy-based nanomechanical methods were directly applied in order to elucidate important questions related to brain metastasis formation and amyotrophic lateral sclerosis (ALS). Better understanding of the underlying pathogenic processes of these life-threatening diseases is fundamental for the advancement of early diagnostics and improved therapeutics.A malignant tumor cell, in order to spread and form metastasis, has to vary and continuously adapt its adhesive and elastic properties. Here, we combined force mapping with single cell force spectroscopy (SCFS) in order to gain direct insight into the surface “screening” process of tumor cells during their extravasation into the brain parenchyma. Intercellular adhesive forces and works, as well as elastic properties were spatially mapped showing that adhesive properties are only slightly dependent on elastic characteristics, and highlighting the importance of long range tether-like linkages for successful adhesions.In order to examine how the metastatic potential relates to tumor cell’s autonomous and inter-cellular nanomechanical properties, comparative SCFS measurements were performed between three melanoma cell types (WM35, A2058 and A375), showing altered invasive characteristics, and blood vessel lining endothelials. Our results indicate low relative elasticity, high maximal adhesion and high number of individual linkages, as the key properties of highly metastatic melanoma cells. This enables us to suggest the following ordering of tumor cells from lower to higher metastatic potential: WM35, A2058 and A375.The pathogenesis of ALS is multifactorial, being characterized by the presence of inflammatory processes as well. In our results significant differences have been observed, by comparing the adhesion of CD8+ cytotoxic T cells isolated from wild-type as well as SOD1G93A mutant mice against wild-type motor neurons. Mutant mice derived T cells show enhanced adhesion strength, compared to the healthy mice derived ones. Moreover, we observe a significant reduction of T cell - motoneuron interactions after blocking the specific recognition bindings between pMHC-I and TCR. These results corroborate the contribution of cytotoxic T cells in the development of ALS, as an active player in neurodegeneration.Investigating primary myoblasts allow deciphering molecular processes involved in muscle development, aging and repair. Therefore, in our study high resolution nanomechanical mapping was performed on single elongated myoblasts and multinuclear myotubes, isolated from an ALS mouse model, to reveal elasticity features during early differentiation stage into myotubes. We have found that projections of the elongated myoblasts show significantly increased elastic modulus values compared to their cell body. Regarding myotubes, differences have been observed between the elasticity of a thin and thick population of wild-type myotubes, indicating the different maturity of the two populations. However, in SOD1 mutant, the observed increase in the elastic modulus of the thin population suggests an enhanced autonomous hardening of ALS derived myotubes.In summary, our cellular-level mechanical studies deciphered various aspects of two different life-threatening pathologies resulting in novel discoveries about their fundamental processes. This work highlights the high impact and the important role of AFM-based nanomechanical methods in providing valuable knowledge about disease pathophysiology, development, diagnostics and progression that could contribute to the evolvement of future therapies.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Bibliothèque interuniversitaire. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.