Thèse soutenue

Études des masures et de leurs applications en arithmétique

FR  |  
EN
Auteur / Autrice : Auguste Hebert
Direction : Stéphane Gaussent
Type : Thèse de doctorat
Discipline(s) : Mathematiques
Date : Soutenance le 28/06/2018
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale Sciences Ingénierie Santé (Saint-Etienne)
Partenaire(s) de recherche : Etablissement opérateur d'inscription : Université Jean Monnet (Saint-Étienne ; 1969-....)
Laboratoire : Institut Camille Jordan (Rhône ; 2005-....)
Jury : Président / Présidente : Olivier Mathieu
Examinateurs / Examinatrices : Nicolas Ressayre, Guy Rousseau, Petra Schwer
Rapporteurs / Rapporteuses : Anne-Marie Aubert, Bertrand Rémy

Résumé

FR  |  
EN

Les masures ont été introduites en 2008 par Gaussent et Rousseau afin d’étudier les groupes de Kac-Moody sur les corps locaux. Elles généralisent les immeubles de Bruhat-Tits. Dans cette thèse, j’étudie d’une part les propriétés des masures et d’autre part leurs applications en arithmétique et en théorie des représentations. Rousseau a donné une définition axiomatique des masures, inspirée par la définition de Tits des immeubles de Bruhat-Tits. Je propose une axiomatique plus simple et plus agréable à manipuler et je montre que mon axiomatique est équivalente à celle de Rousseau.Nous étudions (en collaboration avec Ramla Abdellatif) les algèbres de Hecke sphériques et d’Iwahori-Hecke introduites par Bardy-Panse, Gaussent et Rousseau. Nous démontrons que contrairement au cas réductif, le centre de leur algèbre d’Iwahori-Hecke est quasiment trivial, et n’est en particulier pas isomorphe à l’algèbre de Hecke sphérique. Nous introduisons donc une algèbre d’Iwahori-Hecke complétée, dont le centre est isomorphe à l’algèbre de Hecke sphérique. Nous associons aussi des algèbres de Hecke à des faces sphériques comprises entre 0 et l’alcôve fondamentale de la masure,généralisant la construction de Bardy-Panse, Gaussent et Rousseau de l’algèbre d’Iwahori-Hecke.La formule de Gindikin-Karpelevich est une formule importante dans la théorie des groupes réductifs sur les corps locaux. Récemment, Braverman,Garland, Kazhdan, et Patnaik ont généralisé cette formule au cas des groupes de Kac-Moody affines. Une partie importante de leur preuve consiste à montrer que cette formule est bien définie, c’est à dire que les nombres intervenants dans cette formule, qui sont les cardinaux de certains sous groupes de quotients du groupe étudié sont bien finis. Je démontre cette finitude dans le cas des groupes de Kac-Moody généraux. J’étudie aussi les distances sur une masure. Je montre qu’on ne peux pas avoir de distance ayant les mêmes propriétés que dans le cas réductif. Je construis des distances ayant des propriétés moins forte mais qui semblent intéressantes.