Thèse soutenue

Étude de la résistance à l’impact et de l’endommagement des composites stratifiés à matrice Elium acrylique : caractérisation expérimentale et modélisation numérique multi-échelle

FR  |  
EN
Auteur / Autrice : Gbèssiho Raphaël Kinvi-Dossou
Direction : Napo BonfohRodrigue Matadi Boumbimba
Type : Thèse de doctorat
Discipline(s) : Sciences des matériaux
Date : Soutenance le 26/11/2018
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : École doctorale C2MP - Chimie mécanique matériaux physique (Lorraine)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (Metz ; 2011-....)
Jury : Président / Présidente : Salima Bouvier
Examinateurs / Examinatrices : Nathalie Godin, Frédéric Lachaud, Hafid Sabar
Rapporteurs / Rapporteuses : Nathalie Godin, Frédéric Lachaud

Résumé

FR  |  
EN

Face aux défis environnementaux actuels, les industriels ont mis en œuvre de nouveaux matériaux recyclables et permettant une réduction significative de la masse. Le développement de la résine thermoplastique Elium par ARKEMA s’inscrit dans cette problématique. L’utilisation de cette résine pour la fabrication de pièces composites qui peuvent être sujettes à des dommages d’impact, nécessite au préalable des études, dans le but de comprendre leurs mécanismes de ruine sous ce type de sollicitation. Ainsi, la présente thèse propose une contribution à l’analyse multi-échelle de la tenue à l’impact des composites stratifiés à base de la résine Elium. Une étude expérimentale préliminaire a permis de confirmer la meilleure résistance à l’impact des composites à matrice Elium acrylique, comparativement à celles des composites thermodurcissables conventionnels. Ensuite, les performances à l’impact des composites stratifiés ont été améliorées par l’introduction de copolymères à blocs dans la matrice. Ces derniers sont capables de former des micelles de tailles nanométriques et ainsi d’améliorer la ténacité de la matrice acrylique. Les effets de l’énergie d’impact, de la température et de la composition en nanocharges sur la réponse du matériau composite ont été analysés. Afin de proposer un outil d’aide à la prédiction de la réponse à l’impact des matériaux fibres de verre/Acrylique, deux stratégies de modélisation ont été retenues. La première modélisation (macroscopique) considère le pli tissé du stratifié comme un matériau homogène tandis que la seconde (mésoscopique) utilise une description géométrique de l’ondulation et de l’entrecroisement des torons noyés dans la résine Elium. Ces deux modèles considèrent des zones cohésives à l’interface entre les plis adjacents pour simuler le délaminage interlaminaire. Des essais de délaminage (expérimentaux et numériques) ont permis d’alimenter le modèle d’endommagement de l’interface interplis. D’autre part, des essais de caractérisation du comportement mécanique et de l’endommagement du matériau couplés à l’homogénéisation multi-échelle des matériaux par la Mécanique du Génome de Structure ont permis d’identifier les paramètres du modèle macroscopique. A l’échelle mésoscopique, le modèle géométrique a été réalisé grâce au logiciel Texgen. Ce logiciel permet d’obtenir une description approchée mais réaliste de l’ondulation des torons de fibres. La même description a servi à l’homogénéisation numérique multi-échelle des stratifiés étudiés. La simulation numérique de l’impact basse vitesse a été effectuée au moyen du logiciel d’éléments finis ABAQUS/Explicit. Les modèles de comportement du matériau ont été implémentés via la routine utilisateur VUMAT. Les résultats obtenus offrent une bonne corrélation avec les données expérimentales