Thèse soutenue

Modélisation rétro-chronologique de systèmes chenalisés méandriformes à partir d’observations géologiques

FR  |  
EN
Auteur / Autrice : Marion Parquer
Direction : Guillaume CaumonPauline Collon
Type : Thèse de doctorat
Discipline(s) : Géosciences
Date : Soutenance le 05/04/2018
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : RP2E - Ecole Doctorale Sciences et Ingénierie des Ressources, Procédés, Produits, Environnement
Partenaire(s) de recherche : Laboratoire : GéoRessources (Nancy)
Jury : Président / Présidente : Isabelle Cojan
Examinateurs / Examinatrices : Sylvie Bourquin, Clayton V. Deutsch, François Métivier, Zoltán Sylvester
Rapporteurs / Rapporteuses : Sylvie Bourquin, Clayton V. Deutsch

Résumé

FR  |  
EN

Les systèmes méandriformes constituent la plupart des rivières terrestres ou sous-marines qui modèlent les paysages par leur évolution temporelle et spatiale. Les témoins de leur évolution peuplent les plaines traversées par celles-ci. Parmi eux, des barres d’accrétion latérale témoignant de la migration des boucles du chenal peuvent être identifiées, tout comme des méandres abandonnés par simplification naturelle de la trajectoire du chenal ou encore des chenaux entiers abandonnés lors d’un changement de direction principale du chenal par avulsion. La diversité et le volume des dépôts résultant font des systèmes chenalisés, une fois enfouis, de bons candidats pour le stockage de ressources naturelles. L’étude de la disposition des différents faciès est donc cruciale pour leur exploitation. Les techniques d’imagerie satellitaire ou LIDAR permettent l’étude des systèmes actuels. L’architecture en subsurface peut être imagée globalement par image sismique ou GPR, ou localement par des puits d’investigation. Ces techniques permettent d’avoir une bonne évaluation du dernier état du système chenalisé. Les états précédents, quant à eux, peuvent être observés par morceaux lorsqu’ils ont été épargnés par l’érosion. En effet, le remaniement de la ceinture de méandres par migration latérale des chenaux rend souvent difficile l’analyse des états antérieurs que ce soit en termes de géométrie ou de chronologie des dépôts. Cette thèse propose une méthode de simulation des systèmes chenalisés qui respecte au mieux les différentes informations disponibles. Parmi celles-ci, souvent, l’image sismique permet d’identifier le dernier état du système et des boucles de méandres abandonnés en contrastant avec la ceinture de méandres par des dépôts souvent plus argileux et datant de la période succédant l’abandon. Des barres d’accrétion latérale peuvent aussi être observées, témoignant des directions de migration des méandres. Parfois, des données de puits sont aussi accessibles et informent sur la nature des faciès rencontrés (e.g., sableux, argileux). La méthode présentée dans ce manuscrit part du dernier état du système observé sur l’image sismique. Une simulation en temps inversé de la migration du chenal, inspirée par l’analyse des cartes chronologiques du Mississippi, est appliquée et permet, pas de temps par pas de temps, de retrouver de potentiels états antérieurs. Selon une simulation de la chronologie estimée par des critères spatiaux et statistiques (e.g., distance et orientation au chenal courant, probabilité d’abandon), les méandres abandonnés sont intégrés à l’étape de temps voulue dans le chenal principal. Les boucles de méandres disparues par érosion sont compensées par la simulation d’autres méandres dans la ceinture de méandres. Cette simulation respecte les critères géométriques observés sur les méandres épargnés par l’érosion mais également d’autres critères statistiques tels que la probabilité d’érosion observée sur des analogues sédimentaires tels que le Mississippi. Cette approche ouvre la possibilité d’honorer les faciès observés sur les puits par la simulation de méandres abandonnés en ces points. Elle a été appliquée sur divers jeux de données bidimensionnels satellite ou sismique