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Chapter 1

Introduction

A constrained optimization problem involves minimizing an objective function

over a set of constraints. If the objective function and constraints are linear,

this problem is called a linear optimization problem, otherwise, it is a nonlinear

optimization problem. Optimization problems can be found in many areas such

as science and technology, economics, industrial production and so on. Since the

first appearance of the simplex algorithm for solving a linear optimization problem

by G. Dantzig in 1947, developing algorithms for solving optimization problems

has become an active area in optimization research. Moreover, the development of

computers led to the birth of many linear and nonlinear optimization solvers. This

thesis is focused on the numerical solution of the nonlinear optimization problems.

In this work, we consider nonlinear optimization problems under this form:

minimize f(x)

subject to c(x) = 0, (1.1)

x ≥ 0,

where f : Rn → R and c : Rn → Rm are smooth functions. Any differentiable

optimization problem with equality and inequality constraints can be reformulated

under this standard form by possibly adding nonnegative slack variables and by

splitting free variables into positive and negative parts.

A constrained optimization algorithm focuses on two tasks: minimizing the

objective function and satisfying the constraints. When the set of the optimal

solutions is nonempty, many efficient algorithms in the literature are proposed to

find an optimal solution of the problem. But in practice, infeasible instances also

appear quite a lot. They can arise, for example, in mathematical modeling, from

1



1.1. The sequential quadratic programming method

varying the parameters of a model to study the system response. Infeasibility may

also appear when solving a sequence of subproblems in an algorithm like a branch-

and-bound method. Even if the problem is feasible, algorithm may encounter

difficulties in finding a feasible point. In all these cases, an efficient solver should

quickly return an infeasible stationary point, with the goal to avoid a long sequence

of iterations or a convergence to a spurious solution. In this context, a rapid

infeasibility detection is an important issue in nonlinear optimization since many

contemporary methods either fail or take an excessive number of computational

time to notify that a problem is infeasible, see, e.g., [118]. The first part of this

thesis focuses on developing a numerical method to rapidly detect the infeasibility

in the framework of a primal-dual method.

In the literature, the local convergence analysis of nonlinear optimization

algorithms is handled under the following usual assumptions: linear independence

constraint qualification (LICQ), second order sufficient conditions (SOSCs) and

strict complementarity. These assumptions imply that the Jacobian of the

optimality system to solve is locally nonsingular, an essential property of

Newtonian methods to get a superlinear or a quadratic rate of convergence.

However, in practice, these assumptions are not always satisfied, for example,

in mathematical programming with equilibrium constraints (MPECs) or when

the optimal solution is not isolated. In these degenerate cases, a regularization

technique must be applied to recover a rapid rate of convergence. In this thesis,

we analyze the local behaviors of two regularization techniques incorporated in

two primal-dual algorithms to deal with the lack of SOSCs or of any constraint

qualification.

In the following section, we summarize the state of the art of optimization

methods used to handle problem (1.1).

1.1 The sequential quadratic programming

method

The sequential quadratic programming (SQP) is one of the most effective methods

for nonlinear constrained optimization. This method, which was first proposed

by Wilson in his PhD [152], generates iterates by solving a sequence of quadratic

subproblems. For solving (1.1), at an iterate xk, a basic SQP algorithm defines a

2 Infeasibility detection and regularization strategies in nonlinear optimization



1. Introduction

search direction dk as a solution to the quadratic minimization problem

min
d

∇f(xk)⊤d+ 1
2
d⊤∇2

xxL(xk, yk, zk)d

s.t. c(xk) +∇c(xk)⊤d = 0,

xk + d ≥ 0,

where L(x, y, z) = f(x) + y⊤c(x)− z⊤x, for (x, y, z) ∈ Rn+m+n, is the Lagrangian

function associated to (1.1).

The solvers FILTER [67] and SNOPT [79] are two of the most popular

implementations of SQP methods. Both of them contain two phases: a main phase

and a feasibility restoration phase which is devoted to minimize the constraint

violations. There is a switching technique between these two phases. FILTER uses

the feasibility of a trust region subproblem to activate the feasibility restoration

phase. Whereas, SNOPT transforms the standard SQP algorithm into a Sl1QP

[66] when the problem seems to be infeasible. Gould and Robison [87, 88], Byrd

et al. [40] and Burke et al. [30] proposed exact penalty SQP methods with only

one single optimization phase. A steering rule [39] is used to update the penalty

parameter in these methods. In particular, an additional subproblem is solved

to choose a penalty parameter that ensures balanced progress toward feasibility

and optimality. However, since the above SQP methods require the solution of a

general quadratic problem with large cost, the size of problems that can be solved in

practice is limited. Moreover, the indefinite Hessian matrix used in these methods

may cause difficulties (see, e.g. [84]). To overcome these obstacles, Fletcher

and Saínz de la Maza [68] proposed the sequential linear-quadratic programming

(SLQP) method which was further developed by Chin and Fletcher [43] and Byrd

et al. [37]. The former possesses a filter method and a feasibility restoration phase

to deal with infeasibility. By contrast, the latter is a penalty function method and

is implemented in the KNITRO/ACTIVE code [38].

The local convergence analysis of SQP methods has been studied widely,

see, e.g., [66, 88, 130, 137, 145]. However, these analyses focus mostly on the

feasible instance under some usual assumptions. Byrd et al. [40] and Burke et al.

[30] proposed first local convergence analysis for infeasible problems. The rapid

convergence is mostly based on the rules to update the penalty parameters. More

specifically, the spirit of the steering rules is used to update the penalty parameter

in Byrd et al. [40]. The update of penalty parameter in the algorithm of Burke

et al. [30] is considered twice at each iteration after the solutions of quadratic

optimization subproblems.

Infeasibility detection and regularization strategies in nonlinear optimization 3



1.2. The quadratic penalty method and the augmented Lagrangian method

On the other hand, the local convergence analysis of optimization algorithms

without linear independence constraint qualification (LICQ) and constraint

qualifications in general was investigated by stabilized SQP. Wright [153]

and Fisher [65] demonstrated the superlinear convergence of their algorithms

under the Mangasarian-Fromovitz constraint qualification (MFCQ) and strict

complementarity. Qi and Wei [126] introduced a weaker condition than LICQ

and used it together with strict complementarity. The later works of Anitescu [6]

and of Wright [155, 156] dropped the strict complementarity. Both MFCQ and

strict complementarity were removed in the studies of Hager [93], Wright [157],

Izmailov and Solodov [101], Gill et al. [80], Arreckx and Orban [17].

1.2 The quadratic penalty method and the

augmented Lagrangian method

The quadratic penalty method is proposed firstly by Courant [48] in 1943. This

approach is to solve a sequence of unconstrained problem created by a combination

of the objective function f and the l2 feasibility measure of the constraints. For

example, with the following equality constrained minimization

min f(x)

s.t. c(x) = 0,
(1.2)

the quadratic penalty method solves a sequence of subproblems

min
x∈Rn

φσ(x) := f(x) +
1

2σ
‖c(x)‖2, (1.3)

where the penalty parameter σ > 0 is forced to decrease to zero. Lootsma [110] and

Murray [114] demonstrated that the small value of σ can raise numerical difficulty.

This one comes from the third term in the Hessian matrix of penalty function φσ(·)

∇2φσ(x) = ∇2f(x) +
1
σ

m∑

i=1

ci(x)∇2ci(x) +
1
σ
∇c(x)∇c(x)⊤.

(This term becomes increasingly ill-conditioned as σ tends to zero.) This

inconvenience of the quadratic penalty method caused it to be shunned by

practitioners for a long time. To overcome this difficulty, some kinds of auxiliary

variable is introduced to obtain well-conditioned systems in framework of both

primal algorithm (Broyden and Attia [27, 28], Gould [85, 86]) and primal-dual

4 Infeasibility detection and regularization strategies in nonlinear optimization



1. Introduction

algorithm (Armand et al. [16]).

Augmented Lagrangian method were proposed independently by Hestenes [96]

and Powell [125] in 1969 as another alternative to deal with the ill-conditioning

associated with the quadratic penalty method. At each iteration, with a fixed

penalty parameter σ and an estimate of Lagrange multiplier λ, the augmented

Lagrangian method performs minimization with respect to x of the following

unconstrained problem

min
x∈Rn

Lλ,σ(x) := f(x) + λ⊤c(x) +
1
σ
‖c(x)‖2. (1.4)

After that, the penalty parameter and the Lagrange multiplier will be updated

based on the satisfaction of constraints. If the constraints have decreased

sufficiently, the penalty parameter σ is not changed in the next iteration and

the Lagrange multiplier λ+ is updated by the formula

λ+ = λ+
c(x)
σ
,

where x is an approximate solution of (1.4). Otherwise, we decrease the penalty

parameter to ensure that the next iterate takes more emphasis on decreasing the

constraint violations. Simultaneously, the new Lagrange multiplier λ+ will be kept

as the previous one λ. The augmented Lagrangian method of Powell and Hestenes

was proposed only for the equality constrained minimization (1.2). In the early

1970s, Rockafellar [131, 132] and Buys [31] extended this method to inequality

constrained optimization. Di Pillo and Grippo [54, 55] developed algorithms

based on this method for problems in both framework of equality and inequality

constrained optimizations.

The global convergence of the augmented Lagrangian method has been

discussed in both the convex case (see, e.g., [99, 104, 105]) and the general

non-convex case (see, e.g., [21, 44, 122, 131, 133]) under assumptions on the

boundedness of the sequence of the Lagrange multiplier. The merit functions

to globalize the augmented Lagrangian method have been used in two forms: the

primal merit function (see, e.g., Byrd et al. [32], Gill el al. [78], Schittkowski

[134, 135], Tapia [138]) and the primal-dual merit function (see, e.g. Gill and

Robinson [76, 77], Gill et al. [81], Armand and Omheni [12]). Some softwares have

been implemented based on the augmented Lagrangian method to solve problem

(1.1). MINOS [115] used the projected augmented Lagrangian method which

involves a sequence of sparse, linearly constrained subproblems. The objective

Infeasibility detection and regularization strategies in nonlinear optimization 5



1.2. The quadratic penalty method and the augmented Lagrangian method

functions of these subproblems include a modified Lagrangian term and a modified

quadratic penalty function. It is most successful in problems with nonlinear

objective and linear or near-linear constraints. On the other hand, LANCELOT

[45] is more effective on problems with relatively few constraints. It uses a

gradient projection method with trust region to solve bound-constrained nonlinear

subproblems

min
x∈Rn

Lλ,σ(x) subject to l ≤ x ≤ u.

This type of subproblems is also addressed by ALGENCAN [3, 5]. However, it

uses the line search method for the globalization. PENNON [106] is based on an

augmented Lagrangian approach and can solve nonlinear optimization problems

with the semi-definite matrix constraints. In this software, a combination of the

line search and trust region method is used to solve a sequence of unconstrained

optimization problem in which the inequality constraints is treated by the barrier

function. SPDOPT-AL [12] combined the Newton-type method and a line search

strategy.

We note that these augmented Lagrangian methods were studied mainly for

feasible optimization problems. Recently, Martínez and Prudente [112] modified

the algorithm in ALGENCAN [3] by changing the convergence tolerances for

subproblems. They defined an adaptive stopping criterion for subproblems

depending on the constraints, the penalty parameter and the multipliers. The

algorithm will return a notification of infeasibility when the penalty parameter

becomes very small. The numerical examples show that the new modification

is better than the original ALGENCAN. Birgin et al. [25] give a necessary and

sufficient condition to characterize the infeasibility of a problem. The tolerance

sequence is also chosen adaptively. In particular, this sequence depends on the

constraints, the penalty parameter and the multipliers. The numerical experiments

demonstrate the advantages of this new algorithm compared to the original

augmented Lagrangian method [23] in the infeasible case. Gonçalves el al. [83]

introduced an algorithm based on the general class of Kort-Bertsekas Lagrangian

function [21, 105]. Similarly to [25], a necessary and sufficient condition to indicate

the infeasibility of problem is also given. From some numerical comparisons on

feasible and infeasible problems, three types of augmented Lagrangian function

L(x, λ, σ) = f(x) +
1
σ

m∑

i=1

W (σci(x), λi),

6 Infeasibility detection and regularization strategies in nonlinear optimization



1. Introduction

where

W (s, t) =





t(es − 1) + 1
3
[max{0, s}]3,



ts+ cosh(s)− 1 if t+ sinh(s) ≥ 0,

t sinh−1(−t) + cosh(sinh−1(−t))− 1 otherwise,
,




ts+ ts2 + s3 if s ≥ 0,

ts/(1− s) otherwise.

are as efficients as the Powell-Hestenes-Rockafellar (PHR) augmented Lagrangian

function (1.4) for feasible instances. Moreover, they detect infeasibility in less

iterations than PHR. Birgin et al. [26] modified ALGENCAN in the way to

update the penalty parameter. Instead of using the minimum of the inequality

constraints and its multipliers, this new algorithm uses their products to measure

complementarity. It converges to the minimizers of a feasibility measure. The

numerical results show that the performances of ALGENCAN and this new

algorithm are nearly the same. The augmented Lagrangian method of Armand and

Omheni [12] may detect infeasibility when the sequence of dual variables becomes

unbounded and the penalty parameter is forced to zero. The main drawback is

that the infeasibility can take a long time to be detected.

Under some classical assumptions, the local convergence results of augmented

Lagrangian method in the feasible problems have been demonstrated, see e.g.

[12, 20, 21, 24, 31, 82, 123, 124]. The local behavior of augmented Lagrangian

algorithms in infeasible problems has never been mentioned in literature. On the

other hands, Hager [93], Wright [153, 157], Gill el al. [80] investigated the local

behavior of augmented Lagrangian method without the conventional assumption

related to the linearly independence of vectors of gradient constraints.

1.3 The interior point method

The (primal) interior point method was proposed by Frisch [73] in 1955 to solve

the optimization problems with inequality constraints

min f(x)

s.t. c(x) ≥ 0.
(1.5)

Infeasibility detection and regularization strategies in nonlinear optimization 7
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The idea of this method is to solve a sequence of unconstrained problems

min
x∈Rn

Pµ(x) := f(x)− µ
m∑

i=1

log ci(x), (1.6)

where the barrier parameter µ > 0 is driven to zero. Fiacco and McCormick

[64] showed that under some standard assumptions, a solution of problem (1.6)

x∗(µ) converges to x∗ and µ
c(x∗(µ))

converges to z∗, where x∗ and z∗ are optimal

solution and optimal Lagrange multiplier associated to the constraints of the

problem (1.5), respectively. This primal interior point method has fallen into

disuse after the appearance of SQP methods and has not been recovered because

it suffers of several drawbacks. One of them is due to the increasing of the ill

conditioning associated with the minimization Pµ when µ approaches zero (see,

e.g., [110, 114]). The success of the Karmarkar’s algorithm [102] in solving the

linear optimization problems [103] and the impressive computational performance

of primal-dual interior point methods for linear programming [111] motivated the

concentration of the optimization community in extending these methods to the

general nonlinear problem (1.1) (see, e.g., [71, 84, 116]). In particular, by defining

zi = µ/ci(x), the optimality conditions of problem (1.6) can be rewritten as

∇f(x)−∇c(x)z = 0

C(x)z − µe = 0,
(1.7)

where C(x) = diag(c(x)). We note that this system is equivalent to the perturbed

KKT conditions for problem (1.5) if we introduce nonnegative slack variables s ∈
Rm

++ to get the following problem

min
x,s

f(x)− µ
m∑

i=1
log si

s.t. c(x)− s = 0.
(1.8)

One of the most visible advantages of this formulation is that the starting point

can be chosen more easily than in the original formulation (1.6).

The interior point methods were implemented in some softwares. LOQO

[146] uses a line search strategy to obtain the global convergence. KNITRO [38]

processes two strategies: a line search in which a linear system is solved by direct

factorization and a trust region in which a linear system is solved by conjugate

gradient method. IPOPT [149], on the other hand, invokes the filter technique

for globalization. SPDOPT [13] is a combination of interior point method and
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augmented Lagrangian method with a line search strategy.

In literature, there are two approaches of interior point methods. The first

approach called barrier-SQP method computes a search direction dx by applying

Newton’s method directly to the KKT conditions of (1.8). After that, a step

length αk is determined to maintain the positivity of slack variables s. The second

one called barrier-penalty method uses a classical way to treat equality constraints

(the constraint-removal spirit of the 1960s). In particular, the equality constraints

of (1.8) are eliminated and introduced as a penalty term of a composite function.

Consequently, this approach tends to solve unconstrained minimization problem

min
x,s

f(x)− µ
p∑

i=1

log si +
1

2µ
‖c(x)− s‖2.

Regardless of which approaches are used, a globalization strategy such as line

search, trust region and filter (or a combination of these strategies) must be applied

to ensure the global convergence. Wächter and Biegler [148] gave an example to

show that barrier-SQP methods using line search (see, e.g., [1, 2, 7, 15, 60, 74,

108, 109, 113, 146, 159]) may converge to false solutions. In contrast, line search

strategy applied to barrier-penalty methods is not affected by this failure, see,

e.g., [8, 13, 18, 42, 70, 76, 77, 82, 139, 161]. Further discussions on interior point

methods using trust region and filter strategies can be found in the literature,

see, e.g., [34–36, 46, 47, 52, 75, 141, 150, 163] (trust region methods) and [19, 67,

69, 144, 149] (filter methods). Castro and Cuesta [41], Friedlander and Orban [72]

considered the regularization techniques for interior point method in the framework

of convex quadratic programs.

Byrd et al. [35], Chen and Goldfarb [42] mentioned about the infeasibility

in their researches. The filter line search method of Wächter and Biegler [149]

possesses a feasibility restoration phase. Besides finding a new acceptable iterate

to the filter, the significant role of this phase is to detect (local) infeasibility.

Recently, Curtis [49] proposed a method which is a combination of penalty method

and interior point method to solve problem (1.5). Numerical results demonstrate

that this approach maybe efficient to detect infeasibility. Nocedal et al. [118]

presented a trust region interior point method with two phases: a main phase (solve

the barrier problem (1.8) with µ → 0) and a feasibility phase (minimization the

feasibility violation measure). Numerical experiments showed that the new method

is better than the older one KNITRO/CG [38] in detecting infeasible problems and

there is no loss robustness in solving feasible problems. The capability to detect

Infeasibility detection and regularization strategies in nonlinear optimization 9
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infeasibility of SPDOPT [13] is closely related to the behaviors of the penalty

parameter and of dual variables. In particular, an infeasible stationary point is

declared by this algorithm if the sequence of dual variables tends to infinity and the

penalty parameter converges to zero. Nevertheless, the fast infeasibility detection

has not been studied in both of these algorithms. Very recently, Dai et al. [50]

introduce a primal-dual interior point method with the fast convergence to a KKT

point or to an infeasible stationary point.

Local convergence analyses of the primal-dual interior point methods were

demonstrated under some standard assumptions in papers [9, 14, 59, 89, 90, 139,

160, 163]. These researches concentrated on demonstrating the superlinear and

quadratic convergence or on studying the behavior of the primal-dual interior

point methods in the neighborhood of the central path defined by (1.7). On

the other hands, Ralph and Wright [127] showed the superlinear convergence

of an algorithm for solving a monotone variational inequality under a constant-

rank constraint qualification without any assumption about the uniqueness of the

multipliers. In [128], they argued that the result in the previous paper still hold

without the constant-rank condition. The research of Wright [154] can be seen

as an extension of [127, 128] to general nonconvex nonlinear problems. In his

work, the analysis was done under the MFCQ assumption. We note that all

of these algorithms impose a centrality condition on the iterates. Vicente and

Wright [147] proposed an algorithm with quadratic rate of convergence under

a weaker constraint qualification (MFCQ) and the strict complementarity. The

primal variables and their multipliers are modified as some components approach

zero. On the other hand, the full step is permitted even if the non-negativity of

constraints are not valid. Wright and Orban [158] showed the uniqueness of the

local minimizer of the barrier problem (1.6) under assumptions MFCQ and strict

complementarity. Without the latter, the distances between the minimizers and

the solution of the problem (1.6) are estimated in terms of the barrier parameter µ.

Another interior point method was introduced by Yamashita and Yabe [162] where

the quadratic convergence was obtained by assuming the linear independence of

gradients of equality constraints and the strict complementarity.

The whole content of this thesis is organized as follows. The current chapter

is a general introduction of this dissertation. The next chapter recalls some basic

backgrounds and notations which will be used throughout the thesis. Especially,

an original proof of the first and the second order necessary optimality conditions

based on penalty function will be given. Chapter 3 introduces a new augmented

Lagrangian method for solving problem (1.2). In chapter 4, we develop the result in
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previous chapter to the general optimization problem (1.1) by taking into account

the interior point method and the augmented Lagrangian method. Two next

chapters are devoted to study the local properties of regularized methods in the

absence of classical assumptions.

In addition to theoretical researches, we implemented algorithms in this

dissertation in language C. In particular, the algorithms in Chapter 3 and Chapter

4 can be seen as the developments of SPDOPT [12, 13] with the aim of detecting

infeasibility.

Infeasibility detection and regularization strategies in nonlinear optimization 11
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Chapter 2

Preliminaries

In this chapter, we introduced notations and concepts which will be used frequently

in the next chapters. Some backgrounds related to real analysis, linear algebra and

optimization problem are also recalled without specific demonstration, unless the

proof is original. Finally, we mention a useful tool to compare the performances

of several algorithms which will be helpful in Chapters 3 and 4.

2.1 Elementary notations and concepts

Throughout this dissertation, scalars and vectors are denoted by lowercase letters,

matrices are denoted by capital letters and the capitalization of vector name

indicates the diagonal matrix formed by placing elements of that vector on

the diagonal, e.g., X = diag(x). For notational convenience, we often omit

transpose notation and write (x, y, z) = (x⊤, y⊤, z⊤)⊤. The identity matrix is

denoted by I and e stands for the vector of all ones with an arbitrary size.

The ith component of a vector x ∈ Rn will be denoted by [x]i or xi if there is

no ambiguity. Vector inequalities are understood componentwise, for example

x ≥ 0 means that xi ≥ 0, for all i = 1, . . . , n. The notations Rn
+ and Rn

++

respectively stand for the nonnegative and the positive orthants, i.e. Rn
+ =

{x ∈ Rn : x ≥ 0} and Rn
++ = {x ∈ Rn : x > 0}. The minimum and the

maximum of vectors which have the same size are understood componentwise, i.e.,

min{x, y} = (min{x1, y1}, . . . ,min{xn, yn})⊤. Given two vectors x, y ∈ Rn, their

Euclidean scalar product is denoted by x⊤y and is defined by

x⊤y =
n∑

i=1

xiyi.
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We denote x ⊥ y, if x⊤y = 0. The associated l2 norm is ‖x‖= (x⊤x)
1
2 . A property

that holds for the Euclidean norm l2 is the Cauchy-Schwarz inequality, which states

that

|x⊤y|≤ ‖x‖‖y‖.

The open Euclidean ball centered at x ∈ Rn with radius r > 0 is denoted by

B(x, r), that is

B(x, r) = {y ∈ Rn : ‖y − x‖< r}.

The Hadamard product of two vectors x and y, denoted by x ◦ y, is defined by

[x ◦ y]i = xiyi, for all i = 1, . . . , n.

The positive part of a real vector x is a vector in Rn defined by x+ = max{x, 0},
where the maximum is understood componentwise.

For two nonnegative scalar sequences {ak} and {bk}, we use the Landau symbols

ak = O(bk) if there exists a constant C > 0 such that ak ≤ Cbk, for all k ∈ N

and ak = o(bk) if there exists a sequence {ǫk} such that lim
k→∞

ǫk = 0 and ak ≤ ǫkbk

for all k ∈ N. If ak = O(bk), we also write that bk = Ω(ak). Finally, we use the

notation ak = Θ(bk) to indicate that ak = O(bk) and bk = O(ak).

For a function f and an iterate xk, to simplify the notation we denote fk =

f(xk). Likewise, f ∗ stands for f(x∗), and so on. The notation g(x) stands for

the gradient of f at x, while the transpose of the Jacobian of c at x is denoted

by A(x) = ∇c(x). The Lagrangian associated to the problem (1.1) is defined by

L(w) = f(x) + y⊤c(x) − z⊤x, where w = (x, y, z) is the vector of primal-dual

variables and (y, z) ∈ Rm+n is the vector of Lagrange multipliers corresponding

to the constraints. The notations ∇xL(·) and ∇2
xxL(·) are used to stand for the

gradient and the Hessian matrix of L(·) with respect to the primal variable x.

For a rectangular matrix M ∈ Rm×n, the induced matrix norm is defined by

‖M‖= max{‖Mx‖: ‖x‖≤ 1}.

Let M be a symmetric matrix. The smallest eigenvalue is denoted by λmin(M).

The notation M ≻ 0 (resp., � 0) stands for M positive definite (resp., M positive

semidefinite). For two symmetric matrices A and B with the same size, we use the

notation A ≻ B (resp., A � B) to mean that A−B ≻ 0 (resp., A−B � 0). The

inertia of a symmetric matrix M is the integer triple that indicates the numbers

n+, n− and n0 of positive, negative and zero eigenvalues of this matrix, respectively,
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that is

In(M) = (n+, n−, n0).

For a closed set C ⊂ Rn, the distance from x ∈ Rn to C is defined by

d(x,C) = min
ξ∈C
‖x− ξ‖.

In some certain situations, the set is clearly defined by the context, so we frequently

omit this set in the notation of distance function, i.e., d(x) = d(x,C). In chapters 5

and 6, for a vector x, the notation x̄ denotes any element of C such that ‖x− x̄‖=
d(x,C).

2.2 Linear Algebra

We recall a property related to the minimum eigenvalue of symmetric matrices.

Proposition 2.1. Let A ∈ Rn×n and B ∈ Rn×n be two real symmetric matrices.

Then,

λmin(A) + λmin(B) ≤ λmin(A+B).

Proof. This result can be seen as a consequence of the interlacing property of

eigenvalues, see, e.g. Horn [98, Theorem 4.3.1]. For the sake of completeness, we

give a simple proof here. Let u ∈ Rn with ‖u‖= 1 be an eigenvector of A + B

corresponding to the eigenvalue λ := λmin(A+B), i.e., (A+B)u = λu. It implies

that λ = u⊤(A+B)u. By noting that for all x ∈ Rn, one has

λmin(A)‖x‖2≤ x⊤Ax and λmin(B)‖x‖2≤ x⊤Bx.

These above facts imply that

λmin(A) + λmin(B) = (λmin(A) + λmin(B))‖u‖2≤ u⊤(A+B)u = λ = λmin(A+B).

We have the following properties about the relation between the positive

definiteness and inertia. The proof can be found in [70, Lemma 4.1], [51, Theorem

3].
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Lemma 2.2. Let H ∈ Rn×n be a symmetric matrix, A ∈ Rn×m and δ > 0. Define

the matrices

K = H +
1
δ
AA⊤ and M =


H A

A⊤ −δI


 .

(i) The matrix K is positive definite if and only if In(M) = (n,m, 0).

(ii) For all u ∈ Rn\{0} such that A⊤u = 0, u⊤Hu > 0 if and only if there exists

a number δ > 0 such that the matrix K is positive definite.

A square real matrix Q is said to be orthogonal if

Q⊤Q = QQ⊤ = I.

We recall spectral decomposition theorem of a symmetric matrix.

Proposition 2.3 (Spectral Decomposition ). Let A ∈ Rn×n be a symmetric

matrix. There exist n eigenvalues λ1, . . . , λn in R and n eigenvectors u1, . . . , un in

Rn, such that

A =
n∑

i=1

λiuiu
⊤
i = QΛQ⊤,

where D = diag(λ1, . . . , λn) ∈ Rn×n and Q = (u1, . . . , un) is orthogonal.

We recall Singular Value Decomposition (SVD) theorem which will be useful.

Proposition 2.4 ([98],Theorem 7.3.2). Let A be an n × m real matrix and let

r = rank(A). Assume that A⊤A = V ΛV ⊤, in which V is an m × m orthogonal

matrix, Λ = Σ2, where Σ = diag(σ1, . . . , σr, 0m−r), 0m−r is the zero vector of size

m − r and σ1 ≥ . . . ≥ σr > 0. Let define Σr = diag(σ1, . . . , σr) ∈ Rn×n and

partition V =
(
V1 V2

)
, in which V1 ∈ Rm×r. Then there exists a partitioned

orthogonal matrix U =
(
U1 U2

)
, where U1 ∈ Rn×r such that

A = UΣV ⊤ =
(
U1 U2

)

Σr 0

0 0




V

⊤
1

V ⊤
2


 .

We recall some results about the norm of the inverse matrix.

Proposition 2.5 ([53], Theorem 3.1.4). Let A and B be two n× n real matrices.

If A is nonsingular and ‖A−1(B − A)‖< 1, then B is nonsingular and

‖B−1‖≤ ‖A−1‖
1− ‖A−1(B − A)‖
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Proposition 2.6 ([98], Corollary 5.6.16). Let A ∈ Rn×n. If there exists a matrix

norm ‖·‖ such that ‖I − A‖< 1, then the matrix A is nonsingular and

A−1 =
∞∑

k=0

(I − A)k.

The determinant of block matrices has the following property.

Proposition 2.7. Let A,B,C,D be real matrices. If D is nonsingular, we then

have

det


A B

C D


 = det(S) det(D),

where S = A−BD−1C is the Schur complement of D.

Proof. The result follows from the following formula


A B

C D


 =


S BD−1

0 I




 I 0

C D


 .

The next important result is about the nonsingularity of a Jacobian matrix

related to a bound constrained optimization problem and it will be useful in the

local analysis of our algorithms.

Proposition 2.8. Let H ∈ Rn×n be symmetric, x ∈ Rn, z ∈ Rn and

M =


H −I
Z X


 ,

where X = diag(x) and Z = diag(z).

If 0 ≤ x ⊥ z ≥ 0, min{xi + zi : i = 1 . . . , n} > 0 and for all u ∈ ker(Z),

u⊤Hu > 0, then the matrix M is nonsingular.

Proof. A usual proof, see, e.g., [64], is to show that M is injective. We propose

here another quite simple proof.

Without loss of generality, we may assume that z = (z1, 0), x = (0, x2) where

(z1, x2) ∈ Rp×Rn−p and (z1, x2) > 0, for some 0 ≤ p ≤ n. Using this partition, let

us write the symmetric matrix H under the form

H =


H11 H12

H21 H22


 ,
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where H11, H22 are symmetric matrices and H12 = H⊤
21. Since z1 > 0, it follows

from the assumption that for all nonzero vector u ∈ Rn−p,

u⊤H22u =
(
0 u⊤

)
H


0

u


 > 0,

which implies that H22 ≻ 0. By making a permutation of the first and the third

column blocks, we have

|detM | =

∣∣∣∣∣∣∣∣∣∣∣∣

det




H11 H12 −I 0

H21 H22 0 −I
Z1 0 0 0

0 0 0 X2




∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

det




−I H12 H11 0

0 H22 H21 −I
0 0 Z1 0

0 0 0 X2




∣∣∣∣∣∣∣∣∣∣∣∣

,

= det(H22) det(Z1) det(X2)

> 0,

which implies the nonsingularity of the matrix M.

2.3 Real analysis

This section is devoted to some basic backgrounds of real analysis which will be

used in studying the local behavior of algorithms. Firstly, we recall the notion of

Lipschitz continuity.

Definition 2.9. A function f : Rn → Rm is Lipschitz continuous on a set D ⊂ Rn

if there exists L > 0 such that for every x, y ∈ D,

‖f(x)− f(y)‖≤ L‖x− y‖.

The next Lemma is a direct consequence of the Lipschitz continuity.

Proposition 2.10 ([53], Lemma 4.1.12). Let F : Rn → Rm be a continuously

differentiable function in the open convex set D ⊂ Rn. Assume that the Jacobian
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matrix of F at w is Lipschitz continuous on D. Then, for any w,w′ ∈ D,

‖F (w′)− F (w)− F ′(w)(w′ − w)‖≤ L

2
‖w − w′‖2.

The next result give us upper and lower bounds of ‖F (w)− F (w′)‖.

Proposition 2.11 ([53], Lemma 4.1.16). Under the assumptions of Proposition

2.10, assume that F ′(w̄)−1 exists for some w̄ ∈ D. Then, there exists ε > 0 and

0 < a1 ≤ a2 such that for all w,w′ ∈ B(w̄, ε) ∩D,

a1‖w − w′‖≤ ‖F (w)− F (w′)‖≤ a2‖w − w′‖.

We now present a well-known result in multivariable calculus which permits us

to represent some variables via some other ones.

Theorem 2.12 (Implicit Function Theorem). Let F : Rn+m → Rn be a

continuously differentiable function and a point (x∗, y∗) ∈ Rn+m satisfying

F (x∗, y∗) = 0. If the Jacobian matrix F ′
x(x∗, y∗) =

[
∂Fi

∂xj
(x∗, y∗)

]
i,j

is nonsingular,

then there exist positive constants δ, ε and a unique continuously differentiable

function ϕ : B(y∗, ε) → Rn such that for all (x, y) ∈ B(x∗, δ)×B(y∗, ε),

F (x, y) = 0 if and only if y = ϕ(x).

Finally, we end this section with some definitions about the rate of convergence.

Definition 2.13 ([21] Rate of convergence). Let {xn} be a sequence in Rn which

converges to x∗ ∈ Rn. If there exist constants p > 1 such that ‖xk+1 − x∗‖=
O(‖xk−x∗‖p), then {xk} is said to converge to x∗ at least superlinearly with order

(or rate of) p. If ‖xk+1 − x∗‖= Ω(‖xk − x∗‖p), then {xk} is said to converge to x∗

at most superlinearly with order p. This sequence is said to converge superlinearly

with order p, where p > 1, if it converges both at most and at least superlinearly

with order p.

If ‖xk+1 − x∗‖= O(‖xk − x∗‖2), then the convergence is said to be quadratic.

2.4 Optimization problem

Let us consider two kinds of optimization problem: the optimization problem with

only equality constraints (1.2) and the general optimization problem (1.1). To

simplify, we introduce notions related to the general optimization problem (1.1).
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Similar concepts and definitions can be easily extended to (1.2).

The feasible set F of (1.1) is a set of points x that satisfy the constraints, i.e.,

F = {x ∈ Rn : c(x) = 0 and x ≥ 0}.

At a feasible point x ∈ F , we define the set of active bound as

A(x) = {i : xi = 0}.

The linearized cone at a feasible point x ∈ F is given by

L(x) = {d ∈ Rn : ∇c(x)⊤d = 0 and dj ≥ 0, for all j ∈ A(x)}.

We recall the notion of constraint qualifications. These are sufficient conditions

under which the linearized cone at a feasible point equals to the tangent cone at

this point. We introduce here the two most famous constraint qualifications which

will be used throughout this thesis.

Definition 2.14 (LICQ). The linear independence constraint qualification is

satisfied at a feasible point x ∈ Rn if the set of the gradients of active constraints

{∇ci(x) : i = 1, . . . ,m} ∪ {ei : i ∈ A(x)} is linearly independent.

Definition 2.15 (MFCQ). The Mangasarian-Fromovitz constraint qualification

is satisfied at a feasible point x ∈ Rn if the set of equality constraint gradients

{∇ci(x) : i = 1, . . . ,m} is linearly independent and there exists a vector d ∈ Rn

such that ∇c(x)⊤d = 0 and di > 0 for all i ∈ A(x).

It is worth noting that the MFCQ holds at x∗ if and only if there does not exist

(y, z) 6= 0 such that zi ≥ 0, for all i ∈ A and

∇c(x)y +
∑

j∈A

zj = 0.

The LICQ is stronger than the MFCQ in the sense that the MFCQ can be implied

by the LICQ. In the framework of equality constrained problem (1.2), these two

constraint qualifications are equivalent and can be interpreted as full rank of the

Jacobian matrix ∇c(x).

Example 2.16. We consider two feasible sets

F1 = {x ∈ R2|(x1 − 1)2 + x2
2 − 1 = 0, x1 ≥ 0, x2 ≥ 0}
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x1

x2

B A

F1

(a) LICQ is satisfied at A. MFCQ is not
valid at B.

x1

x2

C

F2

(b) MFCQ holds at C, but LICQ does not
hold at this point

Fig. 2.1: Illustration of LICQ and MFCQ

and

F2 = {x ∈ R2|(x1 − 1)2 + (x2 + 1)2 − 2 = 0, x1 ≥ 0, x2 ≥ 0}.

The LICQ is valid at A = (2, 0) ∈ F1 and does not hold at C = (0, 0) ∈ F2. The

MFCQ does not hold at B = (0, 0) ∈ F1, but it holds at C = (0, 0) ∈ F2.

We now give some definitions about local and global minimizers.

Definition 2.17. A point x∗ is a global minimizer of the problem (1.1) if x∗ ∈ F
and f(x∗) ≤ f(x) for all x ∈ F .
A point x∗ is a local minimizer of the problem (1.1) if x∗ ∈ F and there exists a

positive number ε such that f(x∗) ≤ f(x) for all x ∈ B(x∗, ε) ∩ F .

In practice, it is difficult to find global solutions. Hence, optimization

algorithms aim to seek local ones. Throughout this thesis, the term “optimal

solution” is meant to be a local minimizer. In numerical optimization, the aim

is to solve the first order optimality conditions. A solution of these conditions is

called a stationary point. We recall here some definitions of stationary points of

the optimization problem (1.1).

Definition 2.18 (Fritz-John point). A point x ∈ Rn is called a Fritz-John (FJ)

point of problem (1.1) if there exists a nonzero vector (u, y, z) ∈ R+ × Rm × Rn

such that

ug(x) + A(x)y − z = 0, c(x) = 0 and 0 ≤ x ⊥ z ≥ 0.

When we consider a FJ point in a relation with constraint qualifications, we

have the following definitions
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Definition 2.19 (KKT point). A point x ∈ Rn is called a Karush-Kuhn-Tucker

(KKT) point of problem (1.1) if there exists (y, z) ∈ Rm+n such that

g(x) + A(x)y − z = 0, c(x) = 0 and 0 ≤ x ⊥ z ≥ 0. (2.1)

Definition 2.20 (Singular stationary point). A point x ∈ Rn is called a singular

stationary point of problem (1.1) if there exists a nonzero vector (y, z) ∈ Rm×Rn

such that

A(x)y − z = 0, c(x) = 0 and 0 ≤ x ⊥ z ≥ 0.

In other word, a singular stationary point of problem (1.1) is a feasible point

at which the MFCQdoes not hold.

Definition 2.21 (Infeasible stationary point). A point x ∈ Rn is called an

infeasible stationary point of problem (1.1) if there exists z ∈ Rn such that

c(x) 6= 0, A(x)c(x)− z = 0 and 0 ≤ x ⊥ z ≥ 0.

An infeasible stationary point is not feasible for problem (1.1) and is a

stationary point of the feasibility problem

min 1
2
‖c(x)‖2

s.t. x ≥ 0.

We introduce a condition related to the constant rank in a neighborhood of a

minimizer which will be used to state the second order necessary conditions.

Definition 2.22 (WCR, [4]). The weak constant-rank (WCR) property holds at

x∗ ∈ F , if the rank of the matrix [∇c1(x), . . . ,∇cm(x), ei1 , . . . , eip
] is constant for

all x in a neighborhood of x∗, where A(x∗) = {i1, . . . , ip}.

The next theorem states necessary conditions for x∗ to be a local minimizer.

The proof of the first order conditions is based on the use of a mixed-penalty

function and was proposed by P. Armand in his Master’s course. We propose here

to complete the proof for the second order necessary conditions. Other proofs

which used different kinds of penalty function without the log barrier term can be

found in (see, e.g., of Bertsekas [22], Güler [92], Andreani et al. [4]).

Theorem 2.23 (Necessary optimality conditions). Suppose that x∗ is a local

minimizer of (1.1) and that the function f and c are twice continuously

differentiable in a neighborhood of x∗. Then x∗ is a Fritz-John point of this problem.
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Moreover, if MFCQ and WCR hold at x∗, then there exists (y∗, z∗) ∈ Rm+n

such that w∗ = (x∗, y∗, z∗) satisfies (2.1) and d⊤∇2
xxL(w∗)d ≥ 0, for all d ∈ Rn

satisfying ∇c(x∗)⊤d = 0 and di = 0 for all i ∈ A(x∗).

Proof. Let x∗ ∈ F be a local minimum of (1.1). To simplify the notation, let

us denote A = A(x∗) = {i1, . . . , ip} and Ac = {1, . . . , n}\A. Let us choose

ε ∈ (0,min
i∈Ac

x∗
i ), such that for all x ∈ B ∩ F , f(x∗) ≤ f(x), where B is the closed

ball in Rn of radius ε and center x∗.

Let us define B+ = {x ∈ B : x > 0}. Let k ∈ N∗ and define the quadratic

barrier penalty function on B+ by

ϕk(x) = f(x) +
k

2
‖c(x)‖2−1

k

n∑

i=1

log xi +
1
4
‖x− x∗‖4.

Let us show that ϕk has a global minimum over B+. Select an index i ∈ {1, . . . , n}.
For all x ∈ B+ we have

ϕk(x) ≥ f̄ − (n− 1) log γ − 1
k

log xi,

where f̄ is the minimum of f over B and γ is an upper bound on all the components

of x over B+. It follows that ϕk(x) tends to infinity when x approaches the

boundary of the nonnegative orthant. Therefore, for all r ∈ R the sublevel set

{x ∈ B+ : ϕk(x) ≤ r} is compact and thus ϕk has at least one global minimum

xk ∈ B+.

Let K ⊂ N∗ be such that the subsequence {xk}K tends to x̄ ∈ B. Let us show

that x̄ = x∗. For k ∈ N∗, define x̃k by

[x̃k]i =




x∗

i if i ∈ Ac,
1
k
[xk]i if i ∈ A.

The sequence {x̃k} converges to x∗ and ‖x̃k − x∗‖≤ 1
k
‖xk − x∗‖≤ ε

k
for all k ∈ N∗,

which implies that {x̃k} ⊂ B+. Because xk is a global minimum of ϕk over B+, we

have ϕk(xk) ≤ ϕk(x̃k) for all k ∈ N∗. The continuous differentiability of c implies

that there exists L > 0 such that ‖c(x)‖= ‖c(x)−c(x∗)‖≤ L‖x−x∗‖, for all x ∈ B.
Using the two previous facts, the choice of ε and the upper bound γ, then defining

the constants p = |A| and M = 2 max{L2ε2

2
+ ε4

4
+ (n − p) log γ

ε
, p}, for all k ≥ 3
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we then have

f(xk) +
k

2
‖c(xk)‖2+

1
4
‖xk − x∗‖4

≤ f(x̃k) +
k

2
‖c(x̃k)‖2+

1
4
‖x̃k − x∗‖4−1

k

∑

i∈Ac

log
[x̃k]i
[xk]i

− 1
k

∑

i∈A

log
[x̃k]i
[xk]i

≤ f(x̃k) +
L2ε2

2k
+

ε4

4k4
+
n− p

k
log

γ

ε
+
p

k
log k

≤ f(x̃k) +
M

k
log k,

where we use the inequality 1 ≤ log k, for k ≥ 3.

On one hand, we deduce that for all k ≥ 3,

‖c(xk)‖2≤ 2
k

(f(x̃k)− f(xk)) +
2M
k2

log k.

By taking the limit k → ∞ in K, we deduce that c(x̄) = 0. We also have x̄ ≥ 0,

because xk > 0 for all k ∈ N∗. We have proved that x̄ ∈ B ∩ F , therefore

f(x∗) ≤ f(x̄). On the other hand, we have

f(xk) +
1
4
‖xk − x∗‖4≤ f(x̃k) +

M

k
log k.

By taking the limit k →∞ in K, we obtain f(x̄)+ 1
4
‖x̄−x∗‖4≤ f(x∗) ≤ f(x̄), and

thus x̄ = x∗. Since this property holds for any limit point of the sequence {xk},
the whole sequence converges to x∗.

Having proved that {xk} → x∗, the minimization of ϕk over B+ is an

unconstrained minimization problem for k large enough. Then, there exists k0 ∈ N∗

such that for all k ≥ k0, ∇ϕk(xk) = 0 and the matrix ∇2ϕk(xk) is positive

semidefinite. The first order optimality conditions ∇ϕk(xk) = 0 can be rewritten

under the form

∇f(xk) +∇c(xk)yk − zk + ‖xk − x∗‖2(xk − x∗) = 0, (2.2)

c(xk) =
1
k
yk, (2.3)

Xkzk =
1
k
e. (2.4)

where we introduced the vectors yk = kc(xk) and zk = 1
k
X−1

k e. Let

us rewrite the equation (2.2) under the form Akvk = 0 where Ak =(
∇f(xk) ∇c(xk) −I ‖xk − x∗‖2(xk − x∗)

)
and vk =

(
1 y⊤

k z⊤
k 1

)⊤
. By
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dividing by ‖vk‖ and by taking the limit for some subsequence we obtain

u∗∇f(x∗) +∇c(x∗)y∗ − z∗ = 0

for some (u∗, y∗, z∗) ∈ R1+m+n. The equation (2.4) implies that z∗
i = 0 for all

i ∈ Ac. Therefore, x∗ is a Fritz John point of the problem.

We now assume that MFCQ and WCR are satisfied at x∗. Let us show that the

sequence {(yk, zk)} is bounded. Indeed, if this sequence is unbounded, by dividing

the both sides of equations (2.2) and (2.4) by ‖(yk, zk)‖ and by taking the limit

for some subsequence, we obtain

∇c(x∗)ȳ −
∑

j∈A

z̄j = 0 and z̄ ≥ 0,

for some nonzero vector (ȳ, z̄) ∈ Rm+n. This implies that the MFCQ is not valid

at x∗.

Because {(yk, zk)} is bounded, there exists a subset K ⊂ N such that

lim
k∈K

(yk, zk) = (y∗, z∗) and (x∗, y∗, z∗) satisfies (2.1).

Let us now show that the second order necessary optimality conditions are

satisfied at (x∗, y∗, z∗). We use the same kind of proof as in the paper of Andreani

et al. [4]. Let d ∈ Rn such that

∇ci(x∗)⊤d = 0, i = 1, . . . ,m and dj = 0, for all j ∈ A. (2.5)

Since the MFCQ is valid at x∗, without loss of generality, we

can assume that there exist vectors ei1 , . . . , eiq
such that the set of

vectors {∇c1(x∗), . . . ,∇cm(x∗), ei1 , . . . , eiq
} is linearly independent and

rank([∇c1(x∗), . . . ,∇cm(x∗), ei1 , . . . , eip
]) = m + q, where 0 ≤ q ≤ p. This

fact and the continuity of the gradients implies that for all x in a neighborhood

of x∗ the set of vector {∇c1(x), . . . ,∇cm(x), ei1 , . . . , eiq
} is linearly independent.

For all x ∈ Rn, we define the matrix

M(x) = [∇c1(x), . . . ,∇cm(x), ei1 , . . . , eiq
].

The WCR implies that for all i = 1, . . . ,m, j = 1, . . . , p, the vectors ∇ci(x) and

eij
are linear combinations of the columns of M(x) for all x in a neighborhood of
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x∗. In particular, since {xk} converges to x∗, for all j = q + 1, . . . , p,

ej =
m∑

i=1

[αk]i∇ci(xk) +
∑

i∈J

[αk]iei (2.6)

for some αk ∈ Rm+|J |.

For each k ∈ N, let dk be the orthogonal projection of d onto the nullspace of

M(xk)⊤, i.e.,

dk = (I −M(xk)(M(xk)⊤M(xk))−1M(xk)⊤)d.

From the property of the orthogonal projection and (2.6), we get

∇ci(xk)⊤dk = 0, i = 1, . . . ,m and [dk]j = 0, j ∈ A (2.7)

for every k ∈ N. The convergence of {(xk, zk)}k∈K to (x∗, z∗) gives us

lim
k∈K

dk = [I −M(x∗)(M(x∗)⊤M(x∗))−1M(x∗)⊤]d = d,

where, the last equality comes from (2.5).

Reminding that xk is an unconstrained minimum of the function ϕk for all

k ∈ N, we then have

0 ≤ d⊤
k∇2ϕk(xk)dk

= d⊤
k

(
∇2f(xk) +

m∑

i=1

kci(xk)∇2ci(xk)

)
dk

+ k‖∇c(xk)⊤dk‖2+
1
k

n∑

j=1

1
[xk]2j

[dk]2j + 2((xk − x∗)⊤dk)2 + ‖xk − x∗‖2‖dk‖2

≤ d⊤
k

(
∇2f(xk) +

m∑

i=1

kci(xk)∇2ci(xk)

)
dk +

1
k

∑

j /∈A

[dk]2j
[xk]2j

+ 3‖xk − x∗‖2‖dk‖2,

where the last inequality comes from (2.7) and the Cauchy-Schwarz inequality. By

taking the limit with noting that {(xk, yk, zk)}k∈K′ → (x∗, y∗, z∗), {dk}k∈K′ → d

and [x∗]j > 0 for j /∈ A , we obtain d⊤∇2
xxL(x∗, y∗, z∗)d ≥ 0 which completes the

proof.

Conversely, second order sufficient conditions (SOSCs) permits us to conclude

that KKT point is a (strict) minimizer.

Definition 2.24 (SOSCs). Let w∗ satisfy KKT condition (2.1). The second order

sufficient conditions hold at w∗ if u⊤∇2
xxL(w∗)u > 0 for all u 6= 0 satisfying
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∇c(x∗)⊤u = 0 and ui = 0 for all i ∈ A.

Let NA be a matrix whose columns created by a basis for the null space of

∇c(x∗)⊤. The second-order necessary (sufficient) conditions can be expressed under

the condition that the reduced Hessian matrix of Lagrangian N⊤
A∇2

xxL(w∗)NA is

positive semidefinite (positive definite).

x

y

Fig. 2.2: Validity of SOSCs

x

y

Fig. 2.3: Failure of SOSCs

Sometimes, the SOSCs are too restricted and hard to satisfy in a large number

of optimization problems. In this case, the local convergence analysis can be

performed under a local error bound condition. More details on this can found

in Pang [120] which is a survey of the broad theory and rich applications of error

bounds for inequality and optimization problems.

Definition 2.25. Let C be a nonempty closed subset in Rn and Φ : Rn → R+

be a function satisfying Φ(x) = 0 if and only if x ∈ C. The function Φ provides a

local error bound of C at x∗ ∈ C if there exist κ > 0, r > 0 such that

∀x ∈ B(x∗, r), d(x,C) ≤ κΦ(x).

In local convergence analysis of algorithms, we also assume the satisfaction of

the strict complementarity (SC) at a primal-dual solution w∗, i.e. z∗
i > 0 for all

i ∈ A. Formally, it is stated in the following definition.

Definition 2.26 (Strict Complementarity (SC)). Let w∗ satisfy KKT conditions

(2.1). The strict complementarity (SC) is satisfied at w∗ if

min{x∗
i + z∗

i : i = 1, . . . , n} > 0.
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2.5 Performance profiles

For the purpose of objectively comparing algorithms, we often use the performance

profiles which proposed by Dolan and Moré [56]. Suppose that we have a set of

solvers S and we want to compare their performances on a set of problem P in

term of computing time (we can apply this comparision to other measures, e.g.,

the number of function evaluations, number of factorizations). For each problem

p and solver s, we define tp,s as computing time required to solve problem p by

solver s.

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

τ

ρ
s
(τ
)

Function evaluations

A B C

Fig. 2.4: Performance profile comparing three solvers on a set of 132 problems

The performance ratio for a problem p and solver s is defined by

rp,s =





tp,s

min{tp,s : s ∈ S} , if p is solved by s

+∞ otherwise.

In other words, this is the ratio between the performance on problem p by solver

s and the best performance by all solvers on this problem. For each solver s, we

define

ρs(τ) =
1
np

|{p ∈ P : rp,s ≤ τ}|,

then ρs(τ) is the fraction of the test problems which are solved by the solver s
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within a factor τ ∈ R of the performance of the best solver. In this manuscript,

we use the logarithmic scale for the τ−axis to present ρs as a function of τ for

each solver s. The leftmost and the rightmost values of the graph plotting the

performance profiles of solvers give us the efficiency and the robustness of solvers,

respectively. We say that a solver is effective if it takes less time to solve a

given problem. If this solver succeeds in finding an optimal solution, then it is

a robust solver for solving this problem. Figure 2.4 gives us the performance

profile comparing the number of function evaluations of three solvers A, B and C

on a set of 132 problems. We can see that A is the most efficient solver and C is

the most robust solver.
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Chapter 3

An Augmented Lagrangian

method for equality constrained

optimization with rapid

infeasibility detection capabilities

In this chapter we concentrate on the rapid detection of the infeasibility in the

framework of a solution of an equality constrained optimization problem (1.2) by

means of a primal-dual augmented Lagrangian method. The new algorithm can

be seen as an improvement of Armand and Omheni [12]. We propose to introduce

a new parameter, called feasibility parameter, whose role is to control the progress

of the iterates to the feasible set. This parameter scales the objective function

relatively to the constraints until a nearly feasible point is detected. From a

formal point of view, the algorithm can be interpreted as the numerical solution

of the Fritz-John optimality conditions, but with a perturbation of the constraints

due to the augmented Lagrangian parameters (Lagrange multiplier and quadratic

penalty term). The feasibility parameter is updated dynamically. In particular, its

value depends on the norm of the residual of a primal-dual system related to the

minimization of the feasibility measure. This leads to a superlinear or quadratic

convergence of the sequence of iterates to an infeasible stationary point. To our

knowledge, this is the first local convergence result in the infeasible case of an

augmented Lagrangian method.
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3.1 Algorithm

We consider the equality constrained optimization problem

minimize ρf(x) subject to c(x) = 0, (Pρ)

where f : Rn → R and c : Rn → Rm are smooth, and where ρ ≥ 0. For the value

ρ = 1, the problem (P1) is referred as the original problem (1.2). For the value

ρ = 0, any feasible solution is optimal for (P0). The parameter ρ is then called as

the feasibility parameter.

The augmented Lagrangian associated with (Pρ) is defined as

Lρ,σ(x, λ) := ρf(x) + λ⊤c(x) + 1
2σ
‖c(x)‖2, (3.1)

where λ ∈ Rm is an estimate of the vector of Lagrange multipliers associated

with the equality constraints and σ > 0 is a quadratic penalty parameter. Recall

that when x∗ is a KKT point for (Pρ), with an associated vector of Lagrange

multipliers λ∗, if the sufficient second order optimality conditions hold at x∗, then

x∗ is a strict local minimum of Lρ,σ(·, λ∗) provided that σ is small enough, see,

e.g., [21, Proposition 1.26]. This result serves as a basis of augmented Lagrangian

methods, in which the augmented Lagrangian is minimized while the parameters

λ and σ are updated in an appropriate manner, see, e.g., [117, Chapter 17].

The first order optimality conditions for minimizing Lρ,σ(·, λ) are

ρg(x) + A(x)
(
λ+ 1

σ
c(x)

)
= 0.

By introducing the dual variable y ∈ Rm and the notation w := (x, y), these

optimality conditions can be reformulated as

Φ(w, λ, ρ, σ) :=


 ρg(x) + A(x)y

c(x) + σ(λ− y)


 = 0.

This formulation of the optimality conditions for minimizing (3.1) serves as a basis

of our algorithm. Note that by setting λ = y, we retrieve the optimality conditions

of problem (Pρ).

Let us define the regularized Jacobian matrix of the function Φ with respect

to w by

Jρ,σ,θ(w) =


Hρ,θ(w) A(x)

A(x)⊤ −σI


 ,
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where θ ≥ 0 is a regularization parameter and where

Hρ,θ(w) = ρ∇2f(x) +
m∑

i=1

yi∇2ci(x) + θI

is the regularized Hessian of the Lagrangian associated with (Pρ). During

the iterations, the regularization parameter is chosen to control the inertia of

regularized Jacobian matrix of Φ. It is well known that In(Jρ,σ,θ(w)) = (n,m, 0) if

and only if the matrix

Kρ,σ,θ(w) := Hρ,θ(w) + 1
σ
A(x)A(x)⊤

is positive definite (see, e.g., Lemma 2.2). A link with the augmented Lagrangian

is given by the following formula:

Kρ,σ,θ(w) = ∇2
xxLρ,σ(x, y − 1

σ
c(x)) + θI.

The algorithm is a Newton-type method for the solution of the optimality

system Φ = 0 and it follows the one proposed in [12]. The globalization scheme

of the algorithm uses two kinds of iteration. At a main iteration, called outer

iteration, all the parameters λ, ρ and σ are updated and a full Newton step for

the solution of Φ = 0 is performed. If the norm of the residual ‖Φ‖ at the trial

iterate is deemed sufficiently small, then the new iterate is updated and a new

outer iteration is called, otherwise the parameters are fixed to their current values

and a sequence of inner iterations is applied in order to reduce sufficiently ‖Φ‖.
The inner iteration algorithm is a backtracking line search applied to a primal-dual

merit function, whose first order optimality conditions correspond to Φ = 0.

We now describe the outer iteration algorithm in detail. Initially, a starting

point w0 = (x0, y0) ∈ Rn+m is chosen, then we set λ0 = y0, choose ρ0 > 0, σ0 > 0

and three constants a ∈ (0, 1), ℓ ∈ N and τ ∈ (0, 1). The iteration counter is set

to k = 0 and an additional index is set to i0 = 0. Let F be a flag to indicate if

the algorithm is in the feasibility detection phase or not. Initially the flag is set to

F = 1. A feasibility tolerance ǫ > 0 is chosen.

The algorithm is quite similar to [12, Algorithm 1], except for the first four

steps which are related to the updating of the parameters.

Initially, a primal-dual starting point is defined and the values of the parameters

are choosen. A flag is used to indicate if the algorithm is in the feasibility detection

phase (F = true) or not (F = false).
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Algorithm 1 (Outer iteration)

0. Initialize w0 = (x0, y0) ∈ Rn+m and set λ0 = y0. Choose parameters ρ0 > 0,
σ0 > 0, ǫ > 0, a ∈]0, 1[, ℓ ∈ N and τ ∈]0, 1[. Set k = 0 and i0 = 0. Set F = 1.

1. If ‖ck‖≤ ǫ, then set F = 0.

2. Choose ζk > 0 such that {ζk} → 0. If k = 0 or

‖ck‖≤ amax{‖cij
‖: (k − ℓ)+ ≤ j ≤ k}+ ζk (3.2)

then set ik+1 = k and go to Step 4, otherwise set ik+1 = ik.

3. If F = 1, then choose 0 < ρk+1 ≤ τρk and set σk+1 = σk, else choose
0 < σk+1 ≤ τσk and set ρk+1 = ρk. Set λk+1 = ρk+1

ρk
λk and go to Step 5.

4. Choose 0 < σk+1 ≤ σk. Set ρk+1 = ρk and λk+1 = yk.

5. Choose the regularization parameter θk ≥ 0 such that In(Jk) = (n,m, 0),
where Jk = Jρk+1,σk+1,θk

(wk). Compute w+
k by solving the linear system

Jk(w+
k − wk) = −Φ(wk, λk+1, ρk+1, σk+1).

6. Choose εk > 0 such that {εk} → 0. If

‖Φ(w+
k , λk+1, ρk+1, σk+1)‖≤ εk, (3.3)

then set wk+1 = w+
k . Otherwise, apply a sequence of inner iterations to find

wk+1 such that
‖Φ(wk+1, λk+1, ρk+1, σk+1)‖≤ εk. (3.4)

7. If termination criteria hold for (Pρ) then stop, else increment k by 1 and go
to Step 1.

At the first step, the algorithm tests if a nearly feasible point, with regards to

a feasibility tolerance ǫ > 0, has been detected. If it is the case, the algorithm

switches into the normal operating mode of [12, Algorithm 1]. This means in

particular that the feasibility parameter ρk will remain constant for all further

iterations.

This switching mechanism is necessary to avoid the undesirable situation where

the feasibility measure goes to zero very slowly, while the condition (3.2) is

alternatively satisfied and not satisfied an infinite number of times, leading to

decreasing the feasibility parameter to zero. Moreover, in this situation, it would be

impossible to make the distinction between the satisfaction of the KKT conditions
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and the regularity of the constraints.

At the second step, the algorithm tests if a sufficient reduction of the feasibility

measure has been obtained. If it is the case, the feasibility parameter is kept

constant, the Lagrange multiplier estimate is set to the current value of the dual

variable and a new value of the quadratic penalty parameter is chosen. For k ≥ 1,

the index ik is the number of the last iteration prior to k at which inequality (3.2)

holds. Note that, at Step 4, the quadratic penalty parameter is chosen in such a

way that it could remain constant all along the iterations. But in that case, the

convergence to a KKT point is only linear and the numerical experiments in [12]

have shown that, in practice, it is better to force the convergence of σk to zero.

If the algorithm detects that the constraints have not decreased sufficiently,

because condition (3.2) is not satisfied, then there are two situations. If F = 1,

then the algorithm is still in the feasibility detection phase. In that case, the

feasibility parameter is sufficiently decreased, the quadratic penalty parameter

is kept constant and the Lagrange multiplier estimate is rescaled. This scaling

is important to force the convergence to zero of {λk} when this step is always

executed from some iteration (see Lemma 3.1-(ii)), ensuring that the sequence

of iterates approaches stationarity of the feasibility problem (see Theorem 3.3-

(ii)). The second situation is when F = 0. In that case the algorithm has left

the feasibility detection phase. Then the feasibility parameter is kept constant,

but the quadratic penalty parameter is decreased to penalize the constraints and

the Lagrange multiplier estimate is kept constant as in a classical augmented

Lagrangian algorithm.

The following lemma summarizes the behavior of the algorithm regarding the

feasibility detection strategy and the update rules of the parameters.

Lemma 3.1. Assume that Algorithm 1 generates an infinite sequence {wk}. Let

K ⊂ N be the set of iteration indices for which the condition (3.2) is satisfied.

(i) If K is infinite, then the subsequence {ck}k∈K converges to zero and {ρk} is

eventually constant.

(ii) If K is finite, then lim inf‖ck‖> 0 and both sequences {σkρk} and {σkλk}
converge to zero.

Proof. For k ∈ N, set βk = ‖cik
‖. We then have for all k ∈ K,

βk+1 ≤ amax{βj : (k − ℓ)+ ≤ j ≤ k}+ ζk
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and for all k /∈ K, βk+1 = βk. It has been shown in [12, Lemma 3.1] that such a

sequence converges to zero. This proves the first conclusion of assertion (i). Since

{ck}k∈K converges to zero, then there exists k0 ∈ K such that ‖ck0‖≤ ǫ and thus

F = 0 for all further iterations. The update rules of the feasibility parameter at

Step 3 and Step 4 imply that ρk = ρk0 for all k ≥ k0, which proves the second

conclusion of assertion (i).

To prove conclusion (ii), suppose that K is finite and let k0 = maxK. For all

k ≥ k0 +1, ik = k0 and Step 3 is executed. It follows that for all k ≥ k0 +ℓ, we have

‖ck‖> a‖ck0‖, therefore lim inf‖ck‖> 0. We consider two cases. If at some iteration

k, ‖ck‖≤ ǫ, then F = 0 for all further iterations. The update of the parameters

at Step 3 implies that both sequences {ρk} and {λk} are eventually constant and

{σk} tends to zero. It follows that {σkρk} and {σkλk} tend to zero. The second

case is when ‖ck‖> ǫ for all k ∈ N, which implies that F = 1 at each iteration.

In that case, for all k ≥ k0 + 1, ρk+1 ≤ τρk, σk+1 = σk and λk+1 = ρk+1

ρk0
yk0 . We

deduce that {ρk} goes to zero, {σk} is eventually constant and {λk} goes to zero,

which implies that both sequences {σkρk} and {σkλk} tend to zero.

At Step 5 of Algorithm 1, the parameter θk is selected to control the inertia of

the matrix Jk. This issue is important to avoid that the outer iterates converge to

a stationary point which is not a local minimum, see [15].

At Step 6, a tolerance εk > 0 is chosen to check if a sufficient reduction of the

norm of the optimality conditions at the candidate iterate w+
k has been obtained.

An example of choice of εk is detailed in Section 3.4. If the residual norm is not

smaller than this tolerance, then a sequence of inner iterations is called to compute

the new iterate.

The inner iteration algorithm consists of a minimization procedure of the

primal-dual merit function defined by

ϕλ,ρ,σ,ν(w) = Lρ,σ(x, λ) +
ν

2σ
‖c(x) + σ(λ− y)‖2,

where ν > 0 is a scaling parameter. It is easy to see that w is a stationary point of

this function if and only if Φ(w, λ, ρ, σ) = 0. This primal-dual merit function was

first introduced by Robinson [129] and Gill and Robinson [76] in framework of SQP

methods. It also used successfully in framework of the quadratic penalty method

[16] and the augmented Lagrangian method [12]. The minimization procedure

is a backtracking line search algorithm quite similar to [12, Algorithm 2]. The

only difference is that in our description of Algorithm 1, the quadratic parameter

36 Infeasibility detection and regularization strategies in nonlinear optimization



3. Rapid infeasibility detection for equality constrained optimization

σk+1 is kept constant during the inner iterations, while in [12] it can be increased.

This choice has no impact from a theoretical point of view and simplifies the

presentation of the algorithm. In our numerical experiments, the value of the

quadratic penalty parameter is also kept constant during the inner iterations. We

now describe the detail of the inner algorithm. We set the initial values w0 = w+
k

and choose constants ν > 0, ω ∈ (0, 1). We fix λ = λk+1, ρ = ρk+1, σ = σk+1 during

the inner iterations.

Algorithm 2 Inner iteration

1. If ‖Φ(wi, λ, ρ, σ)‖≤ εk, then set wk+1 = wi and return to Algorithm 1.

2. Choose θi ≥ 0 such that In(J i) = (n,m, 0), where J i = Jρ,σ,θi(wi), and solve
the system J idi = −Φ(wi, λ, ρ, σ) to compute the direction di.

3. Starting from αi = 1, perform a backtracking line-search to find α ∈ (0, 1]
such that

ϕλ,ρ,σ,ν(wi + αidi) ≤ ϕλ,ρ,σ,ν(wi) + αiω∇ϕλ,ρ,σ,ν(wi)⊤di.

Set wi+1 = wi + αidi.

3.2 Global convergence analysis

Firstly, we have the following theorem which is similar to [12, Theorem 2.3]. It

shows that if the function f is bounded from below and if the gradient of the

constraints and the regularized Hessian of the Lagrangian stay bounded during

the inner iterations, then the iterate wk+1 can be computed in a finite number of

inner iterations.

Theorem 3.2. Suppose that an infinite sequence {wi} is generated by Algorithm

2. Assume also that the sequences {A(wi)} and {Hρ,θi(wi)} are bounded and that

the matrices Kρ,σ,θi(wi) are uniformly positive definite for i ∈ N. Then, either the

function value f i goes to −∞ or a subsequence of {Φ(wi, λ, ρ, σ)} goes to zero.

In view of this result, it will be assumed that the inner iteration algorithm

succeeds in a finite number of iterations in finding wk+1 each time it is called at

Step 6 of Algorithm 1.

Theorem 3.3. Assume that Algorithm 1 generates an infinite sequence {wk}.
Assume also that the sequence {(gk, Ak)} is bounded. In any case, the iterates
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approach feasible or infeasible stationarity of problem (P1). More precisely, let

K ⊂ N be the set of iteration indices for which the condition (3.2) is satisfied.

Then, at least one of the following situations occurs.

(i) If K is infinite, then the subsequence {ck}K tends to zero. In addition, if

{yk}K is bounded, then the sequence {(gk, Ak)} has a limit point (ḡ, Ā) such

that ḡ + Āȳ = 0 for some ȳ ∈ Rm. If {yk}K is unbounded, then {Ak} has a

limit point Ā which is rank deficient.

(ii) If K is finite, then {‖ck‖} is bounded away from zero and {Akck} tends to

zero.

Proof. First note that the convergence to zero of the sequence {ρkgk +Akyk} is a

direct consequence of Step 6 of Algorithm 1.

Let us prove outcome (i). Lemma 3.1-(i) implies that limK ck = 0 and {ρk}
is eventually constant. If {yk}K is bounded, then the assumptions imply that the

whole sequence {(gk, Ak, yk/ρk)}K is bounded and so has a limit point (ḡ, Ā, ȳ)

such that ḡ + Āȳ = 0, which proves the first part of outcome (i). Suppose now

that {yk}K is unbounded.There exists K′ ⊂ K such that yk 6= 0 for all k ∈ K′ and

limK′‖yk‖= ∞. For k ∈ K′, we have

‖Akuk‖≤ 1
‖yk‖
‖ρkgk + Akyk‖+ ρk

‖yk‖
‖gk‖,

where uk = yk/‖yk‖. Because {(Ak, uk)}K′ is bounded, this sequence has a limit

point (Ā, ū), with ū 6= 0. By taking the limit in the previous inequality, knowing

that the two terms of the right-hand side tend to zero, we deduce that Āū = 0,

which proves the second part of outcome (i).

For outcome (ii), suppose that K is finite. Lemma 3.1-(ii) implies that {‖ck‖}
is bounded away from zero and {σkρk, σkλk} tends to zero. For all k ∈ N, we have

Akck = Ak(ck + σk(λk − yk))− σkAkλk + σk(ρkgk + Akyk)− σkρkgk.

By taking the norm on both sides, for all k we have

‖Akck‖ ≤ ‖Ak‖‖ck + σk(λk − yk)‖+σk‖Ak‖‖λk‖+σk‖ρkgk + Akyk‖+σkρk‖gk‖
≤ max{‖Ak‖, σk, ‖gk‖}(2‖Φ(wk, λk, yk, σk)‖+σk‖λk‖+σkρk).

Because the first term of the right-hand side of this inequality is bounded above

and all the terms in the parenthesis tend to zero, we have limAkck = 0, which
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concludes the proof.

To sum up, the next result shows the behavior of the algorithm when the

sequence of primal iterates remains bounded, a usual and mild assumption in a

global convergence analysis.

Theorem 3.4. Assume that Algorithm 1 generates an infinite sequence {wk} such

that the sequence {xk} lies in a compact set.

(i) Any feasible limit point of the sequence {xk} is a Fritz-John point of problem

(P1).

(ii) If the sequence {xk} has no feasible limit point, then any limit point is an

infeasible stationary point of problem (P1).

Proof. The compactness assumption implies that the sequences {gk} and {Ak} are

bounded and so Theorem 3.3 applies.

Let x̄ be a limit point of {xk} such that c̄ = 0. From Lemma 3.1-(ii) we have

that the condition (3.2) is satisfied an infinite number of times. It follows from

Lemma 3.1-(i) that there exists k0 ∈ N such that for all k ≥ k0, ρk = ρk0 . Let

J ⊂ N such that the subsequence {xk}J tends to x̄. Step 6 of Algorithm 1 implies

that the sequence {ρk0gk+Akyk} tends to zero. Dividing by ‖(ρk0 , yk)‖ and because

ρk0 6= 0, we have

lim
k→∞

k∈J

ρk0gk + Akyk

‖(ρk0 , yk)‖ = 0.

By compactness, the sequence {(ρk0 , yk)/‖(ρk0 , yk)‖}J has a limit point (ρ̄, ȳ), such

that ‖(ρ̄, ȳ)‖= 1 and ρ̄ḡ + Āȳ = 0, which proves assertion (i).

Suppose now that {xk} has no feasible limit point. From Lemma 3.1-(i) we have

that the condition (3.2) is only satisfied a finite number of times. Theorem 3.3-(ii)

implies that Āc̄ = 0 for any limit point x̄ of {xk}, which proves assertion (ii).

3.3 Asymptotic analysis

3.3.1 Asymptotic behavior near the KKT point

In this section, it is assumed that Algorithm 1 generates a convergent sequence

{wk} to a primal-dual solution w∗ := (x∗, y∗) ∈ Rn+m of the problem (1.2). In this

case, because {ck} converges to zero, the feasibility parameter becomes constant

after a finite number of iterations and the algorithm is reduced to Algorithm 1 in
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[12] applied to the solution of problem (Pρ) with a fixed value of ρ. For a fixed

parameter ρ ≥ 0 and w := (x, y) ∈ Rn, we define

F̄ (w) =


ρg(x) + A(x)y

g(x)


.

We need some assumptions below in this section.

Assumption 3.1. The sequence {wk} converges to w∗ and {σk} → 0.

Assumption 3.2. The functions f and c are twice continuously differentiable and

their second derivatives are Lipschitz continuous over an open neighborhood of x∗.

Assumption 3.3. The Jacobian matrix ∇c(x∗) is of full row rank.

Assumption 3.4. The second order sufficient conditions hold at w∗, i.e. for all

u ∈ Rn, if u 6= 0 and A(x∗)⊤u = 0, then u⊤∇2
xxLρ(w∗)u > 0, where ∇2

xxLρ(w) =

ρ∇2f(x) +
∑m

i=1 y∇2ci(x).

We now state the main result of this section which gives the conditions on the

choice of parameters in Algorithm 1 to get a quadratic convergence rate.

Theorem 3.5. Under Assumption 3.1- 3.4, if the parameters of Algorithm 1 are

chosen such that ζk = Ω(σk), σk+1 = Θ(‖F̄ (wk)‖) and εk = Ω(σk+1), then for

k ∈ N large enough, wk+1 = w+
k , λk+1 = yk and ‖wk+1 − w∗‖= O(‖wk − w∗‖2).

The proof of this theorem is similar to the one in [12, Theorem 4.5] with noting

that the feasibility parameter becomes constant after a finite number of iterations

and the algorithm is reduced to Algorithm 1 in [12] applied to the solution of

problem (Pρ) with a fixed value of ρ.

3.3.2 Asymptotic behavior near the infeasible stationary

point

In this section, we assume that Algorithm 1 generates a convergent sequence {xk}
to an infeasible stationary point.

Assumption 3.5. Algorithm 1 generates an infinite sequence {wk} which

converges to w∗ = (x∗, y∗) ∈ Rn+m, where x∗ is an infeasible stationary point

of problem (P1)).

40 Infeasibility detection and regularization strategies in nonlinear optimization



3. Rapid infeasibility detection for equality constrained optimization

This assumption is very usual for the analysis of the rate of convergence of a

numerical optimization algorithm. Note that it is equivalent to assume that {xk}
converges to an infeasible stationary point x∗ and the algorithm always stays in

the feasibility detection phase, i.e., F = 1 for all iteration. Indeed, by Lemma 3.1-

(i), the convergence of {xk} to an infeasible stationary point x∗ implies that the

condition (3.2) is satisfied for a finite number of iterations. In that case, by

Lemma 3.1-(ii), the sequence {σkλk} tends to zero. Step 3 of Algorithm 1 implies

that if F = 1 at any iteration, then {σk} is eventually constant and on the contrary,

if F = 1 at some iteration, then {σk} → 0. Since {ck + σk(λk − yk)} tends to zero,

the sequence {σkyk} tends to c∗ 6= 0 and thus {yk} has a finite limit if and only

if F keeps the value 1 at all the iterations. This indicates that the choice of the

value of the feasibility tolerance ǫ is an important issue related to the behavior

of the algorithm. In practice, ǫ is chosen equal to, or smaller than, the stopping

tolerance of the overall algorithm.

Lemma 3.6. Under Assumption 3.5, the inequality (3.2) is satisfied a finite

number of times, the sequence {ρk} converges to zero, {σk} is eventually constant

and ‖λk‖= O(ρk).

Proof. Assumption 3.5 implies that {ck} converges to a non-zero value. Therefore,

by virtue of Lemma 3.1-(i), the inequality (3.2) is satisfied only a finite number of

times. It follows that Step 3 of Algorithm 1 is always executed for k sufficiently

large and that F = 1 for all iteration. Indeed, for all k ∈ N we have

‖ck‖≤ ‖ck + σk(λk − yk)‖+σk‖λk‖+σk‖yk‖.

Step 6 and Lemma 3.1-(ii) imply that the first two terms of the right-hand side of

the inequality tend to zero. Because {yk} is supposed to be convergent, we deduce

that the sequence {σk} does not converge to zero, which implies that F = 1 for all

iteration. Therefore, there exists k0 ∈ N such that for all k ≥ k0, ρk ≤ τ k−k0ρk0 ,

σk = σk0 and λk/ρk = λk0/ρk0 , the conclusion follows.

Let σ > 0 be the limit value of {σk}. For w = (x, y) ∈ Rn+m, let us define

F (w) =


 A(x)y

c(x)− σy


 . (3.5)

We have lim Φ(wk, λk, ρk, σk) = Φ(w∗, 0, 0, σ) = F (w∗), therefore y∗ = 1
σ
c∗.
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Assumption 3.6. The function f and c are twice continuously differentiable and

their second derivatives are Lipschitz continuous over an open neighborhood of x∗.

The Hessian matrix of the function 1
2
‖c‖2 is defined as

C :=
∑

i ci∇2ci + AA⊤.

Assumption 3.7. The sufficient second order optimality conditions hold at x∗ for

the feasibility problem min
x∈Rn

1
2
‖c(x)‖2, i.e., the matrix C∗ is positive definite.

The following lemma is a direct consequence of these assumptions.

Lemma 3.7. Under Assumptions 3.6 and 3.7, there exist a neighborhood W of

w∗, M > 0, L > 0 and 0 < a1 ≤ a2 such that for all w,w′ ∈ W we have

(i) ||F ′(w)−1||≤M,

(ii) ||F (w′)− F (w)− F ′(w)(w′ − w)‖≤ L
2
‖w − w′‖2,

(iii) a1‖w − w′‖≤ ‖F (w)− F (w′)‖≤ a2‖w − w′‖.

Proof. To prove (i) it suffices to show that F ′(w∗) is nonsingular. By using the

fact that y∗ = 1
σ
c∗, we have

F ′(w∗) =




1
σ

∑
i c

∗
i∇2c∗

i A∗

A∗⊤ −σI


 .

By virtue of Proposition 2.7, the matrix F ′(w∗) is nonsingular if and only if the

matrix 1
σ
C∗, the Schur complement of −σI of the matrix F ′(w∗), is positive

definite. Thus, item (i) follows from Assumption 3.7. Assumption 3.6 implies

that F ′ is Lipschitz continuous on W with the Lipschitz constant L. Property (ii)

then follows from the Lipschitz continuity of F ′ and from Proposition 2.10. The

assertion (iii) follows from Proposition 2.11.

The next lemma shows that the matrix Jk used at Step 5 of Algorithm 1 is

a good approximation of the Jacobian matrix of F at wk when the feasibility

parameter goes to zero.

Lemma 3.8. Under Assumptions 3.5-3.7, there exists β > 0 such that for all

k ∈ N large enough,

‖Jk − F ′
k‖≤ βρk+1 and ‖J−1

k ‖≤ 2M,

where M is defined by Lemma 3.7.
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Proof. From the definition of Jk, for all k ∈ N we have

‖Jk − F ′
k‖= ‖ρk+1∇2fk + θkI‖.

Since {xk} converges to x∗ and f is assumed to be twice continuously differentiable

in a neighborhood of x∗, the first inequality will be proved if we show that θk =

0 for k large enough. This is the case if In(Jk) = (n,m, 0) or, equivalently, if

Kρk+1,σ,0(wk) is positive definite for k large enough. For all k ∈ N we have

Kρk+1,σ,0(wk) = Hρk+1,0(wk) + 1
σ
AkA

⊤
k

= 1
σ
C∗ + 1

σ
(Ck − C∗) +Hρk+1,0(xk, yk − 1

σ
ck)

By assumption C∗ is positive definite and the two other matrices tend to zero

when k tends to infinity. It follows that Kρk+1,σ,0(wk) is positive definite for k large

enough, which proves the first inequality.

Using Lemma 3.7-(i), the inequality just proved and the fact that {ρk} tends

to zero, for k large enough we have

‖F ′−1
k (Jk − F ′

k)‖ ≤ ‖F ′−1
k ‖‖Jk − F ′

k‖
≤ Mβρk+1

≤ 1
2
.

By applying Proposition 2.5 with A = F ′
k and B = Jk, we then obtain the second

inequality.

The last lemma gives an estimate of the distance of the Newton iterate w+
k to

the solution w∗.

Lemma 3.9. Assume that Assumptions 3.5-3.7 hold. The sequence of iterates

generated by Algorithm 1 satisfies

‖w+
k − w∗‖= O(‖wk − w∗‖2) + O(ρk+1).

Proof. Let k ∈ N. From the definition of the trial iterate w+
k at Step 5 of

Algorithm 1, we have

w+
k − w∗ = wk − w∗ − J−1

k Φ(wk, λk+1, ρk+1, σ)

= J−1
k ((Jk − F ′

k)(wk − w∗) + F ′
k(wk − w∗)− Fk

+ Fk − Φ(wk, λk+1, ρk+1, σ)).
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By using F ∗ = 0, by taking the norm on both sides, then by applying Lemma 3.8,

Lemma 3.7-(ii), finally by using the convergence of {wk} to w∗, the boundedness

of {gk} and ‖λk‖= O(ρk) from Lemma 3.6, we obtain

‖w+
k − w∗‖
≤ ‖J−1

k ‖(‖Jk − F ′
k‖‖wk − w∗‖+‖F ∗ − Fk − F ′

k(w∗ − wk)‖
+ ‖Fk − Φ(wk, λk+1, ρk+1, σ)‖)

≤ 2M(βρk+1‖wk − w∗‖+L
2
‖wk − w∗‖2+ρk+1‖gk‖+σ‖λk+1‖)

= O(ρk+1) + O(‖wk − w∗‖2),

which concludes the proof.

We now state the main result of this section. This theorem shows the rapid

rate of convergence of Algorithm 1 in the infeasible case. In addition, under a

suitable choice of the parameters, there is no need of inner iterations for k large

enough. In this case, the cost of the one iteration of the algorithm is reduced to

the solution of the linear system at Step 5, which can be done with O((n + m)3)

arithmetic operations.

Theorem 3.10. Assume that Assumptions 3.5-3.7 hold. Let t ∈ (0, 2]. If the

feasibility parameter of Algorithm 1 is chosen so that ρk+1 = O(‖Fk‖t), then

‖wk+1 − w∗‖= O(‖wk − w∗‖t). (3.6)

In addition, if ρk+1 = Θ(‖Fk‖t) and if εk = Ω(ρt′

k ) for 0 < t′ < t, then for k large

enough there is no inner iterations, i.e., wk+1 = w+
k .

Proof. The assumption on the value of ρk+1 and the Lipschitz property of F from

Lemma 3.7-(iii) imply that

ρk+1 = O(‖wk − w∗‖t). (3.7)

Using this estimate in Lemma 3.9, we deduce that

‖w+
k − w∗‖= O(‖wk − w∗‖t). (3.8)

At Step 6 of Algorithm 1, we have either wk+1 = w+
k or wk+1 is computed by means

of the inner iterations. In the first case, it is clear that (3.6) follows from (3.8).

Suppose now that the second case holds, i.e., the inequality (3.3) is not satisfied

44 Infeasibility detection and regularization strategies in nonlinear optimization



3. Rapid infeasibility detection for equality constrained optimization

at iteration k. We then have

‖Φ(wk+1, λk+1, ρk+1, σ)‖≤ εk < ‖Φ(w+
k , λk+1, ρk+1, σ)‖. (3.9)

From (3.8), the sequence {w+
k } tends to w∗, therefore {g+

k } is bounded. Using

the second inequality of Lemma 3.7-(iii) and Lemma 3.6, then (3.7) and (3.8), we

deduce that

‖Φ(w+
k , λk+1, ρk+1, σ)‖ ≤ ‖F+

k − F ∗‖+ρk+1‖g+
k ‖+σ‖λk+1‖

= O(‖w+
k − w∗‖) + O(ρk+1)

= O(‖wk − w∗‖t). (3.10)

Combining (3.9) and(3.10) we obtain

‖Φ(wk+1, λk+1, ρk+1, σ)‖= O(‖wk − w∗‖t).

Finally, from the first inequality of Lemma 3.7-(iii), the last estimate, the

boundedness of {gk}, Lemma 3.6 and the estimate (3.7), we have

a1‖wk+1 − w∗‖ ≤ ‖Fk+1 − F ∗‖
= ‖Fk+1‖
≤ ‖Φ(wk+1, λk+1, ρk+1, σ)‖+ρk+1‖gk+1‖+σ‖λk+1‖
= O(‖wk − w∗‖t) + O(ρk+1)

= O(‖wk − w∗‖t),

which proves (3.6).

Let us now prove the second assertion of the theorem. On one hand,

Lemma 3.7-(iii) and (3.6) imply that ‖Fk+1‖= O(‖Fk‖t). By assumption, we have

ρk+1 = Θ(‖Fk‖t), thus ρk+1 = O(ρt
k). Since t′ < t, we then have ρk+1 = o(ρt′

k ). On

the other hand, the estimate (3.10) implies that

‖Φ(w+
k , λk+1, ρk+1, σ)‖= O(‖Fk‖t) = O(ρk+1).

By assumption, εk = Ω(ρt′

k ), therefore for k large enough, the inequality (3.3) is

satisfied.
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3.4 Numerical experiments

Our algorithm is called SPDOPT-ID (Strongly Primal-Dual Optimization with

Infeasibility Detection) and has been implemented in C. The performances of

SPDOPT-ID are compared with those of SPDOPT-AL [12] on a set of 130 standard

problems from the CUTEr collection [91]. The selected problems are those with

equality constraints and a solution time less than 300 seconds. To create a second

set of 130 infeasible problems, the constraint c2
1 + 1 = 0, where c1 is the first

component of c, has been added to each problem. Note that the addition of this

new constraint leads to a twofold difficulty. Indeed, not only the constraints are

infeasible, but their gradients are linearly dependent.

We also compare the condition used to update the parameters in Step 2 of

Algorithm 1, with the one used in [12, Algorithm 1]. The algorithm called

SPDOPT-IDOld, is Algorithm 1, but with the inequality (3.2) which is replaced

by

‖ck‖≤ amax{‖cij
‖+ζij

: (k − ℓ)+ ≤ j ≤ k}. (3.11)

We will show that this modification is of importance when solving an infeasible

problem and that the use of (3.2) in place of (3.11), leads to better numerical

performances.

The feasibility parameter is initially set to ρ0 = 1. When F = 1, the feasibility

parameter in Step 3 is updated by the formula

ρk+1 = min{0.2ρk, 0.2‖Fk‖2, 1/(k + 1)}.

The assumption on ρk+1 in the statements of Theorem 3.10 are satisfied with t = 2.

The rate of convergence of {wk} to w∗ is then quadratic. A lower bound of 10−16

is applied on this parameter.

The parameters σk and θk are updated at Step 3, Step 4 and Step 5 as in [12,

Algorithm 1]. In particular, for each k ∈ N we set

σk+1 = min{τσk, τ‖F̂k‖, 1/(k + 1)},

where τ = 0.1 at Step 3 and τ = 0.2 at Step 4 and F̂k =


gk + Akyk

ck


.

To be able to solve a quadratic problem in only one iteration, we adopt the

same procedure as in [16] for the choice of the starting point. Let w̄ = (x̄, ȳ), where

x̄ is the default starting point and ȳ = (1, . . . , 1)⊤. Initially, the following linear
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system J1,0,0(w̄)d = −Φ(w̄, ȳ, 1, 0) is solved. If the inequality ‖Φ(w̄+d, 0, 1, 0)‖∞≤
‖Φ(w̄, 0, 1, 0)‖∞ is satisfied, then w0 = w̄ + d, otherwise w0 = w̄.

The algorithm is terminated and an optimal solution is declared to be found if

‖(gk +Akyk/ρk, ck)‖∞≤ εtol with εtol = 10−8. Otherwise, if ρk ≤ εtol, ‖ck‖≥ εtol and

‖Φ(wk, 0, 0, σk)‖∞≤ εtol, the algorithm returns a notification that an infeasible

stationary point has been found. For SPDOPT-AL, we also add the stopping

condition ‖ck‖≥ εtol, ‖Akck‖≤ εtol and σk ≤ εtol to terminate this algorithm at an

infeasible stationary point.

As mentioned in Section 3.3.2, the feasibility tolerance at Step 1 is set to ǫ =

εtol, to get a fast local convergence when the algorithm converges to an infeasible

stationary point.

At Step 2 of Algorithm 1, we choose a = 0.9, ℓ = 2 and ζk = 10σkρk for all

iteration k.

The sequence of tolerance {εk} in Step 6 is defined by the following formula

εk = 0.9 max{‖Φ(wi, λi, ρi, σi)‖: (k − 4)+ ≤ i ≤ k}+ ζk.

The convergence to zero of the sequence {εk} is a consequence of [16, Proposition

1]. This choice meets the requirements to get a fast convergence in both feasible

case, i.e., εk = Ω(σk+1), and in the infeasible case, i.e., εk = Ω(ρt′

k ), with t′ = 1.

The symmetric indefinite factorization code MA57 [58] is used to factorize

and regularize the matrix Jk. Since this factorization reveals the inertia of the

matrix, the correction parameter θk, initially set to zero, is increased and a new

factorization is performed until the inertia of Jk has the correct value.

The maximum number of iterations, counting both the inner and the outer

iterations, is limited to 3000.

For the standard problems, only 129 problems solved by at least one of three

algorithms are selected for the comparison purpose (problem dixchlng has not

been solved). Figure 3.1 shows the performance profiles of Dolan and Moré [56] on

the numbers of function and gradient evaluations. For τ ≥ 0, ρs(τ) is the fraction

of test problems for which the performance of the solver s is within a factor 2τ of

the best one. These profiles show that the performances of the three algorithms

are very similar, the difference is not significant. In term of robustness, the three

algorithms solve successfully the same number of problems (128 problems). We

can conclude that the infeasibility detection does not reduce the performances of

the algorithm for solving standard problems.

Figure 3.2 shows the performances of these algorithms in terms of numbers
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Fig. 3.1: Performance profiles comparing the three algorithms on the set of standard problems
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Fig. 3.2: Performance profiles comparing the three algorithms on the set of infeasible problems
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of function and gradient evaluations on a set of 126 infeasible problems (the

problems gilbert, hager3, porous1, porous2 have been eliminated since three

algorithms cannot detect the infeasibility). We observe that SPDOPT-ID is the

most efficient algorithm for detecting infeasible problems, with an efficiency rate

of approximately 90%. In any case, the efficiency of SPDOPT-ID and SPDOPT-

IDOld is very significant comparing to SPDOPT-AL. In term of robustness, our

two algorithms are more robust than SPDOPT-AL since they can detect more than

95% of problems, whereas SPDOPT-AL only detects less than 60%. This figure

also shows that SPDOPT-ID is better comparing to SPDOPT-IDOld, justifying

the choice of new criterion for updating parameters.
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Fig. 3.3: Values of log10‖Akck‖ and log10‖Fk‖ for the last ten iterations of SPDOPT-AL and
SPDOPT-ID. T represents the index of the stopping iteration for each run.

We conclude this section by a comparison of a numerical estimate of the rate of

convergence of the new algorithm SPDOPT-ID and of the original one SPDOPT-

AL, when the sequence of iterates converges to an infeasible stationary point. We

used a graphical representation inspired by [30]. We selected a set of 58 problems

among the collection of infeasible problems, for which both algorithms generate a

sequence converging to an infeasible stationary point. Figure 3.3 shows the last ten

values of ‖Akck‖ for SPDOPT-AL and of ‖Fk‖ for SPDOPT-ID. We cannot plot

the values ‖Fk‖ for SPDOPT-AL, because when the sequence of iterates converges

to an infeasible stationary point, {σk} goes to zero and {yk} becomes unbounded.

Under some regularity assumptions, we obviously have ‖Akck‖= Θ(‖xk − x∗‖)
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and ‖Fk‖= Θ(‖wk − w∗‖). These curves empirically show that there is a true

improvement of the rate of convergence of the algorithm, from linear to quadratic.

For the solution of these infeasible problems, we observed that for the last

four outer iterations, there is no inner iterations (i.e., wk+1 = w+
k ) for 90% of the

problems. This percentage is more than 93% if one considers the last three outer

iterations. For the infeasible problems for which SPDOPT-ID uses inner iterations

at the last outer iterations, either the algorithm does not terminate successfully

or the quadratic convergence is not observed. These observations confirm the

asymptotic property of our algorithm.
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Chapter 4

Rapid infeasibility detection in a

mixed logarithmic

barrier-augmented Lagrangian

method for nonlinear

optimization

This section is devoted to extend the approach in the previous chapter to the

solution of general optimization problem with equality and inequality constraints.

One possibility is to introduce slack variables to inequality constraints and apply

augmented Lagrangian method in the case of simple bounds as in [3]. Armand and

Omheni [13] proposed a nonlinear optimization algorithm, called SPDOPT, which

is a mix of an interior point method and of an augmented Lagrangian method.

The capability of this algorithm to detect infeasibility is closely related to the

behaviors of the penalty parameter and of the dual variables. Nevertheless, a fast

infeasibility detection has not been observed in practice or theoretically proved

for this algorithm. In order to accelerate the infeasibility detection, the idea of

Chapter 3 will be used to modify SPDOPT. More specifically, a new parameter,

called the feasibility parameter, is introduced to balance the minimization of the

barrier function and the realization of the equality constraints. If a nearly feasible

point is detected, the feasibility parameter remains constant and our algorithm acts

as the original algorithm. When the algorithm tends to an infeasible stationary

point, the feasibility parameter acts as a barrier parameter. In this case, the exact

solution of the perturbed system parametrized by the feasibility parameter defines
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a smooth trajectory. With a suitable rule of updating the feasibility parameter,

the iterates tangentially follow this trajectory. Consequently, when the sequence

of iterates converges to an infeasible stationary point, the algorithm can achieve

a superlinear rate of convergence. To the best of our knowledge, this is the first

local convergence analysis in the infeasible case related to interior point methods.

4.1 Algorithm

In this chapter, we consider the following nonlinear optimization problem

minimize
x∈Rn

f(x) subject to c(x) = 0 and x ≥ 0, (4.1)

where f : Rn → R and c : Rn → Rm are twice continuously differentiable functions.

To the problem (4.1), we associate the mixed penalty function

ϕρ,λ,σ,µ(x) = ρf(x) + λ⊤c(x) +
1

2σ
‖c(x)‖2−ρµ

n∑

i=1

log xi, 6 (4.2)

where ρ > 0 is the feasibility parameter, λ ∈ Rm is an estimate of the vector

of Lagrange multipliers associated with the equality constraints, σ > 0 is the

quadratic penalty parameter and µ > 0 is the barrier parameter. This penalty

function is a mix of the augmented Lagrangian and of the logarithmic barrier

function. It can be interpreted as the augmented Lagrangian associated with the

log-barrier problem

minimize
x∈Rn

ρ

(
f(x)− µ

n∑

i=1

log xi

)
, subject to c(x) = 0. (4.3)

The first order optimality conditions for the minimization of (4.2) are

ρg(x) + A(x)(λ+ 1
σ
c(x))− ρµX−1e = 0. (4.4)

By introducing the dual variables y = λ + 1
σ
c(x) and z = ρµX−1e, the equation

(4.4) is equivalently formulated as

Φ(w, λ, ρ, σ, µ) :=




ρg(x) + A(x)y − z

c(x) + σ(λ− y)

XZe− ρµe


 = 0, (4.5)
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where w := (x, y, z) ∈ RN , with N = n + m + n. This primal-dual system

of equations can be seen as a perturbation of the Fritz-John (FJ) optimality

conditions of problem (4.1) (Definition 2.18). The equality constraints are

perturbed thanks to the term σ(λ − y). Note that when λ = y, this system

is the primal-dual optimality system associated with the problem (4.3). Each

complementarity product is perturbed thanks to the term ρµ. An important

feature of our approach is that each time the parameters are updated, either ρ

is reduced, or µ is reduced, but not both. We will see that, under some usual

regularity assumptions, this allows to guarantee the superlinear convergence in

case of convergence to a local minimum or to an infeasible stationary point.

The algorithm involves applying a Newton-type method for the solution of the

system Φ = 0, while updating the parameters along the iterations to control the

convergence to a FJ point or to an infeasible stationary point. There are two kinds

of iteration: outer and inner. At an outer iteration, the parameters are updated,

while at an inner iteration the parameters are kept constant. At each iteration,

outer or inner, a candidate iterate w+ is computed as a solution of the following

linear system:

Jρ,θ,δ(w)(w+ − w) = −Φ(w, λ, ρ, σ, µ)

where the matrix is defined as

Jρ,θ,δ(w) :=




Hρ,θ(x, y) A(x) −I
A(x)⊤ −δI 0

Z 0 X


 ,

with

Hρ,θ(x, y) := ρ∇2f(x) +
m∑

i=1

yi∇2ci(x) + θI.

The regularization parameters θ ≥ 0 and δ > 0 are chosen such that the matrix

Kρ,θ,δ(w) := Hρ,θ(x, y) +X−1Z +
1
δ
A(x)A(x)⊤

is positive definite. This property implies that not only the matrix Jρ,θ,δ(w) is

nonsingular, but also that the solution of the linear system solved during the inner

iterations is a descent direction for some merit function.

We now describe in detail the outer iteration algorithm. At the beginning, a

starting point w0 = (x0, y0, z0) ∈ R2n+m satisfying v0 = (x0, z0) > 0 is chosen, then

we set λ0 = y0. Besides, we choose σ0 > 0, µ0 > 0, ρ0 = 1 and four constants κ,
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β, τ̄ ∈ (0, 1) and l ∈ N. The outer iteration counter is set to k = 0. A feasibility

tolerance ǫ > 0 must be chosen. A flag is used to indicate if the algorithm is in the

feasibility detection phase (F = 1) or not (F = 0). Initially F = 1, then this value

is kept until a feasible, or nearly feasible, point has been detected. The index ik

stores the last iteration number prior to k at which inequality (4.6) is satisfied. It

is initialized to i0 = 0.

The algorithm can be seen as an extension of [13, Algorithm 1]. The first

four steps are related to the updating of the parameters and are drawn from

the feasibility detection algorithm for the equality constrained case proposed in

Chapter 3.

The first step aims to detect a feasible or nearly feasible point. Whenever this

is the case, the flag is set to F = 0 and this value is kept for all further iterations.

In this case, the algorithm is exactly the same as [13, Algorithm 1]. In particular,

the sequence {ρk} is eventually constant. It is worth noting that this switching

mechanism is necessary to avoid the undesirable situation in which the condition

(4.6) is alternatively satisfied and not satisfied an infinite number of times, for

example when the feasibility measure decreases very slowly. In this case, it would

be difficult to distinguish between a convergence to a KKT point or to a singular

stationary point. Moreover, in practice, a point is deemed to be feasible if the

norm of the constraints is smaller than some predefined tolerance. Suppose, for

example, that we want to minimize x in R, subject to the constraint ex ≤ 0. Most

of well established softwares for nonlinear numerical optimization return a message

like “optimal solution found” when solving this problem. Hence, it seems natural

to state that the problem is feasible, whenever the feasibility tolerance is small

enough.

Depending on the reduction of the feasibility measure, the trial values ρ+
k and

µ+
k for the feasibility and barrier parameters, as well as the new values σk+1 and

λk+1 for the augmented Lagrangian parameters, are chosen. If the inequality (4.6)

is satisfied, the feasibility parameter is kept constant, new values of the barrier and

quadratic penalty parameters are chosen, the Lagrange multiplier estimate is set

to the current value of the dual variable. As shown in [12], from a theoretical point

of view and in practice, it is better to force the convergence of {σk} to zero to get a

rapid rate of convergence. The primal-dual nature of our algorithm allows to avoid

the difficulties related to tiny values of the quadratic penalty parameter, as in a

classical penalty or augmented Lagrangian approach. On the other hand, if the

condition (4.6) is not satisfied, then there are two situations. The first situation is

when the algorithm is still in the feasibility detection phase (F = 1). In that case,
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Algorithm 3 (Outer iteration)
Initialize w0 = (x0, y0, z0) ∈ R2n+m such that v0 = (x0, z0) > 0. Choose parameters
ǫ > 0, κ ∈ (0, 1), β ∈ (0, 1), τ̄ ∈ (0, 1), l ∈ N, σ0 > 0 and µ0 > 0. Set λ0 = y0,
ρ0 = 1, k = 0, i0 = 0 and F = 1.

1. If ‖ck‖≤ ǫ, then set F = 0.

2. Choose ζk > 0 such that {ζk} → 0. If k = 0 or

‖ck‖≤ κmax{‖cij
‖: (k − l)+ ≤ j ≤ k}+ ζk (4.6)

then set ik+1 = k and go to Step 4, otherwise set ik+1 = ik.

3. If F = 1, then choose 0 < ρ+
k ≤ βρk and set σk+1 = σk, µ

+
k = µk, λk+1 = ρ+

k λk,
else set ρ+

k = ρk, choose 0 < σk+1 ≤ βσk, 0 < µ+
k ≤ βµk and set λk+1 = λk.

Go to Step 5.

4. Set ρ+
k = ρk, choose 0 < σk+1 ≤ σk and 0 < µ+

k ≤ βµk. Set λk+1 = yk.

5. If ρ+
k = ρk, then choose δk = Ω(µk), else set δk = σk. Choose regularization

parameter θk ≥ 0 such that Kρ+
k

,θk,δk
(wk) ≻ 0. Set Jk = Jρ+

k
,θk,δk

(wk).
Compute w+

k by solving the linear system

Jk(w+
k − wk) = −Φ(wk, λk+1, ρ

+
k , σk+1, µ

+
k ). (4.7)

6. Choose τk ∈ [τ̄ , 1[. Compute αk as the largest α ∈ (0, 1] such that

vk + α(v+
k − vk) ≥ (1− τk)vk, (4.8)

where vk = (xk, zk). Choose a vector ak = (ax
k, a

y
k, z

z
k) ∈ [αk, 1]N such that

vk + av
k ◦ (v+

k − vk) > 0, where av
k = (ax

k, a
z
k).

7. Set ŵk = wk + ak ◦ (w+
k −wk), (ρk+1, µk+1) = (ρk, µk) +αk(ρ+

k − ρk, µ
+
k −µk).

8. Choose εk > 0 such that {εk} → 0. If ‖Φ(ŵk, λk+1, ρk+1, σk+1, µk+1)‖≤ εk,
then set wk+1 = ŵk. Otherwise, apply the inner iteration algorithm to find
wk+1 such that

‖Φ(wk+1, λk+1, ρk+1, σk+1, µk+1)‖≤ εk. (4.9)

9. If termination criteria hold for (4.1) then stop, else k ← k+1 and go to Step
1.
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the feasibility parameter is sufficiently reduced, while the barrier and quadratic

penalty parameters are kept constant, and then the Lagrange multiplier estimate

is rescaled. When these updates are always done from some iteration, this scaling

of the Lagrange multiplier estimate is useful for the convergence of the iterates to

an infeasible stationary point (see Theorem 4.3-ii). The second situation is when

the algorithm has left the feasibility detection phase (F = 0). In that case, the

feasibility parameter is kept constant, the barrier parameter is reduced as in a

standard interior point method, the quadratic penalty parameter is also reduced

to penalize the constraints violation and the Lagrange multiplier estimate is kept

constant as in a classical augmented Lagrangian algorithm.

At Step 5, the choice of the regularization parameter δk of the regularized

Jacobian matrix is done as follows. When the feasibility parameter is unchanged,

because (4.6) is satisfied or F = 0, we set δk = Ω(µk). This choice is imposed by the

global convergence theory of the algorithm in the feasible case, see [15, Theorem

3.3] and [13, Theorem 4.2]. In case the feasibility parameter is reduced, we set

δk = σk. This choice is motivated to get a rapid convergence when the sequence

of iterates converges to an infeasible stationary point, see Lemma 4.8 below.

Once the Newton iterate w+
k is computed at Step 5, the fraction to the boundary

rule is applied to ensure the positivity of the primal and dual variables. As in [15],

the step length can be selected componentwise to calculate the trial iterate ŵk.

The values of barrier and feasibility parameters are then updated according to

formulae at Step 7. These formulae avoid too large discrepancies between the

magnitude of these parameters and the one of ‖Φ‖ and increase robustness [9].

Finally, at Step 8, if the trial iterate ŵk satisfies a sufficient reduction of the

residual norm of the perturbed optimality conditions, then wk+1 = ŵk. If this is

not the case, a sequence of inner iterations with all the parameters fixed to their

current values will be carried out to find the new iterate wk+1.

The inner iteration algorithm (Algorithm 4) is a backtracking line search

applied to the primal-dual merit function

Mρ,λ,σ,µ(w) = ϕρ,λ,σ,µ(x) + ν1ψσ,λ(x, y) + ν2πρ,µ(x, z),

where ϕρ,λ,σ,µ(x) is defined by (4.2),

ψσ,λ(x, y) =
1

2σ
‖c(x) + σ(λ− y)‖2 and πρ,µ(x, z) = x⊤z − ρµ

p∑

i=1

log(xizi),

where ν1 > 0, ν2 > 0 are scaling parameters. This is motivated by the fact that the
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Algorithm 4 Inner iteration

1. If ‖Φ(wi, λ, ρ, σ, µ)‖≤ εk, then set wk+1 = wi and return to Algorithm 3.

2. Choose θi ≥ 0 such that In(Jρ,θi,σ(wi)) = (n,m, 0) and compute the direction
di = (di

x, d
i
y, d

i
z) by solving the system Jρ,θi,σ(wi)d = −Φ(wi, λ, ρ, σ, µ).

3. Compute α̂ as the largest α ∈ (0, 1] such that

vi + αdi
v ≥ (1− τ)vi.

where di
v = (di

x, d
i
z) and τ ∈ (0, 1).

4. Start from αi = α̂, apply a backtracking line search to find αi ∈ (0, α̂] such
that

Mρ,λ,σ,µ(wi + αidi) ≤Mρ,λ,σ,µ(wi) + ωαi∇Mρ,λ,σ,µ(wi)⊤di.

5. Set wi+1 = wi + αidi.

first order optimality conditions for minimizing this merit function correspond to

(4.5). To simplify the presentation, we consider that the quadratic parameter σk+1

remains constant all along the inner iterations, while in [13, Algorithm 2] it can be

increased. This choice has no impact from the theoretical point of view and in our

numerical experiments, the value of this parameter is allowed to increase during the

inner iterations. Once the inner algorithm is triggered we set w0 = ŵk and choose

constants ν1, ν2 > 0, ω ∈ (0, 1). We fix the values ρ = ρk+1, σ = σk+1, µ = µk+1,

and λ = λk+1.

We end this section by showing some properties related to the behavior of the

parameters with respect to the feasibility detection by means of the criterion (4.6).

Lemma 4.1. Assume that Algorithm 3 generates an infinite sequence of iterates

{wk}. Let K ⊂ N be the set of iteration indices at which the inequality (4.6) is

satisfied.

(i) If K is infinite, then {ck}k∈K converges to zero and {ρk} is eventually

constant.

(ii) If K is finite, then lim inf‖ck‖> 0.

In addition, suppose that the sequence {Hρ+
k

,θk
(xk, yk), gk, Ak} is bounded and that

the matrices Kρ+
k

,θk,δk
(wk) are uniformly positive definite for k ∈ N.
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(iii) If K is infinite, then the sequence {µk} converges to zero.

(iv) If K is finite, then the sequences {σkρk} and {σkλk} converge to zero.

Proof. The outcomes (i) and (ii) are proved in Lemma 3.1, while (iii) is a direct

consequence of [13, Theorem 4.2 (iv)].

To prove (iv), suppose that K is finite and let us define k0 := maxK. Two

cases are considered. The first case is when ‖ck‖≤ ǫ at some iteration k. We then

have F = 0 for all further iterations. The update of the parameters at Step 3

implies that both sequences {ρk} and {λk} are eventually constant and {σk} tends

to zero. It follows that the two sequences {σkρk} and {σkλk} converge to zero.

The second case is when ‖ck‖> ǫ for all k ∈ N, which implies that F = 1 at each

iteration. In that case, for all k ≥ k0 + 1, ρ+
k ≤ βρk, σk+1 = σk0 , µk+1 = µk0 and

‖λk+1‖≤ βρk‖λk‖≤ βρk‖yk0‖. By using similar arguments as in the proof of [13,

Theorem 4.2 (iv)] and [15, Theorem 3.3], we will show that {ρk} converges to zero,

which will imply that the two sequences {σkρk} and {σkλk} converge to zero. The

proof is by contradiction by supposing that {ρk} is bounded away from zero by

some constant ρ̄ > 0. For all k ≥ k0, we have ρ+
k ≤ βρk with β ∈ (0, 1). From

Step 7 of Algorithm 3, for all k ≥ k0 we have

ρk+1 = ρk + αk(ρ+
k − ρk)

≤ (1− (1− β)αk)ρk.

Because {ρk} is supposed to be bounded away from zero, this inequality implies

that {αk} converges to zero. We will get a contradiction by showing that {αk} is

bounded away from zero. The inequality (33) in [13, Theorem 4.2] shows that for

all k large enough, we have

τ̄

1 + ‖w+
k − wk‖/

√
ρ̄
≤ αk. (4.10)

Recall that the inequality (4.9) is satisfied at each iteration with a sequence {εk}
going to zero. Therefore, the sequence {Φ(wk, λk, ρk, σk, µk)} converges to zero. In

particular, {XkZke− ρkµke} tends to zero. Consequently, for k large enough

[xk]i[zk]i ≥
ρ̄µk0

2
, for all i = 1, ..., n.

Keeping in mind all the assumptions and the previous lower bound on {xk ◦ zk},
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[10, Theorem 1] shows that there exists a constant K1 > 0, such that for all k ≥ 0

‖Jρ+
k

,θk,δk
(wk)−1‖≤ K1. (4.11)

From the definition of Φ(·), for all k ≥ 0 we have

Φ(wk, λk+1, ρ
+
k , σk+1, µ

+
k ) = Φ(wk, λk, ρk, σk+1, µ

+
k )

+ ((ρ+
k − ρk)g⊤

k , σk+1(λk+1 − λk)⊤, (ρk − ρ+
k )µ+

k e
⊤)⊤.

By using (4.7), (4.9), (4.11) and noting that σk+1 = σk = σk0 , µ+
k = µk = µk0 ,

λk+1 = ρ+
k λk and ρ+

k ≤ ρk ≤ 1, for k large enough we then get

‖w+
k − wk‖ = ‖Jρ+

k
,θk,δk

(wk)−1Φ(wk, λk+1, ρ
+
k , σk+1, µ

+
k )‖

≤ K1(‖Φ(wk, λk, ρk, σk, µk)‖+|ρk − ρ+
k |(‖gk‖+µk0‖e‖) + σk0|ρ+

k − 1|‖λk‖)
≤ K1(εk + ‖gk‖+µk0‖e‖+σk0‖λk‖).

Because {εk} tends to zero, {gk} is bounded and ‖λk‖≤ β‖yk0‖, we deduce that

‖w+
k −wk‖ is bounded from above, which contradicts inequality (4.10) and the fact

that {αk} is supposed to converge to zero. We then deduce that ρk → 0, which

completes the proof of (iv).

4.2 Global convergence analysis

For the global convergence of the inner iterations, we have the following theorem.

Theorem 4.2. [13, Theorem4.1] Suppose that an infinite sequence {wi} is

generated by Algorithm 4.Assume also that the sequence {xi} lies in a compact set

of Rn and that the matrices Kρ,θi,σ(wi) are uniformly positive definite for i ∈ N.

Then, the sequence {Φ(wi, λ, ρ, σ, µ)} converges to zero.

Roughly speaking, this theorem shows that under some standard assumptions,

the inner iteration algorithm is able to find a new iterate wk+1 satisfying the

stopping test (4.9) after a finite number of iterations. Hence, we can assume that

the inner iteration algorithm successfully terminates each time it is called at Step 8.

We then have the following result about the global convergence of Algorithm

3.

Theorem 4.3. Assume that all the assumptions of Lemma 4.1 are satisfied and

that Algorithm 3 generates an infinite sequence {wk}. Let K ⊂ N be the set of
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iteration indices for which the condition (4.6) is satisfied.

(i) If K is infinite, then ρk = ρ̄ > 0 for k large enough and the iterates approach

stationarity of the problem (4.1), i.e., the sequences {ρ̄gk +Akyk−zk}, {ck}K

and {Xkzk} converge to zero.

(ii) If K is finite, then {‖ck‖} is bounded away from zero and the sequence of

primal iterates approaches stationarity of the feasibility problem, i.e., there

exists a sequence {uk} ⊂ Rn
+ such that lim‖(Akck − uk, Xkuk)‖= 0.

Proof. Let us denote Φk := Φ(wk, λk, ρk, σk, µk) for k ∈ N. Step 8 of Algorithm 3

implies that {Φk} converges to zero.

Suppose that K is infinite. Lemma 4.1-(i) shows that {ck}K tends to zero and

that ρk = ρ̄ for sufficiently large k. The first block of Φk is ρkgk + Akyk − zk,

therefore lim ρ̄gk +Akyk−zk = 0. The third block of Φk is XkZke−ρkµke. Lemma

4.1-(iii) implies that {µk} tends to zero. Therefore {Xkzk} tends to zero, which

concludes the proof of outcome (i).

Suppose now that K is finite. Lemma 4.1-(ii) implies that the sequence {‖ck‖}
is bounded away from zero. Let us define uk := σkzk > 0 for k ∈ N. For all k ∈ N,

we have

Akck − uk = σk(ρkgk + Akyk − zk)− σkρkgk + Ak(ck + σk(λk − yk))− σkAkλk

and

Xkuk = σk(XkZke− ρkµke) + σkρkµke.

By taking the norm on both sides, for all k we then get

‖Akck − uk‖+‖Xkuk‖≤ (2σk + ‖gk‖+2‖Ak‖+µk‖e‖) max{‖Φk‖, σkρk, σk‖λk‖}.

By assumptions, the sequences {gk} and {Ak} are bounded. The first assertion of

this proof and Lemma 4.1-(iv) imply that the second term of this inequality tends

to zero. We then deduce that {(Akck − uk, Xkuk)} converges to zero, which ends

the proof.

The next result summarizes the behavior of the Algorithm 3 under a mild

and usual assumption about the boundedness of the sequence of primal iterates.

It is shown that, under the boundedness of the primal sequence and for an

appropriate choice of the stopping criteria, the algorithm stops after a finite number

of iterations, either on a FJ point or on an infeasible stationary point.
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Theorem 4.4. Assume that Algorithm 3 generates an infinite sequence of iterates

{wk} such that {xk} lies in a compact set. Assume also that the regularization

parameters chosen at Step 5 are such that the matrices Kρ+
k

,θk,δk
(wk) are uniformly

positive definite for k ∈ N.

(i) Any feasible limit point of {xk} is a Fritz-John point of problem (4.1).

(ii) If {xk} has no feasible limit point, then any limit point is an infeasible

stationary point of problem (4.1).

Proof. The compactness assumption implies that the sequence {(gk, Ak)} is

bounded.

Assume that {xk} has a feasible limit point x̄, i.e., c̄ = 0. Lemma 4.1-(ii)

implies that the updating condition (4.6) is satisfied an infinite number of times.

Let K ⊂ N such that limK xk = x̄. From Lemma 4.1-(i), we have ρk = ρ̄ for k large

enough. We consider two situations regarding the boundedness of the sequence

{yk}K. Suppose that {yk}K is bounded. With the compactness of {xk} we have

that the sequence {Hρ+
k

,θk
(xk, yk)} is bounded and so Theorem 4.3 applies. The

sequence {zk} is also bounded. Indeed, for all k ∈ N, we have

‖zk‖≤ ‖ρkgk + Akyk − zk‖+‖ρkgk + Akyk‖.

The first term on the right hand side tends to zero and the second one is bounded.

Consequently, by virtue of Theorem (4.3)-(i), any limit point of the sequence

{xk, yk, zk}K satisfies the FJ conditions. Because ρ̄ > 0, x̄ is a KKT point of

problem (4.1). The second situation is when {yk}K is unbounded. For all k ∈ K,

let (rk, sk) := (yk,zk)
‖(yk,zk)‖

. Note that sk > 0, because of Step 6 of Algorithm 3. By

taking a subsequence if necessary, we can assume that limK(rk, sk) = (ā, b̄) 6= 0,

with b̄ ≥ 0. For all k ∈ N we have

‖Akrk − sk‖≤
1

‖(yk, zk)‖ (‖ρkgk + Akyk − zk‖+‖ρkgk‖)

Because {ρkgk +Akyk − zk} converges to zero, {gk} is bounded, {ρk} is eventually

constant and {yk}K is unbounded, we get Āā− b̄ = 0. For all k ∈ N we have

‖Xksk‖=
1

‖(yk, zk)‖(‖XkZke− ρkµke‖+ρkµk‖e‖)

Because {XkZke− ρkµke} tends to zero and {(yk, zk)}K is unbounded, we also get

X̄b̄ = 0. We can conclude that x̄ is a singular stationary point of problem (4.1).
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Let us now consider the second outcome for which any limit point of {xk} is

infeasible. It follows from Lemma 4.1-(i) that the Step 3 of Algorithm 3 is executed

at all iteration k ≥ k0 for some k0 ∈ N. There are two cases depending on the

boundedness of {yk}. If {yk} is bounded, then the sequence {Hρ+
k

,θk
(xk, yk)} is

bounded. Therefore, Theorem 4.3-(ii) shows that any limit point x̄ of {xk} is an

infeasible stationary point of (4.1). In the second case, {yk} is unbounded. From

the convergence to zero of the sequence {ck +σk(λk−yk)} and the boundedness of

{λk} (since ‖λk‖≤ ‖λk0‖ for all k ≥ k0), we deduce that the sequence {σk} tends

to zero. As a consequence, the sequences {σkρk} and {σkλk} converge to zero. We

then obtain the same conclusion as Lemma 4.1-(iv). It suffices to repeat the proof

of Theorem (4.3)-(ii) to show that any limit point {xk} is an infeasible stationary

point of (4.1).

4.3 Asymptotic behavior

There are two cases to analyse. The first one is when {wk} converges to a primal-

dual solution of problem (4.1) w∗ = (x∗, y∗, z∗). Because the flag F is switched

to zero at some iteration, the feasibility parameter becomes constant after a

finite number of iterations. Consequently, the analysis in [119, Section 1.4] can

be directly applied to demonstrate that under some classical assumptions and a

suitable choice of the parameters, the rate of convergence of the sequence {wk} is

superlinear. In particular, we have the following results.

Theorem 4.5. Assume that the following assumptions are fulfilled:

(i) The functions f and c are twice continuously differentiable and their second

derivatives are Lipschitz continuous over an open neighborhood of x∗.

(ii) The LICQ (Definition 2.14) is satisfied at x∗.

(iii) The SOSCs (Definition 2.24) hold at w∗.

(iv) The strict complementarity (Definition 2.26) holds at w∗.

(v) The sequences {µ+
k }, {σk}, {δk}, {τk}, and {εk} are chosen such that

θ1µ
t+1
k ≤ µ+

k ≤ θ2µk, σk = O(µk), δk = O(µk), lim
k→∞

(1−τk)
µk

µ+
k

= 0 and ε = Ω(µk).

for some θ1 > 0 and t, θ2 ∈ (0, 1).
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Then, for k sufficiently large, we have the following results

1. Algorithm 3 does not need the inner iterations from which implies that wk+1 =

ŵk.

2. The iterates are asymptotically tangent to the trajectory in the sense that

wk = w(µk)+o(µk), where the function w(·) is implied by applying the Implicit

Function Theorem (Theorem 2.12) for the function F : RN+1 → RN

F (w, µ) =




g + Ay − z

c(x)

XZe


 .

3. The unit step is accepted by the fraction to the boundary rule, i.e. µk+1 =

µ+, ŵk = w+
k .

Moreover, if the sequence {ζk} is chosen such that ζk = Ω(µk), then the

inequality (4.6) is satisfied at each iteration.

The second case is when Algorithm 3 generates a convergent sequence {xk}
to an infeasible stationary point x∗ ∈ Rn of the problem (4.1). This section

concentrates on this case.

4.3.1 Assumptions and basic results

The first assumption is about the regularity of the problem data. This assumption

is standard in our framework.

Assumption 4.1. The function f and c are twice continuously differentiable and

their second derivatives are Lipschitz continuous over an open neighborhood of x∗.

To analyse the rate of convergence of the sequence of iterates to an infeasible

stationary point, a natural assumption is that the whole sequence of iterates

converges to such a point.

Assumption 4.2. Algorithm 3 generates an infinite sequence {wk} which

converges to w∗ = (x∗, y∗, z∗) ∈ R2n+m, where x∗ is an infeasible stationary point

of problem (4.1).

This assumption implies that the algorithm always stays in feasibility detection

phase, i.e., the feasibility flag keeps the value F = 1 all along the iterations. More

precisely, some direct consequences are the following.
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Lemma 4.6. Under Assumption 4.2, F = 1 at each iteration, there exists k0 ∈ N

such that for all k ≥ k0, σk = σ := σk0 > 0 and µk = µ := µk0 > 0, {ρk} converges

to zero and ‖λk+1‖= o(ρ+
k ).

Proof. Assumption 4.2 implies that {ck} is bounded away from zero. By virtue of

Lemma 4.1-(i), the inequality (4.6) is satisfied only a finite number of times. It

follows that Step 3 of Algorithm 3 is always executed for k sufficiently large. For

all k ∈ N, we have

‖ck‖≤ ‖ck + σk(λk − yk)‖+σk‖λk‖+σk‖yk‖.

Inequality (4.9) implies that the first term of the right-hand side tends to zero.

The update rule of λk at Step 3 implies that {λk} remains bounded. Since {yk} is

supposed to be convergent, if {σk} goes to zero, then the previous inequality shows

that {ck} goes to zero, which would contradict the initial assumption. This means

that σk is constant for k large enough and thus F = 1 at each iteration. Hence,

there exists k0 ∈ N such that for all k ≥ k0, σk = σk0 , µk = µk0 and λk+1/ρ
+
k =

ρ+
k−1...ρ

+
k0
λk0 . By using the same arguments as in the proof of Lemma 4.1-(iv),

we deduce that the sequence {ρk} converges to zero. Thanks to the fact that

ρ+
k−1 ≤ ρk, we get ‖λk+1‖= o(ρ+

k ).

For w = (x, y, z) ∈ R2n+m and ρ > 0, let us define

F (w, ρ) =




ρg(x) + A(x)y − z

c(x)− σy

XZe− ρµe


 ,

where σ and µ are the values defined by Lemma 4.6. From the fact that

lim Φ(wk, λk, ρk, σk, µk) = Φ(w∗, 0, 0, σ, µ) = F (w∗, 0), one has y∗ = 1
σ
c∗, z∗ =

1
σ
A∗c∗ and 0 ≤ x∗ ⊥ z∗ ≥ 0.

Let us denote the Hessian matrix of the function 1
2
‖c‖2 at x ∈ Rn by

S(x) :=
m∑

i=1

ci(x)∇2ci(x) + A(x)A(x)⊤.

The next assumption related to the second order sufficient optimality conditions

of the feasibility problem

minimize
x∈Rn

1
2
‖c(x)‖2 subject to x ≥ 0. (4.12)
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Assumption 4.3. The second order sufficient optimality conditions (SOSCs) for

the feasibility problem (4.12) hold at x∗, i.e., u⊤S∗u > 0 for all u 6= 0 satisfying

ui = 0 for all i ∈ A.

Assumption 4.4. Strict complementarity holds at w∗, that is

a := min{x∗
i + z∗

i : i = 1, ..., n} > 0.

The next lemma summarizes some basic results which are direct consequences

of these assumptions.

Lemma 4.7. Under Assumptions 4.1-4.4, there exist positive constants r∗, ρ∗, K,

C, L, L1, L2 and a continuously differentiable function w : (−ρ∗, ρ∗) → RN , such

that for all w,w′ ∈ B(w∗, r∗) and for all ρ, ρ′ ∈ (−ρ∗, ρ∗), we have

(i) ‖F ′
w(w, ρ)−1‖≤ K,

(ii) F (w, ρ) = 0 if and only if w(ρ) = w,

(iii) ‖w(ρ)−w(ρ′)‖≤ C|ρ− ρ′|,

(iv) ‖F ′
w(w, ρ)− F ′

w(w′, ρ)‖≤ L(‖w − w′‖),

(v) L1‖w − w′‖≤ ‖F (w, ρ)− F (w′, ρ)‖≤ L2‖w − w′‖.

Proof. In order to prove (i), we only need to show that the matrix F ′
w(w∗, 0) is

nonsingular. Let u ∈ RN such that F ′
w(w∗, 0)u = 0. By writing u := (u1, u2, u3)

and by using the fact that y∗ = 1
σ
c∗, we have




1
σ

∑
i c

∗
i∇2c∗

i A∗ −I
A∗⊤ −σI 0

Z∗ 0 X∗







u1

u2

u3


 =




0

0

0


 .

The third equation of this linear system and Assumption 4.4 imply that [u1]i = 0

for all i ∈ A and [u3]i = 0 for all i /∈ A. Consequently, one has u⊤
1 u3 = 0. The

second equation of the linear system gives us u2 = 1
σ
A∗⊤u1. Substituting this

equality into the first equation and premultiplying by u⊤
1 , we get 1

σ
u⊤

1 S
∗u1 = 0.

By Assumption 4.3 we deduce that u1 = 0, from which we deduce that u2 = 0 and

u3 = 0.

The properties (ii) and (iii) are direct consequences of the Implicit Function

Theorem (Theorem 2.12).
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The Lipschitz continuity of F ′
w, property (iv), follows from Assumption 4.1.

The last assertion (v) is a consequence of [53, Lemma 15].

Our asymptotic analysis also requires some specifications on the choice of the

feasibility parameter. For all k ∈ N, the trial value of feasibility parameter ρ+
k is

chosen such that

θ1ρ
1+t
k ≤ ρ+

k ≤ θ2ρk (4.13)

for some constants θ1 > 0, θ2 ∈ (0, 1) and t ∈ (0, 1). From the fact that {ρk} goes

to zero, the left inequality of (4.13) implies that

ρ2
k = o(ρ+

k ). (4.14)

At last, the parameter τk used in (4.8) must satisfy the following condition:

lim
k→∞

(1− τk)
ρk

ρ+
k

= 0. (4.15)

The conditions (4.13) and (4.15) are standard in the asymptotic analysis of this

family of primal-dual methods, see e.g., [14, 15]. The left inequality of (4.13) means

that the parameter of the path w must converge to zero with a subquadratic rate

of convergence (converge at most superlinearly with order 1 + t) in order that the

Newton iterates, which converge naturally with a quadratic rate, catch the path

prior the parameter is nearly zero.

For k large enough, we have ρ+
k < ρk and σk = σ. Therefore, at Step 5 of

Algorithm 3, the regularization parameter of the matrix Jk is set to δk = σ. The

next lemma shows that the matrix Jk coincides with the Jacobian of F (·, ρ+
k ) at

wk when the feasibility parameter goes to zero.

Lemma 4.8. Under Assumptions 4.1-4.4, for all k ∈ N large enough, one has

Jk = F ′
w(wk, ρ

+
k ) and ‖J−1

k ‖≤ K,

where K is defined by Lemma 4.7.

Proof. For the first claim, it suffices to show that θk = 0 for k large enough. This

is true whenever Kρ+
k

,0,σ(wk) is positive definite. For all k ∈ N we have

Kρ+
k

,0,σ(wk) = Hρ+
k

,0(xk, yk) + 1
σ
AkA

⊤
k +X−1

k Zk

=
1
σ

(Sk − S∗) +Hρ+
k

,0(xk, yk −
1
σ
ck) + 1

σ
S∗ +X−1

k Zk.
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The first two matrices tend to zero when k tends to infinity because {(xk, yk)}
and {ρ+

k } respectively converge to (x∗, 1
σ
c∗) and zero. It remains to show that the

matrices 1
σ
S∗ + X−1

k Zk are uniformly positive definite for k large enough. Let us

define the n× n diagonal matrix E, whose ith diagonal element is equal to one if

i ∈ A and zero otherwise. Assumption 4.3 means that S∗ is positive definite on

the null space of E. Therefore, from Lemma 2.2-(ii), there exists γ > 0 such that

the matrix 1
σ
S∗ + γE is positive definite. For k ∈ N, let us define the diagonal

matrix Ξk whose ith diagonal element is [zk]i/[xk]i if i ∈ A and zero otherwise.

Because of the strict complementarity assumption, the matrices X−1
k Zk −Ξk tend

to zero and each nonzero component of Ξk goes to infinity. It follows that Ξk−γE
is positive semidefinite for all k large enough. By writing

1

σ
S∗ +X−1

k Zk =
1

σ
S∗ + γE + Ξk − γE +X−1

k Zk − Ξk,

we deduce that the matrices 1
σ
S∗ +X−1

k Zk are uniformly positive definite for all k

large enough.

The second assertion follows directly from the first claim and Lemma 4.7-

(i).

Throughout this section, we assume that Assumptions 4.1-4.4 are satisfied.

The following result gives an estimate of the distance of the Newton iterate to the

trajectory w.

Lemma 4.9. There exists M > 0, such that for all sufficiently large k

‖w+
k −w(ρ+

k )‖≤M(‖wk −w(ρk)‖2+ρ2
k + ‖λk+1‖).

Proof. Let k ∈ N be large enough such that ρk ≤ ρ∗ and wk ∈ B(w∗, r∗). Define

ek := w(ρ+
k ) − wk. From the linear system (4.7), then using Φ(w, λ, ρ, σ, µ) =

F (w, ρ) + (0, σλ⊤, 0)⊤ and F (w(ρ+
k ), ρ+

k ) = 0, we have

w+
k −w(ρ+

k ) = −J−1
k Φ(wk, λk+1, ρ

+
k , σ, µ)− ek

= J−1
k

(
F (w(ρ+

k ), ρ+
k )− F (wk, ρ

+
k )− (0, σλ⊤

k+1, 0)⊤ − Jkek

)

= J−1
k

∫ 1

0
(F ′

w(wk + tek, ρ
+
k )− F ′

w(wk, ρ
+
k ))ekdt

+ J−1
k (F ′

w(wk, ρ
+
k )− Jk)ek − J−1

k (0, σλ⊤
k+1, 0)⊤.

By taking norm on both sides and next applying Lemma 4.7-(iv) and Lemma 4.8,
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we then have

‖w+
k −w(ρ+

k )‖≤ 1
2
KL‖ek‖2+Kσ‖λk+1‖.

By applying Lemma 4.7-(iii) and by using the inequality ρ+
k ≤ ρk, we also get

‖ek‖ ≤ ‖wk −w(ρk)‖+‖w(ρk)−w(ρ+
k )‖

≤ ‖wk −w(ρk)‖+Cρk.

Finally, by using the inequality (a + b)2 ≤ 2(a2 + b2) for two real numbers a and

b, we deduce that

‖w+
k −w(ρ+

k )‖≤ KL‖wk −w(ρk)‖2+KLC2ρ2
k +Kσ‖λk+1‖.

Set M = K max{L,LC2, σ} to complete the proof.

4.3.2 Asymptotic result

According to Assumptions 4.1-4.4 and Lemma 4.9, the convergence to w∗ of wk

implies that there exists r̄ ∈ (0, r∗] such that for all k large enough, wk, wk+1,

w(ρk), w(ρ+
k ), and w(ρk+1) belong to B(w∗, r̄) and ρk ∈ (0, ρ∗). Without loss of

generality, we can assume that these properties are true for all k ∈ N. Note that,

by definition of the constant a in Assumption 4.4, we implicitly have r∗ < a, see

[14, Section 4]. We can then define the positive constant b = 1
a−r̄

, which will be

used in Lemma 4.11 below.

The following lemma gives an evaluation of the distance between the next

iterate wk+1 and the path w.

Lemma 4.10. There exists a constant C1 > 0 such that for all k ∈ N,

‖wk+1 −w(ρk+1)‖≤ C1(‖ŵk −w(ρk+1)‖+‖λk+1‖). (4.16)

Proof. If there is no inner iteration, we then have wk+1 = ŵk, therefore the

inequality (4.16) holds trivially with C1 = 1. Suppose now that wk+1 is obtained by

applying a sequence of inner iterations. By virtue of Lemma 4.7-(v), Lemma 4.7-

(ii) and Step 8 of Algorithm 3, there exists an index k0 ∈ N such that for all
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k ≥ k0,

L1‖wk+1 −w(ρk+1)‖ ≤ ‖F (wk+1, ρk+1)− F (w(ρk+1), ρk+1)‖
= ‖Φ(wk+1, λk+1, ρk+1, σ, µ)− (0, σλ⊤

k+1, 0)⊤‖
≤ εk + σ‖λk+1‖
< ‖Φ(ŵk, λk+1, ρk+1, σ, µ)‖+σ‖λk+1‖
≤ ‖F (ŵk, ρk+1)− F (w(ρk+1), ρk+1)‖+2σ‖λk+1‖
≤ L2‖ŵk −w(ρk+1)‖+2σ‖λk+1‖.

By defining C1 := 1
L1

max{L2, 2σ}, the inequality (4.16) is true for all k ≥ k0. This

inequality also holds for all k < k0 by increasing the constant C1 if necessary.

The next lemma gives a lower bound on the step length computed by applying

the fraction to the boundary rule (4.8). The proof is given in [14, Corollary 1].

Lemma 4.11. For all k ∈ N, the step length αk computed by (4.8) satisfies

1− αk ≤ 1− τk + b‖wk − w+
k ‖, (4.17)

where b =
1

a− r̄
> 0.

The first step of the asymptotic analysis is to show that the distance of the

iterates to the trajectory w is upper bounded by a constant times the feasibility

parameter.

Lemma 4.12. The iterates wk generated by Algorithm 3 satisfy

‖wk −w(ρk)‖= O(ρk).

Proof. First of all, let us prove that there exist constants D1 ∈ (0, 1), D2 > 0 and

D3 > 0 such that for all k ∈ N,

dk+1 ≤ d2
k +D1

ρk+1

ρk

dk +D2ρk+1, (4.18)

where dk := D3‖wk −w(ρk)‖. Indeed, if a sequence {dk} satisfies this inequality,

it has been proved in [14, Lemma 7] that dk = O(ρk) and thus the conclusion of

the lemma will follow.
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Let us choose k ≥ 0. Invoking inequality (4.16) and Lemma 4.7-(iii), we get

C−1
1 ‖wk+1 −w(ρk+1)‖ ≤ ‖ŵk −w(ρ+

k )‖+‖w(ρ+
k )−w(ρk+1)‖+‖λk+1‖

≤ ‖ŵk −w(ρ+
k )‖+C|ρ+

k − ρk+1|+‖λk+1‖. (4.19)

By using the definition of ρk+1 at Step 7 of Algorithm 3, one has

|ρ+
k − ρk+1| = (1− αk)(ρk − ρ+

k )

≤ (1− αk)ρk

≤ (1− τk + b‖wk − w+
k ‖)ρk, (4.20)

where the last inequality is due to (4.17). In the same manner, we also have

ŵk −w(ρ+
k ) = ak ◦ (w+

k −w(ρ+
k )) + (e− ak) ◦ (wk −w(ρ+

k )).

Taking the norm on both sides and noting that ‖ak‖∞≤ 1 and ‖e−ak‖∞≤ 1−αk,

we obtain

‖ŵk −w(ρ+
k )‖ ≤ ‖ak‖∞‖w+

k −w(ρ+
k )‖+‖e− ak‖∞‖wk −w(ρ+

k )‖
≤ ‖w+

k −w(ρ+
k )‖+(1− αk)‖wk −w(ρ+

k )‖.

Applying Lemma 4.7-(iii), Lemma 4.9 and inequality (4.17) to the previous

inequality, we deduce

‖ŵk −w(ρ+
k )‖ ≤ ‖w+

k −w(ρ+
k )‖+(1− αk)(‖wk −w(ρk)‖+Cρk)

≤ M(‖wk −w(ρk)‖2+ρ2
k + ‖λk+1‖)

+ (1− τk + b‖wk − w+
k ‖)(‖wk −w(ρk)‖+Cρk). (4.21)

By using Lemma 4.7-(iii), Lemma 4.9, ‖wk −w(ρk)‖≤ 2r̄ and ρk ≤ ρ∗, we obtain

‖wk − w+
k ‖ ≤ ‖wk −w(ρk)‖+‖w(ρk)−w(ρ+

k )‖+‖w(ρ+
k )− w+

k ‖
≤ ‖wk −w(ρk)‖+Cρk +M(‖wk −w(ρk)‖2+ρ2

k + ‖λk+1‖)
≤ K1‖wk −w(ρk)‖+K2ρk +M‖λk+1‖, (4.22)

where K1 = 1 + 2Mr̄ and K2 = C + Mρ∗. Combining (4.20)-(4.22) into (4.19),

using again ‖wk −w(ρk)‖≤ 2r̄ and also the inequality ab ≤ 1
2
(a2 + b2) for two real
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numbers a and b, we obtain

C−1
1 ‖wk+1 −w(ρk+1)‖ ≤ C2‖wk −w(ρk)‖2+(1− τk)‖wk −w(ρk)‖

+ C3ρ
2
k + 2C(1− τk)ρk + C4‖λk+1‖,

where C2 = M + bK1 + bCK1 + 1
2
bK2, C3 = M + 2bCK2 + bCK1 + 1

2
bK2 and

C4 = M + 2bCM + 2bMr̄ + 1. By using the properties (4.14) and (4.15), we get

C−1
1 ‖wk+1−w(ρk+1)‖≤ C2‖wk−w(ρk)‖2+o

(
ρ+

k

ρk

)
‖wk−w(ρk)‖+o(ρ+

k )+C4‖λk+1‖.

Now, we use ‖λk+1‖= o(ρ+
k ) given in Lemma 4.6 and ρ+

k ≤ ρk+1 to get

‖wk+1 −w(ρk+1)‖≤ C1C2‖wk −w(ρk)‖2+o

(
ρk+1

ρk

)
‖wk −w(ρk)‖+o(ρk+1).

Multiplying both sides by D3 := C1C2, for k large enough, we get

dk+1 ≤ d2
k + o

(
ρk+1

ρk

)
dk + o(ρk+1).

By increasing the constant D2 > 0 if necessary, inequality (4.18) is satisfied for all

k ∈ N.

Lemma 4.13. The Newton-like iterate w+
k generated at Step 5 of Algorithm 3

satisfies

‖wk − w+
k ‖= O(ρk).

Proof. Let k ∈ N. In view of Lemmas 4.9, 4.12, 4.6 and the relation (4.14), we get

‖w+
k −w(ρ+

k )‖≤M(‖wk −w(ρk)‖2+ρ2
k + ‖λk+1‖) = o(ρ+

k ). (4.23)

By virtue of Lemmas 4.12, 4.7-(iii), (4.23) and (4.13), we then have

‖wk − w+
k ‖ ≤ ‖wk −w(ρk)‖+‖w(ρk)−w(ρ+

k )‖+‖w(ρ+
k )− w+

k ‖
≤ O(ρk) + C|ρk − ρ+

k |+o(ρ+
k )

= O(ρk).

The following lemma shows that iterate ŵk is asymptotically tangent to the

trajectory w.
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Lemma 4.14. The candidate iterate ŵk computed at Step 7 of Algorithm 3 satisfies

‖ŵk −w(ρk+1)‖= o(ρk+1).

Proof. Let k ∈ N. A first order Taylor expansion of w at ρ = 0 and the definition

of ρk+1 at Step 7 of Algorithm 3 yield

w(ρk+1) = w∗ + w′(0)ρk+1 + o(ρk+1)

= αk(w∗ + w′(0)ρ+
k ) + (1− αk)(w∗ + w′(0)ρk) + o(ρk+1)

= αk(w(ρ+
k ) + o(ρ+

k )) + (1− αk)(w(ρk) + o(ρk)) + o(ρk+1)

= αkw(ρ+
k ) + (1− αk)w(ρk) + o(ρk+1).

By using the definition of ŵk at Step 7 of Algorithm 3, we get

ŵk −w(ρk+1) = ak ◦ w+
k + (e− ak) ◦ wk −w(ρk+1)

= ak ◦ (w+
k −w(ρ+

k )) + (e− ak) ◦ (wk −w(ρk))

+ (ak − αke) ◦ (w(ρ+
k )−w(ρk)) + o(ρk+1).

Taking the norm on both sides, using ‖ak‖∞≤ 1, ‖e − ak‖∞≤ 1 − αk and ‖ak −
αke‖∞≤ 1 − αk and then invoking Lemma 4.7-(iii), Lemma 4.12 and inequality

(4.23), we deduce that

‖ŵk −w(ρk+1)‖ ≤ ‖ak‖∞‖w+
k −w(ρ+

k )‖+‖e− ak‖∞‖wk −w(ρk)‖
+ ‖ak − αke‖∞‖w(ρ+

k )−w(ρk)‖+o(ρk+1)

≤ ‖w+
k −w(ρ+

k )‖+(1− αk)‖wk −w(ρk)‖
+ C(1− αk)ρk + o(ρk+1)

= o(ρ+
k ) + O((1− αk)ρk) + o(ρk+1). (4.24)

The bound (4.17) on the step length gives

(1− αk)ρk ≤ (1− τk + b‖wk − w+
k ‖)ρk.

Using Lemma 4.13, properties (4.15) and (4.14), we deduce that

(1− αk)ρk = o(ρ+
k ) + O(ρ2

k) = o(ρ+
k ). (4.25)

We conclude by substituting (4.25) into (4.24) and by using the fact that ρ+
k ≤
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ρk+1.

We now state the main result of this section, which states that the sequence of

iterates becomes asymptotically tangent to the trajectory w.

Theorem 4.15. Under Assumptions 4.1-4.4, if the feasibility parameter satisfies

(4.13), if the fraction to the boundary parameter satisfies (4.15), if the tolerance is

such that εk = Ω(ρk+1), then we have the following results

(i) Algorithm 3 asymptotically needs no inner iterations, i.e., wk+1 = ŵk for k

large enough.

(ii) The iterates generated by Algorithm 3 satisfy

‖wk −w(ρk)‖= o(ρk).

(iii) The unit step is asymptotically accepted by the fraction to the boundary rule,

i.e., αk = 1 for k large enough.

In particular, {wk} and {ρk} have the same rate of convergence, i.e.,

‖wk − w∗‖= Θ(ρk). (4.26)

Proof. To prove the result (i), it suffices to show that the stopping condition in

Step 8 of Algorithm 3 is satisfied for k large enough. According to Lemmas 4.7-(ii),

4.7-(v), 4.14 and 4.6 with noting that ρ+
k ≤ ρk+1, we have

‖Φ(ŵk, λk+1, ρk+1, σ, µ)‖ ≤ ‖F (ŵk, ρk+1)− F (w(ρk+1), ρk+1)− (0, σλ⊤
k+1, 0)⊤‖

≤ L2‖ŵk −w(ρk+1)‖+σ‖λk+1‖
= o(ρk+1)

< εk.

The second result (ii) follows directly from (i) and Lemma 4.14.

The proof of the acceptation of the unit step obtained by the fraction to the

boundary rule (4.8) is similar to the one in [15, Lemma 4.20].

From (ii) we have wk − w∗ = w′(0)ρk + o(ρk). The strict complementarity

assumption implies that w′(0) 6= 0, from which we deduce (4.26).
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4.4 Numerical experiments

We refer to our algorithm as SPDOPT-ID (Strongly Primal-Dual Optimization

with Infeasibility Detection) which has been implemented in C. We compared it

with SPDOPT [13] on two sets of problems. The standard set consists of 186

problems in the Hock and Schittkowski collection [97] with at least one inequality.

The infeasible set is created from the standard set by adding the constraint c2
1+1 =

0 or (x1 − u1)2 + 1 = 0, where c1 is the first component of c and u1 is a bound of

the first variable (x1 ≤ u1 or x1 ≥ u1). It is clear that all problems of the latter

set are infeasible.

With a default starting point x0 and z0 = (1, . . . , 1)⊤, y0 is defined as the least

squares solution of g0 + A0y − z0 = 0. The barrier parameter is initialized by

µ0 = 0.1. If this parameter is updated with a trial value µ+
k < µk, we adopt the

rule described in [15, Algorithm 2].

The feasibility parameter is initially set to ρ0 = 1. When F = 1, a trial value

of the feasibility parameter in Step 3 is updated as follows

ρ+
k = min{0.2ρk, ρ

1.4
k }.

This choice of ρ+
k satisfies the requirement (4.13) with t = 0.4, θ1 = 1, θ2 = 0.2. A

lower bound of 10−16 is also imposed on this parameter.

For the fraction to the boundary rule, the choice τk = max{0.99, 1 − ρkµk}
verifies condition (4.15). The regularization parameter δk is updated by the

following rule: if F = 1 and the condition (4.6) is not satisfied, then δk = σk;

otherwise, δk = max{10−2µk, 10−8}. It is easy to verify that all assumptions of δk

in the global and the local analysis are fulfilled. The parameters σk and θk are

updated as in [13, Algorithm 1].

If ‖(gk +Akyk/ρk−zk/ρk, ck, xk ◦zk/ρk)‖∞≤ εtol with εtol = 10−8, the algorithm

is terminated and an optimal solution is declared to be found. Otherwise, if

‖ck‖> εtol, ‖Φ(wk, 0, 0, σk, µk)‖∞≤ εtol and ρk ≤ εtol, the algorithm is stopped

at an infeasible stationary point. For SPDOPT, the stopping conditions ‖ck‖>
εtol, ‖Akck ◦ xk‖∞≤ εtol and σk ≤ εtol are added to terminate this algorithm at an

infeasible stationary point.

For the aim of getting a fast local convergence when the algorithm converges to

an infeasible stationary point, the feasibility tolerance at Step 1 is set to ǫ = εtol.

At Step 2 of Algorithm 3, we choose κ = 0.9, l = 2 and ζk = 10σkρk for all iteration
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k. The sequence of tolerance {εk} in Step 8 is defined by the following formula

εk = 0.9 max{‖Φ(wi, λi, ρi, σi, µi)‖: (k−4)+ ≤ i ≤ k}+10 min{αx
k, α

z
k}0.2µk+1ρk+1.

By applying [16, Proposition 1], it is easy to see that {εk} converges to zero. This

choice meets the requirements to get a fast convergence in the feasible case, for

which we must have εk = Ω(µk+1) (see, [119, Theorem 4.4.1]) and in the infeasible

case, for which we must have εk = Ω(ρk+1) (see, Theorem 4.15).

The linear solver MA57 [58] is used for all the algorithms. The maximum

number of iterations, counting both the inner and the outer iterations, is limited

to 3000.
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Fig. 4.1: Performance profiles comparing the two algorithms on the set of standard problems

For the standard problems, only 182 problems solved by at least one of two

algorithms are selected for the comparison purpose (problems hs099, hs102, hs103

and s332 have not been solved). Figure 4.1 gives us the performance profiles

of Dolan and Moré [56] on the numbers of function and gradient evaluations.

These profiles show that SPDOPT-ID and its predecessor SPDOPT have their

own strengths in terms of efficiency and robustness. In particular, SPDOPT is

slightly more efficient than SPDOPT-ID (14%). SPDOPT-ID is slightly more

robust than SPDOPT, because it solves 180 problems, while SPDOPT solves 178

problems. We can conclude that the infeasibility detection does not impact the

performances of the original algorithm (SPDOPT) for solving standard problems.

Figure 4.2 shows the performances of these algorithms in terms of numbers

of function and gradient evaluations on a set of 174 infeasible problems
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Fig. 4.2: Performance profiles comparing the two algorithms on the set of infeasible problems

(the problems hs044, hs057, hs064, hs083, hs084, hs099, hs105, s220,

s331, s332, s357, s376 have been eliminated since two algorithms cannot

detect the infeasibility). We observe that SPDOPT-ID is the most efficient

algorithm for detecting infeasible problems. In particular, the efficiency rate of

SPDOPT-ID is over 95%. In terms of robustness, SPDOPT-ID is also more robust

than SPDOPT since it can detect more than 93% of problems (174 problems),

while the rate of SPDOPT is only 40%.

Finally, we observed that amongst these 174 problems, there are 139

(respectively 137 and 133) for which there is no inner iteration during the last

three (respectively four and five) last outer iterations. These observations confirm

the asymptotic property (i) of Theorem 4.15.
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Chapter 5

Local convergence of a

primal-dual method for bound

constrained optimization without

SOSCs

The current chapter deals with the convergence of an interior point algorithm for

solving a bound constrained optimization problem of the form:

minimize
x∈Rn

f(x) subject to x ≥ 0, (5.1)

where f : Rn → R is a twice differentiable function. In the literature, the local

convergence analysis is usually done under the second order sufficient conditions

(SOSCs) and the strict complementarity (SC) assumptions. However, in practice,

the SOSCs are not satisfied. For example, suppose that we minimize the function

f(x) = 1
2
‖c(x)‖2, where c : Rn → Rm is smooth with m < n. For any solution

x ∈ Rn such that x ≥ 0 and c(x) = 0, the matrix ∇2f(x) = ∇c(x)∇c(x)⊤ is

singular, i.e., the SOSCs does not holds at this solution.

We propose to replace this assumption by a weaker one based on a local error

bound condition. This condition can be seen as a natural extension of the local

error bound condition in unconstrained optimization. In addition, because the

Jacobian matrix can be locally singular or nearly singular, we need to introduce a

regularization technique to our algorithm in order to get a superlinear or quadratic

rate of convergence. These regularization techniques are usual for solving nonlinear

equations [61, 63, 164], for unconstrained optimization [11, 95, 107, 143] and for
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constrained optimization [41, 72, 142]. Our algorithm belongs to the class of

interior point methods. The local convergence analysis for this algorithm differs

from previous ones in the literature on some following points. Firstly, there is no

requirement on the proximity to the central trajectory of iterates in our algorithm

as in analyses of Armand and Benoist [9], Byrd et al. [33], Gould et al. [89, 90].

In fact, the central path does not exist because of the absence of the conventional

assumption - the second order sufficient conditions. Our analysis is proceeded

under a weaker assumption concerning the gradient of the objective function.

Secondly, we demonstrate that the regularization technique will not affect the rapid

convergence of the interior point method. More specifically, with a suitable choice

of parameters, we will show that our method converges superlinearly to the solution

under milder conditions than classical conditions. In the literature, Tseng and

Yun [142] demonstrated the linear convergence of their regularized algorithm. Our

research can be seen as a continuation of Armand and Lankoandé [11] for bound

constrained optimization. We will apply their idea of regularization parameter

update and follow a similar process to demonstrate the fast convergence. Besides,

the appearance of constraints makes some differences between our analysis and

the one of [11]. In particular, we introduce some upper bounds on the inverse

of a regularized Jacobian matrix. One of these bounds is a generalization of [10,

Theorem 1].

5.1 Local algorithm

Let w = (x, z) ∈ R2n be a vector of primal variables and Lagrange multipliers

associated to the constraints of problem (5.1). The first order optimality conditions

of this problem can be written as

F (w) = 0 and w ≥ 0,

where F : R2n → R2n is defined by

F (w) =


∇f(x)− z

XZe


 ,
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In order to solve the problem (5.1), we introduce a regularized primal-dual interior

point algorithm, by considering a sequence of problems of the form

min
x∈Rn

x>0

f(x) +
θk

2
‖x− xk‖2−µk

n∑

i=1

log xi,

where xk is the iterate at iteration k, µk is the barrier parameter and θk is

the regularization parameter. These problems belong to the class of proximal

algorithms for solving the nonlinear optimization problems, see e.g., Parikh and

Boyd [121].

From an initial point w0 = (x0, z0) > 0 and µ−1 > 0, the regularization and

the barrier parameters are chosen such that for all k ∈ N,

θk = γ1‖F (wk)‖σ, (5.2)

µk = γ2 min{‖F (wk)‖1+σ, µk−1}, (5.3)

where γ1 > 0, γ2, σ ∈ (0, 1). The choice of the regularization parameter is related
to the one in [11, 143]. The sequence {δk} is chosen such that

max
{

0,−λmin

(
∇2f(xk) + X−1

k Zk

)}
≤ δk ≤ β max

{
0,−λmin

(
∇2f(xk) + X−1

k Zk

)}
,

(5.4)

where β ≥ 1 is a given constant. We will propose a simple algorithm to satisfy

condition (5.4), see Algorithm 6 in Section 5.4. A Newton iterate w+
k = (x+

k , z
+
k )

is then computed by solving the linear system


Hk + θkI −I

Zk Xk




x

+
k − xk

z+
k − zk


 = −


∇f(xk)− zk

XkZke− µke


 . (5.5)

where Hk = ∇2f(xk) + δkI. We note that (5.4) and θk > 0 imply that the matrix

Hk + X−1
k Zk + θkI is positive definite, which will be useful to guarantee that

the Newton direction is a descent direction of some merit function. To maintain

the strict feasibility of the iterates, the fraction to the boundary rule is applied:

compute a step-length αk as the greatest α ∈ (0, 1] such that

wk + α(w+
k − wk) ≥ (1− τk)wk, (5.6)

where τk ∈ (0, 1) is chosen such that

1− τk = O(‖F (wk)‖). (5.7)
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The new iterate is then set according to

wk+1 = wk + αk(w+
k − wk). (5.8)

In the sequel, the algorithm defined by (5.2)-(5.8) will be called as the local

algorithm.

5.2 Local convergence analysis

5.2.1 Assumptions and preliminary results

Let X = {x ∈ Rn : x is a solution of (5.1)} be the set of primal solution and

S = {(x,∇f(x)) : x ∈ X} be the set of primal-dual solution of (5.1). We assume

that the original minimization problem has a local solution x∗ ∈ X . We remind

that A := {i : x∗
i = 0} is the index set of active bounds. Let us denote by Ac the

index set of inactive bounds. The partial derivatives are denoted by ∂if =
∂f

∂xi

,

for i = 1, . . . , n.

The local analysis of the local algorithm will be done under the following

assumptions.

Assumption 5.1. The function f is twice continuously differentiable and their

second derivatives are Lipschitz continuous over an open neighborhood of X .

Let z∗ = ∇f(x∗) be a vector of Lagrange multipliers associated to the bound

constraints at x∗.

Assumption 5.2. Strict complementarity holds at w∗ = (x∗, z∗) (Definition 2.26),

i.e., a := min{x∗
i + z∗

i : i = 1, . . . , n} > 0.

We note that if SC holds at w∗, then it also holds at another solution belonging

to some neighborhoods of this solution. Indeed, for all i ∈ A, we have z∗
i =

∂if(x∗) > 0. From Assumption 5.1 related to the continuity of ∇f, we deduce that

there exists a neighborhood of x∗ such that for all i ∈ A, ∂if(x) is positive for all

x belonging to this neighborhood. Hence, if w ∈ S is near w∗, SC is satisfied at w.

We now introduce our new assumption related to the local error bound

condition.

Assumption 5.3. The Hadamard product x◦∇f(x) provides a local error bound

at x∗ ∈ X , i.e., there exist κ > 0 and r > 0 such that

d(x,X ) ≤ κ‖x ◦ ∇f(x)‖ for all x ∈ B(x∗, r). (5.9)
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The local error bound condition (5.9) is a natural extension of the one in

unconstrained optimization. Indeed, in unconstrained optimization, one has A =

∅. By virtue of Assumption 5.2, there exists ε > 0 such that for all x ∈ B(x∗, ε),

x ≥ a
2
. Hence, the condition (5.9) can be restated under the form: there exist

κ > 0 and r ∈ (0, ε) such that for all x ∈ B(w∗, r), one has d(x,X ) ≤ κ‖∇f(x)‖.
This is known as local error bound condition for the unconstrained optimization

problem

min
x∈Rn

f(x).

The next result gives us a necessary and sufficient condition for this local error

bound condition.

Proposition 5.1. The Hadamard product x ◦ ∇f(x) provides a local error bound

at x∗ ∈ X as in (5.9) if and only if the function F provides a local error bound

at some w∗ ∈ S in the sense that there exist constants b > 0 and η > 0 such that

d(w,S) ≤ b‖F (w)‖, for all w ∈ B(w∗, η).

Proof. Assume that the Hadamard product x◦∇f(x) provides a local error bound

at x∗ ∈ X , i.e., there exist constants r > 0 and κ > 0 such that (5.9) holds. Recall

that for u ∈ Rn and v ∈ Rn, we have

u ◦ v = UV e and ‖u ◦ v‖= ‖Uv‖≤ ‖U‖‖v‖≤ ‖u‖‖v‖,

where U = diag(u) and V = diag(v). For all x ∈ B(x∗, r) and z ∈ Rn, we then

have

‖x ◦ ∇f(x)‖ = ‖x ◦ (∇f(x)− z) +XZe‖
≤ ‖x ◦ (∇f(x)− z)‖+‖XZe‖
≤ ‖x‖‖∇f(x)− z‖+‖XZe‖
≤ (‖x∗‖+r + 1)‖F (w)‖.

Let M := κ(‖x∗‖+r + 1) > 0 and w = (x, z) ∈ B(w∗, r). By combining the last

inequality and (5.9), we then get

‖x− x̄‖= d(x,X ) ≤ κ‖x ◦ ∇f(x)‖≤M‖F (w)‖. (5.10)

From Assumption 5.1, there exists l1 > 0 such that ‖∇f(x)−∇f(y)‖≤ l1‖x− y‖,
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for all x, y ∈ B(x∗, r). We then get

‖z −∇f(x̄)‖ ≤ ‖z −∇f(x)‖+‖∇f(x)−∇f(x̄)‖
≤ ‖F (w)‖+l1‖x− x̄‖
≤ (1 + l1M)‖F (w)‖. (5.11)

Let b = M + 1 + l1M. By definition of the distance function and noting that

(x̄,∇f(x̄)) ∈ S, then using the two inequalities (5.10) and (5.11), we have

d(w,S) ≤ ‖w − (x̄,∇f(x̄)) ≤ |x− x̄‖+‖z −∇f(x̄)‖≤ b‖F (w)‖,

which implies that F provides the local error bound at w∗.

Conversely, we suppose that there exist b > 0 and η > 0 such that

d(w,S) ≤ b‖F (w)‖ for all w ∈ B(w∗, η). Let us define r = η√
1+l21

, where l1 is

the Lipschitz constant related to ∇f in the ball B(x∗, η). Let x ∈ B(x∗, r) and set

w = (x,∇f(x)). By virtue of Assumption 5.1, we get

‖w − w∗‖2= ‖x− x∗‖2+‖∇f(x)−∇f(x∗)‖2≤ (1 + l21)‖x− x∗‖2≤ η2,

which implies that w ∈ B(w∗, η). Consequently, we obtain

d(x,X ) ≤ d(w,S) ≤ b‖F (w)‖= b‖x ◦ ∇f(x)‖,

meaning that the Hadamard product x ◦ ∇f(x) provides a local error bound.

We recall the second order sufficient conditions (SOSCs) for problem (5.1)

which are used very often in local convergence analysis of optimization algorithms:

the SOSCs are satisfied at w∗ if u⊤∇2f(x∗)u > 0 for all u 6= 0 satisfying ui = 0

for all i ∈ A. The next result shows us that the SOSCs are sufficient conditions

for our local error bound condition.

Proposition 5.2. Under Assumptions 5.1, 5.2, the SOSCs imply that the local

error bound condition defined in Assumption 5.3 holds.

Proof. The SOSCs and Assumptions 5.1, 5.2 imply that S = {x∗}. By virtue of 2.8,

the matrix F ′(w) is nonsingular in a neighborhood of w∗. The Taylor’s expansion

of F at w∗ gives us

F (w) = F (w∗) + F ′(w∗)(w − w∗) + o(‖w − w∗‖).
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We then imply that

d(w,S) = ‖w − w∗‖≤ ‖F
′(w∗)−1‖

1 + o(1)
‖F (w)‖,

from which F provides a local error bound at w∗. It implies from Proposition 5.1

that Assumption 5.3 is also satisfied.

Conversely, the following example shows us that Assumption 5.3 is milder than

the SOSCs.

Example 5.3. Let consider optimization problem in R2

min f(x) :=
1
2

(x1 − x2)2 (5.12)

s.t. x ≥ 0.

For all x ∈ Rn, we have

∇f(x) =


 x1 − x2

−x1 + x2


 and ∇2f(x) =


 1 −1

−1 1


 .

The set of primal solutions of (5.12) satisfying the strict complementarity condition

is

X = {(λ, λ) : λ > 0}.

We note that the matrix ∇2f(x) is indefinite for all x ∈ R2. It follows that the

SOSCs are not satisfied at any x∗ ∈ X . We now show that x ◦ ∇f(x) provides a

local error bound at x∗ = (λ, λ) ∈ X , for λ > 0 from which we imply the existence

of local error bound condition (5.9). Indeed, let r = λ > 0, for all x ∈ B(x∗, r),

we note that x > 0 and

x1 + x2 ≥
1

2λ
(x2

1 + x2
2 + λ2) ≥ λ

2
.

Using the inequality (a + b)2 ≤ 2(a2 + b2) for positive real numbers a, b and the
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above one, for all x ∈ B(x∗, r), we obtain

d(x,X )2 = ‖x− x̄‖2

=
1
2

(x1 − x2)2 (see Figure 5.1)

≤ 4
λ2

1
2

(x1 + x2)
2 (x1 − x2)2

≤ 4
λ2

(x2
1 + x2

2)(x1 − x2)2

≤
(2
λ

)2

‖x ◦ ∇f(x)‖2

which implies that the local error bound (5.9) holds at x∗ with κ = 2
λ

and r = λ.

x1

x2
x

x̄

X

Fig. 5.1: The projection onto the solution set X = {(λ, λ) : λ > 0}.

Some local error bound conditions are introduced in the literature. For

example, Wang et al. [151] proposed a local error bound condition used in

the framework of a trust region method for minimizing a nonlinear function

over a convex set by means of inequalities. This local error bound condition is

deduced from the notion of weak sharp minima [29] and is used for analyzing the

convergence and the finite termination of their algorithm. Tseng [140] defined a

local error bound condition for the complementarity problem: there exist constants

r1 > 0 and κ1 > 0 such that

d(x,X ) ≤ κ1‖min{x,∇f(x)}‖ whenever ‖min{x,∇f(x)}‖≤ r1. (5.13)

This error bound condition differs from ours, in the sense that it is not related

to the choice of an optimal solution. Despite this difference, we now show that

if the error bound condition of Tseng is satisfied, then at any optimal solution
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x∗ ∈ X at which Assumptions 5.1 and 5.2 hold, the local error bound condition of

Assumption 5.3 is satisfied, but the converse is not true.

Proposition 5.4. Under Assumptions 5.1-5.2, the local error bound condition of

Tseng (5.13) implies that the local error bound condition of Assumption 5.3 is

satisfied, but the converse is not true.

Proof. Suppose that there exist κ1 > 0 and r1 > 0 such that (5.13) holds. Recall

that from the SC Assumption 5.2, we have

a = min
{

min
i∈Ac

x∗
i ,min

x∈A
∂if(x∗)

}
> 0.

By continuity, there exists 0 < r ≤ r1 such that for all x ∈ B(x∗, r)

min{xi, ∂if(x)} = xi and ∂if(x) >
a

2
for all i ∈ A

and

min{xi, ∂if(x)} = ∂if(x) and xi >
a

2
for all i /∈ A.

From these facts, for all x ∈ B(x∗, r), we get

d(x,X )2 ≤ κ2
1‖min{x,∇f(x)}‖2

= κ2
1


∑

i∈A

x2
i +

∑

i/∈A

∂if(x)2




< κ2
1


∑

i∈A

x2
i

(2
a
∂if(x)

)2

+
∑

i/∈A

(2
a
xi

)2

∂if(x)2




=
(2κ1

a

)2

‖x ◦ ∇f(x)‖2,

which implies that the condition (5.9) is satisfied with the constant κ = 2κ1

a
.

We now show that the converse is not true. Let us consider the problem (5.1)

in R2 where f(x) = −e−x1 + 1
2
(x2 − 1)2. The unique solution of this problem

is x∗ = (0, 1) with the dual solution z∗ = (1, 0). The SOSCs are satisfied at x∗,

which imply that (5.9) holds. The gradient of f is given by ∇f(x) = (e−x1 , x2−1).

Assume that the condition (5.13) is true. Then there exist positive constants κ1, r1

such that d(x,X ) ≤ κ1‖min{x,∇f(x)}‖ for all x satisfying ‖min{x,∇f(x)}‖≤ r1.

Let us take x̄1 > 0 sufficiently large such that x̄1 > max{1, κ1}e−x̄1 , e−x̄1 ≤ r1. By
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setting x̄ = (x̄1, 1), we then get

‖min{x̄,∇f(x̄)}‖=
∥∥∥∥
(
min{x̄1, e

−x̄1}, min{1, 0}
)⊤
∥∥∥∥ = e−x̄1 ≤ r1.

However, one notes that d(x̄,X ) = x̄1 > κ1e
−x̄1 = κ1‖min{x̄,∇f(x̄)}‖ which is a

contradiction. This means that (5.13) is not valid.

5.2.2 Regularized Jacobian matrix

In this section, we show that the inverse of a regularized Jacobian matrix is

uniformly bounded. The next lemma is a generalization, in the case of a bound

constrained optimization problem, of [10, Theorem 1]. The statement of this

lemma can be understood in a general context.

Lemma 5.5. Let {Hk} be a sequence of n× n real symmetric matrices and {ρk}
be a sequence of positive scalars. Let {xk} and {zk} be two positive sequences in

Rn. Let us define for all k ∈ N, Xk = diag(xk), Zk = diag(zk) and

Jk :=


Hk + ρkI −I

Zk Xk


 .

Assume that the following properties are satisfied.

(i) The sequences {Hk} and {ρk} are bounded.

(ii) There exists ν > 0 such that for all k ∈ N, max{xk, zk} ≥ ν.

(iii) For all k ∈ N, Hk +X−1
k Zk � 0.

(iv) If lim inf ρk = 0, then for any subsequence {ρk}K converging to zero, there

exist r > 0 and t ∈ (0, 1) such that for all k ∈ K, ‖xk ◦ zk‖t≤ rρk.

Then there exists C > 0 such that for all k ∈ N the matrix Jk is nonsingular and

‖J−1
k ‖≤ C

ρk

.

Proof. The idea of the proof is based on [10]. Let us show that for all k ∈ N

the matrix Jk is nonsingular. By Proposition 2.7, for all k ∈ N we have det Jk =

detSk detXk, where Sk = Hk + ρkI +X−1
k Zk. Assumption (iii) and ρk > 0 imply

that Sk ≻ 0. We then deduce that det Jk > 0 and the sequence {J−1
k } is well

defined.
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We now prove the boundedness of the sequence {ρk‖J−1
k ‖} by a contradiction

reasoning. Taking a subsequence if necessary, we can suppose that the sequence

{ρk‖J−1
k ‖} tends to infinity. From the definition of a matrix norm, there exists

a sequence of unit vectors {vk} ⊂ R2n such that ‖J−1
k ‖= ‖J−1

k vk‖. Define for all

k ∈ N, uk := J−1
k vk/‖J−1

k ‖. It follows that {uk} is a sequence of unit vectors with

lim‖ 1
ρk
Jkuk‖= 0. By introducing the notation

uk =


pk

qk


 ∈ R2n and

1
ρk

Jkuk =


λk

ζk


 ,

we have

(Hk + ρkI)pk − qk = ρkλk,

Zkpk +Xkqk = ρkζk,
(5.14)

where the sequences {λk} and {ζk} converge to zero.

Let us show the existence of a subset I of {1, . . . , n} and of an infinite subset

K of N such that

lim inf
k∈K

[xk]i > 0 for all i ∈ I,

and

lim
k∈K

[xk]i = 0 for all i ∈ J := {1, . . . , n}\I.

This is performed by the following process. At first, define I0 = ∅ and K0 = N.

Then, for i from 1 to n we do as follows. If

lim inf
k∈Ki−1

[xk]i > 0,

then set Ii = Ii−1 ∪ {i} and Ki = Ki−1, otherwise set Ii = Ii−1 and choose

Ki ⊂ Ki−1 such that

lim
k∈Ki

[xk]i = 0.

Finally, let us define I := In, J := {1, . . . , n}\I and K := Kn. The construction

of I and J implies that

lim
k∈K

xJ
k = 0 (5.15)

and there exists ε > 0 such that for all k ∈ K large enough

xI
k ≥ ε. (5.16)
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Assumption (ii) and (5.15) imply that for k ∈ K large enough

max{xJ
k , z

J
k } = zJ

k ≥ ν. (5.17)

Let k ∈ K. By reordering the indices, we rewrite xk = (xI
k , x

J
k ) ∈ R|I|×|J |,

zk = (zI
k , z

J
k ) ∈ R|I|×|J |, and the matrix Jk under the form

Jk =




HII
k + ρkI HIJ

k −I 0

HJ I
k HJ J

k + ρkI 0 −I
ZI

k 0 XI
k 0

0 ZJ
k 0 XJ

k



.

To simply the notation, let us denote

ak := pI
k , bk := pJ

k , ck := qI
k , dk := qJ

k ,

αk := λI
k , βk := λJ

k , γk := ζI
k , δk := ζJ

k ,

where the sequences {αk}, {βk}, {γk} and {δk} converge to zero and

{(ak, bk, ck, dk)} is a sequence of unit vectors. By using these notations, the system

of equations (5.14) becomes

(HII
k + ρkI)ak +HIJ

k bk − ck = ρkαk,

HJ I
k ak + (HJ J

k + ρkI)bk − dk = ρkβk,

ZI
k ak +XI

k ck = ρkγk,

ZJ
k bk +XJ

k dk = ρkδk.

This implies that

(
HII

k + ρkI
)
ak +HIJ

k bk − ck = ρkαk,

dk = HJ I
k ak + (HJ J

k + ρkI)bk − ρkβk,

ck =
(
XI

k

)−1 (−ZI
k ak + ρkγk

)
,

bk =
(
ZJ

k

)−1 (−XJ
k dk + ρkδk

)
.

(5.18)

The fourth equation in (5.18) and (5.17) give us ‖bk‖≤ 1
ν
(‖xJ

k ‖‖dk‖+ρk‖δk‖) for

all k ∈ K large enough. The convergence to zero of {δk}, the boundedness of {dk}
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and {ρk}, and (5.15) imply that

lim
k∈K

bk = 0. (5.19)

Let us show that

I 6= ∅ and lim inf
k∈K

‖ak‖> 0. (5.20)

Indeed, if this is not the case, the first two equations of (5.18) imply that for all

k ∈ N,

‖ck‖ ≤ ‖HII
k + ρkI‖‖ak‖+‖HIJ

k ‖‖bk‖+ρk‖αk‖,
‖dk‖ ≤ ‖HJ I

k ‖‖ak‖+‖HJ J
k + ρkI‖‖bk‖+ρk‖βk‖.

According to Assumption (i), (5.19) and the negation of (5.20), we obtain

lim
k∈K′

ck = 0 and lim
k∈K′

dk = 0,

where K′ ⊂ K such that (5.20) is not true, which is in contradiction with the fact

that {uk} is the sequence of unit vectors, meaning that (5.20) is true.

By substituting the expression of ck from the third equation of (5.18) to the

first one, then by premultiplying by a⊤
k , we get

1
ρk

a⊤
k

(
HII

k +
(
XI

k

)−1
ZI

k + ρkI
)
ak = a⊤

k

(
− 1
ρk

HIJ
k bk + αk +

(
XI

k

)−1
γk

)
.

By using the inequality (5.16), the above equality implies that for all k ∈ K
sufficiently large, we have

1
ρk

∣∣∣∣a
⊤
k

(
HII

k +
(
XI

k

)−1
ZI

k + ρkI
)
ak

∣∣∣∣ ≤ ‖ak‖
(

1
ρk

‖HIJ
k ‖‖bk‖+‖αk‖+

1
ε
‖γk‖

)
.

(5.21)

According to Assumption (iii), we then have

‖ak‖2=
ρk

ρk

‖ak‖2≤ 1
ρk

a⊤
k

(
HII

k +
(
XI

k

)−1
ZI

k + ρkI
)
ak.

Combining this inequality and (5.21), and using the boundedness of {Hk}, for all

k ∈ K sufficiently large, we have

‖ak‖≤
1
ρk

(
sup
k∈K
‖Hk‖

)
‖bk‖+‖αk‖+

1
ε
‖γk‖. (5.22)
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We consider the two following cases. The first case is when {ρk}K is bounded

away from zero. This implies that the sequence
{

1
ρk

}
K

is bounded. By using this

fact, (5.19) and taking the limit for k ∈ K in (5.22), we obtain

lim
k∈K
‖ak‖≤ 0,

which is in contradiction with (5.20). Hence, this case cannot happen.

The second case is when there exists an infinite subset K′′ ⊂ K such that

lim
k∈K′′

ρk = 0. We rewrite the fourth equation of (5.18) under the form

bk =
(
ZJ

k

)−1
(
−
(
ZJ

k

)−1 (
ZJ

k X
J
k

)
dk + ρkδk

)
.

According to Assumption (iv) and (5.17), the above equation implies that there

exists r > 0 such that for all k ∈ K′′ large enough, we have

‖bk‖ ≤
1
ν2
‖xk ◦ zk‖‖dk‖+

1
ν
ρk‖δk‖

≤ r1/t

ν2
ρ

1/t
k ‖dk‖+

1
ν
ρk‖δk‖.

This implies that for all k ∈ K′′ large enough,

1
ρk

‖bk‖≤
r1/t

ν2
ρ

1/t−1
k ‖dk‖+

1
ν
‖δk‖.

By using the fact that the sequence {dk} is bounded, the sequences {(αk, γk, δk)}
and {ρ1/t−1

k }K′′ tend to zero (since t ∈ (0, 1)), substituting the last inequality to

(5.22) and taking the limit for k ∈ K′′, we obtain

lim inf
k∈K

‖ak‖≤ lim
k∈K′′

‖ak‖≤ 0,

which is again in contradiction with (5.20).

In sum, we proved that the sequence {ρk‖J−1
k ‖} is bounded from which the

proof is completed.

The next result is a generalization of the previous Lemma for a general

nonlinear optimization problem.

Corollary 5.6. Let {Hk} be a sequence of n×n real symmetric matrices, {Ak} be

a sequence of n×m real matrices, and {δk} and {ρk} be two sequences of positive

scalars. Let {xk} and {zk} be two positive sequences in Rn. Let us define for all
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k ∈ N, Xk = diag(xk), Zk = diag(zk) and

Jk :=




Hk + ρkI −I Ak

Zk Xk 0

A⊤
k 0 −δkI


 .

Assume that the following properties are satisfied.

(i) The sequences {Hk}, {Ak} and {ρk} are bounded.

(ii) The sequence {δk} is bounded away from zero.

(iii) There exists ν > 0 such that for all k ∈ N, max{xk, zk} ≥ ν.

(iv) For all k ∈ N, Hk +X−1
k Zk + 1

δk
AkA

⊤
k � 0.

(v) If lim inf ρk = 0, then for all K ⊂ N such that the subsequence {ρk}K goes to

zero, there exist r > 0 and t ∈ (0, 1) such that for all k ∈ K, ‖xk ◦ zk‖t≤ rρk.

Then, there exists C > 0 such that for all k ∈ N the matrix Jk is nonsingular and

‖J−1
k ‖≤ C

ρk

.

Proof. Let k ∈ N. Let us show that for all k ∈ N the matrix Jk is nonsingular. By

Proposition 2.7, we get det Jk = detSk detDk, where

Sk = Hk + ρkI +X−1
k Zk +

1
δk

AkA
⊤
k and Dk =


Xk 0

0 −δkI


 .

From Assumption (iv) and ρk > 0, one has Sk ≻ 0. Assumption (ii) and

the positivity of the sequence {xk} imply that detDk 6= 0. We then deduce

that det Jk > 0, therefore the sequence {J−1
k } is well defined. We now prove

that ‖J−1
k ‖= O

(
1

ρk

)
. The definition of a matrix norm implies that there exists

a sequence of unit vectors {vk} ⊂ R2n+m such that ‖J−1
k ‖= ‖J−1

k vk‖. Define

uk := J−1
k vk. Introduce the notation

uk =




ak

bk

ck


 ∈ R2n+m and vk =




αk

βk

γk


 .
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We then have

Hkak − bk + Akck = αk,

Zkak +Xkbk = βk,

A⊤
k ak − δkck = γk.

By eliminating ck from the first equation, we have

J̃k


ak

bk


 = rk, (5.23)

where

J̃k =


Hk + ρkI + 1

δk
AkA

⊤
k −I

Zk Xk


 and rk =


αk + 1

δk
Akγk

βk


 .

Lemma 5.5 implies that J̃−1
k = O

(
1

ρk

)
. Assumption (i) and the boundedness of

{vk} imply that the sequence {rk} is bounded. Two above facts and (5.23) give us

‖(ak, bk)‖= ‖J̃−1
k rk‖= ‖J̃−1

k ‖‖rk‖= O

(
1
ρk

)
. (5.24)

By using Assumptions (i) and (ii), (5.24) and ‖ck‖≤ 1
δk

(‖A⊤
k ‖‖ak‖+‖γk‖), we

deduce that

‖J−1
k ‖= ‖J−1

k vk‖= ‖uk‖= O

(
1
ρk

)
.

Remark 5.7. Let {Mk} be a sequence of n × n real symmetric matrices, {Ak}
be a sequence of n ×m real matrices, and {δk} be a sequence of positive scalars.

Let {xk} and {zk} be two positive sequences in Rn. Let us define for all k ∈ N,

Xk = diag(xk), Zk = diag(zk) and

Ĵk :=




Mk −I Ak

Zk Xk 0

A⊤
k 0 −δkI


 .

In [10, Theorem 1], it is shown that the sequence {Ĵ−1
k } is bounded under the

following assumptions:
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x1

z1

F1

√
ν

√
ν

(a) The set F1 = {(x1, z1) : max{x1, z1} ≥
√

ν}.
x1

z1

F2

ν

1

ν

(b) The set F2 = {(x1, z1) : x1z1 ≥ ν}.

Fig. 5.2: The sets F1 = {(x1, z1) : max{x1, z1} ≥ ν} and F2 = {(x1, z1) : x1z1 ≥ ν} for ν > 0.

1. The sequences {Mk} and {Ak} are bounded,

2. The sequence {δk} is bounded away from zero,

3. There exists ν > 0 such that for all k ∈ N and i ∈ {1, . . . , n}

[xk]i[zk]i ≥ ν,

4. There exists λ > 0 such that for all k ∈ N and all d ∈ Rn

d⊤
(
Mk +X−1

k Zk +
1
δk

AkA
⊤
k

)
d ≥ λ‖d‖.

This theorem is a direct consequence of Corollary 5.6. Indeed, by assuming that all

above assumptions hold, we will apply this Corollary to deduce the boundedness

of {Ĵ−1
k }. For all k, let define Hk = Mk − λI and ρk = λ. By noting that for all

k, max{[xk]i, [zk]i} ≥
√

[xk]i[zk]i ≥
√
ν for all i = 1, . . . , n (see Figure 5.2), then

Corollary 5.6 implies that there exists C > 0 such that ‖Ĵ−1
k ‖≤ C

λ
. This implies

that the sequence {Ĵ−1
k } is bounded.

We now give a result about the uniform boundedness of the inverse of the

regularized Jacobian matrices near a point w∗. This result will be useful to analyze

the local behavior of the Newton method.
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Lemma 5.8. Let w∗ = (x∗, z∗) ∈ R2n such that

0 ≤ x∗ ⊥ z∗ ≥ 0 and a := min{x∗
i + z∗

i |i = 1, . . . n} > 0.

Let H : R2n → Rn×n be a continuous function such that for all w ∈ R2n, H(w) =

H(w)⊤. Let θ : R2n → R++ be a continuous function such that θ(w) ≥ γ‖x ◦ z‖t,

for all w ∈ R2n, for some γ > 0 and t ∈ (0, 1). Assume that for all w ∈ R2n
++,

H(w) +X−1Z � 0. For all w = (x, z) ∈ R2n, let us define the matrix

J(w) =


H(w) + θ(w)I −I

Z X


 .

For all w ∈ R2n
++, the matrix J(w) is nonsingular and for all ε ∈ (0, a), there exists

C > 0 such that for all w ∈ B(w∗, ε) ∩ R2n
++,

‖J(w)−1‖≤ C

θ(w)
.

Proof. Let us show that for all w ∈ R2n
++, the matrix J(w) is nonsingular. By

Proposition 2.7, we have det J(w) = detS(w) detX, where S(w) = H(w)+θ(w)I+

X−1Z, for all w ∈ R2n
++ . Assumptions x > 0, H(w) + X−1Z � 0 and θ(w) > 0

imply that X ≻ 0 and S(w) ≻ 0 . We then deduce that det J(w) > 0, therefore

the matrix J(w)−1 is well defined for all w ∈ R2n
++.

The second part of the lemma is proved by a contradiction reasoning. Suppose

that there exist ε ∈ (0, a) and a sequence {wk} ⊂ B(w∗, ε) ∩ R2n
++ such that

for all k ∈ N, H(wk) + X−1
k Zk � 0, θ(wk) ≥ γ‖xk ◦ zk‖t, but the sequence of

matrices {θ(wk)J(wk)−1} is unbounded. The continuity of H and θ implies that

the sequences {H(wk)} and {θ(wk)} are bounded. Let us define the set A = {i ∈
{1, . . . , n} : x∗

i = 0}. Definitions of a and of A imply that x∗
i ≥ a for all i /∈ A and

z∗
i ≥ a, for all i ∈ A. Let a1 = a− ε > 0. For all k ∈ N, we then have

[xk]i ≥ x∗
i − ‖wk − w∗‖> a1, for all i /∈ A

and

[zk]i ≥ z∗
i − ‖wk − w∗‖> a1, for all i ∈ A.

From which we get 0 < a1 < max{xk, zk} for all k ∈ N. By virtue of Lemma 5.5,
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there exists C > 0 such that for all k ∈ N,

‖J(wk)−1‖≤ C
1

θ(wk)
,

which is in contradiction with the assumption that the sequence {θ(wk)J(wk)−1}
is unbounded.

We now give another result related to the upper bound of the inverse of

regularized Jacobian matrix at a solution w ∈ S. From this lemma, we can prove

the boundedness of the sequence {δk} given in (5.4), see Lemma 5.10 below.

Lemma 5.9. Let us define

C = {w = (x, z) ∈ R2n : 0 ≤ x ⊥ z ≥ 0}.

Let w∗ ∈ C such that a := min{x∗
i + z∗

i : i = 1, . . . , n} > 0. Let H : R2n → Rn×n

be a continuous function such that H(w) = H(w)⊤ for all w ∈ R2n. Assume that

u⊤H(w∗)u ≥ 0, for all u ∈ ker(Z∗). For all w = (x, z) ∈ R2n and ρ > 0, let us

define the matrix

Gρ(w) =


H(w) + ρI −I

Z X


 .

Then, for all ε ∈ (0, a), there exists C > 0 such that for all w ∈ B(w∗, ε) ∩ C and

ρ > 0, the matrix Gρ(w) is nonsingular and

‖Gρ(w)−1‖≤ C max

{
ρ,

1
ρ

}
.

Proof. Let us define A = {i ∈ {1, . . . , n} : x∗
i = 0}. It implies that x∗

i ≥ a for all

i /∈ A and z∗
i ≥ a, for all i ∈ A. Let ε ∈ (0, a) and let us define a1 = a − ε > 0.

For all w = (x, z) ∈ B(w∗, ε), we then have

xi ≥ x∗
i − ‖w − w∗‖> a1, for all i /∈ A

and

zi ≥ z∗
i − ‖w − w∗‖> a1, for all i ∈ A.

Let w = (x, z) ∈ B(w∗, ε) ∩ C and ρ > 0. From the definition of the set C and the

two above inequalities, without loss of generality, we may assume that z = (z1, 0),

x = (0, x2) with (z1, x2) ∈ Rp × Rn−p and (z1, x2) > a1, where p = |A|. Using this
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partition, let us write the symmetric matrix H(w) under the form

H(w) =


H11 H12

H21 H22


 ,

where H11, H22 are symmetric matrices and H12 = H⊤
21. The assumption of H

implies that H22 � 0. Then, we have H22+ρI ≻ 0. In other word, for all u ∈ ker(Z),

u 6= 0, one has u⊤(H(w)+ρI)u > 0. By virtue of Proposition 2.8, the matrix Gρ(w)

is nonsingular.

By definition of a matrix norm, there exists a unit vector v ∈ R2n such that

‖Gρ(w)−1‖= ‖Gρ(w)−1v‖. Define u := Gρ(w)−1v. By introducing the notation

u =




u1

u2

u3

u4




and v =




v1

v2

v3

v4



,

we have

(H11 + ρI)u1 +H12u2 − u3 = v1,

H21u1 + (H22 + ρI)u2 − u4 = v2,

Z1u1 = v3,

X2u4 = v4.

This implies that

u1 = Z−1
1 v3,

u2 = (H22 + ρI)−1ζ,

u3 = (H11 + ρI)Z−1
1 v3 +H12(H22 + ρI)−1ζ − v1,

u4 = X−1
2 v4,

where ζ = v2 −H21Z
−1
1 v3 +X−1

2 v4. We then deduce that

‖u‖ ≤ ‖u1‖+‖u2‖+‖u3‖+‖u4‖
≤ C1 + C2‖H11 + ρI‖+C4‖(H22 + ρI)−1‖,

where C1 = ‖Z−1
1 v3‖+‖X−1

2 v4‖+‖v1‖, C2 = ‖Z−1
1 v3‖ and C4 = (1 + ‖H12‖)‖ζ‖.
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From the assumptions, we obtain C1 ≤ 2/a1 + 1, C2 ≤ 1/a1 and C4 ≤ (1 +M)(1 +

(M + 1)/a1), where M = sup
w∈B̄

‖H(w)‖, where B̄ = B(w∗, ε) ∩ C. Because H22 � 0,

we then have ‖(H22 + ρI)−1‖≤ 1
ρ
. By using ‖H11 + ρI‖≤ ‖H11‖+ρ ≤ M + ρ and

the fact that 1 ≤ max{1/t, t}, for all positive number t, we conclude that

‖Gρ(w)−1‖= ‖u‖ ≤ 2
a1

+ 1 +
1
a1

(M + ρ) + (1 +M)
(

1 +
1
a1

(M + 1)
) 1
ρ

≤ C max{1
ρ
, ρ},

where C = (3 +M + (1 +M)2) 1
a1

+ 2 +M .

5.2.3 Properties of the Newton iterate w+

Example 5.3 shows that the SOSCs may not be satisfied at any solution at

which the strict complementarity holds. As a consequence, the standard local

convergence analysis of the Newton’s method in the literature cannot be directly

applied. In this section, we will show the rapid convergence of our algorithm

under the milder condition (Assumption 5.3). In order to show the superlinear

convergence of our algorithm, at first we need to analyze the properties of the

Newton step w+
k − wk solution of the system (5.5).

To simplify the notation, the iteration index k will be removed in this

subsection. Hereafter, Assumptions 5.1-5.3 will be assumed to be satisfied at a

solution point w∗ ∈ S. The distance of a point w ∈ Rn to the set S is shortly

denoted by d(w). Under Assumptions 5.1-5.3, there exist positive numbers l, L, b,

and η < a such that for all w,w′ ∈ B(w∗, η)

‖F (w)− F (w′)‖ ≤ l‖w − w′‖, (5.25)

‖F ′(w)− F ′(w′)‖ ≤ L‖w − w′‖, (5.26)

d(w) ≤ b‖F (w)‖. (5.27)

For w ∈ B(w∗, η) ∩ R2n
++ let us denote the matrix

Jθ(w) :=


∇

2f(x) + (δ + θ)I −I
Z X


 = F ′(w) + (δ + θ)


I 0

0 0


 ,

where the parameters δ and θ are chosen as follows. Let β ≥ 1, choose

0 ≤ δ ≤ βmax
{
0,−λmin

(
∇2f(x) +X−1Z

)}
, (5.28)
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such that ∇2f(x) +X−1Z + δI � 0. Let γ1 > 0 and σ ∈ (0, 1), set

θ = γ1‖F (w)‖σ> 0. (5.29)

We will consider the behavior of the Newton iterate w+ solved by the linear system

Jθ(w)(w+ − w) = −(F (w)− µẽ), (5.30)

where ẽ =


0

e


 ∈ R2n and the parameter µ is set by the following formula

0 < µ ≤ γ2‖F (w)‖1+σ, (5.31)

for γ2 ∈ (0, 1).

Firstly, we will show that the sequence {δk} defined in (5.4) is bounded by the

distance function.

Lemma 5.10. There exists M1 > 0 such that for all w ∈ B(w∗, η/2) ∩ R2n
++ and

δ satisfies (5.28), for some β ≥ 1, we have δ ≤M1d(w).

Proof. For all w = (x, z) ∈ R2n and ρ > 0, let us define the matrix

Gρ(w) =


∇

2f(x) + ρI −I
Z X


 .

For any w = (x, z) ∈ R2n
++, let us denote λ = −λmin(∇2f(x) +X−1Z).

Let w ∈ B(w∗, η/2) ∩ R2n
++. If λ ≤ 0, then δ = 0 and the result clearly holds.

Suppose now that λ > 0. Recall that w̄ is defined by ‖w − w̄‖= d(w). We then

have

‖w̄ − w∗‖ ≤ ‖w̄ − w‖+‖w − w∗‖
≤ 2‖w − w∗‖
< η,

meaning that w̄ ∈ B(w∗, η) ∩ S. By virtue of Lemma 5.9, the matrix Gλ(w̄) is

nonsingular and there exists a constant C > 0 such that

‖Gλ(w̄)−1‖≤ C max
{1
λ
, λ
}
. (5.32)

Because −λ is an eigenvalue of the matrix ∇2f(x) + X−1Z, the matrix

98 Infeasibility detection and regularization strategies in nonlinear optimization



5. Local convergence of a primal-dual method without SOSCs

∇2f(x) + X−1Z + λI is singular . Proposition 2.7 implies that detGλ(w) =

detX det(∇2f(x) +X−1Z +λI) = 0. Therefore, the matrix Gλ(w) is singular. By

applying Proposition 2.6 for the matrix Gλ(w) and using (5.26), (5.32), it follows

that

1 ≤ ‖Gλ(w̄)−1Gλ(w)− I‖
= ‖Gλ(w̄)−1 (Gλ(w)−Gλ(w̄)) ‖
≤ ‖Gλ(w̄)−1‖‖F ′(w)− F ′(w̄)‖

≤ C max
{1
λ
, λ
}
L‖w − w̄‖.

This implies that

min
{1
λ
, λ
}
≤ CL‖w − w̄‖.

If λ ∈ (0, 1), then the definition of δ implies that

δ ≤ βλ = βmin
{1
λ
, λ
}
≤ βCL‖w − w̄‖

and the result follows with M1 = βCL. Otherwise, if λ ≥ 1, then

λ = −λmin(∇2f(x) +X−1Z)

≤ −λmin(∇2f(x))

≤ ‖∇2f(x)‖
≤ m1,

where m1 = sup
x∈B(w∗, η

2
)

‖∇2f(x)‖ and the first inequality is obtained by applying

Proposition 2.1. By setting M1 = βm2
1CL, one has

δ ≤ βλ = βλ2 1
λ

= βλ2 min
{1
λ
, λ
}
≤ βm2

1CL‖w − w̄‖≤M1‖w − w̄‖.

The next lemma provides an upper bound on the length of the solution of the

linear system (5.30) through the distance from the current iterate to the solution

set.

Lemma 5.11. There exists C1 > 0 such that for all w ∈ B(w∗, η/2) ∩ R2n
++, we

have

‖w+ − w‖≤ C1d(w).
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Proof. By the choice of δ, for all w ∈ B(w∗, η/2)∩R2n
++, one has ∇2f(x)+X−1Z+

δI � 0. The definition of θ implies that θ ≥ γ1‖x ◦ z‖σ. By virtue of Lemma 5.8,

there exists C ≥ 1 such that for all w ∈ B(w∗, η/2) ∩ R2n
++,

‖Jθ(w)−1‖≤ C

θ
. (5.33)

Let w ∈ B(w∗, η/2) ∩ R2n
++. From the linear system (5.30), we have

w+ − w = −Jθ(w)−1(F (w)− µẽ)

= Jθ(w)−1(F (w̄)− (F (w)− µẽ))

= Jθ(w)−1
∫ 1

0
[F ′(w + t(w̄ − w))(w̄ − w) + µẽ]dt

= Jθ(w)−1
∫ 1

0
(F ′(w + t(w̄ − w))− F ′(w)) (w̄ − w)dt+ µJθ(w)−1ẽ

+ Jθ(w)−1F ′(w)(w̄ − w)

= Jθ(w)−1
∫ 1

0
(F ′(w + t(w̄ − w))− F ′(w)) (w̄ − w)dt+ µJθ(w)−1ẽ

+ w̄ − w − (δ + θ)Jθ(w)−1


x̄− x

0


 .

By taking the norm on both sides and using (5.26), we get

‖w+ − w‖ ≤ ‖Jθ(w)−1‖L
2
‖w̄ − w‖2+‖w̄ − w‖+(δ + θ)‖Jθ(w)−1‖‖w̄ − w‖

+ µ‖Jθ(w)−1‖√n.

Using (5.33) and reminding that ‖w̄ − w‖= d(w) and C ≥ 1, the last inequality

implies that

‖w+ − w‖≤ C

((
L

2θ
d(w) + 2 +

δ

θ

)
d(w) +

√
n
µ

θ

)
. (5.34)

From the local error bound condition (5.27), the formula (5.29) of θ gives us

1
θ
≤ bσ

γ1

1
d(w)σ

. (5.35)
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The formula of µ given by (5.31), F (w̄) = 0 and (5.25) imply that

µ ≤ γ2‖F (w)− F (w̄)‖1+σ

≤ γ2l
1+σd(w)1+σ. (5.36)

By using (5.34)-(5.36) and Lemma 5.10, we deduce that

‖w+ − w‖≤ C

(
Lbσ

2γ1

d(w)1−σ + 2 +
M1b

σ

γ1

d(w)1−σ +
γ2b

σl1+σ
√
n

γ1

)
d(w).

Finally, by using d(w) ≤ ‖w − w∗‖< η, we obtain

‖w+ − w‖≤ C

(
Lbση1−σ

2γ1

(1 + 2βM1) + 2 +
γ2b

σl1+σ
√
n

γ1

)
d(w),

which completes the proof.

The next result gives us a relation between two distance functions evaluated

at w and w+.

Lemma 5.12. Let C1 > 0 be defined as in Lemma 5.11. There exists C2 > 0 such

that for all w ∈ B
(
w∗, η

2(1+C1)

)
∩ R2n

++, we have

d(w+) ≤ C2d(w)1+σ.

Proof. Let w ∈ B
(
w∗, η

2(1+C1)

)
∩ R2n

++. By applying Lemma 5.11, we get

‖w+ − w∗‖ ≤ ‖w+ − w‖+‖w − w∗‖
≤ C1d(w) + ‖w − w∗‖
≤ (C1 + 1)‖w − w∗‖
<
η

2
.

This means that w+ ∈ B(w∗, η
2
) and the inequality (5.27) can be applied at w+ to

get

d(w+) ≤ b‖F (w+)‖. (5.37)

From the linear system (5.30), the fundamental theorem of calculus permits us to
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write

F (w+) = F (w) +
∫ 1

0
F ′(w + t(w+ − w))(w+ − w)dt

= −Jθ(w)(w+ − w) + µẽ+
∫ 1

0
F ′(w + t(w+ − w))(w+ − w)dt

= −(δ + θ)(x+ − x) + µẽ+
∫ 1

0
[F ′(w + t(w+ − w))− F ′(w)](w+ − w)dt.

By taking the norm on both sides, using (5.26) and applying Lemma 5.11, we get

‖F (w+)‖ ≤ (δ + θ)‖w+ − w‖+L
2
‖w+ − w‖2+µ

√
n

≤ (δ + θ)C1d(w) +
L

2
C2

1d(w)2 + µ
√
n. (5.38)

The Lipschitz property (5.25) of F , the choice of θ given by (5.29) and F (w̄) = 0

imply that

θ = γ1‖F (w)− F (w̄)‖σ

≤ γ1l
σd(w)σ. (5.39)

Starting from (5.37), then using (5.38), Lemma 5.10, (5.39) and (5.36), and

reminding that d(w) < η, we deduce that

d(w+) ≤ b
(

(M1d(w) + γ1l
σd(w)σ)C1d(w) +

L

2
C2

1d(w)2 +
√
nγ2l

1+σd(w)1+σ
)

≤ b
((
M1η

1−σ + γ1l
σ
)
C1 +

L

2
C2

1η
1−σ +

√
nγ2l

1+σ
)
d(w)1+σ,

from which the result follows.

5.2.4 Convergence of {wk}
In this section, we will demonstrate the convergence of the sequence {wk} to a

solution w̃ ∈ S. Let {wk} be a sequence created by the local algorithm (5.2)-(5.8).

Firstly, we recall a result about the bound on step length αk, see, e.g., [9, Corollary

1].

Lemma 5.13. For all k ∈ N such that wk ∈ B(w∗, η) ∩ R2n
++, the following

inequality holds

1− αk ≤ 1− τk +
1

a− η
‖w+

k − wk‖. (5.40)
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The next lemma shows that if a starting point w0 belongs to some neighborhood

of w∗, then the whole sequence {wk} converges to a solution of (5.1).

Lemma 5.14. There exist constants 0 < ε̄ < ε such that if w0 ∈ B(w∗, ε̄) ∩ R2n
++,

then for all k ≥ 1, wk ∈ B(w∗, ε) ∩R2n
++. In addition, the sequence {wk} converges

to w̃ ∈ S.

Proof. From the choice of {τk} given by (5.7), F (w̄) = 0 for all w̄ ∈ S, and (5.25),

there exists C3 > 0 such that for all k ∈ N satisfying wk ∈ B(w∗, η) ∩ R2n
++, one

has

1− τk ≤ C3‖F (wk)− F (w̄k)‖
≤ C3ld(wk).

By using this inequality and Lemma 5.11, we deduce from (5.40) that for all k ∈ N

satisfying wk ∈ B(w∗, η/2) ∩ R2n
++,

1− αk ≤ C3ld(wk) +
C1

a− η
d(wk)

= C4d(wk), (5.41)

where C4 := C3l + C1

a−η
. Let us define C5 = C1C4η

1−σ + C2,

ε = min

{
η

2(1 + C1)
,

1
(2C5)1/σ

}
and ε̄ =

ε

2C1 + 1
. (5.42)

For each k, let w̄+
k ∈ S such that d(w+

k ) = ‖w+
k − w̄+

k ‖. By applying Lemmas 5.11

and 5.12, inequality (5.41) and noting that wk+1 − w+
k = (αk − 1)(w+

k − wk) and

d(wk) = ‖wk − w̄k‖< η, for all k ∈ N such that wk ∈ B(w∗, ε) ∩ R2n
++, we have

d(wk+1) ≤ ‖wk+1 − w̄+
k ‖

≤ ‖wk+1 − w+
k ‖+‖w+

k − w̄+
k ‖

≤ C4d(wk)‖w+
k − wk‖+d(w+

k )

≤ C1C4d(wk)2 + C2d(wk)1+σ

≤ C5d(wk)1+σ. (5.43)

The proof of the first assertion is performed by induction on k ∈ N∗. Since at each

k ∈ N∗, the fraction to the boundary rule (5.6) is applied and w0 > 0, the sequence

{wk} is positive. For the base case k = 1, by virtue of Lemma 5.11 and reminding
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that d(w0) ≤ ‖w0 − w∗‖< ε̄, we have

‖w1 − w∗‖ ≤ ‖w1 − w+
0 ‖+‖w+

0 − w0‖+‖w0 − w∗‖
≤ (1− α0)‖w+

0 − w0‖+‖w+
0 − w0‖+‖w0 − w∗‖

< 2C1d(w0) + ε̄

< (2C1 + 1)ε̄

= ε.

Suppose now that for k ≥ 1, wj ∈ B(w∗, ε) ∩ R2n
++ for all j ∈ {1, . . . , k}. Let

j ∈ {1, . . . , k}. By noting that αj ∈ (0, 1], Lemma 5.11 and (5.8) imply that

‖wj+1 − wj‖= αj‖w+
j − wj‖≤ C1d(wj). (5.44)

By using (5.43), the inequalities d(w0) < ε̄ and (1 + σ)j ≥ 1 + jσ, we get

d(wj) ≤ C5d(wj−1)1+σ

≤ C
(1+σ)j

−1
σ

5 d(w0)(1+σ)j

≤ (C5ε̄
σ)

(1+σ)j
−1

σ ε̄

≤ 1
2j
ε̄, (5.45)

where the last inequality is deduced from the definition of ε and ε̄ which implies

that C5ε̄
σ < C5ε

σ ≤ 1
2
. By using (5.44) and (5.45), the triangle inequality gives us

‖wk+1 − w∗‖ ≤ ‖w0 − w∗‖+
k∑

j=0

‖wj+1 − wj‖

< ε̄+ C1

k∑

j=0

1
2j
ε̄

≤ (1 + 2C1)ε̄

= ε.

To prove the last part of this theorem, let us take two nonnegative integers p and
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q. From (5.44) and (5.45) we have

‖wp+q − wp‖ ≤
p+q−1∑

k=p

‖wk+1 − wk‖

≤ C1ε̄
p+q−1∑

k=p

1
2k

≤ C1ε̄

2p−1
.

This means that {wk} is a Cauchy sequence and therefore converges to w̃ ∈ R2n
+ .

By virtue of (5.45), we get d(w̃) = lim d(wk) = 0, meaning that w̃ ∈ S.

5.2.5 Rate of convergence of {wk}
This section is devoted to evaluate the rate of convergence of the sequence {wk}.
The remainder of this section relies on the proof of [107, Theorem 3.2]. Firstly,

we introduce the lemma below which will be used to demonstrate the superlinear

convergence of {wk}.

Lemma 5.15. If a positive sequence {ak} converges to zero at least superlinearly

with a rate of 1 + σ, where σ ∈ (0, 1], then there exists a constant C ∈ (0, 1) and

a positive integer k̄ such that, for all k ≥ k̄

∞∑

i=1

ak+i ≤ Cak.

Proof. Since {ak} converges to zero at least superlinearly with a rate of 1+σ, then

Definition 2.13 implies that there exists M > 0 such that for all k sufficiently large

ak+1 ≤Ma1+σ
k .

Besides, from the convergence to zero of {ak}, there exists k̄ ∈ N such that for all

k ≥ k̄

ak <
1

(3M)
1
σ

.
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For all k ≥ k̄ and i ∈ N, let λk = Maσ
k ∈

(
0, 1

3

)
and we have

ak+i ≤Ma1+σ
k+i−1

≤M
(1+σ)i

−1
σ a

(1+σ)i

k

≤ (Maσ
k)

(1+σ)i
−1

σ ak

≤ λi
kak,

where the last inequality is obtained by using the inequality (1 + σ)i ≥ 1 + iσ. By

taking the sum on both sides, we get

∞∑

i=1

ak+i ≤
∞∑

i=1

λi
kak

=
λk

1− λk

ak.

Since λk ∈ (0, 1
3
), we then have λk

1−λk
∈ (0, 1

2
). And the proof is completed with

C = sup
k≥k̄

λk

1−λk
∈ (0, 1).

We have the following result about the superlinear convergence of the sequence

{wk}.

Theorem 5.16. Let Assumptions 5.1–5.3 hold. There exists ε̄ > 0 such that if

w0 ∈ B(w∗, ε̄)∩R2n
++, then the sequence {wk} converges at least superlinearly with

a rate of 1 + σ to a solution w̃ ∈ S

Proof. Let ε, ε̄ be defined as in Lemma 5.14. By virtue of Lemma 5.14, we deduce

that wk ∈ B(w∗, ε) ∩ R2n
++ for all k ∈ N and the sequence {wk} converges to a

solution w̃ ∈ S. We now analyze the rate of convergence of the sequence {wk}.
Let k ∈ N and let us define dk := wk+1 − wk. From (5.44), we then have

‖dk‖≤ C1d(wk). (5.46)

By combining this fact with (5.45), we imply that the series
∞∑

i=k0

di is absolutely

convergent. Let w̄k+1 ∈ S such that ‖wk+1−w̄k+1‖= d(wk+1). As wk+1 ∈ B(w∗, ε)∩

106 Infeasibility detection and regularization strategies in nonlinear optimization



5. Local convergence of a primal-dual method without SOSCs

R2n
++, the property of the distance function and the inequality (5.43) give us

d(wk) ≤ ‖wk − w̄k+1‖
≤ ‖wk − wk+1‖+‖wk+1 − w̄k+1‖
≤ ‖dk‖+C5d(wk)1+σ

≤ ‖dk‖+C5ε
σd(wk).

From the definition (5.42) of ε, we then have C5ε
σ ≤ 1

2
. The above inequality

implies that

‖dk‖≥ C6d(wk),

where C6 := 1 − C5ε
σ > 0. Combining this inequality with (5.46) and (5.43),

we deduce that the two sequences {‖dk‖} and {d(wk)} converges to zero at least

superlinearly with the same rate of 1+σ. By applying Lemma 5.15 for the sequence

{‖dk‖}, there exists C ∈ (0, 1) and k̄ ≥ 0 such that for all k ≥ k̄

∥∥∥∥∥
∞∑

i=1

dk+i

∥∥∥∥∥ ≤
∞∑

i=1

‖dk+i‖≤ C‖dk‖.

It follows from the triangle inequality and the above one that for k ≥ k̄

∥∥∥∥∥
∞∑

i=0

dk+1+i

∥∥∥∥∥ ≤ ‖dk+1‖+
∥∥∥∥∥

∞∑

i=1

dk+1+i

∥∥∥∥∥ ≤ (1 + C)‖dk+1‖

and ∥∥∥∥∥
∞∑

i=0

dk+i

∥∥∥∥∥ ≥ ‖dk‖−
∥∥∥∥∥

∞∑

i=1

dk+i

∥∥∥∥∥ ≥ (1− C)‖dk‖.

For all k ≥ k̄, by noting that the limit point w̃ can be expressed as

w̃ = wk +
∞∑

i=0

dk+i,

from the two above inequalities, we obtain

‖wk+1 − w̃‖
‖wk − w̃‖1+σ

=
‖∑∞

i=0 dk+1+i‖
‖∑∞

i=0 dk+i‖1+σ ≤
1 + C

(1− C)1+σ

‖dk+1‖
‖dk‖1+σ

.

Because {‖dk‖} converges to zero at least superlinearly, we then obtain from the

above inequality that

‖wk+1 − w̃‖= O
(
‖wk − w̃‖1+σ

)
,
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which completes the proof.

5.3 Globalization of the local algorithm

In this section, we introduce a simple way to globalize the local algorithm (5.2)-

(5.8). After computing w+
k from the linear system (5.5) and performing the fraction

to the boundary rule (5.6), we consider the possibility to use an inner algorithm.

At an iteration k, if the iterate ŵk := wk + α(w+
k − wk) satisfies the condition

‖F (ŵk)−µkẽ‖≤ c‖F (wk)−µk−1ẽ‖+ζk, for some c ∈ (0, 1) where {ζk} converges to

zero, then we set wk+1 = ŵk. Otherwise, we apply a sequence of inner iterations in

order to find a point wk+1 such that (5.48) is satisfied. The inner iterations can be

obtained by applying some kinds of globalization techniques used in interior point

methods, see, e.g., Armand and Omheni [13], Wachter and Biegler [149]. More

specifically, the inner algorithm aims to minimize the function ϕ(x) = f(x) −
µ
∑n

i=1 log xi for some fixed parameter µ. Because our main purpose is to study

the fast convergence of our algorithm, we will not mention the inner iteration

scheme in more detail. We will show that if the sequence {wk} converges to some

neighborhood of the solution set, then the rate of convergence is superlinear. In

particular, Algorithm 5 does not need the inner algorithm.

At the beginning, we choose a starting point w0 = (x0, z0) ∈ R2n
++ and some

constants µ−1 > 0, β ≥ 1, γ1 > 0, γ2 ∈ (0, 1), c, σ ∈ (0, 1). The outer iteration

counter is set by k = 0. The outer algorithm is described in Algorithm 5.

Algorithm 5 (kth outer iteration)

1. Update θk > 0, δk > 0 by formulas (5.2) and (5.4), respectively. The barrier
parameter µk is set by

µk = γ2 min{‖F (wk)‖1+σ, µk−1}. (5.47)

2. Compute w+
k = (x+

k , z+
k ) by solving the linear system (5.5).

3. Compute a step-length αk ∈ (0, 1] by using (5.6). Set ŵk = wk + αk(w+
k − wk).

4. Choose ζk > 0 such that {ζk} → 0. If ‖F (ŵk)−µkẽ‖≤ c‖F (wk)−µk−1ẽ‖+ζk, then
set wk+1 = ŵk. Otherwise, apply a sequence of inner iterations to find wk+1 ∈ R2n

++

such that
‖F (wk+1)− µkẽ‖≤ c‖F (wk)− µk−1ẽ‖+ζk. (5.48)
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5.3.1 Global convergence

From now on, we assume that Algorithm 5 generates an infinite sequence of iterates

{wk}. This implies that under some standard assumptions, the inner algorithm

terminates after a finite number of iterations and returns a point wk+1 satisfying

the condition (5.48), see, e.g., [13, Section 4.1]. The next theorem gives us the

global behavior of Algorithm 5.

Theorem 5.17. Assume that {ζk} tends to zero and Algorithm 5 generates an

infinite sequence of iterates {wk}. Then, {F (wk)} converges to zero.

Proof. Let M = max{‖F (w0)− µ−1ẽ‖, ζ̄}, where ζ̄ = sup
k∈N

ζk. Since c ∈ (0, 1), the

inequality (5.48) implies that for all k ∈ N

‖F (wk+1)− µkẽ‖ ≤ c‖F (wk)− µk−1ẽ‖+ζ̄

≤ ck+1‖F (w0)− µ−1ẽ‖+
k∑

i=0

ciζ̄

≤ M

1− c
.

Hence, the limit superior of the sequence {‖F (wk+1)− µkẽ‖} is finite. By taking

the limit superior in (5.48) and reminding that lim ζk = 0, we have

(1− c) lim sup
k→∞

‖F (wk)− µk−1ẽ‖≤ 0,

and thus lim sup
k→∞

‖F (wk)− µk−1ẽ‖= 0. In addition, the triangle inequality gives us

‖F (wk)‖ ≤ ‖F (wk)− µk−1ẽ‖+µk−1‖ẽ‖.

By taking the limit superior on both sides and using the convergence to zero of

the sequence {µk} from (5.47), we obtain lim sup
k→∞

‖F (wk)‖= 0 which implies that

{F (wk)} converges to zero.

5.3.2 Asymptotic analysis

In Section 5.2, we demonstrated that the sequence {wk} created by the local

algorithm (5.2)-(5.8) converges superlinearly to a solution w̃ ∈ S. We will show

that the global scheme (Algorithm 5) does not affect the fast convergence of the

sequence of iterates in some neighborhoods of the point w∗. In particular, we prove
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that for k large enough, the iterate ŵk will be accepted by the acceptance criterion

at Step 4. This implies that there is no need to call the inner iteration algorithm.

Lemma 5.18. Let Assumptions 5.1–5.3 hold and let us choose ζk = Ω(µ
1

1+σ

k ).

There exists εg > 0 such that if at an iteration k, wk ∈ B(w∗, εg) ∩ R2n
++, then

wk+1 = ŵk.

Proof. The assumption on {ζk} implies that there exists C7 > 0 such that for all

k ∈ N

ζk ≥ C7µ
1

1+σ

k . (5.49)

Let us define

C8 = bl(C5 + γ2l
σ
√
n) and εg = min



ε,

(
C7

C8

γ
1

1+σ

2

) 1
σ

,

(
c

C8 + clσ
√
n

) 1
σ



 ,

where ε is defined in (5.42).

Assume that wk ∈ B(w∗, εg) ∩ R2n
++ at some iteration k, we will show that

wk+1 = ŵk. Indeed, by applying the same argument to get (5.43), we then obtain

d(ŵk) ≤ C5d(wk)1+σ. (5.50)

Let ¯̂wk ∈ S such that d(ŵk) = ‖ŵk − ¯̂wk‖. For all wk ∈ B(w∗, εg), by applying

inequalities (5.25), (5.36), (5.50), and (5.27), we then get

‖F (ŵk)− µkẽ‖ ≤ ‖F (ŵk)− F ( ¯̂wk)‖+µk

√
n

≤ l‖ŵk − ¯̂wk‖+γ2l
1+σ
√
nd(wk)1+σ

≤ l(C5 + γ2l
σ
√
n)d(wk)1+σ

< bl(C5 + γ2l
σ
√
n)εσ

g‖F (wk)‖
≤ C8ε

σ
g‖F (wk)‖. (5.51)

From the definition (5.47) of {µk}, we consider the two following cases. The first

case is when µk = γ2‖F (wk)‖1+σ, the inequality (5.49) and the definition of εg

imply that

ζk ≥ C7γ
1

1+σ

2 ‖F (wk)‖≥ C8ε
σ
g‖F (wk)‖.

By substituting this inequality to (5.51), we then get

‖F (ŵk)− µkẽ‖≤ ζk,
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which implies that wk+1 = ŵk.

The second case is when µk = γ2µk−1. This means that µk−1 ≤ ‖F (wk)‖1+σ.

By using inequalities (5.51) and (5.25) and reminding that F (w̄k) = 0, it follows

from the previous inequality that

‖F (ŵk)− µkẽ‖+cµk−1‖ẽ‖ ≤ (C8ε
σ
g + c

√
n‖F (wk)− F (w̄k)‖σ)‖F (wk)‖

≤ (C8ε
σ
g + clσ

√
nd(wk)σ)‖F (wk)‖.

By using d(wk) < εg, the definition of εg implies that C8ε
σ
g + clσ

√
nd(wk)σ < c.

The triangle inequality then gives us

‖F (ŵk)− µkẽ‖ ≤ c(‖F (wk)‖−µk−1‖ẽ‖)
≤ c‖F (wk)− µk−1ẽ‖
< c‖F (wk)− µk−1ẽ‖+ζk,

from which the proof is completed.

We now state the main result of this section which is a direct consequence of

Theorem 5.16 and Lemma 5.18.

Theorem 5.19. Let Assumptions 5.1–5.3 hold. There exists r > 0 such that if

at an iteration k0, wk0 ∈ B(w∗, r) ∩ R2n
++, then for all k ≥ k0, wk+1 = ŵk and the

sequence {wk} converges at least superlinearly with a rate of 1 + σ to a solution

w̃ ∈ S.

Proof. Let us define

r = min{ε̄, εg},

where ε̄ and εg are respectively defined in Theorem 5.16 and Lemma 5.18. Let

k0 ∈ N be such that wk0 ∈ B(w∗, r) ∩ R2n
++. From the above definition of r and

Lemma 5.18, we have wk+1 = ŵk for all k ≥ k0. This means that Algorithm

5 is reduced to the local algorithm (5.2)-(5.8). We now apply Theorem 5.16 to

conclude the result.

5.4 Examples and numerical results

In this section, we give some examples and numerical results to demonstrate the

effectiveness of our method. Our algorithm called SPDOPT-R (Strongly Primal-

Dual OTImization-Regularization) is implemented in C. Initially, a starting point
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w0 = (x0, z0) is defined, where x0 is given by user and z0 = e. For each k, the

parameters θk, µk, τk are set by

θk = min{γ1‖F (wk)‖σ, θ̄},
µk = γ2 min{‖F (wk)‖1+σ, µk−1},
τk = max{0.99, 1− µk},

where γ1 = 0.1, σ = 0.5, θ̄ = 10−3, γ2 = 0.1, µ−1 = 0.1. We note that these choices

of parameters fulfill all assumptions in both global and local convergence analysis

for all k such that ‖F (wk)‖≤ 10−3. At each k, the parameter δk is chosen by the

following Algorithm 6, where β = 100, δ0 = 0.01.

Algorithm 6 Computation of δk

1. Let Mk = ∇2f(xk) +X−1
k Zk. If Mk � 0, then return δk = 0, else set δ0 = δ0.

2. Set i = 0. If Mk + δiI � 0, then go to Step 4.

3. Set i = i+ 1 and δi = βδi−1 until Mk + δiI � 0. Return δk = δi.

4. Set i = i+ 1 and δi = δi−1/β until Mk + δiI � 0. Return δk = βδi−1.

We note that the sequence {δk} generated by Algorithm 6 satisfies (5.4).

Indeed, let k ∈ N and let us denote λk
min := λmin(∇2f(xk) + X−1

k Zk). If Mk � 0,

then λk
min ≥ 0 and δk = 0 will satisfy the condition (5.4). Otherwise, if λk

min < 0,

let us consider two following cases. The first case is when δk is obtained from Step

3. We then have Mk + δkI � 0 and Mk + δk

β
I � 0. This implies that

λk
min + δk ≥ 0 and λk

min +
δk

β
< 0,

We then have

max{0,−λk
min} = −λk

min ≤ δk < −βλk
min = βmax{0,−λk

min}.

By using the same argument, we can demonstrate that if δk is returned by Step 4,

then it also satisfies (5.4).

In Step 4 of Algorithm 5, we set ζk = 10µ1/(1+σ)
k and c = 0.9. We use the

same kind of inner iterations as in [13, Algorithm 2]. The algorithm terminates if

‖F (wk)‖∞≤ 10−8. We will compare our SPDOPT-R with SPDOPT [13] in next
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examples.

5.4.1 Example 1: empty active set

We consider the problem (5.1) in R2, where

f(x) =





1
2
(x2 − 1)2 if x1 ∈ [1, 3]

1
8
(x1 − 1)4(x1 − 3)4 + 1

2
(x2 − 1)2 otherwise.

The first and second derivatives of f are

∇f(x) =








0

x2 − 1


 if x1 ∈ [1, 3]




(x1 − 1)3(x1 − 3)3(x1 − 2)

x2 − 1


 otherwise,

and

∇2f(x) =








0 0

0 1


 if x1 ∈ [1, 3]




(x1 − 1)2(x1 − 3)2(7x2
1 − 28x1 + 27) 0

0 1


 otherwise.

The function f is twice continuously differentiable and the second derivative

∇2f is Lipschitz continuous on R2. The solution set of this problem is X = [1, 3]×
{1} and the active set is empty. Let us choose a constant η ∈ (0, 1). For any x∗

1 ∈
[1 +η, 3−η], the local error bound condition (5.9) is provided at x∗ = (x∗

1, 1) ∈ X .
Indeed, let x = (x1, x2) ∈ B(x∗, η). We have

x∗
1 − η < x1 < x∗

1 + η and 1− η < x2.

By noting that 1 + η ≤ x∗
1 ≤ 3− η, this implies that

1 < x1 < 3 and
x2

1− η
> 1.
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Fig. 5.3: SOSCs are not satisfied at any solution

Hence, we deduce that x̄ = (x1, 1) and

d(x,X ) = ‖x− x̄‖ = |x2 − 1|

<
1

1− η
x2|x2 − 1|

=
1

1− η
‖x ◦ ∇f(x)‖,

which implies that the local error bound condition (5.9) is validated at x∗. We

note, however, that the SOSCs do not hold at any x∗ ∈ X , since matrix ∇2f(x) is

singular for all x ∈ R2.

From the starting point x0 = (1.5, 1.5), our algorithm converges to the solution

x̂ = (1.5023, 1) after 5 iterations. SPDOPT takes 21 iteration to converge linearly

to the solution (3, 1). Figure 5.4 shows us the behaviors of these algorithms in 5

last iterations. We can see that SPDOPT-R converges superlinearly to x̂.

5.4.2 Example 2: nonempty active set

Let us consider the problem (5.1) in R3, where

f(x) =





1
2
(x2 − 1)2 + 1

2
x2

3 + x3 if x1 ∈ [1, 3]
1
8
(x1 − 1)4(x1 − 3)4 + 1

2
(x2 − 1)2 + 1

2
x2

3 + x3 otherwise.
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Fig. 5.4: Illustration of the rate of convergence (T= last iteration)

The first and second derivatives of f are given by

∇f(x) =








0

x2 − 1

x3 + 1




if x1 ∈ [1, 3]




(x1 − 1)3(x1 − 3)3(x1 − 2)

x2 − 1

x3 + 1




otherwise,

and

∇2f(x) =








0 0 0

0 1 0

0 0 1




if x1 ∈ [1, 3]




(x1 − 1)2(x1 − 3)2(7x2
1 − 28x1 + 27) 0 0

0 1 0

0 0 1




otherwise.

The function f is twice continuously differentiable and the second derivative ∇2f

is Lipschitz continuous on R2. The solution set is X = [1, 3] × {1} × {0}. Let
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choose a positive radius η ∈ (0, 1]. For any x∗
1 ∈ [1+η, 3−η], the local error bound

condition (5.9) is provided at x∗ = (x∗
1, 1, 0) ∈ X . Indeed, for all x ∈ B(x∗, η), we

have

x∗
1 − η < x1 < x∗

1 + η, 1− η < x2, and − η < x3

By noting that 1 + η ≤ x∗
1 ≤ 3− η, this implies that

1 < x1 < 3,
x2

1− η
> 1, and

x3 + 1
1− η

> 1.

Hence, we deduce that x̄ = (x1, 1, 0) and then

d(x,X )2 = ‖x− x̄‖2 = (x2 − 1)2 + x2
3

≤ 1
(1− η)2

x2
2(x2 − 1)2 +

1
(1− η)2

(x3 + 1)2x2
3

=
1

(1− η)2
‖x ◦ ∇f(x)‖2,

from which the Hadamard product x ◦ ∇f(x) provides a local error bound at x∗.

T−4 T−3 T−2 T−1 T

10
−10

10
−5

10
0

k

‖F ‖

 

 

SPDOPT−R

SPDOPT

Fig. 5.5: Illustration of the rate of convergence (T= last iteration)

By choosing the starting point x0 = (2, 1.5, 1), SPDOPT-R converges to the

solution x̂ = (2.0021, 1, 0) after 5 iterations. SPDOPT takes 23 iterations to

return the solution (3, 1, 0). Figure 5.5 shows us that SPDOPT-R and SPDOPT

converges to solutions superlinearly and linearly, respectively.
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5.4.3 Example 3: large scale problem

Let us consider the bound constrained optimization problem (5.1) in Rn, where

f(x) =





1
2

(xn − 1)2 if
n−1∑
i=1

x2
i ≤ n

1
8

(
n−1∑
i=1

x2
i − n

)4

+
1
2

(xn − 1)2 otherwise,

The set of primal solutions at which the SC holds is

X1 = {x ∈ Rn
++ :

n−1∑

i=1

x2
i ≤ n, xn = 1}.
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(a) SPDOPT
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−12
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−8
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k
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g 1

0
‖
F
k
‖

(b) SPDOPT-R

Fig. 5.6: Values of log10‖Fk‖ for the last ten iterations of SPDOPT and SPDOPT-R when
solving Example 3. T represents the index of the stopping iteration for each run.

We note that the SOSCs are not satisfied at any solution x∗ of X1. However, the

local error bound condition (5.9) holds at every relative interior point of X1. For

each n = 10, 100, 1000, SPDOPT and SPDOPT-R solve 10 problems which use
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random starting points in [0, 1]n. Figure 5.6 shows us the logarithms of ‖F (wk)‖ for

the last ten iterations of SPDOPT and SPDOPT-R when solving these problems.

These figures show us that the new algorithm SPDOPT-R converges superlinealy

to solutions x∗ belonging to X1, whereas the rate of convergence of SPDOPT-R is

just linear.

T−8 T−6 T−4 T−2 T
−12

−10

−8

−6

−4

−2

0

k

lo
g 1

0
‖
F
k
‖

Fig. 5.7: Values of log10‖Fk‖ for the last ten iterations of SPDOPT-R when solving 30 problems
in the form of Example 3 with x0 ∈ [1.1, 2]n. T represents the index of the stopping iteration for
each run.

We note that for each n = 10, 100, 1000, if we choose random starting points

x0 ∈ [1.1, 2]n, only a linear rate of convergence of SPDOPT-R is observed, see

Figure 5.7. In this case, the sequence of iterates converges to a relative boundary

point of X1 at which the local error bound (5.9) is not satisfied. From this

observation, an open question is how to drive the iterates to a “good” neighborhood

on which the local error bound condition (5.7) holds.
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Chapter 6

Local convergence analysis of

regularized primal-dual

algorithms without constraint

qualification

In this chapter, we study the local convergence properties of two regularized

algorithms without any constraint qualification. This study was motivated by

practical observations. Indeed, when solving degenerate problems for which the

linear independence constraint qualification (LICQ) is not satisfied, the algorithm

SPDOPT-AL of Armand and Omheni [12] has good performances and we can

observe superlinear or quadratic convergence. The asymptotic analysis of this

algorithm was made under the classical assumptions of second order sufficient

conditions (SOSCs) and LICQ, but the quadratic convergence without constraint

qualification has not been proved. In this work, we will answer the question raised

by the authors of [12] on the rate of convergence without constraint qualification.

We propose a method to update the parameters of SPDOPT [13] to achieve a fast

rate of convergence of this algorithm without any constraint qualification. The

main characteristics of our study are summarized as follows:

• For equality constrained optimization (1.2), the algorithm of Izmailov and

Solodov [100] used the singular value decomposition (SVD) to identify locally

the rank of the constraints degeneracy. This information is used to create a

system of modified primal-dual optimality conditions with a unique solution.

This algorithm is not really applicable for large scale problems because of

the high computational cost of an SVD factorization. The linear system to
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6.1. An augmented Lagrangian algorithm for equality constrained optimization

solve at each iteration in the equality constrained phase of Wright [157] or

in the outer algorithm of Arreckx and Orban [17] is quite similar to the one

of SPDOPT-AL. In addition, since SPDOPT-AL possesses a rule to update

parameters and a condition to call inner algorithm, they will be considered

in our local convergence analysis.

• For the solution of the general nonlinear optimization problem (1.1), by

means of a mixed interior point-augmented Lagrangian method [13], the

quadratic penalty parameter introduces a natural regularization for the linear

system to solve at each iteration. One advantage of this regularization

parameter is that the superlinear convergence will be done without any

additional conditions related to constraint qualifications required in other

studies in the literature, for example, the constant-rank condition (Ralph

and Wright [127]), MFCQ (Wright [154], Vicente and Wright [147]) or the

linear independence of gradients of equality constraints (Yamashita and Yabe

[162]). The centrality conditions will not be enforced as in other algorithms,

see, e.g. [127, 128, 162]. Instead, the fraction to the boundary rule is applied

to maintain the strict feasibility of the iterates for the bound constraints. It

is worth noting that this rule is easier to implement and is commonly used

in interior point algorithms.

• In the local convergence analysis of an optimization algorithm, the uniform

boundedness of the inverse of the Jacobian matrix is a key fact, see,

e.g., Byrd et al. [33], Armand and Benoist [9]. However, the lack of

constraint qualification may lead to the unboundedness of the inverse of this

matrix. In this chapter, we will investigate relations between regularized

Jacobian matrices raised by linear systems of primal-dual algorithms and

their regularization parameters.

6.1 An augmented Lagrangian algorithm for

equality constrained optimization

In the two Sections 6.1 and 6.2, we consider the following equality constrained

optimization problem

minimize
x∈Rn

f(x) subject to c(x) = 0, (EP)
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6. Local analysis of regularized P-D algorithms without constraint qualification

where f : Rn → R, c : Rn → Rm are smooth functions. The first order optimality

conditions can be written as

F (w) = 0, (6.1)

where F : Rn+m → Rn+m is defined by

F (w) =


∇f(x) + A(x)y

c(x)


 ,

where w = (x, y) ∈ Rn+m. Armand and Omheni [12] introduced a primal-dual

algorithm based on the augmented Lagrangian method to solve (EP). Let us

define the augmented Lagrangian function by

Lσ,λ(x) = f(x) + λ⊤x+
1

2σ
‖c(x)‖2,

where λ ∈ Rm is a vector of Lagrange multipliers associated with the constraints of

(EP) and σ > 0 is a quadratic penalty parameter. The main idea of SPDOPT-AL

is to apply a Newton type method to the system g(x)+A(x)
(
λ+ 1

σ
c(x)

)
= 0 which

are the first order optimality conditions for minimizing Lσ,λ(x). By introducing

the variable y = λ + 1
σ
c(x), these conditions can be rewritten under the form

Φ(w, λ, σ) = 0, where w = (x, y) ∈ Rn+m and

Φ(w, λ, σ) =


∇f(x) + A(x)y

c(x) + σ(λ− y)


 .

There are two kinds of iterations in SPDOPT-AL. The outers are devoted to

update parameters and to compute a candidate iterate. If the residual ‖Φ‖ at

the candidate iterate is sufficiently decreased, then the new iterate is set to the

candidate and a new outer iteration is performed. Otherwise, a sequence of inner

iterations will be applied to reduce this residual.

The outer iteration of SPDOPT-AL [12, Algorithm 1] is recalled in Algorithm

7. The algorithm is initialized with a starting point w0 := (x0, y0) ∈ Rn+m, a

penalty parameter σ0 > 0 and a Lagrange multiplier estimate λ0 = y0. Some

constants κ ∈ (0, 1), l ∈ N and ρ ∈ (0, 1) are chosen. The iteration counter is set

to k = 0 and an index ik is initially set to i0 = 0.

The inner iteration algorithm is a backtracking line search applied to a merit

function (see, [12, Algorithm 2]). In our analysis, we will prove that this algorithm

is not called when the iterates belong to some neighborhood of an optimal solution.
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Algorithm 7 (kth outer iteration of SPDOPT-AL)

1. Choose ζk ≥ 0 such that {ζk} → 0 and set ηk = ‖ck‖+ζk. If k = 0 or

‖c(xk)‖≤ κ max{ηij
: (k − l)+ ≤ j ≤ k}, (6.2)

then go to Step 3.

2. Choose σk+1 ≤ ρσk. Set λk+1 = λk, ik+1 = ik and go to Step 4.

3. Choose σk+1 ≤ σk. Set λk+1 = yk, ik+1 = k.

4. Choose a symmetric matrix Hk such that In(Jk) = (n, m, 0) and compute w+
k by

solving the linear system

Jk(w+
k − wk) = −Φ(wk, λk+1, σk+1), (6.3)

where Jk =

(
Hk Ak

A⊤
k −σk+1I

)
.

5. Choose εk > 0 such that {εk} → 0. If

‖Φ(w+
k , λk+1, σk+1)‖≤ εk, (6.4)

then set wk+1 = w+
k . Otherwise, apply a sequence of inner iterations to find wk+1

such that
‖Φ(wk+1, λk+1, σk+1)‖≤ εk.

6.2 Asymptotic analysis for SPDOPT-AL

without constraint qualification

6.2.1 Uniform boundedness of the inverse of a regularized

Jacobian matrix

At each iteration k, the algorithm SPDOPT-AL solves a linear system with a

regularized Jacobian matrix Jk. In SPDOPT-AL, the regularization parameter

σ is updated dynamically, i.e., σk+1 = Θ(‖F (wk)‖). This implies that when the

sequence of iterates {wk} converges to an optimal solution of (EP), the sequence

{σk} will tend to zero. Therefore, we cannot apply Corollary 5.6 of the previous

chapter to deduce the uniform boundedness of the sequence {J−1
k }. Nevertheless,

we still have a similar result for the sequence {J−1
k } as follows.

Lemma 6.1. Let w∗ = (x∗, y∗) be a vector in RN , where N = n + m and n,m

are natural numbers. Let H : RN → Rn×n be a bounded function such that for

all w ∈ RN , H(w) = H(w)⊤ and let A : Rn → Rn×m be a Lipschitz continuous
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6. Local analysis of regularized P-D algorithms without constraint qualification

function. Let ρ : RN → R++ be a bounded function such that if ρ is not bounded

away from zero, then ρ(w) = Ω(‖x − x∗‖t), for all w = (x, y) ∈ RN , for some

t ∈ (0, 1]. For all w ∈ RN , let us define the matrix

J(w) :=


H(w) A(x)

A(x)⊤ −ρ(w)I


 .

Assume that there exist r > 0 and ν > 0 such that for all w ∈ B(w∗, r)

H(w) +
1

ρ(w)
A(x)A(x)⊤ � νI. (6.5)

Then, there exists C > 0 such that for all w ∈ B(w∗, r), the matrix J(w) is

nonsingular and ‖J(w)−1‖≤ C

ρ(w)
.

Proof. Let w ∈ B(w∗, r) and let us define ρ := ρ(w). Let us show that

the matrix J(w) is nonsingular. By Proposition 2.7, we have det J(w) =

det
(
H(w) + 1

ρ
A(x)A(x)⊤

)
det(−ρI). The assumption (6.5) and ρ > 0 imply that

det
(
H(w) + 1

ρ
A(x)A(x)⊤

)
> 0 and det(−ρI) 6= 0. It follows that the matrix J(w)

is nonsingular.

To prove the second assertion, let us consider the two following cases. The

first case is when the function ρ is bounded away from zero. The conclusion

will follow if the inverse of J(w) is bounded. For all w ∈ B(w∗, r), let us define

M(w) = H(w)+
1

ρ(w)
A(x)A(x)⊤. We deduce from (6.5) that for all w ∈ B(w∗, r),

‖M(w)−1‖≤ 1
ν
.

By noting that

J(w)−1 =




M(w)−1 1
ρ(w)

M(w)−1A(x)

1
ρ(w)

A(x)⊤M(w)−1 1
ρ(w)2

A(x)⊤M(w)−1A(x)− 1
ρ(w)

I


 ,

the boundedness of

(
‖A(x)‖, ρ(w),

1
ρ(w)

)
and the above inequality imply that

‖J(w)−1‖= O(1).

We now consider the second case in which there exists a sequence {wk} in

B(w∗, r) such that lim ρ(wk) = 0. To simplify the notation, let us denote Jk :=

J(wk), Hk := H(wk), Ak := A(xk) and ρk := ρ(wk). The proof is based on a
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contradiction reasoning. We assume that lim ρk‖J−1
k ‖= ∞. Let us define r =

rank(A∗) ≤ min{m,n}, where A∗ := A(x∗). By Proposition 2.4, the matrix A∗

can be expressed under the form

A∗ = UΣV ⊤ =
(
UI UJ

)

Σr 0

0 0




V

⊤
I

V ⊤
J


 , (6.6)

where Σr = diag(σ1, . . . , σr), σ1 ≥ . . . ≥ σr > 0 are the singular values of A∗,

U =
(
UI UJ

)
and V =

(
VI VJ

)
are orthogonal matrices, UI ∈ Rn×r, UJ ∈

Rn×(n−r), VI ∈ Rm×r, VJ ∈ Rm×(m−r). For k ∈ N, let us define

Gk := U⊤(Ak − A∗)V.

For k ∈ N, we then have

Ak = A∗ + UGkV
⊤ = U(Σ +Gk)V ⊤

=
(
UI UJ

)

Σr +G11

k G12
k

G21
k G22

k




V

⊤
I

V ⊤
J


 , (6.7)

where G11
k ∈ Rr×r, G12

k ∈ Rr×(m−r), G21
k ∈ R(n−r)×r, G22

k ∈ R(n−r)×(m−r). From the

Lipschitz continuity of A and ‖xk − x∗‖= O(ρ1/t
k ) = O(ρk), we get

‖Gij
k ‖= O(ρk) for all i, j = 1, 2. (6.8)

Since the l2 norm is invariant under multiplication with orthogonal matrices, for

all k, one has

‖J−1
k ‖= ‖Q⊤J−1

k Q‖,

where Q =


U 0

0 V


 and Q⊤Q = Q⊤Q = I. From the definition of a matrix norm,

there exists a sequence of unit vectors {vk} ⊂ R2n such that ‖J−1
k ‖= ‖Q⊤J−1

k Q‖=
‖Q⊤J−1

k Qvk‖. Define for all k ∈ N, uk := Q⊤J−1
k Qvk/‖J−1

k ‖. It follows that {uk} is

a sequence of unit vectors with lim 1
ρk
‖Q⊤JkQuk‖= 0. Let k ∈ N. By introducing

the notation

uk =




ak

bk

ck

dk



∈ R2n and

1
ρk

Q⊤JkQuk =




αk

βk

γk

δk



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and using (6.7), we have

U⊤
I HkUIak + U⊤

I HkUJ bk +
(
Σr +G11

k

)
ck +G12

k dk = ρkαk,

U⊤
J HkUIak + U⊤

J HkUJ bk +G21
k ck +G22

k dk = ρkβk,(
Σr + (G11

k )⊤
)
ak + (G21

k )⊤bk − ρkck = ρkγk,

(G12
k )⊤ak + (G22

k )⊤bk − ρkdk = ρkδk,

(6.9)

where the sequence {(αk, βk, γk, δk)} converges to zero. From the assumption (6.5)

and the orthogonality of the matrix U , we deduce that

b⊤
k U

⊤
J

(
Hk +

1
ρk

AkA
⊤
k

)
UJ bk ≥ ν‖UJ bk‖2

= ν‖bk‖2. (6.10)

From (6.7) and U⊤
J U =

(
0 I

)
, we get

U⊤
J Ak =

(
0 I

)

Σr +G11

k G12
k

G21
k G22

k


V ⊤

=
(
G21

k G22
k

)
V ⊤,

which implies that

U⊤
J AkA

⊤
k UJ = G21

k (G21
k )⊤ +G22

k (G22
k )⊤.

By substituting this equality to (6.10), we obtain

ν‖bk‖2≤ b⊤
k

(
U⊤

J HkUJ +
1
ρk

(
G21

k (G21
k )⊤ +G22

k (G22
k )⊤

))
bk. (6.11)

We deduce from the third equation of (6.9) that

‖ak‖≤
∥∥∥Σ−1

r

∥∥∥
(
‖(G11

k )⊤‖‖ak‖+‖(G21
k )⊤‖‖bk‖+ρk (‖ck‖+‖γk‖)

)
.

From ‖Σ−1
r ‖ = 1

σr
, the boundedness of {(ak, bk, ck, γk)}, (6.8) and the convergence

to zero of {ρk}, taking the limit for k ∈ N, we then get

lim ak = 0. (6.12)
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Let us show that

J 6= ∅ and lim inf bk > 0. (6.13)

Indeed, if this is not the case, we consider the two following possibilities. The

first case is when J = ∅. By reminding that ‖Σ−1
r ‖ = 1

σr
, ‖U⊤

I ‖= ‖UI‖≤ 1 and

the sequence {(‖Hk‖, ‖ck‖, ‖αk‖)} is bounded, the first equation of (6.9) and (6.8)

gives us

‖ck‖ ≤
∥∥∥Σ−1

r

∥∥∥
(
‖U⊤

I ‖‖Hk‖‖UI‖‖ak‖+‖G11
k ‖‖ck‖+ρk‖αk‖

)

= O(‖ak‖) + O(ρk).

Taking the limit in both sides of the above inequality, using (6.12) and the

convergence to zero of {ρk}, we then get

lim ck = 0,

which is in contradiction with the fact that that {(ak, ck)} is a sequence of unit

vectors. The second case is when J 6= ∅ and there exists an infinite subset K ⊂ N

such that lim
k∈K

bk = 0. By using the boundedness of {(‖Hk‖, ‖ck‖, ‖dk‖, ‖αk‖)},
(6.8) and the fact that ‖U⊤

I ‖= ‖UI‖≤ 1, ‖UJ ‖≤ 1 and ‖Σ−1
r ‖ = 1

σr
, we deduce

from the first and the fourth equations of (6.9) that

‖ck‖ ≤
∥∥∥Σ−1

r

∥∥∥
(
‖U⊤

I ‖‖Hk‖(‖UI‖‖ak‖+‖UJ ‖‖bk‖)
+ ‖G11

k ‖‖ck‖+‖G12
k ‖‖dk‖+ρk‖αk‖

)

= O(‖ak‖) + O(‖bk‖) + O(ρk),

‖dk‖ ≤
1
ρk

(
‖(G12

k )⊤‖‖ak‖+‖(G22
k )⊤‖‖bk‖

)
+ ‖δk‖

= O(‖ak‖) + O(‖bk‖) + O(‖δk‖).

From (6.12) and the convergence to zero of {(bk, ρk, δk)}K, taking the limit for

k ∈ K, we then get

lim
k∈K

ck = 0 and lim
k∈K

dk = 0,

which is again in contradiction with the fact that {(ak, bk, ck, dk)} is a sequence of

unit vectors. Hence, (6.13) must be true.

Premultiplying the second equation of (6.9) by b⊤
k , using (6.11) and the Cauchy-
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Schwarz inequality, we get

ν‖bk‖2 ≤ b⊤
k

(
U⊤

J HkUJ +
1
ρk

(G21
k (G21

k )⊤ +G22
k (G22

k )⊤)

)
bk

= ‖bk‖
(
‖U⊤

J ‖‖Hk‖‖UI‖‖ak‖+‖G21
k ‖‖ck‖+‖G22

k ‖‖dk‖+ρk‖βk‖)
)

+
1
ρk

(
‖G21

k ‖2+‖G22
k ‖2

)
‖bk‖2.

By reminding that ‖U⊤
J ‖≤ 1, ‖UI‖≤ 1 and the sequences {(bk, ck, dk, βk)} and

{Hk} are bounded, the above inequality and (6.8) gives us

‖bk‖= O(‖ak‖) + O(ρk).

Taking the limit for k ∈ N in the above inequality, using (6.12) and the convergence

to zero of {ρk}, we obtain

lim bk = 0,

which is in contradiction with (6.13).

Hence, there exists C > 0 such that for all w ∈ B(w∗, r), ‖J(w)−1‖≤ C

ρ(w)
.

6.2.2 Assumptions and preliminary results

Let x∗ ∈ Rn be an optimal solution of (EP). Let us assume that the following

assumptions are satisfied.

Assumption 6.1. The functions f and c are twice continuously differentiable and

their second derivatives are Lipschitz continuous over an open neighborhood of x∗.

Assumption 6.2. There exists y∗ ∈ Rm such that the KKT conditions (6.1) are

satisfied at w∗ = (x∗, y∗).

Assumption 6.3. The second order sufficient conditions (SOSCs) hold at w∗, i.e.,

for all u ∈ Rn, if u 6= 0 and A(x∗)⊤u = 0, then u⊤∇2
xxL(w∗)u > 0.

Under these above assumptions, x∗ is a strict local solution of (EP), see, e.g.,

[22, Proposition 3.2.1]. Let us define the set of dual solutions

SD = {y∗ ∈ Rm|(x∗, y∗) satisfies the KKT condtidions (6.1)},
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and the set of primal-dual solutions

S = {x∗} × SD.

Assumption 6.2 implies that S 6= ∅. Since S is closed and the norm is coercive, for

all w = (x, y) ∈ Rn+m, there exists w̄ = (x∗, ȳ) ∈ S such that

‖w − w̄‖= min
ξ∈S
‖w − ξ‖=: d(w).

We now introduce a property of the distance from a point to the solution set of

problem (EP). In the literature, some similar results have been demonstrated, see,

e.g., Wright [157, Theorem 3.4], Arreckx and Orban [17, Lemmas 7 and 8].

Lemma 6.2. Let us consider the problem (EP) and assume that Assumptions

6.1-6.3 hold at w∗. Then, there exist constants ε > 0 and β > 0 such that for all

w ∈ B(w∗, ε), we have
1
β
d(w) ≤ ‖F (w)‖≤ βd(w).

Proof. Under Assumption 6.1 and reminding that F (w̄) = 0, there exists a positive

constant r such that for all w ∈ B(w∗, r),

‖F (w)‖= ‖F (w)− F (w̄)‖= O(‖w − w̄‖) = O(d(w)).

Conversely, for the sake of convenience, let us recall [94, Lemma 2] in the framework

of problem (EP) which will be used to prove d(w) = O(‖F (w)‖): assume that

Assumptions 6.1-6.3 hold at w∗. Then, there exist constants η > 0, κ > 0 and

γ > 0 such that for all w = (x, y) ∈ B(w∗, η), for each t ∈ Rn+m with ‖t‖≤ κ and

F (w) + t = 0,

we then have

‖x− x∗‖+‖y − ȳ‖≤ γ‖t‖,

where ȳ ∈ SD such that ‖(x, y)− (x∗, ȳ)‖= d(w).

By virtue of ‖F (w)‖= O(d(w)) = O(r), we can choose ε ∈ (0,min{r, η}], such

that ‖F (w)‖≤ κ. By applying the above result for t = −F (w), we deduce that for

all w ∈ B(w∗, ε),

d(w) ≤ ‖x− x∗‖+‖y − ȳ‖≤ γ‖F (w)‖,
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from which the result is concluded.

The next result shows us the uniformly positive definiteness of the augmented

matrix ∇2
xxL(w) + 1

σ
A(x)A(x)⊤ in some neighborhood of the solution w∗, with σ

sufficiently small.

Lemma 6.3. Let us consider the problem (EP) and assume that Assumptions

6.1-6.3 hold at w∗. Then, there exist r > 0, σ̄ > 0 and ν > 0 such that for all

w ∈ B(w∗, r) and σ ∈ (0, σ̄], we have

∇2
xxL(w) +

1
σ
A(x)A(x)⊤ � νI. (6.14)

In particular, we have In(Jσ(w)) = (n,m, 0), where

Jσ(w) := Φ′
w(w, λ, σ) =


∇

2
xxL(w) A(x)

A(x)⊤ −σI


 .

Proof. By virtue of Lemma 2.2, Assumption 6.3 implies that there exists a number

σ̄ > 0 such that

∇2
xxL(w∗) +

1
σ̄
A(x∗)A(x∗)⊤ ≻ 0.

Let us denote λ = λmin

(
∇2

xxL(w∗) + 1
σ̄
A(x∗)A(x∗)⊤

)
> 0. By noting that the

eigenvalues of a matrix are continuous functions of its entries, see, e.g., [136,

Theorem 5.2], we deduce that there exists r > 0 such that for all w ∈ B(w∗, r),

λmin

(
∇2

xxL(w) +
1
σ̄
A(x)A(x)⊤

)
≥ λ

2
.

From the above inequality and Proposition 2.1, it follows that for all w ∈ B(w∗, r)

and σ ∈ (0, σ̄],

λmin

(
∇2

xxL(w) +
1
σ
A(x)A(x)⊤

)
≥ λmin

(
∇2

xxL(w) +
1
σ̄
A(x)A(x)⊤

)

+
( 1
σ
− 1
σ̄

)
λmin

(
A(x)A(x)⊤

)

≥ ν :=
λ

2
,

which concludes the first assertion.

The second assertion is implied from the first one and Lemma 2.2.
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6.2.3 Properties of the Newton iterates w+

Under Assumptions 6.1-6.3 and by virtue of Lemmas 6.2 and 6.3, there exists

positive numbers η, l, L, b and σ̄ such that for all w, w′ ∈ B(w∗, η) and σ+ ∈ (0, σ̄],

(6.14) holds, In(Jσ+(w)) = (n,m, 0) and

‖F (w)− F (w′)‖ ≤ l‖w − w′‖, (6.15)

‖F ′(w)− F ′(w′)‖ ≤ L‖w − w′‖, (6.16)
1
b
‖F (w)‖≤ d(w) ≤ b‖F (w)‖, (6.17)

where

Jσ(w) =


∇

2
xxL(w) A(x)

A(x)⊤ −σI


 = F ′(w)− σ


0 0

0 I


 .

In this section, for w = (x, y) ∈ B(w∗, η), λ+ = y and a regularization

parameter σ+ satisfying

σ+ ∈ (0, σ̄] and
1
a
‖F (w)‖≤ σ+ ≤ a‖F (w)‖, (6.18)

where a > 0, we will consider the behavior of the Newton iterate w+ solved by the

linear system

Jσ+(w)(w+ − w) = −Φ(w, λ+, σ+)(w). (6.19)

Firstly, we estimate an upper bound on the length of a solution of the linear

system (6.19).

Lemma 6.4. There exists C1 > 0 such that for all w ∈ B(w∗, η), λ+ = y and σ+

satisfying (6.18), one has

‖w+ − w‖≤ C1d(w).

Proof. For all w ∈ B(w∗, η), the choice (6.18) of σ+ and (6.17) give us

σ+ = Θ(‖F (w)‖) = Θ(d(w)). (6.20)

For all w ∈ B(w∗, η), by noting that ‖x − x∗‖≤ ‖w − w̄‖= d(w) < η, it follows

from the above that

σ+ = O(d(w)) < η and σ+ = Ω(‖x− x∗‖). (6.21)

From Assumption 6.1, Lemma 6.3 and (6.21), by virtue of Lemma 6.1, there exists
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a constant C > 0 such that for all w ∈ B(w∗, η), we then have

‖Jσ+(w)−1‖≤ C

σ+
. (6.22)

Let w ∈ B(w∗, η). By noting that Φ(w, λ+, σ+) = F (w) and F (w̄) = 0, the system

(6.19) gives us

w+ − w = −Jσ+(w)−1Φ(w, λ+, σ+)

= Jσ+(w)−1(F (w̄)− F (w))

= Jσ+(w)−1
∫ 1

0
F ′(w + t(w̄ − w))(w̄ − w)dt

= Jσ+(w)−1
∫ 1

0
[F ′(w + t(w̄ − w))− F ′(w)](w̄ − w)dt

+ Jσ+(w)−1F ′(w)(w̄ − w)

= Jσ+(w)−1
∫ 1

0
[F ′(w + t(w̄ − w))− F ′(w)](w̄ − w)dt

+ σ+Jσ+(w)−1


 0

ȳ − y


+ w̄ − w.

Taking the norm on both sides and using (6.16), we get

‖w+ − w‖≤ ‖Jσ+(w)−1‖
(
L

2
‖w̄ − w‖2+σ+‖w̄ − w‖

)
+ ‖w̄ − w‖. (6.23)

By substituting (6.20) and (6.22) to (6.23), and reminding that ‖w̄ − w‖= d(w),

we obtain

‖w+ − w‖= O(‖w̄ − w‖) = O(d(w)).

The next lemma gives us a relation between distance functions evaluated at

the Newton iterate w+ and at the current point w.

Lemma 6.5. Let C1 > 0 be in Lemma 6.4. There exists C2 > 0 such that for all

w ∈ B
(
w∗, η

1+C1

)
, λ+ = y and σ+ satisfying (6.18), one has

d(w+) ≤ C2d(w)2.

Proof. Let w ∈ B
(
w∗, η

1+C1

)
. By noting that d(w) = ‖w − w̄‖≤ ‖w − w∗‖, we
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deduce from Lemma 6.4 that

‖w+ − w∗‖ ≤ ‖w+ − w‖+‖w − w∗‖
≤ C1d(w) + ‖w − w∗‖
≤ (C1 + 1)‖w − w∗‖
< η, (6.24)

meaning that w+ ∈ B(w∗, η) and the inequality (6.17) can be applied at w+ to get

d(w+) ≤ b‖F (w+)‖. (6.25)

From the linear system (6.19) and noting that F (w) = Φ(w, λ+, σ+), we have

F (w+) = F (w) +
∫ 1

0
F ′(w + t(w+ − w))(w+ − w)dt

= −Jσ+(w)(w+ − w) +
∫ 1

0
F ′(w + t(w+ − w))(w+ − w)dt

= −

F ′(w)− σ+


0 0

0 I




 (w+ − w) +

∫ 1

0
F ′(w + t(w+ − w))(w+ − w)dt

= σ+


 0

y+ − y


+

∫ 1

0
[F ′(w + t(w+ − w))− F ′(w)](w+ − w)dt.

By taking the norm on both sides, using (6.16) and applying Lemma 6.4, we get

‖F (w+)‖ ≤ σ+‖w+ − w‖+L
2
‖w+ − w‖2

≤ σ+C1d(w) +
L

2
C2

1d(w)2.

Finally, the result follows by combing the above inequality, (6.25) and (6.20).

The next lemma shows that there is no need to call the inner iteration scheme if

the current iterate w belongs to some neighborhood of w∗. Moreover, we will show

that the condition (6.2) is also satisfied by the Newton iterate x+. In particular,

we will prove that ‖c(x+)‖≤ κ(‖c(x)‖+ζ+), for some ζ+ > 0.

Lemma 6.6. There exists r > 0 such that if w ∈ B (w∗, r), λ+ = y, σ+ satisfying

(6.18), ζ+ ≥ θ1σ
+ and ε ≥ θ2σ

+ for some θ1, θ2 > 0, then

‖Φ(w+, λ+, σ+)‖≤ ε,

‖c(x+)‖≤ κ(‖c(x)‖+ζ+).
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Proof. Let us define

r = min

{
η

1 + C1

,
κθ1

ab2C2

,
θ2

ab2C2 + C1

}
, (6.26)

where a and b are respectively given in (6.18) and (6.17).

Let w ∈ B(w∗, r). By apply the same argument to get (6.24) and noting that

r ≤ η
1+C1

, we deduce that w+ ∈ B(w∗, η). By using (6.17), Lemma 6.5 and (6.18)

we then get

‖F (w+)‖≤ bd(w+) ≤ bC2d(w)2 ≤ b2C2d(w)‖F (w)‖
≤ ab2C2d(w)σ+. (6.27)

By using the definition of Φ(·), this evaluation, Lemmas 6.4 and the definition

(6.26) of r, and noting that λ+ = y and d(w) ≤ ‖w − w∗‖< r, we then get

‖Φ(w+, λ+, σ+)‖ ≤ ‖F (w+)‖+σ+‖w+ − w‖
≤ ab2C2d(w)σ+ + C1σ

+d(w)

< θ2σ
+

≤ ε.

We now prove the second assertion. From the inequality (6.27), the definition

(6.26) of r, the choice of ζ+ and reminding that d(w) ≤ ‖w − w∗‖< r, we then

have

‖c(x+)‖ ≤ ‖F (w+)‖
≤ ab2C2d(w)σ+

< κθ1σ
+

≤ κ(‖c(x)‖+ζ+),

which completes the proof.

6.2.4 Convergence of the sequence {wk}
In this section, we will consider the behavior of the sequence {wk} generated by

Algorithm 7. For each k ∈ N, the parameter σk+1 is chosen such that

1
a
‖F (wk)‖≤ σk+1 ≤ a‖F (wk)‖, (6.28)
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for some a > 0. We now show that if at an iteration k0, the iterate wk0 is sufficiently

close to w∗, then the algorithm is reduced to a sequence of outer iterations and

the whole sequence converges quadratically to an optimal solution of (EP).

Theorem 6.7. Assume that Assumptions 6.1–6.3 hold. Let the sequence {σk} be

chosen to satisfy (6.28) and σ0 ≤ σ̄. Let the sequences {ζk} and {εk} be chosen

so that for all k ∈ N, ζk ≥ θ1σk and εk ≥ θ2σk+1, where θ1, θ2 > 0. Then, there

exist 0 < r̄ < r such that if at an iteration k0, wk0 ∈ B(w∗, r̄) and the condition

(6.2) is satisfied, then for all k ∈ K := {k ∈ N : k ≥ k0}, wk+1 = w+
k ∈ B(w∗, r)

and the condition (6.2) holds at k + 1. In addition, the sequence {wk} converges

quadratically to ŵ ∈ S.

Proof. Let us define r as in (6.26) and

r̄ = min
{

r

1 + 2C1

,
1

2C2

}
.

For all k ∈ N, we note that σk+1 ≤ σk. Since σ0 ≤ σ̄, this implies that σk+1 ≤ σ̄

for all k ∈ N. The first part is proved by induction on K. For the base case k = k0,

(6.4), (6.2) and Lemma 6.6 implies that wk0+1 = w+
k0

and the condition (6.2) holds

at k0 + 1. It follows from this fact, Lemma 6.4 and d(wk0) ≤ ‖wk0 − w∗‖< r̄ that

‖wk0+1 − w∗‖ = ‖w+
k0
− w∗‖

≤ ‖w+
k0
− wk0‖+‖wk0 − w∗‖

≤ C1d(wk0) + ‖wk0 − w∗‖
< (C1 + 1)r̄

≤ r,

which implies that wk0+1 ∈ B(w∗, r).

Suppose now that for an index k ≥ k0 + 1, wj+1 = w+
j ∈ B(w∗, r) and the

condition (6.2) holds at j+1, for all j = k0, . . . , k−1. Let j ∈ {k0, . . . , k}. Lemma

6.6, (6.2) and (6.4) imply that the condition (6.2) holds at j + 1 and wj+1 = w+
j .

By applying Lemmas 6.4 and 6.5, one has

‖wj+1 − wj‖= ‖w+
j − wj‖≤ C1d(wj) (6.29)
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and

d(wj+1) = d(w+
j )

≤ C2d(wj)2. (6.30)

By using (6.30), the inequality 2j−k0−1 ≥ j−k0 and noting that d(wk0) < r̄ ≤ 1
2C2

,

we get

d(wj) ≤ C2d(wj−1)2

≤ C2j−k0 −1
2 d(wk0)2j−k0

≤ (C2r̄)
2j−k0 −1 r̄

≤ 1
2j−k0

r̄. (6.31)

By combining (6.29) and (6.31), we deduce that

‖wk+1 − w∗‖≤ ‖wk0 − w∗‖+
k∑

j=k0

‖wj+1 − wj‖ < r̄ + C1

k−k0∑

j=0

1
2j
r̄

≤ (1 + 2C1)r̄

< r.

To prove the last part of this theorem, let us take two nonnegative integers p and

q such that p ≥ k0. From (6.29) and (6.31), we have

‖wp+q − wp‖ ≤
p+q−1∑

k=p

‖wk+1 − wk‖

≤ C1r̄
p+q−1∑

k=p

1
2k−k0

≤ C1r̄

2p−k0−1
.

It means that {wk} is a Cauchy sequence and converges to a point ŵ ∈ Rn+m.

From (6.31), we deduce that d(ŵ) = lim d(wk) = 0, which means that ŵ ∈ S.
The proof of the quadratic convergence can be performed similarly as the one

of Theorem 5.16.

Remark 6.8. In Theorem 6.7, there is no assumption about the convergence

of the sequence {wk} to an optimal solution. Instead, we assume the existence

of a neighborhood of an optimal solution w∗ and of an iteration k0 at which
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wk0 belongs to this neighborhood and the condition (6.2) is satisfied. We then

show that the sequence {wk} converges quadratically to an optimal solution

ŵ ∈ S. We note that Algorithm 7 is a Newton-type method applied to the system

Φ(w, λ, σ) = 0–the first order optimality conditions for minimizing augmented

Lagrangian. Hence, when we consider the asymptotic behavior of this algorithm,

we need an assumption on the Lagrange multiplier estimate λk0+1 = y0 at some

iteration k0. If we only consider Algorithm 7 in some neighborhood of w∗, there is

no need to take into account the condition (6.2) and we can set λk+1 = yk for all

k. In this case, this algorithm is reduced to a Newton-type method applied to the

KKT conditions F (w) = 0 with a regularized Jacobian matrix.

Instead of assuming that (6.2) is satisfied at some k0 where wk0 ∈ B(w∗, r̄)

as in Theorem 6.7, we can use the assumption that the sequence {wk} converges

to an optimal solution w∗ = (x∗, y∗) ∈ S, see, e.g. [12, Assumption A4], [17,

Assumption 5.1]. Indeed, in this case, we will show that (6.2) occurs infinitely

often by a contradiction reasoning. If this is not the case, there exists k0 ∈ N

such that (6.2) is satisfied at k = k0 and never more satisfied for k > k0. Let

k > k0. By noting from Step 2 of Algorithm 7 that ηik
= ηk0 , we then deduce that

‖c(xk)‖> κηk0 > 0, which is in a contradiction with the assumption that {c(xk)}
converges to zero. Hence, (6.2) must be satisfied infinitely often. This fact and the

assumption that {wk} converges to w∗ imply that there exists r̄ > 0 and k0 ∈ N

such that wk0 ∈ B(w∗, r̄). Now, by repeating the arguments in this section, we can

obtain the same results as in Theorem 6.7 with ŵ = w∗.

6.3 A mixed interior point-augmented Lagrangian

algorithm for nonlinear optimization

In the next two sections, let us consider the following nonlinear optimization

problem

minimize f(x) subject to c(x) = 0, x ≥ 0, (P)

where f : Rn → R and c : Rn → Rm are twice continuously differentiable functions.

We use the notation w = (x, y, z) ∈ RN and v = (x, z) ∈ R2n, where N = n+m+n.

We will analyze the asymptotic behavior of SPDOPT [13, Algorithm 1] with a

new update strategy for parameters. At each outer iteration k, regularization

parameters θk ≥ 0, δk > 0 are chosen such that In(Ĵθk,δk
(wk)) = (n,m, 0), where
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the reduced matrix Ĵθ,δ(w) is defined by

Ĵθ,δ(w) :=


∇

2
xxL(w) + θI +X−1Z A(x)

A(x)⊤ −δI


 . (6.32)

Next, SPDOPT solves the linear system

Jθk,δk
(wk)(w+

k − wk) = −Φ(wk, λk+1, σk+1, µk+1), (6.33)

where

Jθ,δ(w) =




∇2
xxL(w) + θI A(x) −I
A(x)⊤ −δI 0

Z 0 X


 , Φ(w, λ, σ, µ) =




∇xL(w)

c(x) + σ(λ− y)

XZe− µe


 ,

(6.34)

λk is the vector of Lagrange multipliers associated with the constraint of (P),

σk > 0 and µk > 0 are quadratic penalty and barrier parameters, respectively. To

maintain the positivity of vk, we apply the fraction to the boundary rule: let αk

be the largest α ∈ (0, 1] such that

vk + αk(v+
k − vk) ≥ (1− τk)vk, (6.35)

for τk ∈ (0, 1]. For a positive sequence {εk} converging to zero, if the candidate

iterate ŵk = wk + αk(w+
k − wk) satisfies ‖Φ(ŵk, λk+1, σk+1, µk+1)‖≤ εk, we then

set wk+1 = ŵk. Otherwise, a sequence of inner iterations is applied to find wk+1

satisfying vk+1 = (xk+1, zk+1) > 0 and ‖Φ(wk+1, λk+1, σk+1, µk+1)‖≤ εk.

We now recall the algorithm SPDOPT. Initially, we select parameters σ0 > 0,

µ0 > 0, λ0 ∈ Rm and a starting point w0 ∈ RN satisfying v0 > 0. Three constants

κ, ρ ∈ (0, 1) and l ∈ N are also chosen. The iteration index k and an index ik

are set to k = 0 and i0 = 0, respectively. The detail of this algorithm is given in

Algorithm 8.

Remark 6.9. In the literature, to force the positivity of iterates, instead of the

fraction to the boundary rule, interior point algorithms for solving degenerate

problem (without LICQ or MFCQ) usually use the lower bound of type

(xk + αk(x+
k − xk)) ◦ (zk + αk(z+

k − zk)) ≥ γ1µk+1,

for some constant γ > 0, see, e.g., [128, 154, 162]. However, two matters should
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Algorithm 8 (Outer iteration)

1. Choose µk+1 > 0, τk > 0 and ζk > 0 such that {ζk} → 0. If k = 0 or

‖c(xk)‖≤ κ max{‖c(xij
)‖+ζij

: (k − l)+ ≤ j ≤ k}, (6.36)

then go to Step 3.

2. Choose σk+1 ≤ ρσk. Set λk+1 = λk, ik+1 = ik and go to Step 4.

3. Choose σk+1 ≤ σk. Set λk+1 = yk, ik+1 = k.

4. Choose θk ≥ 0, δk > 0 such that In(Ĵθk,δk
(wk)) = (n, m, 0). Compute w+

k by solving the
linear system (6.33).

5. Compute the step length αk as the largest α ∈ (0, 1] satisfying (6.35) and set ŵk =
wk + αk(w+

k − wk).

6. Choose εk > 0 such that {εk} → 0. If

‖Φ(ŵk, λk+1, σk+1, µk+1)‖≤ εk, (6.37)

then set wk+1 = ŵk. Otherwise, apply a sequence of inner iterations to find wk+1 such
that vk+1 = (xk+1, zk+1) > 0 and ‖Φ(wk+1, λk+1, σk+1, µk+1)‖≤ εk.

be dealt with this kind of condition. Firstly, it is more difficult to implement

this condition than the fraction to the boundary rule. Secondly, we cannot show

that the sequence of step lengths {αk} eventually tends to one which is a usual

requirement to get a fast convergence. To overcome this difficulty, Yamashita and

Yabe [162] added an upper bound of type

(xk + αk(x+
k − xk)) ◦ (zk + αk(z+

k − zk)) ≤ γ2µk+1,

for some constant γ2 > γ1. Once again, the question related to the implementation

of this condition in practice has not been addressed by the authors.

6.4 Asymptotic analysis for SPDOPT without

constraint qualification

6.4.1 Uniform boundedness of the inverse of a regularized

Jacobian matrix

In this section, we introduce a result related to the boundedness of a regularized

Jacobian matrix which is a key property to demonstrate the superlinear

convergence of SPDOPT. It can be seen as a generalization of Lemma 6.1 in
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the framework of a general nonlinear optimization problem.

Lemma 6.10. Let w∗ = (x∗, y∗, z∗) be a vector in RNsuch that

0 ≤ x∗ ⊥ z∗ ≥ 0 and a := min{x∗
i + z∗

i |i = 1, . . . n} > 0,

where N = n + m + n and n, m are natural numbers. Let A : RN → Rn×m be

a Lipschitz continuous function and H : RN → Rn×n be a bounded function such

that for all w ∈ RN , H(w) = H(w)⊤. Let δ : RN → R++ be a bounded function

such that if δ is not bounded away from zero, then for all w = (x, y, z) ∈ RN ,

δ(w) = Ω (‖x− x∗‖t) for some t ∈ (0, 1). For all w = (x, y, z) ∈ RN , let us define

the matrices X = diag(x), Z = diag(z) and

J(w) :=




H(w) A(x) −I
A(x)⊤ −δ(w)I 0

Z 0 X


 .

Assume that there exist r ∈ (0, a) and λ > 0 such that for all w = (x, y, z) ∈
B(w∗, r) satisfying v = (x, z) > 0,

H(w) +X−1Z +
1

δ(w)
A(x)A(x)⊤ � λI. (6.38)

Then, there exists C > 0 such that for all w ∈ B(w∗, r) satisfying v > 0, the

matrix J(w) is nonsingular and ‖J(w)−1‖≤ C

δ(w)
.

Proof. Let w ∈ B(w∗, r) such that v > 0 and let us denote δ = δ(w). Let us show

that the matrix J(w) is nonsingular. By Proposition 2.7, we have

det J(w) = detX det


H(w) +X−1Z A(x)

A(x)⊤ −δI




= detX det(−δI) det
(
H(w) +X−1Z +

1
δ
A(x)A(x)⊤

)
.

From x > 0, δ > 0 and the assumption (6.38), we have detX > 0, det(−δI) 6= 0

and det
(
H(w) +X−1Z + 1

δ
A(x)A(x)⊤

)
> 0. It follows that the matrix J(w) is

nonsingular.

We now prove the uniform boundedness of the matrix δ(w)J(w)−1, for all

w ∈ B(w∗, r) such that v > 0, by a contradiction reasoning. Suppose that there

exists a sequence {wk} ⊂ B(w∗, r) such that vk = (xk, zk) > 0 and a sequence {δk}
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such that for all k ∈ N,

Hk +X−1
k Zk +

1
δk

AkA
⊤
k � λI, (6.39)

but the sequence {δk‖J−1
k ‖} tends to infinity, where we use the notation Hk :=

H(wk), Ak := A(xk) δk := δ(wk) and Jk := J(wk). The boundedness of the

functions H and δ imply that the sequences {Hk} and {δk} are bounded. Let us

define the set J = {i ∈ {1, . . . , n} : x∗
i = 0} and I = {1, . . . , n}\J . The definition

of a implies that x∗
i ≥ a for all i ∈ I and z∗

i ≥ a, for all i ∈ J . Let ν = a− r > 0.

For all k ∈ N, we then have

[xk]i ≥ x∗
i − ‖wk − w∗‖> ν, for all i ∈ I

and

[zk]i ≥ z∗
i − ‖wk − w∗‖> ν, for all i ∈ J ,

which imply that 0 < ν < max{xk, zk} for all k ∈ N. We consider the two following

cases. The first case is when the sequence {δk} is bounded away from zero. For

each k ∈ N, let us define the matrix

J̃k :=




(Hk − λI) + λI −I Ak

Zk Xk 0

A⊤
k 0 −δkI


 .

By applying Corollary 5.6 for the sequences {J̃k} and {ρk}, where ρk = λ for all

k ∈ N, then there exists C > 0 such that for all k ∈ N, ‖J̃−1
k ‖≤ C

λ
. We note that

for all k ∈ N, ‖J−1
k ‖= ‖J̃−1

k ‖≤ C
λ

. Therefore, the sequence {δk‖J−1
k ‖} is bounded

which is in contradiction with the assumption that this sequence tends to infinity.

Hence, this case cannot happen.

Let us consider the second case in which there exists an infinite subset K ⊂ N

such that lim
k∈K

δk = 0. The assumption of δ implies that δk = Ω(‖xk − x∗‖t), for

some t ∈ (0, 1). By reordering the indices, we rewrite xk = (xI
k , x

J
k ) ∈ R|I|×|J |,

zk = (zI
k , z

J
k ) ∈ R|I|×|J |, the matrices Hk and Ak under the form

Hk =


H

II
k HIJ

k

HJ I
k HJ J

k


 and Ak =


A

I
k

AJ
k


 .
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From the definition of the sets I and J , for all k ∈ N, we have

xI
k ≥ ν, (6.40)

and

zJ
k ≥ ν. (6.41)

The definition of a matrix norm implies that there exists a sequence of unit vectors

{vk} ⊂ Rn such that ‖J−1
k ‖= ‖J−1

k vk‖ for all k ∈ N. For each k ∈ N, let us

define uk := J−1
k vk/‖J−1

k ‖. It follows that {uk} is a sequence of unit vectors and

lim 1
δk
‖Jkuk‖= 0. Let k ∈ K. Introduce the notation

uk =




aI
k

aJ
k

bk

cI
k

cJ
k




and
1
δk

Jkuk =




αI
k

αJ
k

βk

γI
k

γJ
k




,

we then have

HII
k aI

k +HIJ
k aJ

k + AI
kbk − cI

k = δkα
I
k ,

HJ I
k aI

k +HJ J
k aJ

k + AJ
k bk − cJ

k = δkα
J
k ,

(
AI

k

)⊤
aI

k +
(
AJ

k

)⊤
aJ

k − δkbk = δkβk,

ZI
k a

I
k +XI

k c
I
k = δkγ

I
k ,

ZJ
k a

J
k +XJ

k c
J
k = δkγ

J
k ,

(6.42)

where
{(
aI

k , a
J
k , bk, c

I
k , c

J
k

)}
is a sequence of unit vectors and the sequence{(

αI
k , α

J
k , βk, γ

I
k , γ

J
k

)}
converges to zero. From the fifth equation of (6.42), (6.41)

and the fact that ‖cJ
k ‖≤ 1, we then get

‖aJ
k ‖≤

∥∥∥∥
(
ZJ

k

)−1
∥∥∥∥
(
‖XJ

k ‖‖cJ
k ‖+δk‖γJ

k ‖
)

≤ 1
ν
δk

(
δ−1

k ‖xJ
k ‖+‖γJ

k ‖
)
. (6.43)

Since δk = Ω(‖xk − x∗‖t) and (x∗)J = 0, one has

δ−1
k ‖xJ

k ‖= O(δ−1
k ‖xk − x∗‖) = O

(
δ

1/t−1
k

)
.
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Substituting the previous equality to (6.43) and reminding that the sequences

{δk}K and {γJ
k } converge to zero, t ∈ (0, 1), we deduce that

lim
k∈K

1
δk

‖aJ
k ‖= 0. (6.44)

Let us show that

I 6= ∅ and lim inf
k∈K

∥∥∥
(
aI

k , bk

)∥∥∥ > 0. (6.45)

Indeed, if this is not the case, there are two possibilities. The first one is when

I = ∅. By noting that the sequence {(‖HJ J
k ‖, ‖AJ

k ‖, δk)} is bounded, the second

and the third equations of (6.42) give us

‖cJ
k ‖= O(‖aJ

k ‖) + O(‖bk‖) + O(‖αJ
k ‖) and ‖bk‖=

1
δk

O(‖aJ
k ‖) + ‖βk‖.

By taking the limit for k ∈ K, using (6.44) and the convergence to zero of

{(αJ
k , βk)}, we obtain

lim
k∈K

bk = lim
k∈K

cJ
k = 0,

which is in contradiction with the fact that {(aJ
k , bk, c

J
k )} is a sequence of unit

vectors. The second possibility is when I 6= ∅ and there exists an infinite subset

K′ ⊂ K such that lim
k∈K′

∥∥∥
(
aI

k , bk

)∥∥∥ = 0. The first two equations of (6.42) and the

boundedness of {(‖Hk‖, ‖Ak‖, δk)} imply that

∥∥∥
(
cI

k , c
J
k

)∥∥∥ ≤ ‖Hk‖
∥∥∥
(
aI

k , a
J
k

)∥∥∥+ ‖Ak‖‖bk‖+δk

∥∥∥
(
αI

k , α
J
k

)∥∥∥

= O
(∥∥∥∥
( 1
δk

aJ
k , a

I
k , bk

)∥∥∥∥
)

+ O
(∥∥∥
(
αI

k , α
J
k

)∥∥∥
)
.

From (6.44) and the convergence to zero of
{(
αI

k , α
J
k

)}
, the above inequality

implies that

lim
k∈K′

∥∥∥
(
cI

k , c
J
k

)∥∥∥ = 0,

which is again in contradiction with the fact that {uk} is a sequence of unit vectors.

Hence, (6.45) is true.

By eliminating cI
k in the first equation of (6.42), the first and the third equations

of this system can be rewritten under the form



HII

k +
(
XI

k

)−1
ZI

k AI
k(

AI
k

)⊤ −δk





a

I
k

bk


 =



−HIJ

k aJ
k + δk

(
αI

k +
(
XI

k

)−1
γI

k

)

−
(
AJ

k

)⊤
aJ

k + δkβk


 .

(6.46)
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Let us denote for each k ∈ K,

Ĵk :=



HII

k +
(
XI

k

)−1
ZI

k AI
k(

AI
k

)⊤ −δk


 , v̂k :=



−HIJ

k aJ
k + δk

(
αI

k +
(
XI

k

)−1
γI

k

)

−
(
AJ

k

)⊤
aJ

k + δkβk


 .

On the one hand, by virtue of (6.40), the sequence
{(
XI

k

)−1
}

is bounded.

Combining this fact with the boundedness of the sequence
{(
‖HIJ

k ‖, ‖AJ
k ‖
)}

,

the convergence to zero of the sequence
{
(αI

k , βk, γ
I
k )
}

and (6.44), we deduce that

lim
k∈K

1
δk

‖v̂k‖= 0. (6.47)

On the other hand, from (6.40) and the boundedness of {zk}, the sequence{(
XI

k

)−1
ZI

k

}
is bounded. Besides, (6.39) implies that

HII
k +

(
XI

k

)−1
ZI

k +
1
δk

AI
k

(
AI

k

)⊤ � λI.

By virtue of Lemma 6.1, there exists C > 0 such that for all k ∈ K, we then have

‖Ĵ−1
k ‖≤ C

δk
. It follows from this fact and (6.46) that

∥∥∥
(
aI

k , bk

)∥∥∥ = ‖Ĵ−1
k v̂k‖≤

C

δk

‖v̂k‖.

Taking the limit for k ∈ K and using (6.47), we then get

lim
k∈K

∥∥∥
(
aI

k , bk

)∥∥∥ = 0,

which is in contradiction with (6.45).

In sum, for all r ∈ (0, a) such that (6.38) holds, there exists C > 0 such that

for all w ∈ B(w∗, r) satisfying v > 0, δ(w)‖J(w)−1‖≤ C, which concludes the

proof.

6.4.2 Assumptions and preliminary results

Let x∗ ∈ Rn be an optimal solution of (P). We recall the index set of active bounds

A := {i ∈ {1, . . . , n} : x∗
i = 0}. The Karush-Kuhn-Tucker (KKT) conditions (2.1)

are satisfied at a point w = (x, y, z) ∈ RN if

F (w) = 0 and v = (x, z) ≥ 0, (6.48)
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where F : RN → RN is defined by F (w) =




∇xL(w)

c(x)

XZe


 . Let us assume that the

following assumptions are satisfied.

Assumption 6.4. The functions f and c are twice continuously differentiable and

their second derivatives are Lipschitz continuous over an open neighborhood of x∗.

Assumption 6.5. There exists (y∗, z∗) ∈ Rm+n such that the KKT conditions

(6.48) are satisfied at w∗ = (x∗, y∗, z∗).

Assumption 6.6. The second order sufficient conditions (SOSCs) (Definition

2.24) hold at w∗, i.e. u⊤∇2
xxL(w∗)u > 0, for all u ∈ Rn such that u 6= 0,

A(x∗)⊤u = 0 and ui = 0 for all i ∈ A.

Assumption 6.7. The strict complementarity (Definition 2.26) holds at w∗, i.e.,

a := min{x∗
i + z∗

i : i = 1, . . . , n} > 0.

Under Assumptions 6.4–6.7, we note that x∗ is a strict local solution of (P),

see, e.g. [22, Proposition 3.3.2]. Let us define the set of dual solutions

SD = {(y∗, z∗)|w∗ = (x∗, y∗, z∗) satisfies the KKT conditions (6.48)}

and the set of primal-dual solutions

S = {x∗} × SD.

Assumption 6.5 implies that S 6= ∅. Since S is closed and the norm is coercive, for

all w = (x, y, z) ∈ RN , there exists w̄ = (x∗, ȳ, z̄) ∈ S such that

‖w − w̄‖= min
ξ∈S
‖w − ξ‖=: d(w).

The next lemma gives us a relation between the distance function d and F . In

particular, it shows that the function F provides a local error bound condition at

w∗.

Lemma 6.11. Assume that Assumptions 6.4–6.7 hold at w∗. Then, there exists

ε > 0 such that for all w ∈ B(w∗, ε) and v = (x, z) ≥ 0, we have

d(w) = Θ(‖F (w)‖).
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Proof. Let ε1 > 0 such that the functions f and c are twice continuously

differentiable on B(w∗, ε1). Let w ∈ B(w∗, ε1). By reminding that F (w̄) = 0

and w̄ = (x∗, ȳ, z̄), Assumption 6.4 implies that

‖∇xL(w)‖ = ‖∇xL(w)−∇xL(w̄)‖= O(‖w − w̄‖) = O(d(w)),

‖c(x)‖ = ‖c(x)− c(x∗)‖= O(‖w − w̄‖) = O(d(w)).
(6.49)

By noting that ‖x−x∗‖≤ ‖w−w∗‖≤ ε1 and ‖z− z̄‖≤ ‖w−w∗‖≤ ε1, the triangle

inequality gives us

‖x‖≤ ‖x− x∗‖+‖x∗‖≤ ε1 + ‖w∗‖,
‖z̄‖≤ ‖z̄ − z‖+‖z − z∗‖+‖z∗‖≤ 2ε1 + ‖w∗‖.

Hence, we then get

‖XZe‖= ‖X(z − z̄) + Z̄(x− x∗)‖≤ (3ε1 + 2‖w∗‖)‖w − w̄‖= O(d(w)).

From this fact and (6.49), we deduce that ‖F (w)‖= O(d(w)).

Conversely, by virtue of [94, Theorem 1], there exist constants η > 0, κ > 0

and γ > 0 such that for all w = (x, y, z) ∈ RN , for each ŵ = (x̂, ŷ, ẑ) ∈ B(w∗, η),

and for each t = (t1, t2, t3) ∈ RN with ‖t‖≤ κ and

∇xL(ŵ) + t1 = 0, c(x̂) + t2 = 0 and − x̂+ t3 ∈ N(ẑ), (6.50)

where the cone N(·) is defined by

N(λ) =




{µ : µ ≤ 0, µ⊤λ = 0}, if λ ≥ 0

∅ otherwise,

we then have

‖x− x∗‖+‖(y, z)− (ȳ, z̄)‖≤ ‖x− x̂‖+‖(y, z)− (ŷ, ẑ)‖+γ‖t‖, (6.51)

where (ȳ, z̄) ∈ SD such that ‖(x, y, z) − (x∗, ȳ, z̄)‖= d(w). We note that x∗
i ≥ a

for all i ∈ Ac := {1, . . . , n}\A and z∗
i ≥ a, for all i ∈ A, where a is defined in

Assumption 6.7. Let us define

η̄ :=
1
2

min{a, η} and ā := a− η̄ ≥ η̄. (6.52)
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For all w ∈ B(w∗, η̄), by using the definition of ā and noting that for all i ∈ A and

j ∈ Ac, x∗
i = z∗

j = 0, we then have

xi ≥ x∗
i − ‖w − w∗‖> ā > zi − z∗

i = zi, for all i ∈ Ac (6.53)

and

zi ≥ z∗
i − ‖w − w∗‖> ā > xi − x∗

i = xi, for all i ∈ A. (6.54)

For all w ∈ B(w∗, η̄) such that v = (x, z) ≥ 0, let us define the vectors t3 and ẑ in

Rn as follows

[t3]i =





0 if i ∈ Ac

xi if i ∈ A
and ẑi =





0 if i ∈ Ac

zi if i ∈ A.

For a vector x ∈ Rn and a subset B ⊂ {1, . . . , n}, let us denote xB = (xi)i∈B ∈ R|B|.

From (6.53) and (6.54), the definitions of t3 and ẑ imply that for all w ∈ B(w∗, η̄)

satisfying v = (x, z) ≥ 0 one has

− x+ t3 ∈ N(ẑ) (6.55)

and

‖t3‖= ‖xA‖<
1
ā
‖xAzA‖≤

1
ā
‖XZe‖,

‖z − ẑ‖= ‖zAc‖< 1
ā
‖xAczAc‖≤ 1

ā
‖XZe‖.

(6.56)

By virtue of (6.49), we can choose

0 < ε ≤ min
{
ε1, η̄,

κ

2

}
(6.57)

such that ‖(∇L(w), c(x))‖≤ κ
2
, for all w ∈ B(w∗, ε). Let w = (x, y, z) ∈

B(w∗, ε) such that (x, z) ≥ 0 and let us define the vectors ŵ = (x, y, ẑ) and

t = (−∇xL(ŵ),−c(x), t3) in RN . The definitions of t and of ŵ, and (6.55) imply

that the condition (6.50) holds at t and ŵ. We now show that ŵ ∈ B(w∗, η) and

‖t‖≤ κ. By reminding that z∗
Ac = 0 and x∗

A = 0, the definition of ẑ gives us

‖z − ẑ‖= ‖zAc‖= ‖zAc − z∗
Ac‖≤ ‖w − w∗‖< ε,

‖t3‖= ‖xA‖= ‖xA − x∗
A‖< ε ≤ κ

2
.
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Using these above inequalities, the definitions of ε given by (6.57), of η̄ given by

(6.52), of ŵ and of t, we then get

‖ŵ − w∗‖≤ ‖w − w∗‖+‖z − ẑ‖< 2ε ≤ 2η̄ ≤ η,

‖t‖≤ ‖(∇xL(w), c(x))‖+‖t3‖<
κ

2
+
κ

2
= κ.

By reminding that ∇xL(ŵ) = ∇xL(w) + (z − ẑ), we then deduce from (6.51) and

(6.56) that

‖x− x∗‖+‖(y, z)− (ȳ, z̄)‖ ≤ ‖z − ẑ‖+γ(‖∇xL(ŵ)‖+‖c(x)‖+‖t3‖)
= O(‖∇xL(x, y, z)‖+‖c(x)‖+‖z − ẑ‖+‖t3‖)
= O(‖∇xL(w)‖+‖c(x)‖+‖XZe‖) (6.58)

Since all Euclidean norms are equivalent, without loss of generality, we may use

l2 norm here. Using this fact and the inequalities ‖(a, b)‖≤ ‖a‖+‖b‖≤
√

2‖(a, b)‖,
for any vectors a ∈ Rn, b ∈ Rm, we then deduce from (6.58) that

d(w) = ‖(x− x∗, y − ȳ, z − z̄)‖
≤ ‖x− x∗‖+‖(y, z)− (ȳ, z̄)‖
= O(‖∇xL(w)‖+‖c(x)‖+‖XZe‖|)
= O(‖F (w)‖).

Remark 6.12. Lemma 6.11 is related to some other results of Fachinei et al. [62],

Wright [155, Theorem A.1], Wright [157, Theorem 3.1], Yamashita and Yabe [162,

Theorem 1]. We note that in these works, authors usually show that

d(w) = ‖(∇xL(w), c(x),min{x, z})‖.

To demonstrate that d(w) = O(x⊤z) or d(w) = O(‖F (w)‖), the centrality

condition x ◦ z ≥ µ is needed and some conditions of µ are assumed, see, e.g.

Wright [154, Theorem 3.3], Yamashita and Yabe [162, Lemma 7].

In Lemma 6.11, we show directly the property d(w) = O(‖F (w)‖) without any

additional condition related to a specific algorithm.

The next lemma shows us that the matrix Ĵ0,δ(w) defined in (6.32) has the

correct inertia (n,m, 0) in some neighborhood of w∗. Moreover, the minimum
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eigenvalue of the matrix ∇2
xxL(w) + 1

δ
A(x)A(x)⊤ + X−1Z is uniformly bounded

away from zero in some neighborhood of this point.

Lemma 6.13. Assume that Assumptions 6.4–6.7 hold at w∗. Then there exist

κ > 0, δ̄ > 0 and ν > 0 such that for all w = (x, y, z) ∈ B (w∗, κ) satisfying

v = (x, z) > 0 and for each δ ∈ (0, δ̄],

∇2
xxL(w) +

1
δ
A(x)A(x)⊤ +X−1Z � νI. (6.59)

In particular, for all w ∈ B (w∗, κ) such that v > 0 and δ ∈ (0, δ̄], we have

In(Ĵδ(w)) = (n,m, 0) where

Ĵδ(w) := Ĵ0,δ(w) =


∇

2
xxL(w) +X−1Z A(x)

A(x)⊤ −δI


 .

Proof. Let us define the diagonal matrix D = diag(d1, . . . , dn), where

di =





1 if i ∈ A
0 if i /∈ A.

Assumption 6.6 can be restated under the form: u⊤∇2
xxL(w∗)u > 0, for all u ∈

RN\{0} such that


A(x∗)⊤

D


u = 0. By virtue of Lemma 2.2, this implies that

there exists δ̄ > 0 such that

∇2
xxL(w∗) +

1
δ̄
A(x∗)A(x∗)⊤ +

1
δ̄
D2 ≻ 0.

Let us denote λ = λmin

(
∇2

xxL(w∗) +
1
δ̄
A(x∗)A(x∗)⊤ +

1
δ̄
D2

)
> 0. Since the

eigenvalues of a matrix are continuous functions of its entries, see, e.g., [136,

Theorem 5.2], there exists κ ∈
(

0,
δ̄a

1 + δ̄

]
, where a is defined in Assumption 6.7,

such that for all w ∈ B(w∗, κ), we then have

λmin

(
∇2

xxL(w) +
1
δ̄
A(x)A(x)⊤ +

1
δ̄
D2
)
≥ λ

2
. (6.60)

Let w ∈ B (w∗, κ) such that v > 0. For all i ∈ A, we note that

zi ≥ z∗
i − ‖w − w∗‖> a− κ > 0 and xi = xi − x∗

i ≤ ‖w − w∗‖< κ,
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which implies that for all i ∈ A,

zi

xi

>
a− κ

κ
≥ 1
δ̄
.

From the choice of v and the definition of the diagonal matrix D in which (xi, zi) >

0 and di = 0 for all i /∈ A, the above inequality implies that

λmin

(
X−1Z − 1

δ̄
D2
)
> 0. (6.61)

By using (6.60) and (6.61), Proposition 2.1 gives us

λmin

(
∇2

xxL(w) +
1
δ̄
A(x)A(x)⊤ +X−1Z

)

≥ λmin

(
∇2

xxL(w) +
1
δ̄
A(x)A(x)⊤ +

1
δ̄
D2
)

+ λmin

(
X−1Z − 1

δ̄
D2
)
,

≥ λ

2
.

Therefore, for all w ∈ B(w∗, κ) and δ ∈ (0, δ̄], by invoking again Proposition 2.1,

we obtain

λmin

(
∇2

xxL(w) +
1
δ
A(x)A(x)⊤ +X−1Z

)

≥ λmin

(
∇2

xxL(w) +
1
δ̄
A(x)A(x)⊤ +X−1Z

)
+
(1
δ
− 1
δ̄

)
λmin

(
A(x)A(x)⊤

)

≥ ν :=
λ

2
,

from which the first conclusion follows.

The second assertion related to the inertia of the matrix Ĵδ(w) is a direct

consequence of the first one and Lemma 2.2.

6.4.3 Properties of the Newton iterates w+

Under Assumptions 6.4-6.7 and by virtue of Lemmas 6.11 and 6.13, there exist

positive numbers η < a, δ̄, l, L, b such that for all w, w′ ∈ B(w∗, η) satisfying

v > 0 and δ ∈ (0, δ̄], the condition (6.59) holds and one has

‖F (w)− F (w′)‖ ≤ l‖w − w′‖ (6.62)

‖F ′(w)− F ′(w′)‖ ≤ L‖w − w′‖ (6.63)
1
b
‖F (w)‖≤ d(w) ≤ b‖F (w)‖. (6.64)

Infeasibility detection and regularization strategies in nonlinear optimization 149



6.4. Asymptotic analysis for SPDOPT without constraint qualification

In this section, we will analyze the properties of the Newton iterates w+
k solved

by the linear system (6.33) under the assumption that the condition (6.36) holds.

To simplify the notation, the iteration index k will be eliminated. For a point

w = (x, y, z) ∈ B(w∗, η) such that v = (x, z) > 0, let us denote

Jδ(w) =




∇2
xxL(w) A(x) −I
A(x)⊤ −δI 0

Z 0 X


 = F ′(w)− δĨ,

where, Ĩ :=




0 0 0

0 I 0

0 0 0


. A regularization, a logarithm barrier and a quadratic

penalty parameters are chosen such that

δ ∈ (0, δ̄] and δ = γ1‖F (w)‖t, (6.65)

µ+ ≤ γ2‖F (w)‖1+t, (6.66)

σ+ = γ3‖F (w)‖, (6.67)

where γ1 > 0 and γ2, γ3, t ∈ (0, 1). Let λ+ = y and let us consider the Newton

iterate w+ generated by the system

Jδ(w)(w+ − w) = −Φ(w, λ+, σ+, µ+). (6.68)

Let us denote ẽ =




0

0

e


 ∈ RN . From the choice λ+ = y, we note that

Φ(w, λ+, σ+, µ+) = F (w)− µ+ẽ.

We now estimate an upper bound on the length of the solution of the linear

system (6.68).

Lemma 6.14. There exists C1 > 0 such that for all w ∈ B(w∗, η) satisfying v > 0,

λ+ = y, parameters δ and µ+ chosen as in (6.65), (6.66), we have

‖w+ − w‖≤ C1d(w).

Proof. For all w ∈ B(w∗, η) such that v > 0, the choice (6.65) of δ and (6.64)

imply that

δ = γ1‖F (w)‖t= Θ(d(w)t),
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By reminding that d(w) = ‖(x, y, z) − (x∗, ȳ, z̄)‖≥ ‖x − x∗‖, it follows from the

above fact that for all w ∈ B(w∗, η) satisfying v > 0,

δ = O(d(w)t), (6.69)

δ = Ω(d(w)t) (6.70)

= Ω(‖x− x∗‖t).

From the previous equality and Lemma 6.13, all assumptions of Lemma 6.10 are

satisfied at all w ∈ B(w∗, η) such that v > 0. Hence, there exists C > 0 such that

for all w ∈ B(w∗, η) satisfying v > 0,

‖Jδ(w)−1‖≤ C

δ
. (6.71)

Let w ∈ B(w∗, η) such that v > 0. From (6.68) and reminding that F (w̄) = 0, we

have

w+ − w = −Jδ(w)−1Φ(w, λ+, σk+1, µ
+)

= −Jδ(w)−1(F (w)− µ+ẽ)

= Jδ(w)−1(F (w̄)− F (w)) + µ+Jδ(w)−1ẽ

= Jδ(w)−1
∫ 1

0
F ′(w + s(w̄ − w))(w̄ − w)ds + µ+Jδ(w)−1ẽ

= Jδ(w)−1
∫ 1

0
[F ′(w + s(w̄ − w))− F ′(w)](w̄ − w)ds

+ Jδ(w)−1F ′(w)(w̄ − w) + µ+Jδ(w)−1ẽ

= Jδ(w)−1
∫ 1

0
[F ′(w + s(w̄ − w))− F ′(w)](w̄ − w)ds

+ w̄ − w + δJδ(w)−1




0

ȳ − y

0


+ µ+Jδ(w)−1ẽ.

By taking the norm on both sides and using (6.63), we get

‖w+ − w‖≤ ‖Jδ(w)−1‖
(
L

2
‖w̄ − w‖2+δ‖w̄ − w‖+µ+

√
n
)

+ ‖w̄ − w‖. (6.72)

It follows from the choice (6.66) of µ+ and (6.64) that

µ+ ≤ γ2‖F (w)‖1+t= γ2b
1+td(w)1+t. (6.73)
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By substituting (6.71), (6.70) and (6.73) to (6.72), and using d(w) = ‖w− w̄‖< η,

we obtain

‖w+ − w‖= O(d(w)),

which concludes the result.

6.4.4 Properties of the candidate iterate ŵ

Let w ∈ B(w∗, η) such that v > 0. Let w+ be a solution of the linear system

(6.68). Let αv be the largest value in (0, 1] such that

v + αv(v+ − v) ≥ (1− τv)v, (6.74)

where τv ∈ (0, 1) satisfies

1− τv = O(‖F (w)‖). (6.75)

At first, we have the following bound on step length αv.

Lemma 6.15. Let w ∈ B(w∗, η) such that v > 0, λ+ = y, and parameters δ and

µ+ satisfying (6.65) and (6.66). Let w+ be a solution of the linear system (6.68)

and αv be calculated by the formula (6.74). Then, there exists C2 > 0 such that

the following inequality holds

1− αv ≤ C2d(w). (6.76)

Proof. From the choice (6.75) of τv and (6.64), there exists M > 0 such that for

all w ∈ B(w∗, η) satisfying v > 0,

1− τv ≤M‖F (w)‖
≤Mbd(w). (6.77)

Let w ∈ B(w∗, η) such that v > 0. By virtue of [14, Corollary 1], we have

0 ≤ 1− αv ≤ 1− τv +
1

a− η
‖w+ − w‖.

By using (6.77) and Lemma 6.14, we conclude that (6.76) holds with C2 := Mb+
1

a−η
C1 > 0.

The next lemma gives us a relation between the distance functions evaluated

at the candidate iterate ŵ := w + αv(w+ − w) and at w.
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Lemma 6.16. Let C1 > 0 be defined in Lemma 6.14. Let w ∈ B(w∗, η
1+C1

) such

that v > 0, λ+ = y, and parameters δ and µ+ satisfying (6.65) and (6.66). Let

w+ be a solution of the linear system (6.68) and αv be calculated by (6.74). Let us

define ŵ := w + αv(w+ − w). Then, there exists C3 > 0 such that

d(ŵ) ≤ C3d(w)1+t. (6.78)

Proof. Let w ∈ B(w∗, η
1+C1

) such that v > 0. By applying Lemma 6.14, using the

definition of ŵ and noting that αv ∈ (0, 1] and d(w) = ‖w − w̄‖≤ ‖w − w∗‖, we

get

‖ŵ − w∗‖ = ‖(1− αv)(w − w∗) + αv(w+ − w∗)‖
≤ ‖w − w∗‖+‖w+ − w∗‖
≤ (1 + C1)‖w − w∗‖
< η,

from which (6.64) implies that

1
b
‖F (ŵ)‖≤ d(ŵ) ≤ b‖F (ŵ)‖. (6.79)

By virtue of the linear system (6.68) and noting that F (w) − µ+ẽ =

Φ(w, λ+, σ+, µ+), we have

F (w+) = F (w) +
∫ 1

0
F ′(w + s(w+ − w))(w+ − w)ds

= −Jδ(w)(w+ − w) + µ+ẽ+
∫ 1

0
F ′(w + s(w+ − w))(w+ − w)ds

= −
(
F ′(w)− δĨ

)
(w+ − w) + µ+ẽ+

∫ 1

0
F ′(w + s(w+ − w))(w+ − w)ds

= δ




0

y+ − y

0


+ µ+ẽ+

∫ 1

0
[F ′(w + s(w+ − w))− F ′(w)](w+ − w)ds.

By taking the norm on both sides, using (6.63) and Lemma 6.14, we get

‖F (w+)‖ ≤ δ‖w+ − w‖+µ+
√
n+

L

2
‖w+ − w‖2

≤ δC1d(w) + µ+
√
n+

L

2
C2

1d(w)2. (6.80)
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By combining (6.80), (6.69) and (6.73), and noting that d(w) = ‖w − w̄‖< η, we

obtain

‖F (w+)‖= O(d(w)1+t). (6.81)

Besides, by reminding that ŵ−w+ = (αv − 1)(w+ −w) and d(w) = ‖w− w̄‖< η,

we deduce from (6.62), (6.76) and Lemma 6.14 that

‖F (ŵ)− F (w+)‖ ≤ l‖ŵ − w+‖
≤ lC2d(w)‖w+ − w‖
= O(d(w)1+t). (6.82)

By combining (6.79), (6.81) and (6.82),we have

d(ŵ) ≤ b‖F (ŵ)‖ ≤ b(‖F (ŵ)− F (w+)‖+‖F (w+)‖)
= O(d(w)1+t),

from which the result follows.

The next lemma shows that inner iterates will not be needed when w is

sufficiently close to w∗. In addition, the condition (6.2) is also satisfied by the

candidate iterate x̂ := x+ αv(x+ − x).

Lemma 6.17. For each w ∈ B(w∗, η) such that v > 0, let λ+ = y and parameters

be chosen as follows. The parameters δ, µ+ and σ+ satisfy (6.65), (6.66) and

(6.67). Let us choose ζ+ ≥ θ1σ
+ and ε ≥ θ2σ

+, for some θ1, θ2 > 0. Then, there

exists r > 0 such that for all w ∈ B (w∗, r),

‖Φ(ŵ, λ+, σ+, µ+)‖≤ ε,

‖c(x̂)‖≤ κ(‖c(x)‖+ζ+),

where ŵ := w + αv(w+ − w), w+ be the solution of the linear system (6.68), αv is

given by (6.74) and a given constant κ ∈ (0, 1).

Proof. Let us define C4 := b(C3 + γ3η
1−tC1 + γ2b

t
√
n) and

r := min





η

1 + C1

,

(
θ2γ3

C4b

) 1
t

,

(
κθ1γ3

b2C3

) 1
t



 . (6.83)

Let w ∈ B(w∗, r) such that v > 0. The choice of σ+ given by (6.67) and (6.64)
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imply that
γ3

b
d(w) ≤ σ+ ≤ γ3bd(w). (6.84)

From inequalities (6.78) and (6.79), we deduce that

‖F (ŵ)‖ ≤ bd(ŵ)

≤ bC3d(w)1+t. (6.85)

By virtue of inequalities (6.85), (6.84) and (6.73), of Lemma 6.14 and reminding

that λ+ = y, ‖ŵ − w‖≤ ‖w+ − w‖ and d(w) < r < η, we then get

‖Φ(ŵ, λ+, σ+, µ+)‖ ≤ ‖F (ŵ)‖+σ+‖ŵ − w‖+µ+
√
n

≤ bC3d(w)1+t + γ3bC1d(w)2 + γ2b
1+t
√
nd(w)1+t

≤ b
(
C3 + γ3η

1−tC1 + γ2b
t
√
n
)
d(w)1+t

< C4r
td(w).

From the choice of ε, the leftmost inequality in (6.84) and the definition of r, we

deduce that

ε ≥ θ2σ
+ ≥ θ2γ3

b
d(w) ≥ C4r

td(w) > ‖Φ(ŵ, λ+, σ+, µ+)‖,

from which the first assertion follows.

We are now in a position to demonstrate the inequality ‖c(x̂)‖≤ κ(‖c(x)‖+ζ+).

From (6.85), the leftmost inequality of (6.84) and the choice of ζ+, and noting that

d(w) ≤ ‖w − w∗‖< r, we then get

‖c(x̂)‖≤ ‖F (ŵ)‖≤ bC3d(w)1+t ≤ b2C3

γ3

rtσ+ ≤ κθ1σ
+ ≤ κ(‖c(x)‖+ζ+),

which completes the proof.

6.4.5 Superlinear convergence of the sequence {wk}
This section is devoted to analyze the behavior of the sequence {wk} generated

by Algorithm 8. For each k ∈ N, from a point w0 ∈ RN such that v0 > 0 and an

initial value µ0 > 0, the regularization, the logarithm barrier and the quadratic
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penalty parameters are chosen such that

δk ∈ (0, δ̄] and δk = γ1‖F (wk)‖t, (6.86)

µk+1 = γ2 min{‖F (wk)‖1+t, µk}, (6.87)

σk+1 = γ3‖F (wk)‖, (6.88)

where γ1 > 0 and γ2, γ3, t ∈ (0, 1).

We now show that if at an iteration k0, wk0 is sufficiently near w∗ and the

condition (6.36) satisfies, then the algorithm is reduced to a sequence of outer

iterations and the whole sequence converges superlinearly to an optimal solution

of (P).

Theorem 6.18. Let Assumptions 6.4–6.7 hold at w∗. Assume that sequences {δk},
{µk}, {σk}, {ζk} and {εk} of Algorithm 8 are chose by formulas (6.86)–(6.88) and

for all k ∈ N, ζk ≥ θ1σk, εk ≥ θ2σk+1 for some given positive constants θ1, θ2.

There exist 0 < r̄ < r such that if at an iteration k0, wk0 ∈ B(w∗, r̄), vk0 > 0

and if the condition (6.36) is satisfied, then for all k ∈ K := {k ∈ N : k ≥ k0},
wk+1 = ŵk ∈ B(w∗, r), vk > 0 and the condition (6.36) is satisfied at k + 1. In

addition, the sequence {wk} converges at least superlinearly with a rate of 1 + t to

a solution w̃ ∈ S.

Proof. Let r > 0 be defined by (6.83) and let us define

r̄ = min

{
r

1 + 2C1

,
1

(2C3)1/t

}
.

We note that at each iteration k ∈ N, either the fraction to the boundary rule (6.35)

or the inner algorithm is applied to create an iterate wk+1 such that vk+1 > 0,

therefore the sequence {vk} is positive. We use an inductive argument to prove

the first part. For the base case k = k0, Lemma 6.17, (6.37) and (6.36) imply

that wk0+1 = ŵk0 and the condition (6.36) holds at k0 + 1. By reminding that

ŵk0 − w+
k0

= (1− αk0)(wk0 − w+
k0

) and d(wk0) ≤ ‖wk0 − w∗‖< r̄, then by applying
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Lemma 6.14, one has

‖wk0+1 − w∗‖ ≤ ‖ŵk0 − w+
k0
‖+‖w+

k0
− wk0‖+‖wk0 − w∗‖

≤ (1− αk0)‖w+
k0
− wk0‖+‖w+

k0
− wk0‖+‖wk0 − w∗‖

< 2C1d(wk0) + r̄

< (2C1 + 1)r̄

≤ r,

which means that wk0+1 ∈ B(w∗, r).

Suppose now that for an index k ≥ k0 + 1, we have wj+1 = ŵj ∈ B(w∗, r) and

(6.36) satisfies at j + 1, for all j ∈ {k0, . . . , k − 1}. Let j ∈ {k0, . . . , k}. By virtue

of Lemma 6.17, (6.37) and (6.36), we imply that wj+1 = ŵj and (6.36) hold at the

iteration j + 1. Since αj ∈ (0, 1], Lemma 6.14, (6.78) and the definition of ŵj give

us

‖wj+1 − wj‖= ‖ŵj − wj‖= αj‖w+
j − wj‖≤ C1d(wj)

and

d(wj+1) = d(ŵj) ≤ C3d(wj)1+t.

By using these facts and the same argument used in the proof of Theorem 6.7, we

can deduce that wk+1 ∈ B(w∗, r) and {wk} is a Cauchy sequence. Consequently,

this sequence converges to a point w̃ ∈ S.
Finally, the rate of convergence of the sequence {wk} can be demonstrated

similarly as Theorem 5.16.

Similar to Remark 6.8, instead of assuming that the condition (6.36) is satisfied

at an iteration k0 such that wk0 ∈ B(w∗, r̄) and vk0 > 0, we can prove the

superlinear convergence of the sequence {wk} to w̃ ∈ S under the assumption

that this sequence converges to w̃.

6.5 Numerical illustration

In this section, we summarize behaviors of Algorithms 7 and 8 on two sets of

degenerate problems which are created from 108 equality constrained problems

of CUTEr [91] and COPS [57] collections. In particular, the first set called the

equality set includes problems in which each problem is added a constraint of type

c1(x)2 = c1(x), where c1(x) is the first constraint of this one. Each problem of

the second set called the inequality set is generated by splitting the first equality
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constraint c1(x) = 0 to two inequality constraints c1(x) ≤ 0 and c1(x) ≥ 0. We

note that the MFCQ fails at any point of each problem in the two above sets.

We adopt the rule to update the penalty parameters of SPDOPT-AL for

Algorithm 7. More specifically, we set σk+1 = ρmin{σk, ‖F (wk)‖}, where ρ = 0.1

at Step 2 and ρ = 0.2 at Step 3 of Algorithm 7. This formula implies that σk+1 =

O(‖F (wk)‖). If at some k, wk ∈ B
(
w∗,min

{
r̄, ρ

b2C3

})
and σk+1 = ρ‖F (wk)‖, then

by virtue of Theorem 6.7, (6.17) and (6.30), we deduce that

‖F (wk+1)‖≤ bd(wk+1) ≤ bC3d(wk)2 ≤ b2C3‖wk − w∗‖‖F (wk)‖≤ ρ‖F (wk)‖= σk+1,

meaning that σk+2 = ρ‖F (wk+1)‖. In summary, the condition (6.28) eventually

holds, for k large enough. This rule is also use to update the sequence {σk} in

Algorithm 8. At each iteration k, the regularization parameter δk and the barrier

parameter µk of Algorithm 8 are updated by formulas

δk = min{γ1‖F (wk)‖t, δ̄} and µk+1 = γ2 min{‖F (wk)‖1+t, µk},

where γ1 = δ̄ = 0.01, γ2 = 0.99, µ0 = 0.1 and t = 0.5. We can see that these

choices of parameters satisfy (6.86) and (6.87) for all k such that ‖F (wk)‖≤ 1.

The sequence {τk} is set by τk = max{0.99, 1− µk+1} for all k. We note that for

all k, 1− τk ≤ µk+1 ≤ γ2‖F (wk)‖1+t, which verifies the fulfillment of the condition

1− τk = O(‖F (wk)‖).
At the first step of Algorithms 7 and 8, we chose κ = 0.9, l = 2, ζk = (10/κ)σk.

The sequence {εk} in Algorithm 7 and Algorithm 8 are respectively chosen by

the formulas εk = 0.9 max{‖Φ(wi, λi, σi)‖: (k − l)+ ≤ i ≤ k} + 10σk+1 and εk =

0.9 max{‖Φ(wi, λi, σi, µi)‖: (k − l)+ ≤ i ≤ k} + 10σk+1. The assumptions of the

sequences {ζk} and {εk} in Theorems 6.7 and 6.18 are satisfied with the above

choices.

The information about the initialization and the factorization can be found in

[12, 13]. Both algorithms are terminated if ‖F (wk)‖≤ 10−8. To solve each problem,

the number of (outer and inner) iterations is limited by 3000.

For the equality set, we eliminated problems bt08, lukvle09, lukvle10,

orthrdm2, and s335 since Algorithm 7 cannot find an optimal solution of problem

(EP). For the same reason, problems bt08, chain2, and lukvle09 of the inequality

set are not taken into account in our illustration. Figure 6.1 shows us the

logarithms of ‖F (wk)‖ for the last ten iterations of Algorithms 7 and 8 when

solving optimization problems in two aforementioned sets. Through this figure,
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Fig. 6.1: Values of log10‖Fk‖ for the last ten iterations of Algorithms 7 and 8 on the sets of
degenerate problems. T represents the index of the stopping iteration for each run.

we can see that the two algorithms obtain the superlinear (quadratic) convergence

on most of problems.
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Chapter 7

Conclusions and perspectives

In Chapters 3 and 4, the algorithm SPDOPT-ID based on modifications of

SPDOPT-AL [12] and SPDOPT [13] has been introduced to quickly detect

infeasibility. This algorithm has a good global behavior in the sense that under

some usual assumptions, this algorithm can end with three kinds of stationarity:

KKT conditions, singular stationarity and stationarity of the feasibility measure.

This algorithm maintains the good behaviors of SPDOPT-AL and SPDOPT in

some neighborhood of a KKT point which are the quadratic convergence in

the equality constrained case and the superlinear convergence in the general

case. Moreover, we demonstrated that SPDOPT-ID improved the capability of

SPDOPT-AL and SPDOPT in quickly detecting infeasibility. But when the

feasibility measure becomes smaller than the feasibility tolerance (‖ck‖≤ ǫ, for

some k ∈ N), the new algorithm exhibits the same behavior as the original one.

More precisely, in that case, the quadratic penalty parameter goes to zero and the

multipliers associated to the equality constraints become unbounded. An open

question would be to find an algorithm with a superlinear rate of convergence in

any case, even if the sequence stays infeasible, but becomes nearly feasible (think

about the realization of the constraint ex ≤ 0). In practice, we can always choose

a feasibility tolerance “small enough”, but from a conceptual point of view this not

entirely satisfactory. Nevertheless, these chapters complete the local convergence

analyses of an augmented Lagrangian method and of an interior point method for

nonlinear optimization in the difficult case of infeasible problems. Note especially

that no assumption on the linear independence of the gradient of active constraints

is used in our analyses, contrary to the ones of Byrd et al. [40], Burke et al. [30] and

Dai et al. [50]. This comes from the fact that in the infeasible case, the quadratic

penalty parameter remains constant and thus provides a natural regularization of
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the matrix of the linear system to solve at each iteration.

In Chapter 5, we have proposed an algorithm which is based on a combination

of the logarithmic barrier method and the proximal point method. We have

shown that this method achieves superlinear convergence without the second order

sufficient conditions in the case of a bound constrained optimization problem. A

milder assumption related to a local error bound condition has been introduced.

This local error bound condition can be seen as a natural extension of the one

in unconstrained optimization. We note that this work can be extended to the

more general case of a nonlinear complementarity problem: given a smooth map

G : Rn → Rn, find x ∈ Rn such that

x ≥ 0, G(x) ≥ 0 and 0 ≤ x ⊥ G(x) ≥ 0.

In addition, this local convergence analysis could also be extended to the case of

the general nonlinear optimization problem (1.1). However, it will be necessary

to state an error bound condition related to the original problem as Assumption

5.3. Some relations between the inverse of the regularized Jacobian matrix and

its regularization parameter has been shown. These properties are useful to study

the local behaviors of regularized methods.

Chapter 6 is devoted to answer the question raised by Armand and Omheni

[12] about the quadratic convergence of SPDOPT-AL in degenerate problems.

In addition, we proposed a rule to update the parameters of SPDOPT [13]

to get the superlinear convergence in the problem (1.1) without any constraint

qualification. Some local error bound conditions are deduced from remaining

assumptions (Lipschitz continuity, second order sufficient conditions and strict

complementarity). Similar to Chapter 5, the uniform boundedness of the inverse

of the regularized Jacobian matrix by its regularization parameter was used to

demonstrate the fast convergence of the algorithms in this chapter.

We now introduce two more general results than Lemmas 6.1 and 6.10. These

results could be useful for the local convergence analysis of algorithms without the

second order sufficient conditions and without the constraint qualification.

Lemma 7.1. Let w∗ = (x∗, y∗) be a vector in RN , where N = n + m and n,m

are natural numbers. Let H : RN → Rn×n be a bounded function such that for

all w ∈ RN , H(w) = H(w)⊤ and let A : Rn → Rn×m be a Lipschitz continuous

function. Let θ : RN → R++ and ρ : RN → R++ be two bounded functions such that

if ρ is not bounded away from zero, then ρ(w)l = O(θ(w)) and ρ(w) = Ω(‖x−x∗‖t),

for all w = (x, y) ∈ RN , for some l ∈ (0, 1) and t ∈ (0, 1]. For all w ∈ RN , let us
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define the matrix

J(w) :=


H(w) + θ(w)I A(x)

A(x)⊤ −ρ(w)I


 .

Assume that there exists r > 0 such that for all w ∈ B(w∗, r),

H(w) +
1

ρ(w)
A(x)A(x)⊤ � 0. (7.1)

Then, there exists C > 0 such that for all w ∈ B(w∗, r), the matrix J(w) is

nonsingular and ‖J(w)−1‖≤ C

min{θ(w), ρ(w)} .

Proof. Let w ∈ B(w∗, r) and let us define θ := θ(w), ρ := ρ(w). Let us show

that the matrix J(w) is nonsingular. By Proposition 2.7, we have det J(w) =

det
(
H(w) + θI + 1

ρ
A(x)A(x)⊤

)
det(−ρI). The assumption (7.1), θ > 0 and ρ > 0

imply that det
(
H(w) + θI + 1

ρ
A(x)A(x)⊤

)
> 0 and det(−ρI) 6= 0. It follows that

the matrix J(w) is nonsingular.

To prove the second assertion, let us consider the two following cases. The first

case is when the function ρ is bounded away from zero. The conclusion will follow

if the inverse of J(w) is uniformly bounded by 1
θ(w)

. For all w ∈ B(w∗, r), let us

define M(w) = H(w) +
1

ρ(w)
A(x)A(x)⊤ + θ(w)I. We deduce from (7.1) that for

all w ∈ B(w∗, r),

‖M(w)−1‖≤ 1
θ(w)

.

By noting that

J(w)−1 =




M(w)−1 1
ρ(w)

M(w)−1A(x)

1
ρ(w)

A(x)⊤M(w)−1 1
ρ(w)2

A(x)⊤M(w)−1A(x)− 1
ρ(w)

I


 ,

the boundedness of

(
‖A(x)‖, 1

ρ(w)
, θ(w)

)
and the above inequality imply that

‖J(w)−1‖= O

(
1

θ(w)

)
.

We now consider the second case in which there exists a sequence {wk} in

B(w∗, r) such that lim ρ(wk) = 0. To simplify the notation, let us denote Jk :=

J(wk), Hk := H(wk), Ak := A(xk), θk := θ(wk) and ρk := ρ(wk). The proof is

based on a contradiction reasoning. We assume that lim min{θk, ρk}‖J−1
k ‖= ∞.

This implies that lim ρk‖J−1
k ‖= ∞. Let us define r = rank(A∗) ≤ min{m,n},

where A∗ := A(x∗). By Proposition 2.4, the matrix A∗ can be expressed under the
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form

A∗ = UΣV ⊤ =
(
UI UJ

)

Σr 0

0 0




V

⊤
I

V ⊤
J


 , (7.2)

where Σr = diag(σ1, . . . , σr), σ1 ≥ . . . ≥ σr > 0 are the singular values of A∗,

U =
(
UI UJ

)
and V =

(
VI VJ

)
are orthogonal matrices, UI ∈ Rn×r, UJ ∈

Rn×(n−r), VI ∈ Rm×r, VJ ∈ Rm×(m−r). For k ∈ N, let us define

Gk := U⊤(Ak − A∗)V.

We then have for all k,

Ak = A∗ + UGkV
⊤ = U(Σ +Gk)V ⊤

=
(
UI UJ

)

Σr +G11

k G12
k

G21
k G22

k




V

⊤
I

V ⊤
J


 , (7.3)

where G11
k ∈ Rr×r, G12

k ∈ Rr×(m−r), G21
k ∈ R(n−r)×r, G22

k ∈ R(n−r)×(m−r). From the

definition of θ and ρ, the convergence to zero of {ρk} and noting that l < 1, we

have

ρk = ρl
kρ

1−l
k = O(θk)ρ1−l

k

= o(θk). (7.4)

From the Lipschitz continuity of A and ‖xk − x∗‖= O(ρ1/t
k ) = O(ρk), for all i, j =

1, 2, we get

‖Gij
k ‖= O(ρk). (7.5)

This fact and (7.4) imply that

‖Gij
k ‖= o(θk) for all i, j = 1, 2. (7.6)

Since the l2 norm is invariant under multiplication with orthogonal matrices, for

all k, one has

‖J−1
k ‖= ‖Q⊤J−1

k Q‖,

where Q =


U 0

0 V


 and Q⊤Q = Q⊤Q = I. From the definition of a matrix norm,

there exists a sequence of unit vectors {vk} ⊂ R2n such that ‖J−1
k ‖= ‖Q⊤J−1

k Q‖=
‖Q⊤J−1

k Qvk‖. Define for all k ∈ N, uk := Q⊤J−1
k Qvk/‖J−1

k ‖. It follows that {uk} is

a sequence of unit vectors with lim 1
ρk
‖Q⊤JkQuk‖= 0. Let k ∈ N. By introducing
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the notation

uk =




ak

bk

ck

dk



∈ R2n and

1
ρk

Q⊤JkQuk =




αk

βk

γk

δk




and using (7.3), we have

U⊤
I (Hk + θkI)UIak + U⊤

I (Hk + θkI)UJ bk + (Σr +G11
k )ck +G12

k dk = ρkαk,

U⊤
J (Hk + θkI)UIak + U⊤

J (Hk + θkI)UJ bk +G21
k ck +G22

k dk = ρkβk,

(Σr + (G11
k )⊤)ak + (G21

k )⊤bk − ρkck = ρkγk,

(G12
k )⊤ak + (G22

k )⊤bk − ρkdk = ρkδk,

(7.7)

where the sequence {(αk, βk, γk, δk)} converges to zero. From the assumption (7.1)

and the orthogonality of the matrix U , we deduce that

b⊤
k U

⊤
J

(
Hk + θkI +

1
ρk

AkA
⊤
k

)
UJ bk ≥ θk‖UJ bk‖2

≥ θk‖bk‖2. (7.8)

From (7.3) and U⊤
J U =

(
0 I

)
, we get

U⊤
J Ak =

(
0 I

)

Σr +G11

k G12
k

G21
k G22

k


V ⊤

=
(
G21

k G22
k

)
V ⊤,

which implies that

U⊤
J AkA

⊤
k UJ = G21

k (G21
k )⊤ +G22

k (G22
k )⊤.

By substituting this equality to (7.8), we obtain

θk‖bk‖2≤ b⊤
k

(
U⊤

J (Hk + θkI)UJ +
1
ρk

(
G21

k (G21
k )⊤ +G22

k (G22
k )⊤

))
bk. (7.9)

We deduce from the third equation of (7.7) that

1
θk

‖ak‖≤
∥∥∥Σ−1

r

∥∥∥
( 1
θk

(
‖(G11

k )⊤‖‖ak‖+‖(G21
k )⊤‖‖bk‖

)
+
ρk

θk

‖ck‖+
ρk

θk

‖γk‖
)
.
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From ‖Σ−1
r ‖ = 1

σr
, the boundedness of {(ak, bk, ck, γk)}, (7.6) and (7.4) , we then

get

lim
‖ak‖
δk

= 0. (7.10)

Let us show that

J 6= ∅ and lim inf bk > 0. (7.11)

Indeed, if this is not the case, we consider two following cases. The first

case is when J = ∅. From the first equation of (7.7), the boundedness of

{(‖Hk‖, θk, ‖ck‖, ‖αk‖)} and the fact that ‖U⊤
I ‖= ‖UI‖≤ 1, we get

‖ck‖ ≤
∥∥∥Σ−1

r

∥∥∥ (‖U⊤
I ‖‖Hk + θkI‖‖UI‖‖ak‖+‖G11

k ‖‖ck‖+ρk‖αk‖)

=
1
θk

(
O(‖ak‖) + O(‖G11

k ‖) + O(ρk)
)
.

From (7.10), (7.6) and (7.4), taking the limit on the both sides, we get

lim ck = 0,

which is in contradiction with the fact that {(ak, ck)} is a sequence of unit vectors.

Let us consider the second case where J 6= ∅ and there exists an infinite subset

K ⊂ N such that lim
k∈K

bk = 0. By using the boundedness of {(‖Hk‖, θk, ck, dk, αk)},
(7.5) and the fact that ‖U⊤

I ‖= ‖UI‖≤ 1, ‖UJ ‖≤ 1 and ‖Σ−1
r ‖ = 1

σr
, the first and

the fourth equations of (7.7) give us

‖ck‖ ≤
∥∥∥Σ−1

r

∥∥∥
(
‖U⊤

I ‖‖Hk + θkI‖(‖UI‖‖ak‖+‖UJ ‖‖bk‖)
+ ‖G11

k ‖‖ck‖+‖G12
k ‖‖dk‖+ρk‖αk‖

)

= O
( 1
θk

‖ak‖
)

+ O(‖bk‖) + O(ρk),

‖dk‖ ≤
1
ρk

(
‖(G12

k )⊤‖‖ak‖+‖(G22
k )⊤‖‖bk‖

)
+ ‖δk‖

= O
( 1
θk

‖ak‖
)

+ O(‖bk‖) + O(‖δk‖).

By using(7.10), the convergence to zero of {bk}K and {(ρk, δk)}, we deduce that

lim
k∈K

ck = 0 and lim
k∈K

dk = 0,

which is in contradiction with the fact that {(ak, bk, ck, dk)} is a sequence of unit

vectors.
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Premultiplying the second equation of (7.7) by b⊤
k , using (7.9) and the Cauchy-

Schwarz inequality, we get

θk‖bk‖2 ≤ b⊤
k

(
U⊤

J (Hk + θkI)UJ +
1
ρk

(G21
k (G21

k )⊤ +G22
k (G22

k )⊤)

)
bk

= ‖bk‖
(
‖U⊤

J ‖‖Hk + θkI‖‖UI‖‖ak‖+‖G21
k ‖‖ck‖+‖G22

k ‖‖dk‖+ρk‖βk‖
)

+
1
ρk

(
‖G21

k ‖2+‖G22
k ‖2

)
‖bk‖2,

By reminding that ‖U⊤
J ‖≤ 1, ‖UI‖≤ 1 and the sequences {(bk, ck, dk, βk)} and

{Hk + θkI} are bounded, the above inequality and (7.5) imply that

‖bk‖ = O
( 1
θk

‖ak‖
)

+ O
(
ρk

θk

)
.

Taking the limit for k ∈ N in the above inequality, using (7.10) and (7.4), we

obtain

lim bk = 0,

which is in contradiction with (7.11).

Hence, there exists C > 0 such that for all w ∈ B(w∗, r),

‖J(w)−1‖≤ C

min{θ(w), ρ(w)} .

Lemma 7.2. Let w∗ = (x∗, y∗, z∗) be a vector in RNsuch that

0 ≤ x∗ ⊥ z∗ ≥ 0 and a := min{x∗
i + z∗

i |i = 1, . . . n} > 0,

where N = n + m + n and n,m are natural numbers. Let A : RN → Rn×m be

a Lipschitz continuous function and H : RN → Rn×n be a bounded function such

that for all w ∈ RN , H(w) = H(w)⊤. Let θ : RN → R++ and δ : RN → R++ be

two bounded functions satisfying the following properties.

(i) If δ is bounded away from zero, then θ(w) = Ω(‖x ◦ z‖t), for some t ∈ (0, 1).

(ii) Otherwise, if δ is not bounded away from zero, then for all w = (x, y, z) ∈ RN ,

δ(w)l = O(θ(w)) and δ(w) = Ω (‖x− x∗‖t) for some l, t ∈ (0, 1).

For all w = (x, y, z) ∈ RN , let us define the matrices X = diag(x), Z = diag(z)
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and

J(w) :=




H(w) + θ(w)I A(x) −I
A(x)⊤ −δ(w)I 0

Z 0 X


 .

Assume that there exists r ∈ (0, a) such that for all w = (x, y, z) ∈ B(w∗, r)

satisfying v = (x, z) > 0,

H(w) +X−1Z +
1

δ(w)
A(x)A(x)⊤ � 0. (7.12)

Then, there exists C > 0 such that for all w ∈ B(w∗, r) satisfying v > 0, the

matrix J(w) is nonsingular and ‖J(w)−1‖≤ C

min{θ(w), δ(w)} .

Proof. Let w ∈ B(w∗, r) such that v > 0 and let us denote θ := θ(w) and δ := δ(w).

Let us show that the matrix J(w) is nonsingular. By Proposition 2.7, we have

det J(w) = detX det


H(w) +X−1Z A(x)

A(x)⊤ −δI




= detX det(−δI) det
(
H(w) + θI +X−1Z +

1
δ
A(x)A(x)⊤

)
.

From x > 0, δ > 0, θ > 0 and the assumption (7.12), we have detX > 0,

det(−δI) 6= 0 and det
(
H(w) + θI +X−1Z + 1

δ
A(x)A(x)⊤

)
> 0. It follows that

the matrix J(w) is nonsingular.

We now prove the uniform boundedness of the matrix min{θ(w), δ(w)}J(w)−1,

for all w ∈ B(w∗, r) such that v > 0, by a contradiction reasoning. Suppose that

there exists a sequence {wk} ⊂ B(w∗, r) such that vk = (xk, zk) > 0,

Hk +X−1
k Zk +

1
δk

AkA
⊤
k � 0, (7.13)

but the sequence {min{θk, δk}‖J−1
k ‖} tends to infinity, where we use the notation

Hk := H(wk), Ak := A(xk), θk := θ(wk), δk := δ(wk) and Jk := J(wk). The

boundedness of the functions H, A, θ and δ imply that the sequences {Hk}, {Ak},
{θk} and {δk} are bounded. Let us define the set J = {i ∈ {1, . . . , n} : x∗

i = 0}
and I = {1, . . . , n}\J . The definition of a implies that x∗

i ≥ a for all i ∈ I and

z∗
i ≥ a, for all i ∈ J . Let ν = a− r > 0. For all k ∈ N, we then have

[xk]i ≥ x∗
i − ‖wk − w∗‖> ν, for all i ∈ I
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and

[zk]i ≥ z∗
i − ‖wk − w∗‖> ν, for all i ∈ J ,

which imply that 0 < ν < max{xk, zk} for all k ∈ N. We consider two following

cases. The first case is when the sequence {δk} is bounded away from zero. The

assumption (i) implies that θk = Ω(‖xk ◦ zk‖t), for some t ∈ (0, 1). For each k ∈ N,

let us define the matrix

J̃k :=




Hk + θkI −I Ak

Zk Xk 0

A⊤
k 0 −δkI


 .

By applying Corollary 5.6 for the sequences {J̃k}, there exists C > 0 such that

for all k ∈ N, ‖J̃−1
k ‖≤ C

θk
. We note that for all k ∈ N, ‖J−1

k ‖= ‖J̃−1
k ‖≤ C

θk
and

1
θk

min{θk, δk} ≤ 1. Therefore, the sequence {min{θk, δk}‖J−1
k ‖} is bounded which

is in contradiction with the assumption that this sequence tends to infinity. Hence,

this case cannot happen.

Let us consider the second case in which there exists an infinite subset K ⊂ N

such that lim
k∈K

δk = 0. The assumption (ii) implies that for all k ∈ N, δl
k = O(θk)

and δk = Ω(‖xk − x∗‖t), for some l, t ∈ (0, 1). In addition, one has

δk = O(min{θk, δk}). (7.14)

By reordering the indices, we rewrite xk = (xI
k , x

J
k ) ∈ R|I|×|J |, zk = (zI

k , z
J
k ) ∈

R|I|×|J |, the matrices Hk and Ak under the form

Hk =


H

II
k HIJ

k

HJ I
k HJ J

k


 and Ak =


A

I
k

AJ
k


 .

From the definition of the sets I and J , for all k ∈ N, we have

xI
k ≥ ν, (7.15)

and

zJ
k ≥ ν. (7.16)

The definition of a matrix norm implies that there exists a sequence of unit vectors

{vk} ⊂ Rn such that ‖J−1
k ‖= ‖J−1

k vk‖ for all k ∈ N. For each k ∈ N, let us

define uk := J−1
k vk/‖J−1

k ‖. It follows that {uk} is a sequence of unit vectors and
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lim 1
δk
‖Jkuk‖≤ lim 1

min{θk,δk}
‖Jkuk‖= 0. Let k ∈ K. Introduce the notation

uk =




aI
k

aJ
k

bk

cI
k

cJ
k




and
1
δk

Jkuk =




αI
k

αJ
k

βk

γI
k

γJ
k




,

we then have

(HII
k + θkI)aI

k +HIJ
k aJ

k + AI
kbk − cI

k = δkα
I
k ,

HJ I
k aI

k + (HJ J
k + θkI)aJ

k + AJ
k bk − cJ

k = δkα
J
k ,

(
AI

k

)⊤
aI

k +
(
AJ

k

)⊤
aJ

k − δkbk = δkβk,

ZI
k a

I
k +XI

k c
I
k = δkγ

I
k ,

ZJ
k a

J
k +XJ

k c
J
k = δkγ

J
k ,

(7.17)

where the sequence
{(
αI

k , α
J
k , βk, γ

I
k , γ

J
k

)}
converges to zero. From the fifth

equation of (7.17), (7.16) and the fact that ‖cJ
k ‖≤ 1, we then get

‖aJ
k ‖≤

∥∥∥∥
(
ZJ

k

)−1
∥∥∥∥
(
‖XJ

k ‖‖cJ
k ‖+δk‖γJ

k ‖
)

≤ 1
ν
δk

(
δ−1

k ‖xJ
k ‖+‖γJ

k ‖
)
. (7.18)

Since δk = Ω(‖xk − x∗‖t) and (x∗)J = 0, one has

δ−1
k ‖xJ

k ‖= O(δ−1
k ‖xk − x∗‖) = O

(
δ

1/t−1
k

)
.

Substituting the previous equality to (7.18) and reminding that the sequences

{δk}K and {γJ
k } converge to zero, t ∈ (0, 1), we deduce that

lim
k∈K

1
δk

‖aJ
k ‖= 0. (7.19)

Let us show that

I 6= ∅ and lim inf
k∈K

∥∥∥
(
aI

k , bk

)∥∥∥ > 0. (7.20)

Indeed, if this is not the case, there are two possibilities. The first one is I = ∅.
From the boundedness of {(‖HJ J

k + θkI‖, ‖AJ
k ‖, δk)}, the second and the third
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equations of (7.17) imply that

∥∥∥cJ
k

∥∥∥ ≤ ‖HJ J
k + θkI‖‖aJ

k ‖+‖AJ
k ‖‖bk‖+δk

∥∥∥αJ
k

∥∥∥

= O
( 1
δk

‖aJ
k ‖
)

+ O(‖bk‖) + ‖O(‖αJ
k ‖),

‖bk‖ ≤
1
δk

∥∥∥∥
(
AJ

k

)⊤
∥∥∥∥ ‖aJ

k ‖+‖βk‖

= O
( 1
δk

‖aJ
k ‖
)

+ ‖βk‖.

By virtue of (7.19) and the convergence to zero of {(αJ
k , βk)}, taking the limit for

k ∈ K, we then get

lim
k∈K

bk = 0 and lim
k∈K

ck = 0,

which is in contradiction with the fact that {(aJ
k , bk, ck)} is a sequence of unit

vectors. We consider the second possibility in which I 6= ∅ but there exists an

infinite subset K′ ⊂ K such that lim
k∈K′

∥∥∥
(
aI

k , bk

)∥∥∥ = 0. The boundedness of {(‖Hk +

θkI‖, ‖Ak‖, δk)} and the first two equations of (7.17) give us

∥∥∥
(
cI

k , c
J
k

)∥∥∥ ≤ ‖Hk + θkI‖
∥∥∥
(
aI

k , a
J
k

)∥∥∥+ ‖Ak‖‖bk‖+δk

∥∥∥
(
αI

k , α
J
k

)∥∥∥

= O
( 1
δk

∥∥∥aJ
k

∥∥∥
)

+ O
(∥∥∥
(
aI

k , bk

)∥∥∥
)

+ O
(∥∥∥
(
αI

k , α
J
k

)∥∥∥
)
.

From (7.19) and the convergence to zero of the sequences
{(
aI

k , bk

)}
K′

and
{(
αI

k , α
J
k

)}
, the above inequality implies that

lim
k∈K′

cI
k = lim

k∈K′

cJ
k = 0,

which is again in contradiction with the fact that {uk} is a sequence of unit vectors.

By eliminating cI
k in the first equation of (7.17), the first and the third equations

of this system can be rewritten under the form



HII

k +
(
XI

k

)−1
ZI

k + θkI AI
k(

AI
k

)⊤ −δk





a

I
k

bk


 =



−HIJ

k aJ
k + δk

(
αI

k +
(
XI

k

)−1
γI

k

)

−
(
AJ

k

)⊤
aJ

k + δkβk


 .

(7.21)

Let us define for each k ∈ K,

Ĵk :=




HII
k +

(
XI

k

)−1
ZI

k + θkI AI
k(

AI
k

)⊤
−δk


 , v̂k :=



−HIJ

k aJ
k + δk

(
αI

k +
(
XI

k

)−1
γI

k

)

−
(
AJ

k

)⊤
aJ

k + δkβk


 .
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On the one hand, by virtue of (7.15), the sequence
{(
XI

k

)−1
}

is bounded.

Combining this fact with the boundedness of the sequence
{(
‖HIJ

k ‖, ‖AJ
k ‖
)}

,

the convergence to zero of the sequence
{
(αI

k , βk, γ
I
k )
}

and (7.19), we deduce that

lim
k∈K

‖v̂k‖
δk

= 0. (7.22)

On the other hand, from (7.15) and the boundedness of {zk}, the sequence{(
XI

k

)−1
ZI

k

}
is bounded . In addition, (7.13) implies that

HII
k +

(
XI

k

)−1
ZI

k +
1
δk

AI
k

(
AI

k

)⊤ � 0.

By virtue of Lemma 7.1 and (7.14), there exists C > 0 such that for all k ∈ K,
‖Ĵ−1

k ‖≤ C
δk

. We then deduce from this fact and the equation (7.21) that

∥∥∥
(
aI

k , bk

)∥∥∥ = ‖Ĵ−1
k v̂k‖≤

C

δk

‖v̂k‖.

Taking the limits for k ∈ K and using (7.22), we then get

lim
k∈K

∥∥∥
(
aI

k , bk

)∥∥∥ = 0,

which is in contradiction with (7.20).

In sum, for all r ∈ (0, a) such that (7.12) holds, there exists C > 0 such that for

all w ∈ B(w∗, r) satisfying v > 0, min{θ(w), δ(w)}‖J(w)−1‖≤ C, which concludes

the proof.

In Lemma 7.2, if the matrix H is positive semidefinite, Friedlander and Orban

[72, Corollary 5.2] shows a nearly similar upper bound on the inverse of the matrix

J which is

‖J(w)−1‖≤ 1
min {θ(w), δ(w)} .

In this thesis, the linear system at each iteration of algorithms is solved exactly.

A future work is to consider a factorization-free approach, see, e.g., Arreckx and

Orban [17].
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Titre thèse français: Détection de la non-réalisabilité et stratégies de
régularisation en optimisation non linéaire

Résumé : Dans cette thèse, nous nous étudions des algorithmes d’optimisation
non linéaire. D’une part nous proposons des techniques de détection rapide de
la non-réalisabilité d’un problème à résoudre. D’autre part, nous analysons le
comportement local des algorithmes pour la résolution de problèmes singuliers.
Dans la première partie, nous présentons une modification d’un algorithme
de lagrangien augmenté pour l’optimisation avec contraintes d’égalité. La
convergence quadratique du nouvel algorithme dans le cas non-réalisable est
démontrée théoriquement et numériquement. La seconde partie est dédiée
à l’extension du résultat précédent aux problèmes d’optimisation non linéaire
généraux avec contraintes d’égalité et d’inégalité. Nous proposons une modification
d’un algorithme de pénalisation mixte basé sur un lagrangien augmenté et une
barrière logarithmique. Les résultats théoriques de l’analyse de convergence et
quelques tests numériques montrent l’avantage du nouvel algorithme dans la
détection de la non-réalisabilité. La troisième partie est consacrée à étudier
le comportement local d’un algorithme primal-dual de points intérieurs pour
l’optimisation sous contraintes de borne. L’analyse locale est effectuée sans
l’hypothèse classique des conditions suffisantes d’optimalité de second ordre.
Celle-ci est remplacée par une hypothèse plus faible basée sur la notion de borne
d’erreur locale. Nous proposons une technique de régularisation de la jacobienne
du système d’optimalité à résoudre. Nous démontrons ensuite des propriétés de
bornitude de l’inverse de ces matrices régularisées, ce qui nous permet de montrer
la convergence superlinéaire de l’algorithme. La dernière partie est consacrée à
l’analyse de convergence locale de l’algorithme primal-dual qui est utilisé dans
les deux premières parties de la thèse. En pratique, il a été observé que cet
algorithme converge rapidement même dans le cas où les contraintes ne vérifient
l’hypothèse de qualification de Mangasarian-Fromovitz. Nous démontrons la
convergence superlinéaire et quadratique de cet algorithme, sans hypothèse de
qualification des contraintes.

Mots clés : optimisation nonlinéaire, detection de la non-réalisabilité,
regularisation, dégénéré, méthode lagrangienne augmentée, méthode de
point intérieur, méthodes primales-duales, borne d’erreur locale, convergence
superlinéaire/quadratique.



Titre thèse anglais: Infeasibility Detection and Regularization
Strategies in Nonlinear Optimization

Abstract: This thesis is devoted to the study of numerical algorithms for
nonlinear optimization. On the one hand, we propose new strategies for the
rapid infeasibility detection. On the other hand, we analyze the local behavior
of primal-dual algorithms for the solution of singular problems. In the first part,
we present a modification of an augmented Lagrangian algorithm for equality
constrained optimization. The quadratic convergence of the new algorithm in the
infeasible case is theoretically and numerically demonstrated. The second part
is dedicated to extending the previous result to the solution of general nonlinear
optimization problems with equality and inequality constraints. We propose a
modification of a mixed logarithmic barrier-augmented Lagrangian algorithm.
The theoretical convergence results and the numerical experiments show the
advantage of the new algorithm for the infeasibility detection. In the third
part, we study the local behavior of a primal-dual interior point algorithm for
bound constrained optimization. The local analysis is done without the standard
assumption of the second-order sufficient optimality conditions. These conditions
are replaced by a weaker assumption based on a local error bound condition.
We propose a regularization technique of the Jacobian matrix of the optimality
system. We then demonstrate some boundedness properties of the inverse of
these regularized matrices, which allow us to prove the superlinear convergence of
our algorithm. The last part is devoted to the local convergence analysis of the
primal-dual algorithm used in the first two parts of this thesis. In practice, it has
been observed that this algorithm converges rapidly even in the case where the
constraints do not satisfy the Mangasarian-Fromovitz constraint qualification. We
demonstrate the superlinear and quadratic convergence of this algorithm without
any assumption of constraint qualification.

Keywords: nonlinear optimization, infeasibility detection, regularization,
degenerate, augmented Lagrangian method, interior point method, primal-dual
methods, local error bound condition, superlinear/quadratic convergence.


