Thèse soutenue

Etudes des propriétés physico-chimiques de revêtements sol-gel par spectroscopie, optoacoustique et endommagement laser

FR  |  
EN
Auteur / Autrice : Jérémy Avice
Direction : Pascal RuelloHervé PiombiniGwenaëlle Vaudel
Type : Thèse de doctorat
Discipline(s) : Sciences des matériaux
Date : Soutenance le 03/12/2018
Etablissement(s) : Le Mans
Ecole(s) doctorale(s) : École doctorale Matière, Molécules Matériaux et Géosciences (Le Mans)
Partenaire(s) de recherche : Laboratoire : Commissariat à l'énergie atomique et aux énergies alternatives (Monts, Indre-et-Loire) - Institut des Molécules et Matériaux du Mans (Le Mans ; 2012-....) - Institut des Molécules et Matériaux du Mans / IMMM
Jury : Examinateurs / Examinatrices : Philippe Belleville

Résumé

FR  |  
EN

Dans le cadre du projet simulation, le Commissariat à l'énergie atomique (CEA) vise à reproduire les conditions de pression et de température d'une fusion thermonucléaire avec le laser Mégajoule (LMJ). Certains composants optiques du LMJ, en particulier certaines lentilles de focalisation, sont revêtus d'une couche antireflet (AR) réalisée par un procédé sol-gel. Ces films sont composés de nanoparticules de silice de 10 nm de diamètre avec 55% de porosité. Pour augmenter la résistance mécanique de ces couches, les films sont exposés aux vapeurs d’eau et d'ammoniac pendant un post-procédé. Ce post-traitement crée des liaisons covalentes entre les nanoparticules de silice et renforce ainsi le film colloïdal. Afin de donner toutes les qualités d’un revêtement optique, outre les propriétés optiques clefs, nous nous sommes donnés comme objectif de comprendre la stabilité mécanique de ces nanomatériaux. En particulier, nous avons souhaité, dans le cadre de cette thèse, avoir une meilleure compréhension du procédé de durcissement ammoniac et pour cela nous avons entrepris une étude complète des paramètres physiques et chimique qui gouvernent l’élasticité de cet assemblage de nanoparticules. Dans un second temps, nous avons mis en évidence l’apparition d’un faïençage de surface provoquant de la diffusion optique et une diminution du renforcement mécanique durant le post-procédé. Dans le but de minimiser, voire supprimer ces fissurations de surface, nous avons réalisé une étude paramétrique pour dégager les éléments responsables de ce faïençage.