Thèse soutenue

Electronique quantique dans les nano-structures explorées par microscopie à sonde locale
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Alessandro De Cecco
Direction : Hervé CourtoisClemens Winkelmann
Type : Thèse de doctorat
Discipline(s) : Nanophysique
Date : Soutenance le 10/10/2018
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale physique (Grenoble ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Institut Néel (Grenoble)
Jury : Président / Présidente : Vincent Bouchiat
Examinateurs / Examinatrices : Hélène Le Sueur, José Maria Gomez-Rodriguez
Rapporteurs / Rapporteuses : José Ignacio Pascual, Stefan Heun

Résumé

FR  |  
EN

Les nano-structures sont des systèmes physiques de premier intérêt pour les études de base et pour les applications, car elles montrent des effets quantiques comme le confinement, la discrétisation énergétique, la cohérence... Le comportement quantique des nano-dispositifs peut être cependant fortement influencé par le désordre, les effets thermiques et hors-équilibre. Dans cette Thèse, nous montrons, par exemple, comment la dissipation affecte le transport électronique dans les dispositifs supraconducteurs soumis aux fréquences micro-ondes.En utilisant un setup cryogénique AFM/STM fait maison, on peut étudier différents types de nano-structures. En premier, nous nous occupons de la réalisation d'un transistor à électron unique avec une sonde locale. Les nano-particules métalliques sont bien connues pour leur comportement comme boîtes quantiques zéro-dimensionnelles (QD), elles montrent du confinement quantique et des effets de charge, que l’on retrouve aussi dans nos mesures de microscopie à sonde locale à basse température. Nous démontrons comment un nouveau procédé de nano-fabrication peut être mis en œuvre avec l'introduction d' une électrode de grille suffisamment mince et sans-fuite, ce qui pourra fournir un réglage de précision des propriétés de la boîte quantique et permettre l'exploration résolue spatialement des phénomènes quantiques dans différents régimes de couplage. En deuxième, nous étudions le graphène épitaxial sur SiC comme un matériau 2D très prometteur pour l'électronique. En particulier, les nano-rubans de graphène obtenus par croissance épitaxiale sur des parois inclinées (GNRs) sont des nano-structures d'intérêt fondamental qui peuvent fournir un accès direct et contrôlable au graphène neutre. À cause du confinement quantique, ces systèmes peuvent montrer du transport balistique exceptionnel à température ambiante. Nous réalisons une technique novatrice de potentiométrie à sonde locale qui nous permet une résolution spatiale à l'échelle du nm et une résolution en tension à l'échelle du µV. Le potentiel locale et la résistance locale mesurés sur un dispositif unique basé sur des nano-rubans de graphène nous donnent des indications claires de transport non-diffusif.La physique explorée, les méthodes ainsi que les technique développées dans cette Thèse peuvent donc fournir des nouvelles visions aux nombreux (et assez divers) sujets en vogue.