Développement d'un dispositif microfluidique de Déplacement Latéral Déterministe (DLD) pour la préparation d'échantillons biologiques, en vue de l'extraction de vésicules extracellulaires

par Eloïse Pariset

Thèse de doctorat en Physique appliquée

Sous la direction de Vincent Agache.

Soutenue le 01-10-2018

à Grenoble Alpes , dans le cadre de École doctorale physique (Grenoble) , en partenariat avec Département Microtechnologies pour la Biologie et la Santé (laboratoire) , Laboratoire d'électronique et de technologie de l'information (Grenoble) (laboratoire) et de Koch Institute for Integrative Cancer Research (laboratoire) .

Le président du jury était Rémy Sadoul.

Le jury était composé de Mathilde Callies Reyssat.

Les rapporteurs étaient Charles Baroud, Jean-Louis Viovy.


  • Résumé

    Les vésicules extracellulaires (EVs) apparaissent depuis une dizaine d'années comme de nouveaux biomarqueurs à fort potentiel pour des applications de biopsie liquide. En effet, les EVs portent la signature de leurs cellules émettrices, par le transport de matériel génétique et protéique cellulaire, qui peut être exploité comme outil de diagnostic précoce. L’une des principales limitations actuelles à l'utilisation clinique des EVs est la difficulté à extraire ces nano-objets à partir de biofluides complexes et à standardiser les protocoles de préparation d'échantillon. En effet, de nouvelles technologies sont requises pour effectuer un isolement efficace, bas coût et rapide de sous-populations d'EVs, sans altérer leur intégrité et à partir de faibles volumes d'échantillon. La technique microfluidique de Déplacement Latéral Déterministe (DLD) apparaît comme une des technologies prometteuses pour atteindre ces performances grâce à une purification passive et sans marquage. Les dispositifs de DLD mettent en oeuvre un réseau de piliers générant un tri en taille des particules, et dont les paramètres géométriques permettent de contrôler précisément le diamètre de séparation. Parmi les nombreuses applications de cette technologie dans le secteur biomédical, aucune ne permet pour le moment de réaliser l'extraction complète d'EVs directement à partir du biofluide d'intérêt, sans étapes de purification intermédiaires par centrifugation par exemple. Dans cette perspective, nos développements technologiques ont pour but d'améliorer la fiablilité, l'efficacité et l'intégration des dispositifs de DLD. A partir d'études numériques et expérimentales, nous proposons ici de nouveaux modèles pour anticiper au mieux le comportement des particules lors de la conception de réseaux de DLD. Par ailleurs, dans une approche orientée système, nous proposons également un packaging fluidique des dispositifs de DLD. Plusieurs étapes de tri étant généralement requises pour la purification d’échantillons biologiques, nos développements portent également sur la façon d’interconnecter ces modules au sein d'une configuration en série. Deux applications biologiques sont adressées et démontrent la versatilité de la technologie de DLD : l'isolement de bactéries E. coli à partir de prélèvements sanguins humains - en vue du diagnostic du sepsis - et l'extraction d'EVs dans des milieux de culture cellulaires - avec en perspective la détection d'EVs spécifiques par biopsie liquide. L'étape de préparation d'échantillon ne peut être dissociée de l'étape de caractérisation. C'est pourquoi, l'isolement des EVs devra dans un second temps être couplé à leur analyse au sein d'un dispositif intégré, portable et autonome, ce qui pourrait ouvrir de nouvelles perspectives vers l'application clinique des recherches actuelles sur les EVs.

  • Titre traduit

    Development of a microfluidic device based on Deterministic Lateral Displacement (DLD) for biological sample preparation, towards the extraction of extracellular vesicles


  • Résumé

    Over the past decades, Extracellular Vesicles (EVs) have demonstrated strong potential as new biomarkers for liquid biopsy. Indeed, since EVs are fingerprints of parent cells, they can be exploited as early diagnostic tools. However, owing to their small size and high heterogeneity, EVs are challenging to extract from biofluids. In particular, reproducible and standardized protocols are required to perform fast, efficient, and cost-effective preparation of undamaged EV subpopulations from limited sample volumes. Deterministic Lateral Displacement (DLD) appears to be a promising microfluidic technology for this preparation by means of passive and label-free separation. DLD performs size-based separation of particles around a critical diameter that can be fine-tuned according to design parameters in an array of micropillars. Across the numerous biotechnological applications of DLD, none has yet successfully performed the complete extraction of EVs from unprocessed biofluids. This is the underlying motivation of this thesis, which outlines technological enhancements that make DLD separation more predictable, efficient, and easy-to-integrate. Based on both numerical and experimental developments, predictive models are proposed in order to anticipate particle behavior and to help in the design of efficient DLD devices. In addition to the optimization of single DLD devices, this thesis also addresses the issue of system integration. An innovative approach of serial connection between DLD modules is proposed to address the sequential sorting of particles from a complex biofluid and ensure that there is no loss of function of individual DLD devices when operated alone or in series. Two biological applications illustrate the potential of DLD-based sample preparation systems: the isolation of E. coli bacteria from human blood samples for sepsis diagnostics and the extraction of EVs from cell culture media with the perspective of liquid biopsy applications. And as sample preparation cannot be dissociated from detection or characterization, this thesis moreover highlights the potential integration of DLD in an all-in-one microfluidic device for both sample preparation and analysis of extracted EVs. Such a portable and autonomous device could overcome some of the current limitations with regard to the clinical use of EVs.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Savoie Mont Blanc (Chambéry-Annecy). Service commun de la documentation et des bibliothèques universitaires. Bibliothèque électronique.
  • Bibliothèque : Service Interétablissement de Documentation. LLSH Collections numériques.
  • Bibliothèque : Service interétablissements de Documentation. STM. Collections numériques.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.