Optimisation de codes correcteurs d’effacements par application de transformées polynomiales

par Jonathan Detchart

Thèse de doctorat en Réseaux, télécom, système et architecture

Sous la direction de Jérôme Lacan et de Emmanuel Lochin.

Le président du jury était Daniel Augot.

Le jury était composé de Jérôme Lacan, Emmanuel Lochin, Daniel Augot, Nicolas Normand, Vincent Roca.

Les rapporteurs étaient Daniel Augot, Nicolas Normand.


  • Résumé

    Les codes correcteurs d’effacements sont aujourd’hui une solution bien connueutilisée pour fiabiliser les protocoles de communication ou le stockage distribué desdonnées. La plupart de ces codes sont basés sur l’arithmétique des corps finis, définissantl’addition et la multiplication sur un ensemble fini d’éléments, nécessitantsouvent des opérations complexes à réaliser. En raison de besoins en performancetoujours plus importants, ces codes ont fait l’objet de nombreuses recherches dans lebut d’obtenir de meilleures vitesses d’exécution, tout en ayant la meilleure capacitéde correction possible. Nous proposons une méthode permettant de transformer les éléments de certains corps finis en éléments d’un anneau afin d’y effectuer toutes les opérations dans lebut de simplifier à la fois le processus de codage et de décodage des codes correcteursd’effacements, sans aucun compromis sur les capacités de correction. Nous présentonségalement une technique de réordonnancement des opérations, permettant deréduire davantage le nombre d’opérations nécessaires au codage grâce à certainespropriétés propres aux anneaux utilisés. Enfin, nous analysons les performances decette méthode sur plusieurs architectures matérielles, et détaillons une implémentationsimple, basée uniquement sur des instructions xor et s’adaptant beaucoupplus efficacement que les autres implémentations à un environnement d’exécutionmassivement parallèle.

  • Titre traduit

    Optimisation of erasure codes by applying polynomial transforms


  • Résumé

    Erasure codes are widely used to cope with failures for nearly all of today’snetworks communications and storage systems. Most of these codes are based onfinite field arithmetic, defining the addition and the multiplication over a set offinite elements. These operations can be very complex to perform. As a matter offact, codes performance improvements are still an up to date topic considering thecurrent data growth explosion. We propose a method to transform the elements of some finite fields into ring elements and perform the operations in this ring to simplify both coding and decoding of erasure codes, without any threshold on the correction capacities.We also present a scheduling technique allowing to reduce the number of operations thanks to some particular properties of the ring structure. Finally, we analyse the performance ofsuch a method considering several hardware architectures and detail a simple implementation, using only xor operations, fully scalable over a multicore environment.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : ISAE-SUPAERO Institut Supérieur de l'Aéronautique et de l'Espace. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.