On the Construction of Multiresolution Analysis Compatible with General Subdivisions

par Zhiqing Kui

Thèse de doctorat en Mathématiques

Sous la direction de Jacques Liandrat et de Jean Baccou.

Soutenue le 01-02-2018

à l'Ecole centrale de Marseille , dans le cadre de Ecole Doctorale Mathématiques et Informatique de Marseille (Marseille) , en partenariat avec Institut de mathématiques de Marseille (laboratoire) et de Institut de Mathématiques de Marseille (laboratoire) .

Le jury était composé de Jean-François Aujol, Sandrine Anthoine.

Les rapporteurs étaient Sylvain Meignen.

  • Titre traduit

    Sur la construction de l'analyse multirésolution compatible avec les subdivisions générales


  • Résumé

    Les schémas de subdivision sont largement utilisés pour la génération rapide de courbes ou de surfaces. Des développements récents ont produit des schémas variés, en particulier non-linéaires, non-interpolants ou non-homogènes.Pour pouvoir être utilisés en compression, analyse ou contrôle de données, ces schémas de subdivision doivent être incorporés dans une analyse multiresolution qui, imitant les analyses en ondelettes, fournit une décomposition multi-échelle d'un signal, d'une courbe ou d'une surface. Les ingrédients nécessaires à la définition d'une analyse multiresolution associée à un schéma de subdivision sont des schémas de décimation et de détails. Leur construction est facile quand le schéma de multiresolution est interpolant.Cette thèse est consacrée à la construction de schémas de décimation et de détails compatibles avec un schéma de subdivision le plus général possible. Nous commençons par une construction générique dans le cas d'opérateurs homogènes (mais pas interpolants) puis nous généralisons à des situations non-homogènes et non-linéaires. Nous construisons ainsi des analyses multiresolutions compatibles avec de nombreux schémas récemment développés. L'analyse des performances des analyses ainsi construitesest effectuée. Nous présentons des applications numériques en compression d'images.


  • Résumé

    Subdivision schemes are widely used for rapid curve or surface generation. Recent developments have produced various schemes, in particular non-linear, non-interpolatory or non-uniform.To be used in compression, analysis or control of data, subdivision schemes should be incorporated in a multiresolution analysis that, mimicking wavelet analyses, provides a multi-scale decomposition of a signal, a curve, or a surface. The ingredients needed to define a multiresolution analysis associated with a subdivision scheme are decimation scheme and detail operators. Their construction is straightforward when the multiresolution scheme is interpolatory.This thesis is devoted to the construction of decimation schemes and detail operators compatible with general subdivision schemes. We start with a generic construction in the uniform (but not interpolatory) case and then generalize to non-uniform and non-linear situations. Applying these results, we build multiresolution analyses that are compatible with many recently developed schemes. Analysis of the performances of the constructed analyses is carried out. We present numerical applications in image compression.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Ecole centrale de Marseille.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.