Méthodes tangentielles pour les réductions de modèles et applications

par Yassine Kaouane

Thèse de doctorat en Mathématiques. Systèmes dynamiques

Sous la direction de Khalid Jbilou et de Abdeslem Hafid Bentbib.

Soutenue le 31-12-2018

à Littoral en cotutelle avec l'Université Cadi Ayyad (Marrakech, Maroc) , dans le cadre de École doctorale Sciences pour l'Ingénieur (Lille) , en partenariat avec Laboratoire de mathématiques pures et appliquées (Calais, Pas de Calais) (laboratoire) , Laboratoire de Mathématiques Appliquées et Informatique (Guéliz Marrakech, Maroc) (laboratoire) et de Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville / LMPA (laboratoire) .


  • Résumé

    Les simulations à grande dimension jouent un rôle crucial dans l'étude d'une grande variété de phénomènes physiques complexes, entraînant souvent des demandes écrasantes sur les ressources informatiques. La gestion de ces demandes constitue la principale motivation pour la réduction du modèle : produire des modèles de commande réduite plus simples, qui permettent une simulation plus rapide et moins coûteuse tout en se rapprochant avec précision du comportement du modèle d'origine. La présence des systèmes avec multiples entrées et multiples sorties (MIMO) rend le processus de réduction encore plus difficile. Dans cette thèse, nous nous intéressons aux méthodes de réduction de modèles à grande dimension en utilisant la projection sur des sous-espaces de Krylov tangentielles. Nous nous penchons sur le développement de techniques qui utilisent l'interpolation tangentielle. Celles-ci présentent une alternative efficace et intéressante à la troncature équilibrée qui est considérée comme référence dans le domaine et tout particulièrement la réduction pour les systèmes linéaire à temps invariants. Enfin, une attention particulière sera portée sur l'élaboration de nouveaux algorithmes efficaces et sur l'application à des problèmes pratiques.

  • Titre traduit

    Tangential methods for model reductions and applications


  • Résumé

    Large-scale simulations play a crucial role in the study of a great variety of complex physical phenomena, leading often to overwhelming demands on computational resources. Managing these demands constitutes the main motivation for model reduction : produce simpler reduced-order models, which allow for faster and cheaper simulation while accurately approximating the behaviour of the original model. The presence of multiple inputs and outputs (MIMO) systems, makes the reduction process even more challenging. In this thesis we are interested in methods of reducing large-scale models, using projection on tangential Krylov subspaces. We are looking at the development of techniques using tangential interpolation. These present an effective and interesting alternative to the balanced truncation which is considered as a reference in the field and especially for the reduction of linear time invariant systems. Finally, special attention will be focused on the development of new efficient algorithms and application to practical problems.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université du Littoral-Côte d'Opale (Dunkerque, Nord). SCD.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.